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ABSTRACT

The thesis describes the theory and design of a general
problem solving system. The system uses a single general
heuristic based on a formal definition of differences within
the framework of means/ends analysis and employs tree search
during problem solution. A comparison is made with two other
systems using means/ends analysis. The conditions under
which the system is capable of solving problems are
investigated and the efficiency of the system is considered.

The system has solved a variety of problems of varying
complexity and the difference heuristic appears comparatively

accuratg for goal-directed search within certain limits.



1. INTRODUCTION

1.1 Introduction

One of the often stated basic goals of Artificial
Intelligence research has been the construction of machines
which perform tasks requiring some form of 'intelligence'

(9, 21, 28]}. Since a good deal of natural intelligence is
involved in solving everyday problems, the study of the
concepts and techniques of problem solution has long been an
active area of research in computer science.

Clarity is required as to the question of the scope of
the study of problem solving. It has been observed by Ernst
and Newell (9) that from the user's point of view a computer
is a general problem solver and that any working set of
programs is in fact the solution of some problem. However
problem solving at this level is usually not considered and
most work in the field has been more concerned with the
discovery of general rules and methods involved in the
solution of problems rather than with the attainment of a
solution for any particular problem.

The thesis describes the design and implementation of
the problem-solving system SDPS (Syntactic Deductive Problem
Solver) . SDPS is intended as a general purpose problem
solver in that it can deal with a wide variety of problems
within a single type of problem formulation. It uses a
single general heuristic technique for goal-directed tree
search. The system was developed largely to investigate the

heuristic power of the method and to consider the effective



generality of the heuristic technique. The SDPS system  is
written in a version of ALGOL compatible with the NUALGOL
compiler for the Univac 1106. Algol was selected mainly for
reasons of efficiency of execution as this broadens the
universe of problems which may be considered. A listing of
the system is given in Appendix B.

SDPS uses the general concept of means/ends analysis for
goal-directed search. Means/ends analysis has featured in
the design of a number of problem solving systems, e.g.

GPS (9}, FDS {22, 23) and STRIPS {12]. Means/ends analysis
consists essentially of establishing some measure of
differences between a given problem object and a goal object
and of ;using these differences to direct the search for a
solution which consists of a sequence of object transformations
until the goal object is attained. The basic model of a
problem used by such systems is given in section 1.4.

Chapter Two contains a brief outline of the GPS and FDS

systems and considers their relationship to SDPS.

The differences used by SDPS are established by the use
of a specific object representation and a formal definition
of the differences which may occur between two objects in
terms of their constituent elements at particular positions
in the representation. Chapter Three is devoted to a
summary of the SDPS system design. The object representations
are described and the formal concept of differences defined.
The use of these differences for the selection of operators
which transform an object towards the goal representation is

explained. SDPS employs a general disjunctive tree search



and the use of the heuristic for ordering nodes is discussed.
Tree search enables the use of some standard measures of
heuristic power, namely penetrance {6} and effective branching
factor (21}.

The effective generality of the system is essentially a
consideration of the type of problem SDPS is capable of
solving. Chapter Four considers this question rather
formally by the use of a model of a problem and the
establishment of conditions under which SDPS will obtain the
solution to a problem. The algorithm used by SDPS is also
given here.

The last chapter defines the measures of efficiency used
by SDPS,and gives some examples of the type of problem solved
by the system.

The rest of the introductory chapter considers the two
major approaches to problem solving systems and the
conflicting aims of generality and efficiency. It also
defines the basic concepts of problems and heuristic search

used by systems like SDPS.

1.2 Approaches to Problem Solving

There have been two major lines of attack in computer
studies of problem solving. The first has been to develop
problem solving systems which serve as a model of cognitive
processes for use as an aid to understanding natural (human)
intelligence. This is primarily an approach from the field
of psychology. An example is the work of Newell and Simon

(20} in which a theory is constructed which considers a person



as an information processing system (IPS). A model of an
IPS is developed and applied to specific task environments,
and an attempt is made to ally these results to those of
humans involved in similar environments. The General
Problem Solver (GPS) of Newell, Shaw and Simon {9} was
originally developed for studying natural intelligence.

The second approach is that of building systems which
will solve problems irrespective of whether they use human
methods or not, i.e. the 'intelligence' they exhibit need
have no relation to natural intelligence. One example here
is theorem proving programs employing the resolution principle
{28}.

The line taken in the SDPS system falls somewhere between
these two extremes. Although a descendant of GPS employing
the same technique of means/endsanalysis as a heuristic, the
method of obtaining the heuristic information is probably

closer to the second approach than to the first.

1.3 Efficiency and Generality

Another area in which conflicting approaches have been
made to problem solving is on the question of the degree of
generality or expertness of the system. Questions of
generality concern the breadth of the universe of problems a
problem solver is prepared to work in and the generality is
achieved by the use of universal methods and universal
problem representations. The expertness of a problem solver
is measured by the quality of the answers achieved.

In general it may be said that the more general a problem



solver the less efficient it is. To quote Feigenbaum {11}:
'A view of existing problem solving programs would
suggest, as common sense would also, that there is a
kind of "law of nature" operating that relates problem
solving generality (breadth of applicability) inversely
to power (solution successes, efficiency, etc.) and

power directly to specificity (task specific information).’

As GPS was originally designed to model natural
intelligence, little attention was paid to the quality of
problem solving. The SDPS system uses the same universal
concepts as GPS and as a result suffers to some extent from

the lack of problem specific heuristics.

1.4 Heuristic Search in Problem Solving

The following formulation of a problem has been described
previously {2}, [8) and has been called the problem solving
problem. A task environment always contains a set S of
problem situations and a set F of operators which may be
applied to elements of S. Given an initial situation s e S
and a set of desired situations ( £ S, a solution to the
transformation problem is then a sequence of operators

£1,f5,..,£f4 such that f; ¢ F for 1 = 1,2,..,n and

(...£.(8)...)) ¢ w

Most problem solvers attack this problem by searching the
tree of all possible operator applications. The operators
are in effect partial functions since not every operator is

applicable to every problem situation. Heuristic search is



used if the order in which the nodes are selected is
determined by the heuristic praperties of the nodes themselves.
The heuristics may be any features of the task environment

which suggest the potential location of the goal. Heuristic
search 1is obviously essential for any non-trivial problem as

the complete problem tree may be of infinite size.



2. MEANS/ENDS ANALYSIS IN PROBLEM SOLVING

2.1 Means/ends Analysis

Means/ends analysis is a general heuristic search
technique employed to order the selection of operators to be
applied to problem states {9, 28!. An operator is selected
as a function of the differences between the given state and
the required state - selection being based on the probability
that application of the operator will remove at least one
difference between the states. Differences may be defined
in a number of ways, e.g. they may be a list of features
which occur in one state but not in the other, or they may be
a partiil list of reasons why the given state does not
satisfy a test for the goal state, etc.

Problem solvers based on means/ends analysis usually
employ a recuvrsive problem reduction approach. If an
operator is judged as likely to remove a difference and the
operator is not immediately applicable to the current state,

a subproblem is set up to transform this state into one in
which the operator is applicable.

Nilsson {21} has introduced the concept of 'key operators’,
i.e. operators which must be applied at some stage in the
solution sequence. Differences may be used to identify such
potential key operators. The original problem then reduces
to the subproblem of transforming the initial state to a state
in which the key operator is applicable, and the subproblem of
transformation from this state to the goal state. The

subproblems may of course themselves be reduced to a set of



subproblems.

Some of the importance of the means/ends approach lies
in the fact that it appears to be a general technique
employed by most human problem solvers in certain task

environments {17}.

2.2 The General Problem Solver

The GPS was originally envisaged in 1957 and existed in
a number of forms until 1969. It is a very general
multipurpose problem solving program employing the heuristic
technique of means/ends analysis. The final version has
been very completely documented in {9). The following is a
brief summary of certain features relevant for comparison to
the SDPS system.

A problem as specified for GPS consists of:

(1) An initial object;
(2) A set of desired objects:
(3) A set of operators.

Objects are represented as a general tree structure,
each node having an arbitrary number of branches. Each node
may also have a local description consisting of a number of
attribute-value pairs.

Two types of operator occur in GPS. The operators
transform objects into new objects. Schema operators are
represented as a pair of objects containing variables: the
first object giving the form of the input, and the second
giving the form of the output. Move-operators are somewhat

more flexible. These consist of a set of constraints and a



set of transformations: the transformations indicate how the
input is to be modified and the constraints specify the
conditions under which the operator may be applied.

In addition to the problem formulation, it is necessary
to provide, among other things, the following:

(1) A set of differences;
(2) A table-of-connections;
(3) A difference ordering.

The table-of-connections provides an explicit user-
defined link between the differences and the operators
relevant to removing them. Differences in GPS are user-
specified and the differences detected during problem solving
consist;of a difference type, difference value and the
position of the node where the difference occurred.

Operators are selected by retrieving from the table-of-
connections those operators linked to difference type. The
differences are ordered in terms of degree of difficulty.

GPS uses the standard recursive approach to tree search
outlined in 2.1, but in fact employs four general types of
goal. These are:

(a) Transform object A into object B;

(b) Reduce difference D on object A;

(c) Apply operator Q to object A;

(d) Select the elements of set S which best fulfil criterion C.

The solution procedure is roughly as follows: If a
difference D is detected between objects A and B during any
attempt to achieve a goal of type (a), then a subgoal of type

(b) is set up. If the table-of-connections indicates that
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an operator Q is applicable ta reducing D it is applied if
possible otherwise a subgoal af type (c) is set up to make it
applicable. Goals of type (d) were introduced in later
versions of GPS to handle situations in which it is necessary
to select elements of some set of objects on the basis of
their similarity to a required object structure.

The type of search is essentially depth first - GPS works
on a goal for as long as it seems desirable. Sandewall {25!}
has called this the labyrinthine approach. GPS requires
differences to get easier and easier as problem solving
progresses. An operator is rejected if it leads to a
difference more difficult than the difference for which the
operater was selected.

GPS has solved a wide variety of problems {9} but is on
average a very slow performer. However it can work on

problems requiring both inductive and deductive reasoning.

2.2.1 Some Limitations of GPS

The slow speed of GPS limits the variety and complexity
of problems it can be applied to.

Labyrinthine search tends to limit the attention of GPS
to one particular area of the goal tree for considerable
periods of time. The program requires a more global view of
the entire task environment and requires the ability to
select goals globally rather than locally.

The problem solving actions and the efficiency of GPS
are strongly related to the particular problem representation

selected by the user.
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2.3 The Fortran Deductive System

The FDS system {22, 23} was developed in the late 1960's.
It is to some extent a descendant of GPS, employing the same
heuristic technique of means/ends analysis.

A problem is specified to FDS as:

(1) An initial object:;
(2) A desired object;
(3) A set of operators.

All objects are represented as prefix polish strings.
Differences between objects are determined by testing
corresponding elements in the strings. In contrast to GPS
there is no explicit linking of operators and differences,
and no definition of the differences is supplied by the user.
The system itself sets up tables to detect whether an operator
is relevant to reducing a difference.

The operators are specified in the form of compiler-like

productions. Similar to the GPS schema-operator, they
consist of a pair of objects: the first object specifying
the input and the second the output. There is no FDS

analogue of the GPS move-operator.

FDS differs from most problem solvers in that it does
not employ tree search. Instead a top-down depth first
approach is used.

The procedure is roughly as follows.

The top level consists of the initial object s, the
desired goal g and an ordered set of operators relevant to
removing differences between the strings. The ordering of

the operators is based on the probability that the operator
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will remove a difference.

The first operator is selected from the list and matched
with string s. If it can be applied, a new string s' results.
The level is increased by one and the initial and goal string
at this level are s' and g respectively. If an operator is
not applicable a subgoal g' is set up, the level is increased
by one, and the initial and goal string are s and g'
respectively. A new ordered set of operators is generated
for this level.

The procedure continues in this way. If a subgoal is
solved the operator which gave rise to it is applied and
search continued. As each new (s,g) pair is generated a
goal test is applied.

If the depth bound is exceeded without a solution being
obtained, the level is decreased by one and the procedure
restarted. If all the operators at a level are exhausted
search is restarted at the next higher level.

Search continues until either a solution is obtained,
the allotted time is exhausted or all operators have been

attempted without success.

2.3.1 ©Some Limitations of FDS

The major drawback of the FDS system lies in the top-
down approach. Although it prevents the explosive growth
of nodes which may arise in standard tree-search procedures,
efficient search requires a highly selective ordering of the
operators to be applied at each level. If an incorrect

operator is selected at a fairly high level above the depth
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bound, the search below that point will effectively be blind
in that all operators below that level must be exhausted
before control returns to the level. This type of search
gives little idea of the heuristic power of the methods used.

By overwriting paths which may already have occurred at
a lower level, FDS tends to repeat steps until a sufficiently
high level is reached for a complete solution sequence to be
obtained. This type of repetition is far simpler to isolate
in tree search and again detracts from the efficiency of the
system.

The only criterion of efficiency used in FDS is that of
time to solution. This makes it difficult to draw
comparisons with other problem solving systems as the time
taken is to a large extent dependent on the language used,
the machine the problem solver is implemented on, etc. A
measure of efficiency such as penetrance {6} in tree search
would enable a better test of the formal type of means/ends
analysis used in FDS.

The lack of an operator similar to the move-operator of
GPS makes the formulation of certain type of problem
extremely awkward. However this type of operator would be

very difficult to incorporate in the FDS structure.

2.4 The SDPS system

The problem solver under consideration was originally
developed along the lines of the FDS system. As a result

the formal concepts of operators and differences are similar

to those used in FDS.
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When the problems inherent in the top-down approach to
search were discovered by practical observation, it was
decided to adopt the more conventional method of tree search.
However the approach taken is not that of the GPS labyrinthine
search but is more similar to the backing-up techniques of
MULTIPLE (27, 28}. When an operator has been applied or a
new subgoal set up, the new node is evaluated and this wvalue
backed up through the tree. Each node in the tree has
associated with it the name and value of its best successor.
It is then a fairly simple procedure to determine the
potentially best node in the entire tree and this node 1is
selected for expansion. Sandewall {25} refers to this as the
best-bugl method of tree search and the intention of using it
is to get an overall view of the partial state of solution of
the problem. The method differs from that of MULTIPLE in
that only one successor of a node is generated at a time
whereas MULTIPLE expands all immediate successors before
evaluating the nodes.

SDPS employs only one type of goal as opposed to the
four used by GPS. This goal is the equivalent of GPS goal
type (c), i.e. apply operator Q to object A. GPS goal types
(a) and (b) are implicit in the SDPS design and there is no
SDPS analogue of goal type (4d).

The SDPS system is thus a general problem solving
program employing heuristic search techniques based on a
formal concept of means/ends analysis. It defines its own
differences and table-of-connections and employs a general
technique of tree search to discover a solution sequence of

operators.
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3. THE SDPS SYSTEM

3.1 The Task Environment

The system works within the framework of the standard
heuristic search problem paradigm. A problem specification
consists essentially of a triple (s, F, t) where s is an
initial (given) object, t is a desired object and F a set of
operators. The operators transform object states to new
object states in the state space. A problem is considered
solved when a solution sequence is obtained, a solution

sequence being a sequence of operator transformations

fn ,( fn-l(

I
=

ce.f (s8).ll))

where h i1s equivalent to the goal object t.
No attempt is made to optimize the solution sequence in
the sense of finding the shortest path from the initial state

to the goal state.

3.2 The Representation of Objects

The set of symbols used to represent objects consists of
a finite set of constant symbols C and a countably infinite
set of variables V. These form the alphabet of the problem
space.

The constant symbols are programmer-defined and are
specific to the problem under consideration. They provide
the context of the problem.

Formally, the set C consists of the union of all sets
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Ci where Ci is the set of all constant symbols of degree 1i.
The sets are non-intersecting, i.e. no constant symbol may
have varying degree.

e.g. in the context of propositional calculus, the set

Co = {P, Q, R} where P, Q, R are propositions of degree O,

C, = {~), a unary operator, and C. the set of binary operators
[Ar =, Vv].

The variables V are not problem specific - they are
considered as free variables and are represented as Vi’ i> o.
e.g. V, A V.

The use of constant classes is a convenient method of
grouping similar constant symbols for various types of
problemy, e.g. the use of classes of similar operators in
group theory.

The classes form a cover D for the set of constants
where D = 2 Di (1 =21,...,m). All the constants in Di are
of the same degree for all i and every constant symbol is in
at least one Di'

All constant symbols are held in a symbol table giving
their degree, class, etc.

Objects in SDPS are represented conceptually by tree
structures. The constant symbols of degree greater than
zero form the non-terminal nodes, variables and constants of
degree zero form the terminal nodes. Formally an object may
be defined as a well formed structure as follows:

(1) A variable or constant of degree zero is a well formed

structure.

(2) A node of degree n with n ordered successor well formed
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structures is a well formed structure.

The ordering concept is necessary to allow comparison
between structures.
e.g. in elementary algebra, the expression ((-A) +B * (C-D))/E

could be represented by the tree in Fig. 3.1.

N
¥/// \\\L
_/ \B C/ \D

l

A

E

Figure 3.1

Note that the first minus sign is unary. The trees as
defined are n-ary.

Two object structures may now be compared in terms of
the relative positions of their substructures. This requires
some method of numbering or ordering the nodes to allow
direct references to any subsection of the tree. The nodes
of the structure are numbered in the order in which they
would be visited by some fixed technique of traversing the
tree - in SDPS pre-order traversal is used and any reference
to traversing an object tree will mean pre-order traversing.
Pre-order traversal means that the root node is the first
visited and is assigned the positional value of one. Any
other method of traversing or numbering could be used
provided consistency is maintained.

Pre-order traversal for binary trees is defined recursively by
Knuth {14} as:

(1) Visit the node;
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(2) Traverse the left subtree;
(3) Traverse the right subtree.

Although the object structures are in fact n-ary trees,
any n-ary tree may be simply transformed to a binary tree {14]}.
The transformation is achieved by linking together the sons
of each node and removing the vertical links except between a
father and his first son.

The system does not, as yet, consider an object as a
forest, where a forest is defined as an ordered set of O or
more trees. This is possibly a more flexible approach than
the above, as an object structure could be considered as a
set of attributes.

In practice it is found that virtually all object
structures are already binary trees, as thec opcrators in most
theories considered are either unary or binary.

As a basis for comparison between objects and to
facilitate the discovery of differences between them the
following terms must be defined.

The size of the tree N(s) 1is the number of nodes 1in
tree s.

The symbol Sy is the value of the i'th node (as
determined by the traversing).

S(i) 1is defined as the subtree rooted at node i.

The direct successors of any node are ordered in terms of
first son, second son, etc. The ordering is from left to
right and any reference to the i'th direct successor of node
j is defined by the relationship in which the sons stand to

the parent node.



19

e.g. //»+\\\ A is considered the
A B first son, B the
second.

The tree structures used are usecfully flexible as

virtually any problem object can be defined in terms of them.

3.3 The Storage and Retrieval of Objects

Objects in SDPS are stored by filing them in a binary
tree structure similar in concept to the canonical tree of
GPS.

To facilitate comparison between problem structures in
the goal tree each object is given a unigque name when it 1is
first generated. The objects are filed in node number order.

The nodes in the discrimination tree contain 5 items,
packed for storage efficiency:

(1) The value of the node;
(2) The name of the node;
(3), (4), (5)

The left branch, right branch, and the parent of the node.

The boolean procedure NAMELT is used to file the strings
and to determine whether the particular string is already in
existence. Filing is done by comparison between the value

of the node and the value at the current position in the

string. If a match is obtained the right branch is taken
and the string pointer incremented; 1f there is no match the
left branch 1s taken. If the end of the string is reached,

the node is tested to determine whether the string has been
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named or not. If at any stage of the procedure the right
branch is empty, the rest of the string is filed to the right
of the node. If the left branch is empty, the first value
is filed to the left of the node and the rest of the string

filled in to the right of the new node.

e.g. Given structures with ordered nodes -+ABC
to be filed -BC
+AB

-+ABD

the tree would be

Figure 3.2

The numbers indicate the order of filing.

The filing procedure allows for fairly quick
identification and storage of objects. It is well suited to
the notation used as a large number of the objects generated
during solution of a particular problem have the same initial
sequence of symbols, leading to the saving of a quite
considerable amount of storage.

The name of the structure is the number of the last node

in the string, e.g. in the above tree the object -+ A BD has
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name 11.

The structure name is used to retrieve strings from the
tree. The object is obtained by backing up from the named
node to the top node, returning in order the valuecs of those
nodes reached by a right branch from the parent.

Once a string has been retrieved it 18 transformed
(procedure POSMAP) into a tree-like structure by providing
forward and backward links between substructures. This
mapping facilitates manipulation of the objects during the

detection of differences and the selection of operators.

3.4 THE COMPARISON OF CBJECTS

To facilitate the comparison of objects it is necessary
to consider the following concepts.

Roughly speaking two structures are equivalent if they
have the same shape and each node contains the same information,

i.e. they have the same interpretation within the problem

environment. Formally two objects s and t are cquivalent if
N(s) = N(t) and for every ordered node i in the structures
either

(1) s, = ti = Vj for some j, i.e. both nodes equal the same

variable, or

(ii) s., t. ¢ D, for some k.
1 1 k

Substitution for any of the terminal nodes Vi is allowed,
provided this substitution is consistent throughout the
structure. A substitution function sub (Vi’ u, s) 1is
defined as the object structure which results from replacing

each occurrence of the variable Vi in the structure s by the
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well-formed structure u.

A structure may be a substitution instance or
specification of another structure, written s S t. Formally
sSt if there exists a substitution sequence
(sub (V.., U., s), j =1,...,n) such that s and

1] J

sub (V. _, U, (sub (V. U (...(sub (V.

in in-1' "n-1 11’ u

equivalent.

The structures s, t in Figure 3.3 are s S t.

= /N wa e SN

Figure 3.3

The relationship of correspondence is used to compare
elements within structures. It may be defined recursively
as follows. Given two object structures s and t
(1) s, C t,, i.e. the root nodes correspond,

(11) s C tj if there exist nodes /, m such that

(c) s(i) and t(j) are the n'th ordered sons of nodes

tm respectively.

Figure 3.4
€.9. given the structures in Fig. 3.4 then s, C t,, s, C t-

and s, C ts.
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3.5 A FORMAL CONCEPT OF DIFI'ERENCES

Differences between structures are selected by the
syntactic concept of elements which correspond to each other.
Differences occur when two corresponding elements are not
specifications of each other. If the element in the second
object is a variable, the first element is substituted for it
throughout the object and differences are again taken.

The advantage of this definition lies in its generality
- it is in no way dependent on the particular task under
consideration.

A difference between two objects s and t is an ordered
pair (t', k) where t' = some t. and tj C Sy -

The difference set between two structures s and t 1s

defined as

(1) The set of pairs (t', k) such that t' = some tj and
(a) tj C Sy
(b) t. is not a variable
J
(c) tj is not a specification of s -
(2) The set of pairs (t', k) such that t' = tj and there

exist §, m with the properties

(a) S C tp

(b) t, is variable

!
(c) (t', k) belongs to the difference set between s and
sub (tﬂ' s(k), t).
€.9. given the Ltwo objects in Fig. 3.5,

1
-1-

/

1 +

- AN, ce AN
N
b \Y%

] [ a 3 b L

Figure 3.5
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the differences would be (a, 3) by (1) above, and (c, §),
(b, 4) by (2) above.
This definition of differences is rather limited in
scope and in certain circumstances provides not much knowledge
about the problem under consideration.
e.g. between structures in Fig. 3.6, the only difference

detected is (-, 1).

N 2N
N, SN

4 AB C4

Figure 3.6

3.6 THE REPRESENTATION OF OPERATORS

Operators in SDPS are held in the same form as schema
operators in GPS. An operator consists of a pair of objects,
written I: = O, in which the first (left hand) object gives

the form of the input and the second (right hand) object gives

the form of the output. The operator objects usually contain
variables
e.q. £i: Vy + Vs, =V, =V,

Operators are applied to an object by matching the input
of the operator either to the current structure or to some
substructure within the object. If the structure is not a
substitution instance of the operator input, the operator
cannot be applied. If it is a substitution instance, the
particular set of substitutions required are isolated and are

used to replace the same variables in the output object.
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The set of operators is called F and individual operators
are fi e F, 1 =1,...,n. Operators may be applied at any
node in the object. The notation fij will mean that operator
f.l is to be applied to the structure rooted at node j.

e.g. given rule f, above to be applied to the cbject is

Fig. 3.7 (a) at the top node, the result of f,,(s) is

Fig. 3.7 (b).

