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Abstract

In many problem domains, particularly those related to mathematics and philos-
ophy, classical logic has enjoyed great success as a model of valid reasoning and
discourse. For real-world reasoning tasks, however, an agent typically only has
partial knowledge of its domain, and at most a statistical understanding of re-
lationships between properties. In this context, classical inference is considered
overly restrictive, and many systems for non-monotonic reasoning have been
proposed in the literature to deal with these tasks. A notable example is the
Klm framework, which describes an agent’s defeasible knowledge qualitatively
in terms of conditionals of the form “if A, then typically B”.

The goal of this research project is to investigate Klm-style semantics for
defeasible reasoning over Datalog knowledge bases. Datalog is a declarative
logic programming language, designed for querying large deductive databases.
Syntactically, it can be viewed as a computationally feasible fragment of first-
order logic, so this continues a recent line of work in which the Klm framework
is lifted to more expressive languages.
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Chapter 1

Introduction

In this chapter we will give a brief overview of what defeasible reasoning is, what
the Klm framework has to say about it and where Datalog fits into the story.
Our starting point is the observation that in many problem domains, there is a
need for AI to perform reasoning tasks. By this, we mean the process of drawing
new conclusions from a set of established beliefs about the problem domain. A
simple example of this is a database system - in the process of answering a
complex query, a database will typically have to derive new information from
its existing body of facts (in a Sql database, for instance, a query might require
the construction of a new table [20]). A more recent example might be something
like Gpt3, a deep neural network that is able to interpret and answer a broad
range of questions in English [6].

There are as many different kinds of reasoning as there as colours of the rain-
bow. Science, for instance, is heavily dependent on induction, which is the pro-
cess of forming good general principles from an incomplete body of evidence.
Economists care about decision theory, where one reasons about the different
choices one can make in a given situation. Or perhaps one is trying to under-
stand why a computer program has just crashed, in which case one can make
use of abduction, which is about working out the most likely explanation for a
set of observations.

Closer to the topic of this thesis is the study of mathematical logic, which at its
core is all about reasoning with absolute, a priori knowledge and assumptions
[27]. One perspective is that the role of a mathematician is to take a set of
axioms, which are assumed to be true beyond a shadow of doubt, and to apply
a sequence of logically sound rules of inference in order to arrive at new con-
clusions, which by virtue of the axioms are thus also true beyond a shadow of
doubt. This is called deductive reasoning, and an example of a valid deduction
is the following:

“Socrates is a man.”

6



CHAPTER 1. INTRODUCTION 7

“All men are mortal.”
“Therefore, Socrates is mortal.”

This is a valid deduction because whenever the premises are true, the con-
clusion follows logically as well. If Socrates is a man, and we assume that all
men are mortal (though some may argue against this!), then it is necessarily
true that Socrates is mortal. This kind of deductive argument is ubiquitous
in mathematics and philosophy - so much so, that a common misconception is
that reasoning and deduction are the same thing [31]. A moment’s reflection,
however, will reveal that things are not so simple in the real world. Consider
the following example of an invalid deduction:

“Tommie is a bird.”
“Birds usually fly.”

“Therefore, Tommie can fly.”

This is not a valid deduction, because it is possible for the conclusion to be
false even if the premises are true. Suppose, for example, that Tommie happened
to be a penguin. In this case, the first two sentences would be true, but the
last sentence would almost certainly be false. Nevertheless, the argument has
some intuitive appeal. If all we know about Tommie is that he is a bird, it’s
reasonable to expect him to be able to fly, since almost every bird we see on a
day-to day basis can do so!

Humans perform this kind of heuristic reasoning all the time. We are endowed
with a small number of sensory organs, all of which are limited in their precision
and often somewhat faulty. As a result, we never have perfect information about
the world around us, and the only way to come to any conclusions at all is to
generalise beyond that which we know for certain. While it would be technically
incorrect to call this deduction, it is certainly a form of reasoning.

A hallmark of this kind of reasoning is that its conclusion are often defeasible,
meaning they may have to be withdrawn in light of new information. In the
example above, if we were to add the additional premise that “Tommie is a
penguin”, then we would no longer be justified in concluding that Tommie can
fly.

Notice the crucial difference here between defeasible reasoning and deduction.
A valid deduction is always valid, no matter how many new premises we tack
on after the fact. This property is known in the literature as monotonicity, and
is one of the hallmarks of mathematical reasoning.

Thus, in order to understand the defeasible reasoning process, we need to
come to terms with non-monotonicity. Fortunately, constructing non-monotonic
models of reasoning is not hard - in the literature, there are a multitude of
options available to the intrepid reasoner (see the book by Makinson [26] on
the topic, for instance). In a certain sense, the Klm framework is just one of
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these options. What distinguishes it from its peers, however, is its focus on the
properties that a non-monotonic consequence relation might enjoy.

The Klm framework provides a mathematical characterisation of any non-
monotonic model of reasoning satisfying certain inferential properties [22, 25].
These properties have come to be known as the rationality postulates, and pro-
vide a useful tool for comparing and delineating the field of non-monotonic logic.
Beyond this, the semantics of the Klm framework can also be used to construct
some particularly elegant and well-behaved algorithms for non-monotonic rea-
soning, such as the Rational Closure construction. For these reasons, the Klm
framework has been enormously influential in the study of defeasible reasoning,
and has inspired a flurry of further research on the topic (such as this thesis!)
that continues to this day. We give an overview of the original Klm framework
in Chapter 3.

In their seminal paper on the Klm framework, Kraus et al. [22] study the prob-
lem of performing defeasible reasoning when one’s background assumptions and
knowledge are encoded in the formalism of propositional logic. Propositional
logic is a simple model of mathematical reasoning in which the basic objects
are propositions, or complete statements about one’s problem domain. For in-
stance, the sentence “Socrates is a man” is a proposition, as is the sentence
“Socrates is mortal”. One of the advantages of propositional logic is that de-
duction for propositions is computable, meaning there exist algorithms for deter-
mining whether a given proposition can be deduced from a set of assumptions.

On the other hand, propositional logic is quite restrictive. It offers no way
to reason about more nuanced statements such as “every person has something
that they like more than anything else”, and in particular isn’t expressive enough
to provide a full account of mathematical reasoning. The gold standard for this
is first-order logic, which allows one to model statements containing different
kinds of predicates (such as “X is red” or “X likes Y ”) and quantifiers (such as
“there exists some X” or “every X is Y ”). First-order logic offers significantly
more flexibility in how one describes and reasons about a problem domain.
The price one pays for this, however, is that deduction for first-order logic is
incomputable. There is no algorithm, even in principle, that can tell you how to
reason deductively about first-order statements!

Datalog is a database query language that sits somewhere between the two. It
is based on first-order logic, but restricts the kinds of quantifiers and predicates
that are allowed when describing a statement. This lets it capture a wide range
of problem domains, and preserves the property of being computable. Alongside
an elegant syntax, this has made Datalog into a versatile tool for working with
large deductive databases [12].

Our goal in this thesis, as we will review in the next section, is to extend the
Klm framework to the Datalog setting, and provide a mathematical model of
defeasible reasoning for Datalog knowledge bases.

Two papers were published based on the work done in this thesis. The first
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studies a boolean extension of the propositional Klm framework, and was pub-
lished in the proceedings of SACAIR 2021 [29]. The second contains an account
of Klm-style reasoning for Datalog, and was published in the proceedings of
NMR 2021 [8]. A third paper on Defeasible Datalog is currently under review
for IJCAI 2022, and we are awaiting notification.

1.1 Research Objectives

There are a number of active lines of research being explored on increasing
the scope of the Klm framework. At the moment, the most promising can be
summarised as follows:

1. The syntax of the Klm framework can be modified to support more ex-
pressive conditionals, such as negated conditionals [2] or conditionals with
fine-grained typicality [3].

2. Inferential limitations with Rational Closure can be overcome by consid-
ering various extensions, such as Lexicographic Closure [23] or Relevant
Closure [11].

3. Analogues of the Klm framework can be defined over more expressive base
logics, such as the Description Logic Alc [19, 5].

The aim of this thesis is to investigate and continue this last line of re-
search. Specifically, we investigate analogues of Klm-style inference for Dat-
alog, a declarative logic programming language designed for querying deduc-
tive databases. Datalog supports rules and predicates of arbitrary arity, which
makes it much more expressive than propositional logic, and also slightly more
expressive than the variety of Description Logics (such as Alc) for which Klm-
style defeasibility has already been studied. As such, it provides an interesting
test-case that should be understood before Klm-style defeasibility is applied to
extremely expressive settings like unrestricted first-order logic.

1.2 Dissertation Outline

In Chapter 2, we review some basic concepts of order theory and mathematical
logic that will be used in the rest of the thesis. Readers who have some experi-
ence with propositional logic, first-order logic and the notion of a partial order
can likely skip this chapter. Chapter 3 introduces Klm-style defeasible reason-
ing for propositional logic, based on the seminal papers by Kraus, Lehmann
and Magidor [22, 25]. We cover the main concepts, namely the rationality pos-
tulates, ranked interpretations and rational closure. This lays the groundwork
for the more expressive theories in the rest of the thesis. In Chapter 4, we look
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at the simple Description Logic Alc, and review the literature on Klm-style
defeasible reasoning for Alc. We discuss some of the difficulties that more
expressive logics present for defeasible reasoning. In Chapter 5 we introduce
Datalog, a computationally-flavoured fragment of first-order logic. We focus on
the classical syntax and semantics of Datalog, and present some of the basic
non-monotonic extensions of Datalog that exist in the literature already. Chap-
ter 6 is the meat of the thesis, and introduces the building blocks for a Klm-style
theory of defeasible reasoning over Datalog knowledge bases. We introduce Dat-
alog analogues of the rationality postulates, cover various possible semantics for
Defeasible Datalog formulas, and finish by analysing several viable notions of
entailment for Defeasible Datalog knowledge bases. Finally, in Chapter 7, we
present our conclusions from this research project and suggest several lines of
future research that may be fruitful.



Chapter 2

Mathematical Preliminaries

In this chapter, we collect some definitions and results about basic mathematics
that we will need in future chapters. In particular, we will cover the basics of
order theory, propositional logic and first-order logic.

2.1 Order Theory

A binary relation on a set P is a subset r ⊆ P × P . A strict partial order on a
set P is any binary relation ≺⊆ P × P satisfying the following two conditions,
where x, y, z refer to any elements of P [13, p. 2]:

1. x ≺ y and y ≺ z implies x ≺ z

2. x ≺ y implies y ⊀ x

Given a strict partial order ≺ on P , we say x is covered by y iff x ≺ y and
there is no z such that x ≺ z ≺ y, a fact we denote by x� y [13, p. 11]. If P is
finite, then x ≺ y iff there exists a sequence of coverings x� x1 � · · ·� xn � y.
Thus, in the finite case, strict partial orderings are determined by their covering
relation. This fact gives us a convenient diagrammatic notation for finite strict
partial orders:

Example 1. Let P = {a, b, c, d, e}, and consider the following diagram:

e

a

c

b

d

11
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The edges in the diagram represent the covering relation, going downwards.
Thus in this diagram we have c� e, d� e, a� d, etcetera. Translating between
the covering relation and a strict partial order ≺, we can see, for instance, that
a ≺ e and b ≺ d.

These kinds of diagrams are known as Hasse diagrams [13, p. 11]. A given
strict partial order may have many possible Hasse diagrams, of course, but we
will strive to minimise confusion whenever we draw one.

If Q ⊆ P is a subset of a strict partially ordered set P , then an element x ∈ Q
is a maximal element of Q iff there is no y ∈ Q such that x ≺ y. Similarly, x ∈ Q
is a minimal element of Q iff there is no y ∈ Q such that y ≺ x [13, p. 16]. We
denote the set of maximal and minimal elements of Q by max≺Q and min≺Q
respectively. Note that minimal and maximal elements do not always exist:

Example 2. Consider the set of integers Z, and let < be the usual ordering.
Then min< Z = max< Z = ∅. On the other hand, if we consider the set of
naturals N ⊂ Z, then max<N = ∅ and min<N = {0}.

In the case that max≺Q = {x} or min≺Q = {x} for some singleton x ∈ Q,
then we say x is the maximum or minimum element of Q respectively. We say
P is totally ordered (or a chain) iff for every x, y ∈ P either x = y, x ≺ y or
y ≺ x [13, p. 3]. A totally ordered set P is well-ordered (or a well-order) iff
every subset Q ⊆ P has a minimum element.

Example 3. While Z and N are both totally ordered sets, only N is a well-order,
as min< Z = ∅ and hence Z has no minimum element.

Finally, we note the following definition from a paper by Lehmann et al. [25],
which will come in handy later:

Definition 1. [25, p. 19] Let ≺ be a strict partial order on P . Then we say ≺
is modular iff any of the following equivalent conditions hold, where x, y, z are
any elements of P :

1. x ⊀ y, y ⊀ x and z ≺ x implies z ≺ y

2. x ≺ y implies z ≺ y or x ≺ z

3. x ⊀ y and y ⊀ z implies x ⊀ z

4. there exists a totally ordered set 〈Ω, <〉 and function r : P → Ω such that
x ≺ y iff r(x) < r(y).

2.2 Propositional Logic

The language of propositional logic is defined over a set of propositional atoms,
denoted P, which represent the atomic statements that one wants to reason
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about. When explicitly writing elements of P, we will use lowercase latin char-
acters such as p, q, r. The set of propositional formulas over P is denoted LP ,
and is defined by the following rules (where we’ve dropped the superscript P
for convenience) [27, p. 116]:

1. For all p ∈ P, p ∈ L.

2. For all α ∈ L, ¬α ∈ L.

3. For all α, β ∈ L, α ∨ β ∈ L.

Other logical connectives can be defined in terms of ¬ and ∨:

1. α ∧ β is an alias for ¬(¬α ∨ ¬β).

2. α→ β is an alias for ¬α ∨ β.

3. α↔ β is an alias for (α→ β) ∧ (β → α).

A theory (or deductively closed theory) is a set of propositional formulas that
is equal to its closure under the following Hilbert-style deduction rules, where
α, β, γ refer to any propositional formulas [27, p. 214]:

1. α→ (β → α) ∈ Γ.

2. (¬α→ ¬β)→ (β → α) ∈ Γ.

3. (α→ (β → γ))→ ((α→ β)→ (α→ γ)) ∈ Γ.

4. if α ∈ Γ and α→ β ∈ Γ then β ∈ Γ.

The closure of a theory Γ under these deduction rules is denoted Th(Γ), and
thus Γ is deductively closed iff Γ = Th(Γ). A theory Γ is complete iff for every
formula α ∈ L, α ∈ Th(Γ) or ¬α ∈ Th(Γ) [27, p. 198].

Propositional formulas and theories are interpreted by valuations, which are
defined to be any atomic truth assignment u : P → {0, 1}. Truth assignments
are extended to non-atomic formulas as follows [27, p. 121]:

1. u(¬α) = 1 iff u(α) = 0.

2. u(α ∨ β) = 1 iff u(α) = 1 or u(β) = 1.

The set of valuations over P is denoted UP , and similarly to L we will drop
the superscript P where possible. We say a valuation u ∈ U satisfies a formula
α ∈ L, denoted u 
 α, iff u(α) = 1. A valuation satisfies a theory iff it satisfies
every formula in the theory.
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We say a formula α ∈ L is classically entailed (or logically follows from) a
theory Γ iff every model of Γ satisfies α. The classical entailment relation
|=⊆ 2L × L is defined by Γ |= α iff Γ classically entails α [27, p. 121]. As
noted by Tarski [34], the classical entailment relation satisfies the following three
properties, known as Inclusion, Cumulativity and Monotonicity respectively:

(Incl) α ∈ Γ implies Γ |= α

(Cumu) Γ |= α and Γ ∪ {α} |= β implies Γ |= β

(Mono) Γ |= α implies Γ ∪ {β} |= α

The following theorem is fundamental, and expresses the equivalence between
deduction and entailment for propositional logic:

Theorem 1. [27, p. 123] For any theory Γ ⊆ L and formula α ∈ L, Γ |= α iff
α ∈ Th(Γ).

To every valuation u ∈ U we assign a corresponding theory called its satisfac-
tion set, defined by Γu = {α ∈ L : u 
 α}. Then the following corollary of
Theorem 1 shows that there is an equivalence between valuations and closed or
complete theories:

Corollary 1. A theory Γ ⊆ L is deductively closed iff there exists some set of
valuations U ⊆ U such that Γ =

⋂
u∈U Γu. Γ is complete iff there exists some

valuation u ∈ U such that Γ = Γu.

Lastly, we will describe some non-standard notation for valuations that will
come in handy later. In the case that P is finite, consider the set of strings
of the form p1p2 . . . p|P|, where each pi is either a propositional atom p or its
negation, denoted by p. Such a string will be considered admissible if every
propositional atom appears exactly once in the string (possibly as a negation).
Each admissible string corresponds to a unique valuation v : P → {0, 1}, defined
by setting v(p) = 1 if the string contains p, or v(p) = 0 if the string contains p.

Example 4. Suppose that P = {p, q, r}, and consider the valuation v defined
by v(p) = 0, v(q) = 1 and v(r) = 1. Then v can be described by the admissible
string pqr. Note that this description is not unique - any permutation of the
string would do as well.

2.3 First-Order Logic

First-order logic expands the language of propositional logic, allowing for the
expression of formulas at a finer level of granularity than atomic propositions.
A first-order language is a tuple Σ = 〈pred, func,const,var〉, which has the
following interpretation [36, p. 23]:
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1. pred is a set of predicate symbols, which we require to be non-empty.

2. func is a set of function symbols, which may be empty.

3. const is a set of constant symbols, which may be empty.

4. var is a set of variable symbols, which we require to be non-empty (and
which we will typically take to be countably infinite, though this is not a
requirement).

These sets are assumed to be disjoint, and furthermore we assume that each
predicate and function symbol α ∈ pred∪func has an associated arity, denoted
ar(α) ∈ N. Given a first-order language Σ, the set T of terms over Σ is defined
by the following rules [36, p. 24]:

1. If c ∈ const is a constant symbol, then c ∈ T .

2. If x ∈ var is a variable symbol, then x ∈ T .

3. If f ∈ func is a function symbol and t1, . . . , tar(f) are terms, then f(t1, . . . , tar(f)) ∈
T .

An atomic formula over Σ is defined to be anything of the form p(t1, . . . , tar(p)),
where p ∈ pred is a predicate symbol and t1, . . . , tar(p) ∈ T are terms. The set
of formulas over Σ is denoted LΣ, and is defined inductively in terms of atomic
formulas as follows [36, p. 24]:

1. If p(t1, . . . , tar(p)) is an atomic formula, then p(t1, . . . , tar(p)) ∈ LΣ.

2. If α ∈ LΣ is a formula, then ¬α ∈ LΣ.

3. If α, β ∈ LΣ are formulas, then α ∨ β ∈ LΣ.

4. If α ∈ LΣ is a formula and x ∈ var is a variable symbol, then ∀x.α ∈ LΣ.

When there is no ambiguity we will drop the superscript and refer to the set
of formulas over Σ by L. As in the propositional case, other logical connectives
can be defined in terms of ¬, ∨ and ∀:

1. α ∧ β is an alias for ¬(¬α ∨ ¬β).

2. α→ β is an alias for ¬α ∨ β.

3. α↔ β is an alias for (α→ β) ∧ (β → α).

4. ∃x.α is an alias for ¬(∀x.¬α).
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Under the standard semantics, first-order formulas and theories over a lan-
guage Σ are interpreted by first-order structures, which are defined to be tuples
I = 〈∆I , ·I〉 where ∆I is a non-empty set called the domain, and ·I is an
interpretation function that acts as follows [36, p. 167]:

1. Constant symbols c ∈ const are interpreted by domain elements cI ∈ ∆I .

2. Predicate symbols p ∈ pred are interpreted by relations cI ⊆ (∆I)ar(p).

3. Function symbols f ∈ func are interpreted by functions fI : (∆I)ar(f) →
∆I .

A first-order structure provides an interpretation for all constant, predicate
and function symbols in a given first-order language, as well as for all variable
symbols bound by a universal or existential quantifier. The missing ingredient
before we can talk about satisfaction is an interpretation for the unbound vari-
able symbols. This is given by an assignment, which is defined to be a function
υ : var → ∆I [36, p. 168]. Every such assignment can be extended to the set
of all terms of the language as follows:

Lemma 1. [36, p. 168] Let I = 〈∆I , ·I〉 be a first-order structure, and υ :
var→ ∆I some assignment. Then there is a unique function υ̂ : T → ∆I such
that:

1. If t is a variable symbol x ∈ var, then υ̂(t) = υ(x).

2. If t is a constant symbol c ∈ const, then υ̂(t) = cI .

3. If t is a term of the form f(t1, . . . , tar(f)) for some function symbol f ∈
func, then υ̂(t) = fI(υ̂(t1), . . . , υ̂(tar(f))),

For any assignment υ, variable symbol x ∈ var and domain element d ∈ ∆I ,
we denote by υxd the assignment that agrees with υ everywhere except that x
is mapped to d. Given a first-order structure I = 〈∆I , ·I〉 and an assignment
υ : var → ∆I , we say a formula is satisfied by I under the assignment υ
according to the following rules [36, p. 169]:

1. An atom p(t1, . . . , tar(p)) is satisfied by I under υ iff (υ̂(t1), . . . , υ̂(tar(p))) ∈
pI .

2. A formula ¬α is satisfied by I under υ iff α is not.

3. A formula α ∨ β is satisfied by I under υ iff α is or β is.

4. A formula ∀x.α is satisfied by I under υ iff α is satisfied by I under υxd
for every d ∈ ∆I .
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The fact that α is satisfied by I under υ is denoted by 〈I, υ〉 
 α. In the
case that α is satisfied by I under every possible assignment, we simplify the
notation and just write I 
 α. Whenever Γ ⊆ L is a set of formulas, we write
〈I, υ〉 
 Γ or I 
 Γ to mean 〈I, υ〉 
 α or I 
 α for every α ∈ Γ respectively.

Given a set of formulas Γ ⊆ L, we say a formula α is classically entailed (or
logically follows from) Γ iff whenever 〈I, υ〉 
 Γ we have 〈I, υ〉 
 α. As in the
propositional case, we denote this by Γ |= α. A theory is defined to be a set
of formulas that is closed under classical entailment, and a complete theory is a
theory that contains either α or ¬α for every α ∈ L.

We note that while a first-order proof theory and analogue of Theorem 1 exists,
we will not make use of it in this thesis. The interested reader is encouraged to
consult Wolf [36] for an overview of first-order logic (inlcuding proof theory) or
Monk [27] for a more comprehensive textbook.

While first-order structures are the standard tool for interpreting first-order
theories, they are far from the only option. A simpler alternative that is com-
monplace in logic programming is Herbrand semantics, which intuitively is a
semantics in which terms interpret themselves. Formally, we define the Her-
brand universe and Herbrand base of a first-order language Σ as follows [18,
p. 2]:

Definition 2. Let Σ = 〈pred, func,const,var〉 be a first-order language.
Then the Herbrand universe of Σ is the set of ground terms over Σ, i.e. terms
without variables in them:

UΣ = {t ∈ T Σ : t contains no variables}

The Herbrand base of Σ is the set of ground atoms over Σ, i.e. atomic formulas
containing only terms from UΣ:

BΣ = {p(t1, . . . , tar(p)) ∈ LΣ : t1, . . . , tar(p) ∈ UΣ}

As usual, we will omit the superscript Σ when it is obvious from context.
With these definitions under our belt, we define a Herbrand interpretation to
be any subset of the Herbrand base H ⊆ B [18, p. 3]. The idea here is that a
ground atom is assumed to be satisfied by H iff it is contained in H. Herbrand
interpretations are thus in some sense a first-order generalisation of propositional
valuations.

Note that there is an edge-case here when const is empty. In this case, both
the Herbrand universe and the Herbrand base will be empty as well, and thus
the only valid Herbrand interpretation over such a language is the empty set.
This is consistent with what follows, but should be kept in mind as a possibility.

The main difficulty is interpreting quantifiers with Herbrand semantics. To this
end, we define a substitution over a language Σ to be any function ϕ : var→ T
assigning terms to each variable symbol. If the image of a substitution ϕ contains
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only ground terms, i.e. im(ϕ) ⊆ U, then we say that ϕ is a ground substitution.
We denote by ϕ1 the identity substitution, i.e. the substitution that sends every
variable symbol to itself. Like assignments, the domain of a substitution can be
uniquely extended to the set of terms of Σ:

Lemma 2. Let Σ = 〈pred, func,const,var〉 be a first-order language, and
ϕ : var → T some substitution. Then there is a unique function ϕ̂ : T → T
such that:

1. If t is a variable symbol x ∈ var, then ϕ̂(t) = ϕ(x).

2. If t is a constant symbol c ∈ const, then ϕ̂(t) = c.

3. If t is a term of the form f(t1, . . . , tar(f)), then ϕ̂(t) = f(ϕ̂(t1), . . . , ϕ̂(tar(f))).

Given any substitution ϕ and formula α ∈ L, we define the substituted formula
ϕ(α) as follows:

1. If α is an atom p(t1, . . . , tar(p)) ∈ L, then ϕ(α) = p(ϕ̂(t1), . . . , ϕ̂(tar(p))).

2. If α is of the form ¬β ∈ L, then ϕ(α) = ¬ϕ(β).

3. If α is of the form β ∨ γ ∈ L, then ϕ(α) = ϕ(β) ∨ ϕ(γ).

4. If α is of the form ∀x.β ∈ L, then ϕ(α) = ∀x.ϕ∗(β), where ϕ∗ is the
substitution that agrees with ϕ everywhere except that x is mapped to x.

Note that substitutions only affect the free variables in a formula. Given a
Herbrand interpretation H ⊆ B, we say a formula α ∈ L is satisfied by H
according to the following rules [18, p. 3]:

1. If α is a ground atom p(t1, . . . , tar(p)) ∈ L, then α is satisfied by H iff
α ∈ H.

2. If α is of the form ¬β ∈ L, then α is satisfied by H iff β is not satisfied by
H.

3. If α is of the form β ∨ γ ∈ L, then α is satisfied by H iff β is satisfied by
H or γ is satisfied by H.

4. If α is of the form ∀x.β ∈ L, then α is satisfied by H iff ϕ(β) is satisfied
by H for every substitution ϕ that agrees with ϕ1 everywhere except that
x is mapped to some constant c ∈ const.

As before, we denote the fact that H satisfies α by H 
 α, and for any set of
formulas Γ ⊆ L we write H 
 Γ to mean H 
 α for every α ∈ Γ. Note that
we have only defined satisfaction for formulas without free variables. This is
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enough for our purposes in this thesis, but a fully general definition can easily
be given if desired.

The reader may be wondering why Herbrand semantics isn’t the standard for
interpreting first-order logic. After all, it is significantly simpler, and possibly
even more intuitive. The difficulty is that Herbrand semantics is not equivalent
to the use of first-order structures:

Lemma 3. [18, p. 5] Consider a first-order language with a unary predicate p,
a unary function symbol f, a constant symbol c and a countable set of variable
symbols {x, y, . . . }. Then the set Γ = {p(c), p(f(c)), p(f(f(c))), . . . ,∃x.¬p(x)} is
satisfiable by a first-order structure, but not by any Herbrand interpretation.

The differences between Herbrand semantics and standard first-order seman-
tics manifest in a number of ways. Standard first-order semantics is compact,
for instance, meaning that an infinite set of formulas is satisfiable by a first-
order structure iff every finite subset is. In contrast, the example in Lemma
3 shows that Herbrand semantics is not compact. A related difference is the
fact that there exists a sound and complete proof theory for standard first-order
semantics, whereas no such proof theory can exist for Herbrand semantics [18,
p. 5].

On the other hand, these technical limitations are generally not a problem
when working with restricted fragments of first-order logic, such as Datalog.
In fact, as we will see later, Herbrand semantics is sound, complete and com-
pact for Datalog-like fragments (see Section 6.1, for instance). In cases like
this, the simplicity of Herbrand semantics more than makes up for its formal
inadequacies, and we will adopt it whenever possible.

The last thing we turn to for first-order logic is a notational convenience that
we will make extensive use of later. So far, we have defined universal and ex-
istential formulas in terms of a single variable symbol, such as ∀x.α or ∃x.α.
Like all first-order connectives, this can be nested to obtain quantification over
multiple variables simultaneously, such as ∀x.(∀y.(∃z.α)). Notationally this be-
comes cumbersome, however, and is particularly painful when describing infer-
ence rules for quantified formulas, a topic we will turn to later when we study
Defeasible Datalog.

To make life simpler, we introduce the notation ∀~x.α, where ~x = 〈x1, . . . , xn〉 ∈
varn is any ordered tuple of variable symbols. The formula that this notation
stands for is defined inductively as follows:

1. If ~x = 〈〉 is a nullary tuple, then ∀~x.α stands for α.

2. If ~x = 〈x1〉 is a unary tuple, then ∀~x.α stands for ∀x1.α.

3. If ~x = 〈x1, . . . , xn〉 is an n-ary tuple for n > 1, then ∀~x.α stands for
∀x1.(∀~x∗.α), where ~x∗ = 〈x2, . . . , xn〉.
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We can extend the notation to existential quantifiers in the usual fashion, with
∃~x.α standing for ¬(∀~x.¬α). We also note that this notation allows for formulas
in which the tuple ~x contains duplicate variable symbols, something that is
perfectly acceptable in first-order logic (and occasionally very useful, such as
when one is working in the decidable 2-variable fragment of first-order logic).
In fact, the following basic result shows that whether or not one allows such
tuples is simply a matter of taste, and doesn’t change the expressiveness of the
notation:

Lemma 4. Let ~x ∈ varn and ~y ∈ varm be two tuples, possible of different
arities, containing exactly the same variable symbols, i.e. z = xi for some
1 ≤ i ≤ n iff z = yj for some 1 ≤ j ≤ m. Then under both standard first-order
semantics and Herbrand semantics, ∀~x.α is logically equivalent to ∀~y.α for every
α ∈ L.



Chapter 3

KLM-Style Defeasible
Reasoning

3.1 Background

The Klm framework was first proposed as a qualitative system for defeasible
reasoning by Kraus, Lehmann and Magidor [22, 25] in the 1990s, to whom the
acronym Klm refers. It builds on top of propositional logic by adding an ad-
ditional logical connective, which is denoted by “|∼” (pronounced “twiddle”).
In our exposition, this connective expresses a relationship between two proposi-
tional formulas that is intended to be read along the lines of “typically implies”
or “defeasibly implies”. This differs from Kraus et al. [22], in which the connec-
tive represents a consequence relation, and agrees rather with the perspective of
Lehmann et al. [25].

