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ARTICLE

Protected areas reduce deforestation and
degradation and enhance woody growth across
African woodlands
Iain M. McNicol 1✉, Aidan Keane 1, Neil D. Burgess2,3, Samuel J. Bowers1, Edward T. A. Mitchard 1 &

Casey M. Ryan 1

Protected areas are increasingly promoted for their capacity to sequester carbon, alongside

biodiversity benefits. However, we have limited understanding of whether they are effective

at reducing deforestation and degradation, or promoting vegetation growth, and the impact

that this has on changes to aboveground woody carbon stocks. Here we present a new

satellite radar-based map of vegetation carbon change across southern Africa’s woodlands

and combine this with a matching approach to assess the effect of protected areas on carbon

dynamics. We show that protection has a positive effect on aboveground carbon, with stocks

increasing faster in protected areas (+0.53% per year) compared to comparable lands not

under protection (+0.08% per year). The positive effect of protection reflects lower rates of

deforestation (−39%) and degradation (−25%), as well as a greater prevalence of vegeta-

tion growth (+12%) inside protected lands. Areas under strict protection had similar out-

comes to other types of protection after controlling for differences in location, with effect

scores instead varying more by country, and the level of threat. These results highlight the

potential for protected areas to sequester aboveground carbon, although we caution that in

some areas this may have negative impacts on biodiversity, and human wellbeing.
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Protected areas, and other area-based conservation measures,
remain a flagship strategy for reducing carbon emissions
and biodiversity losses due to land use and land cover

change1,2. Their importance was reflected in the Convention on
Biological Diversity’s Strategic Plan for Biodiversity (2011–2020),
and in Target 3 of the recently agreed Kunming–Montreal Global
Biodiversity Framework that sets out an ambition for 30% cov-
erage of protected and conserved areas by 20303. However,
questions remain over the extent to which protected areas
(hereafter PAs) are effective at meeting their multiple aims4,
leading to calls for evidence-based assessments of the perfor-
mance of existing protected and conserved areas, to inform future
expansion efforts1.

Evidence regarding the effectiveness of PAs in delivering
positive outcomes for nature and climate has increased rapidly
over the past decade5–9, although progress has been limited by
our ability to accurately map changes in habitat structure across
large areas. Indeed, whilst much work has focused on the ability
of PAs to reduce deforestation, it has been harder to quantify if
they can mitigate habitat degradation. These subtle changes in
vegetation structure, which are typically caused by processes
including overharvesting, inappropriate fire regimes, and other
changes in land management, and can be important in driving
carbon emissions10–13, and lead to major changes in
biodiversity14,15. There is similar lack of knowledge over the
extent to which aboveground woody carbon (AGC) storage may
be increasing via vegetation growth16 and whether PAs have a
role in mediating these patterns, e.g. by altering activities that
suppress growth such as fire and herbivory. This information is
particularly important with many countries likely to use PAs way
of meeting international climate obligations. This may involve
reducing carbon emissions from land use change, e.g. as part of
Nationally Determined Commitments (NDCs) to the UNFCCC,
as well as maintaining areas of vegetation growth in existing
wooded areas, or enhancing growth through active restoration
efforts e.g. as part of the Bonn Challenge17.

The absence of such data on PA effectiveness reflects the
considerable methodological and practical difficulties in mea-
suring aboveground carbon storage, and especially its changes
over time18. Studies reporting the impacts of PAs on deforesta-
tion, and degradation7 have done so using optical satellite data,
which used in isolation, is limited to measurements of the visible
(2D) surface, and so provide no information on the vertical
structure of the vegetation, and thus limited insights into its
carbon density. Smaller changes in AGC, such as those related to
vegetation growth, and lower intensity degradation, are therefore
particularly difficult to measure using satellite remote sensing
data, as they typically result in no clear changes to the tree
canopy/ spectral signature (i.e. greenness) of the surface meaning
optical measurements can miss a large proportion of these
events10,19.

High-resolution (tens of m) active remote sensing data, such as
synthetic aperture radar (SAR), is known to be sensitive to 3D
vegetation structure and, when combined with in situ measure-
ments of tree biomass from inventory plots, can be used to
accurately map changes in AGC stocks over large enough areas to
allow an examination of the role PAs play in mediating these
patterns10. This includes improved estimates of degradation20–22,
as well as insights into vegetation growth10, which is often limited
to sparse field inventory plots16, or derived across large areas (i.e.
tens of km) using coarse resolution satellite data23 or models24,
none of which is suitable for assessing the impacts of PAs. A
limitation of current spaceborne SAR systems is that when used
in isolation their relationship with woody biomass saturates at
relatively low AGC densities (<50–75 Mg C ha−1), which pre-
cludes their application across moist tropical forests, but makes

them useful in savanna, woodland and dry forests, which together
are the largest land cover in the tropics and an important part of
the global carbon cycle25,26.

