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Abstract: Mycobacterium abscessus is a nontuberculous mycobacterium (NTM) of particular concern
in individuals with obstructive lung diseases such as cystic fibrosis (CF). Treatment requires multiple
drugs and is characterised by high rates of relapse; thus, new strategies to limit infection are urgently
required. This study sought to determine how Bacille Calmette-Guérin (BCG) vaccination may impact
NTM infection, using a murine model of Mycobacterium abscessus infection and observational data
from a non-BCG vaccinated CF cohort in Sydney, Australia and a BCG-vaccinated CF cohort in Cape
Town, South Africa. In mice, BCG vaccination induced multifunctional antigen-specific CD4+ T cells
circulating in the blood and was protective against dissemination of bacteria to the spleen. Prior
infection with M. abscessus afforded the highest level of protection against M. abscessus challenge in the
lung, and immunity was characterised by a greater frequency of pulmonary cytokine-secreting CD4+

T cells compared to BCG vaccination. In the clinical CF cohorts, the overall rates of NTM sampling
during a three-year period were equivalent; however, rates of NTM colonisation were significantly
lower in the BCG-vaccinated (Cape Town) cohort, which was most apparent for M. abscessus. This
study provides evidence that routine BCG vaccination may reduce M. abscessus colonisation in
individuals with CF, which correlates with the ability of BCG to induce multifunctional CD4+ T cells
recognising M. abscessus in a murine model. Further research is needed to determine the optimal
strategies for limiting NTM infections in individuals with CF.

Keywords: non-tuberculous mycobacteria; Mycobacterium abscessus; cystic fibrosis; BCG vaccination;
immune response
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1. Introduction

Mycobacterium abscessus is a respiratory pathogen of increasing concern, particularly in
patients with underlying lung disease such as cystic fibrosis (CF) and chronic obstructive
pulmonary disease (COPD) [1]. Currently, it is estimated that 20% of CF patients infected
with non-tuberculous mycobacteria (NTM) are infected with M. abscessus, an incidence
that is estimated to increase further over time [1]. In many patients, M. abscessus causes
progressive lung function decline with reduced quality of life [2] and it can be fatal [3],
with a 15-year cumulative mortality rate of 51% [4]. It is a contraindication for lung
transplantation and associated with worse post-lung treatment outcomes [5].

The high morbidity and mortality associated with M. abscessus infection is in part
driven by the limited treatment available and poor response to current treatment options.
Due to its extensive drug resistance profile, patients infected with M. abscessus receive pro-
longed treatment with multiple antibiotics [6,7]. These treatment regimens are associated
with significant adverse effects [8] and are costly to both the individual and the health
care system [9]. Given the difficulty in treating M. abscessus infection, re-assessment of
strategies to prevent infection are critical. Development of a vaccine to prevent or reduce
severe disease caused by M. abscessus infection is one such strategy that could significantly
improve the quality of life of many CF patients, and lower the associated health care burden
and costs.

Bacillus Calmette Guérin (BCG) is currently the only approved vaccine to prevent
tuberculosis (TB), which remains an important cause of infectious deaths worldwide [10]:
TB killed 1.6 million people in 2021, and this number is expected to rise in 2022 following
the impacts of COVID-19 service disruption. As an attenuated strain of Mycobacterium bovis,
BCG has been safely used in humans since 1921 [11], is relatively cheap to manufacture
and is globally available [12]. BCG vaccination induces potent neutrophil, macrophage
and dendritic cell responses, which in turn elicit a strong Th1 response, evident by the
production of high levels of IFN-γ-secreting CD4+ T cells in vaccinated individuals [13].
Whilst highly protective against disseminated disease and TB meningitis, its efficacy against
pulmonary TB is more variable [ranging from 0–80% in clinical trials] and wanes over time.
This may reflect a number of factors including BCG strain type, host population genetics
and the impact of previous host exposure to environmental mycobacteria [14].

