

Edinburgh Research Explorer

Deep Inductive Logic Programming meets Reinforcement
Learning
Citation for published version:
Belle, V & Bueff, A 2023, Deep Inductive Logic Programming meets Reinforcement Learning. in
Proceedings 39th International Conference on Logic Programming. vol. 385, Electronic Proceedings in
Theoretical Computer Science (EPTCS), Open Publishing Association, pp. 339-352, The 39th International
Conference on Logic Programming, London, United Kingdom, 9/07/23.
<https://cgi.cse.unsw.edu.au/~eptcs/paper.cgi?ICLP2023.37>

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings 39th International Conference on Logic Programming

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 13. Nov. 2023

https://cgi.cse.unsw.edu.au/~eptcs/paper.cgi?ICLP2023.37
https://www.research.ed.ac.uk/en/publications/bce18952-e6ef-4154-bfb8-13b24ee6cd1d

Submitted to:
ICLP 2023

© Andreas Bueff, Vaishak Belle
This work is licensed under the
Creative Commons Attribution License.

Deep Inductive Logic Programming meets Reinforcement
Learning

Andreas Bueff
University of Edinburgh

Vaishak Belle
University of Edinburgh

One approach to explaining the hierarchical levels of understanding within a machine learning model
is the symbolic method of inductive logic programming (ILP), which is data efficient and capable of
learning first-order logic rules that can entail data behaviour. A differentiable extension to ILP, so-
called differentiable Neural Logic (dNL) networks, are able to learn Boolean functions as their neural
architecture includes symbolic reasoning. We propose an application of dNL in the field of Relational
Reinforcement Learning (RRL) to address dynamic continuous environments. This represents an
extension of previous work in applying dNL-based ILP in RRL settings, as our proposed model
updates the architecture to enable it to solve problems in continuous RL environments. The goal
of this research is to improve upon current ILP methods for use in RRL by incorporating non-linear
continuous predicates, allowing RRL agents to reason and make decisions in dynamic and continuous
environments.

1 Introduction

One approach to explaining the hierarchical levels of understanding within a machine learning model
is the symbolic method of inductive logic programming (ILP) [15], which is data efficient and capa-
ble of learning first-order logic rules that can entail data behaviour. Recent contributions to the field
have expanded the ILP framework to allow for end-to-end learning, resulting in hybrid models that can
be classified as neuro-symbolic [6, 16, 22, 3]. The recent developments in neuro-symbolic ILP have
expanded the potential applications of these models to a wider range of learning challenges, including
reinforcement learning [17]. The ILP-based neuro-symbolic model implemented in this proposal is a
differentiable extension to ILP, so-called differentiable Neural Logic (dNL) networks [16]. dNL net-
works are able to learn Boolean functions as their neural architecture includes symbolic reasoning. The
primary neural layers in the dNL model contain weighted neurons associated with conjunctions as well
as weighted activation neurons associated with disjunctions, providing a means of logical reasoning on
the input as well as a means of optimisation via gradient descent.

Relational RL (RRL) is concerned with learning policies for decision-making tasks in complex,
discrete relational environments [4]. In RRL, the environment is characterised by a set of entities and
relationships between them, and the agent’s actions can affect the state of these entities and relationships.
Due to its focus on relational problems, RRL has leveraged the progress made in ILP but is not limited
to one method. Recent efforts have enabled RRL to effectively tackle more complex RL problems by
transitioning from purely symbolic reasoning to a more neuro-symbolic approach that leverages neural
systems. Earlier research in RRL primarily focused on planning [4], emphasising model-based learning.
Later research, however, focused on model-free methods that combined neuro-symbolic models and
RRL [23] or on the derivation of interpretable FOL policies [10, 17]. Despite these advancements,
there is limited research in applying RRL to more complex learning challenges, such as continuous state
dynamics. This gap in knowledge motivates the proposed research.

https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

2 Deep Inductive Logic Programming meets Reinforcement Learning

The work by Payani et al. extended RRL to learn FOL policies using a dNL agent [17]. Taking
the concepts of dNL, Payani et al. combined their dNL-ILP framework with RRL [17]. The author
tested on the block world gaming environment and took advantage of the declarative bias with provided
background knowledge. The authors expanded RRL to handle complex scene interpretations and used
their dNL-ILP differentiable inductive engine to give RRL an end-to-end learning framework, so-called
dNL-RRL, where the authors focused on policy gradients in order to improve interpretability and expert
constraints to improve the speed of convergence.

The following paper is an extension that incorporates both a continuous and non-linear interpretation
of [16] and the dNL-RRL agent found in [17] resulting in a dNL-ILP based agent that can both learn in
dynamic continuous environments typically seen in RL control problems and extract FOL rules which
define the agent policy. Various RL algorithms were explored in evaluating our dNL-ILP agent and
ultimately Soft Actor-Critic was found to perform the best when solving problems on continuous state
spaces. As the contribution bridges the application of dNL-ILP agents in discrete state spaces with that
of continuous, we evaluated the model on a dynamic RL environment where the optimal policy captured
rules such as those seen with classical mechanics in physics. In our evaluation, the model was applied to
two control problems including the Cart Pole problem and Lunar Lander problem [1]. From our initial
results, we were able to obtain agent policies which incorporate continuous predicate functions as well as
non-linear continuous predicate functions. We also add that our proposed agent, while primarily focused
on solving classical RL problems, is referred to as an RRL agent due to its use of relational language in
the derived FOL rules and the ability to incorporate background knowledge through the use of non-linear
predicate functions.