Here, we present new datasets showing changes in above-
ground woody carbon (AGC), and associated changes in land
cover, including deforestation, degradation and growth across the
world’s largest savanna ecoregion—the southern African wood-
lands—which cover 2.5 million km2 over 7 countries (Fig. 1). We
build upon our previous work10 to map changes in AGC between
2007–2010 and 2015–2018 using the open access ALOS PALSAR
and ALOS-2 PALSAR-2 annual mosaic product, created by the
Japanese Space Agency (JAXA)27. The datasets are derived using a
new approach designed to account for uncertainties in these
mosaics, and reduce the soil/vegetation moisture-related error on
the estimates of change. Using these change maps, we examine the
extent to which PAs are effective at preserving AGC stocks, by
promoting vegetation growth, and/or limiting anthropogenic
change, i.e. deforestation (the loss of wooded area) and degradation
(a reduction in carbon density of wooded areas), inside their
boundaries. We also examine how PA effectiveness varies between
countries, and PA types, separating areas under strict protection
(such as national parks and IUCN category I–II areas) from other
PAs, including forest reserves, and other areas principally managed
for wildlife. To overcome the location bias by which PAs are often
located in remote, less-used landscapes28, coarsened exact match-
ing is used to identify comparable protected and unprotected areas
for analysis29, based on covariates reflecting accessibility, extrac-
table value and potential agricultural suitability.

The southern African woodlands are an important study
region for evaluating PA impacts given their high biodiversity
value, including many charismatic, but threatened animal and
plant species which are endemic to the region30. African wood-
lands are unusual in that they retain significant wooded area and
carbon stocks, alongside a large human population closely
dependant on ecosystems for food, fuel, timber, and construction
materials31,32. Increasing demand for resources is leading to
widespread, and rapid deforestation and degradation, particularly
around rapidly expanding urban centres and road
networks10,33–35, with regrowth in more remote areas thought to
be counteracting these losses10. The time period covered by our
dataset means PAs established after 2014 were excluded from the
analysis, at which point they covered 21% of the region (7–35% of
each country’s land mass area; Fig. 1), with this large extent
meaning they likely play a critical role in mediating carbon
dynamics and patterns of human disturbance.

Results
Carbon and land-cover dynamics. Region-wide AGC stocks
were likely constant over the study period, estimated at 6.1 [95%
CI: 5.4–6.7] Pg C in 2007–2010, and 6.2 [5.5–6.8] Pg C in the
period 2015–2018 (Fig. 1), with net losses in Mozambique and
Tanzania offset by net gains in the other countries (Fig. 2). The
small net change in AGC (ΔAGC) obscures large gross losses
from deforestation (0.2 [0.17–0.23] Pg C) and degradation (0.2
[0.17–0.23] Pg C), and gross gains from vegetation growth (0.6
[0.52–0.68] Pg C) (see ‘Methods’ for a definition of these land
cover changes). The total wooded area, defined here as any 25 m
pixel with an initial AGC density >10 Mg C ha−1, was 2.6
[2.4–2.8] M km2, with carbon gains detected in 55% [47– 61%] of
this area, and deforestation and degradation occurring in 7.2%
[6.0–9.1%] and 8.4% [7.0–10.0%] of the wooded area, respectively
(Fig. 2 and Supplementary Data 1). The remainder of the wooded
area (29.1% [23.5–36.0%]) experienced minor losses of AGC
(<20%), which are likely caused by quasi-natural processes e.g.
fire, herbivory36.
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PAs contain 21%, and 18% of the total wooded area and AGC
stocks, respectively, although their importance varies by country,
with PAs in Malawi and Tanzania containing a disproportionate
amount of the national AGC stocks, relative to their areal extent
(Fig. 1). PAs are not exempt from anthropogenic disturbance,
with 21,000 [19– 25,000] km2, or 4.1% [3.4–5.2%] of the PA being
deforested, and a further 31,000 [28–42,000] km2, or 6.2%
[5.2–7.9%] undergoing a major loss (i.e. degradation) of AGC
stocks (Fig. 2 and Supplementary Data 2). Smaller PAs appear
more susceptible to these losses with 65% of PAs <100 km2 in size
exhibiting higher deforestation and/ or degradation rates than the
region-wide rates reported above, compared to 32% of PAs
>1000 km2 (Fig. 2). Carbon gains were more prevalent inside PAs
than outside, with 60% [52–66%] of protected wooded areas
increasing in AGC. This, combined with lower deforestation and
degradation rates, mean PAs make an outsized contribution to
the overall carbon balance, with AGC stocks increasing at faster
rate (+0.62% yr−1 [0.52–0.71 % yr−1]; total increase 0.54 Pg
C≡ 54 Million Tonnes (Tg) [49–60 Tg]) compared to unpro-
tected areas (+0.12% yr−1 [0.07–0.18% yr−1]; 48 [30–67] Tg C).

The PA effect on carbon stock change. The differences in carbon
and land use dynamics between protected and unprotected areas
described above reflect, in part, a location bias, with PAs tending
to be located in relatively inaccessible parts of the study region
where anthropogenic disturbances are less likely (Supplementary
Figs. 1 and 2). After matching, we find PAs have an overall
positive effect on aboveground woody carbon (AGC), with stocks
increasing by +0.53% yr−1 [0.43–0.62% yr−1] (2.79 [2.19–3.54]
Tg C yr−1) inside matched PAs, compared to +0.08% yr−1

[−0.05–0.21% yr−1] (0.40 [−0.23–1.12] Tg C yr−1) in the

matched unprotected sample (Fig. 3). The small difference to the
region-wide results presented in the previous section reflects the
exclusion of the more remote and inaccessible parts of the PA
network (45% of total protected wooded area) for which there are
no suitable counterfactual areas to compare against (Supple-
mentary Fig. 1). This is an important feature of our approach
whereby PAs with no high quality matches are excluded since it is
generally better to obtain an estimate of effectiveness with limited
bias.