For instance, we can use “|∼” to express statements like the following:

“b |∼ f”
“birds typically/defeasibly fly”

Note the difference here between the reading of “b |∼ f” and the reading of
“b → f”, which states that birds always or unconditionally fly. As one might
expect based on this reading, there is a fundamental difference between “|∼”
and the standard logical connectives (namely “∧” “∨”, “→” and “¬”).

These standard logical connectives are truth functional, which means that the
truth value of a compound depends entirely on the truth values of its con-
stituents. For instance, a compound such as “α ∧ β” is true if and only if both
“α” and “β” are true. On the other hand, “|∼” is not a truth functional con-
nective. Intuitively, this is because the truth value of a statement such as “birds

21
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typically fly” depends on all conceivable situations involving birds, not just the
situation we happen to be considering.

A defeasible formula is defined to be anything of the form α |∼ β, where
α, β ∈ L are propositional formulas over a specified set P of atoms. The set

of defeasible formulas over P is denoted L|∼P (we will drop the subscript where
it is unambiguous or doesn’t matter), and constitutes the set of valid formulas
for propositional Klm. Note that this imposes some implicit constraints on the
connective “|∼”:

1. No nesting of |∼ is allowed - formulas such as α |∼ (β |∼ γ) are invalid.

2. Negations and conjunctions of formulas containing |∼ are not permitted -
formulas such as ¬(α |∼ β) and (α |∼ β) ∨ (α |∼ ¬β) are invalid.

3.2 Rationality Postulates

Defeasible reasoning is often characterised in terms of properties that it lacks
in general, such as monotonicity of entailment. One of the main selling points
of the Klm framework is that it characterises several properties that defeasible
reasoning has, known as the rationality postulates. These properties describe the
ways in which new facts can be (defeasibly) derived from old facts. Or, phrased
differently, they describe the structure of the implicit content of a defeasible
theory [32].

Consider, for instance, a reasoner who knows the explicit facts that birds typ-
ically fly (b |∼ f), and that Tweety is a bird (b). Then the reasoner is justified
in concluding the implicit fact that Tweety flies (f), at least until new facts are
learned that require the revision of this conclusion.

To motivate the rationality postulates, let’s consider a few examples of defeasi-
ble knowledge bases, which are defined to be sets of defeasible formulas K ⊆ L|∼.
While this appears to exclude the possibility of classical formulas α ∈ L being
a part of a knowledge base, we note that in the Klm framework such a formula
can be encoded by ¬α |∼ ⊥ [25, p. 6]. The fact that this encoding is valid is
non-trivial, and will be properly justified later. For now, we simply assume it
is true to simplify our discussion.

Our first example, as is customary in AI literature, concerns birds:

Example 5 (The Penguin Triangle). Consider the set of propositional atoms
P = {b, f, p}, which stand for bird, fly and penguin. Then it is generally known
that penguins are birds, that birds typically fly and that penguins typically don’t.
This can be represented by the knowledge base K = {p→ b, b |∼ f, p |∼ ¬f}.
Note that the classical version of the same knowledge base, namely Γ = {p →

b, b→ f, p→ ¬f}, implies the formula p→ ⊥, i.e. that there are no penguins!
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Our second example concerns mathematicians, and is based off the well-known
Nixon diamond knowledge base [25]:

Example 6 (The Mathematician Diamond). Consider the set of propositional
atoms P = {m, f, e, c}, which stand for mathematician, formal, eccentric and
creative. Our claim is that mathematicians typically have the unusual combina-
tion of being both formal and eccentric. On the other hand, formal people are
typically not very creative, while eccentric people typically are. This paradoxical
state of affairs can be represented by the knowledge base K = {m |∼ e ∧ f, e |∼
c, f |∼ ¬c}.

In propositional logic, deductively closed theories provide a formal model of
the outcome of a classical reasoning process, as they are closed under all of the
classical inference rules. This is justified by Corollary 1, which connects this
observation to the semantic definition of classical entailment.

In the same vein, we wish to introduce a formal model of the outcome of a
defeasible reasoning process. Like its classical counterpart, this formal model
should be closed under a number of defeasible properties, which describe permis-
sible patterns of defeasible reasoning, or the structure of the implicit knowledge
a reasoner has about its knowledge base. To make these notions precise, suppose
that a set of atoms P has been fixed by the reasoner to represent propositions
about some domain. Then we let P̃ be a set of meta-atoms, disjoint from P,
which we will use to denote logical schemas over P.

We denote the set of (meta-)propositional formulas over P̃ by LP̃ , and define
an inclusion formula to be anything of the form α |∼ β, α 6|∼ β, or |= α, where

α, β ∈ LP̃ . The set of such inclusion formulas will be denoted by IP̃|∼. An instance

of an inclusion formula is the result of applying some substitution ϕ : P̃ → LP
to it, which assigns a propositional formula over P to each meta-atom. We

denote such an instance by ϕ(I), where I ∈ IP̃|∼ is the inclusion formula.

Example 7. Suppose that P = {p, q}, and that our set of meta-atoms is given
by P̃ = {α, β}. Then a typical example of an inclusion formula is:

I = α ∧ β 6|∼ ¬α

Consider the substitutions ϕ1, ϕ2 : P̃ → LP defined by ϕ1(α) = p, ϕ1(β) = ¬q,
and ϕ2(α) = p ∨ q, ϕ2(β) = > respectively. Then we have the instances:

ϕ1(I) = p ∧ ¬q 6|∼ ¬p

ϕ2(I) = (p ∨ q) ∧ > 6|∼ ¬(p ∨ q)

A defeasible property is defined to be anything of the form I1, . . . , In =⇒ In+1,

where the Ii ∈ IP̃|∼ are all inclusion formulas, and we denote the set of defeasible

properties by PP̃|∼. Intuitively, a defeasible property states that whenever a
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reasoning process sanctions an instance of the inclusion formulas on the left-
hand side, it should also sanction the corresponding instance of the right-hand
formula.

Example 8. Let’s construct a defeasible property that expresses the Transitivity
pattern of classical reasoning for defeasible formulas: if we reason that α implies
β, and that β implies γ, then classically we would also be willing to reason that
α implies γ. This can be formalised by:

(Trans) α |∼ β, β |∼ γ =⇒ α |∼ γ

Note that we have left the definition of P̃ implicit in this example (it contains
α, β and γ). Context will always be sufficient to determine whether a symbol
like “α” is playing the role of a meta-atom or a propositional formula.

Given a set S ⊆ L|∼ of defeasible formulas, we say S satisfies an inclusion
formula instance ϕ(α |∼ β) iff ϕ(α |∼ β) ∈ S. Similarly, S satisfies ϕ(α 6|∼ β) iff
ϕ(α |∼ β) 6∈ S, and S satisfies ϕ(|= α) iff α is a classical tautology.

Definition 3. Let P = I1, . . . , In =⇒ In+1 be a defeasible property, and
suppose S ⊆ L|∼ is a set of defeasible formulas. Then S is said to be P -complete
iff for every substitution ϕ : P̃ → LP such that S satisfies ϕ(I1), . . . , ϕ(In), we
have that S satisfies ϕ(In+1).

In other words, a set of formulas is P -complete if it is closed under the property

P . Similarly, given a set D ⊆ PP̃|∼ of defeasible properties, we say a set of
formulas is D-complete iff it is P -complete for every P ∈ D. As we will see
later, D-complete sets of formulas play the same role for us as complete theories
play for classical logic, in the sense that they completely characterise a class of
semantic structures for L|∼ [22, p. 31] - at least once we’ve specified the right
set of defeasible properties!

Let us now turn to this latter task. What kinds of defeasible properties should
we intuitively expect to hold for our hypothetical defeasible reasoning process?
The simplest properties we will consider are the following, which in the lit-
erature are called Reflexivity, Right Weakening and Left Logical Equivalence
respectively:

(Refl) α |∼ α
(Lle) α |∼ γ, |= α↔ β =⇒ β |∼ γ
(Rw) α |∼ β, |= β → γ =⇒ α |∼ γ

Reflexivity says that formulas typically imply themselves, a statement that is
almost tautologically true. In Example 5, for instance, one would expect to
conclude that penguins are typically penguins (p |∼ p). Similarly, Left Logical
Equivalence states that equivalent formulas typically imply the same things. If
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we learn that tori (t) is simply another term for a bird (b↔ t), then we would
presumably claim that tori typically fly (t |∼ f).

Right Weakening is a little more complex, but easy to justify intuitively. Given
that non-flying things are always ground-based (¬f→ g), for instance, we would
conclude from Example 5 that penguins are typically ground-based (p |∼ g).

A simple consequence of these properties is Supraclassicality, which states that
anything which can be deduced classically can also be inferred defeasibly:

Lemma 5. [26, p. 12] Suppose S is complete for (Refl) and (Rw). Then S
is also complete for the following property:

(Sc) |= α→ β =⇒ α |∼ β

The next two properties relate to the way defeasibility interacts with conjunc-
tion and disjunction. The Or property states that if a formula γ ∈ L follows
defeasible from two other formulas α, β ∈ L, then it should also follow defeasi-
bly from their disjunction α ∨ β. The And property is simply the dual form of
this, stating that if both β and γ follow defeasibly from α, then so should their
conjunction β ∧ γ.

(Or) α |∼ γ, β |∼ γ =⇒ α ∨ β |∼ γ
(And) α |∼ β, α |∼ γ =⇒ α |∼ β ∧ γ

These properties describe ways in which defeasibility interacts with classical
facts and connectives, and for the most part they are classically valid as well.
On the other hand, there are certain classical inference properties that are defi-
nitely not defeasibly valid. One of these is Transitivity, a property we introduced
earlier in this section. In Example 6, for instance, we know that mathematicians
are typically eccentric (m |∼ e) and that eccentric people are typically creative
(e |∼ c). Are we justified in concluding that mathematicians are typically cre-
ative (m |∼ c)?

Going back to Example 6, this property would allow us to conclude that math-
ematicians are both typically creative and typically not creative! By supraclas-
sicality, we would conclude that there are no mathematicians (m |∼ ⊥), which is
certainly not what we meant to express. In fact, it turns out that in the presence
of the other properties we have mentioned, (Trans) implies Monotonicity :

Lemma 6. [22, p. 15] Suppose S is complete for (And), (Rw), (Or) and
(Trans). Then S is complete for the following property:

(Mon) α |∼ γ =⇒ α ∧ β |∼ γ

This defeats the whole purpose of defeasible conclusions, which are supposed
to be able to change when additional data comes to light! Rather than includ-
ing properties like Transitivity and Monotonicity, the seminal papers on the
Klm framework by Lehmann et al. [22, 25] consider the following weak forms
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of Monotonicity, known as Cautious Monotonicity and Rational Monotonicity
respectively:

(Cm) α |∼ β, α |∼ γ =⇒ α ∧ β |∼ γ
(Rm) α |∼ γ, α 6|∼ ¬β =⇒ α ∧ β |∼ γ

Cautious Monotonicity expresses the idea that if β ∈ L can be defeasibly con-
cluded from α ∈ L, then learning that β is true should not change any of the
defeasible consequences of α. After all, we expected β to be true in the first
place!

Rational Monotonicity states that adding additional premises to a defeasible
argument is always valid, unless there is a good reason to suspect it isn’t -
namely, that we defeasibly expect one of the premises to be false.

These properties form the cornerstone of the Klm framework, as they provide
pragmatic ways to reason defeasibly from a set of assumptions. Other forms of
Monotonicity have appeared in the literature, such as Disjunctive Monotonicity
and Negation Monotonicity (see Kraus et al. [22]), but the above properties
have received the majority of the attention. In part, this is because they enjoy
a particularly nice mathematical semantics.

Definition 4. A preferential set S ⊆ L|∼ is one that is complete for (Refl),
(Lle), (Rw), (And), (Or) and (Cm). A preferential set is said to be rational
if in addition it is complete for (Rm).

The properties in Definition 4 have come to be known as the rationality posu-
lates or rationality properties in the literature (see Booth et al. [3] for instance),
and we denote this collection of properties by R|∼. As noted by Kraus et al. [22],
there is generally little to be said about sets of formulas that aren’t complete
for these properties. There, the notion of a cumulative and loop-cumulative sets
are studied, which are both strictly weaker than preferential sets.

3.3 Preferential, Modular and Ranked Interpre-
tations

Earlier, we claimed that D-complete sets are the defeasible analogue of deduc-
tively closed classical theories. We now turn to the goal of justifying this analogy
by defining semantic structures that characterise preferential and rational sets,
in much the same way that classical valuations characterise closed and complete
theories (see Corollary 1). While there are many ways to do this [16], we will
stick with the semantics given by Lehmann et al. [22, 25] as it has intuitive
appeal. The basic idea is to think of a preferential or rational set as describing
which possible worlds are more likely or more typical than which other possible
worlds. To illustrate what we mean by this, consider the following example:
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Example 9. Consider the propositional language in Example 5, and suppose
that S is a preferential set that contains the defeasible formulas b |∼ f and
b ∧ p |∼ ¬f. This states that while birds usually fly, birds that are penguins do
not usually fly.

Thinking in terms of possible worlds, consider the valuation bpf. According to
our preferential set S this would be considered a typical valuation, since when
b is true S states that we are typically supposed to have f be true as well. For
the same reason, the valuation bpf would be considered atypical, as it doesn’t
conform to the intuition of either of our defeasible formulas.

Somewhere between the two lies the valuation bpf. While it fails to conform to
the formula b |∼ f , it does conform to the formula b ∧ p |∼ ¬f .

The point being made here is that a preferential or rational set provides some
information about which possible worlds are more reasonable than others, de-
pending on which defeasible formulas in the set they conform to. This suggests
that one way to provide meaning to defeasible formulas is to use some kind of
preference ranking over the set of valuations U :

Definition 5. [22, p. 27] A preferential interpretation is a triple P = 〈S, l,≺〉,
where S is a set of states, l : S → U is a function that labels each state with a
valuation and ≺ ⊆ S×S is a strict partial order over S satisfying the following
smoothness condition:

For any α ∈ L, the set α̂ = {s ∈ S : l(s) 
 α} has a minimal element.

The smoothness condition encodes the intuition that if there is some world
satisfying a given proposition α, then there must be a typical world satisfying
α. This requirement can be relaxed (see Friedman et al. [16] for a more general
definition), but for our purposes the original definition of a preferential inter-
pretation suffices. We also note that we allow different states s, t ∈ S to have
the same label, i.e. l(s) = l(t). A preferential interpretation where every state
has a unique label is said to be injective.

To complete the proposed semantics, we need to define what it means for a
defeasible or classical formula to be satisfied by a preferential interpretation
P. This can be done quite naturally as follows, where min≺ α̂ denotes the
≺-minimal elements of α̂:

1. For a classical formula α ∈ L, P 
 α iff l(s) 
 α for all s ∈ S.

2. For a defeasible formula α |∼ β ∈ L|∼, P 
 α |∼ β iff l(s) 
 β for all
l ∈ min≺ α̂.

Classical formulas are satisfied by a preferential interpretation whenever they
are satisfied by all of the interpretation’s states. In other words, classical for-
mulas represent what is “always” the case in one of the interpretation’s possible
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worlds. A defeasible formula such as α |∼ β, on the other hand, is satisfied
whenever β holds in the most typical worlds satisfying α. From this point of
view, defeasible formulas represent what is “usually” or “typically” the case
when certain premises are true.

If a preferential interpretation P satisfies a formula α, then we say P is a model
of α. A preferential interpretation is a model of a knowledge base K ⊆ L|∼ iff it
satisfies every formula in the knowledge base.

Example 10. Consider the knowledge base from Example 5, K = {p→ b, b |∼
f, p |∼ ¬f}. We claim that the following diagram represents a preferential model
of K:

pbf pbf

pbf

Each node in the diagram represents a state, and the valuations written next to
each node represent that state’s label. The arrowed lines represent the preference
ordering and thus in this example we have min≺ p̂ = {pbf} and min≺ b̂ = {pbf}.
It’s also easy to see that every state satisfies p→ b.

Let us now prove our earlier statement that classical formulas are equivalent
to certain defeasible formulas:

Lemma 7. [25, p. 6] Let P = 〈S, l,≺〉 be a preferential interpretation. Then
P 
 α iff P 
 ¬α |∼ ⊥.

Intuitively, this makes some sense. After all, α |∼ ⊥ states that typical α’s sat-
isfy ⊥, which implies that there cannot be any α’s at all! Another consequence
of preferential satisfaction, which provides some validation for our choice of se-
mantics, is that preferential interpretations satisfy all of the preferential proper-
ties in Definition 4. In fact, preferential interpretations completely characterise
preferential sets:

Lemma 8. [22, p. 28] Denote the set of defeasible formulas satisfied by a pref-
erential interpretation P = 〈S, l,≺〉 by SP = {α |∼ β ∈ L|∼ : P 
 α |∼ β}. Then
a set of formulas S ⊆ L|∼ is a preferential set iff there exists some preferential
interpretation P such that S = SP .

A proof of Lemma 8 is fairly involved, and can be found in Kraus et al. [22].
Note, however, that not all preferential interpretations satisfy (Rm):

Example 11. Consider the following preferential interpretation P:
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abc

abc

abc

First, we note that P 
 a |∼ b. On the other hand, P 6
 a ∧ c |∼ b and
P 6
 a |∼ ¬c. Thus SP is not (Rm)-complete.

This implies that rational sets are a strict subset of preferential sets, and hence
a natural question is whether they can be characterised by some well-chosen
subset of preferential interpretations. As first shown by Lehmann et al. [25], it
turns out that it’s enough to require that the preference ordering ≺ be modular
(see Definition 1).

This leads naturally to the following definition, which in the papers by Lehmann
et al. is called a ranked model [25, p. 19]. We have used the term “modular
interpretation” to avoid overloading the term “ranked” when we start moving
to more expressive defeasible logics - see Britz et al. [5] for an example of the
usage:

Definition 6. [25, p. 19] A modular interpretation is a preferential interpreta-
tionM = 〈S, l,≺〉 for which the preference ordering ≺ is modular (see Definition
1).

Modular interpretations satisfy all of the properties in Definition 4. In fact, like
the preferential case, modular interpretations completely characterise rational
sets:

Lemma 9. [25, p. 20] A set of formulas S ⊆ L|∼ is rational iff there is some
modular interpretation M such that S = SM.

Lemmas 8 and 9 together prove that preferential and modular interpretations
form an adequate mathematical semantics for two different kinds of defeasible
reasoning - namely, those characterised by preferential and rational sets respec-
tively. This gives us a rigorous basis for asserting that a particular defeasible
formula is true, and with this under our belt we are free to move on to under-
standing defeasible entailment, or logical consequence.

However, there are some final remarks to make that will simplify our lives
in the future. A corollary of Definition 1 is that we can describe a modular
interpretation in terms of a ranking function rk : S → Ω, which maps states to
some totally ordered set Ω. As we will see, in many cases we can even take Ω
to be N, the set of natural numbers.

In view of these remarks, it is usually simpler to describe rational sets in terms
of the following objects, at least when it is possible to do so:

Definition 7. A ranked interpretation R is a function R : U → N∞, where
N∞ = N ∪ {∞}, that satisfies the following convexity condition:
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For all u ∈ U such that R(u) <∞, and all i ∈ N such that
0 ≤ i < R(u), there exists some u′ ∈ U such that R(u′) = i.

Satisfaction for ranked interpretations is simply a translated version of sat-
isfaction for modular and preferential interpretations, where UR = {u ∈ U :
R(u) <∞} is the set of possible worlds for R, and α̂ = {u ∈ UR : u 
 α} is the
set of possible worlds for some formula α ∈ L:

1. For a classical formula α ∈ L, R 
 α iff u 
 α for all u ∈ UR.

2. For a defeasible formula α |∼ β ∈ L|∼, R 
 α |∼ β iff u 
 β for all
u ∈ minR α̂.

Let’s look at an example of a ranked interpretation, and introduce some dia-
grammatic notation:

Example 12. Consider the knowledge base from Example 6, K = {m |∼ e∧f, e |∼
c, f |∼ ¬c}. Then the following ranked interpretation is a model of K:

1 mefc
0 mefc, mefc

Each valuation u ∈ U is permitted to appear in the diagram at most once. The
numbers beside each line denote the rank of that line’s valuations - for instance,
in this example, R(mefc) = 1. Valuations that do not appear in the diagram are
assumed to have rank ∞.

As one would expect from the previous discussion, ranked interpretations gen-
erate rational sets. On the other hand, unlike modular interpretations, not all
rational sets can be characterised by a ranked interpretation! In particular, a
rational set only has a corresponding ranked interpretation if it has a corre-
sponding modular interpretation with a well-founded preference ordering, and
this is not always possible:

Lemma 10. [25, p. 7] There is a rational set S such that for all modular
M = 〈S, l,≺〉 with S = SM, ≺ is not well-founded.

In fact, as discussed in Lehmann et al. [25, p. 36], it’s an open problem to
characterise exactly which rational sets have well-founded modular interpreta-
tions. Fortunately for us, however, there is a large class of rational sets for
which corresponding ranked interpretations do exist:

Lemma 11. [25, p. 36] Let S be a rational set over a finite set of propositional
atoms P. Then there exists some ranked interpretation R such that S = SR.

While the infinite case is mathematically interesting, we generally only care
about finite sets of atoms in practice. For this reason, we will stick to ranked
interpretations as our semantic structure of choice for the rest of this thesis.
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3.4 Defeasible Entailment

In this section we turn to the problem of entailment ; given a set of defeasible
and/or classical formulas, under what conditions should we conclude that an-
other formula follows logically from them? Generally speaking, there are many
possible answers to this question, in much the same way that there are many
possible semantics for any given logic. In order to analyse this properly, let’s fix
some notation and define a knowledge base to be any set of formulas K ⊆ L∪L|∼.
Note that a knowledge base represents any set of formulas, and unlike a satis-
fation set isn’t required to represent any kind of interpretation or satisfy any
properties.

A traditional account of logical consequence, due to Tarski [33], states that a
formula α follows logically from a knowledge base K iff every model of K satisfies
α. By “model”, we mean some interpretation in a class of semantic structures
that satisfies all the formulas of K. In our case, this would be preferential or
ranked interpretations (or others!), depending on what kind of semantics we
were interested in.

This suggests that we begin our discussion by looking at the following Tarskian
forms of entailment:

Definition 8. A knowledge base K preferentially entails a formula α |∼ β,
denoted K |≈P α |∼ β, iff P 
 α |∼ β for every preferential interpretation
P satisfying K. Similarly, K rank entails α |∼ β, denoted K |≈R α |∼ β, iff
R 
 α |∼ β for every ranked interpretation R satisfying K.

To make this clearer, let’s look at an example:

Example 13. Consider the knowledge base K = {r→ b, p→ b, b |∼ f, p |∼ ¬f},
which extends the knowledge base from Example 5 with an additional atom r,
meaning robin. This knowledge base has a number of models, such as the ranked
interpretations R1, R2 and R3 below:

1 brpf
0 brpf
R1

1 brpf
0 brpf
R2

1 brpf
0 brpf
R3

Note that R1 
 r |∼ f and R2 6
 r |∼ f, and hence K does not rank entail r |∼ f
(i.e. that robins typically fly). On the other hand, it can be shown that every
ranked interpretation satisfying K also satisfies the formula b |∼ ¬p, and thus
K |≈R b |∼ ¬p (i.e. that birds are typically not penguins).

From this example, we can deduce a number of general properties of rank
entailment (and from similar considerations, preferential entailment). Firstly,
even though we knew nothing about atom r other than the fact that r → b
holds, rank entailment does not allow us to conclude that r satisfies the typical
properties of b. For instance, K satisfies b |∼ f but does not satisfy r |∼ f.
This is a serious limitation, and it arises because rank entailment is extremely



CHAPTER 3. KLM-STYLE DEFEASIBLE REASONING 32

conservative. A conclusion is sanctioned only if it is true in every possible
extension of the knowledge base to a rational set.

Secondly, despite being conservative, rank entailment does sanction some in-
tuitive conclusions. In the example, the knowledge base contains the formulas
p→ b and p |∼ ¬f. Since it also contains b |∼ f, this tells us that p must be an
atypical instance of b. And indeed, the conclusion b |∼ ¬p is rank entailed by
K.

Preferential and rank entailment also satisfy some pleasant mathematical prop-
erties, which are shared by all Tarskian entailment relations:

Lemma 12. Preferential and rank entailment satisfy the following properties,
where |≈? is used as a placeholder for either of the two:

(Incl) α |∼ β ∈ K implies K |≈? α |∼ β
(Cumu) K |≈? α |∼ β and K ∪ {α |∼ β} |≈? γ |∼ δ implies K |≈? γ |∼ δ
(Mono) K |≈? α |∼ β implies K ∪ {γ |∼ δ} |≈? α |∼ β

In the literature, these properties are known as Inclusion, Cumulativity and
Monotonicity respectively. Inclusion is the simple statement that a knowledge
base entails every formula that it contains. Cumulativity, like the defeasible
properties of the same name, states that if a knowledge base entails some for-
mula, then adding that formula into the knowledge base doesn’t allow it to entail
anything new. In other words, it states that entailment is transitively closed.

The last property is really where we start to see problems with rank and
preferential entailment, which leads to some subtle considerations. Monotonicity
states that if a knowledge base entails a formula, then any extension of the
knowledge base will entail that formula too. But this is precisely what we were
trying to avoid! Earlier, we went to great pains to ensure that the connective
“|∼” was non-monotonic, in the sense that knowledge bases like K = {a |∼
c, a ∧ b |∼ ¬c} have models. This knowledge base states that “a” typically
implies “c”, but that adding the premise “b” changes the conclusion to “¬c”.

We appear to be in the paradoxical position that our logic is both monotonic
and non-monotonic! The resolution to this paradox is to realise that we are talk-
ing about two different things here. Defeasible formulas involving “|∼” are on
the object level, i.e they are simply abstract formulas representing a relationship
between propositions. And indeed, the relationship that they represent is typi-
cally non-monotonic. Preferential and rank entailment, on the other hand, are
on the meta level, i.e. they represent a relationship between abstract defeasible
formulas.

The object level and meta level of a logic often interact - consider the case
of the Deduction Theorem for classical logic, for instance, which states that
a formula α → β is a tautology iff α classically entails β. It’s important to
recognise, however, that these interactions are a special feature of the logic, and
are not universally valid. The Deduction Theorem fails for fuzzy or probabilistic
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logics, for instance.

The fact that the object-level relationship represented by “|∼” differs in some
ways from the meta-level relationship represented by “|≈P” or “|≈R” is not a
contradiction. At most, it suggests that we simply haven’t found the right notion
of entailment for defeasible formulas. And in fact, this isn’t the only reason we
should consider looking for alternatives. In their seminal paper, Lehmann et al.
prove that rank and preferential entailment are identical :

Theorem 2. [25, p. 23] Let K be any knowledge base. Then K |≈P α |∼ β iff
K |≈R α |∼ β.

Thus, even though preferential and ranked interpretations characterise different
kinds of sets of formulas, the entailment relations we have defined do not reflect
these differences at all. To deal with these issues, Lehmann and Magidor argue
that the correct model of entailment for defeasible formulas should be non-
Tarskian [25, p. 41]. Rather than saying a formula follows logically from a
knowledge base if it is true in every model of the knowledge base, they propose
considering a privileged subset of models. In the context of non-monotonic
reasoning, this approach to entailment is known as default valuation consequence
[26] and the resulting entailment relation depends heavily on the criteria used
to pick out the privileged models.

There are many ways to do this (see [9] for a more comprehensive discussion),
but we will focus on an elegant solution due to Lehmann and Magidor that is
based on the following principle of Presumption of Typicality [23]:

When it comes to entailment, a formula should be considered as typical as
possible with respect to the constraints of the given knowledge base.

Let’s look at an example of how this principle would be applied in practice:

Example 14. Consider the knowledge base K = {r → b, b |∼ f}, which we can
informally read as “robins are birds, and birds usually fly”. As discussed in
Example 13, K does not entail r |∼ f. On the other hand, since the only thing
the knowledge base says about robins is that they are birds, the Presumption
of Typicality states that we should go further and assume that robins are typi-
cal birds. Thus an entailment relation based on the Presumption of Typicality
should sanction the conclusion r |∼ f.

While the principle of Presumption of Typicality is useful as an intuition pump,
it isn’t particularly easy to formalise. And indeed, providing a mathematical
version of the principle was one of the key contributions of Lehmann and Magi-
dor’s seminal paper on the Klm framework [25]. Their formulation is defined
in terms of a complicated partial ordering on the rational extensions of a given
knowledge base, i.e. the set of all rational sets containing the knowledge base as
a subset. This is mainly for the sake of generality, as they consider knowledge
bases over a possibly infinite set of propositional atoms.
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We will instead present a simpler characterisation due to Giordano et al. [19].
Their insight is to view the Presumption of Typicality as a statement about the
ranked interpretations that model a given knowledge base K. Since ranked in-
terpretations assign a rank to every valuation, which represents how typical that
valuation is taken to be, the idea is to rephrase the Presumption of Typicality
as follows:

When it comes to entailment, a valuation should be ranked as low as
possible with respect to the constraints of the given knowledge base.

This leads naturally to the following relation over the set of ranked interpre-
tations:

Definition 9. [19, p. 8] Let R1 and R2 be ranked interpretations. Then we say
R1 is more typical than R2, denoted R1 ≤G R2, iff R1(u) ≤ R2(u) for every
u ∈ U .

In other words, a ranked interpretation is considered more typical if it gives
lower ranks to every valuation; recall that a valuation has rank 0 if it is maxi-
mally typical, and rank ∞ if it is maximally atypical. This relation is reflexive,
transitive and antisymmetric, and hence partially orders the set of ranked in-
terpretations. This allows us to give a formal definition of the priviliged models
we alluded to earlier, based on the Presumption of Typicality:

Definition 10. [19, p. 11] Let K be a knowledge base, and Mod(K) its set of
ranked models. Then a formula α |∼ β is in the rational closure of K, denoted
K |≈RC α |∼ β, iff R 
 α |∼ β for every R ∈ min≤G

Mod(K).