PN

Figure 3.7 (D)

7\
VANYAS
NN

Figure 3.7 (a)

The substitutions required to make the object a
specification of the operator input are (V,, + AB), (Vo, - BC).

In using the concept of differences to direct the search
for a solution it is necessary to have some technique of
linking differences with those operators likely to remove
them. In GPS these links are defined explicitly by the
table-of-connections.

To this end it is necessary to have some efficient
method of assessing the effect of applying an operator at any
node. Even i1f the operator cannot be applied immediately,

there must be some technique of determining the possible
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effects if it could be applied at a later stage in the
solution process. Before initiating the search for a
solution the operators are analyzed by means of a rough
matching technique between the input and output structures of
each operator.

Application of an operator will tend to modify the
'shape' of the object tree as well as changing the values of
the nodes. The analysis of the effect of changes is therefore
done in terms of the effective position within the well-formed

structures, i.e. at those points at which the shape is

similar.
e.g. operator (V, + V,) - Vz: =V, - (V, - V) represented in
ig. 3.8
-1 -1
/ / AN
/ N
o2 Vo O . = v, 2 _ 3
/7 /‘/ \‘
/ / AN
\V4 N 3 AV - 4 AV 3 4 \Y L)
(a) (b)
Figure 3.8

The shape of the object has been altered and the effects
of the change would be noted in the right hand structure only
at those points at which the two structures roughly match,
i.e. at node 1, 2 & 3 in (b). Node 1 is unchanged, node 2
has become V, and node 3 is now a minus sign. The other
nodes are effectively ignored.

As differences are defined in terms of elements which

correspond to each other it would appear logical to analyze
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the operators only i.t.o. the differences which arise between

the input and output objects - the operators are then capable
of removing these differences. This approach was initially
attempted and found to be somewhat too restrictive. As a

result the concept of comparing only those elements which
correspond to each other is not used, i.e. 1t is not necessary
for matched nodes to have parents which are specifications of

each other in order to determine the effects of modification.

e.g. rule V, + (V, = Vy): = (V, + V,) - V3.
b _ 1
N RN
v, 7 - 8 S Va4
AN N
v/ Ve v, ° Vo 4
(a) (b)

Figure 3.9

The only difference which would be detected is at the
top node (-, 1) as any lower nodes would not correspond to
each other in terms of the definition. However the analysis
is taken a step deeper to include nodes 2 and 5 in (b).

This has the effect of providing a deeper knowledee of the
operator effect.

When an operator is applied to a structure, two types of
symbol may be distinguished in the output object. Firstly
there are those symbols which are constants in the r.h.s. of
the operator and which remain invariant for any application
of the rule. Secondly there are those variable symbols

whose values in the output object are dependent on the
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root. The value recorded here is however a pointer to the
second table which records the position(s) of the variable in
the input object by showing the relation of the variable to
the root node of the input. Again if a variable is in the
same position in both the input and output its value is not
recorded. The second table may be used to quickly find the
substitution value of any variable by applying the same links
to the current object.

During analysis a value is associated with each operator
as a measure of its complexity. This value 1s used as a
parameter in evaluating the 'worth' of any operator in
removing some set of differences. The current tendency is
to attempt to use the simpler operators first, as 'more' is
known about the effects of an opecrator application and
usually less effort is required to make an operator applicable.
The complexity is determined by such factors as the size of
the input and output objects (smaller structures being
favoured), the difference in size and gencral shape, the

number of positions at which the values are altered, etc.

3.7 TIHE SELECTION OI" OPERATORS

The purpose of applying any operator is obviously to
reduce the differences between the current object and the
goal object. The operators selected must be ordered in
terms of their potential usefulness. Similarly to GPS the
aim is to select operators which make the problem easier and
easier. However whereas GPS will abandon completely a line

of approach which is considered to be getting more difficult,
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such operators in SDPS are not rejected but they receive a
low estimate of potential worth. As difficulty of problems
can only be measured by the number and type of differences
which occur, the aim is to select operators which remove more
differences than they introduce.

To select operators a look-ahead procedure, similar in
concept to Sandewall's use of images {241, is carried out.

The differences selected by the method of section 3.5 are

called zero-level differences. An operator will remove a
difference (t', k) if the value at node k is transformed by
the operator to be a specification of t'. To achieve this

the operator must be applied to some structure containing

node k.
Lach difference (t', k) 1is selected 1in turn and the
following procedure applied for each operator fi’ i=1,...,n.

The structure at node k is isolated and the first cntry for
the operator in the first table above is inspected. If it
is a specification of t' the operator fik is included as a
zero-level operator.

It is then necessary to consider those structures
containing node k. [ is set initially to the parent node of
k and the matching procedure applied to the structure at node
0. ¢ is then reset to be its own parent node and so on.

The cycle of backing up and matching is continued until the
root node of the object structure has been dealt with.

In dealing with each structure containing k, the first

table is examined to determine whether there 1s an element

loosely corresponding to k, or to some substructure containing k.
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If such an entry exists and is a fixed constant which is a
specification of t', the operator fiﬁ is included in the set
of zero-level operators.

If the entry is that of a variable, the second table is
used to identify the required substitution in s. If there
is an element, say S v in this substitution structure which
matches Sy and is a specification of t', then fiﬁ is included
as a zero-level operator.

If the element S is not a specification of t' the

following situation arises. If Sh could bec transformed to a

under consideration

specification of t' then the operator fiﬂ

could be used to remove the current difference. A new
difference (t',m) is thus introduced with the hope that if
this difference could be removed, application of the current
operator would remove the current difference. The difference
(t', m) is added to the set of first-level differences.

wWhen all the zero-lecvel differences have been dealt with

the sci. of first-level differences is handled in exactly the
same way. Any operators which remove these differcnces arc
placed in the set of first-level operators. Again the

examination of these differences may lead to the discovery of
second-order differences, and so on.

This 'look-ahcad' for potential operators is halted
either when a pre-determined lcvel of differences is rcached
or when the n'th level of differences is empty. No opcrators
or differences are added to a set if they already exist in
this set or a lower set.

The selection of operators is based only on the 'rough
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matching' concept embodied in the tables. There is no test

as to whether the structure the operator is to be applied to

is a specification of the operator input.

3.8 ORDERING OF OPERATORS

Operators must be ordered in terms of their potential

ability to remove differences. The node under consideration

in the goal tree then retains the ordered list of operators

relevant to 1ts own differences.

The factors taken into account in evaluating the worth

of an operator include the following:

(1)

(3)

The various levels at which the operator was generated
i.e. the level of difference the operator would remove.
If an operator can remove a zero-level difference its
value is obviously greater than one which could remove,
say, a fourth-level difference.

The number of differences which gecnerated the operator.
An operator which can remove a number of differences 1is
of greater value than one removing only one difference.
The complexity of the operator. Simpler operators tend
to get preference as there is usually less work involved
in making the operator applicable and more is known
about the effects of the operator.

Whether an operator contracts or extends the object in
relation to whether the current object must be contracted
or extended to attain the goal object. The tendency is
to modify structures towards the required size.

The potential amount of work required to make the operator
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applicable. This is measured by comparing the operator
input to the structure and making a quick estimate of
the differences. Operators which can be applied
immediately have higher value than those which require
the setting up of subgoals.

(6) A small factor which relates the size of the object

substructure to the size of the operator input structure.

Each of the factors has a bias attached to it which can
be varied by the user to increase or decrease the effect of
any factor. It is found that in different task environments

some factors tend to be more effective than others.

3.9 THE STRUCTURE OF THE PROBLEM SOLVING TREE

The problem solving tree is a disjunctive goal tree
generated during the search for a solution by the selection
and application of operators thought likely to remove
differences between object structures.

Each node in the tree is essentially an independent
definition of a particular subproblem. The root node defines
the original problem supplied by the user. The nodes
contain packed information such as the name of the current
object, i.e. the object resulting from a particular sequence
of operator applications, the name of the desired (goal)
object, an ordered list of operators relevant to reducing
differences betwecen the objects, the value of the node, the
best successor of the node, the level of the node, the

operator which generated this node, etc., as well as linkage

information. Nodes are linked by a pointer to the parent
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node, a pointer to the first son and a pointer to a brother

node (Fig. 3.11): 27

Figure 3.11 [:] []

For each node the subproblem is to reduce the current
object to the desired object.

If an operator can be directly applied to the current
object at a node, a new node is generated as the son of the
node under consideration. This node has the same goal
object as the parent node but the current object is the
result of applying the selected operator to the current
object of the parent node.

If the selected operator cannot be applied directly a
new son is generated containing the same current object as
the parent but the new goal object is constructed in such a
way that solution of the subproblem defined by the node will
transform the current object to a state in which the operator
is applicable. Assuming the object is to make operator fij
applicable, the goal is constructed recursively as follows.

Let Orl mean any operator of degree n - in effect this is
a variable with degree. Given any node j in the object
structure, let h(j) be a function which returns a value m if
j is the m'th son of the parent node. A goal object t is to

be constructed. The following algorithm is performed:
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(1) set t = input object of operator i; = Jj.

(2) If k is the root node, exit.

(3) Set m = h(k), k = parent (k).

(4) Let ¢ be the highest index of a free variable in t and
let the degree of k be n. A tree T is constructed s.t.
the root node is On and the ordered sons are vﬂ+l""’
vC+m—l' t VormelViogn-

(5) Set t =T and go to (2).

At completion of the algorithm the structure t is of
essentially the same shape as the current object. The
structure rooted at node j of the current object corresponds
to the input structure Ii of operator i. All other
non-terminal nodes in t are variable operators corresponding
to the eequivalent operators in structure s and all other
terminal nodes are free variables corrcsponding to clements
of s. The only differences detected will thus be between
s(j) and Ii'

V, o+ V., o=

e.g. given rule f,: Vo, + V.

Current object Fig. 3.12(a). If the aim is to apply f

L2

to Fig. 3.12(a), the goal structure will be as in Fig.

3.12(b) :

Figure 3.12

The depth of search in terms of the number of levels of
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subgoals generated in the attcempt to make an operator
applicable is limited by a user supplied parameter n. The
top node is given the subgoal level of n. If a subgoal is
generated it is given level n-1, and if a subgoal of this
subgoal occurs it has level n-2 and so on. If a successor
node is reached by the direct application of an operator it
is given the same level as its parent. If a subgoal is
developed with a level of less than zero it is ignored. A
distinction must be drawn between the subgoal level of a node
and the depth of a node. The subgoal level is the number of
subproblems the system has 'looked ahead' in order to make an
operator applicable. The depth of any node n is simply the
number of nodes on the path from the top node to node n and
is defined as the depth of its parent plus one. The top
node has depth one.

When a new node is generated it is neccessary, in order
to prevent cycling, to determine whether the particular
subproblem has been attempted previously. The testing is
done by holding all previously generated object pairs. By
filing each structure in the canonical tree it can be
determined whether a structure has occurred before. If both
the current structure and the goal structure of the node are
not new, a binary search is employed to isolate the current
object in the list of generated first members of the object
pairs. The goal object is then compared with a linked list
of goal objects allied with the particular initial object.
Comparison is by canonical name.

If the pair has occurred previously at a depth much
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greater than that of the newly generated node the subtree
rooted at this node is transferred to the new node as a
shorter path to a goal is now possible. If the matched pair
is at a depth less than or equal to the depth of the current
node, the current node is simply deleted and the next best
node selected for expansion.

When a new node has been generated it is necessary to
detect the differences, if any, between the current object
and the goal object. If there are any differences a
(possibly empty) list of operators relevant to reducing the
differences are generated and linked to the node. If there
are no differences the current object is a specification of
the goal object and the subproblem is solved. If the goal
object is in fact the original goal the entire problem is
solved - the node is marked and a backing up procedure applied
to isolate the solution path.

If the goal object is not the top goal it is neccessary
to select the operator which generated the particular subgoal.
This is done by backing up through the tree to the point at
which the subgoal was first set up. This operator is then
applicd to the current object and a new node is generated to
contain the result. As the subproblem has been solved the
subgoal level of this node is incremented by one. The goal
object is then that which was aimed for immediately before
the subgoal was generated and is obtained from the parent
node of the original subgoal.

The new node is then put through the same sequence of

difference detection, sclection of operators, etc.
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3.10 LIMITATION OF OPERATORS

For efficiency in terms of time and space it is necessary
to attempt to restrict the set of operators attached to each
node as far as possible without eliminating those operators
necessary for a solution. This restriction is achieved in
two ways. Firstly by limiting the number of levels of
difference and hence levels of operator by a given parameter
(section 3.7) and secondly by keeping track of the purpose of
subgoals.

When a subgoal is originally established it is in effect
an independent subproblem. As a result it has no knowledge
of the original differences which the operator would remove
and little knowledge of the position the operator is to be
applied to. It is necessary for the subproblem to be viewed
in terms of some global strategy rather than in isolation as
the danger arises that in transforming a structure to match
the subgoal the final application of the operator may not
remove the differences it was originally intended to.

When operators are selected by examining the second
analysis table it is on the basis that some element of the
structure s would remove a difference if transferred to the
position corresponding to the difference. Such elements are
considered 'essential elements' of the operator. If during
transformation of the object the position or wvalue of such
elements is altered, application of the original operator
would no longer remove the difference. The position at which
the operator is to be applied must be held constant for the

sSame reason.



Each subgoal thus contains two additional items of
information, viz. the position of the operator which gave
rise to the subgoal and the position of its 'essential
element’. One or both of these may be empty: an operator
may be to be applied to the root node in which case no
transformation could alter its position and an operator may
be selected from information in the first analysis table,
i.e. the difference is removed by fixed constants in the
table. The information is held as a packed linking structure
showing the relationship to the root.

Any operator generated below a subgoal is tested to
determine whether it destroys the purpose of this or any

higher subgoal. Any such operators are deleted.

3.11 THE EVALUATION AND SELECTION OF NODES

In order to select any particular node for expansion it
is necessary for each node to have some value indicative of
its potential worth. Each node has an ordered sct of
operators, together with their values, attached to it. The
node value is determined by a function of the n best operators
at the node together with factors based on the depth of the
node in the tree and the level of the node in terms of
subgoals. n is a user-supplied parameter - if there are
less than n operators then only these operators are considered.

As the operators are to some extent ordered so that
operators which can be applied directly are favoured over
those which require modification of the object, the tendency

is to favour nodes which do not give rise to new subgoals.
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The depth and subgoal level factors tend to favour those
nodes nearer the root of the tree 1i.e. to add a breadth-
first dimension to the search and those nodes which tend to
be in the upper subgoal level. Nodes whose overator list

is exhausted have value zero.

Every node in the tree contains the name of its best
successor - 1f the node itself has a greater value than any
successor it is considered its own best successor. When a
node n is expanded it is re-evaluated in terms of the reduced
operator list. Its new successor node m is also evaluated
and the best successor of node n is selected. A backing-up
procedure then alters, if necessary, all best successor names
on the path from node n to the root node; 1if at any stage no
alteration is necessary the procedure is halted. Only this
path need be considered as all other nodes in the tree retain
their best successor values.

A new node is initially given some user-supplicd bhias
value to allow the system to force the search to some extent
to follow a current path of solution before selecting another
node. The bias decreases with increasing depth on a path.

The best successor of the top node is then the best node
in the tree and is scelected for expansion. Tf there is no
best successor the problem is unsolvable.

The backing-up procedure is similar to that of MULTIPLE
(27): the major difference being that any node in the tree

may be selected whereas MULTIPLE only deals with tip nodes.
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3.12 OUTPUT OF RESULTS

The problem is solved when there are no differences
between the current object and the original goal. In this
case a backing-up procedure stacks the sequence of
transformations from the goal node back to the root and
outputs these in the correct order together with the series
of operators applied.

The problem is unsolvable if there are no nodes
containing operators left, The procedure is also halted if

the maximum time specified by the user is exceeded.
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4. A FORMAL APPROACH

4.1 INTRODUCTION

A formal approach is considered in an attempt to clarify
the conditions under which the SDPS algorithm would be
successful or unsuccessful. Ernst {8} has derived sufficient
conditions for the success of the GPS algorithm. These
conditions depend, however, on the ability to establish a
fixed ordering on the static set of differences and on an
explicit linking of the operators and differences. Ernst
has noted that if a 'triangular' table of connections can be
established convergence of the algorithm is assured.

Banerji {2} has developed a similar model and has derived
a series of axioms under which a GPS-like algorithm will
achieve success.

Both of these approaches are too inflexible to fit the
SDPS model and the approach of this chapter will be merely to
note the conditions under which the solution to a problem can
be derived from the SDPS concept of differences. The model
of a problem used is based on a general type called a W-problem

by Banerji.

4.2 THE MODEL

A W-problem is a triple <S, F, T>where S is a set of
situations (states), T a subset of S called the goal states
and F a set of partial functions on S X S. The set of
situations to which an operator fij is directly applicable is

denoted by Sf
1]
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Given a W-problem and an initial state s « S a solution

sequence for s® is a sequence of functions {f

..o, £ eaa,
173 1sJ2

f. . } such that fi ¢ F for each 1 and

njn k

£. . (f. .
njn ln—ljn—l

The length of the solution is n. To simplify matters

n
("'filjl(so)"'))) =5 e T.

the notation fm for fi . will be used where no confusion
m-m
could be caused.

The general aim in constructing a problem solver is to
select some strategy for the construction of a solution
sequence. Most heuristic strategies of this type are
concerned simply with the selection of the next operator to
be applied; see e.g. Nilsson (21}. However, a strategy for
a subgoal building algorithm must have the ability to 'look
ahead' for operators to be applied later in the sequence, and
to select operators relevant to reaching a state in which
these operators may be applied.

The first concept to be defined is that of distance from
a goal. A state s is at a distance i from a goal state if
there exists a solution sequence for s of length i.

let Sist mean Sj = f(si) for some £ ¢ F. Let B' be
the transitive closure of B, i.e. if SiB'sj then the state
Sj can be reached from si by a finite sequence of operator
applications.

Let ij be any particular sequence s.t. sjB'sk and let

GéK be the set of all such sequences.
A set Ti is defined as the set of all states s of distance
i from the goal state t such that the sequence of operators

will not reproduce s in some T k < 1.

kl
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Formally, let TO = t and for i1 > o.

T.,1 = [s|3E) (f € F & £(s) e T,) and # Go 141 © GO 141

such that a subsequence GO will reproduce s

s 1-k+1
in T, for any k <14+ 1}.

~

Obviously the sets are not disjoint but cycling is

avoided by the second condition.

4.3 DIFFERENCE-DERIVABLE SOLUTIONS

Although it is possible to consider problem solving
strategies based on the sets T.l more flexibility is required
to consider both the concept of sulgoals and the idea of a
strategy based on differences.

Rather the set of states is considered for which a
difference-derivable (DD) solution of some length exists.
Formally the sct Vi consists of those states s of length i
from the goal such that s ¢ T.l and such that a DD solution
exists for each s. Obviously Vi c Ti' As any problem may
have a number of DD solutions the sets are not disjoint.

To handle the concept of subgoals it is necessary to
consider the solution of problems in which the goal is not the
original t. In SDPS a subgoal is used to transform a state
to one in which a specific operator is applicable. If f.

13

is to be applied then the current state s™ must be transformed

to the set of states in which fij is applicable. This set of
states is denoted by Sf'.(sm)
A new set of stateéjz.l is introduced. These are those
states of distance i from a goal ZO = Sf__(s) for which a
17

solution sequence is DD. If ZO = t then Zi = Vi for all i.
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Note that given some s™ € Z.l and a DD solution sequence
fi(fi_l(---(fl(sm)))) then fl(sm) does not necessarily
belong to Zi—l' This is due to the possible occurrence of
additional subgoals in deriving the sequence.

Let the ordered pair < so, t > represent the problem of
transforming s® to t. A solution to the problem could be

considered as an ordered sequence of operator applications

represented by an ordered n-tuple G = (f,, f£,,..., fn)

(where £, = f£. . ) such that £ (...fl(so)) =s" s t. Note
k 1y I n

that fl(so) = st, f£f.(st) = s®, etc.

Let Fl(X) denote the set of operators discovered by the
SDPS method given state s’ and goal X. A solution G to a

problem is difference-derivable (DD) if either

(a) s S t, i.e. s ¢ T , or
o)

(b) 3 some fk e G N Fo(t) such that the ordered solution

(£,, £o,..., fk—l) to the problem < so, ka(so) > 1is DD and
for some particular s< 1 ¢ ka(so) the solution (fy  q....,f)
to ¢ fk(sk_l), t > is DD. (sk"l is the result of the correct
solution to the first problem.)
i.e. 1f ZO = ka(so) then s° € Zk—l and if ZO = t then
fk(sk_l) = Sk € 2y g+
The ordering of the solution to the subproblems is
essential - if it is solved by another sequence the resulting
Sk"l may not be the correct state in the context of the

entire problem.

Loosely the definition implies that for each node

< sm, X > on a solution path in the goal tree S DPSmust have
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in the set of operators either f or some fp in the correct

m+1
sequence. At each state in the path SDPS must at some stage
be able to select the correct operator to be applied to that
state, i.e. given s™ the differences between s™ and the

current goal must at some depth of subgoal generate fm+l'

This operator is obviously only valid if the current goal is
on a correct path.
For each state s™, (m = 0,...,n-1) which is correctly

attained on a DD path we may consider the state Sm+l as

derivable from < s™, z > for some goal Z if one of the
following holds:
(a) s ez =8
m
(0) £ i e F(2)
(c) 3 some fk ¢ F'(2) N G such that s™ £ S ¢ and the state
‘ k

m+1l . . m
IS is derivable from < s

A solution to a problem < s, t > is thus obviously not
DD if at any stage it is not possible to generate the correct
successor to a state.

In terms of the concept of DD solutions it may be
informative to reconsider the conditions under which a
particular operator fij is selected.

Zero-level differences are selected by the method of
section 3.5. The higher level differences are generated as
described in 3.7.

For any operator fi let I denote the input structure and
O the output structure. For any two structures s and t, let
S L tm mean that element Sy € S loosely corresponds or

matches to element tm € t. This concept of loose
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correspondence need not be the same as that of SDPS.
To select a particular operator fij it is necessary that
some difference (t', k) exist such that one of the following

three conditions holds. Any reference to I, ¢ I will imply

[

that I; C Sj' i.e. the matching is against substructure s (Jj).

1. (a) Ig L Sk for some J;
(b) Ig L Om for some m:
(c) Om € C;
(a) Om s t'.

i.e. there exists some constant symbol in O which 1is

equivalent to t'.

2. (a) Iﬂ L Sk for some [/:
() I, L O_ for some m:

4 m

(c) Om = Va;

(@) 3 g s.t. s(g) € s(j) and sq L Ip for some p s.t.

O =1 =V_;
m p a
e s_ S t'.
(e) a
3. (a) Ip L s, for some £, n and s (k) € s(n):;
(b) I, L O for some m;
4 m
(c) 3 r s.t. s(r) € s(j) and Sr L Ip for some p and
O =1I =V_:
m p a

(d) 3 g s.t. s(q) € s(r) and Sq L Sk for structures
rooted at r and n respectively:

e s S t'.
(e) q

The particular difference (t', k) may be either a zero-
order difference or it may be generated from such a difference
(t', m) by the procedure outlined below.

If the Sq generated by 2 or 3 above is not a
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specification of t', a new difference (t', g) is generated.
If g = k the correct difference has been generated. If 9 # k

it is necessary that there exist some operator which will

generate a new difference (t', r) using difference (t', q),
and so on. To generate (t', k) it is thus necessary that
there exist a sequence of operators (f. . ,...,f. ) such

ll]l lbjb
that given a zero level difference (t', m) a set of
progressively higher order differences (t', ry), (t', rs),...
(t, rb) is generated and rb = k. Each new difference
(t', r ) serves as input to the operator f. . to

k-1 i 3
k-1-"k-1

generate (t', rk).

Both the outline of the recursive definition of DD
solutions and the generation of higher order differences take
no note of the limitations placed on these in SDPS by limiting
the depth of subgoals and the number of differences allowed.
These restrictions are purely for efficiency and do not
detract from the basic definition.

To illustrate the concept of DD and non-DD solutions
three simple examples are considered. The examples are

selected from the area of propositional calculus.

Example 1

A solution path for which no subgoals are necessary, i.e.
the algorithm will determine the correct operators to be
applied to each state immediately.

The operators are:

Dl : v, ® v, ¢ =~V VVs,.