Overall, the carbon benefits of protection primarily reflects a
reduction in carbon losses from deforestation, which were 42%
lower in PAs compared to matched controls (1.26 [0.99–1.42] vs
2.15 [1.70–2.43] Tg C yr−1, meaning that avoided deforestation
accounts for 40% of the overall effect of PAs on ΔAGC (Figs. 3
and 4). We find PAs have a smaller but important effect on
carbon losses via degradation (31% lower: 1.41 [1.17–1.60] vs 2.1
[1.71-2.33] Tg C yr−1), and on carbon sequestered via vegetation
growth (10% higher: 6.86 [5.74–7.85] vs. 6.15 [5.14–7.03] Tg C
yr−1), both of which contribute 28% to the net PA effect on
ΔAGC, with the residual 4% due to a small reduction in minor
losses. The biomass growth rate in areas that increased in AGC is
similar in matched protected and unprotected areas averaging
+0.55 ± 0.2 Mg C ha−1 yr−1 (mean ± SD), as is the intensity of
both deforestation (−13.2 ± 6.0 Mg C ha−1), and degradation
(−8.0 ± 2.7 Mg C ha−1), which may indicate similar types of
agriculture and harvesting activities under protection. As such,
the positive carbon outcomes in PAs largely reflects proportionate
reductions in the areal extent of deforestation (−38% lower in
matched PAs), degradation (−25%), and increases in the area of
vegetation growth (+12%) (Supplementary Fig. 3). Our results
are in keeping with previous assessments of avoided
deforestation6,37, and to the best of knowledge, directly show

Fig. 1 Spatial distribution of aboveground woody carbon stocks. a The aboveground woody carbon (AGC) density across our study region for the period
2015–2018, and b the location of protected areas included in this study, separated by broad management category. c The total national-level AGC stocks
calculated across wooded areas (>10 Mg C ha−1) for the periods 2007–2010 and 2015–2018, including the 95% confidence intervals (CIs) that represent
for the total each bar (i.e. protected and unprotected areas combined). d The percentage of each countries AGC, land area and wooded area that is
contained inside protected areas.
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Fig. 2 Gross carbon stock, and land cover changes across countries and protected areas. a The area of deforestation, degradation, minor losses, and
growth in each country, and b the total carbon stock changes resulting from these processes in Tg C yr−1 (1 Tg = 1 million metric tonnes [Mg]). In (a), the
values inside the section of each bar show the percentage contribution of each loss component to the total losses for that country. The vertical bars
indicated the 95% confidence intervals (CIs) and represent for the combined uncertainty on each bar (i.e. total losses combined, as well as protected and
unprotected areas). c The percentage of the initial wooded areas (as of 2007–2010) that was deforested and degraded for all individual PAs included in the
analysis. The hatched lines show the percentage of the entire study region impacted by each process over the study period.
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for the first time that avoided degradation, and increased
vegetation growth are important carbon benefits of protection.

The overall trends of PAs reducing land cover change, and
increasing AGC stocks relative to their matched counterparts is
consistent across countries (Figs. 3 and 4). However, there are
large differences in the effect size of protection between national
PA networks, with those in Tanzania, Malawi, and to a lesser

extent Angola having the greatest matched effect on ΔAGC
(Fig. 3). In contrast, the comparatively rapid gains in AGC
observed across PAs in Katanga-DRC, and to some degree
Zambia and Zimbabwe, are nearly equalled by gains in matched
unprotected lands, meaning their PA networks are assessed as less
effective at enhancing ΔAGC (Fig. 3) compared to unprotected
areas.

Fig. 3 Change in aboveground woody carbon density across the southern African woodlands. a The annual absolute change in AGC stocks (Mg C yr−1)
between the period 2007–2010, and 2015–2018. Changes are expressed on an annual basis as the average time-difference between the two maps varies
across the study region. b The location of protected areas in 2014, separated by broad management type, is included again to ease comparisons between
patterns of AGC change, and PA location. c The net relative change in AGC stocks over the study period across the subset of matched protected, and
unprotected areas (solid circles), and across the entirety of the protected and unprotected areas in the region (unmatched; open circles). Here, changes are
expressed relative to the initial AGC stock in each area, rather than in absolute terms, given the differing size of each country, and thus magnitude of each
change. The 95% confidence intervals (CIs) around each point indicate the range of possible outcomes based on propagating the uncertainties in the
model used to convert the radar data into AGC. The grey lines between solid circles highlight variations in PA effectiveness, i.e. the difference in outcomes
between the matched protected, and unprotected areas. The results are broken down by country and management type in Supplementary Fig. 4.
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Variation in the effectiveness of PAs on carbon outcomes. The
broad national-level trends (Figs. 3 and 4) provide insights into
the role PAs play in overall carbon balance, and their potential to
contribute to national-level efforts to reduce carbon losses from
deforestation and degradation. These results are naturally
weighted towards larger, better matched PAs, and obscure the
considerable within-country differences in effect scores related to
PA designation (i.e. National Parks, Forest Reserves etc.), and
heterogeneity between individual PAs (Supplementary Figs. 3–5
and Supplementary Data 3). Understanding the impact PA des-
ignation has on effect scores is particularly important given plans
to expand the network and the financial commitment, and

potential social costs (e.g. restricted access to resources) asso-
ciated with creating new PAs.