BCG is known to be cross-protective against a range of NTM infections: it is currently
recommended to prevent transmission of M. leprae, the causative agent of leprosy [15]. Epi-
demiological data suggest some protection against Buruli ulcer caused by M. ulcerans [16],
while BCG vaccination is also associated with reduced rates of M. avium infection in some
countries [17]. The possible cross-protective effects of BCG have been explored against M.
abscessus in an ex vivo model using BCG-vaccinated patient peripheral mononuclear blood
cells (PBMCs), which showed that BCG-specific T cells inhibited growth of M. abscessus, as
well as inducing strong IFNγ+CD4+ T cell responses when stimulated with M. abscessus ex
vivo [18]. While this suggests the cross-reactivity of BCG and M. abscessus, whether and
how this translates to protection against M. abscessus infection has not been evaluated in
either humans or preclinical models.

This study aimed to assess the protective efficacy of BCG vaccination against pul-
monary M. abscessus infection by (i) using an animal model of pulmonary M. abscessus
infection to describe the effect of BCG vaccination on infection characteristics and im-
munological pathways, in comparison to naturally acquired immunity, and (ii) using
observational data regarding NTM and M. abscessus infection rates in two CF cohorts with
and without routine BCG vaccination.
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2. Materials and Methods
2.1. Bacterial Strains

M. abscessus strain MA07 used in this murine study was a clinical isolate kindly
provided by Professor Vitali Sintchenko, Centre for Infectious Diseases and Microbiology,
Westmead Hospital (Sydney, Australia). M. abscessus and M. bovis BCG Pasteur strain
(ATCC35734) were grown in a rolling incubator at 37 °C in Middlebrook 7H9 media (Becton
Dickinson, BD, Franklin Lakes, NJ, USA) supplemented with 0.5% glycerol, 0.02% Tween
20, and 10% albumin-dextrose-catalase (ADC) or on solid Middlebrook 7H10 agar (BD)
supplemented with oleic acid-ADC.

2.2. Animals

Six- to eight-week-old C57BL/6 mice were purchased from Australian BioResources
(ABR, Sydney, Australia) and maintained at the Centenary Institute (Sydney, Australia)
under specific pathogen-free conditions. All animal work was performed in agreeance with
Sydney Local Health District (SLHD) Animal Ethics and Welfare Committee guidelines,
which are set in accordance with the Australian Code for the Care and Use of Animals
for Scientific Purposes (2013), as described by the National Health and Medical Research
Council. All work performed in this study were approved by SLHD Animal Ethics and
Welfare Committee under protocol 2018-018.

2.3. Mouse Immunisation and Infection

Mice were immunised subcutaneously at base of tail with 5 × 105 colony forming units
(CFU) BCG. For infection with M. abscessus, mice were anaesthetised by intraperitoneal
(i.p.) injection of Ketamine/Xylazine (80–100 mg/kg) and then infected by intranasal
(i.n.) administration of 106 CFU M. abscessus in a total volume of 25 µL. For challenge
experiments, mice were rested after vaccination with BCG or primary infection with
M. abscessus for ten to twelve weeks, and then infected with 106 CFU M. abscessus i.n.
in a total volume of 25 µL. Seven days later, the lungs and spleens were harvested and
homogenised before serial dilution to plate on supplemented Middlebrook 7H10 agar
plates. CFU were enumerated three to five days later and expressed as log10 CFU.

2.4. Cell Isolation and Flow Cytometry

Seven days before the final challenge, mice were bled from the lateral tail vein to
isolate peripheral blood mononuclear cells (PBMCs) using Histopaque1083 (Sigma-Aldrich,
St. Louis, MO, USA) to stratify blood cells. Lung single cell suspensions were obtained
seven days after challenge by digesting lung tissue with Collagenase IV and DNase
(Sigma-Aldrich) for 30 min in a 37 ◦C waterbath. The tissue was then dissociated using a
gentleMACS dissociator (Miltenyi Biotec, Bergisch Gladbach, Germany), and erythrocytes
removed using ACK lysis buffer. Single cell suspensions were stained with marker-specific
fluorescently labelled monoclonal antibodies (mAbs) to ascertain immune cell populations
(Supplementary Table S1). Cells were then stained with Fixable Blue Dead Cell Stain (Life
Technologies) and fixed with BD Cytofix/Cytoperm™ kit in accordance with manufac-
turing protocols. Intracellular staining was also performed, using fluorochrome-labelled
specific mAbs (Supplementary Table S2). To assess antigen-specific expression of cytokine
by T cells, PBMCs or pulmonary cell suspensions were stimulated overnight with 107