D2 : V, V Vg, ¢ =V, V V.,

The operator representation is in Figs. 4.1 (a) and (b).
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The problem is to prove that

A= (BvC) :=~AV (CV B)

- the representation of the input and goal structures are
figures 4.2 (a) and (c) respectively.

The solution is (f,,, £5,). The initial difference
detected is (v,1l) and operator f,, is the only operator
capable of transforming = to v so is immediately applied,
giving the result in 4.2(b). The differences selected
between 4.2 (b) and 4.2(c) are (B, 6) and (C, 5), which again

f., will remove immediately.

= v v v
SN = /N SN = N
Vi Vo T’ Vo Vi Ve Vo vV
Vi
(a) (b)
~ A .
! N | )
. = ~ ~ —~ . = )
7\ | \ |
Vv, Vo VAl Vo vy
(c) (d)
Fieure 4.1
/:>1 Vl Vl
A 2 \\\‘v 3 R 1;// \\\ v 4 A,?;/ \\\iv 4
PN | 7N f PN
B 4 Cc ° A 3 B 5 C © A 3 CcC S

(a) (b) (c)
Figqure 4.2
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Example 2
A problem showing the use of subgoals to derive a
solution.

The operators are:

Dl : Vv, = VvV, =~V OV V. Fig. 4.1 (a)
D3 : ~ (v, VvV V,) =~V A~ Vs, 4.1(c)
D4 : ~ ~ V, : = Vv, 4.1(d)
The problem is to prove ~ (A = B) : = A A ~B ; the

initial and goal structures are given in Fig. 4.3(a) and (d)
respectively. The solution sequence is (f,5, f57, f35).

The initial difference detected is (A, 1). f,; is the
only operator capable of transforming ~ to A but it cannot be
directly applied. A subgoal of attaining a state equivalent
to the input of f, is established, i.e. the goal is the input
structure in Fig. 4.2 (b). The difference between this goal
and 4.3 (a) is (v, 2). Rule f,,; will remove this difference
and is applied, giving 4.3 (b) which is now a specification of
the subgoal. Application of f,; then gives 4.3(c) and the
difference between 4.3(c) and 4.3(d) selects f5-, giving the

desired result.

~ 1 ~ A A
| l RN A/\
= 2 \Y ~ ~ ~
RN 7\ I l |
A 3 B 4 ,[V B T B B
A A
(a) (b) (c) (d)

Figure 4.3
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Example 3.

A non-DD solution.

The operators are:

D2 : V; V Vg t =V, V V.

D3 : ~ (V] V Vy) = = ~V, A ~V,.
and the problem is to prove ~ (B v A) : =~ A A ~ B: the
initial and goal structures are Figs. 4.4 (a) and (c)
respectively.

The solution is (fo., f£41). The initial difference
selected is (A, 1) and the only operator capable of removing
it is f£a5. However s' ¢ ngl(sl) and £5, may be applied
immediately, giving Fig. 4.4 (b). The differences here are
(A, 3) and (B, 5) but there is no operator capable of removing
them. There is no way that SDPS can detect from the formal

definition of differences that f,, must be applied before f;;.

Figure 4.4

4.4 THE SDPS ALGORITHM

The problem solving steps taken by SDPS are summarized
in the algorithm set out below. Let son (k) denote a note
which is a direct successor of node k; parent (k) denote the

k k

parent of k. Let (s, t ) refer to the current state sk and

the goal tk at node k in the tree. Let level (k) refer to
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(2)

(3)

(8)

(9)

(10)

(11)
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subgoal level.
Set s'! = s, t! = t, k = 1, level (k) = max. subgoals.
Generate first set of operators.
If there are no expandable nodes left or if maxtime is
exceeded, exit with failure.

Select best operator fij at node (k).

If sk(j) s I, (i.e. operator can be applied immediately)

then generate new node n = son (k) with (f..(sk) k)

, t
1]

en,
level (n) = level (k) andgo to (6).

If level (k) is such that a new subgoal (n) would have

level (n) < o then go to (11). Otherwise set up node

(n) = son (k) with (sk, Sf.‘(sk)) € n. level (n) =1level (k)-1.
If (sn, tn) 1s not new,ckﬂégelxxb n and go to (11).

Generate differences. If there are differences generate

a set of operators, file these and go to (10).
If t' = t" exit with solution. Else find fij at node m

which generated this subgoal.

Set up node / = son (n) with (fij(sn), g™ ¢ 2,
level () =level (m), n = ¢. Go to (6).

Evaluate node n.

Select best node i in the tree. k = 1. Go to (2).

The algorithm will find a DD solution of finite length

if one exists, subject to the constraints of maximum time and

the

and

practical considerations of the maximum depth of subgoals
level of differences allowed.

Cycling is prevented by step (6). If a correct solution

is obtained an exit is made from step (8) and failure is

admitted at step (2). To ensure that all nodes within a
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certain depth in the tree will be searched the depth of the
node is used as a factor in evaluating the node, and carries
decreasing weight with greater depth. This prevents too
deep a search beyond the limits of a probable solution as the
factor will eventually lower the value of any deep node

sufficiently to allow any shallower nodes to be expanded.



5. RESULTS AND CONCLUSIONS

5.1 EVALUATION OF PERFORMANCE

To determine the efficiency of a given heuristic technique
it is necessary to establish some measures of performance of
the system. The criterion of time-to-solution is rather too
dependent on extraneous factors such as language of
implementation, machine used, etc., and measures are required
which show how well the search is directed towards a goal in
terms ofthe shape of the problem solving tree. Two such

measures are penetrance (P) and effective branching factor

If L is thc number of nodes on a solution path attained
by direct application of an operator plus the initial node
and T is the total of such nodes in the tree then the
penetrance P is defined by

P = L/T

The definition ignores those nodes which simply define
new subgoals. This 1s in order to allow comparison with
those systems which do not use a subgoal concept.

Penctrance as a measure of cfficiency varies with the
difficulty of Lthe problem as well as the efficiency of the
search method and is thus only really useful for comparing
problems of a similar standard.

The definition of the effective branching factor, B, 1is
based on thce concept of a trec equal in depth to the solution
path length and having a total number of nodes equal to the

number generated during search. B is then the constant
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number of successors that would be possessed by each node in
the tree. In SDPS all nodes in the tree are considered.

If M is the number of nodes in the solution path and Q the
total number in the tree then the effective branching factor

is defined by

B

moy) B o= 0

B cannot be calculated directly for given values of M
and Q. To overcome this problem in SDPS a large number of
values of Q were calculated for successive increments of M
and a range of values of B for each M. Using Lagrangian
interpolation it is possible to derive values of B for
integral values of Q, given some value for M. A large table
of such values is held in a disk file to be indexed for the
particular values of Q and M resulting from the solution of a

problem.

5.2 SOME EXAMPLES

Appenaix A contains eight examples of the type of
problem solved by the SDPS system. Each example is discussed
briefly below and the notation used is outlined. The
examples specify the particular operators presented to SDPS
in the form of the first line giving the input structure and
the second the output structure. The solution sequence of
transformations 1s given with the operators applied to attain
each new state and the time taken to achieve solution, the

penetrance and the effective branching factor (EBF) are also
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included.

The routine which translates from the internal
representation to some standard external form assumes a left-
to-right sequence of evaluation so that operators of egual
precedence do not have the left-most set of brackets inserted.
For this reason an expression which may in the context of the
problem be most naturally represented by e.g. (x + y) + 2
will appear in the listing as x + y + 2z.

Most of the examples given have been solved by other
problem solving systems. However any comparison for problems
solved by FDS can only be on the basis of a time-to-solution
criterion of efficiency. The figures achieved for SDPS may
in certain cases suffer from the fact that on the Univac 1106
system at U.C.T. the time taken to solve any particular
problem may vary with the uscr load on the machine. As GPS
uscs the four types of goal as opposed to the one of SDPS no
simple comparison on the basis of any empirical measurement
can be made. Illowever it is worth noting that for problems
solved by both SDPS and GPS the formal concept of differences
is sufficient to determine solutions in certain cases which
in GPS recquirces the explicit operator/difference linking

supplied by the table-of-connections.

5.2.1 PARSING SENTENCES

Generative grammars of certain languages may be defined
by a set of phrase-structurc rules. Words of the language
are divided into classes called parts of speech. The rules

of the language may be used as operators to parse sentences
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to determine whether they belong to the language or not.
The rules of the particular language presented to SDPS

for this problem are:

(1) NP VP NP : =S
(2) NP VBP AP : = S
(3) AP -7 adjective > . = AP
(4) ~ adjective = : = AP
(5) AP -7 noun > : = NP
(6) < noun > : = NP
(7) - adverb ™ 7 verb : = VP
(8) 7 verb > : = VP
(9) ~ adverb ™~ -~ verb-be = : = VBP
(10) -7 verb-be : = VRP

The symbols uscd are defined as:
S Scntence
NP Noun phrase
AP Adjcctive phrase
VP Verb phrase

VBP Verb phrase for-to-be.

To speccify the operators for SDPS a linear connective of
second degrece (.C.) is introduced to order the constitucnt
phrases of each rule, e.g. rule (1) above is represented as

NP.C. VP.C. NP : = §S.

The problem given was to parse the sentence:

Frec variables cause confusion.

A set of terminal classes is defincd for adjectives, nouns,

etc., and cach word in the sentence is defined as belonging
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to its specific class, i.e. 'Free' belongs to the class of
adjectives, ‘'variables' to the class of nouns, ectc.

Both the penetrance and the EBF show a fairly direct and
efficient solution of the problem. The problem is a good
example of the close relation between the SDPS operators and
compiler productions.

The problem is identical to one of these presented to
GPS (91. GPS also found a fairly direct proof involving 19
goals but did of course require the explicit linking of

operators and differences.

5.2.2 EIGHT-PUZZLES

The 8-puzzle is one of a large class of sliding block
puzzles and has becn widely used as an example in problem
solvers, particularly those employing a state-space approach
6, 20°'. It consists of eight numbered, movable tiles set
in a 3 v 3 framec. One cell of the frame is always empty,
makine it possible to move an adjacent tile into the empty
cell.

The configuration may be conveniently represented by a
3 » 3 matrix using a zero to designate the empty space.
Twenty-four operators are necessary for the SDPS formulation,

each having the form, e.g.

Vi V, Vj V) Vs, Vg
V}g Vx, @] T = Vg @] Vu
Vg Vg Vg Vy; Vg Vs

Two problems werc given to SDPS, one reequiring five
transformations to achieve the goal and one redquiring ten.

On the shorter puzzle SDPS proved very efficient, achieving a
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penetrance of 0.714 and an EBF of 1.091l. For the identical
problem Nilsson {21} obtained results of P = 0.108, B = 1.86
for breadth-first search and P = 0.385, B = 1.34 for a state-
space search using a simple evaluation function.

On the longer problem SDPS did not do so well and a
trace showed that this was due to a tendency to lose its way
near the base of the problem solving tree. Search tended to
be rather random until a reasonable distance from the goal

was achieved. Lengthening the look ahead factor had no real

effect on this tendency.

5.2.3 BOOLEAN ALGEBRA

The problem is taken from Modecrn Applied Algebra
(G. Birkhoff and T.C. BRartee) [31}.

A Boolcan algebra may be defined as a set A with two
binary operations (2, V), two universal bounds (0O, I) and onec
unary operation ' such that a e€iven sct of axioms hold for
all %, v, 2z « A.

The following subscet of the axioms were given to SDPS as

operators:
(1) x » x = X XV x = X (Idempotent)
(2) x Ay = y AKX xVy = y VX (Commutative)
(3) x A (y Az) = (xAYy) A2z
(Associative)
XV (yVz) = (xVy)Vz
(4) x pn (xV y) = x
(Absorption)
XV (x Ay) = X
(5) x A (yVz) = (XANyYy)V(XAZ)

(Distribution)
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The symbols A, V are called 'wedge' and 'vee' respectively.
The problem given to SDPS is to prove Lemma 2 in the reference
(page 131), i.e. that the axiom of Modularity may be derived

from the given axioms where the axiom of Modularity is defined

as:

x Ay V(xaz)l = (xANy)V (xAz).

SDPS achieved the solution in 38 seconds with a
penetrance of 0.139 and an EBF of 1.267. Although the

solution path is fairly short the system appeared to have some
difficulty in selecting operators. llowever the problem does
show that SDPS is capable of solving problems which humans

find fairly difficult.

5.2.4 PROPOSITIONAL CALCULUS

The operators for these problems are a set of legitimate

transformations of propositional calculus of the form e.a.
SN AN (D> A) o= DB

IPive problems were given to the system in the same form,
e.g. Prove that (A = - B) A B is equivalent to ~ A.

As each problem was proved it was added to the set of
operators as a thcorem. As logical notation is not available
on the printout, the words AND, OR, NOT and IM were used for
n, V, -, = respectively.

The solutions are fairly direct and the SDPS system works
very cfficiently here. The same set of problems and operators
were presented to FDS (22} and in terms of a time-to-solution

criterion SDPS and FDS have roughly the same efficiency.

The algorithm performs well as each proof has a direct
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transformation property in that each line of the proof 1is
achieved by the direct application of an operator to the
preceding line. More general proofs in propositional logic
which require flexible use of the rule of detachment (i.e.
given A and A = B, infer B) cannot be easily specified in
SDPS as these proofs essentially involve the manipulation of
a set of inferred clauses. This implies that sub-proofs
would have to be obtained independently and linked together
at later stages of the proof sequence. As the operation of
SDPS is inherently sequential and each node completely
defines one complete state achieved with its current goal,
this linking of subproblems does not appear to have a simple
solution.

For the same reason the proof of predicate calculus
theorems using the resolution principle as an operator is not

feasible in the SDPS format.

5.2.5 ELEMENTARY ALGEBRA

Six standard rulcs for the manipulation of simple
algebraic cxpressions arc specified as operators in the form
e.g. X+ Y : =Y+ X .

The thecorems to be proved are given as simple algebraic
statements of the form:

prove that (x - y) + v is equivalent to x.
Solution then involves manipulating the input expression with
the given operators until the goal expression is achieved.
As each theorem was proved it was added to the set of operators.

The proofs are in general fairly direct and SDPS performs
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of the river and whether the father is present or not, and a
unary operator BOAT which determines whether the boat is on
the left or right bank. As SDPS has no concept of simple
arithmetic, the addition and subtraction of the sons must be
explicitly stated by the operators.

SDPS achieves a solution in seven seconds and the fairly
low penetrance and high EBF show that search is not exceptionally

well directed. GPS solved the identical problem in 33 goals.

5.2.7 A LOGIC PUZZLE

The following formulation of a logic puzzle is taken from
one presented to FDS {22).
There are two opponcnts, Ed and Al, ecach of whom either
always tells the truth or always lies. A philosopher
approaches the pair and asks if the library is to the
cast or west. I'd mutters something and Al states "Id
says easlt but he's a liar". In which direction is the
library?

SDPS uses the following scts of constant symbols:

C. = {SAYS, IS, IM (implies), EQ (equivalent), AND!.
c, = I[NOTI.
Cy = ITTLR (truthteller), LIAR, EAST, WEST, DIRN

direction), AL, ED, DATA}.

EAST, WEST and DIRN are declared as belonging to the same
constant class.

The SDPS operators and the problem specification are
given in Appendix A together with the solution found. SDPS

obtains a solution in 32 seconds which 1s rather slower than
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the FDS solution but the penetrance and EBF indicate a

reasonably well-directed search.

5.2.8 THE MONKEY AND BANANAS PROBLLEM

The monkey-and-bananas problem is often used in artificial
intelligence to demonstrate the operation of problem solvers
designed to perform reasoning {9}. The problem can be stated
simply as follows:

A room contains a monkey, a box and some bananas hanging

from the ceiling out of reach of the monkey. The

bananas can only be reached when the monkey is standing

on the box when it is under the bananas. What sequence

of actions will allow the monkey to get the bananas?

The SDPS formulation uses the following sets of constants:

C. = {AND, AT (position of) }.
cC, = [INOT!
C., = [(MON (monkey), ONBOX (monkey is on the box), ROX,

HB (monkey has bananas), A, B, C (positions in

the room) }.

The solution achieved by SDPS is direct which it should

be with the limited possibilities offered by the operators.

5.2.9 OTHER PROBLEMS

SDPS has been applied to a number of similar problems.
In most cases solutions were achieved with results similar to
those above and in certain cases no solution could be obtained

in the time allowed. No problems of this type were found
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which failed due to an inability to discover a difference-
derivable path provided a sufficiently general problem

representation was selected.

5.3 CONCLUSIONS

The SDPS system performs well on a certain set of
problems whose proof sequences are characterised by the direct
transformation property in that each néw state may be derived
directly from the previous state by the application of a
single operator. SDPS has achieved the solution of problems
which humans may find relatively difficult. On problems
with a short solution path the use of differences is
sufficient to find efficient proofs but on longer problems
there is an obvious drop in efficiency. This tendency is
found in most problem solvers employing trece search as in
general there is some difficulty in establishing the first
stages of a long solution path. As a single general
technique the formal difference heuristic functions very well
but is obviously not as efficient as those systems using
problem-specific heuristics.

As a large variety of problems can be formulated within
the framework of the direct transformation property the
system may be said to be general purpose. Questions on the
cffective gencrality of the difference technique were
considered in Chapter Four. FFrom the conditions noted there
it can be seen that there are obviously problems for which
SDPS would not be capable of attaining a solution. Although

this is an obvious limitation on the system it would appear
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in practice that such problems are rare, given adequate
formulation of the problem environment. In most cases
considered SDPS obtained a solution although it need not find
the shortest path or the most obvious solution.

Although the formal difference heuristic does not appear
sufficiently powerful to solve 'complex' problems within a
limited time it compares fairly well with the performance of
other systems. It naturally suffers from the generality/
efficiency conflict discussed in section 1.3 and its most
feasible use is probably in conjunction with the employment
of problem-specific heuristics to enable a more accurately
directed and hence deeper search within a more limited problem

environment.
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APPENDIX A

SOME EXAMPLES OF SDPS OPERATION
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[ IHTLGEY NAXELTIUEXTFLToTOPGLoHAXGLIHEXTGOAL sHAXGOALS*FACTOR

17 MAXJOCES o HEXTHONE + HAXOPS « FREEOPSILASTOPsHAXSTRINGIMAXTIpE

18 HAXSURGDALS +HEX TSUROP «HHAXSURDPS o MAXRULES 1 MAXSYMBOLS s MAXDIFFSesTOTRULE s
t9 MAXTARBSIZESSYNTOT o 4AXSTAXSLENGTHBIAS §
20 REAL  EVALUFPS'EVALDERTMIFEVALSUBIERRINEPTHBIASI +DEPTHBIAS2DEPTHBIASI
21 DEPTHHIASY yDIFFANLASLIIDIFFBIAS2/DIFFBIASA,OIFFBIASY9CONPIASISPECBIAS,
22 DIFFACTORS *NIFFACTHR2RCFACTNN]I sRCFACTOR21RCFACTORIVRCHACTORS
23 RCFACTORS $
24

2

26 LIST MAXyALUESIMAXGOALS1tAXGLY MAXSULHOPSsNMAXELTeMAXTIME ¢}5AX0PS
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35 FORMAT FMAX(AIBIG) ©

36 FORMAT FEVAL(AGIRG03) S

37 FORMAT FPDEPTH(AIERL.3) 9

a8 FORMAT FOIFFlA6iR643) 8

39 FORMAT FRC{(AJGR6,3) §

40
41 PROCLEDURF MAINL S
42

h3

44 COonnENT ATl LKNcLOSES THE ENTIRE SU!TE OF PROCEDURESs IT ALSO NEFINES
45 THE GLURAL ARRAYS AUl yARIABLFS s

hé

47 el

Y} INTEGER  ARRAY SYMTAB{ L SMAXSYMBOLSe12S)

4e OIFFSELIHAXDIFFS el ¢ 2) oDIFFSET(NITID) vRULEIISTOTRULESI1:S)
1) ROLESHE L tMAXRULES] $2) s RULESL ¢! it MAXRRULES 132
51 OpLISTUIIIMAXDIFFS ol ¢3) o FL TUISHAXELT 1 3S)eRUFFERIIIHMAXSTRRING ) o

52 GOALISTU|IMAXGL*!¢2)sGOALSt T {sAXGOALSY s HKODE( L SMAXNODES 121010,

53 OPERCISHMAXOPS s 1 :28#) ySTRALI CHAXSTRINGsISS)I«STRA(IHMAXSTRINGeI2S)
5 TERMTAAC I CMAXTARSIZr o 1 24) o yARTAQC I SMAXTABSIZE s 1S4
(N3 SURUPLISTILIIHAXSUNOPS s TERMTABENTRY (fSMAXRULES) $
né STRING SYOWVALUFR(SYHNTOT) ¢



“7 RFEAL A2RAY RCUAB (1 IAXRULFSIeOpyALUECIZHAXDIFFS) ¢ HDDE yAL [ L 2HA HOOES ) s
sA OPERVALCIINNAXNPS) %

59 FUTLGER 1o goMelleCleC2eploel 1 oN20t.2/P21CADIFFHUMePMATINIRYLEND,
61 OpiNYN ' OF ) s Py LEIGACLFENGR *GFDLFVEL»TTHPNT s VATPMT $

61

b2 cuMnrElUT ASSEHNBLER PROCEPURES ARE uyStn TO PACy AND u0lpACek DATA TO PARTIAL
63 WORDLS &

64

69 EXTERNAL LIBPARY PROCEDURE PACKO6LAH) S

66 INTEGER ARRAY A S

67 INTEGER B $ S

&R ExTERIHAL LIRRARY plOCEDURE UNpACK6E(BeA) S

69 VALUE A &

m INTEGER ARRAY B 3

71 INTEGER A % &

2 FxTERUAL LIRRARY poOCEDURE PACK2[AfisC) $

74 VALUE A+ %

74 INTEGER AE+C $§ &

% Ex TERHAL LIBRARY PROCEDURE UNPACK2{ABeC}) $

76 VALULE A S

77 s INTEGFR A'RBsC S$9%

A ExTERNAL LIBRARY pROCEDURE PACKI{AsBCoeD) S

25 VALUE A+BWvC S

RO INTEGER A+BeCosD & S

al EXTERNAL LIARARY PROCEDURE UNPACKI{A'RBeCoeD) §

A2 VALUE A s

ns3 INTEGER A«BsCsD § o

A4

Hs

Rb6

A7 BOOLEAN pPROCLDURE HAMELT{BUFFER+MAMF) €

an INTEGER ARRAY BUFFER $

a9 INTEGER HAME $

Ege)

o1 COMMENT PROCEDURE PETURNINES NHETHER A STRCTURE HAS BEEN ¢ 1LED IH THE
92 TREE. If HOT IT 1y FILED AHND THE RNAME RETURNED wlTi THME pROCEDURE
23 VALUE SET TO FALSGEH S

949

?sS REGIN

%6 INTEGER P1+sP2+ClsBUFFLENG UL i INK *LACKPHLT $

7 BOOLEAN OLOELT W RENWIN S

°8

o9

100

1™ PROUCEDURF SEARCHHANETRFESTREEPUT ~uuFFPUT) $

102 IUTEGER TREEPNT »ANFFPNT §

133

174 COMHENT pROCENDURE 1Yy UusED FOR RECuURSIyE SEARCH OF THE TREE ¢
108

186 REGIN

107 IF BUFFERINUFFPNT 1) EgL ELT(TRLFPHT 1} THEN

108 BEgIN

109

119 COMMENT IF LLEMENTS ARE EQUAL THEM [F THE pufFER 1S FuLLY LEARCHED THE
1)1 STRUCTURE S NOT NER $
j12
113 IF BUFFPHT EQL NUFFLENG THEM



MR
115
16
117

1A
e
120
121
122
123
124
125
126
127
128
129
130
131

132
133
134
135
136
137
138
139
140
141
142
143
149
145
146
147
144
149
150
151
152
163
154
158
156
167
1548
159
160
16])
162
163
164
165
164
167
168
169
170