To that end, we compare carbon outcomes in areas likely to
be under strict protection (36% of the total area protected;
largely IUCN categories I–II, and National Parks), from those
which are not, with these split if they are designated as Forest
Reserves (21% of area), or managed principally as Wildlife
Reserves (43%). The results show that overall, each of these
groupings results in positive outcomes on ΔAGC, with the
overall difference compared to matched unprotected areas
estimated at +0.45% yr−1 for strict protection, +0.60% yr−1 for
forest reserves, and +0.33% yr−1 for wildlife reserves, although

Fig. 4 Comparison of the gross carbon stock changes due to deforestation, degradation and vegetation growth in protected and unprotected areas.
Changes are expressed as a proportion of the total land area due the differing size of each country, and thus total magnitude of each change. The larger
solid circles show the results for a matched subset of PAs, whilst open circles show the results for the full protected area in the region. The 95% confidence
intervals (CIs) around the matched estimates indicate the lower and upper bounds on our estimates for both protected and unprotected areas based on
propagating the uncertainties in the model used to convert the radar data into AGC. In this case, overlapping uncertainty bounds do not indicate the
absence of an effect as a scenario that yields a lower rate of change inside a protected area would result in a lower rate inside the matched unprotected
area.
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the pattern, and size of the effect varies somewhat by country
(Supplementary Fig. 4). As with protected and unprotected
areas, direct comparisons between PA types are confounded by
biases in location; for example, a large number of forest reserves
tend to be located in areas with high land use intensity (Fig. 2),
thus providing a greater opportunity for these PAs to have a
larger effect. To account for this, we calculated standardised
estimates of the PA effect on ΔAGC, and the gross carbon losses
from deforestation and degradation (Fig. 5) using a Bayesian
regression procedure which accounts for observable differences
related to accessibility, extractable value and potential agricul-
tural suitability, as well as country and management status (see
‘Methods’).

After removing the confounding effects of location, we find no
clear evidence that PA designation has an impact on the effect
scores with PAs under stricter protection generally showing
slightly stronger effects, although the effect is not meaningfully
better than both forest or wildlife reserves (standardised
difference on ΔAGC < 0.1 Mg C ha yr−1). There are exceptions
to these patterns, most notably in Tanzania where both wildlife
and forest reserves have a larger positive effect on ΔAGC
compared to strictly PAs.

PAs with higher initial AGC densities were associated with
more positive outcomes on ΔAGC, and larger reductions in
deforestation and degradation, relative to matched unprotected
areas (Supplementary Fig. 6). This may reflect differences in

Fig. 5 Comparison of the standardised PA effect on carbon stock changes between management types, controlling for differences in location. Bayesian
regression modelling is used generate an estimated PA effect for each country/management type by setting all other covariates to their mean i.e. the effect
an average PA, accounting for all other observed sources of variation (see ‘Methods’). Circles indicate the mean difference-in-difference in outcomes
between protected and unprotected areas and their associated 95% Credible Intervals (CIs) (thin segment of error bar) and 80% CIs (thick). We interpret
estimates whose 80% CIs do not overlap zero as a statistically meaningful effect. The areas shaded in green show where PAs reduced land cover change or
enhanced ΔAGC compared to matched, unprotected areas, i.e., positive values mean matched PAs have better AGC outcomes (Mg C ha yr−1), while for
deforestation and degradation, a negative value indicates lower carbon losses.
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management effectiveness, e.g. whether more effort is placed on
protecting higher biomass PAs, or differences in the threat level in
the matched controls, e.g. whether lower AGC areas are at less
risk of exploitation meaning PAs have less opportunity to be
effective. Areas with a higher suitability for cash crops38, and
those further from major cities, a proxy for urban demand for
resources, were also associated with larger effects of PAs on
ΔAGC. For cash crops, this reflects reductions in deforestation
relative to their matched counterparts, however, increasing
distance to cities has no impact on the effectiveness of PAs at
avoiding deforestation. Instead, the positive impact reflects
reductions in degradation, indicating that underlying drivers of
these losses (e.g. demand for timber and charcoal) are less limited
by distance, compared to deforestation (see ref. 12). The size of
the PA had no clear impact on its effect on ΔAGC, although
larger PAs are associated with lower deforestation.

Discussion
We find PAs are, on average, associated with increases of
aboveground woody carbon (AGC), above that in matched
unprotected areas. This is the result of avoided deforestation and
degradation and associated carbon losses, and also an increase in
the areal extent of vegetation growth, relative to non-PAs. These
three processes contribute 39%, 28% and 28% of the net carbon
benefits of protection, respectively. The relatively even split across
the three key land cover processes is important as it highlights
that previous analyses which solely analysed deforestation effects
are missing many of the carbon benefits of PAs39. Our results also
reaffirm known patterns of AGC change across our study
region10, with carbon losses concentrated around urban centres
and road networks, and carbon gains in more remote areas with
sparse population, and/or a relatively high (>1000 mm yr−1)
mean annual precipitation (e.g. northern Angola, western Zam-
bia, southern DRC).

Here, we show that PAs also play an important role in shaping
these patterns, which for the first time is shown to include the
prevalence of vegetation growth, which is 12% higher compared
to matched unprotected areas, albeit with no differences in the
rate at which carbon is accumulating (0.55 Mg C ha yr−1). These
carbon gains encompass both the growth of mature vegetation
and wooded areas re-growing following disturbance, but do not
include growth in non-wooded areas (<10 Mg C ha−1), or non-
wooded to wooded transitions, due to additional uncertainties on
change detection in low AGC areas. Whilst these carbon benefits
may help address the climate change mitigation agenda, it is
important to acknowledge that increasing woody biomass in
more open ecosystems can be associated with a loss of
biodiversity40, and in parts of our study region, may directly
conflict with biodiversity management goals. There is likely a
dichotomy between the wetter regions of the study (the Miombo
woodlands) where increasing woody cover is rarely perceived as a
biodiversity threat, and associated with higher faunal and floral
diversity41,42, and the more open arid ecosystems where it is a key
concern of land managers43. As a result, the finding of more
extensive woody AGC increases in PAs might result in a mixed
picture for biodiversity conservation in some parts of the region.