Rational closure satisfies a number of mathematical properties that make it a
much better candidate model for defeasible reasoning than preferential or rank
entailment. For one, it is truly defeasible:

Example 15. Let’s consider our earlier example of K = {r → b, b |∼ f}. We
claim that the following ranked interpretation, which we will denote R, is the
unique ≤G-minimal model of K:

1 rbf, rbf
0 rbf, rbf, rbf, rbf

Firstly, R satisfies all of the formulas in K. Secondly, it is clear that the rank-0
valuations cannot be ranked any lower than they are in R, as they are maximally
typical already. Thus it remains to check that there are no models in which the
rank-1 or rank-∞ valuations have lower rank than in R.

The rank-∞ valuations are rbf and rbf. Both violate the classical formula r→ f,
however, and thus they must have rank ∞ in every model of K. On the other
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hand, the rank-1 valuations both violate the defeasible formula b |∼ f, and thus
they cannot have rank 0 in any model of K.

We conclude that K |≈RC r |∼ f. We leave it to the reader to check that
K ∪ {r |∼ ¬f} has ranked models too, however, which implies that K ∪ {r |∼
¬f} 6|≈RC r |∼ f . Adding new facts has removed conclusions from the rational
closure!

Rational closure also satisfies some of the basic properties we mentioned earlier:

Lemma 13. [25, p. 33] The entailment relation |≈RC satisfies (Incl) and
(Cumu).

The fact that K had a unique minimal model in Example 15 may seem like a
coincidence. Remarkably, it turns out that this is always the case for consistent
knowledge bases, i.e. knowledge bases with at least one ranked model:

Lemma 14. [19, p. 15] If K is a consistent knowledge base, then it has a unique
≤G-minimal ranked model.

In fact, this unique minimal model can be constructed in a canonical way by
letting valuations sink as low as possible across all models of K:

Lemma 15. [19, p. 15] Let K be a consistent knowledge base, and consider the
ranked interpretation R given by the following construction:

R(u) = min{R′(u) : R′ is a ranked interpretation satisfying K}

Then R satisfies K, and is the unique ≤G-minimal ranked model of K.

The immediate consequence of this lemma is the fact that the rational closure
of a knowledge base can be completely characterised by a single ranked inter-
pretation. This is known in the literature as the Single Model Property, and is
one of the things that differentiates propositional Klm-style defeasibility from
defeasibility in more expressive logics:

(Smp) for all K there exists some RK such that K |≈RC α |∼ β iff RK 
 α |∼ β

In conjunction with Lemma 11, this has the interesting consequence that ra-
tional closure satisfies “lifted” versions of all of the defeasible properties from
Definition 4:

(Refl) K |≈RC α |∼ α
(Lle) K |≈RC α |∼ γ and |= α↔ β implies K |≈RC β |∼ γ
(Rw) K |≈RC α |∼ β and |= β → γ implies K |≈RC α |∼ γ
(Or) K |≈RC α |∼ γ and K |≈RC β |∼ γ implies K |≈RC α ∨ β |∼ γ

(And) K |≈RC α |∼ β and K |≈RC α |∼ γ implies K |≈RC α |∼ β ∧ γ
(Cm) K |≈RC α |∼ β and K |≈RC α |∼ γ implies K |≈RC α ∧ β |∼ γ
(Rm) K |≈RC α |∼ γ implies K |≈RC α ∧ β |∼ γ or K |≈RC α |∼ ¬β
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Because it satisfies many pleasant mathematical properties, and because it is
based on an intuitive principle, rational closure is often viewed as the “gold
standard” against which other defeasible entailment relations can be compared
[25, 23]. Indeed, some suggest that any reasonable form of defeasible entailment
for Klm-style systems should extend rational closure inferentially [9]. For these
reasons, we will use the construction of an appropriate analogue of rational
closure as our common goal when it comes to defeasible reasoning for more
expressive logics such as Datalog.

3.5 Computing Rational Closure

Alongside its mathematical properties, rational closure also has the desirable
property of being easy to compute. In this section we will sketch an efficient al-
gorithm for reducing rational closure entailment checking to classical entailment
checking, based on a notion of typicality rank for formulas. Our presentation
follows that of Morris et al. [28], which is based on the work of Casini et al. [9].

The first concept we will need is that of an exceptional formula. A formula α
is considered to be exceptional with respect to a knowledge base K if, roughly
speaking, α being considered typical is inconsistent with the defeasible formulas
in K:

Definition 11. [25, p. 11] A formula α ∈ L is said to be exceptional with
respect to a knowledge base K ⊆ L|∼ iff K |≈R > |∼ ¬α.

Whilst exceptionality is defined in terms of rank entailment, it can easily be
characterised in terms of classical entailment:

Lemma 16. [25, p. 38] A formula α ∈ L is exceptional with respect to K ⊆ L|∼
iff K→ |= ¬α, where K→ is the materialisation of K, defined as follows:

K→ = {α→ β : α |∼ β ∈ K}

Similarly, a defeasible formula α |∼ β is said to be exceptional with respect to
K iff α is exceptional with respect to K. We will call a classical or defeasible
formula that is not exceptional with respect to K typical instead.

In terms of exceptionality, knowledge bases comes in two flavours. Firstly, it’s
possible that every formula in a knowledge base K is exceptional with respect
to K. In this case, K is called completely exceptional [25, p. 11]:

Example 16. Consider the knowledge base K = {a |∼ ¬a}. If R is a ranked
interpretation satisfying K, then â must be empty, as every valuation in â would
have to satisfy both a and ¬a, which is impossible. Thus K |≈R > |∼ ¬α, and
we conclude that K is completely exceptional.

Secondly, it’s possible that some formulas in the knowledge base are excep-
tional, and some are typical:
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Example 17. Consider the knowledge base from Example 5, K = {p→ b, b |∼
f, p |∼ ¬f}. It can be checked that K→ |= ¬p, and hence penguins are exceptional
with respect to K. Intuitively, this is because penguins typically don’t fly, and
thus they form an atypical subcategory of bird. On the other hand, K→ 6|= ¬b,
and hence birds are typical with respect to K.

Here we mention a subtlety that is easily overlooked. By the convention we
established earlier, the classical formula p → b in K actually represents the
defeasible formula ¬(p → b) |∼ ⊥. Since K→ |= p → b, we therefore conclude
that the classical formula p → b is exceptional with respect to K as well. In
fact, a similar argument shows that all classical formulas are exceptional with
respect to any knowledge base containing them!

By iteratively removing the typical formulas from a knowledge base until a
completely exceptional knowledge base remains, we can split the knowledge
base up into layers, each of which is successively more exceptional than the last.

Example 18. Consider the knowledge base from the previous example again.
From our discussion, it is clear that the first layer would be {b |∼ f }, the second
layer would be {p |∼ ¬f }, and the final, completely exceptional layer would just
contain the classical formula {p→ b }.

BaseRank, defined in Algorithm 1, performs this splitting of knowledge bases
using the classical characterisation of exceptional formulas [28, p. 3]:

Algorithm 1: BaseRank

Input: a finite knowledge base K ⊆ L|∼
Output: a partition (K0, . . . ,Kn,K∞) of K
i := 0;
E0 := K→;
repeat

Ei+1 := {α→ β ∈ Ei : Ei |= ¬α};
Ki := {α |∼ β : α→ β ∈ Ei \ Ei+1;
i := i+ 1;

until Ei+1 = Ei;
K∞ := Ei;
if Ei = ∅ then

n := i− 2;
else

n := i− 1;
return (K0, . . . ,Kn,K∞);

The name BaseRank comes from the fact that this partition can be used to
assign a rank to every formula of L, called its base rank :

Definition 12. [9, p. 186] Let K ⊆ L|∼ be a knowledge base, and suppose that
(K0, . . . ,Kn,K∞) = BaseRank(K). Then the base rank of a formula α ∈ L with
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respect to K, denoted br(α), is defined to be the minimum N ∈ N∞ such that α
is typical with respect to

⋃
N≤i≤∞Ki.

Remarkably, it turns out that there is a close connection between the base rank
of formulas with respect to K, and the rational closure of K:

Theorem 3. [19] Let K ⊆ L|∼ be a knowledge base. Then K |≈RC α |∼ β iff
br(α) ≤ br(α ∧ ¬β) or br(α) =∞.

This leads to the following algorithm for rational closure entailment check-
ing[28, p. 3]:

Algorithm 2: RationalClosure

Input: a finite knowledge base K ⊆ L|∼ and formula α |∼ β ∈ L|∼
Output: true if K |≈RC α |∼ β, else false
i := 0;
R := K→;
(K0, . . . ,Kn,K∞) := BaseRank(K);
while R |= ¬α and R 6= K∞→ do

R := R \Ki
→;

i := i+ 1;

end
return R |= α→ β;

Theorem 4. [9, p. 186] For any knowledge base K ⊆ L|∼ and formula α |∼ β ∈
L, K |≈RC α |∼ β iff RationalClosure(K, α |∼ β) = true.

Finally, we note that BaseRank and RationalClosure reduce rational closure en-
tailment checking to a number of classical entailment checks that is polynomial
in the size of the knowledge base. Similarly, by encoding classical formulas α
as their defeasible equivalents ¬α |∼ ⊥, we can use RationalClosure to perform
classical inference checks as well. Thus the rational closure entailment check-
ing problem, like the propositional satisfaction problem, is NP-Complete [25,
p. 39].



Chapter 4

Description Logics

4.1 Background

Description Logics are a family of knowledge representation languages that are
generally more expressive than propositional logic, while at the same time be-
ing computationally feasible. They provide a logical formalism for reasoning
about domain ontologies, and amongst other things are used as a basis for
knowledge representation in the Semantic Web. A thorough exposition of the
history of DLs, along with their relationships to other knowledge representation
formalisms, can be found in the Description Logic Handbook [1].

At a mathematical level, Description Logics (DLs) are decidable fragments of
first-order logic that allow for the definition of concepts, roles and individuals,
as well as relationships between these three primitives [1, p. 49]. A concept
represents a property that an individual may or may not have, such as being
a Student. A role represents a relationship between two individuals, such as
employedBy, and an individual simply represents an element of the domain being
described.

Members of the DL family largely differ in the kinds of concept constructors and
role constructors they allow. These constructors, like propositional connectives,
allow for the expression of complex concepts and roles in terms of a basic set
of atoms. Since we are more interested in the defeasible aspects of DLs than
in the nuances of varous language constructions, we will focus on a particularly
simple DL called Alc in this chapter.

The language of Alc is built up from a finite set C of concept names, a finite set
R of role names and a finite set I of individual names or attributes. To continue
our examples involving birds, consider the following hypothetical language:

Example 19. Let C = {Bird,Pigeon,Eagle,Predator,Prey}, R = {eats}, and
I = {a}. We will stick to the convention of capitalising concept names, while

39
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keeping role and individual names in lowercase.

Alc defines a number of concept constructors which allow for the expression
of complex concepts. These are > (everything), ⊥ (nothing), ¬ (complement),
u (conjunction), t (disjunction), ∀ (value restriction) and ∃ (existential restric-
tion), with their grammar given by the following rules:

1. > and ⊥ are atomic complex concepts.

2. If C is a concept name, then C is an atomic complex concept.

3. If C is a complex concept, then ¬C is a complex concept.

4. If C,D are complex concepts, then CuD and CtD are complex concepts.

5. If C is a complex concept and r is a role name, then ∀r.C and ∃r.C are
complex concepts.

The set of all complex concepts definable with these rules constitutes the lan-
guage of Alc, which we denote by LAlc.

Example 20. Let C, R and I be as they were defined in Example 19. Some
examples of complex concepts over these names, along with their intuitive inter-
pretations, are:

“Eagle u ∀eats.Pigeon”
“eagle that only eats pigeons”

“Bird t ¬∃eats.Predators”
“either a bird or something that doesn’t eat any predators”

To express relationships between (complex) concepts, roles and individuals
in Alc, we use subsumption statements and assertion statements. These are
defined by the following rules:

1. If C and D are complex concepts, then C v D is a subsumption statement.

2. If C is a complex concept and a is an individual name, then a : C is an
assertion statement.

3. If r is a role name and a, b are individual names, then (a, b) : r is an
assertion statement.

We denote the set of subsumption statements by LAlc
T , and the set of assertion

statements by LAlc
A .

Example 21. Again, let C, R and I be as defined in Example 19. Then consider
the following examples of subsumption and assertion statements:
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“Pigeons v Bird u ¬∃eats.Bird”
“pigeons are birds that don’t eat any other birds”

“∃eats.Bird v Predator”
“things that eat birds are predators”

“a : Bird u ¬Prey”
“a is a bird that isn’t preyed on”

An Alc knowledge base (or ontology) is a pair K = 〈T ,A〉, where T ⊆ LAlc
T is

a set of subsumption statements and A ⊆ LAlc
A is a set of assertion statements.

In the DL literature, T is usually called the T-Box (for “terminological box”),
and A is usually called the A-Box (for “assertional box”).

The semantics for DL knowledge bases is a variant of standard first-order
semantics. An interpretation is defined to be a tuple I = 〈∆I , ·I〉, where ∆I

is a non-empty set called the domain, and ·I is an interpretation function that
maps individual names, concept names and role names to elements, subsets and
binary relations over the domain respectively. In other words:

1. If a is an individual name, then aI ∈ ∆I .

2. If C is a concept name, then CI ⊆ ∆I .

3. If r is a role name, then rI ⊆ ∆I ×∆I .

Example 22. The following diagram represents an interpretation:

∆I

x0(aI) x1 x2

PigeonI EagleI

PreyI PredatorI

BirdI

eats

The domain consists of the elements ∆I = {x0, x1, x2}. The interpretation of
individual names is indicated in brackets next to an element, so in this example
aI = x0. Concept names are interpreted by boxes, so for instance we have
PigeonI = {x0, x1} and EagleI = {x2}. Finally, role names are interpreted by
solid arrows, so we have eatsI = {(x2, x1)}.
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The interpretation function ·I is extended to the set of complex concepts as
follows, where rI(x) = {y ∈ ∆I : (x, y) ∈ rI} denotes the set of elements related
to x by the role r:

1. >I = ∆I and ⊥I = ∅.

2. (¬C)
I

= ∆I \ CI .

3. (C uD)
I

= CI ∩DI .

4. (C tD)
I

= CI ∪DI .

5. (∀r.C)
I

= {x ∈ ∆I : rI(x) ⊆ CI}.

6. (∃r.C)
I

= {x ∈ ∆I : rI(x) ∩ CI 6= ∅}.

The interpretation I satisfies a subsumption statement C v D iff CI ⊆ DI .
Similarly, it satisfies an assertion statement a : C iff aI ∈ CI , and an assertion
statement (a, b) : r iff (aI , bI) ∈ rI . As usual, the satisfaction relation is denoted
by 
. That is, for any kind of statement α we write I 
 α to mean that I
satisfies α. If I satisfies every statement in an T-Box T (or A-Box A), then we
say I is a model of T (or A). Finally, given a knowledge base K = 〈T ,A〉, we
say I is a model of K iff it is a model of both T and A.

Example 23. In the interpretation in Example 22, we have that PigeonI =
{x0, x1}, BirdI = {x0, x1, x2} and ∃eats.BirdI = {x2}. Thus by the above rules

we conclude that (Bird u ¬∃eats.Bird)
I

= {x0, x1}, and hence the interpretation
satisfies the subsumption statement Pigeon v Bird u ¬∃eats.Bird.

Given an Alc knowledge base K and a subsumption or assertion statement α,
we say K classically entails α (denoted K |= α) iff every model of K satisfies
α. If α is satisfied by every possible interpretation then we say it is a classical
tautology (denoted |= α). While we won’t go into the details here, part of the
appeal of Description Logics is that the classical entailment problem is decidable
for them. While classical entailment checking for Alc is Exptime-complete in
general (see Donini et al. [15] for an explicit algorithm), optimised algorithms
exist that are significantly more efficient for real-world knowledge bases.

This concludes our brief overview of classical Description Logics. There is a
wealth of literature on the topic, and interested readers are urged to consult
the Description Logic Handbook [1] a comprehensive resource for classical DL
theory. For the rest of the chapter, our focus will be on the problem of defeasible
entailment for Alc.

Before we describe the Klm formalism for defeasibility in Alc, it’s worth mak-
ing a few remarks about what we should expect. First of all, Alc is a signifi-
cantly more expressive language than propositional logic, as it supports formulas
involving both unary predicates (concepts) and binary predicates (roles), as well
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as limited forms of existential and universal quantification (existential and value
restriction). It also supports statements about the properties that particular in-
dividuals and pairs of individuals satisfy (assertional statements). The price we
pay for this is that defeasibility becomes a little harder to pin down, and defeasi-
ble entailment relations start to become a little less structured mathematically.

For this reason, we will approach defeasibility for Alc in two stages. First,
we will look at what happens if we only consider T-Boxes, i.e. subsumption
statements. It turns out that defeasibility for T-Boxes closely tracks the propo-
sitional case, and we will get almost exact analogues of the results from Chapter
3. Second, we will consider defeasibility in the presence of both T-Boxes and
A-Boxes. Here, the addition of assertional statements starts to interfere with
the Single Model Property for defeasible entailment relations, and we will show
that several other properties have to be given up too.

4.2 Defeasibility for the T-Box

Given the similarities between a subsumption statement and a propositional
implication, subsumption is a natural starting point for the study of defeasi-
bility in DLs. Defeasible Alc extends classical Alc with an additional kind
of subsumption statement, called a defeasible subsumption statement, which is
defined by the following rule:

1. If C and D are complex concepts, then C@∼D is a defeasible subsumption
statement.

Similarly to the propositional “|∼”, the defeasible subsumption connective “@∼”
is intended to be read along the lines of “typically subsumes” or “defeasibly
subsumes”. For instance, we can express statements such as the following:

“Penguin@∼ ¬Fly”
“penguins typically don’t fly”

We denote the set of defeasible subsumption statements by LAlc
D . A defeasible

T-Box is defined to be a set of defeasible subsumption statements D ⊆ LAlc
D ,

and a defeasible knowledge base (or defeasible ontology) is a triple K = 〈T ,D,A〉,
where T , D and A are a T-Box, defeasible T-Box and A-Box respectively.

In this section we will focus purely on T-Boxes, and consider defeasible knowl-
edge bases where A = ∅, i.e. there are no assertional statements. Like the
propositional case (see Lemma 7), we note that in defeasible Alc the classi-
cal subsumption statement C v D is equivalent to the defeasible subsumption
statement C u ¬D @∼ ⊥ [5, p. 10]. This means that every model of the classical
statement is also a model of the defeasible statement and vice-versa, a fact that
can be checked once we introduce ranked interpretations. For now, we will take
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it on faith, and note that we can therefore consider the case where T = ∅ and
we only have defeasible statements.

The analysis of defeasible inference for Alc can be carried out in the same
way as for propositional logic (see Section 3.2), with concepts taking the place
of propositional atoms. Supposing that a set C of concept names and a set R
of role names have been fixed, we let C̃ be a set of meta-concept names, disjoint
from C ∪ R. These meta-concepts will be used to denote logical schemas over
the language of Alc, which we will use to express defeasible properties for Alc
knowledge bases, i.e. permissible patterns of defeasible reasoning.

An inclusion formula over C̃ is defined to be anything of the form C@∼D, C 6@∼D,
C v D or C ≡ D, where C,D ∈ C̃ are meta-concept names. An instance of an
inclusion formula I is the result of applying a substitution ϕ : C̃ → LAlc, which
maps each meta-concept name to a complex concept over C and R. We denote
such an instance by ϕ(I).

Given a set S ⊆ LAlc
D of defeasible subsumption statements, we say S satisfies

an instance of an inclusion formula ϕ(C @∼D) or ϕ(C 6@∼D) iff ϕ(C @∼D) ∈ S or
ϕ(C @∼ D) 6∈ S respectively. Similarly, S satisfies ϕ(C v D) iff ϕ(C v D) is a
classical tautology, and S satisfies ϕ(C ≡ D) iff S satisfies both ϕ(C v D) and
ϕ(D v C).

A defeasible property is defined to be anything of the form I1, . . . , In =⇒ In+1,
where the Ii are all inclusion formulas. As in the propositional case, a defeasible
property intuitively states that if a defeasible reasoning process sanctions the
formulas I1, . . . , In, then it should also sanction the formula In+1. Formally,
this is defined as follows:

Definition 13. Let P = I1, . . . , In =⇒ In+1 be a defeasible property, and
suppose S ⊆ LAlc

D is a set of defeasible subsumption statements. Then S is said
to be P -complete iff for every substitution ϕ : C̃ → LAlc such that S satisfies
ϕ(I1), . . . , ϕ(In), we have that S satisfies ϕ(In+1).

Similarly, given a set D of defeasible properties, we say a set S is D-complete
iff S is P -complete for every P ∈ D. With these definitions under our belt, the
propositional rationality postulates can be translated into Alc as follows:

(Refl) C @∼ C
(Lle) C ≡ D,C @∼ E =⇒ D @∼ E
(Rw) D v E,C @∼D =⇒ C @∼ E
(Or) C @∼ E,D @∼ E =⇒ C tD @∼ E

(And) C @∼D,C @∼ E =⇒ C @∼D u E
(Cm) C @∼D,C @∼ E =⇒ C uD @∼ E
(Rm) C @∼ E,C 6@∼ ¬D =⇒ C uD @∼ E

(Cons) > 6@∼ ⊥

As in the propositional case, a preferential set is a set of defeasible subsumption
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statements that is complete for (Refl) to (Cm) and (Cons). A rational set
is a preferential set that is also complete for (Rm). Preferential and rational
sets attempt to capture what we mean by the outcome of a defeasible reasoning
process, at least one that proceeds according to the rationality postulates we
have laid out so far. These sets can be characterised exactly in terms of DL
versions of preferential interpretations, but the fact that DL interpretations
contain many individuals leads to some important differences (as opposed to
propositional logic, where interpretations can be viewed as talking about the
properties of a single individual).

Consider the classical subsumption statement Mathematician v Formal. Un-
der classical Alc semantics, this can be interpreted as saying that any indi-
vidual satisfying the concept Mathematician also satisfies the concept Formal.
Similarly, we would expect to interpret a defeasible subsumption statement
Mathematician @∼ Creative as saying that any individual satisfying the concept
Mathematician typically also satisfies the concept Creative. After all, interpret-
ing these statements for each individual separately is what justifies the validity
of the rationality postulates for defeasible Alc.

For this reason, rather than consider preference orderings over Dl interpreta-
tions (as we did in the propositional case), it is more natural to consider prefer-
ence orderings over the individuals in a DL interpretation in order to interpret
defeasible subsumption statements.

Definition 14. A preferential interpretation is a triple P = 〈∆P , ·P ,≺P〉,
where ∆P and ·P constitute an ordinary Alc domain and interpretation func-
tion, and ≺P⊆ ∆P ×∆P is a strict partial order over the domain satisfying the
following smoothness condition:

For every complex concept C, if CP 6= ∅ then min≺P C
P 6= ∅.

Given a preferential interpretation P = 〈∆P , ·P ,≺P〉, we denote its underlying
Alc interpretation by IP = 〈∆P , ·P〉. Satisfaction for preferential interpreta-
tions is defined as follows:

1. P 
 C v D iff IP 
 C v D.

2. P 
 a : C iff IP 
 a : C.

3. P 
 C @∼D iff min≺P C
P ⊆ DP .

Example 24. We can extend our diagrammatic notation for classical interpre-
tations to cover preferential interpretations as well:
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∆P

x0 x1

x2 x3

PigeonP

EagleP

PredatorP

PreyP

BirdP

eats

The interpretation of individual, concept and role names remains the same.
The only difference is that the preference ordering ≺P is represented by dashed
arrows, with less typical elements being drawn above more typical elements in
the style of a Hasse diagram (see Example 1, for instance).

In this example, we have min≺P BirdP = {x0, x1} = PigeonP , and thus the
interpretation satisfies Bird@∼ Pigeon (“birds are typically pigeons”).

In other words, a defeasible subsumption statement C @∼D is satisfied by the
interpretation if all the most typical individuals satisfying C (with respect to
≺P) also satisfy D. Denoting the set of defeasible formulas a preferential in-
terpretation P satisfies by SP = {C @∼D : P 
 C @∼D}, the following theorem
proves that preferential interpretations completely characterise preferential sets:

Theorem 5. [5, p. 11] A set S ⊆ LAlc
D is preferential iff there exists some

preferential interpretation P such that S = SP .

As noted by Britz et al. [5, p. 11] shortly after proving this result, what is
surprising here is that no special rationality postulates are necessary for dealing
with formulas containing existential (∃) or value (∀) restrictions. In fact, the
only postulate that differs between the Alc and propositional cases is (Cons),
which expresses the fact that Alc interpretation domains are non-empty and is
not critical to a proof of Theorem 5.

Analogously to the propositional case, we can consider the subset of preferential
interpretations that have modular preference orderings (see Definition 1):

Definition 15. [5, p. 12] A modular interpretation M = 〈∆M, ·M,≺M〉 is a
preferential interpretation such that the preference ordering ≺ is modular.
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And as we would expect, modular interpretations completely characterise ra-
tional sets:

Theorem 6. [5, p. 12] A set S ⊆ LAlc
D is rational iff there exists some modular

interpretation M such that S = SM.

Finally, we note that the same simplifications to modular models that we made
in the propositional case are similarly valid in the Alc case. In particular, for
a large class of defeasible Alc knowledge bases it will suffice to consider the
following kinds of modular interpretations:

Definition 16. [5, p. 15] A ranked interpretation is a triple R = 〈∆R, ·R, rkR〉,
where ∆R and ·R constitute a classical Alc interpretation and rkR : ∆R → N∞
is a ranking function satisfying the following convexity condition:

For all x ∈ ∆R such that rk(x) <∞, and all i ∈ N such that
0 ≤ i < rk(x), there exists some y ∈ ∆R such that rk(y) = i.

Satisfaction for ranked interpretations is defined the same way as for preferen-
tial interpretations, where IR = 〈∆R, ·R〉 is the underlying classical interpreta-
tion of R:

1. R 
 C v D iff IR 
 C v D.

2. R 
 a : C iff IR 
 a : C.

3. R 
 C @∼D iff minrkR C
P ⊆ DP .

Example 25. A diagrammatic notation for ranked interpretations can be adapted
from Example 24 by replacing the dashed arrows (which represent the preference
ordering) with numbers on the left indicating the rank of a row’s elements:

∆R

x0

x1

PigeonR

EagleR

PredatorR

PreyR

BirdR

eats

0:

1:
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Here we have rkR(x0) = 0 and rkR(x1) = 1, and thus this ranked interpre-
tation satisfies formulas such as Bird @∼ Pigeon (“birds are typically pigeons”),
Eagle @∼ ∀eats.Bird (“eagles typically only eat birds”) and Prey u Birds @∼ ¬Eagle
(“birds that are preyed on are typically not eagles”).

As we will see shortly, for knowledge bases that admit ranked models we can
define an analogue of rational closure in a straightforward way. Fortunately, a
large class of Alc knowledge bases admit ranked models:

Lemma 17. [5, p. 15] Let M = 〈∆M, ·M,≺M〉 be a modular interpretation
such that ∆M is finite. Then there exists some ranked interpretation R such
that SM = SR.

Similarly, it can be shown that finite knowledge bases are equisatisfiable with
respect to modular or ranked interpretations:

Lemma 18. [5, p. 16] Let K = 〈T ,D,A〉 be a finite defeasible knowledge base
such that A = ∅. Then K has a modular model iff it has a ranked model with a
finite domain.

The basic forms of entailment we can consider for defeasible knowledge bases
are Tarskian, based on the classical premise that logical consequence corresponds
to truth in all models of the given knowledge base:

Definition 17. [5, p. 13] A knowledge base K = 〈T ,D,A〉 preferentially entails
a statement α (denoted K |≈P α) iff P 
 α for every preferential model P of
K. Similarly, K rank entails α (denoted K |≈R α) iff R 
 α for every ranked
model R of K.

Preferential and rank entailment suffer from the usual issues with Tarskian
entailment relations in a defeasible setting; namely, they are monotonic. For
this reason, Britz et al. [5] study analogues of truly defeasible propositional
entailment relations, such as rational closure. On the other hand, it’s not ob-
vious that analogues even exist for a more expressive language like Alc. In a
paper on Propositional Typicality Logic, for instance, Booth et al. [3] provide
an example of an expressive propositional language for which rational closure
cannot be defined.

Surprisingly, it turns out that Alc avoids these problems, so long as there are
no A-Box assertions. The more complicated case of defeasible entailment in the
presence of assertional statements will be covered in a later section. For now,
the main technical tool we will need is the notion of ranked union:

Definition 18. [5, p. 16] Let R = {R1,R2, . . . } be a countable set of ranked
interpretations. Then a ranked interpretation R = 〈∆R, ·R, rkR〉 is the ranked
union of R iff the following holds:

1. ∆R =
⊔
Ri∈R ∆Ri , where each element x ∈ ∆Ri is relabelled xRi ∈ ∆R.



CHAPTER 4. DESCRIPTION LOGICS 49

2. xRi ∈ CR iff x ∈ CRi .

3. (xRi , yRj ) ∈ rR iff i = j and (x, y) ∈ rRi .

4. rkR(xRi) = rkRi(x).

In other words, the ranked union of a set of ranked interpretations is the result
of merging each of their domains together and ranking the elements according to
the rankings in their underlying interpretations. Note that we haven’t specified
the interpretations of individual names, and thus this is only valid when one is
considering Alc without assertional statements. The main utility of the ranked
union is that it lets us construct new models of a given knowledge base:

Lemma 19. [5, p. 16] Let K = 〈T ,D〉 be a defeasible knowledge base, and
R = {R1,R2, . . . } a countable set of ranked models of K. Then the ranked
union of R is also a model of K.

The ranked union of a set of ranked interpretations is, by construction, unique
up to isomorphism. In fact, by using the fact that there are only countably
many ranked models of a given knowledge base that have a finite domain, we
can use the ranked union to construct a canonical ranked model for a given
knowledge base:

Definition 19. [5, p. 17] Let K = 〈T ,D〉 be a defeasible knowledge base, and
R its set of ranked models with finite domain. Then the big ranked model of K,
denoted R(K), is defined to be the ranked union of R.

The rational closure of a defeasible Alc knowledge base has been defined in
a number of ways by various authors. Giordano et al. [19] propose a seman-
tic characterisation of rational closure, for instance, using the minimal model
construction of Lemma 14. Here, we note that a simple characterisation of ra-
tional closure for Alc is given by Britz et al. [5] using the big ranked model
construction:

Definition 20. [5, p. 20] Let K = 〈T ,D〉 be a defeasible knowledge base. Then
a statement C @∼D is in the rational closure of K, denoted K |≈RC C @∼D, iff
R(K) 
 C @∼D.