Brepl

gVt = VALSE $

HAHE = TREEPUT ¢

IF ELTITREEPNT»2) EQL O THEN

NEGIN
OLDELY = FALSE 3
ELTI(TREEPMNT2) = TREEPMT S
EMD
LLSE OLDELT = TRUE $

£

ELSE BE@In

COMnENUT TF THL RIGHT gIANCH 1S EMPTy Tut 0y9FcT IS NEWw OTHLRWISE SEARCH
THE TREE ROQGTEND AT TUE RIGHT RRANCH S

IF ELT(TREEP T4 EQL O THEMN

REGTH

OLDELT = FALSE $

RAC¥PUT = RUFFplT + | S

HEWLI'IK = TRLEPDIT $

NEWVIH = TRuUE %

L MO
ELSE SEARCHMAMETRLE(EL TITREEPNT e %) sggurFPNY + 11} S

EMD

END

CONMENT 1F ELENEHNTS ARE 20T EGguAL AHD THE LEFT RRANCH 1S Nun-EpPTY o
SEARCH T1if TREE RNOOTED AT THE LEFT gRANCK OTHERWISE THE OyJgECT 1S NEwW

ol F7 29

IF ELT(TREEPMNT3) NEG O THLEN
SEARCHNANETREE(ELTY(TREEPNT +3) «BUFFPNT)
ELSE BEGIN

DLDELT = FALSE S

ELTITREEPNTI) = nEwi INK = UEXTELT S
IF HEXTELT GEq MAXELT THE!H ERRORWRITELI)
E(.SE UNEXTELT = NEXTELT + IS
ELTIHEGULINK 1) = RyFFER(BUFFPNT I} S
ELTCHEVLINY +S) = TREEPHT o

RACKPNT = BRUFFBIT + 1S

IF DACkPNT TR RUFFLENG THLN

WEGIN
"MEYIMN = FALSE ¢
FELT{YEWLINK +2) = MAME = MEWLIMK S
LD
£LSE BLUUIN = TRUF $
ErD €
ElbS

BEGLIMN
Pt = p2 21 S

BUFFLENG = DBUFFER(P1.,4) S
SEARCHMNAHCTREE(pLsP2) §

CONNENT IF A'l OLDh STRUCTURLC THE PROCEDURE 1S TRyYE OTHERWISE INSERT THE
REST OF THE STRUCTURE IMTO THE CANONICAL TREES



IV QLOELTY THEM HANFELT = TrRpC
FLSE ARGTA
MAMCILT = FALSE $
IF HEWlNH THEt negli
FOR €1 = BACKPMT STER | UNTIL SUFFLENG DO
KhEGEN
ELTIUEL TN o %) = NEXTELT ¢
LLTIMNMEXTELT»5) = IEWLINK $
ELT(NEXTELTS1) = pUrFFFR{CL1s1) S
WEWLINK = HEXTELT S
IF NEXTELT GEfy MAXELT THEN CRRORURITE(I)
§LSE NMEXTCLTY = NEXTELT + | 9%
£iIns
ELTINEQLINK 2} = 1HAHE = NCuLINK S
ENiD®
[ETY 1
END%
END S

PRUCEDURE RETRIEVELT(HANE 'BUFFERIBUFFLENG) S
INTEGER ARRAY HUFFER $
INTEGER NAUNERUFFLENG $

ConnkNT PROCEBUNE RLTURNS AH OGJECT STRUCTURE FROM THE CANuNICAL TREE
AY BUILDING A RUFFER OF ELEMENTS 1IN NUDE NUMBER ORDER,
IT BACKkS UP FROM THE HAME OF THE STRUCTURE AND OUTPUTS EACH VALUE
REACIHFD Ky A RIGHT (RANCH &

REGILN
INTEGEFR P1sPP24LAST S
INTEGER ARRAY DUMHY(I:I0D) 3
IF ELT{NHAME «20 €L 9 THEN ERRORwRITL(2) S
PI = | %
P2 a NANE $
DUMKMY (1) = ELT(HANL L)Y 9
TG
IF 2 nkqg 1 THEN BEelN
LAST = P2 %
P2 = ELT(p2:%H1 &
IF ELT(P2+%4} EQL LASY THEN
Akl
Pl = P] +» | S
DUHHY(P1) = ELTI(p2:1) $
EMDS
GO Tn LI §
END$
B8UFFLENG = Pl S
LAST = | §$
fFOR p2 = Pl STEp =1 UMTIL | DO
BEGQIN
AUFFERILAST 1) = nuMMY(P2) $
LASI T e= 4 AST 5 1.8
ENns
£4DS



228
229
23N
2131
232
2317
234
235
236
237
238
239
240
241
242
243
244
248
246
247
248
24%9
250N
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
269
249
279
27%
272
273
274
275
276
AL

278
279

28N
281
282
283
204y

PROCEDURE FPACKELT(ELT 0P AP N} %
INTEGFI! ARIRAY A 3%
INTEGER ELTsOpoep il $

COMMENT PROCENURF PACK S

Afl OptRATOR %

BREGIII

THE pOSITIDN OF AN ¢EGSENTIAL® ELEHENT FOR

IHTEGER ARRAY STACK1(1:6)sSTACK2(]:MAXSTaAx) $
INTEGER 19 JsCleC24C3 $

F'ERYLT o N

%

J = Noptop+FACTOR) + p

(|0 =, Iny &5

B OELT LTS O STHEN

ELSE REGIN
Far Cl=Cl+)
Bi.gl
STACK2tCL)
I = ALl.3)
E\IDS
Cl = Cl =1
IF cl 4TR &
C3 = |$

%

HODE(ME) =

WHILE I nta J bo

= At1.2) 8
%

3

ELT

THEH ERRORuRITEC1O} %

FOR C2=(Ccle-tsl) DY

ALGIHN
STACk1tC3)

Gy T A L
(AR
STACKLLSH) =

= STAcCK2(C
k3

cl s

2) 3

PACKO(STACKI+HODE (N 6)) &

ElDs
END S

PROCEDHRE PACKSUBAP{OP «STReP«HEXTY
INTEGFR ARRAY STR &
INTEGER OP P JHNLCXT $

cOMMENT pROCEDURE prACKS TH

AEGL

THTEGER TsJslleCleC2 %
INTEGER ARRAY STACKI{1:6)¢STACK2(LIIMAXSTAX!} €
I = op//FACTOR $

0o

J
2]

cl = u %

cCOMMENT IF pEFPTH

MOD(OPFACTOR) + p$

NF 0op 1SS 2 TiEN

E pOSITION AT ¢HICH AN Op 1S TO [,E AppLlED S

INSERT TO HODE DIRECTLY OTHERwISE

STACK POSITIONS 14 SUp0OPLIST AMD SET pOINTERS AT NODE S

LF STRIJ+3)
N =N % c2
LELSE BEGIN

Eaii. 9 oRrR

STR(U:2)

$ EHD

STRISTR(J+3}¢3) EQL O THEN BEGIN



28%
284
287
284
289
2°9n
271
292
293
29%
295
296
297
298
299
3INg
301
ana
303
304
305
3né
307
3048
309
31N
311
312
313
314
'S
314
317
316
319
320N
321
322
RP %)
324
32%
326
327
32hn
329
330
331
332
333
334
33%
334
337
RIRE:]
339
344
RN

C2 = HNEATGUBOL + 1 g
FOR rt = ey VHILF STRIUYY 3) NE:) p Co
REIN
STACRZ("I) = STR{Ea.2) $
J = TR 3) &
[IRYIVR ]
o= 1 -t %
J = N 8
FOR HEXTS5UBO0p = HEXTSULOP ¢ | witiLE J TR 0 00
BEaln
FOR C1I :(ivlvb) na
IF U TR O TNl

nkEa 1

STACKLICIY = STaCk2tJ!) $
J = u=-1 %

LoD

LLSL STACH1(CY) = g 8
PACKOGISTACE 1 SUBOPLISTINEXTSYUROP ) §

LHNLS
HEXTSUBYe = HEXYSYyL,0p - 1 S
ENDY
PACKI 1 eC2:sNsODFIUEXTHTLEY %
(ATHES

PROCEDURE HNNHPACKUPIOR ' STRPL JHHY %
INTEGER AQRAY STH §
INTLGER OP P11 S

cONNENT PRUCECURE uMNPACKS THE POSITIOH AT MICH AN OpERATOR IS TOo BE
APPLILD IH STRUCTHRE 5TR. USEN FOR RESTRICTIOIN OF OPERATORS $

nrGLn

INTEGEH 12sJdoMPHT (]l sC29C3 3
INTEGER® ARRAY STACK IM161 $
LUHPACK ILHANDE (id o 7)o 1o pMHT 4 N) &
J = Pl %

COMMFUT IF nLEpTl LSS 2 THEN SELECT pOSEITION DIRECTLY OTHER,_ ISE UNpPACK
Tif. STACH us POIUTLRS S

TFe v EREL O THERN
REG !
IF I'RT LSS 2 THEH J = J + BNT
ELSE AFRuIl
J o= o+ 1 s
FOR C3 =12:,1.PHTINDO g = STRIY,4) + 1 8
EMD
Erin
ELSE HEGIN
PHT = pHaT = | 3
ffor PUT = PHT <« 1 airtLE H TR 1} 0O
BLaln
IF 1l GTR & THEN C) = &
FLSGI. ClL = 1 %
JUPACKLOISTACK L +SUROPL ISTIpNT)) S



S (2 FOR C2z=(1,],C)1) hn

343 REG T

344 J = J + 1 %

34 FOR €3 = (2,1,5TACKI1{C2)}) DO
346 J =2 STRUJs4) + 1 %

347 FHD S

348 o= =6 3

349 ENDS

350 EUDS

351 e = 1 o FACTOR + g = p1 %

an2 ENDS

353

354

35S

3sé

357

3SA

359 AUVOLFEAII PROCEDURF §, INSCARCHIGeM) $
360 INTEGER e S

361

382 connFUIT prucEOURE pERrorns A alNARY SEARCH ON THE LIST OF FIRST ELEMEN
363 OF Al ONnJFCT/GOAL pAIR AND RETUYRNS THE ELEMEMT POSITION PLUS TiSE
364 VALUE TRUE 1F IT E£X1STS 3

3465

366 BEGIN

367 INTEGER [ ,UPPERLOJER $

368 LOWER = 1 S

369 UPPER = TUPGL + | s

370 S

371 I = LUPPLR * LOVERY/Z/2 $

372 1 GOALIST{1,1} EOL G THEMN

373 NGl

374 Nals

37s NIHSEARCH = TRyf <

374 Gy TO 52 8

377 EHDS

378 If GOALIST(I.1) LS5 G THEN

379 BEGIN

380 IF LOWFR EoL I THE# GO YO S3 $
3at LOUER = 1 S

aa»? GO TOo Si S

303 EilD

304 FELSE BEGIN

389 If UPPER E@L 1 TiiFh GO TO S3 $
3aé HPPER = 1 S

387 GO To Sy $

38R END\;

389 S3.

390 AINSEARCH = [ALSFE 3

391 52

392 ENDS

393

394

325 BO0LEAN PROCFDURE TESTGOALIGIG2sH) S
396 IHNTEGFER GleG2+N 3%

397

378 COMMENT PROCENURI. DETLRHMINES WHETHER AN ORJECYT/GOAL PAIR HAS OCCURREO

“



3oe PREVIOUSLY RY gEARC|ING TiFE LIST oF STORED PAIRS $
40N

e} REGIHN

402 INTEGER 1oCl I NEXTsVALSDEP $

403 IF BINSEARCHIGI 11 THEW

“waq BEGIN

40s Cl = GUALIST(le¢2) $%

“Wos S

407 UNPACK3(GOALSICIL) « VALY HEXTDEP) S

408 IF VAL NEQ G2 THEN

409 BEG I

410 IF HEXT HEQ U THEH BEGIN

411 Cy = HEXT 3

412 G0 To S1 S

413 E(ID

414 FLSFE REGlIH

415 NEXTGUAL = HEXTGNAL + | S

4ta IF NEXTGOAL GTR HAXGOALS THEH ERRURWRITE(4) S
417 PACK3(VALYNEXTGOAL 'DEP*GOALSICII]
418 PACK3I{G2e0eM,GOALSINEXTGAAL)) $

419 TESTGOAL = FALSE %

420 EiD

421 END

422 ELSE BEGI ) TESTGOAL = TRUE $

423 N = DEP $

424 ENNS

425 END

424 ELSE REGIN

427 TESTGOAL = FALSE $

428 NEWGOAL (Gl G2e11) S

‘9 Edbs

431 END S

431

432

“33 PROCEDUKE INHSERTGOALI(GIG2H) §

439 INTEGER G1+:G241 $

435

436 COMMENTY IF THE CUHRREHNT STRUCTURE AT A HODE IS OLD 6UT THE GOAL 1S NEW
437 FILE THE PAIR AT THE POSITION INDEXED 8Y THE INITIAL STRUCTURE S
43R

439 REGL

490 INTEGER 1+.CL VAL MEXTDEP $

LN IF BINSEARCHIGl 1) Tnen

442 BEGIN

443 Cl = GOALISTI(1+,2) §

4444 S

O ) VHPACK3(GOALS(CL }ovAL «NEXTDEP) $

444 IF NEXT HEQ O THEHN

947 BEGIN

G448 ClL = NEXT s

a9 GO TO SIS

‘isn0 ENDS

4S | HEXTGUAL = NEXTGOAL + 1§

452 IF MEXTGUAL GTH MAXGOALS THEM tRRORWRITELI4) S
¢453 PACK3I(VAL'NEXTGOAL*DEPGOALSICIIT 8
454 PACK3IIG2:0e1sGOALSINEXTGOAL)) S

455 EHD



CRrY S Epsh MEUMGOALEGT G200 %

447 0w
458
59
:Zn PROCEDURNE HEUGODALLGLl 2 U}
461 TNTEGER GleG2eM % o
AT A NOD{ FIlLC
e j 8 417 ND GOAL STYRUCTURE OCCUR
463 conpeEnt I A by INITIAL A 3
464
q6S ABEG 1N et
= TupPGL *
::g IgpgthL GEQ MAXGL. THEN ERRORWRITF(4) ¢
148 GOALTISTETOPGL 1) = G} %
469 MEX TGOAL = NEXTGOAL + | % ‘ o
NTO I¢ NEXTGWOAL GFQ MAXAOALS THEN FHPORwWR
47) GOALISTITOPGL2Y = HEXTGOAL %
472 PACEILG20 0o OALSTIEXTGOALYY 3
473 L e
474
47¢
:33 PROCFDIIRE RUILDGOALIAPLI s JotiopP2:CrCL) S
478 INTHGER ARRAY AsfteC §
479 INTFGER P14P2sJeCL ©
3 A HIcH IS
any E QUCEDURE LSTARIISHES A SukGOAL FOX A STRUCYURE €
i e P“PC s ! ‘) THAT OpEPATOR n €AW RE AppLlIED $
4R 2 Tu AE TRANSFORHMED o
4A3
Bl GIa
:gg ‘IdTraﬁw ClsC2sCIsHAXVARIFIACK &
486 IF AtUe3] HEG O THFEN
G4a7 RE, TN
408 MAXVAiI¢ = 30 % N
Ja? FOiR Cl = P2 STEp |1 ynviL cL 0
0 I CtClel) |'SS NAXVAR THEN
:vx MAXVAR = Ctclely 3
4e2 BACK = AFJ*31 S
493 PLLsl) = ACBACE L) S
ng $S;=ci : I STCe 1 1NTIL A(BACK 53 1O
495 .
el
4964 DEGI .
2 t
IV Cl Laow AlQ2e2) THE
:ZZ FOR C3 = p2 STEp ) ylTIL cL bO
499Q pEGTN
sNn Cl2n =n 021wl s
591 BIC2+1) = C(CH3, L) S
EHD
ggg FLSE EGIN
g
Ny cZ = C2 + |
Zn; TAXVAR 3 HAXVAR -~ 1
foL ALC2+s1) = MAXVAR $
g07 Frins
5N8 I'ND $ _
> J = HBACE @
??; FOit Cl = | SsTLp 1 tHYIL C2 DO
>
: = el $
S11 GHEME i) DECE,

S12 2 =Y



13
S14
515
sSla
517
S48
s19
529
521
522
$23
L2y
525
$24
627
5214
529
53n
531
532
5133
S34
535
%36
537
538
539
sS40
LN
542
543
SS9y
sus
L4
sSuy
su4s8
S49
55n
561
562
£53
68
5S5
1Y
S57
5548
5%9
56N
561
$62
563
1 Y-X]
565
S664
567
568
569

CL 4= @7

COMMENT 1F
LEVFL 8

b

NOT YIT AT WASE OF STRUCTURE THill BUILD THE GOA(

BUHIIDSUALCAP L JopaP2eCsCLY B

£1uns
FHDL S

PRICEDPIFE

INTEGER
IHTLEGER

COPYtA ;1 Rsp2) $
AREAY A+pp %
Fl.p2 %

COMMENT COPILS ONE STRUCTURE TO ANGTHER S

BEGIH
T R L T B A S ]
€2 = P2 &
FOrR €1 = pl STEPL ] UNTIL Alpl.%]l po
BESITH
FOw €3 = | STEP 1 ynurie s po
HIC2:C3) = AlICL.C3 §
Cd 2 &2 I E
E£iiD%
ENMD D

PROCENMJRL Ll fnlen2) $

INTLGER

cOMHMEIT pr0OcEnpuR!

f1lenN2 s

Lifige snll N1

LINK 3
BEGTH
INTEGER Cl.LAST $
HODE L2 1) = Ll
IF donttng.8) EqL 0 Tykn
Hap&e il .q8)ry = N2
ELSE QEGIN
LAST = MODE (i) e8) &
FOR CI 1ODCILAST @Y VIIELE Ci1 HEG v DO
t.AST = ¢1 §
HODLILAST 9 a 112 %
Enoe
NONE 1129} 2 U 3
EHiy o
PROCEDURE BACKUPIUONF L NODE2] %
INTEGER #10pEltoHEL 3

TO ANOTHER

TO FATHER M/ Y A FIRST SOH-43ROTHERS

caMHENT pRUCEDURE TAKIES A NEw NOOGE ARy FESTAKRLISHES 1TS pOSITION AS A

PasS1alLF

BEGY:)

WEST SpCcCchssoPr To

1TSS ANCESTORS &



570
521
$72
573
574
7%
574
“77
578
L,79
S8n
S )
592
503
584
$8s
586
SNn7
588
%89
590
591
$92
593
S94
$9S
65964
597
59n
599
6ND
631
602
603
604
(A2l
636
617
608
609
6114}
611
612
613
614
615
616
617
618
610
621
621
622
623
624
625
626

THTFGEK 1IN BEST o

Ny = HODEL %

HEST = NNDLEIIY«3) %

FOR L = 10DE{HLL 1) VitlLE Nd JFw 0 RO

BEGIN

IF HOPEyALINESTY 1.0G HOpEyA (H06LLC 1 e3)) THEN
HLGIN

ALST = IphIit1+3) %

Qg ToO STY %

t N0

FLESE HODEIMTH]L«3) = 4FST %
fuos
GATSe s

COMNENT PETURN THE REST HODEL i1 TRLL ELSE BETyRN
IF HODEVALIRIEST) LSS FRR THEN HODE2 = 0

ELSE HHoPFE2 = prsT %
Lins

PRACTDYKRE RACKMIE (HODE L »AHODE) @
INTEGER n00CH +BHIODE €

COUNENT PRUCEDURE TARKES A RE-EVALNATFD NHODL AMD ESTARLISHES
SHCCESSNR AUD HEy RELATION TO I1TS AHCESTOR lnpEs ®

BEGL.
INYEGER il 2 .8EST 3
Ml = Wabgl $
NEST = HoDEINML31 $
FOR "Il = HODE(MLs 1) iiLE MU MEg O o0
RBEGTH
N2 = HUDEIN].8) S
ST ke
18 GODEVALUNOBLEIN2,3)) TR IODEYALYLEST) TiHEN
REST = NODE(HU2:2) 3
H2 = NODbEIN2:9) S
IE 12 NEg O THEN 6o T0 ST ¢

CUMMENT ESTADLISH BEST 11IODE 1H THE TREER S

¥ WNOEVALIHLY TR NDDEVALIBEST)Y THEM
HODEtHT «3) = [QEST = il

E{.SE HDODF (KT «3) = nesT %

ENDS

IF 0NhEVALCBEST) LS ERR THFN plHobE = 1)
ELSE BHNDDE = BEST %

cHn$

PROCEDURE THSERTOPS (N &
INTEGER 1 8

cOnpFNT PROCEDURE LINkS SET OF QpERATORS To NODE

NutE ExISTS $



w27
628
620
630
631

632
633
634
635
634
637
el
639
64N
641

642
643
644
645
U6
647
648
649
651
651

652
653
654
655
6564
657
654
6°.9
6460
661

662
663

664
665
666
6467
66h
669
670
671
672
673
&74%
675%
674
677
678
679
680
68
08?2
6R3

HEGLA

INppogR €) 9
PACK2LOPEUN S TRELOPS IINDELH YY)y ¢
FOR ¢t = 1 STFr |} wITIL OPNIIM DO

REalil

OP+ RIFREIOPS 1) = OPLISTECY 1)

APLPLIFRECOPSe2) 3 np 1ST(Cie2)

UPtRIFRECFOPS ) = OPLISTICT o)

OPEEVALLFRELOPS) & ORPVALUFR(CL)

FREEOPS = OPFR{FREEIOPSGett}Y &

IF FREEOPS FoulL LASTNP THEN EKROPWKRITFE (&) S
AIDES

END S

C I B )

PROCFNURE FILEHUNFtU] «Hd2eLLV«STRWENTDEP) &
THTEGER N1 oHN2LEVISTRPENTDFP $

COHNMEJNT PROCEDUREL LOAPS PARAMETERS To 1ONE s

HwEalt

MODE THEXTIODE «2) = | eFACTOR ¢ 1.2 $

IHOOLIMEATIODE +3) = 0§

NODF IHEATHODF «S) = LEy $
MOOE(UWERATNODEsfU)e DEp 9

MODF (!EXTHODE«A) = 51 S

HOOLVALtUEXTHODE) = D,J %
NEXTIHODE = BEXTHODE + } %

IF NEXTHOOE GTR pAXHIODES THLp
FRRORZEBITEtO) s

NDS

PRuCENIHE LVALUATLIANIOBE) ¢
IHTEAER ANIODE S

COHMMERT PROCEDURE SSIaHS A VALUWE TO A 00ODF ol TiE ©ASIS OF THE DEPTHe

SURGNAaL LEVEL AtIn TheE VALUF OF THE OPLRATOURS §

pEGIN

IMTFGFR Cl1eC2.PUT+0*S 3

REAL P2s TOTAL »

UHPACY 21 NIODETANNDOE ) supPSiePNT] &

conqEnT I MO nPs SET VALUFE TO 2FRO 3

IF 0bS EagL N Tk h
HOLFVALIANODE) = 3,0
ELSE hiolt

TOTAL = .U &

COMHENT SELFeT <o M ST gpFPATORS AND CALCULATE AVERAGE
IF PSS GT9 EvALOpS TIEH c2 « LyvALOPS

ELSF €2 = OPS $
folkk ¢1 = 1 STEP } Tl c2 oo

VALUE %



s
6QS
686
N7
688
6R9
&9N
691
692
693
694
698
694,
&£97
L9848
699
700
70|
702
703
774
70¢
796
707

708
709

710
20
712
713
714
718
716
717
718
7190
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
73s
737
734
739
740

RpG I

TaTAL - TOTaL .
Py4T = LWPERIPNT %) &
ENNS
ToTA{ = TOTAL/C2 *
L B

COHIENTY AL FACTORS Fof!
RZ = "0CCANODE«1y) +» L
TOTAL, & TOYAL =
R2 = LORFLANODLC«%) ¢+
TOTAL = TOTA\
MpLvAL tAHODE) =
FNDS$

Cl = AlODE $

DERTIS

4

OILRVAL{PHTy o

AMD SUBGOUAL LEVEL $

$

R2/EVALNDEPTH 9

+ R2/EyALSUB %
TOTAL %

CONMENT RESET THE HEST SUCCESSNAR TO THE NOLBE $

PHT = MODE(ANONE«S) $
IfF pNT Ll U THEH
MODL(AIODE«3) = AlOOL
ELSE
BEGIN
STHLE
IF HNDEVAL (HORE(piIT«3) )
Cl = MODEIPNTWI) S
PHT = HONE(PHT ) 3
IF PNT HEQ U TuHENR
HOLELANDNDE«3) = Ct ¢
CHD®
1D

PROCEDUKE ERRORUPITE(K) &
INTLGER N &
CONMENT PROCEDVRF 0UTpuTS FRROR HESSAGE AMp ELTHER SELECTS

OR HALTS €XEcUTioN $

BEGIN
SAITCH L RROE =
60 To EPROR(K) 3
U
VRITEC AU STORAGL IN
G0 TO ALIEHND $
g2
UKRITEC THCORRECT ApDNRESS
GO TO HAILHEND $
S
WILITEC HAXTHUM
GO TO MAIJEND $
£l
WRITEC nAx ITHUN
GO TO MALINEND s
£S5
VRITE('LRI0OR

HuypptR OF

Huntr oF

It I1thpneT

GTR

HoDLyALICLY THEN

Go T STI $

El1 E20E3Fd4ES b7 .EBEQ,EID ¢

CANOHICAL TREE ExcCEEDED®)

FOR STri'G RETRIEyAL®') s

GOALS FxCEEDED*) $

HELI SURGOALS LxCEENED®)

DATA®) S

b

H

NEXT PROBLE



74]
742
743
744
745
746
747
7498
749
750
71541
752
753
754
75%
756
757
758
759
760G
761
762
763
764

765
766

767
768
769
770
771
772
773
774
775
776
777
778
779
780
78]

782
783
784
78s
786
787
788
789
790
791}

792
RS
7924
795
796
797

Ga To gLl ¢

{on
GRITECCLAX LU Hangip
GO TO MATIEND $

[o0p

OF OpERATORS (FNERATED®}) S

WwRITECenaxInun STRYCTYPE SI1ZFf fxclERED®) 3

Go 10 F11 %
RS

wRITEICTON MANY SyinoLs NDEFINED®) $

G0 T MALUEND S

[ 2
WRITEC MAXTHUN NyNuER
GO [0 MALIEND $

£10:2

OF HNODRES

GENERATED®) 8

WRITEL TN MAHY OPERATORS DLFINED®) S

G0 TO MALIEHD S
ELe
EMND 3

PROCENDURL POSHAP LA L
TMTEGER ARRAY A 3
INTEGER PL.L]1 8

coinbEiy pROCEDURFE TRA,SHO

L1) %

RS poOLIS

n STRING

SETTING UPr BACPWARD A!D FORVARD LINES S

BEGI.