CFU/mL of M. abscessus, then incubated with Protein Inhibitor Cocktail (BD) for 5 h. Cells
were then stained for surface and intracellular markers as described above. Samples were
run on a BD LSR-Fortessa (BD) and analysed using FlowJo™ analysis software (Treestar,
Woodburn, OR, USA) using the gating strategy outlined in Supplementary Figure S1.
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2.5. Comparison of BCG Vaccinated and Unvaccinated CF Cohorts

Across a three-year period (2017–2019), the medical records of all paediatric patients
attending CF clinics at The Children’s Hospital at Westmead (CHW, Sydney, Australia—no
at-birth BCG vaccination) and Red Cross War Memorial Children’s Hospital (RCWMCH,
Cape Town, South Africa—universal routine at-birth BCG vaccination) were examined.
Ethics approval was granted by the ethics committee at each site (2019/ETH13741 or
HREC 249/2020). Both CF clinics have NTM specific screening strategies in place to
detect and identify NTM infection based on annual surveillance on sputum samples. The
following data were collected from the medical record: demographic data including age,
anthropometry and BCG vaccination status. Height, weight and BMI were defined as the
highest value for each calendar year (as z-scores), and then as the highest “overall” value
for the 3-year period, using WHO (for children aged <2 years) or CDC (for those ≥2 years).
Annual lung function (FEV1) was defined as the highest value in the calendar year, as
%predicted using GLI reference equations. Microbiology status was categorised in each year
for NTM, Pseudomonas aeruginosa, Staphylococcus aureus, Aspergillus spp. and Mycobacterium
tuberculosis: as either “intermittent”, defined as <3 laboratory isolation during the period,
“colonised”, defined as ≥3 isolates/year or >50% of samples if >4 samples/year, or “any
isolation” which was a positive result in either category. For the entire 3-year period, any
positive category in a given year translated to a positive value for “overall” status.

2.6. Statistical Analysis

Statistical analysis was obtained using GraphPad Prism 9 software (GraphPad Soft-
ware, San Diego, CA, USA). Parametric data were described as mean (SD). Pearson’s chi2

test was used to compare rates for categorical data and independent t-tests for continuous
data. Differences between more than two groups were evaluated using one-way analysis
of variance (ANOVA). Statistical significance was defined as p ≤ 0.05.

3. Results
3.1. Protective Immunity Afforded by BCG Vaccination in Mice

To determine if BCG could impact on M. abscessus infection, mice initially were either
vaccinated subcutaneously (s.c.) with BCG or infected via the intranasal (i.n.) route with
M. abscessus (as a control for natural immunity acquired from prior exposure, hereafter
referred to as convalescent) and the frequency of M. abscessus-specific T cells examined.
BCG-vaccinated mice displayed significantly higher proportions of multifunctional CD4+ T
cells secreting IFN-γ, IL-2 and/or TNF compared to naïve mice (Figure 1A,B). Convalescent
mice also had notably increased proportions of IFN-γ+IL-2+TNF+CD4+ T cells in the
blood, though this did not reach significance (Figure 1B). Thus BCG vaccination results in
significant levels of circulating M. abscessus-specific polyfunctional CD4+ T cells in mice.