There are a number of reasons for considering |≈RC to be a reasonable analogue
of propositional rational closure. Firstly, the entailment relation |≈RC is actually
defeasible! Secondly, |≈RC satisfies all of the rationality postulates:

Lemma 20. [5, p. 17] Let K = 〈T ,D〉 be a defeasible knowledge base. Then
the set S = {C @∼D : K |≈RC C @∼D} is a rational set.

As we have mentioned, however, there are some limitations with these results.
Firstly, Alc is a relatively weak Description Logic, and it’s not clear how some
of the constructions above would carry over to more expressive DLs. This is an
area of active research, which we will not go into. A more pressing limitation,
for now, is that we have ignored A-Box statements.
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4.3 Defeasibility for the A-Box

To begin our discussion of defeasible reasoning in the presence of assertional
statements, let’s consider a simple example of the kinds of issues that can occur:

Example 26. Consider the following defeasible knowledge base, which states
that individuals are typically happy and avoid only unhappy people, and that a
avoids b:

K = {>@∼ Happy,>@∼ ∀avoids.¬Happy, (a, b) : avoids}

We can construct at least two ranked models of K that are minimal in a sense
to be defined later. The first thing we could do is decide that a is typical, i.e.
that rkR(aR) = 0. From the fact that (a, b) : avoids holds, we would conclude
that b : ¬Happy must hold and therefore that rkR(bR) ≥ 1. On the other hand,
we could also decide that b is typical, i.e. that rkR(bR) = 0. For the same
reasons, we would then conclude that rkR(aR) ≥ 1. These two possibilities are
represented by the following two ranked models:

∆R1

x0(a)

x1(b)

HappyR1

avoids

0:

1:

∆R2

x0(b)

x1(a)

HappyR2

avoids

0:

1:

In the above example, it’s not clear how we would go about defining the big
ranked model of K along the lines of Definition 19, since R1 and R2 satisfy
contradictory assertional statements! One way of understanding this is that
there is no longer a unique minimal ranked model of K - we cannot lower the rank
of any of the individuals in R1 or R2 without violating one of the statements
in K.

To continue with our analysis of rational closure, it turns out to be convenient
to use the minimal model semantics of Giordano et al. [19], as we did in the
propositional case. We will follow the presentation of Casini et al. [10] and work
with the notion of compatibility, which eases some of the technical details:

Definition 21. [10, p. 4] Let K = 〈T ,D〉 be a defeasible knowledge base, and
consider an interpretation I = 〈∆I , ·I〉. Then an individual x ∈ ∆I is 〈T ,D〉-
compatible with respect to I iff for every complex concept C such that x ∈ CI ,
we have 〈T ,D〉 6|≈R ¬C.
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In other words, an individual is compatible if it doesn’t violate any of the
consequences of K. We can extend this notion to an interpretation by saying it
is compatible if it contains representatives of every compatible individual. This
is similar to the notion of a saturated model in classical logic, which contains
representatives of every consistent set of formulas:

Definition 22. [10, p. 4] Let K = 〈T ,D〉 be a defeasible knowledge base, and
consider an interpretation I = 〈∆I , ·I〉. Then I is 〈T ,D〉-compatible iff for
every interpretation J and individual x ∈ ∆J that is 〈T ,D〉-compatible with
respect to J , there exists some y ∈ ∆I such that x ∈ CJ iff y ∈ CI .

We say a ranked interpretation R = 〈∆R, ·R,≺R〉 is 〈T ,D〉-compatible iff
I = 〈∆R, ·R〉 is. Given a classical interpretation I, we denote by RI,T ,D the
set of 〈T ,D〉-compatible ranked interpretations R that agree on I. This set of
interpretations can be ordered according to how typical they rank elements of
the domain, in similar fashion to Definition 9 for propositional logic:

Definition 23. [10, p. 5] Let K = 〈T ,D〉 be a defeasible knowledge base, and
consider an interpretation I = 〈∆I , ·I〉. Then given ranked interpretations
R1,R2 ∈ RI,T ,D, we define R1 ≤I R2 iff rkR1(x) ≤ rkR2(x) for all x ∈ ∆I .

A ranked interpretation R is a minimal model of a knowledge base K =
〈T ,D,A〉 iff it satisfies K and there exists some 〈T ,D〉-compatible interpre-
tation I such that R ∈ min≤I RI,T ,D. This gives us a convenient reformulation
of rational closure for knowledge bases without assertional statements:

Lemma 21. [10, p. 5] Let K = 〈T ,D〉 be a defeasible knowledge base. Then
K |≈RC C @∼D iff R 
 C @∼D for some minimal model R of K.

Note that the particular choice of minimal model in Lemma 21 is irrelevant,
since the minimal models of K satisfy exactly the same set of defeasible sub-
sumption statements. When it comes to knowledge bases with an A-Box, on
the other hand, there is an additional consideration to think about. In Exam-
ple 26, we saw an example of a knowledge base with minimal models satisfying
different sets of statements. Thus in order to extend our notion of rational
closure, we need to choose between inconsistency or a more skeptical approach
to entailment:

Definition 24. [10, p. 9] Let K = 〈T ,D,A〉 be a defeasible knowledge base.
Then for any statement α, K |≈RC α iff R 
 α for every minimal model R of
K.

When A = ∅, Lemma 21 tells us that Definition 24 is equivalent to the defini-
tion of rational closure for knowledge bases without assertional statements, so
this is well-defined. In general, however, we should expect rational closure to
behave worse in the presence of an A-Box, as we lose the Single Model Prop-
erty. The rational closure of a knowledge base can no longer necessarily be
characterised by a single ranked interpretation!



Chapter 5

Datalog

5.1 Background

Datalog is a language for programming and querying databases with ontolo-
gies, i.e. structured information about the way various concepts and facts in
the database relate to each other. Unlike many other paradigmatic database
languages, such as Sql, Datalog is based on the logic programming paradigm,
meaning that its programs are represented as sets of formulas in a formal math-
ematical logic (in this case first-order logic). Datalog is also fully declarative,
in the sense that the order of statements in a Datalog program is irrelevant;
programs are described in terms of facts and rules relating them, rather than in
terms of the control flow of the program execution.

Unlike other logic programming languages, such as Prolog, Datalog is not
Turing-complete and hence not suited for general-purpose computation. This
weakness is also its strength, however, as program evaluation can exploit Dat-
alog’s syntactic restrictions to guarantee both termination and efficiency. Its
logical foundations also allow for the expression of novel programming patterns,
such as mutually recursive rules, which have only recently been implemented
in more mainstream database programming languages (see the introduction by
Cal̀ı et al. [7], for instance).

Formally, Datalog can be viewed as a decidable (and moreover tractable!)
fragment of first-order logic. We will describe the syntax of Datalog theories
from this point of view, referring readers who are unfamiliar with first-order
logic to Chapter 2.3.

The language of a Datalog theory is a restricted first-order language Σ =
〈pred,const,var〉, in which we assume the set of function symbols is empty,
and we assume that the set var of variable symbols is countably infinite for
convenience. The set pred of predicate symbols is further subdivided into the
set predE of extensional predicate symbols, and the set predI of intensional

52
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predicate symbols.

A literal is defined to be any formula ±p(t1, . . . , tar(p)) that is either an atom or
the negation of an atom, and is said to be extensional or intensional according
to whether the predicate symbol p is extensional or intensional respectively. A
literal is said to be ground if it contains no variable symbols. A positive literal
is just an atom, and a negative literal is the negation of an atom. Variants of
Datalog largely differ in terms of which kinds of literals can appear in various
positions in a formula, and which kinds of formulas are allowed within a theory.

A fact is defined to be any positive, extensional ground literal p(c1, . . . , car(p)),
where the ci ∈ const are all constant symbols. Note that in the absence of
function symbols, constant symbols are the only ground terms in the language.
A rule is defined to be any formula L0 →L1, . . . , Ln, where the Li are positive
literals satisfying the following safety conditions:

1. The literal L0 is intensional.

2. Every variable symbol occurring in L0 must occur in Li for some 1 ≤ i ≤ n.

These safety condition ensures that program evaluation always terminates [12,
p. 147], a topic we will return to later. The literal on the left-hand side of a rule
is called its head, while the literals on the right-hand side are called its body.
We denote the set of facts by Lf , and the set of rules by L→. Together, these
constitute the language of Pure Datalog, which we denote by L = Lf ∪ L→.

When describing a Datalog theory, a distinction is typically made between the
facts in the theory (which are given in practice by an input database known as
the extensional database) and the rules (which are computed in the course of
program evaluation) [7, p. 2]. We thus define a Pure Datalog database to be any
set of facts D ⊆ Lf and a Pure Datalog program to be any set of rules P ⊆ L→.
A Pure Datalog theory is simply defined to be any combination Γ = 〈D,P〉 of
the two.

Example 27. Consider a Datalog language Σ where predE = {e(·, ·)}, predI =
{c(·, ·)} and const = {vi : i ∈ N}. Our goal is to describe a Pure Datalog pro-
gram that computes the connectedness of a directed graph, where vertices are
represented by constants, and edges are represented by the predicate e:

c(X,Y ) →e(X,Y ).

c(X,Z) →c(X,Y ), e(Y, Z).

These rules express an inductive definition of connectivity: X and Z are con-
nected if there is either an edge between them, or X has an edge to some vertex
Y such that Y and Z are connected.

Datalog theories can be interpreted as describing corresponding first-order the-
ories, a viewpoint which is known as the logical semantics for Pure Datalog [12,
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p. 148]. These corresponding first-order theories are defined in terms of a trans-
lation operator Tr, which maps a Datalog rule or fact α to its corresponding
first-order formula Tr(α):

1. If α is a fact p(c1, . . . , car(p)), then Tr(α) = p(c1, . . . , car(p)).

2. If α is a rule L0 →L1, . . . , Ln, then Tr(α) = ∀~x . (L1 ∧ · · · ∧ Ln → L0),
where ~x is the tuple of variable symbols appearing in α.

In other words, a fact is interpreted by itself as a first-order formula, whereas a
rule is interpreted by its universal closure as a clause. This sugggests the possi-
bility of using first-order semantic stuctures, such as Herbrand interpretations,
to provide a meaning to Datalog theories, an idea that dates back to Van Emden
et al. [35]. Given a Datalog theory Γ = 〈D,P〉 and a Herbrand interpretation
H over the theory’s language (see Section 2.3 for a definition), we say that H
satisfies Γ (or that H is a model of Γ) iff H 
 Tr(α) for every rule or fact α ∈ Γ.

Example 28. Let Γ = 〈D,P〉, where D = {e(v1, v2)}, and P is the program
from Example 27. Then the following Herbrand interpretations all satisfy Γ:

H1 = {e(v1, v2), c(v1, v2)}
H2 = {e(v1, v2), e(v2, v3), c(v1, v2), c(v1, v3), c(v2, v3)}

H3 = {e(v1, v2), c(v1, v2), c(v4, v5), c(v1, v1)}

This lets us give a precise account of what it means for a Pure Datalog theory
Γ = 〈D,P〉 to compute or entail a given fact α ∈ Lf , which we denote by Γ |= α.
In particular, Γ |= α iff every Herbrand model H of Γ satisfies Tr(α) [12, p. 148].
A common way of phrasing this, which emphasises the computational aspect
of Pure Datalog, is that the program P computes the fact α given the input
database D.

In fact, there is a convenient way to characterise the set of facts entailed by a
theory. One of the properties that sets Pure Datalog apart from general first-
order logic, aside from its restricted language and comparatively simple syntax,
is that it satisfies the model intersection property :

Lemma 22. [12, p. 149] Let Γ be a Pure Datalog theory, and H = {H1, . . . }
a (possibly infinite) set of Herbrand models of Γ. Then H =

⋂
H is also a

Herbrand model of Γ.

A consequence of the model intersection property is that every Pure Datalog
theory Γ has a minimal Herbrand model HΓ, which is defined to be the intersec-
tion of the set of all Herbrand models of the theory [12, p. 149]. This minimal
model precisely characterises the facts entailed by Γ:

Lemma 23. [12, p. 149] Let Γ be a Pure Datalog theory, and consider some
fact α ∈ Lf . Then Γ |= α iff α ∈ HΓ.
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The nice thing about the logical semantics for Pure Datalog is that it tells
us exactly which facts are computed by a given program, without specifying
anything about how the computation should be performed. This is what is
meant when Datalog is referred to as a declarative language - a given Datalog
program’s meaning is completely determined by its set of rules, and doesn’t
depend on their order or on any kind of implementation detail.

Something else to note about the semantics we have just presented is that
entailment is only defined for facts. While it wouldn’t be hard to do so by
making use of the translation operator, we have refrained from defining a notion
of entailment for rules, negative literals or more complicated kinds of formulas.
The reason for this is somewhat subtle, and has to do with the way incomplete
information is handled in Datalog versus first-order logic.

First-order logic adopts a position known as the open-world assumption (OWA),
which states that a formula may be true or false irrespective of whether it is
known to be true or false. Phrased in terms of entailment, if we know that
a first-order theory Γ holds, and we have that Γ 6|= α and Γ 6|= ¬α for some
formula α, then we cannot make any assumptions about whether α holds or
not. After all, both options are a logical possibility, and we wouldn’t want an
account of logic that draws possibly erroneous conclusions.

On the other hand, Datalog is intended to be a database query language, and
thus has different design goals. If we consulted a database of train schedules
to determine which trains were leaving at noon, for instance, an answer of
“unknown” would be as good as no answer at all! Datalog deals with this by
adopting a position known as the closed-world assumption (CWA), which states
that if a formula is not known to be true, then it should be assumed to be false.
Phased in terms of entailment, this is the following principle [12, p. 158]:

If a fact is not entailed by a Datalog theory, then we
should conclude that the negation of the fact is true.

This principle, combined with the result of Lemma 23, allows us to define
what it means for a Datalog theory Γ to entail the negation of a fact α ∈ Lf .
In particular, we define Γ |= ¬α to hold iff Γ 6|= α, or equivalently iff HΓ 
 ¬α.
Note that this is very different to (and in fact incompatible with) the definition
of entailment used in first-order logic!

While this lets us deduce negative facts, it’s worth noting that in Pure Datalog
we cannot use these negative facts in any further deduction, as rules are required
to contain only positive literals. Various extensions of Pure Datalog have been
proposed in the literature to deal with this problem, which usually requires
assuming an approximation to the CWA rather than the full principle. In the
next section we will briefly overview some of these extensions of Pure Datalog,
and set the stage for a Klm-style form of Defeasible Datalog.
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5.2 Extensions of Datalog

Before defining any extensions, let’s first discuss why allowing negative literals
in Datalog rules can cause problems with the CWA. Consider the program
P = {p(a) →¬q(a)}, for instance. Computing its set of Herbrand models for
an empty input database D = ∅, one finds that it has not one minimal model
(which we would expect for Pure Datalog theories, by Lemma 23), but two
minimal models [12, p. 159]:

1. H1 = {p(a)}

2. H2 = {q(a)}

Here, it’s clear that 〈P,D〉 6|= p(a) and 〈P,D〉 6|= q(a). Hence, if we were
to apply the full CWA principle, we would conclude that we should assume
both ¬p(a) and ¬q(a) [12, p. 159]. But this is incompatible with both minimal
models given above! This leaves us with two choices if we want things to work
out consistently:

1. We can restrict the allowed rules so as to avoid contradicting the CWA.

2. We can drop the full CWA principle and assume a weaker version of it
instead.

The first option is essentially ruled out by our earlier example, in which we had
a Datalog program with a single negative literal in its rule body. It’s unclear
how one could restrict the syntax further than this without ending up back at
Pure Datalog. Allowing negative literals in rule heads, on the other hand, is
immediately ruled out for safety (i.e. query termination and efficiency) reasons
[12, p. 159].

Thus we are left with the second option, which is to adopt a weaker form of the
CWA principle. The two most common approaches in the literature are known
as Stratified Datalog ¬ [12, p. 159] and Inflationary Datalog ¬ [12, p. 160],
both of which work by applying the CWA locally at each step of a program
evaluation. In order to compare the two, let’s define their common language.
A Datalog¬ fact is defined to be any extensional ground literal, and a Datalog¬

rule is defined to be any formula L0 →L1, . . . , Ln, where the Li are literals
satisfying the following safety conditions:

1. The literal L0 is positive and intensional.

2. Every variable symbol occurring in L0 must occur in Li for some 1 ≤ i < n.

3. Every variable symbol occurring in a negative literal Li must occur in a
positive literal Lj for some 1 ≤ j < n.
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We denote the set of Datalog¬ facts by L¬f , and the set of Datalog¬ rules
by L¬→. Note that Lf ⊆ L¬f and L→ ⊆ L¬→, with equality occurring iff the
underlying Datalog language has no predicate symbols. Thus the language of
Datalog¬ is (in all non-trivial cases) a strict extension of the language of Pure
Datalog.

The stratified semantics for Datalog¬ is based on the following idea: when we
evaluate a Datalog¬ rule with negative literals, we should evaluate the predicates
corresponding to these negative literals, and then apply the CWA locally to these
predicates [12, p. 159]. If we evaluate our earlier program P = {p(a) →¬q(a)}
over an empty input database according to this idea, we find that in order to
evaluate the predicate p, we first have to evaluate the predicate q, as it appears
as a negative literal in the rule for p.

However, since our input database is empty, our program does not compute
q(a). Applying the CWA locally, this tells us that we should conclude that
¬q(a) holds, and hence by the sole rule of P we conclude that p(a) holds as
well. Thus the stratified model of P that we compute is given by H = {p(a)},
which also happens to be one of the minimal models of P.

This policy clearly introduces an ordering on the evaluation of predicates. In
order to evalute a predicate p, we first have to enumerate all the rules that have
p in their head, and then evaluate all the predicate symbols occurring in negative
literals in those rules. In some cases, this process might never terminate, as there
could be cycles in the graph of dependencies between predicates. Consider the
program P = {p(a) →¬q(a), q(a) →¬p(a)}, for instance, in which evaluating
p required evaluating q, and vice-versa.

Datalog programs which do not have these cycles are known as stratified pro-
grams, and Stratified Datalog¬ only permits stratified programs in order to guar-
antee termination. When P is a stratified program, evaluating P over an input
database according to the stratified semantics is guaranteed to produce a mini-
mal model of P, known as its perfect model [12, p. 160].

The inflationary semantics for Datalog¬ does not have these restrictions, and is
applicable to all Datalog¬ programs, whether they are stratified or not. The idea
is to evaluate the program concurrently - at each evaluation step, every rule in
the program is applied simultaneously to derive new facts, with the CWA being
applied locally to the set of facts derived in previous steps [12, p. 160].

Let’s evaluate the non-stratified program P = {p(a) →¬q(a), q(a) →¬p(a)}
over an empty input database according to this idea. First, we first apply the
CWA locally to conclude that ¬p(a) and ¬q(a) are applicable in rules (since
we have derived no facts so far). Then, we apply both rules concurrently to
conclude that p(a) and q(a) should both hold. Thus the model of P computed
by the inflationary semantics is given by H = {p(a), q(a)}.
The downside of Inflationary Datalog¬ is that the models it computes are

not minimal in general. However, it can be shown that given any stratified
Datalog¬ program P, there exists a program P ′ computable from P such that
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the inflationary model of P ′ is exactly the perfect model of P [12, p. 161]. Thus,
Inflationary Datalog¬ is strictly more expressive than Stratified Datalog¬.

5.3 A Methodology for Defeasible Datalog

All of the extensions of Pure Datalog in the previous section have semantics
based on local versions of the CWA principle. This has historically been mo-
tivated by the need for Datalog programs to have an efficient, declarative se-
mantics, in line with their intended purpose as a database query language. In
this section, we will lay the groundwork for a different kind of extension of Pure
Datalog, one which is motivated instead by the use of Datalog as an ontology
language.

Our approach follows the lines of Chapters 3 and 4. First, we will define
analogues of the rationality postulates for Datalog, and extend the notion of a
rational set to Datalog programs. This gives us a set of defeasible properties,
analogous to those proposed by Kraus et al. [22] and Lehmann et al. [25], that
should be true of any defeasible reasoning process over Datalog programs.

Preliminary work in this direction has been done by Morris et al. [28] and
Harrison et al. [21], who define and implement a syntactic version of Rational
Closure for Datalog programs based on analogues of the rationality postulates.
One of the challenges highlighted by their work is that some of the rationality
postulates can only be expressed in an extension of the language of Pure Datalog,
which we will look at in detail in the next chapter.

Second, we will define a semantics that completely characterises rational Dat-
alog programs. As we will see, this also introduces some challenges, as the
language of Datalog is significantly more expressive than that of propositional
logic or the Description Logic Alc. Datalog allows for restricted forms of uni-
versal quantification, for instance, and thus we will be required to extend the
rationality postulates in order to achieve this goal. This is surprising, as the
corresponding approach for Description Logics can be carried through in its en-
tirety using nothing more than the standard propositional rationality postulates
(see the discussion after Theorem 5, for instance).

Finally, we will define a semantic analogue of rational closure for Datalog
programs that both characterises and extends the syntactic version proposed
by Morris et al. [28] and Harrison et al. [21]. Our approach solves some of the
issues with their syntactic algorithm, such as its inability to handle exceptional
individuals. We will discuss these issues in more detail at the end of the next
chapter.



Chapter 6

Defeasible Datalog

Defeasible Datalog is an extension of Pure Datalog first proposed by Morris et
al. [28] and Harrison et al. [21], in which one can express defeasible rules in
addition to the classical rules and facts of Pure Datalog. These defeasible rules
express relationships that typically hold but which may have exceptions, much
like the “|∼” connective of propositional Klm or “@∼ ” statements in defeasible
Alc. This is an explicit form of defeasibility, different in both style and intention
from the implicit forms of defeasibility that feature in extensions like Stratified
Datalog¬.

Like Pure Datalog, the underlying language of a Defeasible Datalog theory is a
restricted first-order language Σ = 〈pred,const,var〉, where we assume that
the sets of predicate and constant symbols are at most countably infinite, and
that the set var of variable symbols is countably infinite.

Unlike Pure Datalog, however, we will make no distinction between intensional
and extensional predicates in what follows, and we won’t concern ourselves
with safety constraints on the formulas we allow in Defeasible Datalog. These
constraints are present in Pure Datalog in order to guarantee query efficiency
and termination. This is important for Defeasible Datalog too, of course, but our
focus is primarily on providing a robust semantics for defeasible reasoning over
Datalog theories, with computational efficiency a topic that can be returned
to in future work. The defeasible extensions of propositional logic and Alc
that we looked at in Chapters 3 and 4 are both computationally reducible to
their classical versions, for instance, so we do not expect this to be a serious
shortcoming of our work.

The syntax of Defeasible Datalog is defined in terms of compounds [28], which
we define inductively as follows:

1. If p(t1, . . . , tar(p)) is an atomic formula, then it is also a compound.

2. If A is a compound, then ¬A is a compound.
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3. If A and B are compounds, then A ∧B and A ∨B are compounds.

In other words, compounds are boolean combinations of atoms. The set of all
compounds is denoted Lc, and when writing a generic compound we will stick
to the convention of denoting them with capital letters. A fact is defined to
be any ground compound, i.e. any compound A ∈ Lc containing no variable
symbols, and we denote the set of facts by Lf ⊆ Lc. An atom is defined to be
any atomic compound, i.e. any compound of the form p(t1, . . . , tar(p)), and we
denote the set of atoms by La.

A rule is defined to be any formula A →B, where A and B are any two
compounds. Similarly, a defeasible rule is any formula B ;A, where A and
B are any two compounds. We denote the set of rules by L→, and the set of
defeasible rules by L;.

Like Pure Datalog, we distinguish between the facts and rules in a given De-
feasible Datalog theory. We thus define a Defeasible Datalog database to be any
set of facts D ⊆ Lf , and a Defeasible Datalog program to be any set of rules
P ⊆ L→ ∪ L;. A Defeasible Datalog theory is any combination Γ = 〈D,P〉 of
the two.

Example 29. Consider the following Defeasible Datalog knowledge base, based
on an example due to Pensel et al. [30], which encodes a basic ontology about
workers and their bosses:

worker(X) →boss(X)

responsible(X) ;boss(X)

boss(Y ) ;worker(X) ∧ hasSuperior(X,Y )

This states that all bosses are workers, that bosses are typically responsible,
and that a worker’s superior is typically a boss. Intuitively, the use of defeasible
rules allows for the presence of exceptional facts in the database, such as a boss
who isn’t responsible:

boss(Tommie) ∧ ¬responsible(Tommie)

It’s worth pointing out a few things about the language of Defeasible Datalog
versus the language of Pure Datalog. Firstly, as we noted earlier, there are no
safety restrictions on facts, rules or defeasible rules. We do not view this as
a hard requirement - indeed, once we have defined an appropriate semantics
for Defeasible Datalog, the next logical step is to restrict the language so as to
ensure computational efficiency.

Secondly, Defeasible Datalog facts and rules are significantly more expressive
than their Pure Datalog counterparts. We have allowed arbitrary boolean com-
binations of atoms to form compounds, and thus we can express negation and
disjunction in rule heads and bodies. We can also express things like negative
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or disjunctive facts. Again, this is not viewed as a hard requirement. As we
will see later, this expressiveness is only necessary in order to define appropriate
analogues of the rationality postulates. The purpose of these postulates is sim-
ply to motivate our choice of semantics, and there is nothing stopping us from
restricting the language later for efficiency reasons.

6.1 Semantics for Classical Formulas

We begin our analysis of Defeasible Datalog with a short digression on how we
intend to interpret the classical part of the Defeasible Datalog language, i.e.
facts and (non-defeasible) rules. As we have already stated, our approach to
defeasible reasoning over Datalog knowledge bases is motivated by the use of
Datalog as an ontology language, and as such we will be ignoring considerations
from Chapter 5 such as the Closed-World Assumption.

An implication of this is that we will be interpreting negation and disjunction
in a very different way to extensions of Datalog such as Datalog¬. In fact, we
will interpret them classically, in the same way that first-order logic does. Given
a fixed first-order language Σ = 〈pred,const,var〉, we recall from Chapter 2
that the Herbrand base of Σ is the set B of ground atoms over Σ, and that a
Herbrand interpretation is a subset H ⊆ B.

We say a Herbrand interpretation H satisfies a fact or rule α ∈ Lf ∪L→ iff H
satisfies the first-order formula Tr(α), where Tr(·) is the translation operator of
Chapter 5. Satisfaction is denoted H 
 α, as usual.

Example 30. Consider a fixed language Σ where pred = {worker(·), boss(·)}
and const = {Josh, Kahla}, and suppose we have the following Herbrand in-
terpretation:

H = {worker(Josh), worker(Kahla), boss(Kahla)}

Then H 
 boss(Kahla) ∨ boss(Josh), because H satisfies boss(Kahla) as a first-
order formula. We also have H 
 worker(X) →boss(X), because H satisfies
the first-order formula ∀x.boss(x)→ worker(x).

We say a fact A ∈ Lf or a rule B →A ∈ L→ is a classical tautology if it is
satisfied by every Herbrand interpretation over every extension of the language
Σ. We will abuse notation slightly and refer to an open compound A ∈ Lc as a
classical tautology if the rule A →> is a classical tautology.

The fact that we consider extensions of the language here is what we mean by
interpreting formulas classically. In particular, we are interested in extensions of
the language that have more constant symbols, as otherwise we drift back into
a closed-world interpretation of formulas, in which whether or not a formula is
considered a tautology depends crucially on what one knows:
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Example 31. Consider the first-order language Σ = 〈pred,const〉, where
pred = {pigeon(·)} and const = {Tim}. Then every Herbrand interpretation
over Σ satisfies pigeon(X) →pigeon(Tim), as there are simply no constant
symbols other than Tim. On the other hand, we do not want to conclude that
pigeon(X) →pigeon(Tim) is a classical tautology, as its first-order translation
∀x.pigeon(Tim)→ pigeon(x) is not true in every first-order structure.

We say a classical formula α ∈ Lf ∪ L→ is a classical consequence of a set
of formulas S ⊆ Lf ∪ L→ iff α is satisfied by every Herbrand model of S over
every extension of the language Σ. We also say that S is deductively closed if it
contains all of its classical consequences.

In Chapter 2 we noted that Herbrand semantics is not equivalent to standard
first-order semantics in general (see Lemma 3). This implies that there might
be formulas that are classically entailed by a set S (in the standard first-order
sense), but which aren’t classical consequences of S (in the Herbrand sense given
above). Fortunately, so long as we restrict our attention to Defeasible Datalog
formulas, this is never an issue:

Lemma 24. Let S ⊆ Lf∪L→ be an arbitrary set of formulas. Then the formula
α is a classical consequence of S iff Tr(α) is classically entailed by Tr(S), where
Tr is the translation operator of Chapter 5.

Lemma 24 is useful as it allows us to translate between the language of Her-
brand interpretations (classical consequence), and the language of first-order
structures (classical entailment). For instance, as a corollary we get a version
of the compactness theorem for Herbrand semantics:

Corollary 2. Suppose α is a classical consequence of S ⊆ Lf ∪L→. Then there
is some finite subset S ′ ⊆ S such that α is a classical consequence of S ′.

6.2 Rationality Postulates

In this section we introduce a formal model of the outcome of a defeasible rea-
soning process over Defeasible Datalog theories. As we have done before, we will
model this in terms of a set of defeasible properties based on the Klm rational-
ity postulates [28], which describe permissible patterns of defeasible reasoning
(adapted for the case of Datalog rules and facts). For a more in-depth discussion
of the model, see the discussion of the propositional case in Section 3.2, and the
Alc case in Section 4.2.

In these earlier cases, the technical definition of defeasible properties is in terms
of inclusion formulas, which are themselves certain kinds of formulas over a set
of meta-atoms or meta-concepts. We will take the same approach here, but
due to the expressiveness of Datalog we will need to expand our language for
inclusion formulas slightly.
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Firstly, Datalog compounds can contain variable symbols. In some cases we
might want to express a defeasible property that states certain substitutions of
a rule should be sanctioned. Thus we need a way of expressing substitutions in
inclusion formulas. Note that there are a few different kinds of substitutions we
might want to talk about, depending on whether the range of the substitution
allows for constants, or variables, or both.