THTEGER ANRAY STACK(EIIIAXSTAXLI5) 8

IHTEGER #T1pT2.0EG.CI
A(P1+S) = AlpPle2) = Al
AlPLls%t = P ¢

b3
Ple3) = 0

1F OPERATUR(AIPLIL1)DEG) THEN

BESIN

CUMUENT 1F LLENMENT 1S AN
POSGTITION $

A{PE+D) = DLG 8
PpT2) = | &
STACKIUTZ2:1) =0 $
STACKIPT2.,2) = STACK!
STACEIPLT2.4) = | S
STACK{#T2:5) = 1 s

FOR 9T1 = pl+*l STEp |
BEGIN

OPERATOR

pT2°3) =

unTIiL L1

%

TACK IT

DEG ¢

0o

cOMNENT DECRENENT TOop of sTacy DEGREF AND

STACK(1PT242) = STAcH!
AlpTl.2) = (STACK!PT
AlpTl.3) = STACkIPT2,
ILF OPERATORTAtLETLI ),
BtglH

COMMENT 1t 0pERATOR STACK

pT2°2} -

L s

JNTO TREE STRUCTHRE nvy

2ETH DEGREE AND (URREMT

INSERT BACK POINTLR §

2:3) - STACKI!FT2,2)) %

¢4}
DEG) TkEN

1T wlTH

CEGREE §



798
799

801
80l
8nN2
“an3
8N4
895
bs0s
607
a0n
839
610
bll
812
Bl3
blY
815
8lé
617
813
8l9
820
821
822
6823
824
82S
826
827
628
829
8630
831
832
833
834
835
836
837
638
839
B4n
84|
42
643
a4
84S
8464
847
848
649
6S0
851
RS2
8S3
454

PT2 = PT2 + 1 $

STACKIPT2:2) = STACKIPT2.3) = DFEG $
STACK (PT2s1) = AlpPT]e2) 8

STACy (pT2+4) Tl ¢

STACK (PT2:5) W) t6:)

AIPTLs5) = DEG ¢
e

CUNMENT F OpERAHD INSERT FORwARND POINTER TN SELF

ELSE HhEGIM A(PTIs49) = pT1 &

ALPTL«S) = 0 ¢
£Nos
FOR ClL = t STEP 1 UNTIL PT2 DO

STACK{CL«5) = STACK(C1:S) + 1 %

S1e

COMMENT TP AlL 0OpERANDS OF TOP OpPEKATO® HAyFE BEEN DEALT wIlvy SELECT
MEXT LOUEKR OPERATUOR §

IF STACK(PT24+:2) LEQ O THEN
BEGIH
ALSTACKIPT2+4)¢4) = STACKIPT2:4) ¢+ STACK(PT2.5}! - 1 8
pT2 = PT2 - 1 8
It pT2 HLQR O ThEM g0 TN S1 %
ENDS
EHLS
FHDS
ENDS

BO0LF AN PROCEHNINL TERHUSPECIHIT N2 9
INTEGEP Nnisti2 s

conmMENT PROCEDURE DETLRMINES WHETHER CONSTANTS ML Allp H2 Akg €QUIVALENT
BY CHECKIWNG THAT TiEy pLLOYG TO THE SAME CONSTANT CLASS Ok IF EITHER
1S A VAPLAKLE OPERATORCTHAT THEY liAVL THE SAME DEGREE $

HEG T
IF il HeEQ N2 THEN

BEGIN

{F SYNTARIHL L) HED SYRYARIN2.1) THER
TERNSPELC = FALSE

ELS5F bLEGILH

IF SYNTAB3{H1.2) EqL SYMTABI(N2.2! THEN

TERMSPEC = TRUE

ELSE BEGIM
IF SYMTAB(NL+2) EqQL O OR SYMTANtiII2.2) EQL 0O THEN
TERMSPEC = TRUE

£1.SE TEKNSPEC = FA[.SE $
E£ND
ehn
END
ELSE TERISPEC = YRUE $
END 3



455

8%6

857 AONLFAl FROCFNUKL CORRELTEA,plLLIBP2¢L2) 9
HSHA {MTEGER ARRAY Al &

859 INTEGER pleLloP2,L2 S

860

861 COMMENT pRUCEDNRE nETEPHINES IF FLEMENT PI OF A CORRESPONnS TO ELEMENT
Hé62 P2 OF K 3

863

864 aEGIn

865 IHTYEGES: 1l.12 %

066 IF ROVGHUWATCHCA P Lol logtsP2oL2) THEN

867 QEGIN

s6Aa

869 CONME AT IF THE FELENENTYS ROUGHLY MATCH ThEn HETERMINE 1F EAch Ling 1S A
a7y SPECIFICATION OF ITS COUNTERPART $

871

872 IF Pl HEQ LI Tien

873 HBEGL

874 Hl = L1 3%

875 12 = L2 $

876 Sl

w77 Hl = Al(l1.,3) S

078 N2 = PNtH2+3) @

879 IF NOT TLRNSPECIACHL 132010 ) THEM GO TO FAIL $
480 IF Pl ‘IO M1 THEW GO TO SI1 S

81 ENDS

882 COHRTLT = TRUE

883 EHUD

88y ELSE

88s FALL

884 COUKRELT a FALSE ¢

887 ENOS

888

o489

891)

891 BNOJIFAN pROCEDURL DNUGHNATCHIA WP L oLl eRep2sL2) S
U92 THTEGER ARRAY Al $

493 INTEGER PlsLLIP2,L2 S

894

89s COMMENT procEpuURE DETERYINES WHETHER ELFHEQT pl OF A ROuGHLY MATCHES
896 TO CLEMENT P2 OoF b %

897

898 HEG 1

899 INTeGER ARRAY CSTACK (L ItIAXOPSe1 2] $

900 INTEGER CleC24C3opPpT 3

901 ROUGHIATCH = TRUEL %

902 L2 = P2 B

90 If Pl EqL LE THEN Go TO 52 ¢

904 PT = LI 9

90S Cl = 0 %

904 LOnPL:

907

908 COMHENT STaCr BACK'AR{) LIS oF A YOGETHER wlTh DEGREE OF LACH np $
90¢°

910 Gl a2l GL ‘s %

91) CSTACK(CI1 1) = AIPT,2) S



912 CSTACK(C | ,2) = AtPT,5) %

911 IF Pl Nt PT THEH nEGIN

914 PT = APT,3) $

918 0 TO LOIFRL S

916 ElDs

917 PT = P2 3

91R

919 COMMFEMT NATCH FORWARD 11l & uSINg LINKS TH STACr. IF MATCH (S NOT
92n POSSIQLE TUFH FAIL %

921

922 FOR Cc2 = Ci STEP ~1 uNTIL 2 DO

923 IWE B

924 IF RIPT5) NEQ CSTACKIC2:2) THFM GU TO RFVAIL S
928 PT = PT + | S

926 FOiR €3 = 2 STLP 1 UNTIL CSTACK(C2«1,11 N0
927 T = LIPTet}) + 1 &

92R Iins

929 L2 = PT 3

930 GO YO 52 3

934 REATL

932 ROUGHNATCil = FALSE %

933 b 103

934 ENHD 3

938

936

937

934 BOOLL A PROCEDURL QIrERATORIP.L) $

939 THTEGER p».,L S

940

94y COMMENT PROCFDURE DETE&KMINES yHETHER A COHSTANT 1S AN QpERATOR AND
942 RETURNS 1TS QEGREE %

943

94y GEG!H

945 OPERATOKR = FALSE $

946 IF P GTR O THEMNM

947 BEwLIN

P48 IF SYNTABIP1) TR O THFU

99 AEGIN

950 OPLRATOR = TRUE %

951 L = SYMTARIP, () %

952 EnNOS

953 ENUS

95« CND

958

956

957 PROCKDNURE ODIFFCHECH{GsN P} &

958 INTEFGEK GaKeP S

959

961t COnMFY pRUOCEDURE !PHSERTS HEW DIFFFRENCES [HTO THE DIFFERELCE SET $
61

962 BEalN

963 IHTEGER C1 8

96« FOR Cl = t STEP t uwidTIlL DiFFNUM DO

96K 1F 6 bul DIFFStcl,1) AHND Kk EQL OIFFStC1+,2) THKEN
966 G TO DEND %

967 DIFFtIUM = DIFFHUH « 1 %

968 DIFFSET(PY = DIFFSETLP) + 1 §



Y69
970
971
w72
971
74
974
746
977
978
979
980
98
Y82
983
984
98S
986
987
988
989
990
991
992
993
994
99S
9°%
997
998
999
1000
oot
1002
1003
1004
1008
1006
a7z
1008
1009
l10tQ
1011
lul2
ini3
luly
tyls
1016
1617
lols
1019
1020
1021
lu22
1023
1024
lu2s

DIFFSINIFFNUN, 1)
DIFFSIHIFFIIUN2)

na
)
Lo

nEND:
LNos

PIROCENUNE ZERUDLIFFGS(AWRSIG) §
INTEGER ARRAY A S
JNTLGER S, S

COMMENT pPRUCELURE DETERNINES THE SFT OF 2€Ei0-LEyFL OIFFERENCES RETWEEN
STRUCTURE A AMO & +ROOTEND AT S AlD G RESPECTIyELY $

BEGT
IRTEGER ARIKAY STACK (L !MAXSTAX)«SVARIIIMAXSTAXe122) S

INTEGER PLeP2sCHovIiy2.C19C2:CTiP 8

CN = p = 9%

P2 =vl =v2 =0 $

FOR pj = 5 STEp | udTIL AiSs4y) DO
BELIN

COMMENT IF THFRE 1S A CORRESPOIDING COHNSTANT ELEMENT BETRE[™M Aga THEN
TEST (£ THEY ARL EQUIVALENT €

IFf CORKELTIASplatioGGei?2) THEH
BE()I”
IF B{P2:1) TR ) THEN |
Bt el
IF "NOT DIFFSPEC{ALPL*) ) eBtP2s1l) eSVARCCHY) THEMN
ODIFECHECKIRIP 2L sP P} B
EHD
ELSE IF A(f)el ) N 0O THEN
REald

COMMENT TF THE CORRESpPNHNOING ELEMENT I R IS VARIAKRLE .SUBSTIYUTE THE
MATCH 11 Ae [F THIS VARIARLE OCCURS IN MORE THAN ONE POSIT]OH TEST
THE RESULYI IG STRUCTURE AGAINST A FOR DIFFERENCES %

an =S %%
FOR C) = G STEP 1 UNTIL G(Ge4) DU
F ovlct, 1) EQL plf241) AND C1 HEY P2 THEM
weEG I
CT = CT +« 1 3%
STACKNICT) = cl S
£HDS
IF CT GTR 11 THF
FOR ¢l = | STEP | UNTIL CT nO
REG I
IF CORRILT(f5e¢;sSTACKC(C))eAsSeyl) TIEN
FOR €2 = P! STEP 1| UNTIL A(Pl.4) DO
BEGIN
IF CORRELT{(A«PlosC2¢Asv]ev2) THEN
NEGIH
IF NoV OIFFSPEC(A{C2«11,Atly2+sL)YsSyARICNY THEN
DIFFCHECKIAIC2:1)y2,P} &
EMNDS



1028
1c27
lu2k
lo29
1039
luldl
1032
1033
1034
10715
103¢
1037
1034
1039
lydg
1ol
1u42
1o43
1o44
lo4s
o4&
1047
1048
lo49
lusn
105 ]
1us2
1053
1054
155
luses
Lus?7
lusa
1nse
106D
los)
1062
TG63
ludy
10465
1066
logs&7
1048
1069
107n
107}
1072
1973
Lu74
i07%
1076
1v77
1478
fu7e
LOAN
1041
luBR2

ENDS
Fiilig

1L1EDS
tbhs
ENNT
Fii:$

BOOLEAY PROCLHOIE DIFFSPECIAIR s+ VAR CH) %
JTHTLGEE AIRAY VAR S
THTEGLR A+ReC'l S

CONMEHT PRUOCENDUEF DETELRNINMTS <pIETHLR 1,0 ELEWMENTS

bBEGIL
INTELER DEG:Cl 3

CONNERT IF i YyARTANLFE TIREN AUTGMATIC MATCH S
IF 5 LSS 0 THEM
DIFFSPEC = TRUC
ELSE Rt

ARE EQUIVALENT $

comMmMFUT I A yARIARLD THEN oMLy cERTALU SypsTITyTiols ARE yaLip $

IF A £S% O THEN Rpaln
It OPERATUR(D'GEG) THEN DIFFSPEC = FALSE
FLSE fEGTH

coMuENT DFTERNINE FOR 7ERODIFFS IF THIS SypSTITuTION 1S yALID $

FOR ¢l =V STeEP | unYlL CcH O
IT VARC(CL1) EQL A THEN
REG L

ly vVARCC2v2) EpL 15 THEN
LIFFSPEC = TRYE
LLSY DIFFSpPEC = FALSE $
4B 0 sy &
EHnne
CH = CN » | 8
VARICH* )Y = A %
VARICH+2) e A o
PAEEMNIC = TR -5
0 TO 5¢ S
FND
Ik 90TH A 2 B ARE COlISTANTS DY CMISTANT TEST 3
LI
ELSE Ir YERNWSPECIAG(s) THEN DIFFSPLC = TRUE
ELSE OIFFSpEC = FALSE $
(SRS
518

o s

PROCENDIIIL NRDEROPS 3



COMMENT PnCEDURE OBDERS THE OPLRATORS IN UECREASING VALVE &

GBEGTN
VT 6E? C),C2,Ch, Tl , TeHP2, TPy 5
REAL  TLUPVAL §
FOR ClL = ) STfpP | wlvlL topduM-1) DO
BREGIN

CZ = Gl %

FuR C¢3 = Cl+1 STEP 1 uhiTlL Ooplium 0O

IF OPyALURIC3I) GTR OpVALUECLC2) ThEH

G2 = €3 s

IF €2 ICu ¢t Tues

neGclid

S TE*PL = OpLISTICl 1) %
TC'IP2 = OpLIST(CL2) $
TENp3 =2 0pLISTICT»3) 8

TENPvAL = OPVALUEICILE $
OPILISTICL 1) = OpLISTEC2.1) &
0PLLISTICL2) = ApLiIsT(C2,.2) &
OPLISTI(CI ) = QpLISTIC2,3) &
orval UEICIE = OpVALIE(C2) $
OPLIST(C2:1) = TEHPL $
OpLIST(C2+2) 2 TCup2 $
OPLISTIC2+3) = TEHPA S
OPVALUVUE]IC2t = TENPVAL $
tnNos
ELb$
cl =0 2
FOR Cl=Cl+] WHILE C) LEQ OPlYl DO
IF oPvALLLLICIE LSS ERR THE!N arnur = Cl-1 8
Edns

PROCKDURE OPCHECK L v QspeDeAspPLLLT) S
INTEGER 1 eJ P eDWELTp]l $
JHTEGER ARRAY A S

CONMMEAT PRUCELURE EVALOUATES ANID FlLLS A ME,; OPERATOR., If 17 HAS

GFHNERATLEO PREVINUSLY !T UPDATLS TuHE vaALUE <

REGLnH
INTEGFRI? CLlLC2+sTIMPPT S
REAL DIFF1.DIFF2,0P D) 3

DIFF! = (RULESLII+2)=RULFSLII+1)) = {RULESRUEI+2)=RULESR(T 1)}

DIFF2 = D $

np = p 8

TE4p = JeFACTOP + ,; §
RAT A= SN0 v ) 'S

COMMEAT DETERHINE SHETHER HEW Ok OLD OPERATNR $

FOR Cl = | STEP | uHTIL opPluUM DU
IF OpLISTICL L) [l Ttup THFYM 60 To FL S

COMHENT I NHFs [USERT TO LIST AND GlIVE VALUF BASED OH LEyE]
COMPLLEXITY ©

OFPHUM = UpPlUt + | 3

BEEHN



110
114
RErE2
1143
| R,
lL14s
1146
1147
1148
L o
1150
1151
1152
1163
1154
115%
11564
1157
1158
1159
1160
1161
1162
1163
1164
1j65
1166
1167
1168
1169
l17n
1171}
1172
1173
1174
L1178
1176
1177
1174
1179
1180
1181

l1R2
1183

11R4
i18%
1184
l187
1188
liag
1190
1]
1192
1193
1194
119s
1196

OPL  ST(OPHMY, ¢} = TEHF 3

OPLIST (uPliutle 2y = LT

OpvaLUEINPHUME = DEpTHRIASIZtDUPTHEIASZeDP + DEFPTHRIASY) + RCOMPI(l)e
COftpRIAS 3

CONMENT IF STRUCTURL 1S Spbtec oF oup lupuT ApD SpFC8lAS ELSE aApD A
VALUE RASED Oh AMOUNT OF VURK REQIHIREL $

IF SFECIFICATIONtA+RLE +pTeRyLESL(T« 1)) THEN
ghal.a
OPLISTULAPNYM3)Y = | 3
OPYALUL (OpHUN) = OPVALUE(OFRMDME + SPECi!AS %
£ND
FELSE REGT
OPLISTIOPNHUMI)Y = () &
D] = NDIVFEVALIRULE WRULESLIL 1) sAWPT) &
NPYAILUE(OPNUNE = OPVALUE(OPIIUM) + DIl $
ENDS

COHNENT AL FACTORS FOR OIFFFRLNCE 1M $17ZE pLUS AHETHER Op TRANSFORMS
STRUCTURE TOUAPHS REQUIRED SI7F €

OpvALUE tophuil) = OpvALUFtOPligMI +DIFFBIASI/LARSIOLIFFI~DIFF2) +
RIFFRTAS2) %
DIFF] = RULESI {1+2) -RULESL(I.1t+]l S
IFF2 = AlpT #) = PT + | 8

OpVALUETOPHOM) =0pyALUE(OPIIUM) *+nIFFHIASI/IALSIDIFFI-DIFF2) + DIFFplASHY)
G0 TO F2 %

Bt

cOnNMENT Apnlr FACTOR TO JHCREASE vALUE 01 OLU 0Op wyHICH REMOyLS ANOTHER
BIFFLREIICL S

opyaAaLULICL) = OPvALULICLY + DEPTHRIASIZINDFPTHRIAS3eDP ¢ (QEPTHBIASY)
F2:
ENp®

PEAL PEDNCEDURL DIFFFVALIAYPL.BF2) S
INTLGER ARRAY A+h $
INTREGLR Pl.P2 &

CONMENT pPROCEDURF DERIVES A FACTOR TQ PEFLLET TiE PROBABLE AMOUNT OF
WURN RFEQUIRED TO AT AN OPFRATOR APPLICALLE $

LG Lt

REAL D % 2
INTEGER Cl.C2eCH %

INTEGER ARRAY VAR(L:AxSTAX1:2) §

D= 1Ned &

CONNEYF LOAD FACTOR I THE BASFES PIFFEK $
IF HOT DIFFSPECIAIPI 1B IP241)evARCN) THEN

D = DIFFACTOPRI) S
G =80 e



1197
1194
L1990
1200
1201
12902
1203
12934
123%
1204
1237
1208
1209
1210
1211
1212
1213
1214
F2S
1216
1217
1214
L21°
122n
1221
1222
1223
1224
122S
1226
1227
1228
1229
1239
1231
1232
1233
123
1235
1234
1237
1238
1239
1240
124
1242
12493
1244
1245
12464
1247
1248
1249
1250
1251
1252
1253

Q2N = M2 s
Loorr:

COMNENT Couny POSITIONS OF DIFCERENCFE 9

IF WY DIFFSPECIAICL 2 sBEC201) sVARICH) THEN
D = Nh * | .,U %
IF AICL«D) HE,) KiCc2:%) THFY
e G
Cl = AIC}s+%} &
CZ = BIC2+41 %
En%
€l = ¢ + 1 8
G2 = @7 « 1 %
IF ClL LFQ Afplisat ani® C2 LFQ BtP24%) THEN GO TO LOUP $
LIFFFVAL = DIFFACTOR2/0 %
EBDS

PROCILD UKL OPDIFFGEINRATF (AR 12 Lep 2ob ol yolind ¢
IMTeGFER ARRAY Al S
TUTEGER Pl P2l LEY 8

COMHENT pPROCENURE ACCFPYS A SET OF 2ERU-~LEVEL DIFFERENCES Anb GIMERATES
SETS if tHlaHER LEVEL DILFrERENCES ARD OPERATORS $

heEnl g

THTEGFR ARRAY CSTACE (L «MAXSTAX 121 «OPTESTUL:MAXSURGOALS s 141
SVARLILIIMAXSTAXx»1721.0PPOSELII10OY STACKLLLIGY ¢

INTE LR rs,l-I’UlIlY.pTopg.l-K-D-DIFFLEVEL-Ntholrr.pTR.pR-pg.cl-cz.pNT-
CleCHICHINAP W PLICH I ELT v CHaTTP P AP gUB 0P POSRACK L s J 0t LEVEL LK oly
PONLEAY FLAGY«ILAG2 $
fLAGL = FALSFE ¢

IF LEV 1.SS MAXSUBGOALS Ty

bEG

cunnfFar sECTI0N ASSISTS [ RESTRICTING OPERATOR GEUERATION gy KFEPING
TRACK OF Tittl PURPOSE 0F SUBGOALS, POSITION OF APPLICATION AND THE
*ESSEUT ALY FLENENT () 0F FEAH 0plgATOR GUNERATED THE SuUm1,0ALS ON
THIS PPATiI ARE MNOTED $

SUWONrS = J %
pos = | %
hACE = il 8

NpLFyCL = LEy 3
FOR SROPS = supsups ¢ 1 whlLE opLEvEL Mé.) HAX SUBGOALS Du
wEGTH
102 Pll=pit+l GHILE HMOTLNOVE(LACK*»S) LqQbL OPLEVEL AND
HOPL (AODE (3ACK* 11 eH) GTK OpLEVEL) b gACK = NODElBACK: 1) &
UNPACKITHODE(RAGK + 7)ol vPuY ) S
J =Pl S

COMmMENT Ly up wlTuIn FIpST (FyEl ofF STRYCTURE DETERMINE poy1YlOn DIREC!