The impact of BCG-induced immunity on protective efficacy was examined by chal-
lenging vaccinated mice i.n. with M. abscessus. Prior infection with M. abscessus (con-
valescent group) resulted in significant reduction in bacterial load against subsequent
M. abscessus infection in both the lung (Figure 2A) and spleen (Figure 2B) compared to
unvaccinated mice (~1 log10 CFU protection in lung, ~2 log10 CFU in spleen), indicating
that protective immunity to M. abscessus can be achieved in this model. While there was
some protection afforded by BCG vaccination in the lung (0.33 log10 CFU), this did not
reach statistical significance. However, BCG vaccination resulted in significant protection
against M. abscessus in the spleen, with a reduction of ~1.5 log10 CFU compared to un-
vaccinated mice (Figure 2B). Thus, BCG could impart some level of protective immunity
against M. abscessus in a murine model, which was most apparent in limiting dissemination
of infection.
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using Boolean gating. Data are representative of two independent experiments and are shown as 
mean ± SEM. Differences between BCG-vaccinated and previously infected groups compared to 
unvaccinated controls was determined by two-way ANOVA (* p < 0.05, ns = not significant). 
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Figure 1. Cytokine production by circulating CD4+ T cells following BCG vaccination. C57BL/6 mice
(n = 6) were vaccinated s.c. with 106 CFU BCG and ten weeks after vaccination, PBMCs were restim-
ulated ex vivo with 5 × 105 CFU M. abscessus. IFN-γ, IL-2 or TNF was assessed by flow cytometry.
(A) Representative FACS plots of cytokine-expressing CD4+ T cells in the blood. (B) Proportion of
CD4+ T cells expressing single, double or triple positive combinations of cytokines as determined using
Boolean gating. Data are representative of two independent experiments and are shown as mean ± SEM.
Differences between BCG-vaccinated and previously infected groups compared to unvaccinated controls
was determined by two-way ANOVA (* p < 0.05, ns = not significant).
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Figure 2. Protection conferred by BCG against M. abscessus. C57BL/6 (n = 6) mice were vaccinated
s.c. once with 106 CFU BCG, infected i.n. with 106 CFU M. abscessus or left unvaccinated. Twelve
weeks after vaccination, mice were challenged intranasally with 106 CFU M. abscessus. Seven days
post-infection, bacterial load in the (A) lungs and (B) spleen was enumerated. Data were collected
from two independent experiments and are represented as reduction in log10 CFU compared to
unvaccinated mice. Statistical significance was evaluated by one-way ANOVA (**** p < 0.0001).
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3.2. Adaptive Immune Cell Response after BCG Vaccination and Protection against M. abscessus
Challenge in Mice

To determine if the recruitment, expansion, and activation of adaptive immune cells
subsets correlated with the protection observed, the cellular response was examined in vac-
cinated and M. abscessus challenged mice. Analysis of CD4+ T cells in the lung revealed that
overall numbers following M. abscessus challenge did not differ between BCG-vaccinated
mice compared to convalescent mice (Figure 3A–C). However, there were significantly
increased lung CD4+ T cell numbers in re-infected mice compared to BCG-vaccinated or
unvaccinated animals (Figure 3B). There were no significant differences in CD8+ T cell num-
ber in either BCG-vaccinated or re-infected mice compared to naïve controls. Interestingly,
there were significantly higher levels of B cells in the lungs of BCG-vaccinated mice, which
was not seen in mice previously infected with M. abscessus (Figure 3B).
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Figure 3. Adaptive immune cell distribution in the lungs of BCG-vaccinated mice challenged with
M. abscessus. C57BL/6 mice were vaccinated and challenged as in Figure 2 and 7-days post-infection
cells were isolated from the lung and analysed using flow cytometry. Representative FACS plots
of the proportion of CD4+ T cells and CD8+ T cells (A), or B cells (B) in the lung. (C) Mean ± SEM
of total CD4+, CD8+ and B cells in the lung following vaccination. Data are representative of two
independent experiments (n = 5–6) and statistical differences were evaluated using two-way ANOVA
(* p < 0.05, *** < 0.001, ns = not significant).