Secondly, Datalog theories are invariant under relabelling of variables. For
instance, the following theories express exactly the same thing, the difference
being merely a permutation of variable symbols:

Γ+ = {B(X,Y ) →A(X,Y )}
Γ− = {B(Y,X) →A(Y,X)}

Thus we need a way of expressing permutations in inclusion formulas, which are
a special case of substitutions.

The syntax of defeasible properties in our model will be based on a (heavily)
restricted form of first-order logic, and we have tried to ensure that it is as
simple as possible while still being expressive enough to solve the two problems
mentioned above. Let A = {A,B, . . . } be a set of meta-atom symbols, and
V = {~x, ~y, . . . } a set of meta-variable symbols.

A meta-argument is defined to be anything of the form “ ~x ”, “ ϕ~x ”, “ π~x ”
or “ σ~x ”, where ~x ∈ V is a meta-variable. A atomic meta-term is then defined
to be anything of the form “ A(a1, . . . , an) ”, where A ∈ A is a meta-atom and
a1, . . . , an is a (possibly empty) sequence of meta-arguments that contains each
meta-variable ~x ∈ V at most once. In the case that n = 0, we will write the
meta-term as “ A ” rather than “ A() ” for clarity. A compound meta-term
is simply a boolean combination of atomic meta-terms. Meta-terms represent
placeholders for Defeasible Datalog compounds, with different meta-arguments
corresponding to disjoint sets of variables in the compound. We denote the set
of meta-terms by T .

An inclusion schema is defined to be anything of the form “t”, “tl →tr”,
“tl ;tr”, “tl 6;tr”, “|= t”, “|= tl →tr”, “∀ϕ.I”, “∀π.I” or “∀σ.I”, where
t, tl, tr ∈ T are meta-terms and I is itself an inclusion schema (i.e. this definition
is recursive). We denote the set of inclusion schemas by I;, and make the
restriction that inclusion schemas to be finite, as infinitely recursive rules don’t
seem to have a useful interpretation to us.

Example 32. The following are all valid inclusion schemas:

1. “A(~x) ∨ ¬A(~x)”, which intuitively states that a reasoner sanctions either
the compound “A(~x)” or its negation.

2. “∀ϕ.B(~x, ϕ~y) ;A(~x)”, which intuitively states that for every substitution
ϕ, the reasoner sanctions the defeasible rule “B(~x, ϕ(~y)) ;A(~x)”. The
symbols “ϕ”, “π” and “σ” are intended to represent arbitrary substitu-
tions, variable substitutions and variable permutations respectively.



CHAPTER 6. DEFEASIBLE DATALOG 64

3. “|= B(~y) ∧ C(~z) →A(~x)”, which intuitively states that the classical rule
“B(~y)∧C(~z) →A(~x)” is a tautology under the semantics given earlier in
this chapter.

On the other hand, “A(~x, σ~x) →B” is not a valid inclusion schema, as
“A(~x, σ~x)” contains the meta-variable “~x” twice, and is hence not a valid meta-
term.

An inclusion schema is a blueprint representing a set of Defeasible Datalog rules
and facts that a reasoner may or may not sanction. Let us now formalise exactly
which rules and facts an inclusion schema corresponds to, by providing inclusion
schemas with a logical semantics. As we have seen in the examples, inclusion
schemas like “∀π.I” are intended to encode restricted forms of quantification,
and thus our language for defeasible properties is significantly more expressive
than that of propositional logic or Alc.

A substitution system is a tuple Ψ = 〈λ, τ, ϕ, π, σ〉, where λ : V → 2var maps
meta-variables to disjoint sets of variables, τ : A → Lc maps meta-atoms to
compounds, ϕ : var → var ∪ const is a general substitution, π : var → var
is a variable substitution, and σ : var → var is a variable substitution that
permutes var (i.e. it is a bijection).

Let a1, . . . , an be a sequence of meta-arguments that contains each meta-
variable at most once (for example, it can’t contain both “~x” and “ϕ~x”). Then
the instance of a1, . . . , an with respect to the substitution system Ψ is the sub-
stitution Ψa1,...,an : var→ var ∪ const defined as follows:

1. Ψa1,...,an(X) = ϕ(X) if there’s an i ∈ [1, n] s.t. ai =“ϕ~x” and X ∈ λ(~x)

2. Ψa1,...,an(X) = π(X) if there’s an i ∈ [1, n] s.t. ai =“π~x” and X ∈ λ(~x)

3. Ψa1,...,an(X) = σ(X) if there’s an i ∈ [1, n] s.t. ai =“σ~x” and X ∈ λ(~x)

4. Ψa1,...,an(X) = X otherwise.

This may seem rather formal and unmotivated, but we will use instances of
meta-arguments to define exactly how a substitution system acts on meta-terms
to produce Defeasible Datalog compounds. Note that Ψa1,...,an is well-defined,
as λ is required to map meta-variables to disjoint sets of variable symbols, and
thus for any variable symbol X precisely one of the above cases holds.

Example 33. Consider the substitution system Ψ = 〈λ, τ, ϕ, π, σ〉, where τ is
any map A → Lc, and the other components are defined as follows:

1. λ(~x) = {X,W}, λ(~y) = {Y }, λ(~z) = {Z}

2. ϕ(X) = Jim, ϕ(Y ) = Y , ϕ(Z) = W , ϕ(W ) = Giovanni

3. π(X) = Y , π(Y ) = X, π(Z) = X, π(W ) = Y
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4. σ(X) = Y , σ(Y ) = Z, σ(Z) = X, σ(W ) = W

Now let a =“~x”, b =“ϕ~x”, c =“π~y” and d =“σ~z”. We can construct various
instances of these meta-arguments with respect to Ψ:

1. Ψa

(
friends(X,Y, Z,W )

)
= friends(X,Y, Z,W )

2. Ψb

(
friends(X,Y, Z,W )

)
= friends(Jim, Y, Z,Giovanni)

3. Ψc

(
friends(X,Y, Z,W )

)
= friends(X,X,Z,W )

4. Ψd

(
friends(X,Y, Z,W )

)
= friends(X,Y,X,W )

5. Ψb,c,d

(
friends(X,Y, Z,W )

)
= friends(Jim, X,X,Giovanni)

Note that an instance like Ψa,b,c,d is undefined, as “a” and “b” both contain
the meta-variable ~x.

Consider now some atomic meta-term t =“A(a1, . . . , an)”. The idea with the
meta-arguments a1, . . . , an is to constrain the possible compounds that can be
substituted for A. Each of the meta-arguments corresponds to a disjoint set of
variable symbols, and we want to require that the compound substituted for A
uses only these variable symbols. With this in mind, we say the substitution
system Ψ is compatible with t iff every variable symbol in the compound τ(A)
is contained in λ(~x) for some meta-variable ~x in the meta-arguments a1, . . . , an.

Example 34. Let t be the meta-term “A(~x, ϕ~y, ~z)”, and define τ : A → Lc
by τ(A) = triplets(X,Y, Z). Then consider the following two maps from meta-
variables to set of variable symbols:

1. λ1(~x) = {X,Y }, λ1(~y) = {Z}, λ1(~z) = {W}

2. λ2(~x) = {Y }, λ2(~y) = {Z}, λ2(~z) = {W}

The substitution system Ψ1 = 〈λ1, τ, id, id, id〉 is compatible with t, as τ(A)
contains the variable symbols X, Y and Z, and these are contained in λ1(~x),
λ1(~x) and λ1(~y) respectively.

On the other hand, the substitution system Ψ2 = 〈λ2, τ, id, id, id〉 is not com-
patible with t, as τ(A) contains the variable symbol X, which is not contained
in λ2(~x), λ2(~y) or λ2(~z).

We define the instance of the atomic meta-term t =“A(a1, . . . , an)” with re-
spect to a compatible substitution system Ψ to be the following compound:

Ψ(t) = Ψa1,...,an

(
τ(A)

)
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Once again, we note that Ψa1,...,an is well-defined, as meta-terms are required
to contain each meta-variable ~x ∈ V at most once. The instance of a compound
meta-term t ∈ T with respect to Ψ is defined to be the compound that results
from replacing each atomic meta-term in t with it’s corresponding instance.

Example 35. Consider the substitution system Ψ = 〈λ, τ, ϕ, π, σ〉, where the
components are defined as follows:

1. τ(A) = square(X,Y, Z,W )

2. λ(~x) = {X,Y }, λ(~y) = {Z}, λ(~z) = {W}

3. ϕ(X) = Bob, ϕ(Y ) = Y , ϕ(Z) = W , ϕ(W ) = Alice

4. π(X) = Y , π(Y ) = X, π(Z) = X, π(W ) = W

5. σ(X) = Y , σ(Y ) = Z, σ(Z) = W , σ(W ) = X

Then the meta-term t =“A(ϕ~x, π~y, σ~z)” is compatible with respect to Ψ, and
has the following instance:

Ψ(t) = Ψϕ~x,π~y,σ~z

(
τ(A)

)
= Ψϕ~x,π~y,σ~z

(
square(X,Y, Z,W )

)
= square(Bob, Y,X,X)

We are now in a position to interpret inclusion schemas using sets of Defeasible
Datalog formulas (this is the logical semantics we alluded to earlier). Given a
set of Defeasible Datalog formulas S ⊆ L, we say S satisfies an inclusion schema
I ∈ I; under the substitution system Ψ = 〈λ, τ, ϕ, π, σ〉 iff Ψ is compatible with
every meta-term contained in I, and the following conditions hold:

1. If I = “t”, then ϕ ◦Ψ(t) ∈ S for every ground substitution ϕ.

2. If I = “tl →tr”, then Ψ(tl) →Ψ(tr) ∈ S.

3. If I = “tl ;tr”, then Ψ(tl) ;Ψ(tr) ∈ S.

4. If I = “tl 6;tr”, then Ψ(tl) ;Ψ(tr) 6∈ S.

5. If I = “|= t”, then Ψ(t) is a classical tautology.

6. If I = “|= tl →tr”, then Ψ(tl →tr) is a classical tautology.

7. If I = “∀ϕ.I∗”, then for every substitution ϕ′ : var → var ∪ const, S
satisfies I∗ under Ψ′ = 〈λ, τ, ϕ′, π, σ〉.

8. If I = “∀π.I∗”, then for every substitution π′ : var→ var, S satisfies I∗

under Ψ′ = 〈λ, τ, ϕ, π′, σ〉.
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9. If I = “∀σ.I∗”, then for every permutation σ′ : var → var, S satisfies
I∗ under Ψ′ = 〈λ, τ, ϕ, π, σ′〉.

Note that the conditions for quantified substitutions are similar in spirit to the
satisfaction conditions for quantifiers in first-order logic (see Chapter 2, Section
2.3). We denote the fact that S satisfies the inclusion schema I under Ψ by
S 
Ψ I.

Example 36. Consider the inclusion schemas I1 =“B(~x, ϕ~y) ;A(~x)” and
I2 =“∀ϕ.B(~x, ϕ~y) ;A(~x)”, and let S = {¬likes(Alice,Bob) ;unhappy(Alice)}.
To illustrate our definition of satisfaction, we construct a substitution system
Ψ = 〈λ, τ, ϕ, π, σ〉 as follows:

1. λ(~x) = {X}, λ(~y) = {Y }

2. τ(A) = unhappy(Alice), τ(B) = ¬likes(Alice, Y )

3. ϕ(X) = X, ϕ(Y ) = Bob

4. π = σ = id

The system Ψ is compatible with every meta-term in I1 and I2, and by defini-
tion S satisfies I1 under Ψ iff S contains the following formula:

Ψ
(
B(~x, ϕ~y)

)
;Ψ
(
A(~x)

)
= Ψ~x,ϕ~y

(
¬likes(Alice, Y )

)
;Ψ~x

(
unhappy(Alice)

)
= ¬likes(Alice,Bob) ;unhappy(Alice)

Thus S 
Ψ I1. On the other hand, S does not satisfy I2 under Ψ. To show
this, it suffices to construct a substitution ϕ′ : var→ var ∪ const such that S
fails to satisfy B(~x, ϕ~y) ;A(~x) under Ψ′ = 〈λ, τ, ϕ′, π, σ〉. One such choice of
ϕ′ is the following:

1. ϕ′(X) = X, ϕ′(Y ) = Alice

In general, satisfying a quantified inclusion schema may require the set of for-
mulas S to be infinite. For this reason we will avoid writing such sets out
explicitly, and rather construct them with mathematical tools developed later in
the chapter.

We define a defeasible property to be anything of the form “I1, . . . , In =⇒
In+1”, where the Ii ∈ I; are all inclusion schemas, satisfying the following
consistency requirement:

1. Whenever two meta-terms t1, t2 ∈ T in the defeasible property contain the
same meta-atom, they must also contain exactly the same meta-variables
in exactly the same order.
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We denote the set of defeasible properties by P;, and in the case that P
is a defeasible property with n = 0, we will write it as “I1” rather than the
technically correct “ =⇒ I1”. The point of the consistency requirement is
simply to disallow certain pathological defeasible properties:

Example 37. Consider the inconsistent defeasible property A(~x) ;A(~y). Then
from the definitions it follows that a substitution system Ψ = 〈λ, τ, ϕ, π, σ〉 is
compatible with both of the meta-terms A(~x) and A(~y) iff τ(A) is a ground
compound, as λ(~x) and λ(~y) are required to be disjoint sets of variables. Since
this can already be expressed by the simpler defeasible property A ;A, we see
no reason to allow such complications.

As we’ve seen before in the propositional and Alc cases, a defeasible property
represents a particular pattern of defeasible reasoning. It states that whenever
a reasoner satisfies the schemas I1, . . . , In under some substitution system, the
reasoner should also sanction the schema In+1. This can be formalised as fol-
lows, where we say that a substitution system Ψ is compatible with a defeasible
property P iff it is compatible with every meta-term in P :

Definition 25. Let P =“I1, . . . , In =⇒ In+1” be a defeasible property, and
suppose S ⊆ L is a set of Defeasible Datalog formulas. Then S is said to
be P -complete iff for every compatible substitution system Ψ such that S 
Ψ

I1, . . . , In, we have that S 
Ψ In+1.

Similarly, if D ⊆ P; is a set of defeasible properties, we say S is D-complete
iff it is complete for every property in the set. The notion of a defeasible prop-
erty allows us to express Defeasible Datalog analogues of the Klm rationality
postulates. These are based on the postulates given by Morris et al. [28], and
have simply been translated into our formalism:

(Refl) A(~x) ;A(~x)

(Lle) C(~x) ;A(~x), |= A(~x) →B(~x), |= B(~x) →A(~x) =⇒ C(~x) ;B(~x)

(Rw) B(~x) ;A(~x), |= C(~x) →B(~x) =⇒ C(~x) ;A(~x)

(Or) C(~x) ;A(~x), C(~x) ;B(~x) =⇒ C(~x) ;A(~x) ∨B(~x)

(And) B(~x) ;A(~x), C(~x) ;A(~x) =⇒ B(~x) ∧ C(~x) ;A(~x)

(Rm) C(~x) ;A(~x), ¬B(~x) 6;A(~x) =⇒ C(~x) ;A(~x) ∧B(~x)

These properties say exactly the same thing as the propositional and Alc ratio-
nality postulates, the only difference being that they are generalised to formulas
of arbitrary arity. The propositional rationality postulates apply to proposi-
tional formulas, which are analogous to ground facts, and the Alc rationality
postulates apply to concepts, which are analogous to unary predicates. We are
thus taking one more step up the ladder of generalisation.

Definition 26. A set of formulas S ⊆ L is said to be rational iff it is complete
for the properties (Refl)-(Rm). We refer to these properties as the Defeasible
Datalog rationality postulates, and denote them by R;.
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In fact, not only is R; a syntactic generalisation of the propositional or Alc
rationality postulates, but it also has the same consequences, in the following
sense:

Definition 27. Let D ⊆ P; be a set of defeasible properties. Then we say a
property P ∈ P; is a consequence of D iff every D-complete set of formulas is
P -complete as well.

6.3 Consequences of the Rationality Postulates

Our goal in this section is to prove that every consequence of the propositional
rationality postulates corresponds to a consequence of the Defeasible Datalog
rationality postulates. This provides us with formal evidence that they express
the same thing, and also provides us with a convenient tool for deriving new
properties that hold for all rational sets of Defeasible Datalog formulas. Proofs
for all lemmas and theorems are given in Appendix B.

The main technical ingredient we need is the construction of a translation
operator that takes propositional defeasible properties and converts them into
Defeasible Datalog properties. We recall from Section 3.2 that propositional
defeasible properties are described in terms of a set P̃ of propositional meta-
atoms.

Definition 28. A translation base is defined to be an injective map B : P̃ → A
which assigns a unique Defeasible Datalog meta-atom to each propositional meta-
atom.

Given a fixed translation base B, we can extend it uniquely to a mapping

B∗ : LP̃ → T as follows:

1. If p ∈ P̃ is atomic, then B∗(p) = B(p)(~x).

2. B∗(α ∧ β) = B∗(α) ∧B∗(β)

3. B∗(¬α) = ¬B∗(α)

In fact, we can go a little further extend B∗ to a translation operator TrB : I|∼ →
I;, between propositional inclusion formulas and Defeasible Datalog inclusion
schemas:

1. TrB(α |∼ β) = B∗(β) ;B∗(α)

2. TrB(α 6|∼ β) = B∗(β) 6;B∗(α)

3. TrB(|= α) = |= B∗(α)

This allows us to extend translation operators to defeasible properties in the
obvious way:
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Definition 29. Let TrB be a translation operator and P = I1, . . . , In =⇒
In+1 some propositional defeasible property. Then we define TrB(P ) to be the
Defeasible Datalog property TrB(I1), . . . ,TrB(In) =⇒ TrB(In+1).

A nice property of translation operators is that they are all essentially equiv-
alent, as different translation bases can be mapped onto one another by a per-
mutation of meta-atom symbols. Thus, while we won’t do this explicitly, we are
always free to choose a convenient translation base. This observation can be
formalised as follows:

Lemma 25. Let B,B′ be two translation bases. Then for every propositional
defeasible property P ∈ P|∼, TrB(P ) is a consequence of TrB′(P ) and vice-versa.

By translating between Defeasible Datalog properties and propositional prop-
erties, we are able to prove the following correspondence theorem:

Theorem 7. Suppose that D ⊆ P|∼ is a set of propositional defeasible proper-
ties, and that P ∈ P|∼ is a consequence of D. Then for any translation base B,
TrB(P ) is a consequence of TrB(D).

This has the following nice corollary:

Corollary 3. Let B be a translation base. Then if P ∈ P|∼ is a consequence of
the propositional rationality postulates, TrB(P ) is a consequence of the Defea-
sible Datalog rationality postulates.

These results give us a number of nice consequences of the Defeasible Datalog
rationality postulates for free, which we will make use of later when we discuss
semantics:

Lemma 26. R; has as consequence the following defeasible properties:

1. ⊥ 6;A(~x) =⇒ ¬A(~x) 6;A(~x)

2. ¬A(~x) 6;A(~x)∨B(~x), ¬B(~x) 6;B(~x)∨C(~x) =⇒ ¬A(~x) 6;A(~x)∨C(~x)

3. ⊥ 6;A(~x), ¬A(~x) ;A(~x) ∨B(~x) =⇒ ¬B(~x) 6;A(~x) ∨B(~x)

6.4 Beyond the Rationality Postulates

So far we have discussed analogues of the propositional rationality postulates for
Defeasible Datalog, and shown (by Corollary 3) that they faithfully reproduce
the same defeasible properties, which is strong evidence that they express the
same intuition. We have also introduced the notion of a rational set of Defeasible
Datalog formulas, with the intention of using such sets as a model of the outcome
of a defeasible reasoning process over Defeasible Datalog knowledge bases.
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On the other hand, a little thought makes it clear that the rationality pos-
tulates leave a lot to be desired in such a process! For instance, it is possible
to construct a rational set S ⊆ L that contains both fly(X) ;bird(X) and
¬fly(Y ) ;bird(Y ), and which contains neither ⊥ ;bird(X) nor ⊥ ;bird(Y ).
Such a set appears to state two contradictory things - that birds typically fly,
and that birds typically don’t fly. While we won’t go into details here, patholog-
ical rational sets like this can be constructed using the semantics in Lehmann
et al. [24], for instance.

The reason such pathologies exist is that we haven’t enforced any other con-
straints on rational sets, such as the requirement that rational sets should be
invariant under relabelling of variables. This can be formalised as a defeasible
property in the following way:

(Per) B(~x) ;A(~x) =⇒ B(σ~x) ;A(σ~x)

Intuitively, this states that whenever a reasoner sanctions a defeasible rule, it
should also sanction any defeasible rule that differs only by a permutation of
variable symbols (recall that “σ” is the symbol for variable permutations in
the formalism of Section 6.2). And indeed, we can prove the following lemma
directly from the definitions:

Lemma 27. Let S ⊆ L be a (Per)-complete set of formulas, and suppose
that B ;A ∈ S. Then for any permutation σ : var → var, we have that
σ(B) ;σ(A) ∈ S.

Note that proofs of all lemmas in this section can be found in Appendix C. In
a similar vein, consider a set S ⊆ L containing the following defeasible rule:

contentWith(X,Y ) ;enlightened(X)

This states something along the lines of “enlightened individuals are typically
content with anything”. Note that the classical Datalog version of this rule
(i.e. replacing “ ;” with “ →”) would be considered unsafe, as the variable
symbol Y is not bound by any predicate in the body of the rule. Thus, if the
extensional database contained any fact of the form enlightened(a), we would
be able to infer the (generally infinite) set of all possible ground instances of
contentWith(a, Y ). In other words, as a classical, unsafe rule, we would be
able to infer every possible instance contentWith(X, b) →enlightened(X) as a
consequence. Indeed, the reason unsafe rules are banned in classical Datalog is
precisely because they can lead to programs with an infinite set of consequences.

As discussed at the start of this chapter, we make no safety restrictions on
Defeasible Datalog rules. Nevertheless, it seems reasonable to keep the intuition
that unbound variables can be substituted for any other term. For a pithy
example, if a reasoner sanctions “enlightened individuals are typically content
with anything”, it also seems reasonable to conclude that the reasoner sanctions
“enlightened individuals are typically content with suffering”. This substitution
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principle can be formalised as the following defeasible property:

(Irr) B(~x, ~y) ;A(~x) =⇒ B(~x, ϕ~y) ;A(~x)

To understand why this formalisation is correct, recall that in the formalism of
Section 6.2 different meta-variable symbols ~x and ~y are interpreted by disjoint
sets of variables, and that “ϕ” is the symbol for general substitutions.

Lemma 28. Let S ⊆ L be a (Irr)-complete set of formulas, and suppose that
B ;A ∈ S, with varA and varB the free variables in A and B respectively.
Then for any substitution ϕ : var → var ∪ const that is constant on varA,
we have that ϕ(B) ;A ∈ S.

Let us also mention the following defeasible property, which is a slight weak-
ening of (Irr). Whereas (Irr) deals with arbitrary substitutions, the following
property only allows variable substitutions (recall that “π” is the symbol for
variable substitutions in the formalism of Section 6.2):

(WkIrr) B(~x, ~y) ;A(~x) =⇒ B(~x, π~y) ;A(~x)

Lemma 29. (WkIrr) is a consequence of (Irr).

We mention this weaker property as an aside mainly for theoretical reasons.
In Section 6.6 we prove a representation result showing that the rationality pos-
tulates, along with number of additional defeasible properties from the present
section, can be completely characterised by a semantic structure based on the
preferential semantics of Kraus et al. [22]. Unfortunately, we were unable to
characterise (Irr), and had to settle for the weaker property (WkIrr) instead.
Fixing this deficiency would be an interesting avenue for future research.

The last property to do with substitutions we discuss involves the concept of
universal substitution. In classical Datalog, a rule such as animal(X) →dog(X)
always has as a consequence any groundings of the rule, such as:

animal(Fido) →dog(Fido)

animal(Foobar) →dog(Foobar)

. . .

This makes sense, as classical Datalog rules are implicitly universally quantified.
Thus a natural question to ask is whether a similar principle should hold for
defeasible rules. Or in other words, is the following defeasible property reason-
able?

(UI) B(~x) ;A(~x) =⇒ B(ϕ~x) ;A(ϕ~x)

We might also wish to consider a slightly weaker version of the principle, in
which we permit arbitrary variable substitutions of defeasible rules:

(WkUI) B(~x) ;A(~x) =⇒ B(π~x) ;A(π~x)
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Note that both of these “universal instantiation” properties are stronger versions
of the (Per) property, which asserts the same thing but for permutations of
variables:

Lemma 30. (Per) is a consequence of (WkUI), which is in turn a conse-
quence of (UI).

Unlike the (Per) property, however, we feel that neither (UI) nor (WkUI)
is a principle that should hold generally for a defeasible reasoning process. To
explain why, we turn to an example originally due to Delgrande [14]. Consider
the following set of Defeasible Datalog formulas:

S = { feeds(X,Y ) ;keeper(X) ∧ elephant(Y ),

¬feeds(Fred, Y ) ;keeper(Fred) ∧ elephant(Y ),

feeds(Fred,Clyde) ;keeper(Fred) ∧ elephant(Clyde) }

Intuitively, this states that keepers typically feed elephants, that the keeper Fred
typically doesn’t feed elephants, and that the keeper Fred typically does feed
the elephant Clyde. Note that there doesn’t appear to be anything inherently
contradictory in these statements. After all, Fred might simply have a soft spot
for Clyde, even though his daily duties involve feeding the penguins rather than
the elephants.

Now suppose we extend S to a rational, (UI)-complete set of formulas S ′,
which would represent the outcome of some hypothetical defeasible reasoning
process over S. Then by (UI)-completeness we infer that S ′ must contain every
grounding of every defeasible rule in S. In particular, S ′ contains both of the
following defeasible rules:

feeds(Fred,Clyde) ;keeper(Fred) ∧ elephant(Clyde)

¬feeds(Fred,Clyde) ;keeper(Fred) ∧ elephant(Clyde)

The first of these rules comes directly from S, and the other from applying (UI)
to the second rule in S under the substitution Y 7→ Clyde. But these two rules
are mutually contradictory! Since S ′ is assumed to be rational, an application
of (And) and (Rw) allows us to conclude that S ′ must contain the following
rule:

⊥ ;keeper(Fred) ∧ elephant(Clyde)

This states that, if Fred is a keeper and Clyde is an elephant, then they typi-
cally don’t exist. This is an unintuitive conclusion to draw from S, to say the
least! Given that the rationality postulates are widely accepted in the literature,
it seems that the only logical thing to do here is to reject (UI) as a candidate
property. How about the somewhat weaker property (WkUI), then? Unfortu-
nately, this also fails for similar reasons. Consider the following set of Defeasible
Datalog formulas:

S = { eats(X,Y ) ;predator(X) ∧ prey(Y ),

¬eats(X,X) ;predator(X) ∧ prey(X) }
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This states that predators typically eat prey, and that things which are both
predators and prey typically don’t eat themselves. While somewhat artificial,
this example also doesn’t seem to contain an inherent contradiction. However, if
we follow the lead of the previous example and extend S to a rational, (WkUI)-
complete set of formulas S ′, we find that S ′ necessarily contains the following
formula:

⊥ ;predator(X) ∧ prey(X)

In other words, there typically doesn’t exist anything that is both a predator
and prey. This again seems like an unintuitive conclusion to draw from S, and
thus we are forced to reject (WkUI) as a candidate property as well.

Let us now turn to a different class of defeasible properties, namely those that
relate to the interplay between classical and defeasible formulas. First of all,
consider the standard interpretation of a classical Datalog rule. It states that
if an instance of the body holds, then the corresponding instance of the head
always holds as well. Thus it certainly usually holds, which makes the following
property seem quite reasonable:

(Sup) B(~x) →A(~x) =⇒ B(~x) ;A(~x)

This property is commonly called supraclassicality in the literature, and because
we separate rules and facts in Datalog we will also consider the following fact-
based version of (Sup):

(SupF) A(~x) =⇒ ⊥ ;¬A(~x)

In the case of propositional logic, a converse to the (SupF) property is valid.
We recall Lemma 7, which states that the propositional formula “α” is in fact
equivalent to the defeasible propositional formula “¬α |∼ ⊥”. We might imagine
that a converse also holds for Defeasible Datalog, which we could formalise as
follows:

(Neg) ⊥ ;¬A(~x) =⇒ A(~x)

This property is related to the following principle, where a “typical instance of
A(~x)” is anything satisfying both A(~x) and all of its defeasible consequences.
For instance, a “typical instance of bird(X)” is anything that is a bird, can fly,
builds nests etc:

If it’s possible that some instance of A(~x) exists, then
it’s possible that a typical instance of A(~x) exists.

To see why these things are related, suppose that a reasoner sanctions both
the defeasible rule “⊥ ;¬A(~x)” and the principle above. This rule essentially
states that there are no typical instances of ¬A(~x), as such an instance would
have to satisfy the falsehood ⊥. But then, by the above principle, we conclude
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that there can be no instances of ¬A(~x) whatsoever. In other words, the reasoner
satisfies the (Neg) property!

Whether or not this principle should be adopted is a matter of how one wants
to interpret the defeasible implication symbol “ ;”. For instance, consider the
following two possible interpretations of the defeasible rule “B(~x) ;A(~x)”:

1. “the most typical instances of A(~x) all satisfy B(~x)”

2. “an instance of A(~x) typically satisfies B(~x)”

The first case is similar to the intuition underlying defeasible Alc statements,
and in this case it does seem reasonable to adopt the principle, as if there exists
some instance of A(~x) then there has to be a most typical such instance. And
indeed, a version of (Neg) does hold in defeasible Alc. In the second case, on
the other hand, it’s possible that every instance of A(~x) is typical in some ways
and atypical in others, and thus the principle seems less justified.

Somewhere in between these two intuitions lies the following weaker version of
the principle:

(WkNeg) ∀ϕ.⊥ ;¬A(ϕ~x) =⇒ A(~x)

Lemma 31. (WkNeg) is a consequence of (Neg).

The (WkNeg) principle captures the idea that simply knowing that every
instance of a concept is atypical is not enough to conclude that the concept is
inconsistent. One has to know that every instance of a concept is atypical with
respect to every specialisation of the concept too. For instance, if one knows
that there are no typical birds, no typical red birds, no typical birds with broken
wings, and so forth, only then can one conclude that there are no birds at all.
This is a significant weakening of (Neg), and feels much more reasonable to us.