1F + EqL 1) THEN
PEGLN

o



12%4
125%
1256
1257
1258
1257
1240
1241

1262
1243
1264
126%
1266
1267
1268
1269
1270
1271
1272
1271
1274
127
1274
1277
1278
1279
1280
1281
1282
12n3
12840
1288
1296
1287
1288
1289
1290
1291

1292
1293
1294
1295
1296
1297
129A
1299
13n0
1301

1302
1303
1304
1308
13Na
1307
1308
1309
131n

IF PUT £5S 2 TuLl J = J

FLSE Bgogld
J e d s ) 3

+

PNT

FOR C3 =¢2eleptTIDY 4 & Algelh) » 1 s

£un

OFTESTLSUNOPS 3] = 4 8

COMMENT 14 op T

BF AppLIED AT past
PUSITION 10 THE STRICTIHRE $

It o EQL Pl TUFN OpTLST(SUBNAPS2) = =]

ELSE niglin

NPTESTISUROBRS 2 = | %
OpTESTISUANPSel) w p0S
s pnT 3

OppPOSLpas)
POS = pOS + |
(27D)

FIp
FLSE BEGL

conMEINT IF op BEEn,

rOSITIUN $

PHT = #|iT =

L

OFTHESTISUROPS 1} = pps %
OPTEST(SUNOPS.2) = 1i s

FOr PHT = pPH
HealN

i

+ 1 UHILE

Ie i TR &6 THEN ) = A

LLSE C) =

H s

L3

H

GTHR O DO

HNPACKS(STACKI +SUROPLIST(pHTY) 8
FOR C2atls14c1) LO

REnIN
d = J ¢

oOPPa5(POS)

PO = pO
FOR C3 =

DS
il = ey S

LD S

conmE XT SET pOSITION

i

S

b 3

+ 1 S

= STACKIIC2) S

t2.1.STACKItC21} 1,0
J s AlJed)r &+ | S

OPTESTISHHBOPSe3) 2 ) 8

€Ins

COHMUENT IF N9 SHCH

POINTENRS &

FLEMENT SET FLAG

IF 10DELRACK«&) 1,54 O THEH

FLSF FEGIN

nF ESSEHNTIAL ELEMEMT $

OPTEST(SUROPS %)

UNPACKAOHISTACK I s MODWL (hACK16)) §
OPTFST{SUROPS+4) = STACKILE) %
FOR Cl ml]oeloSTACKI(E))

REGIN
oPPASHIIPOS)

STACKIIC)

Do

$

SET NCGATIVFE FLAG ELSE INSERT ITS

FINST LEVFL THLW SET yp STAck OF LINKS TO IDENTIFY

HILGATIVE OTHERRISE SET yp STACK OF

= HODE(BACK ¢4}



W PFas = pO0S ¢+ ] 8

131> CUDs

11 & FHLS

13ty OPLEVIL = OPLEVEL + 1| %

1315 HACK = NODECRACK»1!) %

1316 Ellis

1317 SURDPS = SUROPS - 1%

1318 FOR Cl=(1,1»SUROPS) DO

1319 IF OPTESTIC12) GTR O 8RR OPTEST(cled4) GEQ DO THEN FLAG! = TRut $
1320 LD S

1321 D = (CAIPL M) =Pl)=(RIP2:4)=P2}) &

1322 oPHUM = g %

1323 PN = PR = 0 S

13249

1325 COHMMFIT SET INITIAL VALUES FOR DIFFERENCE SETS AND FIRST DIFF S
1326

1327 AT NG

13248 ODIFFLEVEL = DIFFNUM S

1329 MEXTOIFF = 1 %

1330 Sl:

1331 IF NEXTLIFF TR DLIFFHyY THEN GO TO oppEND $
1332

§333 COMMEIT SELECT MEXT DIFFFREMCE AJdD STACK 1TSS POSITION 1 RLLATIAN
1334 TO THE KASL %

1335

1336 PG = DIFFSUIUEXTOIFF.1l}1 $

1337 PE = DIFFA(HEXTDIFF+2) 3

1334 PL = PP = py S

1339 PTR = 0 %

13410 pk

134 PTR = PTP + | $

1342 CSTACKIPTR. LIl = pp 3

1343 CSTACRIPTRW2) = At(PLW2) S

1344 PL = PR %

1345 PR = AlPRI) 3

1346 IF PK YER I ThEH 4090 YO L1 $

1347

1348 CONMENT BEGL) MALN LONP FOR ALL OPLRATORS 3

1349

1350 FOR C) = 1 ST¥p | yuTIL RULLHO BO :
1351 REG 1M

1352 TTP = PL = TERATARCHTIRY(CL1) $

1353 FOX C2 = | SYEP | UNTIL PTR 00

1354 WeEol))

1358

13S6 COMMEIT SELECT POINT QF APPLICATION OF QOPERATOR S
1357

1354 PR = CSTACKIC2.1t 8

1359 Fak ¢3 = 1 STEp 1 uNTIL Cc2 DO

136N SEGIM

1361

1362 COmHENT SELECT pollT or DIFFERENCE OR STRycTURE COHTAINING pOINT OF
1363 DIFFEREICE S

1364

1365 FS & CSTACKIC3.1) §

1366 Prl = COGTACKIC2.1) $

1367 FLAGZ = FALSE %



1364 TIPS R (P

1369

137n cotmENT tarh FORMARD 1N PTABLE TO FloNT o DIFFERENCE. IF AT ANY
1371 STAGg 1ilg. FOURMAPD ST¢p IS 1Oy pOSSIRLE | T 0 MAFCHING OR gNO OF Op
1372 THEHN TRy AT NExT pOINT OF APPLICATION g

1373

1374 FOR C4 =1C2+=1:CA+1} DO

1375 AEGIH

1376 Pil = CSTACK (CHr1) $

1377 It TEENTARITTP ) LSS O THEH (O Tu HF(T1 $

1378 Ir HOT TERMGPEC(TLRPHMTAGITTps4) Alplel) ) THEN GO TU HELT! $
1379 TTP = TERUTAL(TTp.2) §

1389 FOR c5 = (2¢]14cSTACKICH442)) 0N

1341 IF TTp EaL 3 TUHEN 60 TO MEXTE

1382 ELSE TTP = TERMTAR(TTP»3) S

1383 IF TTp El. O THEM G0 TO HFXTI %

1384 EMDS

1385

1386 COMMEHRT LIfF THE POSITION IS UNALTERED THFN FXIT $

1387

1308 IF TERNTAR(TTp 1) EoL O THFE# GO TD HEXT] 8

1389 If TERMTABITTP«1t 5TR O THEN

1390 BEGIN

1391

1392 COMMENT IF DIFF BATCHES A CONSTANT THEN TEST DIRECTLY $

1393

139 ELT = -1 §

1305 IF DIFFSPECtpG s TERNTAGIT Yok baSyARWCH) THEYN GO TO CHECy2 %
1396 an T HEXTI &

1397 £4iD

1394 fLSF REGIN

1399

140n conubEnr 1f OIFF NATCHES A VARIARLE THEN ISOLATE MATCH IN CyRRENT
1401 STRUCTURE §

14n2

1403 Py = ~TFRHTAB(TTP.1) 8

1404 FLAG? = TRUF $

1408 L2

1406 Pt = cSTACk(C2, 1 3

1407 C4 = C2+19

1408 FOr C4 = C4-] WHILE PR GTR g DO

1439 REGIN

1410 1 AtPel) NEY yARTAGIPQ 1) THEN GO0 TO CHECKIL $

1411 Pl = Pt o+ |8

1412 FOR C% = {241,vARTARIPQ+3}) £O P = 1 + A{pH:Y) §

1413 P & VARTARIPL%) $

luly Cnbs

1415

1416 coMMENT

1917 IF VARIARLI 3TATCHES SukSTRUCTURE CONTAIMIHNG DIFFPOLINT THENW 1«ATCH
1418 It SunSTRUCTURE TO OETERMIME CORRECT CORRESPONDING LCLEMENT $
1419

14920 IF S UHEQ PR THEN

1421 atGlin

14122 IF HOT CORRLELTIAWPS+PKsAPNPOLNT] THEUN GO TO CHECK) &

1423 PH = PNINT €

1424 EaDs



1425
426
1427
14928
1429
1430
1431
1432
1433
1434
1435
1936
1437
1438
1439
l44n
144 ]
la42
1443
14449
1445
1446
1947
1448
1449
1450
145]
1452
1453
19594
1455
14S4
1457
1453
1459
1960
1961
1462
1463
1964
1465
1466
1967
1468
1969
1471y
1471
1472
14723
L474
1475
1476
1477
1478
1479
148N
1481

ELY = Py = P| &

COMNENT 1F TE ELEHENT 1S HOT A SPEC OF THE GOAL
LEVFL LIFEERCNCE %

IF NOT DIFFSPECIFGeA{Pls 1 sSVARICM) THE
DIFFCNECK (UG oPHIPT+])
I'LSE REGII
CHECK 2:
If FLAGI THIEN
BEGIN

THEN

INSET A HIGHER

CcONMEANT IF "NECESSAKY DFTERMINE WHETHER OpgEj?ATOR NEGATES SUpGOALS BY
CHECK IILG AGALHUST EACH STACKFD OPERATOR AND ELEMENT $

J = R2 3

FOR C4=t1.1+SUBOFS) po
HEGIH
POS = OPTEST(C4s1) %

¥ (O TESTIC4923) GEQ o AMD OPTLSTIC4e3) LEN AlJe4)}) THEN

BEGINH
{F OPTESTI(C!“s+2) GTR 0 AND OPTESTIC%¢3) GTR
REGIN
TTP = TERUTABENTRYIC))
I = OPTEST(C%:3) $
. = K = OPTEST{Cel) + OPTESTICH+2) = 1%
FOR IT= Ail1.3) wiHlLE | NEQ PR BO L = =1 &
FOR CS = (Lslsk) DO
REG T
iIF TERNTARITTp.+4) LSS O THEN
HEGIN

J THEN

TF TERMTAp{TTP. 1) LSS U TUFMN ® YO CIHECKI

ELSE GO Ta CHECEY $
€103
TTP = TERMTABITTR»2) $
FOR Cb6b2t2:1+,0pp0OSI{CSI) 0O
IF TTP €L U TIEH GO TO CHLCKI
ELSE TTP a TEROTABITTP+3) 9
Iy TTPp EQI. i) THEN GO TO cCliIECK]l %
EilDS
IF TERMTARITTpel) LSS O THEH GO TO CHECK] $
£HNs
L = K + OPTEST(CHY+4) = IS
IF uPTEST(C4s%) GTR O THEN
BCuln
FUX CS=tK+lslsL? DO
sEGIN
IF TERMTAR(TTPe4) LSS O THEK
nEGIN
IF TERMTAKITTP, 1) LSS O THEM GO TO cCHECKI]
ELSLE GO TO CHECK3 %
EHDS
TTP = TERMTAS(TTr«21! $
FOR Cb=(2,1+.0ppQS(CcS)}) DO
IF TTP EqQL O THEN GO TO CHECk!
ELSE TTP = TERNTABITTP.3) $
1IF TTp EqQL O THFH GO TO CHECk!l %



1482
14R3
1484
148%
1986
14a7
1488
1489
1490
147
1992
1493
14949
1495
1496
1497
1498
1499
1500
150t
1502
1503
1504
1505

1506
1LS9E7

Is08
1539
151N
1511
1512
1513
1514
1518
1516
1517
Ists
[
1520
&2
1522
1523
1524
152%
1524
1527
1528
152"
1%3N
153
1532
[533
1534
1535
1936
115857
138

s
1 TeRnTAG(YTPoy NEQ g THEI 60 TO CIECK; ¢
Lilhs
L8
CHFECK 3!
ErnN >
Eliys

COMMENT InskEFRT THE opt#ATOR TO 1TS CORBFCT SET s

NOCHICKLCIPRePIPTiDsABLJELTY $
Euns
cCHECK ] :
IF FLAGZ TtEd nEgl'l
1F VARTABIPQe%1 1,59 0 THEMN st GIN
g = po + 1 S
ol R L2 & EHGS
L1ns
EHMDS
HEXT S
EHDY
FHD %
NEXTRULF I ;
FNns
COMNENT
INeREPERT LEYEL uF ORFRATUR/Z/NIFFFRENCY 11 NECESSARY AHD TEST If
MAXLEVEL FXCFLDED. 35

IF NCXTHIFF EQL. DIFFLEVEL THEN
Rt Gl
Rl =R
tr 7T TR
PIFFLEVEL

FNos

NEXTHIFF = HEXYOIFF + | 3
Git Thi 51 &

OPOFUD
Litos

3
THEA 0 TO OphEHO 9

DIFF N $

n T =

BROLEAD pPROCENURE SPLCIF ICATION(ACB.PL 2] $

ITHTEGER ARRAY Aot S
INTLGFE plef2 $

CONMFNT pROCECGURE TESTS pHETHER STRyYCTURE A IS A SunSTITUT] QN
INGTANICC OF f3 S

BEGILN
IINTEGER ARRAY STACKEtL sMAXSTAX1:2) e SVAR{] IMAXSTAX ) 22) S
INTLGFR? CleC24C34CH+CSWCTL.CT2 &

CONMEMY E& 1BOTH SYRUCTURES AV S17ZF OHNE no BRIFF TEST s

TE At Lot FuL £ AID BIP2.41 EQL $2 THE
HEwln
If AtPlel) LSS U OR BIP2+1) LSS U THEN



1539 SPEC It [CAT ol = THUF

1540 FLSE SPUECITICATION o TLRHSPEC(A(PL» ) ehb(P2e))} 3
1591 G0 T TR 5

15¢42 FHGS

15493 SPECIFICATION = TRUL $

1544 cl =Pl o

145 c2 = P2 s

1544 QLY = e 2 = e it

1547 1) 2

1548

1549 COMMENE 1F OF DIFFLRING DEGREE TiElr £X1T W1TH FAILURE §
1559

1550 IF 68 Cle2) WEy BlC292) THEN BLGIH

1I'SS2 1F ¢t HES oL THEN GO T ¢AIL %

155> ENHDY

1554 IF s(C201) GTR W} TOrH BEGIH

1555

1556 COMMEINT IF cOUSTANUT Ta i TEST FOR SpPLC OF INDIvIDUAL ELEMENLTS»S
1557

1558 IF mIOT DITFSPECTAICE 1) aBIC20)sSVARICTI) THEN
1559 G, TS FREE S

iS60 Cl = CL + 1 %

1561 C2 = C2 +« | %

1562 IR

1563 ELSE BFEwIN

156¢

1567 COMNENT TF vARIARLE FI'IL 175 SUBSTITUTION yALUE AND TEST wnETHER
1566 ANOTaER TDLITICAL VARIAGLE MAS BEEN SURSTITUTED TO. iF S0 TEST
1567 THAT SuUKSTITUTION VALUES ARF EQUIVALENT $

1568

169 Fue €3 = | STEF 1 HUTIL CT2 DO

1s7n 1€ 3(C2+1) EnNL STACKI(C3+1) THEM

1571 WEGTH

1572 Cy = STACK{IC3.«2) %

1573 FOR €S = Cl STEP | UYMTIL Atcl:+4) 1N

1574 BEGILN

1575 If A(CS+1) UEQ A(C4s]1) THEN GO FTO FAIL 9

1576 C4 = C4 + | %

1577 tHDs

157a Gy TO L2 &

{579 Cilh$

1580 G = am o &

1581 STACKICTZ,1) = Hlc2o1) %

1582 STACK (CT2+2) = Cl 5

1583 4

184 €2 = 2 + | S

1485 Cl = A(CL %)Y &+ | 8

1586 £ %

14,87 IF ClL LFg Atpley AUD C2 LEn plp2e% THLN G0 TO L) 8 .
1588 TF ¢l th) (Atpled)+i) QR C2 kg IGIP2eY)+1) THEN
1589 FFATL S

1590 SpeLCTE ICATION = FALSE ®

159) nuUiK:

1592 FHD S

1593

1599

1595



1596 PRICEDUIE POLISHINGEIXCAP) 5

1597 1Te£6l2 AnRAY A g

1594 INTEGER p g

1599

1670 COINENT pRUCEDURE TRANSFORKS 1HNTLRNHAL STRycTyRL TO LHE Iy
1631 FUFLY Fol LEGIRILITY AND PRINTS TE [NFIX FORN L8
1622

1633 BTG

leny INTEGFR ARHAY DUMITY(1:1201,STACK (] 1AXSTAX.):2) $
1635 INTEGER €1y C20C34P0INTPLepP2 3

1606 STRING #UFFER{361) ,[LUFF2{120) %

leld? FORNAT FLO{SI12D.A1) 3

1608 RIS =N 20 =N 0ee

16909 FOit ¢l = - STEP 3 ONTEL Alpa4) DO

1610 REG 1N

1ot IF AICl 1) LSS 0 OR SYMTABCALCLWL1) 1) Ent O THEN
1612 BE,IHN

leld

Taly cOnnENT ITHSERT OpERANpS TO puMity AlpD DECREWENT op DEGREE Iy STAck $
161%

1o & P2 2 p2 + | 9

1617 DUumMnYp2) = AlCl.1) S

16148 1y Pl NEQ U THEN §TACkiP1,2Y = STacktiple2t = | &
lel9 00 Th OpPCHECK @

16249 EHNDS

la2l COMDBENT THSERT OpfRATORS AHUD ®EGREE Tn Tacy ¢

1622

1623 1) T4 1%

lo24 STACK(P1s)) = AlCls1) S

1625 STACK tpl1+¢2) = SyqTAn(ALCLsLl)w)) &

1624 OPCHECK

1627 IF p) HdF,; U THLED

1628 SESTN

1629

1630 COMMENT T¢ «TACK DEGHREE AT zERO LHSLRT TO 5uuuy AND DECRENEL T
163 STACK POINTER, $

1632

1633 [F STACK (P1+2) £QL O THEN

1634 araln

164395 P2 = H2 + | %

1636 NNy ip2) = STACr(P), 1) 8

14637 R SRR =S

1638 If Pl NEg O THE!N STACK{PLle2) = STACKI{PIL1»2) - 1 $
1639 Gy Ty aPCHECK $

le4n tups

16%1) IR FIPR

1642 £ LY

1643 POTNHT = p2 S

1644 pl = p2 = 0 %

164% 60 Tu 32 5

16%4 Sl

1647 POLHT = pOluY - | s

Lo4a S2.:

1649 ITF ity tpOIHT) LSS O THEN

1650 REall

1651

1452 COMMEMT IF vARITANLE 1HS5FRYT *VC*AND HUMBFR $



1683
1654
1655
1696
Lehh?
1658
1659
1660
1661
1662
16463
166%
1665
1664
1667
loés
166°9
167n
167
1672
1673
1674
1675
1676
1677
1678
1679
1680
168%
1682
1683
168%
16RS
16864
1687
1688
1689
1690
169]
1692
1693
1694
1695
1696
1627
169R
1699
1700
1701
1702
1703
1704
1705
1706
1707
170n
1709

[ =S N [

WUFFERIP LY = =Launny{(poluT) 3

Pl = Pl +« 1 9

RUFFLRiIpLl) = 'y o

GO T G %

Fins

IF Syu7agiDUNHYIPOINTY L) €qQL D Thed
BLgli

COMNENT 1F COUSTAUT OPTRANL IHSERT SYMLOLIC VALUF $

532

C3 = DUITMYIpPOLlUT)Y o

FOR C2 = SYNTARICI»SY STEP =1 UNTIL SyMTARIC3»49}) DO

BEal
Bl = .pl & ) 3
BUFFLRIP L) = SYnNvaLNE(C2) $
END%
a0 TO S4 &
Elns
Ped = P2 &« | &
STACKU'2,1) DUNNYLPOINTY %
STACKIIP2.2) = 0 %

¢ »2 EoL 2 THEN
BEGIN

COMPENT THUSFRT RIGHT ARACPET IF COUDITIONS

sS4

55%

HOLD $

IF (SYNTABISYACK{P2,1103) LSS SYNTABISTACKIP2=141)3s31) IR
(SYRTARNISTACKIPRe11 031 EQL SYMTABISTACK{p2-1,11+31) AN

STaCKIP2=1,2) EQL O ) ThEN

wEGIN

Pl = P + 1 8
HUFFERIPLY = )9 g
END S
tHDs

) TO 58 %

1IF »2 EqL O THEN G To StHN ¢
STACKkiIP2,2) = STACK(P2,2) + 1 S
IF STACK{PZ2+2) EqL 2 THEHN GO TO S6 3

COMNENT [F A yARIARLE OPERATNR {NSFRY SOME

1F SYMTAN(STACKtIr2,1)+2) EQL 0O TIiFN
REGILH

PL = P11 + | %

HUFFERIP)I)Y = *» v ¢

Pl =Pl +« | %

GUFFERIPE) = SYNTANR(STACK (P21 41) %
Pl = Pl « | %

RUFFERIPLY) = % g
PL =Pl + | s
BUFFERIpPL) = v ¢ g
E'n

FLSE BEGIN

LISTINCTIYE SYMyoL+$



1710

1711 COMMENT IF A cONSTAUT [HSERT SympolLlC RFpRESEMTATION, $
1712

17113 C3 = STACLIP241) %

1714 FOR Cc2 = SynTAR{c3H) sTEp =1 YNTIL SYMTABIC3e4) DO
17148 BEaLlN

1716 B =P e s

1717 BIFFERIPL) = SYMVALUEIC2) %

1718 ENDpS

1719 FHD$

1720 IF SYMTARiISTACk(p2ells1) GEp 2 THEN O To SI ELSE GO To s7 §
1721 Séa:

1722

1723 COMMENT INSFRT LEFT pRACKET IF sTAck cuMNDITIONS TRUE $
1724

172s IF P2 EyL 2 THEHN JEGIN

1726 IF (SYMTABISTAC;{P2e1}e3) LSS SYHTAR(STACK(P2=1¢1)+3)) OR
1727 ISYMTABISTACKk(p2el}3) EQL SYNTABISTACK(P2=1s1)«3) AL
1728 STACK{P2=1:21 EnL Q) THEN

1729 REG I

173n Rl = ¥l + ks

1731 AUFFERIPLY = ¢ g

1732 Funs

1733 FHDS

1734 S7;:

1735 P2 = P2 -1 S

1736 GD T Su %

1737 SEMND:

1734 r2 = 1 %

1739

i740 COMMENT THvERT STRING AHO PRINT IN 120 CHAR LINES $
1741

1742 FOR Cl = P) STEP =1 UNTIL 1 DO

1743 [ I XNN{]

17494 RUFF2(P2) = RUFFERI(C!) $

1745 P2 = P ¢ 1 5

1746 IF P2 EaL 120 ThEu

1747 €GN

1748 JRITEIFLIUBUFF2) S

17499 $2 = 1 S

175n ENDS

1751 ENUS

1752 VRITEIFIN«NIFF2) $

1753 EHO W

1754

17S8%

1754

1757 FROCEDURE APPLYOR LA L 0P Bap2] 3

1758 INTEGER ARRAY A'h $

1759 INTEGER Ml eP2,ap S

1760

1761 COMMENT pROCEDURFE Appi IS OpERATOR 00 TH STRUCTURE A ROOTE, AT
1762 P1 TO PRODUCE 8 ROOTED AT P2. $

17613

1760 HEGTH

1745 JUYLGER ARRAY VFCYsVEC2(=MAXSTAXLSIL) $

1766 INTEGER T g1C1eC2¢C31CH1C5eCOeC79TAGDLIN2syARIPNTIN2 S



1767

1768 cOMNENT §FLFeT opERATOR AND pOSITIuN OF AppLlcATION §
1769

17740 1 = ar//vACTal: $

1771 J = IIODIOP+FACTOR) &

i772 D1 = RULESLtL,.1) $

1773 D2 = RULE(DLY.4) &

1774 Thsy & U 8

1775

1776 CONMENT I1UITIALISE yECTOR FOR VARIABLES 1N A ANL NOTE MUINIjigMe
1777 vEClsvEC2 KEEP TRACK OF VARIARLE NAME ANO POSITION S
1774

1779 FOR C1 = Pl STEP 1 IINTIL AtPls4%4) DO

178y IF AtClsl) LSS O THEN

1781 REGI!N

1782 veCc2tA(Cl+It) = O S

1782 I¥ ALCEsl) LSS TAG THEN TAG = A(Cisl) 8

1784 ENPS

1788 IF TAG LSS O THEN TAG = TAG - |

1786

1787 COMMEUT MOTE POINT AT ylifCcH Op 1S TO BL APPLIED AIID THE VvALUES
l7a8 IN A uytICIl REPLACE THF VARIABLFES 1t THE 1UPUT oF OP S
1789