2 Background

2.1 Reinforcement Learning

Reinforcement learning (RL) aims to find an optimal action sequence for an agent to maximize its
expected future reward. This is typically done by modelling the environment as a Markov Decision
Process (MDP), which is defined as a tuple M = ⟨S ,A ,R,T ,E ⟩. S is the set of states, A is
the set of actions that can be taken, R(st ,at ,st+1) is the reward function that takes the current state
st , current action at , and returns the reward from transitioning to the state st+1, T (st ,at ,st+1) is the
transition probability function which represents the probability of transitioning to state st+1 from state
st given action at was taken, and E ⊂ S is the set of terminal states [20, 11]. A discount factor
γ ∈ [0,1] determines the importance of receiving a reward in the current state versus the future state,
where Rt = ∑

∞
k=0 γkr(at+k,st+k) is the total accumulated return from the time step. The value func-

tion V π(s) = Eπ [Rt] of a policy is the measure of the expected sum of discounted rewards. The goal
is to find the optimal policy π∗ = argmaxπ E[∑∞

t=0 γ tr(at ,st)|s0 = s], which maps a history of obser-
vations to the next action[20, 19, 11, 18, 9, 13]. In practice, at each time step, the agent selects an
action based on its current state and the policy, and receives a reward based on the transition to the
next state. In our investigation of RL methods, we found that Soft Actor-Critic (SAC) is the best ap-
proach for our dNL based agent. SAC combines the strengths of both value-based and policy-based
methods by alternating between updates to the policy and updates to the value function and Q-function.
The entropy regularisation term is added to the policy update step to encourage exploration, and the
algorithm uses a temperature parameter, α , to control the trade-off between exploration and exploita-
tion. As we evaluate our agent on environments consisting of discrete actions, we use a discrete action
variant of SAC [2]. The main difference is in the policy update step, where the objective becomes

Andreas Bueff, Vaishak Belle 3

π∗ = argmaxπ ∑
T
t=0Est∼D[Eat∼π [r(st ,at)+αH(π(·|st))]]. Where H(π(a|s)) is the entropy of the pol-

icy, γ is the discount factor, D is the replay buffer, and α is the temperature parameter. In the discrete
setting, π maps states to a vector of probabilities with |A| elements. For the actor cost function, we
use the following equation Jπ(φ) = Est∼D[Eat∼π [α log(πφ (at |st))−Qθ (st ,at)]]. Where πφ is the policy
parameterized by φ and Qθ is the Q-function parameterized by θ . Discrete SAC policy maximises the
probability of discrete actions as opposed to the continuous SAC policy which optimises two parameters
of a Gaussian distribution.

2.2 Inductive Logic Programming (ILP)

Inductive logic programming (ILP) is a method of symbolic computing which automatically constructs
logic programs given a background knowledge base (KB) [15]. An ILP problem is represented as a tuple
(B,P,N) of ground atoms, with B being the background assumptions, P being a set of positive
instances which help define the target predicate to be learned, and N being the set of negative instances
of the target predicate. The goal of ILP is to construct a logic program that explains all provided positive
sets and rejects the negative ones. Given an ILP problem (B,P,N), the goal is to identify a set of
hypotheses (clauses) H such that B∧H |= γ for all γ ∈P and B∧H ̸|= γ for all γ ∈N , where |=
denotes logical entailment. In other words, the conjunction of the background knowledge and hypothesis
should entail all positive instances and not entail any negative instances.

2.3 Differentiable Neural Logic (dNL)

The core component of the dNL network is their use of differentiable neural logic layers to learn Boolean
functions [16]. The dNL architecture uses membership weights and conjunctive and disjunctive layers
to learn a target predicate or Boolean function. Learning a target predicate p requires the construction
of Boolean function Fp which passes in a Boolean vector x of size N with elements x(i), into a neural
conjunction function fcon j (see equation 1a) which is defined by a conjunction Boolean function Fcon j

(see equation 1b). A predicate defined by Boolean function in this matter is extracted by parsing the
architecture for membership weights (w(i)) above a given threshold, where membership weights are
converted to Boolean weights via a sigmoid m(i) =σ(cw(i)) with constant c≥ 1. Membership weights are
paired with continuous lower and upper bound predicate functions (see equation 3) which are eventually
interpreted as atoms in the body of the predicate being learned. These same Boolean predicate functions
are used to transform non-Boolean data into a Boolean format for the logic layers.

fcon j(x) =
N

∏
i=1

Fcon j(x(i),m(i)) (1a)

Fcon j(x(i),m(i)) = x(i)m(i) = 1−m(i)(1− x(i)) (1b)

Following induction by the conjunctive layer, outputs are fed into a neural disjunction function fdis j
(see equation 2a) which is constructed from disjunctive Boolean functions Fdis j (see equation 2b). The
disjunctive layer provides multiple definitions for our target predicate if necessary.

fdis j(x) = 1−
N

∏
i=1

(1−Fdis j(x(i),m(i))) (2a)

Fdis j(x(i),m(i)) = x(i)m(i) (2b)

4 Deep Inductive Logic Programming meets Reinforcement Learning

x∗ = 0.8

Flt1
x
(x,0.5) Flt2

x
(x,1.0) Fgt1

x
(x,0.5) Fgt2

x
(x,1.0)

Figure 1: Given k = 2 and feature instance x∗ with value 0.8, would result in two distinct activations of
bounded Boolean predicates. Stating x∗ is less than 1.0 and x∗ is greater than 0.5.

As mentioned, a target predicate function F p is defined by the cascading architecture of the dNL
network, and within the network bounded continuous Boolean predicates associated with a continuous
feature are used to define our target predicate. Boolean predicate functions are used to handle continuous
input by partitioning input into a series of lower and upper-bound predicates, referred to as continuous
predicates as they capture the interval bounds of continuous features. Similarly, Boolean predicates
mapped to discrete features are referred to as discrete predicates. These bounded continuous predicates
return either true or false when a continuous value meets the condition. A continuous input x is associated
with k pairs of upper and lower boundary predicates, each pair corresponding to a bounded range (lxi <
x< uxi), where i∈ 1,2, · · · ,k. A Boolean upper boundary predicate gt i

x(x, lxi), states whether “x is greater
than lxi" is true, and a Boolean lower boundary predicate lt i

x(x,uxi) states whether “x is less than uxi" is
true (see equation 3). The lower and upper boundary values lxi and uxi are treated as trainable weights
which can be optimised during training. To clarify the need for both lower and upper predicate bounds,
the regions are complete and disjoint, meaning that each input value belongs to exactly one region.
Although most of the upper and lower bounds may coincide, having both upper and lower predicates
allows for greater flexibility in defining the regions and ensures that no input values fall outside the
defined regions. A diagram illustrating this partitioning of the input domain can be found in Figure 1.