Degradation, which in this carbon-focused context refers to a
reduction in the carbon density of the vegetation, without a
transition to very low woody biomass often associated with a new
land cover (i.e. deforestation), has previously been shown to be a
major source of carbon loss from these ecosystems10,44. In this
study, we find that degradation accounted for 49% of the com-
bined anthropogenic (i.e. deforestation and degradation) carbon
losses, confirming its importance as a major source of land use
change emissions, albeit one not easily accounted for in the global

carbon budget45. We anticipated that PAs would be less effective
at reducing degradation compared to deforestation, as the tran-
sient activities that lead to the degradation of AGC, such har-
vesting for timber and charcoal34, would be harder to reduce in
PAs than the more sedentary activities that cause deforestation,
which is often driven by agricultural expansion36. People travel
large distances to collect potentially valuable resources, with PAs
potentially containing more tree species of harvestable size for
timber and charcoal due to historically lower rates of disturbance,
meaning even inaccessible areas may be targeted for timber
extraction12,46,47. Our findings support this hypothesis, with
matched PAs showing a smaller reduction in degradation rates
(−25%) and associated carbon emissions (−31%), compared to
deforestation (−38% and −41% respectively).

This general pattern is broadly consistent, although it obscures
considerable heterogeneity in effect scores between countries
(Figs. 2 and 3), and among individual PAs (Supplementary
Fig. 5). At the national-level, our results show there is relatively
little difference between countries in terms of the deforestation
and degradations rates inside PAs. Instead, the variations in effect
scores largely reflects the varying pressures PAs are under, spe-
cifically, the rate of loss in matched unprotected areas, and
whether they are located in areas suitable for growing cash crops,
and/or in close proximity to major cities.

Each of our broad PA designations were associated with
positive outcomes on carbon storage, although we find no evi-
dence that this has a meaningful impact on effect scores, once
biases in location are accounted for. Indeed, those PAs more
likely to place greater restrictions on land use, i.e. those with
IUCN management category I-II, and/or National Parks, result in
similar outcomes to PAs less likely to limit human use, and/or
receive less support than more prominent conservation areas48.
Tanzania is a notable exception, with forest reserves and wildlife
areas outperforming strictly PAs. The reasons for this are unclear,
especially the outsized impact of forest reserves, which likely
receive less funding that strictly PAs48. The comparatively large
impact of wildlife reserves may reflect, in part, the positive
influence of Selous Game Reserve, which constitutes 17% of the
Tanzanian dataset. It is designated at IUCN category IV area and
so not considered strictly protected, although it is a UNESCO
World Heritage Site, and since 2019, part of it has been reclas-
sified as a National Park.

Interpreting the effects of PAs is somewhat limited by the lack
of detailed information on the management system that is in
place (e.g. IUCN category, METT score), and the governance
strategy (e.g. community vs centrally managed) for the majority
of the PAs in our study. Such data would permit a more nuanced
analysis as to how these factors influence PA effectiveness7,8 and
is a target for future research. That being said, our results do
suggest that stricter, or more intensive conservation is not a
prerequisite for preventing deforestation and degradation, and
demonstrates the potential for well-managed, inclusive, PAs
contribute to national-level efforts to reduce emissions from
deforestation and degradation, alongside their other potential
benefits. This conclusion has potentially broad implications, as
more restrictive conservation practices are more likely to result in
negative social outcomes49,50, by limiting or even stopping access
to resources, and displacing local communities.

It is equally as important to note that for many PAs, though
perhaps more so for wildlife reserves, the finding of positive
carbon outcomes is unlikely a core target of protection, nor in
some PAs, is such an outcome necessarily desirable if it conflicts
with efforts to protect faunal diversity. For example, elephants,
and other browsing herbivores are known to be a limiting factor
to AGC14,51, meaning our findings of positive carbon outcomes
may indicate negative trends in animal densities. However, we
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consider it more likely that this will impact on the prevalence of
minor losses, and on the suppression vegetation growth, with
observed reductions in deforestation and degradation more likely
to indicate reductions in human activity36, which may be a
positive outcome26.

The carbon benefits of PAs relative to unprotected areas also
need to be placed in context; firstly, it is possible that some of the
benefits of protection are undermined by displacement (i.e.
leakage) of livelihood activities to other areas52, rather than a real
reduction in e.g. deforestation and degradation. Secondly, it
should also be noted that despite their effectiveness at reducing
anthropogenic losses, PAs are not immune to widespread dis-
turbance, with deforestation and degradation rates found to be
very high in some PAs, and associated carbon losses from PAs
totalling 6 Tg C yr−1 (60 million tonnes), equivalent to 15% of the
region-wide annual emissions from these processes. We also
caution against direct comparisons to our previous estimates of
AGC change for the region given the different approaches used to
derive these values, and the decadal time frame covered in this
study. The remote sensing data is also averaged over multiple
years to overcome inconsistencies in the annual mosaics, and to
account for potential biases associated with choosing a single pair
of years for analysis. As such, some short lived (1-2 years) change
events may be missed, which is more likely to affect estimates of
degradation (due to regrowth, and because it is often a precursor
to deforestation). However, the advantages of the longer time
frame is that it leads to higher signal to noise ratios for detecting
land cover change. As such, we can be more confident that the
observed changes are real and that our findings accurately reflect
the impact of PAs on the regional carbon balance.