179n fFOGR €) = Pl STEp 1 WETIL D2 1O

1791 IF SULEICY 1) LSS O THEM VECI{RULEtCLs1)) = O §
1792 PIHT = Pl+J

1793 FOR Ci = D1 STEp { UNTIL D2 DO

1794 IT «ulE€(clel) GEQ O THEH PNT = PNT + |

1795 ELSE BEGI

1796 VAR = RULTICl+1) 3

1797 I¥ VECt{VAR) EQL O THEM VECI(VAR) = pHT

179a tLSE

1799 IF A(VECItVAR) 1) LSS O THENY

lanon REG I

1801 €3 =2 ALVECI(VAR)I |} S

1802 IF AIPUTL) GTR O THEN +

1803 veEc2tcl » = VECItVAR) = pHY S

1894 END

18085 ELSE

1606 IF AtPNTel} LSS T THEM

18n7 VEC2UALPIIT 1)) = VECI(VAR] S

L4808 pPHT = A(PNT+4) + | %

1609 END S

1810 J =R g S

1811 cl = p1 o

1312 c2 = p2 3 _

1813 LJOP S 'i

181% IF ¢l LLy Alpls4) TIHEN BEGIN

l41s IF Cl HEQ o THEN BEGIW

Inté

taty COMMENIT IF wORK | NGERH SECTION OF A QUTSIuLE OPERATOR l+Ee LT 4
lsle OR GT Algys4r TUSE Y RIRECTLY YO OUTpyT UHNLESS IT 1S A
1819 VARIARLE REGUI LEREOl - IF SO SFLECT CORRECT SymrsT
1620 VALUE S € -

1822 It AIClesl) GTR 1+1)) €£QL O THEN

1823 REGILIN



1682%
16285
1424
1827
1824
1u29
i83n
183
18432
1833
te 3%
1835
1836
1837
184386
1839
1840
14 ¢
1842
1843
1844
IR
18%6
1847
1848
1849
1s5n
1851
1652
1853
1854
1655
1456
1157
1858
1y5°
1860
1861
1862
1863
1869
186
1864
1867
[ X-Y-%:
1869
1870
1871
1872
1873
1874
1678
1876
1877
187R
1879
tB80

N(C241) = ALCIH2) 3
C, =C2 + | 3

Cit = C) +« 1 s

END

tLSE BEGILH
N2 = VEC2(A(CI 1)) S
FOR ¢3 = 12 STEp | HTIL A{H2:4%) 1O
nELLY

BRiC2+¢1) = A(C3s1) % C2 = C2+1% EHDS
Cl = ¢Ccl » 1 s

END
ENID

ELst BEGIU

COHMMENT [HSLRT 0yTpuT Op TO R = IF COMSTAMT IHSERT DIRECTLY FELSE
FIUD CORRECT SypSTITyTIoN yALITE FOR yARIABLE $

H2 = RULESRII.1) %

FOR C3 = 112 STEp 1 UNTIL RHNLE(N2+%F DO
IF RULELC3.s1) TR O TiEl
REGIN

RLC2s1t = RULELCI,IL) & C2 = c2+] $ ENR
ELSL 1F VFClLIRULEACA«LI)Y) EQL O THEN
HEGIN

COMMEHIT IF SInpLY HEw vARTAQLE TREN IMSERT - TA; USED TO
PREVEMT cOnFuslal ylTi ExISTING VARIAKLLES $

1P TAi EQL 11 THEN BGIC2+1) = RULF(C3el)
ELSE is(C2»1) = TA $
C2 = C2 + | %
EHD
ELSL BEul
C% = VECIIRULEICAWII1) S
FOiR €S = C'% STEP 1 UNTIL A(CH.4) 00
[ ALCS. 1) GTR O 0P .
VEC2(AICS5,11) EOL U
THEH DEGIN
BIC241) = AICS,1) 3 C2 = C2+1 s END
ELSE DEGII

CONHENIT CHECK FOR SuygsTITUTIONS p1ITHIH SUpsSTITUTIORS AND
[HNSERT CURRECT VALUE $

Cé6 = VEC2tAICH 1)} 3
FOR Cc?7 = C& STER 1 UNTIt. A(Cb6eY4) DO
REGLMN
BIC2:1) = AIC74+3) & C2 = C2+! & EiDS
NS
END W
Cl = Atg,t) « 1 ¢
EKIS
GN Tu Loop &
END s
POSMAP (Hsp2+C2=-1) 3

CONHENT pLACE D I cORRECT FORHN FOR PRUOCESSING &



18Rl

18R2 EHPS
1883

188t

1885

1886 PROCEDURE AHALYSERULE (NUMBER) $

1887 INTEGER *IUMBER S

1888

1889 COMMENT PRUCEOURE AHALYSES AN OpERATOR TO DETERMINE THE pRORABLE
190 EFFECT OF AppLYING IT. TwD TAGLES(TERNTAR gVARTAB) RESPECTIVELY
1891 RECORD THE pOSITIOW OF CONSTANT SyMgoLS IN THE OyTpuT STRUCTURE AND
1892 THE pOSITION OF OuTpuUT yARIAKBLES IN TERMS OF THEIR POSITION -
1893 IN THE INPUT S

1894

1895 BEGIN

1896 INTEGER ARRAY PACKSTACK!1TMAXSTAx 1331 syTABl]1IMAXSTAXs122)
1897 LSTACK(1IMAXSTAX«122) S

1898 INTEGER (POINT P oPRsC1+sC2sCIsVCOUNT,TEMP «TARTESGT $

1899 ROOLEAN FLAG]+FLAG2 s

1900 REAL FLleF2.D1lD2 s

1901 Fl1 = RULESL{HUMBER+2) = RULESL{(MUMBER+«1) + 1 S

1902 F2 = RULESR{NUIIBER«2) « RULESR{NUMBER+1) + 1 S

1903

1904 COMMENT SET INITLAL POINTERS AND CORRECT LINKkS FOR IMNpPUT AnD
1905 OUTPUT STKRUCTURES S

1906

1907 VCOUNT = LPOINT = O S

1908 PL = RULESL(MUMRER+1) s

1909 PR = RULESRINUNBER.1) S

1910 POSHAP(RULE *PLsRULESL (NUMBER 12)) ¢

1911 POSHMAP{RULE sPRsRIJLESR{MUMBER2)) 3

1912 TAR = TERMTABENTRY(HUMBER) = TTRpNT + | S

19123 TEST = VATPHT + | S

1914 si:

1915 IFf PR Ltk RULESR(IUHMRER»2) THEN

1916 BEGIHN

1917

1918 COMMENT IF wITHIN STRUCTURE INCREMENT HMAIN TABLE POINTER S

1959

1920 TTRPHT = TTBPNT + 1 S

1921} TERNTABI(TTBPMNT,31 = 0 S

1922 1f LPOINT NEQ O THEH BEGIH

1923

1924 COMMENT DECREASE TOp OpvALUFE = pACASTACK CNONTROLS LINKkS RET,EEN
1925 SUBSTRUCTURES S

1926

1927 PACKSTACK {LPOINT+]) = PACKSTACK(LPUOIMT.I1} = 1 S

1928 IF PACKSTACKILPUINT 1} LSS PACKSTACK (LPOINT 3} THEN

1929 REGg I

1930 C3 =TERMTAR(PACKSTACK!(LPOINT 12142} S

1931 S3:

1932

1933 COMMENT IF AT CORRECT pq@SITION IH TLRMTAB IMSERT FORWARD pOINTER
1934 TO CURRENT SUBSTRUCTURFE $

1935

1935 IF TERMTAR(C3+3) EqL O THEN TERMTAR(C3,3) = TTppNT

1937 ELSE BEGIN



1934 G = PLalanNheCae sl B G 10 e & fials

1939 [”h'n

19%y it s

1941 9" Rt bteRkel) Fpl UL Lter, 1) The

L9492 LG

17383

L9494 COitt AT 1P ywALuE TS DUcRAGEE THSERT 2ER0 TO TIEnTAR CLGE [~SEwT
3 T H vALIIE s

1944

e A S FrLadqgl = FALSE 3

L9943 TIRPAT AR (TTLRpHT L) = 0 %

949 g

1938 Ao PUltg i

AN | (R M A (e S

1952 TEIRMTAQCTTI U vl = pylbipita]) %

19532 Erh

1954

1955 COMMPNT LT yaLpE T 4TH EHTRy FOR cORPESpOHpDENCE CcHECg &
1956

1957 TERLGTAD(TTOPHT %) = PULEIPR1) 3

195A

1959 OB 16 wALUF TIo 9TpygT IS 0pERATOR THAT #ATCHES [hpyT
196D CONSTANT [HGERT T pAcysTAcy «lHUCRENELT FIPST SON o 1F IT ATCHES
1961 ACVAREARLE THSERT ZE20 TO FIRGT sal . %

1962

1963 I Dk Cpi o &8 1 Tie w1 THE™

1964 IS

1965 UE mUr el » 10 5 F 0 T

1966 YRR AR

1967 LeOLInT = Leoint « ] %

L9600 PRCKSTACE (LIPOLIT» 1) = RUILE(DIWS) &

1969 PACKASTACH (Lra T2 = TTipIT 4%

LY70 PACESTACK (LPOLIIT 3 = Hult(re,H) < | %

5 F PRI TAR K TT™iTe42 = THAIDST # L 9

1972 =1\

1973 Er.ste neoih

1974 FTERLTARLTT) pHT«2) = U /& PR o= 2yl Gty %Y S FHD

1979 Ll

1976 Flds S

19727

1v7a CannbE I GET FIRST S0l Ty zUR0. 1LF 0nTeaT YALUL 15 VARLAGLE
L4779 TEST % AT MHAS Bl pSAL T =od Thic EMEL DEise S

1984

1981 TLRNTACLTTGRUAT 20 = ) 5

1982 T RULE SRR (LG5 O AQL FLASL Tk

193 LE o T

1924 P GR Cl= F OSTER 4 Tl Ve 1T LU

198% IE MTARCCTH 1) Fol RuLEGhg, 1) THEN

1v5 6 (RS A

1937 FELETAN O T THeMIT £l = WTAS UG v 54 &2 B B0 s2 %

198y y Il %

tonn FrLag? = FALSE s

1994

199 gattpt i) SEtvaT nATenl 1y, vARIAGLE LS Ll ThHPiT -« aSt 1 STACY (0
L9922 FTian ¢cn20CT DACEJARD | T ke &

19723

1994 PO et o= tnLEseoneline 1Y STER T dTrL Ryl ESLOCRUMaLF, 2) pi



1995
lo9és
1997
1998
1999
2000
2001
2002
2003
2004
200S
2006
2007
2008

2009

2010
2011
2012
2013
2014
2018
2018
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
203%
2038
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

IF RULE{(C]1,1) EOL
REGIN

c2 =0 %

TEHNp = Cc1 %

RULE{PR, 1} THgN

FOR C2 = c2 * | wHILFE TEMp HEQ O DO

BEGIN
LSTACK(C24s1) = T

EMP $

LSYACK(C2+2) = RULE(TEMP .2} §

TEMP = RULE(TENP
ENDS

COMHENT If MORE THAN OiF

If FLAG2 THEH VART
ELSE hEGIHN
VCOUNT 3 yCOUNT +
VTAB(VCOUNT. [} =
VTABI(VCOUNT+2) =
END S
FLAG2 = TRUE $

COMMENT 1IHSERT POINTERS
LSTACKk + POINTERS SHO™

[F C2 QL 2 THEN
BEGIH
VATPHNT = VATPHNT +
VARTABI(VATPNT s} )
END
ELSE FOR C3 = C2-1
REGIN
VATPHNT = VATPHT
VARTAB(VATPNT, |}
VARTABIVATPNT2)
VARTAB(VATPHT,3)
VARTABIVATPHT »4)
ENDS
VARTABR{VATPHT ¢ 49) =

v3) 3

VARIABLE SET FLAG IN VARTAB $

AR(VATPNT ) = =]

1 ¢
RULE(PR+1) $
TERMTAR(TTBPNT, 1) =

~(VATPpHT + 1)

IN FORWARD ORDER TO VARTAB FROHM

RELATION To BASE OF
L

1 9
= VARTAB(VATPNT,2] =

STEP -1 UNTIL 2 Do

+ 1 3

RULE(LSTACK (C3,t)
RULE(LSTACK(C3,1)
LSTACK(C3=-1:2) $
VATPNT + ] §

4

o 3

COMMEMNT INCREMENT POINTER FOR INpyT $

PL = RULE(PL.Y1 3
ENDS
IF NOT FLAG2 THEN
BEGIN

COMMENT IF VARIAHBLE OHLY EXISTS IN OQUTPUT TH
TO TERMTAH AND SET FIRST SON TO ~ FOR INDICATOR $

TERMTABITTHBPWNT 1)
TERMTABITTHPHT »2)
ENDS
ENDS
s2:

COMMENT REGSET PACKSTACH

=z RULE(PR+11 $
= -1 $ ENOS%

TO LOWER LEVEL OF Op

InNp

(0]

v 1)
' 5)

EN

IF

UT «%

$

$
$

INSERT vALUL

MECESSARY s

3



2082 Ir LFOINT MEQ U THEF BFEGILY

2ut ) IF PACKSTACK(LPOLMAT, 1) gL G THeH BpGIN

2654 LPOINT = LPOIWT = 1§ GO TO S2 3 ENDg

20065 Lt

20S 6

20857 CONnFIT InCRENENT polINTERS FOR fHpuUT AlHD OuTpyT $
2()SA

2US9 rPL = pL + 1 %

2uén PR = PR + | §

2061 GO T1) SI 3

2062 t.MD®

2062 Dl = Jdeil 3

2064 FOR Ccl = TA[y STEp | UNTIL TTRpNT DO

2U6% If TERMTAR(CIs1l) HFEQ O THEH LI = D1 ¢ 1.0 %
2Ub6 D2 = VATPHT « TEST + | $

2467

2068 CONMMEHT canpuTE vALNIE TO REFLECT COUMPLEXITy OF op $
2069

2070 RCOMP{HNUMBER) = RCFACTORIZ{RCFACTOR2+NI*RCFACTNR3I®ABSI(Fl=F21))
2071\ +RCFACTORUY/(F1+F2) +1,0/(RCFACTORS*2) S
2072 FHO3

2072

2074

2U7S%

2074 PROCENDURE CLEARNP §

2u77

2Uu78 COMnENT pRuUcCEDURE RESETS ALL ARRAYS TO gERO AND RE=~INITIALISES
2079 THE POINTERS $

2080

2uB1 NEGL1u

2082 INTLAGER Cl.C2+C3 3

2183 FOR Cl=t1e]l e NAXFLT) DU

2084 FOR €c2=11+1¢5) No LITICLleC2) = 0 $

2085 FOR Cl=l1s]l ' MAXGOALSY DO GODALSICI) = 0 &
2u86 FOR ci={t.toMAXLL) PO

2087 FOi? C2 =(1+}142) DO GOALISTICl.C2) = 0 %
2088 FOR Cl = (1ol s AXHONDES) DO REGIN

2019 HonkvALficl) = Q.0 %

209U FNR €2 ={]ls1s1a) DO NOOLICL1+C2} = U %

2uU9t END S

2u%2 FOr Cl = (LlslstAXQPS) DO

2U93 OPLRICL+4) = Cl+|15

2094 FREFOPS 3 1 S

2095 LASTOP = NAX0pS S

2U96 FOR ClaflaslenNAXSUBNPS) DU SUBOPLILIST(CL) =2 U
2097 HExrsimpop = | $

2094 HEXTELT = 2 %

2U°9 HEATGOAL = U $

2100 TopuL = O %

2101 tHDS

2102

21m3

2104

2108 PROCTDIIRF RESULTPRINT(LABF sPENTPEML) ®

21306 INTLGER LAF $

2107 REAL. pENTpEHNL &

2108



2109
2110
ZalR]St
202
2113
21 1
2116
2116
2117
2118
2 L1°9
24120
212]
2122
2123
2124
21?8
2126
2127
2128
2129
213N
2131
2132
2133
2134
2138
2134
2137
2134
213°
2140
2344
2i42
2143
2144
2148
214¢
2147
2148
2149
2150
2151
2159
2153
FARY)
2155
2186
2157
2158
2169
216N
2161
2162
2143
2164
21685

COMIMESIT PUOCEDURE DFETLRNINES PENETRANCE Aun EFFECTIVE BRANCHING
FACTOF 0OF SOLUTION 4

filew L Y
REAL AFRAY X{Q:27) %
INTLGFR G962 %
LCRITEA(Y ) %
PEIIL = PEUL/PEUT 9
VRITEL PENLTRANCE *opEtILY $
WRITF(* *) S
1F LsF EnL | or nMCyxTHODF GTR 300 TuLN
WRITEL*NDQ ERE CALCULATEN®)
FI.SE RFGIN
IF LBF QL (HEXTiaoOL=1) THFH
JRITECYEFFECTIVE RRANCHING FACTORS 15
ELSC nREGLH
FOSITIONLFILEC A yLY) O

1 = 62 = (LRF=2)e30uU +{NEXTLODE~2) 4
HEALIFILECOA® oi2) o X) 9
ol = (1optgl«28) %

[F x(Gl) LSS ERR THEND WRITE('NO ERF ALCULATEL *)
CLSE WRITEL*EFFECTIVE ({RPANCHING FACTOR:*oxtGgl)) s
£NDs
Funs
cians

PROCEDURE SOLVER2 5

CUOMMENT pRocEQDURFE collThors DPERATION OF SD»S ALGORITHM,
Iy SOoLuTIon IS ORTATNED = ITHILO TINE LInlT §T 1S PRENTED
ELSE A FATLURE MESSAGE IS GIVEN. %

(RATH |

INTFGEP ARRAY HEXTASHEXTRASTOPAOALL i :MAXSTRING1:5) &
STRING ppRE3DY) 5

REAL PFHLIPENT &

[NTIT PR ClsC2RESTIIODEsSOLTINEsOP L v NANE Lo HAMEZ2 s OPLEVEL Sl 1520

HEI}-(]F’.PI.PZ!lo\JoCl]T‘ﬂF:1TU€|‘THoCURREUTLEV[LoGl'GZtFATHER!EHTt
HEAD ' PUT s TOPGOLHAME o ilEX T oHEx TOp oo LASTvC3sCe NEXTBEST o
{REZTOF &
BOGLEAIl 'IEVIA o NEL, %
LIST LIST2(°ApPLY QR *eG1) %
FORMAT FIQO(AR, by 360,580,133 3
FORMAT FLIES3GUeAL 1Y &
FORMAT FL2(J10eS100AL1) B
FORMAT P L130gldeSt7eA1,41) S

COMMLIUT INHITLALISE FIRST HODPE iy ESTABLISHING
cAUQIlcAL HAnCS OfF LUITL1AL STRYCTURES AMHD SETTING
PARAMETERS FOR DELTHSUBGOAL LLVELETC,

FYALDATE THE FIRST 10DLE %

FoR ci=lisls3 DO PPRICL) = =7 3
Cul W e g0
GOl =8 TRE24 =Rl

i



2166 PEHL = PraT = .0 %

21467 POSAAP (STRASCLWLENGA) g

2148 POUSHAP{STRAvC2sLLHGAR] %

2169 WRITE(FLL.PPR) 2

2170 URITE(FI2:'PROVE THAT*) %

2171 POLISHINPIX{STRAWGL) €

2172 WRITELF130*1S EQUIVALENT TO') g

2173 POLISHINFIXISTRU»G2) ¢

2174 WRITE(FLLoPPR)Y) B

21758 WwRITE (LY ) &

21746 IF AAMELTUISTRASCHANE L) THEN LRRORyERITE(S)
2177 FLSE IF NAMCLTISTRBo1IANE2) THEHN ERRORWRITELA) 8
2178 COPY(STRRsCloTOPLOALSCI) $

2179 TOPLOLNAME = tIANE2 %

2181) CURRENTNEPTH = | %

2181 MAXTINE = NAXTINECe 1000 $

2182 HE 36 0ALINANEYL s HHAME2 s CURKENTLHFpTH)

21813 noat{lyl) = 0 %

2184 HODE (162 = NANEL®FrACTOR + nAnL2 S

218% AESTHODE = 1 3%

2184 ALXTHODLE = 2 %

2117 HODECL7) = NODE(]1.,9) = 0 $

218AR Honpgttl.loy = | 3

2189 HODE (L oS) = IHAXSURCGOALS ®

2190 OPLLVEL = OPDLEVEL %

219) OlFFrHUM =2 0 %

2192 ZERDOIFFSISTRASTRu Gl 2) © !

21°3 1F LIFFIiYM EQL 13 THEN G0 TO SyUcCCLSS ¢
2194 SULTIME = 0 %

2195 = TIML S

2194 OPNTFFGFNERATHFISTRACSTRLWClsC22UPLEVEL s IiAXSURGOALS W)Y
2197 IF optlynl EgL o TuEl 0 TO FAILI S

2198 OPDEROPS 3

2199 INSLRTOISILBEST IODE)Y 8

220N tVALUATE(RESTHOGE) ¢

2201 ST

2422

2203 CUHMEJT 1+ 10 HORE HUNnES OR TIME THFNM AUMIT FAILURE, $
2204

2208 SOLTIHE = S0LTIE « TINL 3

2206 IF SOLYIME GuTP maxTINE Tyl 0 TO FAILZ2 S
2297 1F WESTHONNE EpL O TUFN ¢O Ta FAILY &

2296 )

2209 COMMENT SELECT NFxT npERATOR AT QEST NOOF . RE-EVALUATE
221" THL HonpE AND ESTApLISH 1ITS RELATIOM Tu REST OF TREES
2211

2212 UHPACK2(HODE(RESTHOOL +4) v N OPL) S

2213 PACK2UH=1:0PERLOP T4} JHODE(RKESTHOCE YY)
2214 CPER{LASTOPY) = 0Pl 3

2218 LASTOP = 3P1 %

2214 EVALUATE (BESTNODL) §

2217 BACKONECQESTHODE JIILXTEEST!) 5

22108 Sl = MODE(HESTHNOLE.2)//1 ACTOR $

2219 G2 = MOML{UHODE (RESTHODE +2)sFACTOR) $

2220 CURKENTLEPTH = NHODE(RESTHODE,»10) +1 3
2271 CURRFHITI LVEL = HODE((ESTHOOT . .5) 3

Vil 297 1IF ppERGUPLI«3)Y gL ) THLYy



4727 !
222%
222%
2224
22239
2228
2229
e A
2231%
2232
2233
2234
2238
2436
o A3
2238
2239
224n
224
2242
2243
22%u
2245
22484
2247
224K
2249
2280
225}
2:57
2253
2254
2.25%
2254
2257
2259
2259
2260
2261
2262
2263
2264
2265
2264
2267
2264
2269
27
2271
2272
Jur 4p )
2274

2275
2274

2277
2274
2279

nt.j N

RETRIEVELTISH STYRASLLNGALY B
POSHAPULATRAW L oLEHGA)Y $

HEYOP = OPER(OP L)) 3

HWEwBR = FALSE $
APPLYOBISTRASGLs UL OP s MEXTAG2)
PENT =PENT + .0 $

1F HANELT(HEXTACHANMEL) THEN NEWA
FLSE NEVA = TrlUF %
RETRINVILY (S22 EX T oLEHGR)Y ¢
HAME2 = §2 %
PASHAPUIEXTRsGl LY o) 3

ki

ELSE RBREWIN

SCLECT (LXT BEST none $
£y

CURRENTLEYE L & CURRENTLEYEL -~ 1 &
IF CURRENTLEVEL £9L U THEH

G T undACH Y %

P1=1$
PETRIEYVELTUSI o HEXTASLENGAY 3
NHaME L = 1§
POSHAP LHIE XTAWI Yo LFHusA) B

HEwya = FaLsE ®

£d4T = DPFRIOP Y 2) S

HEv' 0P = =QPERIQP ] .1) &

i = OPERIDPLII//ZFACTOR %

Jd = NAaDLOPERIOP I 1) «FACTOF) 9
R2 = | %

Clt =u & | B

COPYUtRILEYRULFSL{T 41)oNEXTRIp2) &
LEYGH = RULESE (1.2 = RULESL (T 41)

COMMEIT DETFRMINE IF STRUcTURE 1S NEy

%

+

CONMENT IF ap CAll KE APPLILLG THEH (LIECATE
BY ApplylIlic {¥ To RETEIEVED 0LYFCT.