Fgt i
x
= σ(c(x−uxi)), Flt i

x
= σ(−c(x− lxi)) (3)

3 Methodology

Developing a neuro-symbolic RL agent that incorporates continuous predicate functions posed several
non-trivial challenges. Firstly, the work of Payani et al. [16, 17], which our model extends, did not
explore non-linear predicate functions, so we had to develop new functions to capture more complex
relationships in the data (see equation 7). Additionally, while Payani et al. did introduce continuous
predicates in a supervised setting, they only tested dNL-ILP on two datasets (Wine and Sonar datasets
[16, 5]), whereas we made the integration of continuous predicates a focus of our work. 1 Another
challenge was the fact that the original dNL-RRL model explicitly dealt with discrete predicates, so
we had to adapt the model to incorporate continuous predicates. Finally, while Payani et al. used the
REINFORCE RL algorithm [21], we had to test out various other RL algorithms, including SAC [8], to
find the most effective implementation for our model.2

In the dNL-RL interpretation, the Boolean target predicate function Fp is referred to as a discrete
action predicate function. The actions of the agent are the target predicates and so must remain discrete.
For example, an agent that can take an action turnLe f t(), has the corresponding discrete action predicate

1Moreover, from an engineering standpoint, the dNL code was originally written in TensorFlow 1, which had to be converted
to TensorFlow 2 for use in the RL environment.

2Extensive coding was required to convert the SAC algorithm, which typically has a discrete action space, to TensorFlow 2,
as all available examples online were coded in PyTorch.

Andreas Bueff, Vaishak Belle 5

function FturnLe f t . Each discrete action predicate function is defined by an input matrix I, which is
composed of continuous lower and upper bound predicate functions as well as discrete Boolean predicate
functions, all with associated weights. The set of the continuous state features cntp and the set of the
discrete state features dscp for the associated RL environment are given Boolean interpretations after
being passed through the input matrix, as seen in equation 4. The row dimensions of I are defined by the
batch size b and the column dimensions are defined by Ne = (2× k× |cntp|)+ (2× |dscp|) (assuming
discrete features are Boolean). The state feature ranges used to define the Boolean predicate functions
are determined by equal-width binning, and we define the batch size as b. The Fe function takes in a
one-hot encoded Boolean discrete input.

I =

Fgt1
e1
,Flt1

e1
· · · Fgtk

e1
,Fltk

e1
· · · Fgtk

e|cntp|
,Fltk

e|cntp |
...

...
...

...
...

⊕[
Fe1 ,Fe1 · · · Fe|dscp |

,Fe|dscp |
...

...
...

]
(4)

In defining the discrete action predicate function Fp for an action p, the function takes as input the
input matrix I as well as the disjunction layer Fdis j and the conjunction layer Fcon j where Ne is used to
define the number of layers in the conjunction layer and Np is used to define the number of layers in the
disjunction layer, seen in equation 5. As an agent learns rules for multiple actions, we define the set of
discrete action predicates as the predicate action policy πF which is the set {Fp1 ,Fp2 , · · · ,Fpn} for all
actions in the action space p ∈A for the RL environment.

To prevent the gradient from becoming excessively small during training, initial weights W are ini-
tialised using a negative mean random Gaussian distribution, which ensures that they are close to zero.
To keep membership weights m between 0 and 1, a constant c ≥ 1 is applied, followed by a sigmoid
function. In equations 6a and 6b, we apply the conjunction function to the input matrix using the corre-
sponding membership weights. Note that Wcon j is a matrix with dimensions Np and Ne while Wdis j is a
vector of size Np. The disjunction function takes the output of the conjunction function as input as we
cascade our neural architecture.

Fp|I,Ne,Np = Fdis j(Np,Fcon j(Ne,I)) (5)

Fcon j =
Ne

∑
i=1

[1−mcon j
i (1− Ii)] where mcon j = σ(cWcon j), Wcon j

Np,Ne
∼N (6a)

Fdis j = 1−
Np

∑
i=1

[1−mdis j
i F i

con j] where mdis j = σ(cWdis j), Wdis j
1,Np
∼N (6b)

We incorporate non-linear transformations on some of the state features. As in the case of various
control problems in RL, the calculation of state transitions is based on non-linear transformations from
the current state. We define the following k upper-boundary and lower-boundary functions as non-linear
transformation predicates in equation 7.

Fgt i
f (x)

= σ(c(f (x)−uxi)), Flt i
f (x)

= σ(−c(f (x)− lxi))where f (x) ∈ {sqr(x),sin(x), · · ·} (7)

Our dNL based agents can be differentiated by the type of prior information used. The baseline dNL
agent uses only continuous and discrete Boolean predicates and is referred to as a dNL RL continu-
ous (dNLRLc) agent. It learns the continuous state features without using any prior information from a

6 Deep Inductive Logic Programming meets Reinforcement Learning

knowledge base KBT which contains transformation functions mapped to specific continuous state fea-
tures. However, when prior information such as non-linear equations or transformations between features
is included, the agent becomes a dNL RL non-linear continuous (dNLRLnlc) agent. This involves adding
non-linear continuous Boolean predicates to the input matrix as new predicate functions in πF . In the
experiment section, we specify which non-linear transformations were used for the dNLRLnlc agent in
each RL environment.