Methods
Mapping carbon and land use change. The datasets were
broadly created using methods described in reference10, which
presented maps of AGC densities and change for the period
2007–2010 at 25 m resolution, using a combination of satellite
radar images, specifically the ALOS PALSAR mosaic product
(Ver. 1), produced by the Japanese Space Agency (JAXA)27, and
in situ carbon stock estimates for converting radar backscatter to
estimates of AGC. Change detection is based on a probabilistic
approach that takes into account uncertainties in the radar data
itself, and the conversion of the radar backscatter to aboveground
carbon densities. A full description of the underlying methods are
detailed in reference10, however for clarity, we summarise the key
aspects relevant to the current analysis, and detail all additions
and modifications to the original method, which were largely to
account for the inclusion of ALOS-2 PALSAR-2 data covering the
period 2015–2018.

Cross calibration of ALOS and ALOS-2 mosaic product. Sys-
tematic differences in backscatter values were observed between
ALOS and ALOS-2, even in areas where the tree cover remained
stable. The two sensors were cross-calibrated based on a regular
grid (every 0.5 degrees) of pseudo-stable locations across the study
region (n= 1001), excluding locations of possible forest change33,
steep slopes53, and wetlands54 Supplementary Fig. 7). A linear
model (γ̂0A2= 1.001 × γ0A2+ 0.9478; r2= 0.71; RMSEdB= 2.28),
was used to adjust the observed backscatter in dB from ALOS-2
(γ0A2) to that expected of ALOS (γ̂0A2).

Generating new composite maps of AGC. For this study, we
developed a new method to create datasets suitable for change
detection using the freely available annual ALOS mosaic product,
covering the ALOS measurement period from 2007 to 2010, and
the first 4 years of ALOS-2 data from 2015 to 2018. A full

schematic diagram showing the rationale and procedure is shown
in Figs. 6 and 7. The method was developed to account for spatial
inconsistencies in the intensity of radar backscatter, which
sometimes appear as clearly visible ‘stripes’ in the data between
adjacent satellite acquisition paths (Fig. 6). The challenge for data
users is these differences are often subtle and become apparent
only when looking at the change between years. These patterns
arise as L-band radar is sensitive to several factors unrelated to
woody biomass, which in seasonally dry open woodlands and
forests likely reflect differences in soil/vegetation moisture con-
tent at the time the data was acquired. The mosaic product
comprises images obtained throughout the calendar year meaning
there are some seasonal differences in when the data was acquired
between neighbouring paths. In our previous study10, a correction
was applied to the radar data in areas where the estimated soil
moisture differed between 2007 and 2010, and removed areas
where the differences were too large to correct. Initial compar-
isons of the ALOS and ALOS-2 data, however, showed variations
in soil moisture or precipitation could not fully account for
observed discrepancies in backscatter. This likely reflects, in part,
efforts to reduce or correct these anomalies by JAXA, which
cannot easily be reversed, and may partly explain the weak
relationship between backscatter, and both precipitation, and soil
moisture.

The goal of this new method is to capture the general spatial
and temporal trend in AGC stocks and land cover over the study
period, while at the same time accounting for uncertainties
associated with choosing a single, potentially biased pair of years
(e.g. due to seasonal differences in the timing of the radar
acquisition; Fig. 6). To do this, we remove from consideration any
years, or parts thereof, which yield anomalously large positive or
negative changes in backscatter, relative to surrounding areas, and
to results obtained using different combinations of years. The
data is aggregated from 25m to 1 ha to reduce noise. The
2019–2021 mosaic products were excluded due to widespread
striping issues which would likely have an undue effect on the
derivation of a consistent trend, although updates to these
datasets may allow their incorporation in future.

The method uses a spatial windowing technique, with the
window size (240 km cross-track/East-West × 90 km along-track;
~North-South) chosen to include at least 3–4 acquisition paths
for comparison, and reduce the likelihood that direct human
change, i.e. widespread deforestation or degradation, has an effect
on the results. For each iteration of the window, the relative
change in backscatter for each pixel—expressed in annual terms
(% yr−1) given the range of years (5–11) covered—is calculated
for all 16 bi-temporal combinations of data from ALOS
(2007–2010) and ALOS-2 (2015–2018). The change datasets are
then split based according to the combination of acquisition dates
which make up the dataset to help pinpoint potential anomalies
(Fig. 6). Three summary statistics describing the pattern of
change across each of the unique path combinations are
extracted; this includes the proportion of the wooded area
(AGC density >10 Mg C ha−1) that increased (or decreased)
faster by the median rate of change across all 16 combinations of
years to try and capture subtle discrepancies, or shifts in the data,
irrespective of the intensity Fig. 7). The first and third quartiles of
change are also extracted to account for areas where there are
relatively large gains or decreases in backscatter e.g. flooded areas.
An area is masked from that year combination if at least one of
these change statistics lies outside the corresponding 10th and
90th percentiles, calculated using all pairwise combinations, i.e.
areas that exhibit an abnormally high area and/or intensity of
gain or loss relative to other years. The process is repeated with
the centroid of each window shifting by one-third of the
dimensions (i.e. 80 km W-E; 30 km N-S), with an area removed
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from consideration if categorised as anomalous in more than half
of all comparisons.