1k STRUCTURE

UR OLDL %

FALSE

CONMENT IF OPERATOH 10T ApeLICAYLE THE! SET
TO ATTAIY STATE T <wtcit IT MAY RE APPLIED,
It LEVEL OF THIS SURGNAL 1S ARDVE ttAxTHANM THEDN

n2 s

Up SURGOAL

ADTLPGIAL THEXTA gl o cl o STRB P2 NEXTRLEUAR) O

CONMMENT DETERMINE [¥ SupgOAL IS NEw

POSHAPIHEXTByp 22 LEHGAY 5

IF ARELTIHEx TR sMHABE 2 THEL NEwg,
ELSE NEwnh = Thie %

ElD .o

5T23

I NEWA TiEl

STRUCTYRE, %

FALSE

COMNENT 1+ CLITIHER STRHCTURE 1S NEWw FICE THL
DETERMINE IF THIS cONRINATION HAS OCCUFRED

HaobE ELSE
LEFORES



22813 ME (GOAL CUAME L s NANTE 2 s HEXTHNOQDE)

2281 ELSE BEGIN

2282 IF (HOT '1IEVAY AUD HEWS THE:

2283 THSERTGOALSNAME ) ritAME2 v NEX TNODE)

2284 EL&G BlLolH

2285

2284 CONPENT IF THIS 153 A OLD CONBINATION ESTAxLISH
2287 AHETHER A SHORYER CNRECT pATH (IAS pEEN Foutp. 1F
2288 IF SO TRANSFER oLp NMNOPE To NE, posSITIatl ,IH EITHER
2289 CASE Cycl 116 IS PREVECHTED. 3

22910

2291 il = HEAT I0DE S

2292 IF TESTGOAL(HAMEL «tiAME2M)Y TiEN BEGIN

2293 TF CURREMTOEPTH LSS NODBFUile10Y THLN nrEGlH
2294 FATHER = MODOD(HI) %

2295 HEAND = pHT = NODE(FATHER.H) $

2296 LAST = 1 $

2297 Ll ek 4

2298 IF PHT EQL I THEN

2299 BEGI"

2310 IF LAST EQL O Tuen

2301 NMODEI(FATHER,8) = LQLELHEAD 9}

2302 ELSE MNODECLAST«9) = NODEI(PHT 91 & £

2303 tLst BESIN

2334 LAST = PUT $

2305 PUT = NODE(PHT ) % e

2306 IF PIT Egi. O THIEN ERRORVRITE(8) S

2307 GO To ST3 ¢

2308 FNLS

2309 HEXT = PUT = NODEI(FATHER»8) S

2314 IF PNT MEQ O AL HMODE(FATHER+3) FeL # THEN
2311 ivLtolu

2312 FOR NLXT = HOLLINFEXT9?) WHILE NEXT NEOQ O 00
2313 IF NMODEVAL(NEXT)Y TR HODFVALIPNT) THEN pNT = HEXT $
2314 IV H0GREVALIPHTY (TR HODEYALIFATHER) THEN

2315 NMOUEAFATHER 3} = puT

2316 ELSE NODE(FATHER«3) = FATHLER $

2317 BACKOQUELPHT oPMT) $

2313 EHDy

2319 COMMENT

2321

2321 IF HOBE IS sWwlTcEn LIy IT IN AND RECOGNHFIGURE THE TREE, 3
2322

2323 LINKI{RESTIONE 1) &

2324 BACKUP LH e« ESTHODE)Y 9

2325 GO TQ STl &

2324 D

2327 CLSFE 0 TO GUBACKIT $

2328 ND s

2329 {CHD®

2339 FHDS$

2331

2332 COMMENI I GENERATE SCT ot 7EROLEVEL DIFFEFEHCES. %
2333

2334 BIFEIM = @ %

233% ZEROGIFFSINEXTAGNEXTR vl eG2) 3

23346 IF LIVFuUn EL 0O THEN



2337 BEGWIH

23348

2337 COMMENT IF HO BIFFERENCES DETERMINL oHETHEw MAIHN pRORLEM soLVEDS
2340

234%) IF CURRENTLEVEL EQf. HALSURGOALS OR HIAMEZ EgL TOpPGOLNAME THEN
2342 6o TO SUCCESS

2343 ELSL RLGIN

2344

2345 COMMENT IF A sSungOAL 1AS pEEN SoLviED FILE THE NODE. DETERMIE
23464 OPERATOR WHMICH GENERATED SUBGOAL AHO APPLY IT. S

2397

2348 LINK{BESTHOUE +NEXTHODFE) $

2349 Cl = U %

2350 PNT = NEXTHODE $

235) HOOE(PNT+7) = MEyOP $

2352 FILENODE( . IAME ] +MAHE2sCURRENTLEVELC1¢Cl +CURRENTLEPTH) $
2353 HODE(PMT o 4) =z 0 S

2354 HODEIPHT3) = PUT &

2355 HODEVALIPIT) = 0 3

23%6 CURRFENTOEPTH = CURRENTOEPTH « 1 %

2357 FATHER = BESTHODE $

2358 ST4:

2359 IF A0ONECFATHER¢S) tqL NODE(PNT.S) AND

2360 SURGOALIFATHER} THEN Opl = MHODE(FATHER7)

2361 ELSE BEaGIN

2362 FATHER = HNODE(FATHER,1) 5 GO TO ST4 $ ENDS

2363 UNPACKOPLOP I sNEXTAWPL sFATHER) $

2364 NEWOpP = 0Opl $ Y

2345

2346 COMHENT RETRIEVE SURGOAL VALID OEFUORE THIS SU8GOAL S+ ARTED, $
2367

2368 FATHER = NODE(FATHER 1) 3

2369 HAME2 = NODINODE(FATHER+2) «FACTOR!} &

2370 PFTRIFVELT{NAME2 HEXTBILENGB) $

2371 POSHAPIHEXTB P2+ LENGE) S

2372 NEwl3 = ¢ ALSE S

2373 COPY(UFEXTAWP1+STRAWPL) §

2374

2375 cONHNENT GEHERATE #HEy STRUCTURE Yy APPLYING OpP. DETERMINE
2376 WHETHER RESOLT 1S HEy OR OLD AND RESET SUBGOAL LEVEL. $
2377

2378 APPLYDP{STRAPL+0P1 HEXTAP2) §

2379 PENT = pEidY + 1,0 &

238N IF MAMELTI(NEXTA*HAMEL) THEN

238 MFuA = FALSE ELSE NERA = TRUE S

2382 CURKENTLEVEL = NODE{FATHER+5}) %

2383 BFESTHONE = pHT 3

2384

2385 COMMENT RETQURt To TEST NEw UODE FOR CYCLIMG. S

2384

2387 GO Tn ST2

23R8 FHDS FEHDS

2389

2390 CIMNENT GENERATE SET oF opERATORS RELEVENT TO DIFFEREMNCES
239} 16 0NE Ggo TO SELECT NExT REST NODE FORP ExpANSIOHN, $
2392

23°3 IF HE¢Op LSS () THEN PNT = CURREHTLEVEL*I



2394
23495
2396
2397
2398
2399
2400
2401
2402
24023
2404
2405
24036
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
24349
2435
24346
2437
2438
239
2440
244 ]
2442
2443
2448
2445
2446
2447
2448
2449
2450

ELSE PNy = CURRENTLEVEL $
OPDIFFGENERATE (NEXTAYNEXTBG19G2+OPLEVEL 'PNT+BESTNODE)

IF oPNUH £QL O THEN GO TO GOBACKI S

COMMENT ORHBER OPERATORS AND ATTACH TO HOOE ,
FILE AND LINK THE NODE , S

ORDEROPS 9

INSERTOPS(NEXTHNODE) $

LINK(RESTMODE+HEXTNODE) S

N = MEXTNODE $

IF NEwOP LSS 0O THEN SEGIN PACKSUBOP{=NEyop «NExTAspl sNEXTHNODE}S
PACKELT(EMT v =UEWOP+MEXTAsp1¢NEXTNODE) $ END

ELSE NODE(NEXTNODE,7) = NEwWOP §

FlLENODE(NAMElvNAHEZuCURRENTLEvEL'Cl'Cl'CURRENTDEPTHI s

COMMENT EyALUATE THE MNODE AND SELECT THE BEST NODE FOR
EXPANSION, RETURN TO START OF CYCLE, $

EVALUATE{H) S
BACKUP(N+BESTNOOE) $
GO To STl $
GOBACK ) ¢
BESTNODE = NExTBEST $
GO TOo ST1 s
FALLL? 3
COMMENT ADMIT FAILURE DUE TO ExCEEDING MAXTIME OR
NO NODES LEFT TO EXPAND $

WRITE(®*HNO SOLUTION FOUND®}) S
GO TO SOLVEND s

FAIL2:
WRITE({*HAXTINE FExCEEDED = SECONDS') $
SOLTIME = SOLTIME//10000 S
WRITE(SOLTIME) $
GO TO SOLVEND s

SUCCESS?

COMMENT OUTPUT SOLUTION WITH MEASURES OF EFFICIENCYS

WRITE (s ¢) S

SOLTIME = SOLTIME//10000 S

WRITE(®*SOLUTION TIME(SECS):*+SOLTIHE}) S

FATHER = NEXTNODE S

LINK(BESTNODE«NEXTMODE) S

MODE(NEXTNODE«7) = NEwWOP $

FILENODE(NAMEL +NAHE2 « CURRENTLEVELCLlsCl oCURRENTDEPTHI §

cL = | %

OPLISTI(Cl+I) = FATHER $

NAME2 = NODE(FATHER«2)//FACTOR S

LBF = | ¢

FOR FATHER = NODE(FATHER+l) wHILE FATHER NEQ 0 DO BEGIN
LBF = LRF ¢ | S
IF NOT SUBGOAL(FATHER) THEN BEGIN

NAMEl = NODE(FATHER+2}1//FACTOR §

IF NAME!l EgL MAME2 THEN



2451
2452
2453
2454
2458
2456
2457
2458
2459
249 69)
2h6)
2462
FLY R}
24641
2965
2466
2467
2168
2469
2479
2471
2472
2473
2974
247%
2176
2477
2478
2479
2480
298¢
2482
2483
24984
2485
2466
24A7
2488
2489
2490
249}
2492
2493
2494
2495
2"96
2497
2498
21499
2500

2501
2502

2%03
2504

2505
2506

2507

REaid

ClL = ) %
PLIIL = U ¢
LhF = | s
1D

¢t =c1 £ 1 9
rvEHNL = pTin. + LD %
OPLISTICIl 1) = FATHER S

tHDS
ENOS

RECSULTPRINTALLF o PIUTePENL) $
KR =SS

FOR C2 ={Cl+=t{., 1} DO
gEG 1IN
HAHE2 = HNODELPFLISTIC291)42)//FACTOR S
gl =CH0DELOPLISTIC201)07 b/ /FACTOR S
HRITE(F10,L1ST2) $
RETRIUCVELT(HANC2,STRE +LEHGH) S
POSHMAPISTRIpleLENGB) 3
POLISHINFIX({STRBPl) &
thos

SOoLvEND S
ENDS

PROCEDURL THPUTDLATA %

CIMMENT qucEDURF HUITLDS THME SyupOl TAWLE FOR THE cOMSTAUTS, T ALSO
PLACES THE npERATORS INM THELR CORKECT STRycTyRES AHD READS THE pROQLEHMS

NEG N

1NTEGER ARRAY L1lilp ¢1:30.1:0)scountiGio) s

STRING COMMAMGEA0)» 1HPUTIAO LHTVALLLIO) S

TUTEGEFY CLeC2+C3e Tl HEXTSYH s SYHNPOS 1 OEGREESRULEPUTeMEXT <
®OULFAIL £10DF CAZD INVALIDILEFT ¢

LIST LUpl(FO& cl=01414303) PO FOUR Cc2=¢14143) 00 LI1NgtClec2)) §
FORPGAT FLbEAL314) S
FORAAT FH2LALl+S303) 53
FOR) (AT FMILAL.SHU) @
StilTCH CONTYPE = T1sT3:T7T14,T726 $

PROCFOURE SELECTCOMMANDIPOSHI) &
INTEGER paSe]l 8

cUnMEINT pPROCEDURE DETERIINES WwHETHER A ¢cOM )AMD 1S DEFIHLIKEG CONSTANTSe
NPERATNERS OR FROBILEMS QY MATCIFING AGAINST A TREE OF PRECLFINED

SYMdpors ¢

REG (N
T9TEGEL b LeCOIIPUYT S



2508
2509
2510
2511
2512
2513
2514
2S1S
2516
2517
25118
2519
2520
2521
2522
2523
2524
2525
2526
2527
25238
2529
2530
25131
2532
2533
2534
2535
2536
25137
2538
2539
2540
2541
2542
2543
2544
2545
254
2547
2544
2549
2551
255
2552
2553
2554
2555
2554
2557
2554
2559
2560
2561
2562
2563
2564

1 =¢g %
COMPNT = 1 8
FOR Plz‘ZIlUPOS) Do
BEglt
IF IHpuT(PL) EQL COHMMAND(COMPMNT) THEN
BEGIN
[F LINK{COMPIIT2) EQL O THEH BEGIN
IF Pl NEy p0OS THEN GU TO F2 3 END
ELSE COMPNT = L INK(COMPHT2) $
END
ELSE PEGIN
IF LINKI{COMPMT 1) EgL 0O THEH GO TO F2
ELSE BEGIN
COMPNT = LIHNKICONPHNT 1) $
PI = pl=1 §
ENDS
ENDS
EdD$
I = LINUK(CONSNHT 3)
F2:
EHD %

INTLGER PROCEDURE CLASS(pOS!|p0S52)9%
INTEGER pOS!1+°052 $ [

COMMENT pROCEDURE TRAMSLATES SyMmpOLIc TO INTEGER $

BEGIN
INTEGER Cl1+C2,TOT $
TOT = U %

FOR Cl=(p0S2+1+]19p0S1) DO BEGINM
FOR C2 =(1+,1+10) DO
IF 1upuT(Cl)Y EqL IMTvAL(C2! THEN GO To Tl S
ERRORWRITE(S) ¢
Tl TOT = TOTe)10+COYNUTIC2=-1) $
ENDS
CLASS 3 TOT $
ENDS

INTEGER PROCEDPURE PRECEDEMCEI(DEG) $
INTEGER DEG $

COMMENT pROCEDURE DETERMINES PRECEDENMCE OF CONSTANTS FOR
OUTPUT FORMAT §

BEGIHN

IF DEG F£yL 2 THEN pRECEDENCFE = 1

ELSE IF DEG EQL | THEN PRECEDEHNCE = 2
ELSE PRECEDENCE = D $

£NOs

INTLGER PROCFEDURE TARVALUEIPIWP2) S
IiTEGER Pl P2 S

CORRECT



2565

2566 COMMENT pROCEDURE I1pENTIFIES THE INDEx OF A SYMBOLIC CONSTANT IN THE
2567 SYMBOL TABLE S

2568

2569 BEGIN

2570 INTEGER C1+C2+pNT+DIFF S

2571 DIFf = p2=-pl S

2572 IF INPUTtpP1) EQL *y* THEN BEGIN

2573 TABVALUE® = CLASS{P2.pP1) S GO TO EXIT S
2574 END

257S ELSE FOR Ccl®{)¢})+NEXTSYM=1l) DO

2576 BEGIN

2577 IF DIFF EQL (SYMTAB(CIlS)=SyMTAB{Cl %)) THEN
2578 BEGIN

2579 PNT = pl §

2580 FOR C2 =(SyMTABICl+4)e1+SYMTAB(CL1+5)1 00
2581 IF SYMVALUEIC2) NEQ INPUT(pPNT) THEN GO TO NEXT
2582 ELSE PNT ® PNT + | S

2583 TABVALUE = cl1 S

2584 GO TO EXIT s

2585 ENDS

2586 NEXTS

2587 ENDS

2588 ERRORWRITE(5) S

2589 EXIT:

2590 ENDS %
2591

2592

2593 BEGIN

2594 NEXTSYM = SYMPOS » [ §

2595 INTYAL(1,10) ®*0123456789" S

2596 FOR Cl=®=(0,1+9) DO COUNT{CI) = cl S

2597 READIFNI+INP1) S

2598 READ(FN2.COMMAND) $

2599 T

2600

2601 COMMENT JUHP ON COMMAND IDENTIFIER $

2602

2603 READ(FN3,INPUT) S

2604 IF INPUT(]) EQL *g* THEN

2605 FOR Cl =(2+1,80}) DO

2606 IF INPUTI(CI) EQL * " THEN GO TO T2 S

2607 ERRORWRITE(S5) S

2608 T2:

2609 Clecl=1 §

2610 SELECTCOMMAND{CI1) S

2611 GO TO COMTYPEI(ILl) S

2612 ERRORWRITE(S5) §

2613 Ta:

2614

2615 COMMENT IF A SET OF CONSTANT DEFINITIONS DETERMINE THE DEGREE ANp PLACE
2616 EACH CONSTANT IN THE SyMBOL TABLE WITH ITS DEGREE.CLASS AND pRECEDENC
2617 AS 4ELL AS POINTERS TO THE DICTIONARY S

26}8

2619 READ(DEGREE) s

2620 T4

2621 READ(FN3INPUT) §

e



2622 C2 = -] s

2623 FOR C) = C2+2 WHILE €| LEQ 8g 0O

2624 REGIN

2625 FOR C2=(Cls+i+80) Do REGIN

2626 IF INPUT(C2) EQL °*S* THEN GO TO T] §

2627 IF INpUTtC2) EgL *+' THEN g0 TO TS5 S

2628 ENpS

2629 GO Tno T¢ 9

2630 TS5

2631 c2=Cc2-1 §

2632 FOR Cc3=(cil,lsc2) DO

2633 IF ITNPUTICA)} EQL *:* THEN GO To Té& ¢

2634 ERRORWRITEIS) S

2635 T&:

2636 SYMTABINEXTSYMel} = DEGREE S

26137 SYMTABINEXTSYM»2) = cLASS{c2.c3} $

2638 SYMTAR{NEXTSYM:3) = PRECEDENCE(DEGREE)} $
2639 SYMTAB(NEXTSYMs+4) = SyMp0OS ¢

2640 SYMTAB(HEXTSYMs5) = SGYMPOS +Cc3~Clil~l $

264 NEXTSYM = NEXTSYM + | $

2642 SYMVALUEISYMPOS»SYMPOS+C3=Cl=1) = 1UPUTIClsCc3=1) S
2643 SYMPOS = SYMP@S + (C3~-cl $

2694 ENDS

2645 GO TO T4 s

2646 T .
2647

2648 COMMENT IF THE COMNAND NEFINES A SET OF OPERATORS DETERMINE THE NUMBER
2649 AND FOR EACH READ THE INPUT AND QUTPUT STRUCTURES*SETTING THE
26590 CORRECT POINTERS TO £ACH STRUCTURE $

2651

2652 RULEPHT = | s

2653 READ(RULENO} $

2654 FOR Cl = {(111+RULENO} 0O

2655 REGIN

2656 RULESLtC1+1) = RULEPNT S

2657 T8

2658 READIFN3IHPUT) S

2659 EMDOFCARD = FALSE $

2660 C2 =21 s

2661 T9:

2662 FUrR c3 = {c2,1480) Do BEGIN

2663 IF INPUT(C3) EQL * ' THEM GO TO TI1O0 3%
2664 IF IMPUTI(C3) EaQL *:' THEN GO Yu Tl S
2665 IF INPUTIC3) EqQL *3* THEN GO TO T12 S
2666 IF IMPUTI(C3t EgL *$S* THEN GO TO Tiu $
2667 EnDS

2668 ENDOFCARD = TRYUE %

2669 TN

2673 RULE{RULEPHNT 1) = TABVALUE(C2.c3~1) S
2671 IF IHVALID THEH ERRORWRITE(S) §

2672 RULEPHT = RULEPNT + | $

2673 C2 = c3 + | s

2674 IF ENBOFCARO TMHEN GO TO T8 ELSE GO TO T9 $
2675 T 1

2676 RULEtRULEPNT 1) = TARVALUE(C2°+C3-1} s
2677 IF IHVALID THEN ERRORWRITEIS) &

2678 RYLFSLICI*2) = RULEPNT $



2679
26869
26K |
26082
2681
260
268%
2084
2687
2488
2689
2690
2691
269,
2693
2694
2695
2694
2697
2698
2699
2730
2701
2702
2703
2704
2709
2706
2707
2708
2709
2710
271}
2712
271%t3
2714
271%
2714
2717
27148
2719
272n
2721
2722
2723
2724
2725
2726
2727
2724
2729
2730
273]
2732
2733
2734
27135

RULERPHT =

QULESH(Cho 1y

a1 TO
T123

T

4 %

RULFPHT + | %

RLEPHT g

ROLELFOLEPNT ) = TARNVAILUE(C2CA=L1 ) §

Iy l'ivaLld

RuyLESKIiCI»2)

RuLkFpuT =

T133

ElD b

GO 7O T
Ti4s

1

$

COMNENT COHELS HERE

NHEXT =
LEFT =
T1GHs

u
TR

%
UE %

READ(FHI, THPUT)
EWOBOFCARD = FALSE $

Cl = 1
Tle:
Fue Cc2

S

THEMN

ROLEPNT $

RUOLEpUT+ | S

e ConMAND

$

(Clel a0} DO LEGIN

Iy IMpuT(C2)

v LipuyTtic2)
LMPUYTIC2)

Ir
E.D%

{E

gL * v THEN
g Y THE!
Fqgl

E'IDOFCARD = TRut =

T17¢
NFAT =

ELSE

IF IHNvAaLlO THEN

MEXT «

IF LEFT YHEN STRACLXT 1) =
STRO(HEXT*1) = TABVALUF(CLlsC2=1}

€l = Cc2+1 S

If LUDOFCARD

Tld:
NEAT e

STRAMNLxTH 1)
IF 1hvaLlD

UEXT+}

ILEFT = FALSE %

LENGA
NMEXT =

{)

NEXT
$

GO TO Tl %

Tl%:
HExT =

STRO (ML xTol)

HEXT «

l

THE"

$

IF I8vALlD THLA

LEIGD
GO TO
T20L:
END>
END S

500 KA
INTLGER

Tl

HEXT 8
%

$

ERPORWRITEL

FRRORWRITEL

s

URRORVBRITF LY

DEF{ILS

L

0 To T17 $
GO TO 718 3

TARVALUE(ICILIsC2=1)

5

S)

ERPORWRITE(S)

PROCEDUKRE SURGOAL (M)

%

$

v
v THLH GO

&

%

s

$

= TARVALUL(CLlC2=1)
THEN

2 TApyALUFEI(CLeC2=1)

TO T19 %

]

%

PRORBLEM

$

0 TO TI% ELSEL GO TO Tle ¢

IHRPUT 8



2736
27139
2738
27139
274%0C
274
2742
2743
2744
2745
2746
2747
2748
2749
2750
275
2752
2753
2754
2755
2756
2757
2758
2759
276n
2761}
2762
2763
276%
2765
2766
2767
2748
2769
2770
2771
2772
2773
2774%
277%
2776
2777
2778
277%
278D
2781
2782
2783
2784%
2785
2786
2787
2798
2789
2790
2791
2792

CoMMENT PRQCENURE ESTABLISHES WHETHER A ngDE
BEGIM
IF NODE(Ns7) GTR 2¢323 THEN SUBGOAL = TRUE
ELSE SupGOAL = FALSE $

ENDS

BEGIN
TTBPIT = YATPHNT = | $

FACTOR = 32768 %

COMMENT SET P OPERATQORS AND PROBLEM $

INPUTDATA 3
FOR Cl=tir}RULENO) DO AHALYSERULE{Ct!} %
FOR Cl = | STEP | UNTIL RULENO DO
BEGIN
WRITE(*OPERATOR®'eCl) 3
WRITE(® *) $
POLISHINFIX(RULE+RULESL(CL )} ¢
POLISHIHFIX{RULE RULESRICI1+1)) %
WRITEt®* *) %
ENDS
FOR ¢! = 1 STEp 1 UMTIL MAXOPS DO
OPFER{Cle4) = Ccl + | 3
FRELOPS = | $ *
LASTOP = HAXxOpPS %

CONMENT START PROALEN S0LVING PROCEDURE $

SOLVER2 $

FHD %
END$

COMMENT IMITIALISE ALL PARAMETERS 3

READ (FMAX *HAXVALUES) $
READ(FMAX «MAXVALIIES2) $
READ{ERR) $
REAL(FEVALSEVALTYFE) S
REALDI(FDEPTH DEPTHTYPE) 9
READ{COMPRIAS) &
READ(SPECBIAS)Y $
REAL(FOIFF DIFFTYpL ) S
READ(FRCIRCTYPE) § '
READILENGTHBIAS)Y ©

HEXTSURUP = | $
HEXTELT = | $
NHEXTGOAL = 0 %

ToPGgt. = 0 %

MAIW]l &

IS A SUBGgpl
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