In Algorithm 1 we provide a pseudo-code implementation for a dNL-RL agent. The agent takes
in a state st , at time step t and returns an action at for that time step. The algorithm iterates through
each feature of the state, s(i)t , and separates the elements into two cases: discrete and continuous. If the
element is discrete, it adds the mapping of the discrete predicate dscp[i] to the state element s(i)t in a
processed state set St . If the element is continuous, it checks if a transformation function for the feature
exists in the knowledge base KBT [i]. If it does, it adds the mapping of the continuous predicate cntp[i]
to the function applied to the state feature s(i)t in the state set St . If the knowledge base does not exist,
it adds the mapping of the continuous predicate cntp[i] to the state feature s(i)t instead. After iterating
through all state features, the policy is returned by applying the dNLRL policy function to the set St , and
then sampling an action at from the predicate action policy.

Algorithm 1 dNL-RL agent
1: Input: st -state at time step t
2: Output: at -action at time step t
3: for s(i)t ∈ st do
4: if s(i)t is discrete then
5: St ∪{dscp[i] 7→ s(i)t }
6: end if
7: if s(i)t is continuous then
8: if KBT [i] exists then
9: St ∪{cntp[i] 7→ KBT [i](s

(i)
t)}

10: else
11: St ∪{cntp[i] 7→ s(i)t }
12: end if
13: end if
14: end for
15: πF ← dNLRL(St)
16: at ∼ πF (Fat |St)

To derive the predicate action policy πF , we perform Boolean reasoning on the set of processed state
features with associated predicates as seen in Algorithm 2. Here we take as input a set of discrete predi-
cates dscp, a set of continuous predicates cntp, a set of target action predicates P, and a set of processed
state feature predicates St . We loop through each target action predicate in the set P and for each predi-
cate, it creates two empty sets used for constructing the input matrix, one for the continuous predicates Ic

and one for the discrete predicates Id . The dNLRL policy then loops through each continuous predicate
in cntp and for each predicate, it creates a disjunction of predicates, which are added to the continuous
input matrix set Ic. Then it does the same for each discrete predicate in dscp but instead, the discrete
predicates are added to the discrete input matrix set Id . We take the union of these two sets to get the
final input matrix I. Finally, it creates an evaluated target action predicate Xp by reasoning on target
predicate function Fp as defined in equation 5. This target action predicate Xp is then added to the
predicate action policy πF .

Andreas Bueff, Vaishak Belle 7

Algorithm 2 Single Step Forward Chain Model/ dNLRL policy
1: Input: dscp-set of discrete predicates, cntp-set of continuous predicates, P-set of target action predicates, St -set of state feature predicates

at time step t
2: Output: πF -predicate action policy
3: for p ∈ P do
4: Ic=[]
5: Id=[]
6: for e ∈ cntp do
7: Ic ∪

∨k
i=1

(
Fgti

e
(St [e])∨Flti

e
(St [e])

)
8: end for
9: for e ∈ dscp do

10: Id ∪
(
Fe(St [e])∨Fe(St [e])

)
11: end for
12: I← Id ∪ Ic
13: Xp←Fp|I,Ne,Np
14: πF ∪ (Xp)
15: end for

4 Experiments and Results

4.1 Environments and Tasks

The following RL environments are continuous control problems developed by Open AI Gym [1]. The
Cart Pole problem is a benchmark for evaluating RL algorithms [12]. The goal of the problem is to
balance a pole in the upright position by selecting between two discrete actions (move left, move right).
The state space is 4-dimensional, all continuous. The features are the following x : Cart Position, x′ :
Cart Velocity, θ : Pole Angle, and θ ′ : Pole Angular Velocity. In the Lunar Lander environment, an agent
learns a policy for throttling the side and main engines to control the descent of a lander such that it
lands on a landing pad. The discrete actions include activating the right thruster engine, activating the
left thruster engine, activating the main engine, and doing nothing. The state space is 8-dimensional,
6 inputs are continuous and 2 are discrete. The continuous state inputs include including x : Lander
Position on the X-axis, y : Lander Position on the Y-axis, vx : Horizontal velocity, vy : Vertical velocity,
θ : Angular orientation in space, and vθ : Angular velocity. The remaining two features are Boolean,
Left: which indicates if the left leg is touching the ground and Right: which indicates if the right leg is
in contact with the ground.

4.1.1 Baselines

During our investigation into the development of our continuous logic-based algorithm, we sought first
to see if the dNLRLc agent could in fact learn interpretable policies on continuous environments. As
stated this led to evaluation of the dNLRLc architectures on various RL algorithms. This includes the
policy gradient algorithm REINFORCE [21], the model-free algorithm Deep Q-Network (DQN) [14],
the on-policy method of Advantage Actor-Critic (A2C) [13], and the Soft Actor-Critic (SAC) [8]. In
the case of SAC, we use a variant designed to handle discrete actions [2]. In cases where we inject prior
knowledge in the form of non-linear functions added to the transformation knowledge base, we designate
the model as (SAC-NL).

8 Deep Inductive Logic Programming meets Reinforcement Learning

4.2 Algorithm Performance Comparison

We present algorithmic comparisons of the various RL algorithms combined with the dNLRLc agent
where evaluation is carried out on the Cart Pole problem. For the evaluation, only SAC is used to test the
dNLRLnlc agent, as it was the best-performing algorithm with the dNLRLc agent. In the Lunar Lander
environment, we evaluate a dNLNLc agent and dNLRLnlc agent using SAC entirely. Each algorithmic
framework used the same binning scheme for the continuous features, that being ‘equal-width binning’
where bins for each feature were predefined for the learning environment and kept constant between the
various RL algorithms.