When the phenotype of CD4+ T cells in the lung following M. abscessus challenge
was assessed, both vaccinated groups showed significantly increased T-bet expression
(Figure 4A,B). There was no significant difference in Rorγt expression between groups
(Figure 4A,C). When Th1 effector cytokine production was examined, there was increased
IFN-γ, IL-2 and TNF production in CD4+ T cells of re-infected mice (Figure 4D–H). In
contrast, CD4+ T cells from BCG-vaccinated mice elicited intermediate level of IFN-γ, IL-2
or TNF, which did not differ significantly to levels seen in unvaccinated mice. Thus, BCG
vaccination in this model induced Th1-like response within the lung of immunised animals;
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however, responses were noticeably smaller in magnitude compared with mice previ-
ously exposed to M. abscessus. Convalescent mice also displayed significantly increased
proportions of IFN-γ+TNF+CD4+ T cells in the lungs.
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Figure 4. Transcription factor and cytokine production by CD4+ T cells in the lungs of BCG-vaccinated
mice after M. abscessus challenge. C57BL/6 mice were vaccinated and challenged as in Figure 2
and 7-days post-infection cells were isolated from the lung and analysed using flow cytometry.
(A) Representative FACS plots of the proportion of CD4+ T cells expressing T-bet and RORγt.
(B,C) Mean ± SEM CD4+ T cells expressing T-bet and RORγt, respectively. (D) Representative
FACS plots of cytokine-producing CD4+ T cells following ex vivo stimulation with 105 M. abscessus.
(E–G) Mean ± SEM CD4+ T cells producing IFN-γ, IL-2 or TNF, respectively, 7 dpi. (H) Mean ± SEM
CD4+ T cells production multiple cytokines as determined using Boolean gating. Data are repre-
sentative of two independent experiments (n = 5–6) and statistical differences were evaluated using
two-way ANOVA (* p < 0.05, ** < 0.01, *** < 0.001, **** < 0.0001, ns = not significant).
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The presence of memory-like CD4+ T cells in the lungs of vaccinated mice was also
assessed. Effector memory cells, characterised as CD44hiCD62Llo circulate in the peripheral
tissues, whereas central memory cells (CD44hiCD62Lhi) home to lymphoid organs [19]. In
the lungs following M. abscessus challenge, both BCG-vaccinated and previously infected
groups had significantly higher levels of effector memory-like CD4+ T cells (Figure 5A,B).
Central memory-like populations were not detected in appreciable numbers in any if the
groups at the time point examined. Thus, these data demonstrate that BCG-vaccination
and previous M. abscessus exposure induces significant effector memory-like populations
in the lung.

Figure 5. Memory CD4+ T cell subsets in the lungs of BCG-vaccinated mice after M. abscessus
challenge. C57BL/6 mice were vaccinated and challenged as in Figure 2 and 7-days post-infection
cells were isolated from the lung and analysed using flow cytometry. (A) Representative FACS plots of
the proportion of naïve (CD62L+CD44−), central memory (CM; CD62L+CD44+), and effector memory
(EffEM; CD62L−CD44+) CD4+ T cells (B) Mean ± SEM of memory cell subsets as a percentage of
total CD4+ T cells. Data are representative of two independent experiments (n = 5–6) and statistical
differences were evaluated using two-way ANOVA (*** p < 0.001, **** < 0.0001, ns = not significant).

3.3. Comparison of NTM Infection in Relation to BCG Vaccination Status

The Cape Town CF cohort consisted of 91 and the Sydney cohort of 231 children. Char-
acteristics of those children attending both clinics are summarised in Table 1. Comparing
the cohorts, Sydney children were taller (0.06 vs. −0.57 peak height z score, p < 0.001) than
those in Cape Town, but had similar with BMIs (0.27 vs. 0.04 peak BMI z score, p = 0.67)
lung function (98.7 vs. 91.3 peak FEV1% predicted, p = 0.31).

Table 2 details pathogen categorisation between the cohorts. The overall rates of NTM
sampling during the three-year period were equivalent between cohorts: 85% of patients for
Cape Town vs. 84% of patients for Sydney (p = 0.87). “Overall” values for the entire 3-year
period for each of the NTM categories were all numerically lower in the Cape Town cohort
and reached statistical significance for rates of NTM colonisation (0.0 vs. 6.7%, p = 0.02)
and M. abscessus colonisation (0.0 vs. 5.7%, p = 0.03). Although there were some differences
in P. aeruginosa and S. aureus isolation between in years 2 and 3, there was no significant
difference for overall rates of isolation for the other common CF pathogens.
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Table 1. Characteristics of Sydney and Cape Town Cystic Fibrosis cohorts.

RCWMCH 1, Cape Town, South Africa CHW 2, Sydney, Australia

Year 1 Year 2 Year 3 Overall Year 1 Year 2 Year 3 Overall

No. patients 71 80 82 91 208 208 213 231

% males 51 49 50 49 51 51 52 52

Age (years) 8.8 8.9 9.7 9.4 9.1 9.4 9.7 9.8

Best 3 FEV1 (% predicted) 88.0 86.3 85.4 91.3 95.6 * 96.5 * 94.7 * 98.7 *

Best Height (z score) −0.91 −0.89 −0.86 −0.57 −0.08 * −0.13 * −0.09 * 0.06 *

Best Weight (z score) −0.78 −0.74 −0.72 −0.45 −0.01 * −0.03 * −0.03 * 0.18 *

Best 4 BMI mean (z score) −0.22 −0.26 −0.27 0.04 0.06 0.06 * 0.11 * 0.27
1 CHW, The Children’s Hospital at Westmead; 2 RCWMCH, Red Cross War Memorial Children’s Hospital; 3 FEV1,
Forced expired volume in 1 s; 4 BMI, Body Mass Index. * p < 0.05. Data collected over the 3-year study period of
the study (2017–2019). Data are shown as mean unless otherwise indicated.