Finally, the last properties we will explicitly discuss are those relating only to
classical rules. A very reasonable requirement of a defeasible reasoning process
is that it respects all valid classical inferences, wherever it can make them. Or,
to put it differently, if the reasoner believes that a particular inference is logically
necessary, then the reasoner should make that inference!

This is essentially saying that reasoners should sanction classical Modus Po-
nens. Because of the nature of Datalog syntax, in which rules are differentiated
from facts, we also have to insist on properties that identify classical rules with
their equivalent factual forms:

(Mp) A(ϕ~x), |= B(~x) →A(~x) =⇒ B(ϕ~x)

(Eq) B(~x) →A(~x) =⇒ B(~x) ∨ ¬A(~x)

(EqF) B(~x) ∨ ¬A(~x) =⇒ B(~x) →A(~x)
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Lemma 32. Let S ⊆ L be a set of Defeasible Datalog formulas, and let SC
denote its classical subset. Then S is complete for (Mp), (Eq) and (EqF) iff
SC is deductively closed.

This concludes our discussion of defeasible properties in generality. We have
certainly not covered such properties exhaustively, and in many places our anal-
ysis is no doubt incomplete. What we have so far, however, is enough for us to
start looking at what Defeasible Datalog formulas actually mean. In the next
few sections we will look at two possibilities for interpreting Defeasible Datalog
formulas, and discuss their relative benefits and shortcomings.

6.5 Preferential Semantics

We start our discussion by presenting a semantics that directly generalises the
ranked interpretations of Chapters 3. The basic idea is to take the propositional
intuition for defeasible formulas in terms of a preference relation on possible
worlds.

Recall from Section 6.1 that a Herbrand interpretation is a subset H ⊆ B of
the Herbrand base, defined over a fixed first-order language, and that we can
interpret the classical fragment of Defeasible Datalog using such interpretations.
If we denote the set of Herbrand interpretations by H, we can define an analogue
of a propositional ranked interpretation (see Definition 7) as follows:

Definition 30. A ranked interpretation R is a function R : H→ N∞ satisfying
the following convexity condition:

For all H ∈ H such that R(H) <∞, and all i ∈ N such that
0 ≤ i < R(H), there exists some H′ ∈ H such that R(H′) = i.

A ranked interpretation is thus nothing more than a particular kind of prefer-
ence ranking on Herbrand interpretations, with lower ranks denoting interpreta-
tions that the reasoner considers more typical, and infinite ranks denoting inter-
pretations that the reasoner considers impossible. A classical formula, which is
a rule or fact that is supposed to hold unconditionally, would be sanctioned by
the reasoner if it holds in all the possible interpretations. So far, this is identical
to the propositional case.

What about defeasible formulas? The approach we consider is to interpret a
defeasible formula such as B( ~X) ;A( ~X) as follows:

“In the most typical worlds containing A-instances,
all the A-instances are B-instances.”

This is a direct translation of the way propositional defeasible formulas are
interpreted, and we formalise it in the following way. Let HR = {H ∈ H :
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R(H) < ∞} denote the set of possible interpretations, and for any compound

A( ~X) ∈ Lc, let Â = {H ∈ HR : H 
 A(ϕ( ~X)) for some ϕ : var → const}
denote the set of possible interpretations that satisfy some ground instance of
A( ~X). Then satisfaction for the ranked interpretation R, denoted as usual with
the symbol “
”, is defined as follows:

1. For a fact A(~c) ∈ Lf , R 
 A(~c) iff H 
 A(~c) for every H ∈ HR.

2. For a rule B( ~X) →A( ~X), R 
 B( ~X) →A( ~X) iff H 
 B( ~X) →A( ~X) for
every H ∈ HR.

3. For a defeasible rule B( ~X) ;A( ~X), R 
 B( ~X) ;A( ~X) iff H 

B( ~X) →A( ~X) for every H ∈ minR Â.

Example 38. Consider a fixed language Σ, where we have pred = {bird(·),
penguin(·), fly(·)} and const = {Roxy, Tom}. Let R be the following ranked
interpretation, where we use the tabular notation of Chapter 3:

2 H2 = { bird(Roxy), penguin(Roxy), fly(Roxy) }
1 H1 = { bird(Tom), penguin(Tom), bird(Roxy), fly(Roxy) }
0 H0 = { bird(Roxy), fly(Roxy) }

In this example, b̂ird = {H2,H1,H0}, and hence minR b̂ird = {H0}. Since
H0 
 fly(X) →bird(X), we conclude from the definitions above that R 

fly(X) ;bird(X). Intuitively, this ranked interpretation sanctions the defea-
sible assertion “birds typically fly”.

Since bird(Roxy) is satisfied by every Herbrand interpretation in HR = {H2,H1,H0},
we can also conclude that R 
 bird(Roxy), for instance.

Given a ranked interpretation R, we denote the set of Defeasible Datalog
formulas it satisfies by SR ⊆ L. One of the attractive features of this semantics,
which we will refer to as the preferential semantics for Defeasible Datalog, is
that these sets are always rational :

Lemma 33. Let R : H → N∞ be a ranked interpretation. Then SR is R;-
complete.

These sets are also complete for a number of the other properties we considered
in the previous section:

Lemma 34. Let R : H→ N∞ be a ranked interpretation. Then SR is complete
for (Per), (Irr), (Neg), (Sup), (SupF), (Mp), (Eq) and (EqF).

In fact, the only properties from the previous section that don’t hold for this
semantics are the ones that we explicitly ruled out as being undesirable, namely
the properties (UI) and (WkUI) of universal instantiation. In short, as far as
these kinds of basic properties go, preferential semantics is quite promising.
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A slightly less obvious property of preferential semantics is the following, which
we mention because it appears to be a common property of any preferential-
style semantics for Defeasible Datalog, in which formulas are interpreted by
minimising the rank of Herbrand interpretations:

Lemma 35. Let R : H→ N∞ be a ranked interpretation. Then SR is complete
for the following defeasible property:

(Pref) ⊥ 6;A(~x) =⇒ ¬A(~x) 6;A(~x) ∨A(π~x)

Under the reading we gave for defeasible formulas, this is essentially saying that
if a world contains either an instance of A(~x), or an instance of some special
case A(π~x), then that world cannot typically fail to contain an instance of A(~x).
This makes some sense, as a special case of a compound is always an instance
of that compound.

Aside from properties, another axis on which to judge a semantics is its rep-
resentational capabilities. In other words, what kinds of knowledge bases can
preferential semantics model or not model, and why? One example of what
we mean by this is the idea that defeasible reasoning should always allow for
exceptions to general rules, as this is the entire point of reasoning defeasibly in
the first place! For instance, we would expect a defeasible reasoner to find the
following knowledge base consistent:

Ktweety =
{

bird(Tweety),¬fly(Tweety), fly(X) ;bird(X)
}

This states that Tweety is a bird that cannot fly, as well as the assertion that
birds typically fly. Intuitively, there is no contradiction here, as we are simply
stating that Tweety is an atypical bird. Hence any semantics worth pursuing for
Defeasible Datalog should at minimum be able to model Ktweety, a criterion we
will refer to as the “Tweety test”. Unfortunately, it turns out that preferential
semantics cannot handle this test-case:

Lemma 36. There is no non-trivial ranked interpretation R over any first-order
language satisfying Ktweety.

The reason for this provides a hint as to how we might go about circumventing
this kind of representational problem. In preferential semantics, a defeasible rule
is interpreted as a constraint on the most typical worlds satisfying an instance
of the rule body. Something like fly(X) ; bird(X), for instance, is interpreted
as saying that all birds fly in the most typical worlds containing birds. This
leaves no room for exceptions in these worlds!

In the next section, we describe a modification of preferential semantics that
patches this problem, by enriching Herbrand interpretations with additional
structure that distinguishes typical instances of a predicate from atypical in-
stances.
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6.6 Enriched Preferential Semantics

To begin with, let discuss something that was mentioned in Section 6.1. In
some knowledge bases, such as the Ktweety given above, it is clear that the
individuals mentioned in the knowledge base are insufficient to produce a model
of that knowledge base. For instance, the only individual mentioned in Ktweety

is Tweety, whom we know to be an atypical bird. Thus, in order for the formula
fly(X) ;bird(X) to hold, any model of Ktweety must contain other individuals.

To put it differently, if Tweety is the only bird in the world, and Tweety doesn’t
fly, on what grounds can we claim that birds typically fly?

This is essentially the closed-world assumption (CWA) versus the open-world
assumption (OWA). As we discussed in Chapter 5, Datalog traditionally em-
braces the CWA, and takes the position that the only individuals assumed to
exist are those explicitly mentioned in a given Datalog program. Here, we break
from that tradition and choose to model the OWA instead, giving out seman-
tics a more Description Logic flavour. From a technical perspective, this sorts
out the problem we have just mentioned about incomplete knowledge bases.
We also note that one generally only wants to reason defeasibly when one has
incomplete knowledge, as otherwise classical reasoning is a more suitable tool.

Let Σ = 〈pred,const,var〉 be a fixed first order language. Then we recall
from Section 6.1 that U denotes the Herbrand universe (the set of constants
in the language), and B the Herbrand base (the set of ground atoms over the
Herbrand universe). Our first step is to model the OWA, as mentioned above,
by enriching the set of constants in the language with an additional set E of
enrichment constants, which we assume to be disjoint from U = const. This
gives rise to an enriched Herbrand universe Ũ = U ∪ E, containing both the
original universe as well as the enrichment constants. Similarly, we denote by
B̃ the enriched Herbrand base, containing every ground atom over Ũ.

As mentioned in the last chapter, our second step is to enrich Herbrand in-
terpretations with additional structure that lets us distinguish the typical from
the atypical :

Definition 31. An enriched Herbrand interpretation is a pair E = 〈H̃E , TE〉,
where H̃E ⊆ B̃ is a Herbrand interpretation over the enriched universe and
TE ⊆ Ũ is a set of typical constants.

The intuition here is that H̃E tells us what facts hold in the interpretation,
and TE tells us which of these facts are typical for the interpretation, and which
are unusual or atypical in some way. For instance, if Tweety ∈ TE and H̃E 

bird(Tweety), then we would consider Tweety to be a typical bird. We denote
the set of all enriched Herbrand interpretations by H̃.

For clarity, we denote classical satisfaction by E 
 A or E 
 B →A whenever
H̃E 
 A or H̃E 
 B →A for a fact or (non-defeasible) rule respectively. For
a given rule B →A ∈ L→, we also define a notion of typical satisfaction as
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follows:

1. E ||∼ B →A iff E 
 ϕ(B) →ϕ(A) for every substitution ϕ : var→ TE .

We say that an enriched Herbrand interpretation E typically satisfies the rule
B →A whenever E ||∼ B →A holds. This means that the rule is valid when
restricted to the subset of typical constants in the interpretation, but not neces-
sarily across the entire domain. In other words, E 
 B →A implies E ||∼ B →A,
but the converse is not necessarily true.

Example 39. Consider a first-order language with pred = {worker(·), boss(·),
worksFor(·, ·)} and const = {Toby,Todd}, and let E = {E1,E2, . . . } be our set
of enrichment constants. An example of an enriched Herbrand interpretation is
E = 〈H̃E , TE〉, where:

1. H̃E = {worker(Toby), boss(E1), boss(Todd),worksFor(Toby,E1)}

2. TE = {Toby,E1}

Then E 6
 worksFor(X,Y ) →worker(X)∧boss(Y ), as Toby is a worker and Todd
is a boss, yet Toby does not work for Todd. Nevertheless, E ||∼ worksFor(X,Y ) →worker(X)∧
boss(Y ) holds, as the only typical constants satisfying worker(X) and boss(Y )
are Toby and E1, and worksFor(Toby,E1) holds.

In order to interpret defeasible formulas, we follow the same route as prefer-
ential semantics and define an analogue of a propositional ranked interpretation
(see Definition 7) as follows:

Definition 32. An enriched ranked interpretation R̃ is a function R̃ : H̃ →
Ω∞, where Ω∞ = Ω∪{∞} for some totally ordered set Ω, satisfying the following
convexity condition:

For all E ∈ H̃ such that R̃(E) <∞, and all i ∈ N such that
0 ≤ i < R̃(E), there exists some E ′ ∈ H̃ such that R̃(E ′) = i.

Note that we have slightly relaxed the propositional definition and allowed for
an arbitrary totally ordered set Ω in the domain, rather than fixing it to be the
naturals N. This gives us a bit more flexibility, and it also solves a technical
problem that enrichment introduces. Generally speaking, the knowledge bases
we want to model are finite. In propositional logic, there are only a finite number
of possible valuations over a finite language, and thus N always suffices to rank
them. Here, even if we have a finite knowledge base, we may have an infinite
set of enrichment constants E, and thus there are in general infinitely many
possible enriched Herbrand interpretations. This means that me may need a
slightly larger total order to rank them properly.

Classical satisfation for an enriched Herbrand interpretation E is defined ex-
actly as for their non-enriched counterparts. Denoting the set of consistent

worlds with respect to R by H̃R̃ = {E ∈ H̃ : R̃(E) <∞}, we have:
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1. For a fact A ∈ Lf , R̃ 
 A iff E 
 A for every E ∈ H̃R̃.

2. For a rule B →A ∈ L→, R̃ 
 B →A iff E 
 B →A for every E ∈ H̃R̃.

Satisfaction for defeasible formulas, on the other hand, is quite different. For

any compound A ∈ Lc, let H̃R̃(A) = {E ∈ H̃R̃ : E 
 ϕ(A) for some ϕ : var →
TE} denote the set of consistent worlds satsfying some typical instance of A.
Then we have:

1. For a defeasible rule B ;A ∈ L;, R̃ 
 B ;A iff E ||∼ B →A for every

E ∈ minR̃ H̃R̃(A). Note the use of typical satisfation.

The intuitive reading of this is to interpret a defeasible rule B ;A as follows:

“In the most typical worlds containing A-instances,
all the typical A-instances are B-instances.”

One way to look at this is that an enriched ranked interpretation is making
use of a double ranking, as can be seen from the two (distinct) uses of the
word typical in the reading. The first ranking is simply that of the enriched
Herbrand interpretations, each of which gets assigned a rank R̃(E) ∈ N∞. The
second ranking is within each enriched Herbrand interpretation E , in which
constants are partitioned into typical (TE) and atypical (Ũ\TE). While we stick
with the simpler option in this thesis, an interesting avenue for future research
would be to extend this two-layer partition into a proper ranking function over
Ũ, at which point the semantics starts to resemble that of Friedman et al.[17]
for first-order logic.

Example 40. Consider a first-order language with pred = {bird(·), fly(·)} and
const = {Tweety}, and let E = {E1, E2, . . . } be the usual set of enrichment
constants. Then consider the enriched Herbrand interpretation E = 〈H̃E , TE〉,
where:

1. H̃E = {bird(Tweety), bird(E1), fly(E1)}

2. TE = {E1}

Now consider the following enriched ranked interpretation R̃, in which there is
only a single possible world:

0 E

Then R̃ 
 bird(Tweety) and R̃ 
 ¬fly(Tweety), and since minR̃ H̃R̃(bird(X)) =

{E} and E ||∼ fly(X) →bird(X), we have that R̃ 
 fly(X) ;bird(X) as well.
Though this example is near-trivial, it illustrates the fact that enriched Her-
brand interpretations can model the “ Tweety test” knowledge base from the last
section.
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Our first step in the analysis of enriched preferential semantics is to work out
which defeasible properties it enjoys. Unsurprisingly, the answer turns out to
be similar to last section’s preferential semantics. Letting SR̃ denote the set of

Defeasible Datalog formulas satisfies by R̃, we have:

Theorem 8. Let R̃ : H̃ → Ω∞ be an enriched ranked interpretation. Then
SR̃ is R;-complete, and also complete for (Pref), (Sup), (SupF), (Per),
(WkIrr), (WkNeg), (Mp), (Eq) and (EqF).

We will refer to this collection of defeasible properties as the enriched rational-
ity postulates, and denote it by R̃;. The enriched postulates are almost identical
to the properties satisfied by preferential semantics, the difference being that
(Irr) and (Neg) have been substituted for their weak counterparts. As dis-
cussed in Section 6.4, the (WkNeg) property is probably more desirable than
(Neg), so this is a point in favour of enriched preferential semantics. On the
other hand, having to accept the weaker (WkIrr) property is a point against
it, and finding ways to fix this would be another interesting avenue for future
research.

Something that sets enriched preferential semantics apart quite strongly, how-
ever, is that we have been able to obtain a converse to Theorem 8. This allows
us to characterise R̃;-complete sets of formulas as precisely those sets satisfied
by enriched ranked interpretations:

Theorem 9. Let S ⊆ L be a R̃;-complete set of formulas. Then there exists
some enriched ranked interpretation R̃ such that S = SR̃.

Together, Theorems 8 and 9 provide a Defeasible Datalog analogue of the char-
acterisation of preferential and rational sets in propositional defeasible reasoning
(see Lemmas 8 and 9 in Chapter 3).

6.7 Rank Entailment and Minimal Model En-
tailment

In this section we define and discuss two basic kinds of entailment relations for
Defeasible Datalog, making use of enriched preferential semantics. These are
rank entailment, which is based on propositional rank entailment, and minimal-
model entailment, which is based on propositional Rational Closure. As we will
see, both of these have some shortcomings in a Defeasible Datalog context.

Rank entailment makes use of the Tarskian account of logical consequence [33],
in which a formula follows from a knowledge base iff it true in all models of that
knowledge base:

Definition 33. A knowledge base K ⊆ L rank entails a formula α ∈ L, denoted
K |≈R α, iff R̃ 
 α for every enriched ranked interpretation R̃ : H̃ → Ω∞

satisfying K.
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Rank entailment is thus extremely conservative, as it considers even those mod-
els that are intuitively quite unlikely (they may contain worlds that are ranked
much higher than they need to be, for instance). As discussed in Chapters 3
and 4, however, rank entailment enjoys a number of meta-properties that make
it useful as a lower bound on what we would expect of an entailment relation:

Lemma 37. Rank entailment satisfies the following three properties:

(Incl) α ∈ K implies K |≈R α

(Cumu) K |≈R α and K ∪ {α} |≈R β implies K |≈R β

(Mono) K |≈R α implies K ∪ {β} |≈R α

Another nice property of rank entailment is that, much like the underlying
enriched ranked interpretations, it satisfies a number of the defeasible properties
we mentioned in the last section:

Lemma 38. Let K ⊆ L be a knowledge base, and consider the set S = {α ∈ L :
K |≈R α}. Then S is complete for every enriched postulate R̃; except (Rm).

Let us now look at an example of rank entailment in action, as a benchmark
we can compare other entailment relations to:

Example 41. Consider a first-order language with pred = {worker(·), boss(·),
responsible(·), hasSuperior(·, ·)} and const = {Guy,Tommie,Giovanni}, and let
E = {E1, E2, . . . } be the usual set of enrichment constants. Then let K be the
knowledge base from Example 29:

worker(X) →boss(X)

responsible(X) ;boss(X)

boss(Y ) ;worker(X) ∧ hasSuperior(X,Y )

An application of (Incl) and (Rm) (see Lemmas 37 and 38) shows that K |
≈R worker(Y ) ;worker(X)∧ hasSuperior(X,Y ), and so rank entailment allows
us to infer at least some non-trivial consequences.

On the other hand, since worker’s superiors are typically bosses, and bosses are
typically responsible, a consequence we might expect intuitively is that worker’s
superiors are typically responsible. After all, there’s nothing in the knowledge
base to suggest that worker’s bosses are atypical in any way. Unfortunately,
rank entailment does not sanction this consequence, a fact we will now prove.

Let E1 = 〈H̃E1 , {Guy,Tommie}〉 and E2 = 〈H̃E2 , {Giovanni}〉, where:

1. H̃E1 = {worker(Guy), boss(Tommie),worker(Tommie), hasSuperior(Guy,Tommie)}

2. H̃E2 = {boss(Giovanni),worker(Giovanni), responsible(Giovanni)}

Now consider the enriched ranked interpretation R̃ defined as follows:
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1 E1
0 E0

Then R̃ 
 K, and thus R̃ is a model that must be taken into consideration in
rank entailment. However, R̃ 6
 responsible(Y ) ;worker(X)∧hasSuperior(X,Y ),
and thus that conclusion is not rank entailed by K either.

An entailment relation that correctly handles Example 41 must necessarily be
non-monotonic. If we were to later learn that worker’s superiors are always atyp-
ical in some way, for instance, then we would want to retract the conclusion that
they are typically responsible. And in fact, a non-monotonic entailment relation
that has precisely this behaviour for the propositional case is the minimal-model
entailment relation of Lemma 14, Chapter 3.

The idea is to construct an enriched ranked model of a given knowledge base in
which the ranks of each enriched Herbrand interpretation are as low as possible,
while still satisfying every formula in the knowledge base. Surprisingly, for
consistent knowledge bases (i.e. those with at least one enriched ranked model)
there is always a unique minimal model:

Lemma 39. Let K ⊆ L be a consistent knowledge base, and define the minimal
model of K to be the following enriched ranked interpretation R̃K : H̃→ N∞:

R̃K(E) = min
{
R̃(E) : R̃ 
 K

}
Then this minimal model always satisfies K.

The fact that this produces a model of K may seem surprising in light of
the discussion surrounding Lemma 21 in Chapter 4. In the Alc case, adding
assertional statements to a knowledge base can result in it having multiple non-
equivalent minimal models. Given that Defeasible Datalog allows for ground
facts, which are analogous to assertional statements, why don’t we see unique-
ness breaking down here as well?

The answer is that, while Defeasible Datalog is more expressive than Alc
in some ways, it is actually less expressive in others. Defeasible Datalog has
no equivalent to the existential restrictions of Alc, and it is these that cause
the uniqueness failures. Exploring what happens when Defeasible Datalog is
extended with existential quantifiers is an important task for future research.

In any case, we can use these minimal models to define a non-monotonic en-
tailment relation that correctly handles Example 41:

Definition 34. A knowledge base K ⊆ L minimal-model entails a formula
α ∈ L, denoted K |≈M α, iff either K is inconsistent or R̃K 
 α.

Example 42. Let K be the knowledge base from example 41, over the same
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first-order language and set of enrichment constants:

worker(X) →boss(X)

responsible(X) ;boss(X)

boss(Y ) ;worker(X) ∧ hasSuperior(X,Y )

Let A = worker(X)∧hasSuperior(X,Y ) and B = responsible(Y ). We claim that,
unlike rank entailment, K |≈M B ;A. First, we show that there is at least one

E ∈ H̃R̃K(A) with R̃K(E) = 0, and hence R̃(E) = 0 for all E ∈ minR̃K H̃
R̃K(A).

Let R̃ = 〈{H̃E , {E1}〉, where:

H̃E = {worker(E1), boss(E1), responsible(E1), hasSuperior(E1, E1)}

Then consider the enriched ranked interpretation R̃ : H̃→ Ω∞ where R̃(E) = 0
and everything else gets rank ∞. Then since R̃ 
 K, we conclude from the

definitions that R̃K(E) = 0. Since R̃ ∈ H̃R̃(A), we also conclude that E ∈
H̃R̃K(A).

Finally, consider any E ∈ H̃R̃K(A) and substitution ϕ : var → TE such that
E 
 ϕ(A). As we have already shown, R̃K(E) = 0 and thus E typically satisfies
every rule of K. In particular, we conclude that E 
 ϕ(boss(Y )) from the third
rule of K, and hence E 
 ϕ(responsible(Y )) from the second rule. But then this
implies that E ||∼ B ;A, which in turn implies that R̃K 
 B ;A as required.

We note that minimal-model entailment, unlike rank entailment, is defeasible
on both the object-level and the meta-level. Another nice property of minimal-
model entailment, which follows immediately from the fact that it is defined in
terms of a single enriched ranked interpretation, is that it satisfies all of the
enriched rationality postulates:

Lemma 40. Let K ⊆ L be a knowledge base, and consider the set S = {α ∈ L :
K |≈M α}. Then S is complete for R̃;.

The way we have defined it, minimal-model entailment for Defeasible Datalog
can be viewed as a strict generalisation of propositional rational closure (see
Definition 10) and Alc rational closure (see Definitions 20 and 24).

This suggest that minimal-model entailment for Defeasible Datalog should have
similar strengths and weaknesses to rational closure for propositional logic or
Alc. An example of a shared strength, illustrated by Example 42, is that
minimal-model entailment can “propagate” defeasible information across rule
boundaries in a sensible way (i.e. whenever it doesn’t contradict other rules
entailed by the knowledge base). On the other hand, a weakness we might expect
it to share is that rational closure behaves somewhat poorly in the presence of
assertional statements in defeasible Alc.

One aspect of this is that rational closure for Alc doesn’t have the Single Model
Property, as knowledge bases can in general have multiple minimal models (see
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Example 26, for instance). As we discussed earlier, minimal-model entailment
for Defeasible Datalog evades this problem due to its lack of existential quan-
tification. Nevertheless, there is a sense in which minimal-model entailment
handles ground facts poorly, which we illustrate in the following example:

Example 43. Consider a first-order language with pred = {bird(·), fly(·)} and
const = {Fred}, and let E = {E1} be the only enrichment constant. We take
E to be finite like this for reasons we will go into in the next section. Now let
K be the following knowledge base:

bird(Fred)

fly(X) ;bird(X)

Should K entail fly(Fred) ;>? From a Tarskian point of view, the answer
is no, because there are non-trivial models of K that satisfy ¬fly(Fred). In the
spirit of defeasible reasoning, on the other hand, the answer is probably yes.
Since there is no explicit reason to suspect that Fred is an atypical bird, it
seems reasonable to assume that Fred should satisfy the properties of a typical
one, at least until we obtain evidence to the contrary.

However, K 6|≈M fly(Fred) ;>. In other words, minimal-model entailment
does not sanction this conclusion. To see this, consider the enriched Herbrand
interpretation E = 〈H̃E , {E1}〉, where:

H̃E = {bird(Fred), bird(E1), fly(E1)}

Now consider the enriched ranked interpretation R̃, where R̃(E) = 0 and ev-
erything else has rank ∞. Then R̃ 
 K, which implies in the minimal model of
K that R̃K(E) = 0. But this implies directly that R̃K 6
 fly(Fred) ;>.

6.8 Refinement for Ground Fact Inference

In this section we introduce refinement, which is a procedure for taking an
enriched ranked interpretation and producing an improved version of it that
satisfies the following two properties:

1. The improved version satisfies all of the formulas satisfies by the original.

2. The improved version propagates defeasible rules to ground facts in a
consistent, non-monotonic fashion.

Combined with minimal-model entailment, refinement will allow us to solve
the problem of ground fact entailment that was explored in Example 43. And
in fact, refinement can be applied to any entailment relation based on enriched
ranked interpretations in order to improve the sets of consequences it sanctions.

To understand how it works, let’s unravel the example a little bit and try to
understand what’s going wrong in the minimal model:
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Example 44. Consider the knowledge base K from Example 43. Since R̃K 6

fly(Fred) ;>, there must be some enriched Herbrand interpretations E ∈
minR̃K H̃

R̃K(>) such that E 6
 fly(Fred).

E1 = 〈H̃1, ∅〉, H̃1 = {}
E2 = 〈H̃2, {E1}〉, H̃2 = {}
E3 = 〈H̃3, {E1,Fred}〉, H̃3 = {}

Similar reasoning to Example 43 shows that {E1, E2, E3} ⊆ minR̃K H̃
R̃K(>),

and note that E1 6
 fly(Fred) and E2 6
 fly(Fred). Interpretations like these are
essentially the reason that K 6|≈M fly(Fred) ;>.

However, notice that TE1 ⊂ TE2 ⊂ TE3 . E1 has fewer typical constants than
E2, which in turn has fewer typical constants than E3. Since E3 
 fly(Fred),
this suggests that the Herbrand interpretations we really want to be considering
minimal are those with the greatest number of typical constants.

Refinement does exactly this - given an enriched ranked interpretation R̃, re-
finement takes each rank-layer of enriched Herbrand interpretations and splits
them into multiple layers, based on the size of their typicality sets.

Defining a refinement operator for arbitrary enriched ranked interpretations is
no doubt possible, but requires some careful mathematics to deal with infinite
first-order languages. To simplify matters, we will consider only the case of
logically finite languages, i.e. those with finite sets of predicates, constants and
enrichment constants. The importance of logical finiteness is that there are only
finitely many enriched Herbrand interpretations over a logically finite language.
This implies that we need only consider enriched ranked interpretations R̃ :
H̃→ Ω∞ where Ω = N, of which there are only finitely many.

Definition 35. Let R̃ : H̃ → N∞ be an enriched ranked interpretation over a
logically finite language. Then we define ref(R̃) : H̃ → (N × N)∞, called the
refinement of R̃, via the following induction:

1. E 7→ (i, 0) iff R̃(E) = i and there’s no E ′ ∈ H̃ s.t. R̃(E ′) = i and TE ⊂ TE′ .

2. E 7→ (i, j) iff R̃(E) = i and for all E ′ ∈ H̃ with R̃(E ′) = i, either E ′ 7→ (i, k)
for some k < j or TE 6⊂ TE′ .

Strictly speaking, the refinement of an enriched ranked interpretation R̃ isn’t
another ranked interpretation, as the range of ref(R̃) is (N × N)∞ rather than
the N∞ that Definition 32 requires. Because of logical finiteness, however, we
can always rearrange ref(R̃) into a true ranked interpretation.

For this reason, we will abuse the definition a bit and treat ref(R̃) as an
enriched ranked interpretation. Definition 35 is quite involved, so let’s look at
an example to clarify things:



CHAPTER 6. DEFEASIBLE DATALOG 88

Example 45. Consider a finitary first-order language with pred = {elephant(·),
keeper(·), likes(·, ·)}, const = {Fred,Clive} and E = {E1}. Then we can con-
struct some enriched Herbrand interpretations as follows:

E1 = 〈H̃1, {Fred}〉, H̃1 = {keeper(Fred), elephant(Clive)}
E2 = 〈H̃2, {Fred,Clive}〉, H̃2 = {keeper(Fred), elephant(Clive), likes(Fred,Clive)}
E3 = 〈H̃3, {E1}〉, H̃3 = {elephant(E1)}
E4 = 〈H̃4, {Fred}〉, H̃4 = {keeper(E1), likes(E1, , )keeper(Clive)}
E5 = 〈H̃5, {Clive}〉, H̃5 = {keeper(Clive), elephant(Clive)}
E6 = 〈H̃6, ∅〉, H̃6 = {likes(E1,Fred), elephant(Fred)}

These can be arranged into the following enriched ranked interpretation R̃:

2 E5, E6
1 E3, E4
0 E1, E2

Note that TE1 ⊂ TE2 , TE6 ⊂ TE5 and that TE3 and TE4 are incomparable. Taking
the refinement according to Definition 35, ref(R̃) thus separates the various
ranks as follows:

(2, 1) E6
(2, 0) E5
(1, 0) E3, E4
(0, 1) E1
(0, 0) E2

Finally, by logical finiteness, this can be relabelled into the following enriched
ranked interpretation:

4 E6
3 E5
2 E3, E4
1 E1
0 E2

Refinment has some interesting effects on R̃. Note, for instance, that R̃ satis-
fies likes(X,Y ) ;keeper(X)∧elephant(Y ) but not likes(Fred,Clive) ;keeper(Fred)∧
elephant(Clive). The refined interpretation ref(R̃) satisfies both, which seems de-
sirable in light of the fact that R̃ implies nothing atypical about Fred or Clive.