4.2.1 Task: Cart Pole Problem

For the Cart Pole problem, each algorithmic framework used the same binning scheme for ‘equal-width
binning’ with the number of bins set to [4,4,4,4] for each feature respectively. In Figure 2, we can
observe the results comparing the performances of each dNLRLc agent and paired RL architecture in the
Cart Pole Problem domain. As can be observed, the best performing model is that of the SAC and SAC-
NL. Performance of dNL based agents is noticeably poor in the cases of the REINFORCE algorithm
where rewards cap at 22.0. DQN and A2C perform better but rewards plateau far below what is to be
expected. The non-linear addition for the dNLRLnlc agent is a simple transformation of the Pole Angle
θ , as the calculation of the next state st+1 within the code for the Cart Pole problem is dependent on the
sine transformation of θ . For SAC-NL, we apply a sine transformation and so policies can contain atoms
designated PoleAngleSine with corresponding inequalities. The performance of the dNLRLnlc agents is
not significantly better than the dNLRLc agent when using SAC. Both agent variants are able to achieve
the maximum reward of 300.0 consistently with periodic fluctuations. In figure 4, we can observe the
moving standard deviation for the dNLRLc and dNLRLnlc when using SAC. Although the fluctuations
in the standard deviations are not in sync, the variation between the two agents is not significant enough
to conclude that one agent is more stable.

Figure 2: Episode scores for RL algorithms relying on dNLRLc and dNLRLnlc agents.

Figure 3 presents a comparison of the performance of the various RL algorithms using standard
neural networks in solving the Cart Pole problem. The figure shows that, while SAC is able to solve the
problem and stabilise, the neural network agents learn faster and are more stable than dNLRLc agents.
Both agents using A2C and DQN exhibit inconsistent performance with rewards fluctuating greatly and
both the neural networks and dNLRLc agents perform poorly when using REINFORCE. These findings

Andreas Bueff, Vaishak Belle 9

Figure 3: Episode scores for RL algorithms relying on neural net-
work based agents.

Figure 4: Moving (window size 20) standard deviation for SAC
relying on dNLRLc and dNLRLnlc agents.

suggest that while dNLRLc models may offer greater interpretability, they may come at the cost of
decreased performance in some RL tasks. Given that, it is also evident that SAC is the primary contributor
to solving the control problem as even standard neural network based agents failed otherwise. We also
note that the black-box neural network-based SAC agent outperforms the interpretable dNL-RL SAC
agent in terms of speed, achieving an average convergence time of 2168.31 seconds, compared to the
average convergence time of 10807.94 seconds for the dNL-RL agent, highlighting a trade-off between
interpretability and learning efficiency, which could be addressed in future research by optimising the
algorithm for faster convergence.

The main advantage of using dNL agents is that returned policies are interpretable. These policies
provide predicate logic interpretations for the individual discrete actions, in the case of the Cart Pole
problem, we have rules for when to move left() and when to move right(). The policy in our case is
defined as predicate action policy, that is individual actions are treated as target predicates where the
clausal body states what inequalities should be true for a state feature in order for the action to be
considered by the agent. We also clarify that the clausal body is defined by a conjunction of atoms where
the associated membership weight is placed before the atom in brackets, extracted from the conjunction
neuron. If the membership weight is above 0.95, i.e. the model is confident it should be in the definition,
then the weight is not listed next to the atom. Similarly, for the disjunction neurons, the value in brackets
before the rule represents the membership weights.

CartPole Policy rules for dNLRLc

mean reward:
290.3±32.3

left()

:−([0.56]CartPos < 2.83∧ [0.64]CartVeloc >−1.19∧CartVeloc > 0.18

∧PoleAngle >−0.62∧PoleAngleVeloc >−0.24)

:−([0.81]CartPos < 2.82∧PoleAngle >−0.06∧PoleAngleVeloc > 0.08)

right()

:−(CartVeloc >−1.19∧PoleAngle <−0.03∧PoleAngleVeloc < 0.34∧ [0.56]PoleAngleVeloc < 2.48)

:−(CartPos < 0.16∧ [0.52]CartVeloc < 2.11∧ [0.50]PoleAngle >−0.56

∧PoleAngle < 0.11∧PoleAngleVeloc < 0.25)

Table 1: The FOL policy rules for the dNLRLc agent, trained using SAC. Extracted continuous inequality predicates define rules for each
action.

In table 1, the predicate action policy for the dNLRLc agent trained using SAC is provided. In

10 Deep Inductive Logic Programming meets Reinforcement Learning

the body of the discrete action predicate left(), it is observed that two definitions are returned wherein
which we see both associated disjunction neuron membership weights pass the threshold. The three state
features present in the second definition are Cart Position (CartPos < 2.82), Pole Angle (PoleAngle >
−0.06), and Pole Angular Velocity (PoleAngleVeloc > 0.08). Similarly, the body for the discrete ac-
tion predicate right() contains two predicate definitions. In both cases, the agent is confident in either
definition as indicated by the absence of a membership weight for the corresponding disjunction neuron.

CartPole Policy rules for dNLRLnlc

mean reward:
294.7±25.8

left()

:−([0.60]CartPos < 2.57∧PoleAngleSine > 0.00∧PoleAngleVeloc >−0.38)

right()

:−(PoleAngleSine < 0.04∧PoleAngleVeloc < 0.00)

:−(CartPos < 0.74∧ [0.55]CartVeloc >−1.64∧CartVeloc <−0.11

∧PoleAngleSine < 0.65∧ [0.66]PoleAngleVeloc >−2.04∧PoleAngleVeloc < 0.28)

Table 2: The FOL policy rules for the dNLRLnlc agent, trained using SAC. Extracted continuous inequality predicates define rules for each
action with the inclusion of non-linear continuous inequality predicates.