These masked datasets are then used to create a per pixel
(25 m) weighted-average backscatter covering the ALOS years
(2007–2010), and the ALOS2 (2015–2018) periods (Fig. 7), with
lower, or no weight ascribed to years that yield potentially
anomalous results. These composite, or harmonised datasets form
the basis of our change analysis with the average time difference
between the two being 8.2 years [IQR: 8–8.6]. The same pseudo-
invariant areas used to create the cross-calibration model are
used again to estimate the weighted standard error on the
average backscatter estimates. The estimated uncertainty on
each of the composite datasets is typically within 10% of mean
across wooded areas, and decreases with increasing backscatter
(Fig. 7f). This uncertainty is included in our probabilistic
change detection method by simulating 10,000 possible values
(realisations) of backscatter following a normal distribution,
with the standard error parameter predicted for each possible
backscatter value using 2nd order polynomial models fit to the
data. In the original manuscript, per-pixel uncertainties were
estimated using a model describing the effects of speckle, a
noise-like quality inherent in SAR data, the effect of which is
minimised by averaging over multiple years. For completeness,
each simulated value of backscatter is then used to simulate 200
realisations of AGC, based on the standard error of the
regression model using to convert backscatter to AGC, giving 2
million possible values of AGC for each possible observation of
backscatter. The simulations are repeated for the full range of
observed combinations of AGC at the first and second time
points, and for each combination, the proportion of times that

the simulated values met the land cover change criteria is used
the probability that the change has occurred. Uncertainties on
all quantities were estimated through the propagation of the
uncertainty in the model used to convert the radar data to
estimates of AGC. This involves creating a set of 5000 different
biomass-backscatter regressions using a different 50:50 split of
the field plot data used to calibrate the model. These models are
then applied to a random subsample of 5% the study area, each
time calculating a new set of AGC and change estimates, with
2.5th and 97.5th percentiles of the 5000 estimates used as a
measure of the uncertainty for the entire study area. A full
description of our approach is contained in our previous
manuscript10.

Land-cover change definitions. Areas where AGC decreased
over time are classified according to whether they are sympto-
matic of deforestation (a reduction in wooded area), degradation
(a reduction in carbon density in an area that remains forest at
both time points), or whether losses are of a lower intensity
(<20% reduction in AGC), symptomatic of a minor, natural
disturbance. Deforestation is defined as a reduction in AGC
below a wooded/non-wooded threshold of 10 Mg C ha−1, with
degradation defined as a reduction in AGC density in an area that
remains wooded. Both are separated from other disturbances
according to whether the changes were of a high intensity, defined
as a >20% reduction in AGC between time points. In this study,
we included an additional separator, which is whether the abso-
lute difference exceeded 5 Mg C ha−1, or ~20% of the typical
AGC density in these woodlands. This was done to prevent small

Fig. 6 Generating composite maps of AGC for change detection (i). The rationale behind the creation of the AGC maps used for change detection. The
example data cover a single iteration of the moving window over a part of Central Zambia, chosen to highlight the potential ambiguity associated with
choosing a single pair of years for analysis and where there is clearly visible ‘striping’ in data. The white lines in the AGC map for 2007 highlight a single
pass of the ALOS satellite to show how the mosaic is constructed. The first step in the processing chain is to create change datasets for all possible
combination of years, with these datasets further split based on the number of days between when the data was acquired (continues in Fig. 7).
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absolute, but large relative changes in areas with AGC densities
close to the 10 Mg C ha−1 wooded/ non-wooded being designated
as deforestation or degradation, when the size of the loss is more
likely to be indicative of minor, natural disturbance. Our measure
of deforestation represents clearances that are clearly visible and

semi-permanent, such as agriculture, whereas degradation will
reflect more cryptic, patchy disturbances, such as logging or
charcoal production34,36. Gains in AGC stocks reflect the growth
of woody vegetation and are limited to areas that are wooded in
the period 2007–2010.

Fig. 7 Generating composite maps of AGC for change detection (ii). a The change data for each combination of satellite paths (based on number of days
between acquisition) is extracted from across all possible combinations of years (n= 16), thus yielding hundreds of possible change scenarios for a given
area. b These data is summarised using three change statistics which are used to identify and c mask areas with anomalous change patterns, i.e. areas
which show a high area and/or intensity of gain or loss relative to surrounding areas, and other year combinations. This process is repeated across the
study region, creating a set of masking layers for each year combination, which are then used d–f to calculate weighted mean backscatter and associated
uncertainty for the ALOS (2007–2010) and part of the ALOS-2 period (2015–2018). The remainder of the processing follows ref. 10.
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Protected areas. The location of PAs were extracted from the
UNEP/IUCN World Database on Protected Areas (WDPA) (May
2021)55 with 1352 terrestrial PAs available for analysis within the
political boundaries of the study region. There are 29 different
designations describing PA strategy and management objectives,
some of which are specific to each country. These were classified
into three broad groups: (i) Strictly Protected, which includes any
IUCN Category I–II areas, such as National Parks and Reserves,
(ii) Forest Reserves, including both village and state managed
reserves but excluding plantations, and (iii) Wildlife Reserves,
which includes conservation and hunting areas. PAs designated
after 2014 are excluded from the analysis as the impact of con-
servation unlikely to have been fully realised. At this point, PAs
covered 260,000 km2, or 18.7% of the land surface, with Tanzania
and Zambia containing the largest networks with ~260,000 km2

under protection, equivalent to 28% and 36% of the total land
area respectively (Fig. 1). Forest Reserves are the most numerous
protection type comprising 77% of all sites, although Wildlife
Reserves and Strictly PAs are more spatially extensive constitut-
ing 43% and 36% of the entire PA network respectively.