Table 2. Comparison of microbiology categorisation of patients between Sydney (Australia) and
Cape Town (South Africa) CF cohorts.

RCWMCH 1, Cape Town,
South Africa CHW 2, Sydney, Australia

Year 1 Year 2 Year 3 Overall Year 1 Year 2 Year 3 Overall

Number tested for NTM (%) 43 (61) 41 (51) 55 (67) 77 (85) 129 (62) 139 (67) 131 (62) 193 (84)

Any NTM

Intermittent (%) 2.33 4.88 1.82 5.19 4.65 5.04 6.11 7.77

colonised (%) 0 0 0 0 3.88 5.76 6.11 6.74 *

any isolation (%) 2.33 4.88 1.82 5.19 8.53 10.79 12.21 11.92

M. abscessus

Intermittent (%) 2.33 0 0 1.30 0.78 0 3.05 2.59

colonised (%) 0 0 0 0 3.10 5.04 6.11 5.70 *

any isolation (%) 2.33 0 0 1.30 3.88 5.04 9.16 * 7.25

M. avium

Intermittent (%) 2.33 2.44 1.82 3.90 3.88 3.60 3.05 4.66

colonised (%) 0 0 0 0 1.55 1.44 0 1.55

any isolation (%) 2.33 2.44 1.82 3.90 5.43 5.04 3.05 5.70

M. intracellulare

Intermittent (%) 0 4.88 1.82 3.90 0 1.44 0.76 1.55

colonised (%) 0 0 0 0 0 0 0 0

any isolation (%) 0 4.88 1.82 3.90 0 1.44 0.76 1.55

Number tested for
other bacteria (% sampled) 71 (100) 80 (100) 82 (100) 91 (100) 208 (100) 208 (100) 213 (100) 231 (100)

Pseudomonas aeruginosa
Intermittent (%) 28.17 18.75 29.27 45.05 19.71 14.90 15.49 * 35.50

colonised (%) 16.90 18.75 14.63 28.57 13.94 12.02 9.39 19.05

Staphylococcus aureus Intermittent (%) 64.79 66.25 67.70 84.62 74.04 78.85 * 80.75 * 90.48

Haemophilus spp. Intermittent (%) 12.68 15.00 12.20 27.47 16.83 10.58 11.74 28.14

Aspergillus spp. Intermittent (%) 25.35 21.25 20.73 32.97 22.60 25.48 23.00 37.66

Footnote: 1 CHW, The Children’s Hospital at Westmead; 2 RCWMCH, Red Cross War Memorial Children’s
Hospital; NTM, Nontuberculous mycobacteria. * p < 0.05. Data collected over the 3-year study period of the study
(2017–2019). Data is shown as mean unless otherwise indicated.

4. Discussion

The major aim of this study was to assess the utility of BCG vaccination in protecting
against M. abscessus infection, using both a murine model and CF cohorts with and without
BCG administration. In mice, BCG vaccination did confer significant protection against
dissemination of M. abscessus to the spleen; however, unlike prior M. abscessus infection,
minimal protection was afforded by BCG in the mouse lung (Figure 2). BCG is known to be
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protective against disseminated TB [20]. As BCG is a live-attenuated vaccine delivered sys-
temically, it can seed to the spleen and induce localised immunity, preventing significant dis-
semination upon subsequent intranasal mycobacterial challenge [21]. Indeed, BCG induced
the greatest level of circulating, cytokine-expressing M. abscessus-specific CD4+ T cells in the
blood (Figure 1), yet was a relatively poor inducer of T cell responses in the lung (Figure 3).
While both BCG and prior M. abscessus infection elicited Th1 responses and multifunctional
CD4+ T cells in the lung, convalescent mice had higher responses which correlated with
the protective efficacy observed. The role of multifunctional CD4+ T cells in M. abscessus
infection has been studied recently in a large cohort study, where triple-positive CD4+ T
cells correlated with better disease control [22]. The functional capacity of triple-positive
CD4+ T cells has also been studied in other mycobacterial models, though the evidence is
less well-defined. In M. tuberculosis infection, polyfunctional CD4+ T cells appear to have
higher proliferative capacity and are correlated with better disease control [23]. However,
in a Phase IIb randomised control trial of the TB vaccine candidate MVA85A, polyfunctional
T cells did not correlate with protection against M. tuberculosis [24].