In table 2, the predicate action policy for the dNLRLnlc agent trained using SAC is provided. The
definitions of the predicate action policy are comparable to those given by the dNLRLnlc agent. Note that
the discrete action predicate left() is defined by a single predicate rule. For both discrete action predicates,
we see the presence of the non-linear continuous predicate in the definitions, that is (PoleAngleSine >
0.00) of the discrete action predicate le f t() and (PoleAngleSine < 0.00) for the first definition of right()
and (PoleAngleSine < 0.65∧PoleAngleSine < 0.28) for the second definition. In figure 1 and figure 2
the mean reward is also provided with the standard deviation. The mean reward in this case refers to the
mean of the last 100 episodes.

4.2.2 Task: Lunar Lander

At present, the Lunar Lander stands as a more challenging environment for the dNL-RL agents. As the
previous control problem environment has demonstrated that SAC is the best performing algorithm, only
SAC was tested on the Lunar Lander environments. In setting up the experiments, it was found that
both the discretisation scheme and the initial high and low values for the state features had a significant
impact. In the context of the Lunar Lander, a reward of 200 indicates the lander successfully landed on
the platform. The current binning scheme being deployed is [3,3,3,3,3,3,−,−] for each feature, where
(−) indicates no binning performed as it is a discrete/Boolean feature. In order to evaluate the consistency
and performance of the dNLRLc and dNLRLnlc agents, multiple trials were conducted using different
random seeds. We ran each experiment 5 times and the resulting policies were analysed. While only
one representative policy is presented for each agent, any variations or discrepancies across the trials are
discussed. The non-linear change was again a sine transformation on the state feature angular orientation
in space θ associated with the transformation predicate AngleSine.

In Figure 5, we can observe the results comparing the performance of the dNLRLc agent where dark
purple corresponds to the mean reward. The results indicate the agent does in fact learn, however, it is
challenging for the dNL agent to successfully land the lander consistently. The episode rewards show
the agent can land the lander but the mean rewards skew below a true success of 200. We note the mean
reward across all trials fluctuates around rewards of a hundred with significant deviations from the mean.
In some initial states, the learned policy does result in successful landings, often over 200. The rules in
the predicate action policy for the Lunar Lander environment are given in table 3. As the Lunar Lander

Andreas Bueff, Vaishak Belle 11

has four actions, we find that all disjunction layers pass the parameter threshold and only in a few cases
do we have conjunction weights for specific atoms. For example for the rule f ireLe f t, the first rule
contains a weighted atom [0.65]CoordX >−1.52. For the action predicate, fireRight() the agent learned
four rules, where only the second rules contain listed conjunction layer weights for individual atoms
[0.60]CoordX > −1.53 and [0.94]AngularVeloc > −2.58. We observe as well, that while the bounded
atom CoordX appears in the definitions for each action, each is associated with a conjunction weight.
Indicating the agent was less confident about the inclusion of the CoordX continuous predicate function.

Figure 5: Episode scores for SAC algorithms relying on dNLRLc. Dark purple corresponds to the mean reward. Light purple corresponds
to the standard deviation and the red line is the moving average for 50 episodes.

LunarLander Policy rules for dNLRLc

mean reward:
162.1±110.9

doNothing()

:−(CoordY < 1.28∧LinearVelocX <−0.14)

:−([0.80]CoordX >−1.53∧ [0.76]CoordX < 1.70∧LinearVelocY <−0.12

∧[0.66]Angle >−1.60)

:−([0.82]CoordX < 1.70∧LinearVelocY <−0.04∧RightLegContactFalse)

fireLeft())

:−([0.65]CoordX >−1.52∧LinearVelocX <−0.14∧ [0.73]Angle >−0.09)

:−([0.72]CoordX < 1.70∧ [0.68]CoordY >−0.99∧LinearVelocX < 1.93∧Angle >−0.09)

fireMain()

:−(LinearVelocX > 0.20∧Angle < 0.17∧AngularVeloc < 0.10)

:−([0.58]CoordY >−0.91∧LinearVelocY >−0.11)

:−([0.75]CoordX < 1.70∧LinearVelocX <−0.11∧Angle > 0.01∧AngularVeloc >−0.14)

fireRight()

:−(LinearVelocX >−0.63∧Angle >−1.60∧Angle < 0.17∧AngularVeloc <−0.02)

:−([0.60]CoordX >−1.53∧Angle < 0.17∧ [0.94]AngularVeloc >−2.58

∧Le f tLegContactTrue)

:−(CoordY < 1.28∧LinearVelocX >−0.05∧Angle < 0.32∧AngularVeloc >−1.98

∧RightLegContactFalse)

:−(LinearVelocX >−0.05∧Angle >−1.60∧Angle < 0.17)

Table 3: The FOL policy rules for the dNLRLc agent, trained using SAC. Extracted continuous bounded predicates define rules for each
action.

In Figure 6, we can observe the results comparing the performance of the dNLRLnlc agent. The
inclusion of the sine is a very minor addition, but one that does take into account the state transition
mechanics. Performance is better than dNLRLc in later episodes. The moving average shows mean

12 Deep Inductive Logic Programming meets Reinforcement Learning

rewards rising above 100.0 consistently. The rules in the predicate action policy for the Lunar Lander
environment are given in table 4. For each discrete action, all rules pass the parameter threshold for the
disjunction layer except for a single rule associated with f ireLe f t(). For the predicate actions fireLeft()
and fireRight(), which have four rules each, we observe the majority of definitions include the sine
transformed state feature θ .

Figure 6: Episode scores for SAC algorithms relying on dNLRLnlc.