Refinement allows us to extend minimal-model entailment as follows:

Definition 36. A knowledge base K ⊆ L refined entails a formula α ∈ L,
denoted K |≈RM α, iff either K is inconsistent or ref(R̃K) 
 α.
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Unsurprisingly, refinement preserves all of the defeasible properties and meta-
properties of minimal-model entailment that we care about. In particular, it is
defeasible on both the object-level and the meta-level, and satisfies all of the
enriched rationality postulates:

Lemma 41. Let K ⊆ L be a knowledge base, and consider the set S = {α ∈ L :
K |≈RM α}. Then S is complete for R̃;.

As it is based on minimal-model entailment, refined entailment also shares
many of the strengths and weaknesses of rational closure. In fact, refinement
is a monotonic operation, in the sense that any conclusion that can be drawn
using minimal-model entailment can also be drawn using refined entailment:

Lemma 42. Let K ⊆ L be a knowledge base. Then for any formula α ∈ L,
K |≈M α implies that K |≈RM α.

Refined entailment is therefore the most promising of the three entailment
relations we have looked at. It is truly defeasible, it satisfies desirable meta-
properties and it sanctions all of the conclusions that we would expect from
a “rational closure”-type entailment relation for Defeasible Datalog. This is
also true of minimal-model entailment, of course, but refined entailment goes
further and solves a number of problems that minimal-model entailment has
with ground facts. As a final word on Defeasible Datalog, we will show refined
entailment in action and prove that it does indeed solve Example 43:

Example 46. Consider the knowledge base K from Example 43:

bird(Fred)

fly(X) ;bird(X)

We claim that K |≈RM fly(Fred) ;>. From Definition 35, it suffices to show
that there is some E ∈ H̃ with a maximal set of typical constants TE = {Fred,E1}
such that R̃K(E) = 0, and that every such E satisfies fly(Fred). For the existence
claim, consider E = 〈H̃E , {Fred,E1}〉, where:

H̃E = {bird(Fred), fly(Fred)}

Now let R̃ be the ranked interpretation that maps E to 0, and everything else
to ∞. Then R̃ 
 K, and thus R̃K(E) = 0 as required. Next, we show that every
such E satisfies fly(Fred).

Let E ∈ H̃ be such that R̃K(E) = 0 and TE = {Fred,E1}. Then by the first
formula in K, E 
 bird(Fred). But since Fred ∈ TE , and since E has minimal
rank in R̃K, we conclude that E ||∼ fly(X) →bird(X) and thus that E 
 fly(Fred)
as required.



Chapter 7

Summary

Our research objective, as stated in Section 1.1, was to investigate analogues
of Klm-style inference for Datalog. Realising this goal led to the construction
of Defeasible Datalog, which was defined and discussed extensively in Chapter
6. In this chapter, we review to what extent our research objective can be
considered complete, and suggest a number of possibilities for future research.

7.1 Conclusions

Before we look at Defeasible Datalog specifically, let’s first review the major
moving parts in any Klm-style description of defeasible reasoning:

1. A syntax for expressing classical and defeasible statements. In proposi-
tional Klm, this consists of the twiddle operator “α |∼ β” (see Section
3.1). In defeasible Alc, this consists of the defeasible subsumption oper-
ator “C @∼D” (see Section 4.2).

2. A semantics for interpreting classical and defeasible statements. In both
propositional Klm and defeasible Alc this is given by various kinds of
ranked interpretations (see Definitions 7 and 16).

3. A soundness and completeness result that characterises the semantics in
terms of a number of rationality postulates. For propositional Klm, this is
given by Lemmas 9 and 11, and for defeasible Alc it is given by Theorem
6.

4. A defeasible entailment relation that describes how inference should work
for knowledge bases containing defeasible information. A standard ap-
proach is rational closure, which for propositional Klm is given by Defi-
nition 10, and for defeasible Alc is given by Definitions 20 (subsumption
statements only) and 24 (assertional statements as well).
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The syntax of Defeasible Datalog (see the start to Chapter 6) follows that of
Morris et al. [28], and extends the syntax of vanilla Datalog in a few ways. The
first is that arbitrary boolean combinations of atoms - which we call compounds
- are allowed as rule heads and bodies. This gives us a lot of flexibility for
analysis, but will likely need to be restricted for computational efficiency. The
second change is that Defeasible Datalog allows for defeasible rules with the
twiddle arrow “ ;”, much like the propositional and Alc cases. Nothing
seems particularly controversial here.

We have discussed two possible interpretations of Defeasible Datalog formu-
las. The first is the preferential semantics of Morris et al [28], which interprets
formulas using rankings of Herbrand interpretations (see Section 6.5 and Defi-
nition 30). This was found to be lacking, as it fails to model even fairly simple
knowledge bases like the Tweety test (see Lemma 36). Our main contribution
in this thesis is the enriched preferential semantics of Section 6.6, which solves
this problem and admits a characterisation in terms of a number of rationality
postulates (see Definition 26 and Theorem 8).

One difference between this work on defeasibility and that of the early papers
by Kraus et al. [22, 25], is that we explicitly separate the language for Defeasible
Datalog formulas and the language for the defeasible properties that constitute
the rationality postulates (see Section 6.2). While this adds some complexity, we
feel like it is worth it for the clarity it offers - many a student (myself included)
has been led astray by the conflation of the two!

A soundness and completeness result for enriched preferential semantics is pro-
vided by Theorems 8 and 9. We note that in order to capture the semantics
precisely we have had to add a number of additional postulates, beyond those
proposed by Lehmann et al. [25]. This seems to us to be necessary once one
moves beyond the confines of unary languages (the concepts of Alc are es-
sentially unary predicates, despite allowing for the use of roles). Whether the
postulates we have characterised are useful or not remains to be seen, but at
the very least we have shown that a Klm-style approach can work for Datalog.

Finally, we have provided several options for entailment over Defeasible Datalog
knowledge bases (see Definitions 33, 34 and 36). The first two of these, namely
rank entailment and minimal-model entailment, are direct analogues of rank
entailment and rational closure in propositional Klm. Though they appear to
work well for open formulas (see Example 42), these entailment relations don’t
handle ground facts very well, a problem that is shared with defeasible Alc in
the presence of assertional statements (see Example 26). To deal with this we
have introduced refined entailment, based on the idea of refinement that was
introduced in Section 6.8. This seems to solve the ground fact problems, as we
show in Example 46.

In conclusion, we have sketched out every moving part of a Klm-style approach
to defeasible reasoning for Datalog. Though there are no doubt bugs to be ironed
out, this seems like a promising start, and we feel that our original research goal
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has essentially been achieved.

7.2 Future Work

The most important line of research that needs to be done is to see how far we
can push the language of Defeasible Datalog. In this thesis we have focussed
on a relatively simple extension of Datalog in which compounds of arbitrary
arity are permitted. In order to fully generalise defeasible Alc, and to bring
Defeasible Datalog’s expressiveness in line with modern flavours of Datalog like
Datalog± [7], we will need to see what happens when restricted forms of exis-
tential quantification are added. Existential quantification is known to cause
issues in defeasible Alc (see the discussion in Section 4.3), so we expect that
this will be a challenging research problem.

Another important line of research is computational efficiency. As we stated at
the start of Chapter 6, we have completely ignored the question of efficiency in
this thesis, focussing instead on putting all of the formal machinery of defeasible
reasoning in place. Now that this is done, it would be interesting to add con-
straints to the language of Defeasible Datalog such that efficient algorithms for
entailment can be found. Minimal-model entailment is a direct analogue of ra-
tional closure for propositional Klm, which is reducible to classical entailment
checks (see the end of Section 3.5). Refinement is also somewhat analogous
to rational closure for defeasible Alc, in the sense that individuals are made
as typical as possible at each rank-layer. This gives us hope that entailment
checking for Defeasible Datalog is similarly tractable.

There are some technical problems that should be addressed here as well.
One is that our characterisation of enriched ranked interpretations in terms
of rationality postulates (see Theorem 9) requires accepting the (WkIrr) and
(WkNeg) properties. These are restricted versions of (Irr) and (Neg) re-
spectively, and it would be interesting to find a semantics that can characterise
these latter properties. The preferential semantics of Section 6.5 satisfies these
properties, but aside from the known limitations of the semantics we have been
unable to prove a completeness theorem for it.

A final line of research we mention relates to a possible conceptual bug with
what we have done. In enriched preferential semantics, a compound is consid-
ered typical if and only if every constant in the compound is a typical constant.
This simplifies the analysis, but one could argue that typicality for individuals
is different from typicality for tuples of individuals. Adding a more fine-grained
ranking scheme to the enriched Herbrand interpretations of Section 6.6 would
produce a semantics similar to that of Brafman [4] and Friedman et al. [17]
for first-order conditional logic, and it would be interesting to see if such as
approach is workable for Defeasible Datalog as well.



Appendix A

Proofs for Section 6.1

This appendix contains a few technical results about the relationship of Her-
brand semantics to standard first-order semantics over the Defeasible Datalog
fragment of first-order logic. See Section 6.1 for the definition of classical con-
sequence, and Section 2.3 for the definition of classical entailment.

Lemma 24. Let S ⊆ Lf∪L→ be an arbitrary set of formulas. Then the formula
α is a classical consequence of S iff Tr(α) is classically entailed by Tr(S), where
Tr is the translation operator of Chapter 5.

Proof. The “if” direction follows directly from the fact that a Herbrand in-
terpretation is a special case of a general first-order structure. Suppose then
that α is a classical consequence of S, and consider some first-order structure
I = 〈∆I , ·I〉 such that I 
 Tr(S). Now let Σ′ be an extension of the fixed
language that contains a set of constant symbols const′ at least as large as ∆I ,
and let ϕ : const′ → ∆I be any surjection.

We define a Herbrand interpretation H over Σ′ by the following criterion:

p(c1, . . . , cn) ∈ H iff (ϕ(c1), . . . , ϕ(cn)) ∈ pI

Clearly for any fact A ∈ Lf we have that H 
 A iff I 
 Tr(A), and by
extension the same is true of any rule in L→. But then by construction we
have that H 
 S, and hence by assumption that H 
 α. But this implies that
I 
 Tr(α) as required.

Corollary 2. Suppose α is a classical consequence of S ⊆ Lf ∪L→. Then there
is some finite subset S ′ ⊆ S such that α is a classical consequence of S ′.

Proof. By Lemma 24, α is a classical consequence of S iff Tr(A) is classically
entailed by Tr(S). But by the compactness theorem for first-order logic this
is true iff Tr(α) is classically entailed by Tr(S ′) for some finite subset S ′ ⊆
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S. Another application of Lemma 24 and we conclude that α is a classical
consequence of S ′.



Appendix B

Proofs for Section 6.3

The first result we prove is Lemma 25, which establishes that all translation
bases are essentially equivalent. This relies on the somewhat unsurprising fact
that completeness is invariant under relabelling of meta-atoms for Defeasible
Datalog:

Lemma 43. Let σ : A → A be a permutation of meta-atoms, and S ⊆ L
a set of Defeasible Datalog formulas. Then for any defeasible property P =
I1, . . . , In =⇒ In+1 ∈ P;, S is P -complete iff S is σ(P )-complete.

Proof. It suffices to prove one direction of the lemma, as permutations have
inverses. Suppose that S is σ(P )-complete, and let Ψ = 〈λΨ, τΨ, ϕΨ, πΨ, σΨ〉
be some substitution system such that S 
Ψ I1, . . . , In. Then consider the
substitution system Ψ′ = 〈λΨ, τ, ϕΨ, πΨ, σΨ〉, where τ : A → Lc is defined as
follows:

τ(A) = (τΨ ◦ σ−1)(A)

Thus for any I ∈ I;, S 
Ψ′ σ(I) iff S 
Ψ I, as (τ ◦ σ)(A) = τΨ(A) for all
A ∈ A. In particular, S 
Ψ′ σ(I1), . . . , σ(In) and hence by σ(P )-completeness
we have that S 
Ψ′ σ(In+1). But this implies that S 
Ψ In+1, and hence S is
P -complete as required.

As a side note, for most of this appendix chapter we will exclusively deal with
sets S ⊆ L; of defeasible rules when arguing about completeness, rather than
general sets of formulas S ⊆ L. This is because the translation of a propositional
inclusion formula I ∈ I|∼ is always a Defeasible Datalog inclusion schema of the
form B ;A or |= A, and satisfaction for these kinds of schemas only depends
on defeasible rules. In general, of course, this is not the case.

Lemma 25. Let B,B′ be two translation bases. Then for every propositional
defeasible property P ∈ P|∼, TrB(P ) is a consequence of TrB′(P ) and vice-versa.
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Proof. Let σ : A → A be any permutation of meta-atoms such that B = σ ◦B′
(at least one exists as B and B′ are injective). Then TrB = Trσ◦B′ = σ ◦
TrB′ , and hence for any set S ⊆ L; we have that S is TrB(P )-complete iff
it is σ(TrB′(P ))-complete. But by Lemma 43 this is true iff S is TrB′(P )-
complete.

In Chapter 6, we dealt with translation operators on the meta-level. In other
words, translation operators take propositional defeasible properties and pro-
duce Defeasible Datalog properties. To prove Theorem 7, we will need to intro-
duce a similar mechanism on the object level, allowing us to translate between
sets of propositional defeasible formulas and sets of Defeasible Datalog formulas.

In what follows, we assume that both the set P of propositional atoms and
the set La of Defeasible Datalog atoms are countably infinite. This is not a
particularly stringent requirement, as we can simply expand one or the other
with dummy atoms if necessary.

Let b : P → La be any bijection between the two sets, with inverse denoted
b−1 : La → P. Then we can lift these maps to bijections b∗ : LP → Lc and
b−1
∗ : Lc → LP in the obvious way:

1. If p is atomic, then b∗(p) = b(p).

2. b∗(¬p) = ¬b∗(p).

3. b∗(p ∧ q) = b∗(p) ∧ b∗(q).

These lifted maps behave well with the notion of a classical tautology, something
that we will make use of later:

Lemma 44. For any propositional formula α ∈ LP , α is a classical tautology
iff b∗(α) is a classical tautology.

Proof. First, suppose that α is a classical tautology, and let H ⊆ B be any
Herbrand interpretation. Then consider the valuation uH ∈ UP , where for each
p ∈ P we define uH 
 p iff H 
 b∗(p). By structural induction we have that
uH 
 α iff H 
 b∗(α), and since α is assumed to be a classical tautology we
conclude that H 
 b∗(α). But H was arbitrary, so b∗(α) must be a classical
tautology as required.

Next, suppose that b∗(α) is a classical tautology, and let u ∈ UP be any
valuation. Then consider the Herbrand interpretation Hu = {A ∈ B : u 

b−1
∗ (A)}. By structural induction, we have that for any fact A ∈ Lf , Hu 
 A iff
u 
 b−1

∗ (A). Thus if b∗(α) is a fact, we are done, as u was arbitrary. However,
it may be the case that b∗(α) contains variable symbols.

In this case, let B ∈ Lf be any ground substitution of b∗(α), and note that
β = b−1

∗ (B) is identical to α up to a permutation of P. Thus β is a classical
tautology iff α is, which must be true by the previous paragraph as B = b∗(β)
is a fact.
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Given a propositional defeasible formula α |∼ β, we define its translation under
b∗ to be the following Defeasible Datalog rule:

Trb∗(α |∼ β) = b∗(β) ;b∗(α)

Similarly, the translation of the Defeasible Datalog rule B ;A under b−1
∗ is

defined to be the following propositional defeasible formula:

Trb−1
∗

(B ;A) = b−1
∗ (A) |∼ b−1

∗ (B)

Furthermore, these object-level translation operators Trb∗ : L|∼ → L; and
Trb−1

∗
: L; → L|∼ are both bijections. This follows from the fact that b∗ and

b−1
∗ are bijections, and similar reasoning shows that they are actually inverses:(

Trb−1
∗
◦ Trb∗

)
(α |∼ β) = α |∼ β(

Trb∗ ◦ Trb−1
∗

)
(B ;A) = B ;A

Our next goal is to connect these object-level translation operators to the meta-
level translation operators defined in Section 6.2. Recall that propositional
defeasible properties are interpreted in terms of substitutions ϕ : P̃ → LP , and
Defeasible Datalog properties are interpreted in terms of substitution systems
Ψ = 〈λΨ, τΨ, ϕΨ, πΨ, σΨ〉. The various kinds of translations and mappings we
can achieve with these objects is visualised in the following diagram:

P̃ B∗(P̃) ⊆ T

LP Lc

B∗

ϕ

B−1
∗

Ψ

b∗

b−1
∗

Note that this is not a commutative diagram, as different paths through the
diagram will generally result in different results. Nevertheless, we can see that
the combination of an object-level translation operator and a meta-level trans-
lation operator allows us to move freely between propositional substitutions and
Defeasible Datalog substitution systems:

Definition 37. Let B be a translation base, and Ψ a substitution system. Then
we define the substitution ϕΨ,B : P̃ → LP as follows:

ϕΨ,B = b−1
∗ ◦Ψ ◦B∗

As a direct consequence, we have the following result:

Lemma 45. Let B be a translation base, and Ψ a substitution system. Then
the following diagram commutes:
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P̃ B∗(P̃) ⊆ T

LP Lc

B∗

ϕΨ,B

B−1
∗

Ψ

b∗

b−1
∗

Proof. Follows directly from the definition of ϕΨ,B .

Similarly, we can go in the other direction and construct a substitution system
for any given choice of substitution:

Definition 38. Let B be a translation base, and ϕ : P̃ → LP a substitution.
Then we define the substitution system Ψϕ,B = 〈λϕ,B , τϕ,B , id, id, id〉 as follows:

λϕ,B(v) =

{
var if v = ~x
∅ otherwise

τϕ,B(A) =

{ (
b∗ ◦ ϕ

)
(p̃) if A = B(p̃) for some p̃ ∈ P̃

⊥ otherwise

Note that the construction of τϕ,B is well-defined, as B is injective by definition.
And as before, we have the following commutativity result:

Lemma 46. Let B be a translation base, and ϕ a substitution. Then the fol-
lowing diagram commutes:

P̃ B∗(P̃) ⊆ T

LP Lc

B∗

ϕ

B−1
∗

Ψϕ,B

b∗

b−1
∗

Proof. It suffices to show that ϕ = b−1
∗ ◦ Ψϕ,B ◦ B∗. Indeed, consider some

p̃ ∈ P̃. Then B(p̃) = A for some meta-atom A ∈ A, and hence by definition
τϕ,B(A) = (b∗ ◦ ϕ)(p̃). But then B∗(p̃) = A(~x), and since Ψϕ,B is compatible
with A(~x) we have that (Ψϕ,B ◦ B∗)(p̃) = τϕ,B(A) = (b∗ ◦ ϕ)(p̃). We conclude
that (b−1

∗ ◦Ψϕ,B ◦B∗)(p̃) = b−1
∗
(
(b∗ ◦ ϕ)(p̃)

)
= ϕ(p̃) as required.

We now have all of the definitions and concepts we need to prove Theorem 7.
We will build up the proof in stages, starting from equivalences with respect to
inclusion formula satisfaction:

Lemma 47. Let I ∈ I|∼ be a propositional inclusion formula, and S ⊆ L; a set
of Defeasible Datalog rules. Then for any substitution system Ψ, S 
Ψ TrB(I)
iff Tr−1

b (S) 
ϕΨ,B
I.
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Proof. For any such Ψ, we consider each possibility for I separately:

1. Suppose that I =“|= α”. Then S 
Ψ TrB(I) iff (Ψ ◦ B∗)(α) is a classical
tautology, which by Lemma 44 is true iff (b−1

∗ ◦ Ψ ◦ B∗)(α) = ϕΨ,B(α) is
a classical tautology. But by definition this is true iff Tr−1

b (S) 
ϕΨ,B
I.

2. Suppose that I =“α |∼ β”. Then S 
Ψ TrB(I) iff (Ψ ◦ B∗)(β) ;(Ψ ◦
B∗)(α) ∈ S, which is itself true iff Tr−1

b (S) contains (b−1
∗ ◦ Ψ ◦ B∗)(α) |∼

(b−1
∗ ◦Ψ◦B∗)(β) = ϕΨ,B(α) |∼ ϕΨ,B(β), and hence iff Tr−1

b (S) 
ϕΨ,B
α |∼

β = I.

3. The reasoning for I =“α 6|∼ β” is identical to the previous case.

The result holds in the other direction as well:

Lemma 48. Let I ∈ I|∼ be a propositional inclusion formula, and S ⊆ L;

a set of Defeasible Datalog rules. Then for any substitution ϕ : P̃ → LP ,
S 
Ψϕ,B

TrB(I) iff Tr−1
b (S) 
ϕ I.

Proof. We consider each possibility for I separately:

1. Suppose that I =“|= α”. Then Tr−1
b (S) 
ϕ I iff ϕ(α) is a classical tau-

tology, which by Lemma 44 is true iff (b∗ ◦ ϕ)(α) is a classical tautology.
But by Lemma 46 this is true iff (Ψϕ,B ◦ B∗)(α) is a classical tautology,
and hence by definition iff S 
Ψϕ,B

TrB(I).

2. Suppose that I =“α |∼ β”. Then S 
Ψϕ,B
TrB(I) iff (Ψϕ,B◦B∗)(β) ;(Ψϕ,B◦

B∗)(β) ∈ S, and hence iff Tr−1
b (S) contains (b−1

∗ ◦ Ψϕ,B ◦ B∗)(α) |∼
(b−1
∗ ◦ Ψϕ,B ◦ B∗)(β) = ϕ(α) |∼ ϕ(β). But by Lemma 46 this is true

iff Tr−1
b (S) 
ϕ α |∼ β = I.

3. The reasoning for I =“α 6|∼ β” is identical to the previous case.

Next, we prove equivalences for the case of individual defeasible properties:

Lemma 49. Let P = I1, . . . , In =⇒ In+1 ∈ P|∼ be a propositional defeasible
property, and S ⊆ L; a set of Defeasible Datalog rules. Then S is TrB(P )-
complete iff Tr−1

b (S) is P -complete.

Proof. First suppose that S is TrB(P )-complete, and let ϕ : P̃ → LP be any
substitution such that Tr−1

b (S) 
ϕ I1, . . . , In. By Lemma 48, this implies
that S 
Ψϕ,B

TrB(I1), . . . ,TrB(In), and hence by hypothesis that S 
Ψϕ,B
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TrB(In+1). But then by Lemma 48 we have that Tr−1
b (S) 
ϕ In+1, and since ϕ

was arbitrary we conclude that Tr−1
b (S) is P -complete.

Next suppose that Tr−1
b (S) is P -complete, and let Ψ be any substitution sys-

tem such that S 
Ψ TrB(I1), . . . ,TrB(In). By Lemma 47, this implies that
Tr−1
b (S) 
ϕΨ,B

I1, . . . , In, and hence by hypothesis that S 
ϕΨ,B
In+1. But

then by Lemma 47 we have that S 
Ψ TrB(In+1), and since Ψ was arbitrary
we conclude that S is TrB(P )-complete.

Finally, we move on to the proof of the theorem itself:

Theorem 7. Suppose that D ⊆ P|∼ is a set of propositional defeasible proper-
ties, and that P ∈ P|∼ is a consequence of D. Then for any translation base B,
TrB(P ) is a consequence of TrB(D).

Proof. Let S ⊆ L; be any TrB(D)-complete set of Defeasible Datalog rules.
Then by Lemma 49, Tr−1

b (S) is D-complete, and hence P -complete by hypoth-
esis. But then by another application of Lemma 49 we have that S is TrB(P )-
complete. Since S was arbitrary, we conclude that TrB(P ) is a consequence of
TrB(D).

To prove the corollary, we describe an explicit transformation base that takes
the propositional rationality postulates to the Defeasible Datalog rationality
postulates:

Corollary 3. Let B be a translation base. Then if P ∈ P|∼ is a consequence of
the propositional rationality postulates, TrB(P ) is a consequence of the Defea-
sible Datalog rationality postulates.

Proof. We refer the reader to Chapter 3, Section 3.2 for definitions of the propo-
sitional rationality postulates, and Chapter 6, Section 6.2 for definitions of the
Defeasible Datalog rationality postulates.

By Lemma 25, we can without loss of generality take B : P̃ → A to be any
translation base for which α 7→ A, β 7→ B and γ 7→ C. Then one can check that
TrB : P|∼ → P; maps the propositional versions of (Rm), (Rw), (And), (Or)
and (Rm) onto their Defeasible Datalog counterparts. The only problematic
case is therefore (Lle).

TrB maps (Lle) instead to the Defeasible Datalog property C(~x) ;A(~x), |=
A(~x) ↔ B(~x) =⇒ C(~x) ;B(~x). While this isn’t equal to the Defeasible
Datalog version of (Lle), we note that the two are equivalent in the sense that
each is a consequence of the other. The required claim follows directly from
Theorem 7 under the translation base B.

This corollary can be used to prove a number of nice consequences of the
Defeasible Datalog rationality postulates directly:
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Lemma 26. R; has as consequence the following defeasible properties:

1. ⊥ 6;A(~x) =⇒ ¬A(~x) 6;A(~x)

2. ¬A(~x) 6;A(~x)∨B(~x), ¬B(~x) 6;B(~x)∨C(~x) =⇒ ¬A(~x) 6;A(~x)∨C(~x)

3. ⊥ 6;A(~x), ¬A(~x) ;A(~x) ∨B(~x) =⇒ ¬B(~x) 6;A(~x) ∨B(~x)

Proof. By Lemma 9 and a result of Lehmann et al. [25, p. 8], a propositional
defeasible property is a consequence of R|∼ iff it holds in every modular inter-
pretation. Thus by Corollary 3, it suffices to show that the following properties
hold in every modular interpretation:

1. α 6|∼ ⊥ =⇒ α 6|∼ ¬α

2. α ∨ β 6|∼ ¬α, β ∨ γ 6|∼ ¬β =⇒ α ∨ γ 6|∼ ¬α

3. α 6|∼ ⊥, α ∨ β |∼ ¬α =⇒ α ∨ β 6|∼ ¬β

For the first, let M be a modular interpretation such that M 
 α 6|∼ ⊥. Then
minM α̂ must be non-empty, as otherwise M would vacuously satisfy α |∼ ⊥.
But this implies that M 
 α 6|∼ ¬α.

The second follows directly from the fact that for any modular interpretation
M, M 
 α∨ β 6|∼ ¬α iffM(u) ≤M(v) for some u ∈ minM α̂ and v ∈ minM β̂.

For the third, let M be a modular interpretation such that M 
 α 6|∼ ⊥ and
M 
 α ∨ β |∼ ¬α. Then from the result in the previous case and the fact

that minM α̂ 6= ∅, this implies that M(v) < M(u) for some v ∈ minM β̂ and
u ∈ minM α̂. But this in turn implies that M 
 α ∨ β 6|∼ ¬β.



Appendix C

Proofs for Section 6.4

We remind the reader that Section 6.4 contains all relevant definitions for this
section, such as that of a substitution system Ψ = 〈λ, τ, ϕ, π, σ〉, instances of
meta-arguments Ψ~x,~y : var→ var, and the notion of satisfaction with respect
to a substitution system S 
Ψ B(~x) ;A(~x).

We also note one possible source of confusion, which is that we will often use
the same symbol “A” to refer both to a meta-atom A ∈ A, as well as a Defeasible
Datalog compound A ∈ Lc. This makes it convenient to define maps τ : A → Lc
when constructing substitution systems, as we can simply write τ(A) = A, with
the understanding that the left-hand side is a meta-atom and the right-hand
side a compound (as should be clear from the type signature of τ).

Lemma 27. Let S ⊆ L be a (Per)-complete set of formulas, and suppose
that B ;A ∈ S. Then for any permutation σ : var → var, we have that
σ(B) ;σ(A) ∈ S.

Proof. Let varA,B be the set of variable symbols in the compounds A and B.
Then consider the substitution system Ψ = 〈λ, τ, id, id, σ〉, where:

1. λ(A) = A, λ(B) = B

2. τ(~x) = varA,B

Then by construction we have that Ψσ~x(A) = σ(A) and Ψσ~x(B) = σ(B),
and that S 
Ψ B(~x) ;A(~x). By (Per)-completeness this implies that S 
Ψ

B(σ~x) ;A(σ~x), and hence that Ψσ~x(B) ;Ψσ~x(A) = σ(B) ;σ(A) ∈ S.

Lemma 28. Let S ⊆ L be a (Irr)-complete set of formulas, and suppose that
B ;A ∈ S, with varA and varB the free variables in A and B respectively.
Then for any substitution ϕ : var → var ∪ const that is constant on varA,
we have that ϕ(B) ;A ∈ S.
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Proof. Consider the substitution system Ψ = 〈λ, τ, ϕ, id, id〉, where:

1. λ(A) = A, λ(B) = B

2. τ(~x) = varA, τ(~y) = varB \ varA

Then by construction we have that Ψ~x(A) = A and Ψ~x,ϕ~y(B) = ϕ(B), and
that S 
Ψ B(~x, ~y) ;A(~x). By (Irr)-completeness this implies that S 
Ψ

B(~x, ϕ~y) ;A(~x), and hence that Ψ~x,ϕ~y(B) ;Ψ~x(A) = ϕ(B) ;A ∈ S.

Lemma 29. (WkIrr) is a consequence of (Irr).