Both BCG vaccination and prior M. abscessus exposure resulted in significant levels of
effector memory-like CD4+ T cells in the lung following intranasal challenge. The presence
of effector memory-like cells is crucial in the context of vaccine development as these
cells are able to rapidly acquire effector functions, subsequently enabling early killing
of bacteria and inflammatory cytokine production to recruit other effector cells for early
bacterial control [25]. The extensive influx of these cells into the lung following intranasal
M. abscessus challenge in previously BCG-vaccinated or M. abscessus-exposed mice suggests
their importance in the early control of M. abscessus infection. BCG vaccination was also
associated with elevated levels of B cells in the lung following M. abscessus challenge, which
was not seen after prior M. abscessus vaccination. The role of B cells in the context of BCG
vaccination against M. abscessus has been explored previously. Following BCG vaccination,
B cell-deficient mice have overwhelming neutrophilia, which hinders the capacity for DC
migration to the mLN in order to prime CD4+ T cells to induce a potent Th1 response [26].
Several studies have demonstrated a significant level of antigen-specific IgM and IgG
production in the context of BCG vaccination [27] and BCG-specific antibodies have been
shown to enhance Th1 responses in the context of M. tuberculosis infection [28,29]. Thus,
while there is some evidence suggesting a role for B cells in enhancing anti-mycobacterial
protective immunity, the data presented here suggest that expansion of BCG-specific B cells
does not appear to play a major role in protection against pulmonary M. abscesses infection
in mice.

In paediatric CF patients in South Africa, where BCG at birth is part of the routine
immunisation schedule, lower rates of NTM and M. abscessus colonisation were found,
as well as lower rates of any isolation of M. abscessus compared to those in a CF centre in
Australia, where patients have not been vaccinated with BCG. Lower rates of infection in
countries with routine BCG vaccination is also supported by a recent report of incidence in
a Turkish CF centre where only 2.1% had at least one NTM positive culture from respiratory
samples collected between 2012 and 2020 [30]. While epidemiological observations such
as this correlate with the notion of the cross-protection of BCG and NTM, it is important
to consider some confounding factors that may skew the interpretation of these data. The
overwhelming prevalence of M. tuberculosis, as well as a higher prevalence of ubiquitous
(or environmental) mycobacteria in South Africa may contribute to the cross-protective
immunity observed [31]. This theory is supported by evidence that prior sensitisation to
NTMs can adversely affect protection afforded by BCG against pulmonary TB [32]. In
a worldwide study of broader NTM prevalence by the NTM Network European Trials
framework (NTM-NET), M. abscessus accounted for 0–2% of all NTM isolates in South
Africa, compared with greater than 8% of isolates in Australia [33]. While beyond the scope
of this study, these confounders could be addressed using a randomised control trial of
BCG vaccination to prevent M. abscessus infection across multiple centres with differing
rates of M. abscessus infection.
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5. Conclusions

In conclusion, BCG vaccination induced multifunctional antigen-specific CD4+ T-cells
in the lung and circulating in blood, which correlated with protection against bacterial
dissemination to the spleen in a M. abscessus mouse model. Observational data across two
CF cohorts demonstrated lower rates of NTM and M. abscessus infection in the cohort that
received routine BCG vaccination. This study provides a platform for future evaluation of
BCG, or modified forms of BCG, as a valuable tool to provide protection against difficult to
treat M. abscessus infection in children with CF.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/vaccines11081313/s1. Table S1. Monoclonal antibodies used for CD4+ T
cell analysis. Table S2. Monoclonal antibodies used to assess antigen-specific cytokine production.
Figure S1. Gating strategy for expression of cytokines and transcription factors by CD4+ T cells.
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