4.2.3 Discussion

The performance of both the dNLRLc and dNLRLnlc agents is comparable. In the CartPole problem, see
Figure 2, the dNLRLnlc appears more stable in later episodes than dNLRLc as evidenced by the higher
occurrence of total rewards of 300. The Lunar Lander problem, with a larger action and state space,
proved more challenging for the dNLRL agents. Both agents were unable to produce mean rewards of
200, although dNLRLnlc achieved higher rewards than dNLRLc in later episodes. While the deviation
was high, indicating both dNLRLc and dNLRLnlc landed successfully on occasion, this also signified
that the Lander would crash periodically. The various hyperparameters were also found to impact the
model. Specifically, the instantiation of the binning scheme would sway performance. We note, that
in [7], equal-width binning was not necessarily an optimal approach for the Lunar Lander except in
specific regions with respect to the positional axis, and we leave this investigation for future research.
Multiple trials of both agents were conducted, with performance across all episodes averaging around
100 for dNLRLc and slightly higher for dNLRLnlc, and performance fluctuations resulted in a variety
of final policy rules. The position of the lander along the X and Y axis, as signified by atoms associated
with CoordX or CoordY , would often have corresponding conjunction weights, indicating uncertainty
in these predicates. The fluctuating bounded values during training might have caused confusion for the
agent, as the position of the lander is a significant factor in landing success. To address this issue, future
investigations could explore alternative schemes for training the bound weights, and consider adding
additional non-linear transformation predicates or operation predicates between state features.

5 Conclusion

We aimed to incorporate both continuous and non-linear interpretations of dNL networks into an RRL
framework, creating a dNL-ILP based agent that can learn in dynamic continuous environments. SAC
was found to be the best among RL algorithms for evaluating the agent. The agent produced policies

Andreas Bueff, Vaishak Belle 13

LunarLander Policy rules for dNLRLnlc

mean reward:
133.4±113.9

doNothing()

:−(CoordX < 1.66∧LinearVelocY <−0.61)

:−([0.90]CoordX < 1.66∧ [0.65]CoordY >−0.98∧ [0.91]CoordY < 1.42∧Le f tLegContactFalse))

:−(LinearVelocY <−0.22)

:−([0.61]CoordX < 1.51∧AngleSine <−0.25)

:−([0.86]CoordY < 2.12∧AngularVeloc > 0.23)

fireLeft())

:−(LinearVelocX <−0.15)

:−([0.88]CoordY >−0.98∧LinearVelocX < 0.20∧ [0.56]LinearVelocY < 0.92∧AngleSine >−0.08)

:−([0.53]AngleSine >−1.00∧AngleSine >−0.08∧AngularVeloc > 0.07)

:−[0.65]([0.52]CoordY >−0.98∧CoordY < 0.14∧ [0.72]LinearVelocY >−2.32, [0.68]AngleSine >−1.00

∧AngleSine >−0.08∧ [0.85]AngularVeloc < 1.88)

fireMain()

:−(LinearVelocX <−0.15∧LinearVelocX <−0.58∧ [0.71]LinearVelocX < 0.20∧AngleSine >−0.08∧

AngularVeloc >−1.12∧Le f tLegContactFalse)

:−(CoordX >−1.06∧LinearVelocY >−0.11)

:−(CoordY > 0.34∧LinearVelocY >−0.42∧ [0.62]AngularVeloc >−1.12)

:−(LinearVelocX > 0.42∧AngleSine <−0.25∧AngularVeloc >−1.12)

fireRight()

:−(LinearVelocX >−0.25∧LinearVelocY <−0.61∧AngleSine < 0.37, [0.73]AngularVeloc < 2.08)

:−(CoordX > 0.36∧CoordY < 0.14∧ [0.64]LinearVelocY >−2.32∧ [0.70]AngleSine < 0.37

∧AngleSine < 0.25∧ [0.74]AngularVeloc >−1.12)

:−([0.52]CoordY >−0.91∧AngleSine < 0.25∧AngularVeloc < 0.05)

:−(CoordX > 0.36∧CoordY < 1.42∧AngleSine < 0.25∧AngularVeloc < 1.88∧Le f tLegContactFalse)

Table 4: The FOL policy rules for the dNLRLnlc agent, trained using SAC. Extracted continuous bounded predicates define rules for each
action with the inclusion of non-linear continuous bounded predicates.

incorporating continuous and non-linear continuous predicate functions and was the first to successfully
integrate ILP-based reasoning, RRL, and learning in dynamic continuous settings. The Lunar Lander
problem was more challenging for the dNLRL agents, resulting in a high deviation from the mean, but
our dNLRLc and dNLRLnlc agents still provide a promising starting point for ILP and RL research in
continuous domains.

References

[1] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang & Wojciech
Zaremba (2016): OpenAI Gym. Available at http://arxiv.org/abs/1606.01540.

[2] Petros Christodoulou (2019): Soft Actor-Critic for Discrete Action Settings,
doi:10.48550/ARXIV.1910.07207. Available at https://arxiv.org/abs/1910.07207.

[3] Honghua Dong, Jiayuan Mao, Tian Lin, Chong Wang, Lihong Li & Denny Zhou (2019): Neural Logic
Machines, doi:10.48550/arXiv.1904.11694. arXiv:1904.11694.

[4] Kurt Driessens (2010): Relational Reinforcement Learning, doi:10.1007/978-0-387-30164-8_721.

[5] Dheeru Dua & Casey Graff (2017): UCI Machine Learning Repository. Available at http://archive.
ics.uci.edu/ml.

[6] Richard Evans & Edward Grefenstette (2017): Learning Explanatory Rules from Noisy Data,
doi:10.48550/arXiv.1711.04574. arXiv:1711.04574.

http://arxiv.org/abs/1606.01540
https://doi.org/10.48550/ARXIV.1910.07207
https://arxiv.org/abs/1910.07207
https://doi.org/10.48550/arXiv.1904.11694
https://arxiv.org/abs/1904.11694
https://doi.org/10.1007/978-0-387-30164-8_721
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.48550/arXiv.1711.04574
https://arxiv.org/abs/1711.04574

14 Deep Inductive Logic Programming meets Reinforcement Learning

[7] Soham Gadgil, Yunfeng Xin & Chengzhe Xu (2020): Solving The Lunar Lander Problem under Uncertainty
using Reinforcement Learning, doi:10.48550/arXiv.2011.11850. arXiv:2011.11850.