Proof. Suppose S ⊆ L is (Irr)-complete, and that Ψ = 〈λ, τ, ϕ, π, σ〉 is a sub-
stitution system such that S 
Ψ B(~x, ~y) ;A(~x). Now consider the modified
substitution system Ψ′ = 〈λ, τ, ϕ′, π, σ〉, where ϕ′ = π. Then we still have
that S 
Ψ′ B(~x, ~y) ;A(~x), and hence by (Irr)-completeness that S 
Ψ′

B(~x, ϕ~y) ;A(~x). By construction, this is equivalent to S 
Ψ B(~x, π~y) ;A(~x),
and since Ψ was arbitrary we conclude that S is (WkIrr)-complete.

Lemma 30. (Per) is a consequence of (WkUI), which is in turn a conse-
quence of (UI).

Proof. Consider any S ⊆ L and Ψ = 〈λ, τ, ϕ, π, σ〉 such that S 
Ψ B(~x) ;A(~x).
Then (UI)-completeness, (WkUI)-completeness and (Per)-completeness would
imply that S 
Ψ A(ϕ~x) ;B(ϕ~x), S 
Ψ A(π~x) ;B(π~x) and S 
Ψ A(σ~x) ;B(σ~x)
respectively. Thus the claim follows immediately from the fact that every per-
mutation substitution σ is a special case of a variable substitution π, and every
variable substitution π is a special case of a general substitution ϕ.

Lemma 31. (WkNeg) is a consequence of (Neg).

Proof. Suppose S ⊆ L is (Neg)-complete, and Ψ = 〈λ, τ, ϕ, π, σ〉 is any substi-
tution system such that S 
Ψ ∀ϕ.⊥ ;¬A(ϕ~x). By definition this means that
S 
Ψ′ ⊥ ;¬A(ϕ~x) for any substitution system Ψ′ = 〈λ, τ, ϕ′, π, σ〉 that differs
from Ψ only in the choice of general substitution ϕ′. In particular, taking ϕ′

to be the identity substitution we therefore have that S 
Ψ′ ⊥ ;A(~x), and
hence by (Neg)-completeness that S 
Ψ′ A(~x). But this inclusion schema con-
tains no substitution symbols, and thus S 
Ψ A(~x) as well, implying that S is
(WkNeg)-complete.

Lemma 32. Let S ⊆ L be a set of Defeasible Datalog formulas, and let SC
denote its classical subset. Then S is complete for (Mp), (Eq) and (EqF) iff
SC is deductively closed.

Proof. First, assume that S is deductively closed. Then the fact that it is
complete for (Mp), (Eq) and (EqF) follows from these respective observations,
where ϕ is any substitution:
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1. ϕ(B) is always a classical consequence of ϕ(A) and B →A

2. ¬A ∨B is always a classical consequence of B →A

3. B →A is always a classical consequence of ¬A ∨B

In the other direction, suppose that S is complete for (Mp), (Eq) and (EqF),
and that α is a classical consequence of SC . Then by Corollary 2 there is some
finite subset S ′C = {β1, . . . , βn} ⊆ SC such that α is a classical consequence of
S ′C . Furthermore, by (Mp)-completeness we can assume wlog that no two rules
in S ′C share a variable symbol. Now consider the transformation ( · )∗, acting
on a fact or rule:

1. (A)∗ = A

2. (B →A)∗ = ¬A ∨B

Then by Lemma 24 and the deduction theorem for first-order logic, the follow-
ing rule is a classical tautology:

¬(β∗2 ∧ · · · ∧ β∗n) ∨ α∗ →β∗1

But by completeness for (Eq) and (EqF), ϕ(β∗1) ∈ S for every substitution
ϕ, and thus by (Mp)-completeness every substitution of the left-hand side is
similarly in S. The left hand side is classically equivalent to the following rule:

¬(β∗3 ∧ · · · ∧ β∗n) ∨ α∗ →β∗2

Thus by iterating this process we eventually conclude that ϕ(α∗) ∈ S for every
substitution ϕ. But then by completeness for (Eq) and (EqF) this implies that
α ∈ S, and hence SC is deductively closed as required.



Appendix D

Proofs for Section 6.5

In this appendix we prove that the preferential semantics of Section 6.5 satisfies
a number of desirable defeasible properties, and provide a counterexample illus-
trating its representational problems. First, we look at the rationality postulates
from Section 6.2:

Lemma 33. Let R : H → N∞ be a ranked interpretation. Then SR is R;-
complete.

Proof. We consider each case separately:

(Refl) Follows from the fact that H 
 A →A for all H ∈ H.

(Lle) Follows from the fact that if A →B and B →A are both classical

tautologies, then Â = B̂.

(Rw) Follows from the fact that if C →B is a classical tautology, H ∈ H and
H 
 B →A, then H 
 C →A.

(And) Follows from the fact that for any H ∈ H, H 
 B →A and H 
 C →A
implies that H 
 B ∧ C →A.

(Or) Suppose that R 
 C ;A and R 
 C ;B, and consider some H ∈
minR Â ∨B. Then for any ground subsitution ϕ, H 
 ϕ(A) implies that

H ∈ minR Â and hence H 
 C →A, and H 
 ϕ(B) implies that H ∈
minR B̂ and hence H 
 C →B. Since at least one of these has to be the
case, H 
 C →A ∨B and hence R 
 C ;A ∨B.

(Rm) Suppose that R 
 C ;A and R 6
 ¬B ;A. Then there is some H ∈
minR Â such that H ∈ B̂. But this implies that minR Â ∧B ⊆ minR Â
and hence R 
 C ;A ∧B.
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Next, we consider some of the properties discussed in Section 6.4:

Lemma 34. Let R : H→ N∞ be a ranked interpretation. Then SR is complete
for (Per), (Irr), (Neg), (Sup), (SupF), (Mp), (Eq) and (EqF).

Proof. We consider each case separately:

(Per) Follows from the fact that for any H ∈ H and permutation σ : var→ var,
H 
 B →A iff H 
 σ(B) →σ(A).

(Irr) Follows from the fact that for any H ∈ Â, H 
 B →A iff H 
 ϕ(B) →A
for every substitution ϕ that is constant on the variable symbols of A.

(Neg) Follows from the fact that if R 
 ⊥ ;¬A, then H 
 A for every H ∈ HR
and hence R 
 A.

(Sup) Follows from the fact that R 
 B →A iff H 
 B →A for every H ∈ HR.

(SupF) Follows from the fact that R 
 A iff H 
 ⊥ →¬A for every H ∈ HR.

(Mp) Follows from the fact that if B →A is a classical tautology, then ϕ(B) is
a classical consequence of ϕ(A) for any substitution ϕ.

(Eq) Follows from the fact that B →A and ¬A ∨B are classically equivalent.

(EqF) Follows from the fact that ¬A ∨B and B →A are classically equivalent.

The last property we look at seems to be common to all kinds of preferential-
style semantics:

Lemma 35. Let R : H→ N∞ be a ranked interpretation. Then SR is complete
for the following defeasible property:

(Pref) ⊥ 6;A(~x) =⇒ ¬A(~x) 6;A(~x) ∨A(π~x)

Proof. Suppose R 6
 ⊥ ;A, and consider some variable substitution π : var→
var and H ∈ minR ̂A ∨ π(A). Then H necessarily satisfies some instance of A,

because any instance of π(A) is also an instance of A, and hence H ∈ minR Â.
Thus H 6
 ¬A →A ∨ π(A), and hence R 6
 ¬A ;A ∨ π(A) as required.

Finally, we show that preferential semantics is not expressive enough as it
stands to model the Tweety test knowledge base of Section 6.5:

Lemma 36. There is no non-trivial ranked interpretation R over any first-order
language satisfying Ktweety.
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Proof. Suppose that R : H→ N∞ is a non-trivial ranked interpretation satisfy-
ing Ktweety. Then HR is non-empty, and every H ∈ HR satisfies bird(Tweety) ∧
¬fly(Tweety). But this implies that no H ∈ HR satisfies fly(X) →bird(X),
which directly from the definitions proves that R 6
 fly(X) ;bird(X), a con-
tradiction.



Appendix E

Proofs for Section 6.6

This appendix contains the proofs of Theorems 8 (soundness) and 9 (complete-
ness) for enriched ranked interpretations with respect to the enriched rationality
postulates R̃; of Section 6.6. Soundness is the easier direction to establish:

Theorem 8. Let R̃ : H̃ → Ω∞ be an enriched ranked interpretation. Then
SR̃ is R;-complete, and also complete for (Pref), (Sup), (SupF), (Per),
(WkIrr), (WkNeg), (Mp), (Eq) and (EqF).

Proof. We consider each case separately:

(Refl) Follows from the fact that E ||∼ A →A for all E ∈ H̃.

(Lle) Follows from the fact that if A →B and B →A are both classical

tautologies, then H̃R̃(A) = H̃R̃(B).

(Rw) Follows from the fact that if C →B is a classical tautology, E ∈ H̃ and
E ||∼ B →A, then E ||∼ C →A.

(And) Follows from the fact that for any E ∈ H̃, E ||∼ B →A and E ||∼ C →A
implies that E ||∼ B ∧ C →A.

(Or) Suppose that R̃ 
 C ;A and R̃ 
 C ;B, and consider some E ∈
minR̃ H̃R̃(A ∨ B). Then for any ϕ : var → TE , E 
 ϕ(A) implies that

E ∈ minR̃ H̃R̃(A) and hence E ||∼ C →A, and E 
 ϕ(B) implies that

E ∈ minR̃ H̃R̃(B) and hence E ||∼ C →B. Since at least one of these has

to be the case, E ||∼ C →A ∨B and hence R̃ 
 C ;A ∨B.

(Rm) Suppose that R̃ 
 C ;A and R̃ 6
 ¬B ;A. Then there is some E ∈
minR̃ H̃R̃(A) such that E ∈ H̃R(B). But this implies that minR̃ H̃R̃(A ∧
B) ⊆ minR̃ H̃R̃(A), and thus R̃ 
 C ;A ∧B.
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(Pref) Suppose R̃ 6
 ⊥ ;A, and consider some variable substitution π : var→
var and E ∈ minR̃ H̃R̃(A ∨ π(A)). Then E necessarily satisfies ϕ(A) for
some ϕ : var → TE , because any instance of π(A) is also an instance of

A, and hence E ∈ minR̃ H̃R̃(A). Thus E 6||∼ ¬A →A ∨ π(A), and hence

R̃ 6
 A ;A ∨ π(A) as required.

(Sup) Follows from the fact that E 
 B →A implies E ||∼ B →A.

(SupF) Follows from the fact that E 
 A implies E ||∼ ⊥ →¬A.

(Per) Follows from the fact that for any E ∈ H̃ and permutation σ : var→ var,
E ||∼ B →A iff E ||∼ σ(B) →σ(A).

(WkIrr) Follows from the fact that for any E ∈ H̃R̃(A), E ||∼ B →A iff E ||∼
π(B) →A for every variable substitution π : var→ var that is constant
on the variable sybols of A.

(WkNeg) Follows from the fact that H̃R̃(¬ϕ(A)) = ∅ iff R̃ 
 ⊥ ;¬ϕ(A), and thus

R̃ 
 ⊥ ;¬ϕ(A) for every substitution ϕ iff E 
 A for every E ∈ H̃R̃.

(Mp) Follows from the fact that if B →A is a classical tautology, then ϕ(B) is
a classical consequence of ϕ(A) for any substitution ϕ.

(Eq) Follows from the fact that B →A and ¬A ∨B are classically equivalent.

(EqF) Follows from the fact that ¬A ∨B and B →A are classically equivalent.

Completeness, on the other hand, requires a bit of legwork. In the next few
sections we will introduce some new technical lemmas and concepts, and then
use them to prove the completeness theorem.

E.1 Technical Lemmas

The completeness theorem is concerned with sets S ⊆ L of Defeasible Dat-
alog formulas that are complete for the enriched rationality postulates R̃;,
which we’ll refer to as enriched sets. The first lemma we’ll need shows that
if something holds classically in these sets, then it also holds defeasibly under
all possible background conditions. This is a generalisation of the (Sup) and
(SupF) properties:

Lemma 50. The following two defeasible properties are consequences of R̃;:

1. B(~x) =⇒ B(~x) ;A(~x)

2. C(~x) →B(~x) =⇒ ¬B(~x) ∨ C(~x) ;A(~x)
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Proof. For the first, suppose that S ⊆ L is a R̃;-complete set, and that Ψ is a
substitution system such that S 
Ψ B(~x). Then by Lemma 32 and the fact that
A →B is a classical consequence of B, we have that S 
Ψ B(~x) →A(~x). But
then by (Sup)-completeness we conclude that S 
Ψ B(~x) ;A(~x) as required.

For the second, suppose that S ⊆ L is a R̃;-complete set, and that Ψ is a
substitution system such that S 
Ψ C(~x) →B(~x). Then by Lemma 32 and
the fact that ¬B ∨ C →A is a classical consequence of C →B, we have
that S 
Ψ ¬B(~x) ∨ C(~x) →A(~x). But then by (Sup)-completeness we again
conclude that S 
Ψ ¬B(~x) ∨ C(~x) ;A(~x) as required.

The second lemma we’ll need has to do with a relation we can define on com-
pounds A ∈ Lc with respect to an enriched set, which roughly captures what it
means for a compound to be “at least as typical” as another compound. This
relation is based on the “αRβ” relation introduced by Lehmann et al. [25, p. 46]
in the proof of their completeness result for propositional logic:

Definition 39. Let S ⊆ L be a R̃;-complete set. Then for any compounds
A,B ∈ Lc, we say A is at least as typical as B iff ¬A 6;A∨B ∈ S. We denote
this by A �S B, and write A ≡S B to mean A �S B and B �S A.

We can view A �S B as defining a binary relation on the set of compounds Lc.
In general, �S is not a partial order, as it fails to be reflexive! This follows from
completeness for (Lle) and (Rw), as if S contains ⊥ ;A then it also contains
¬A ;A and hence A 6�S A. We introduce the following name for compounds
that violate reflexity:

Definition 40. Let S ⊆ L be a R̃;-complete set. Then a compound A ∈ Lc is
consistent with respect to S if ⊥ ;A 6∈ S, and inconsistent with respect to S
otherwise.

Consistency turns out to be the only obstacle to �S being a partial order. In
fact, over the set of consistent compounds, �S is a total order:

Lemma 51. Let S ⊆ L be a R̃;-complete set. Then �S is reflexive, transitive
and total over the set of consistent compounds.

Proof. Follows directly from Lemma 26.

The next lemma we’ll need about enriched sets is that the �S relation interacts
with defeasible consequence in the following way:

Lemma 52. The following defeasible property is a consequence of R̃;:

1. A(~x) �S B(~x), C(~x) ;B(~x) =⇒ ¬B(π~x) ∨ C(π~x) ;A(~x)
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Proof. Let S ⊆ L be a R̃;-complete set, and suppose that Ψ is a substitution
system such that S 
Ψ A(~x) �S B(~x) and S 
Ψ C(~x) ;B(~x). We consider
two cases.

First, suppose that S 
Ψ ⊥ ;B(~x). Then by Theorem 7 and the fact
that β |∼ ⊥ =⇒ α |∼ ¬β is a consequence of the propositional rationality
postulates, this implies that S 
Ψ ¬B(~x) ;A(~x). But then an application of
(Rw)-completeness gives S 
Ψ ¬B(π~x) ∨ C(π~x) ;A(~x) as required.

Next, suppose that S 
Ψ ⊥ 6;B(~x). By a symmetric application of (Pref)-
completeness, this implies that S 
Ψ B(~x) ≡S B(σ~x), and hence by Lemma
51 that S 
Ψ A(~x) �S B(σ~x). By (Per)-completeness, we have that S 
Ψ

C(σ~x) ;B(σ~x), and since α �S β, β |∼ γ =⇒ α |∼ β → γ is a consequence of
the propositional rationality postulates we conclude from Theorem 7 that S 
Ψ

¬B(σ~x)∨C(σ~x) ;A(~x). But since the permutation σ in Ψ was arbitrary in our
assumptions, an application of (WkIrr)-completeness gives S 
Ψ ¬B(π~x) ∨
C(π~x) ;A(~x) as required.

Note that in the interest of clarity we have abused notation slightly, and used
“A(~x) �S B(~x)” to denote the inclusion schema “¬A(~x) 6;A(~x) ∨ B(~x)”.
Finally, we show that the defeasible part of an enriched set is closed under a
certain kind of classical reasoning:

Lemma 53. Let S ⊆ L be a R̃;-complete set, and A ∈ Lc some compound.
Now consider the following set of classical formulas:

Γ = (S \ L;) ∪
{
π(C) →π(B) : A ≡S B, C ;B ∈ S and π : var→ var

}
Then D ;A ∈ S iff D →A is a classical consequence of Γ.

Proof. The “only if” direction follows directly from the definitions, so suppose
that D →A is a classical consequence of Γ. Then by Corollary 2 there is some
finite subset Γ′ ⊆ Γ such that D →A is a classical consequence of Γ′. By
Lemma 32, we can furthermore replace facts A ∈ Γ′ by their rule equivalents
⊥ →¬A, and assume without loss of generality that Γ′ contains only rules.

Assuming that Γ′ = {Ci →Bi : 1 ≤ i ≤ n}, by Lemma 24 and the deduction
theorem for first-order logic, we have that the following formula is a classical
tautology:

D →A ∧ (¬B1 ∨ C1) ∧ · · · ∧ (¬Bn ∨ Cn)

By Lemmas 50 and 52, we have that ¬Bi ∨ Ci ;A ∈ S for every 1 ≤ i ≤ n,
and thus by completeness for (Refl) and (And) that Λ ;A ∈ S, where Λ
denotes the right-hand side of the above formula. But then (Rw)-completeness
implies that D ;A ∈ S as required.
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E.2 Normal Enriched Herbrand Interpretations

Let’s review what it means for an enriched ranked interpretation R̃ : H̃→ Ω∞

to satisfy a defeasible rule B ;A. According to the discussion after Definition
32, this is true whenever the minimal-rank enriched Herbrand interpretations

E ∈ minR̃ H̃R̃(A) all satisfy E ||∼ B →A. Note, however, that these minimal
interpretations also satisfy all of the other defeasible consequences of A with

respect to R̃. Consider any E ∈ minR̃ H̃R̃(A), for instance. Then E ||∼ C →A
whenever R̃ 
 C ;A.

More generally, these minimal interpretations are also constrained by the de-
feasible properties of compounds less typical than A:

Lemma 54. Let R̃ : H̃ → Ω∞ be an enriched ranked interpretation, and con-
sider the set SR̃ = {α ∈ L : R̃ 
 α}. Then if A �S B and R̃ 
 C ;B,

E ||∼ π(C) →π(B) for every E ∈ minR̃ H̃R̃(A) and substitution π : var→ var.

Proof. Follows directly from Theorem 8 and Lemma 52.

Our strategy for proving the completeness theorem will be to characterise the

minimal interpretations E ∈ minR̃ H̃R̃(A) purely in terms of properties of the
enriched set SR̃. We will then be able to “reverse-engineer” this procedure, and
figure out what these minimal E should look like for an arbitrary enriched set
S and compound A. We refer to these “reverse-engineered” enriched Herbrand
interpretations as normal :

Definition 41. Let S ⊆ L be a R̃;-complete set. Then an enriched Herbrand
interpretation E ∈ H̃ is S-normal for a compound A ∈ Lc if the following three
conditions hold:

1. E 
 α for every α ∈ S \ L;.

2. E 
 ϕ(A) for some substitution ϕ : var→ TE .

3. E ||∼ C →B whenever A ≡S B and C ;B ∈ S.

We denote the set of S-normal interpretations for a compound A ∈ Lc by
normS(A). Just as minimal interpretations characterise the defeasible rules sat-
isfied by an enriched ranked interpretation, normal interpretations characterise
the defeasible rules in an enriched set:

Lemma 55. Let S ⊆ L be a R̃;-complete set. Then B ;A ∈ S iff E ||∼ B →A
for every E ∈ normS(A).

Proof. The “only if” direction follows directly from the definitions, so suppose
that E ||∼ B →A for every E ∈ normS(A). By Lemma 53, B ;A ∈ S iff
B →A is a classical consequence of Γ, where Γ is the set of formulas defined
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in the proof of Lemma 53. Assume for the sake of contradiction, then, that
B ;A 6∈ S.

This implies that there is some Herbrand interpretation H ⊆ B̃, such that
H 
 Γ and H 6
 B →A, which in turn implies that there is some ground
substitution ϕ such that H 
 ϕ(A) ∧ ¬ϕ(B). Letting varA and varB denote
the variable symbols in A,B respectively, we define T = ϕ(varA ∪ varB).
Then consider the enriched Herbrand interpretation E = 〈H, T 〉. We claim that
E ∈ normS(A):

1. E 
 S \ L; because S \ L; ⊆ Γ and H 
 Γ.

2. E 
 ϕ(A) by construction.

3. E ||∼ C →B whenever A ≡S B and C ;B ∈ S because H 
 Γ.

But by construction, E 6||∼ B →A, contradicting our assumptions, and thus we
conclude that B ;A ∈ S as required.

Similarly, just as the interpretations of finite rank characterise the classical
formulas satisfied by an enriched ranked interpretation, normal interpretations
characterise the classical formulas in an enriched set:

Lemma 56. Let S ⊆ L be a R̃;-complete set. Then for any classical formula
α ∈ Lf ∪ L→, α ∈ S iff E 
 α for every A ∈ Lc and E ∈ normS(A).

Proof. The “only if” direction follows directly from the definitions, so suppose
that for every A ∈ Lc and E ∈ normS(A) we have that E 
 α. By Lemma 32
we can assume without loss of generality that α is some rule C →B ∈ L→. But
this implies that E ||∼ ¬ϕ(B) ∨ ϕ(C) →A for every substitution ϕ, A ∈ Lc and
E ∈ normS(A), which by Lemma 55 implies that ¬ϕ(B) ∨ ϕ(C) ;A ∈ S for
every substitution ϕ and A ∈ Lc. In particular, ¬ϕ(B) ∨ ϕ(C) ;¬(¬ϕ(B) ∨
ϕ(C)) ∈ S and thus by completeness for (Refl), (And) and (Rw) we have that
⊥ ;¬(¬ϕ(B) ∨ ϕ(C)) ∈ S for every substitution ϕ. Finally, an application of
(WkNeg)-completeness gives that ¬B ∨ C ∈ S and hence by Lemma 32 that
C →B ∈ S as required.

Finally, one justification for the “at least as typical as” relation �S is that
A �S B is satisfied by an enriched ranked interpretation precisely when the
rank of the minimal A-interpretations is less than or equal to the rank of the
minimal B interpretations (where we take the rank of the empty set to be ∞
for consistency). And indeed, this property is shared by normal interpretations:

Lemma 57. Let S ⊆ L be a R̃;-complete set, and suppose that A �S B. Then
for any E ∈ normS(A), if there exists some substitition ϕ : var→ TE such that
E 
 ϕ(B), this implies that E ∈ normS(B) and A ≡S B.
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Proof. Suppose E 
 ϕ(B) for some E ∈ normS(A) and ϕ : var → TE . We first
show that E ∈ normS(B):

1. E 
 α for every α ∈ S \ L; since E ∈ normS(A).

2. E 
 ϕ(B) by assumption.

3. Suppose that B ≡S C and D ;C ∈ S. Then by Lemma 51 we have
A ≡S C, and hence E ||∼ D →C as E ∈ normS(A).

The last step is to show that A ≡S B. Assume for the sake of contradiction
that B 6�S A, i.e. that ¬B ;A∨B ∈ S. Then by assumption, A �S B, which
implies that A ≡S A ∨ B and hence E ||∼ ¬B →A ∨ B as E ∈ normS(A). But
this is a contradiction, since E 
 ϕ(B) by assumption.

E.3 Proof of Completeness

Our goal in this section is to prove the completeness theorem, which states than
an enriched set can be precisely characterised by an enriched ranked interpreta-
tion. We will proceed by ranking the set’s normal interpretations in such a way
as to achieve this:

Definition 42. Let S ⊆ L be a R̃;-complete set. Then we define ΩS = {〈A, E〉 :
A ∈ Lc, E ∈ normS(A)}. Furthermore, we define the relation ≤S on ΩS by the
following criterion:

〈A, E〉 ≤S 〈B, E ′〉 iff A �S B

An immediate consequence of the definition is that ≤S is a total order:

Lemma 58. Let S ⊆ L be a R̃;-complete set. Then ≤S is reflexive, transitive
and total.

Proof. By Lemma 55, a compound A ∈ Lc is consistent iff normS(A) 6= ∅. But
then Lemma 51 implies directly that ≤S is a total order.

This is in fact everything we need to finish our proof. The total order ΩS will
play the role of the domain in the enriched ranked interpretation we construct,
and the various lemmas and definitions we have introduced in the last two
sections suffice to prove that it characterises S precisely:

Theorem 9. Let S ⊆ L be a R̃;-complete set of formulas. Then there exists
some enriched ranked interpretation R̃ such that S = SR̃.

Proof. Consider the following enriched ranked interpretation R̃ : H̃ → Ω∞S ,
where by convention we take min ∅ =∞:

R̃(E) = min
≤S

{
〈A, E〉 : A ∈ Lc and E ∈ normS(A)

}
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We claim that S = SR̃, as required. First, consider some classical formula
α ∈ Lf ∪ L→. Then by Lemma 56, α ∈ S iff E 
 α for every A ∈ Lc and

E ∈ normS(A). But by definition of ΩS , R̃(E) is finite iff E is S-normal for
some A ∈ Lc, and hence this is true iff R̃ 
 α.

Next, consider some defeasible rule B ;A ∈ L;. By Lemma 55, B ;A ∈ S
iff E ||∼ B →A for every E ∈ normS(A). Similarly, E 
 B ;A iff E ||∼ B →A
for every E ∈ minR̃ H̃R̃(A). The claim therefore follows immediately if we can

show that normS(A) = minR̃ H̃R̃(A) for every A ∈ Lc.
Suppose then that E , E ′ ∈ normS(A). By Lemma 58, ≤S is total, and thus
R̃(E) ≤ R̃(E ′) or R̃(E ′) ≤ R̃(E). Without loss of generality, we assume the
former. But then either R̃(E) = R̃(E ′), or by definition there must be some
B ∈ Lc such that B �S A and E ′ ∈ normS(B). But then by Lemma 57,
A ≡S B, and again we conclude that R̃(E) = R̃(E ′). Since E , E ′ were arbi-
trary, we conclude that everything in normS(A) has the same R̃-rank, and thus

normS(A) = minR̃ H̃R̃(A).



Appendix F

Proofs for Section 6.7

In this appendix we collect some basic properties of rank entailment and minimal-
model entailment, which are introduced in Definitions 33 and 34 respectively.
To begin with, we consider rank entailment, and show that it is a consequence
operator in the sense of Tarski [33]. In particular, this implies that rank entail-
ment is monotonic on the meta-level, despite dealing with the consequences of
defeasible formulas on the object-level:

Lemma 37. Rank entailment satisfies the following three properties:

(Incl) α ∈ K implies K |≈R α

(Cumu) K |≈R α and K ∪ {α} |≈R β implies K |≈R β

(Mono) K |≈R α implies K ∪ {β} |≈R α

Proof. We split the proof into cases:

(Incl) Suppose α ∈ K. Then every R̃ satisfying K must clearly satisfy α, and
thus by definition K |≈R α.

(Cumu) Suppose K |≈R α and K ∪ {α} |≈R β. Then by definition, if R̃ 
 K then
R̃ 
 α. In particular, R̃ 
 K iff R̃ 
 K ∪ {α}, and thus it immediately
follows that K |≈R β.

(Mono) Note that R̃ is a model of K ∪ {β} only if R̃ is a model of K, and thus if
K |≈R α then K ∪ {β} |≈R α as well.

Rank entailment also respects many rationality postulates on a meta-level:

Lemma 38. Let K ⊆ L be a knowledge base, and consider the set S = {α ∈ L :
K |≈R α}. Then S is complete for every enriched postulate R̃; except (Rm).
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Proof. This follows from the observation that all of the properties in R; except
(Rm) are positive Horn clauses and hence closed under intersection. In other
words, if S,S ′ ⊆ L are both complete for these properties, then S ∩ S ′ is also
complete for these properties.

Next, we consider properties of minimal-model entailment. First of all, it might
be surprising that a unique minimal model even exists for Defeasible Datalog
knowledge bases:

Lemma 39. Let K ⊆ L be a consistent knowledge base, and define the minimal
model of K to be the following enriched ranked interpretation R̃K : H̃→ N∞:

R̃K(E) = min
{
R̃(E) : R̃ 
 K

}
Then this minimal model always satisfies K.

Proof. Clearly if α ∈ K is a classical formula, then R̃K 
 α. So suppose that K
contains a defeasible rule B ;A, and consider any E ∈ minR̃K H̃

R̃K(A). Then

by definition there must exist some R̃ satisfying K such that E ∈ minR̃ H̃R̃(A),

and thus E ||∼ B →A. But E is arbitrary, so we conclude that R̃K 
 B ;A as
required.

Minimal-model entailment improves upon rank entailment as it respects all of
the rationality postulates on the meta-level:

Lemma 40. Let K ⊆ L be a knowledge base, and consider the set S = {α ∈ L :
K |≈M α}. Then S is complete for R̃;.

Proof. This follows directly from Theorem 8, which states that enriched ranked
interpretations satisfy rational sets of formulas, and the fact that K |≈M α iff
R̃K 
 α.



Appendix G

Proofs for Section 6.8

In this appendix we prove that the refinement operator of Section 6.8 preserves
the enriched rationality postulates, and is well-defined in the sense that it mono-
tonically increases the number of defeasible rules satisfied by an enriched ranked
interpretation:

Lemma 41. Let K ⊆ L be a knowledge base, and consider the set S = {α ∈ L :
K |≈RM α}. Then S is complete for R̃;.

Proof. This follows directly from Theorem 9, the fact thatK |≈RM α iff ref(R̃K) 

α, and the fact that ref(R̃K) can be relabelled into a true enriched ranked in-
terpretation by logical finiteness.

Lemma 42. Let K ⊆ L be a knowledge base. Then for any formula α ∈ L,
K |≈M α implies that K |≈RM α.

Proof. By definition, refinement only changes the relative rankings within each
rank-layer in R̃. To be more precise, if R̃K(E) < R̃K(E ′), then ref(R̃K)(E) <

ref(R̃K)(E ′). This implies that minref(R̃K) H̃ref(R̃K)(A) ⊆ minR̃K H̃
R̃K(A) for

every A ∈ Lc, and the claim follows.
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