Matching. In line with similar studies that have examined the
ecological impact of protection in other tropical forest regions, we
use matching methods to predict what would have happened to
AGC and land cover in the absence of protection, i.e. the coun-
terfactual outcome. The purpose of matching is to mimic the
random assignment of protection by identifying unprotected
areas that are similar to the PA of interest in terms of the
probability of disturbance with the only difference being the
assignation of protection. By comparing cells within each PA to
similar unprotected areas, we aim to derive an unbiased estimate
of the protection effect over the study period.

Here, we used coarsened exact matching (CEM)29 to select
protected and unprotected cells for comparison. In contrast to
most other regional studies which tend to quantify the average
performance across broad networks, matching was performed
separately for each PA37 with all the matched cells retained in
order to calculate the effect size across networks of PAs, including
those within the same country and of similar protection types.
With CEM, the values for each matching covariate are first
separated into discrete bins, the sizes of which are defined based
on a priori knowledge of what is a suitable match; that is, where
values in the same bin have little or no effect on the probability of
the outcome (Supplementary Table 1). Exact matching is
performed on these coarsened data, with any subsequent analyses
on the matched dataset based on the original values. The effect
size is calculated using a weighted difference in the means of the
observed outcomes (i.e. the change in AGC, deforestation rate,
degradation rate) in the protected and unprotected samples. In
contrast to propensity score and multivariate matching, which
require varying the calipers for each PA—i.e. the maximum
acceptable difference between matched and control cells—both
the bin sizes, and therefore the maximum degree of imbalance
between matched cells is determined ex ante and are the same for
all PAs, thus increasing transparency and ensuring differences in
effect size are not due to differences in match quality.

Matching covariates. We controlled for a set of variables widely
considered to affect the probability of the outcomes in question.
These include the suitability of the area for agriculture, its
extractable value and potential, and its accessibility, which
includes geographic distance to markets and human populations.
The rationale for each covariate, and the data sources and
methods used to create these are in Supplementary Material.
Control cells were located outside a 10 km buffer around all

PAs6,56 to avoid potential leakage effects influencing our results -
i.e. the displacement of, or increase in activity outside the PA
boundaries57.

Matching results. The matching procedure greatly improved the
comparability between the protected and unprotected sample
(Supplementary Figs. 1 and 2). Of the 1346 individual PAs
documented in the WDPA, 296 (22%) were excluded as they were
too small to be considered for analysis (<1 km2), while a further
152 (11%) were excluded as no suitable matches was found.
However, the 904 PAs that were retained are amongst the largest
in the region, encompassing the majority (98%) of the total
protected wooded area, and of this, 56% received at least one
match, with similar results (60 ± 31 [SD] %) when broken down
by individual PA.

Analysis. The region-wide, and national results area calculated by
pooling the matched data across each area. These results are
presented according to the relative ([ΔPA− ΔUP]/ΔUP) change
(%) in the outcome variables between the PA and its matched
unprotected control sample due the differing size of each country,
and thus magnitude of each change. For AGC change (ΔAGC),
positive values indicate that stocks in PAs are than unprotected
areas, while for deforestation and degradation, a positive value
indicates lower carbon emissions associated with that process. For
the matching analysis, deforestation and degradation rates are
primarily reported as a percentage of the land area, and not the
wooded area unless otherwise stated. This is to prevent small
differences in woody cover in the matched sample resulting in
different rates of loss even when the total area affected is identical.

To examine the factors that affect PA effectiveness (Fig. 5 and
Supplementary Fig. 6), we fitted a set of three Bayesian
hierarchical regression models using the brms package58 in R.
The response variable in each case was the matched estimate of
PA impact on deforestation, degradation or net AGC change and
was modelled as arising from a Student’s t distribution whose
parameters were estimated from the data. This response
distribution was chosen to capture the fat-tailed nature of the
response variables, in which a small number of PAs had very large
estimated impacts. To account for the uncertainty in the matched
estimates of PA impact we adopted a fixed meta-regression
approach which also incorporated information about their
associated standard errors. We used the size of the PA, average
biomass density, distance from the nearest city, distance from
other settlements, distance from the nearest road, population
density in 2005, the roughness of the terrain, and indices of the
suitability of the land for cash and subsistence farming, and a
categorical variable classifying the management category of the
PA as fixed predictor variables. We also included a random
intercept for the country in which the PA is situated and allowed
the effect of management type to vary by country. Both outcome
and predictor variables were scaled and centred prior to
modelling by subtracting the mean and dividing by two standard
deviations. Results were subsequently back transformed to place
them on the scale of the original data. Fixed effects were assigned
weakly informative independent Normal priors with mean = zero
and standard deviation = five and the random effects
covariance’s were assigned LKJ priors with regularisation
parameters = two59. To facilitate interpretation of the fitted
models, we predicted PA impact for all combinations of
management type and country under scenarios in which all fixed
predictors were held at their mean values. Our model-based
results are presented as mean and their associated 95% and 80%
CIs, and we interpret estimates whose 80% CIs do not overlap
zero as statistically meaningful.
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Data availability
Data are available from the University of Edinburgh DataShare service at the following
address: https://doi.org/10.7488/ds/7520.
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