[8] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel & Sergey Levine (2018): Soft Actor-Critic: Off-Policy Max-
imum Entropy Deep Reinforcement Learning with a Stochastic Actor, doi:10.48550/ARXIV.1801.01290.
Available at https://arxiv.org/abs/1801.01290.

[9] Rodrigo Toro Icarte, Toryn Klassen, Richard Valenzano & Sheila McIlraith (2018): Using Reward Machines
for High-Level Task Specification and Decomposition in Reinforcement Learning. Available at http://
proceedings.mlr.press/v80/icarte18a.html.

[10] Zhengyao Jiang & Shan Luo (2019): Neural Logic Reinforcement Learning, doi:10.48550/arXiv.1904.10729.
arXiv:1904.10729.

[11] Jan Leike, David Krueger, Tom Everitt, Miljan Martic, Vishal Maini & Shane Legg (2018): Scalable agent
alignment via reward modeling: a research direction, doi:10.48550/arXiv.1811.07871. arXiv:1811.07871.

[12] Nikita I. Lytkin, Risto Miikkulainen & Nate Kohl (2005): Reinforcement Learning Benchmarks and Bake-offs
II A workshop at the 2005 NIPS conference.

[13] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim Harley,
David Silver & Koray Kavukcuoglu (2016): Asynchronous Methods for Deep Reinforcement Learning,
doi:10.48550/ARXIV.1602.01783. Available at https://arxiv.org/abs/1602.01783.

[14] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra & Martin Riedmiller (2013): Playing Atari with Deep Reinforcement Learning,
doi:10.48550/ARXIV.1312.5602. Available at https://arxiv.org/abs/1312.5602.

[15] Stephen Muggleton & Luc de Raedt (1994): Inductive Logic Programming: Theory and meth-
ods, doi:10.1016/0743-1066(94)90035-3. Available at http://www.sciencedirect.com/science/
article/pii/0743106694900353. Special Issue: Ten Years of Logic Programming.

[16] Ali Payani & Faramarz Fekri (2019): Inductive Logic Programming via Differentiable Deep Neural Logic
Networks, doi:10.48550/arXiv.1906.03523. arXiv:1906.03523.

[17] Ali Payani & Faramarz Fekri (2020): Incorporating Relational Background Knowledge into Rein-
forcement Learning via Differentiable Inductive Logic Programming, doi:10.48550/arXiv.2003.10386.
arXiv:2003.10386.

[18] Melrose Roderick, Christopher Grimm & Stefanie Tellex (2017): Deep Abstract Q-Networks,
doi:10.48550/arXiv.1710.00459. arXiv:1710.00459.

[19] Andrew Silva, Taylor Killian, Ivan Dario Jimenez Rodriguez, Sung-Hyun Son & Matthew Gombolay
(2020): Optimization Methods for Interpretable Differentiable Decision Trees in Reinforcement Learning,
doi:10.48550/arXiv.1903.09338. arXiv:1903.09338.

[20] Richard S Sutton, Andrew G Barto et al. (1998): Introduction to reinforcement learning.
[21] Richard S Sutton, David McAllester, Satinder Singh & Yishay Mansour (1999): Policy Gradient Methods

for Reinforcement Learning with Function Approximation. Available at https://proceedings.neurips.
cc/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf.

[22] Yuan Yang & Le Song (2019): Learn to Explain Efficiently via Neural Logic Inductive Learning,
doi:10.48550/arXiv.1910.02481. arXiv:1910.02481.

[23] Vinicius Zambaldi, David Raposo, Adam Santoro, Victor Bapst, Yujia Li, Igor Babuschkin, Karl Tuyls,
David Reichert, Timothy Lillicrap, Edward Lockhart, Murray Shanahan, Victoria Langston, Razvan Pas-
canu, Matthew Botvinick, Oriol Vinyals & Peter Battaglia (2018): Relational Deep Reinforcement Learning,
doi:10.48550/arXiv.1806.01830. arXiv:1806.01830.

https://doi.org/10.48550/arXiv.2011.11850
https://arxiv.org/abs/2011.11850
https://doi.org/10.48550/ARXIV.1801.01290
https://arxiv.org/abs/1801.01290
http://proceedings.mlr.press/v80/icarte18a.html
http://proceedings.mlr.press/v80/icarte18a.html
https://doi.org/10.48550/arXiv.1904.10729
https://arxiv.org/abs/1904.10729
https://doi.org/10.48550/arXiv.1811.07871
https://arxiv.org/abs/1811.07871
https://doi.org/10.48550/ARXIV.1602.01783
https://arxiv.org/abs/1602.01783
https://doi.org/10.48550/ARXIV.1312.5602
https://arxiv.org/abs/1312.5602
https://doi.org/10.1016/0743-1066(94)90035-3
http://www.sciencedirect.com/science/article/pii/0743106694900353
http://www.sciencedirect.com/science/article/pii/0743106694900353
https://doi.org/10.48550/arXiv.1906.03523
https://arxiv.org/abs/1906.03523
https://doi.org/10.48550/arXiv.2003.10386
https://arxiv.org/abs/2003.10386
https://doi.org/10.48550/arXiv.1710.00459
https://arxiv.org/abs/1710.00459
https://doi.org/10.48550/arXiv.1903.09338
https://arxiv.org/abs/1903.09338
https://proceedings.neurips.cc/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://doi.org/10.48550/arXiv.1910.02481
https://arxiv.org/abs/1910.02481
https://doi.org/10.48550/arXiv.1806.01830
https://arxiv.org/abs/1806.01830

	Introduction
	Background
	Reinforcement Learning
	Inductive Logic Programming (ILP)
	Differentiable Neural Logic (dNL)

	Methodology
	Experiments and Results
	Environments and Tasks
	Baselines

	Algorithm Performance Comparison
	Task: Cart Pole Problem
	Task: Lunar Lander
	Discussion

	Conclusion

