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We consider a quantum computation that only extracts one bit of information per N-qubit quantum state
preparation. This is relevant for error mitigation schemes where the remainder of the system is measured to
detect errors. We optimize the estimation of the expectation value of an operator by its linear decomposition
into bitwise-measurable terms. We prove that optimal decompositions must be in terms of reflections with
eigenvalues 1. We find the optimal reflection decomposition of a fast-forwardable operator, and show a
numerical improvement over a simple Pauli decomposition by a factor N°7.
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I. INTRODUCTION

The largest bottleneck in quantum algorithm design is the
encoding and decoding of a quantum state. Although each full
characterization of a quantum state requires an exponentially
large amount of information, direct measurements of an N-
qubit quantum state p extract only N bits of information, and
collapse p to a state described by those N bits alone, eras-
ing any other information. Performing this repeatedly allows
the estimation of an expectation value (O) := Tr[Op] of any
operator O that is diagonal in the measurement basis. The
rate at which such a measurement converges is known as the
standard quantum or shot-noise limit [1]; after M repeated
preparations, (O) can be estimated with variance

Var[0] = M~'((0%) — (0)*). (1)

Although this rate can be improved upon [2-5], doing so
requires implementing long coherent circuits or performing
large correlated measurements, which are not feasible in the
current noisy intermediate-scale quantum (NISQ) era [6].

Instead of using all N qubits to extract data from a quantum
state, one may perform a partial measurement that extracts
less than N bits, and use the remaining qubits to detect and
mitigate errors [7-9]. Error mitigation is key in obtaining
precise results from NISQ circuits, such as variational algo-
rithms [10,11], where the output of the quantum algorithm
is a set of estimates of expectation values. Echo verification
(EV, see Sec. IIB) [12-15] allows one to strongly mitigate
errors in a wide class of algorithms, by recasting measure-
ments as Hadamard tests. In each EV circuit, a single bit
of information is extracted from the system register as a
measurement, freeing up the remainder of the register for
error detection and mitigation. One may combine results of
multiple EV circuits (through classical postprocessing) into
an error-mitigated estimator of any target quantity. However,
the stringent requirement that only one bit of information be
extracted from the device further tightens the bottleneck of
quantum-classical I/0O.

In this paper we study how we can optimize information
extraction from a quantum system to estimate the expectation

2469-9926/2023/108(1)/012403(14)

012403-1

value of an observable O, under the restriction that only a
single bit of information is measured per state preparation.
This matches the requirements of EV, the rest of the informa-
tion being reserved for error mitigation. We do not focus in
this work on the effectiveness of EV as an error mitigation
strategy, and consider only the case of error-free quantum
simulation. We define measurements with a single-bit out-
come in terms of the Hadamard test, use these to construct
an expectation value estimator for a more complicated op-
erator via a linear decomposition, and calculate the variance
of this resulting estimator. We prove necessary conditions
for such a linear decomposition to be optimal, i.e., to mini-
mize the cost of expectation value estimation. We construct a
provably optimal (in some sense) decomposition for a fast-
forwardable operator, and give a general (albeit expensive)
method to implement this decomposition through quantum
signal processing [16-18]. We analyze our methods numer-
ically, comparing the variance of estimators based on our
optimal method with other known approaches such as Pauli
decompositions and the Dirichelet kernel measurements intro-
duced in [19]. We find an asymptotic improvement between
our optimal decomposition and a simple Pauli decomposition
of a factor N%7, which at 13 qubits gives already an order of
magnitude improvement.

II. SINGLE QUBIT MEASUREMENTS

The most general measurement that extracts one bit of
information from a N-qubit state [¢) is a binary positive-
operator valued measurement (binary POVM); this is defined
by two positive operators [T, I[T_ > Osuch that IT, 4 T1_ =
1. The outputs of such measurement, which we label 41 and
—1, have probabilities p1 = (¥ |I1.|¥). Schematically,
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where we defined the unitary preparing the state V|0) := |¢).
In Sec. IT A, we review the Hadamard test and we show that
there exists a one-to-one equivalence between outcomes of
Hadamard tests and binary POVMs.

Extracting only a single bit allows further processing of the
quantum information remaining in the state register. For in-
stance, inverting the unitary that prepared |v) and measuring
in the computational basis yields a powerful error mitiga-
tion technique, echo verification [12-14], which we review
in Sec. I B. In another example, the Hadamard test may be
used to estimate the gradient of a cost function with respect
to a variational term exp(iA) in a circuit, as j—g exp(iAf) =
iA exp(iA6) [20,21]. Both these methods require operating on
the system register after the binary measurement is performed,
preventing further information extraction. (For the specific
case of EV, we show in Appendix B that extracting more than
one bit of information is counterproductive.) Furthermore, this
restricted output model of quantum computation can be rele-
vant in quantum-enhanced metrology settings [2,22], where
a single qubit probe is used [23]. A similar restricted access
model has been studied in the context of Hamiltonian learning
[24,25]. Note that this single qubit access model is different to
the one clean qubit model of computation (DQC-1) [26]; here
we consider using a single qubit to extract information from a
nontrivial quantum state.

A. Hadamard test

A Hadamard test (HT) is a binary measurement performed
on a state |), in the N-qubit system register s. It is imple-
mented through a control qubit c initialized in the state |+)., a
controlled unitary CU, and a projective Pauli measurement X,
on the control qubit. As a quantum circuit this can be written

|+) 1)
0 —{AF—— 7 x=
|0X v H{v

and the resulting state before measurement can be easily cal-
culated to be

[N

EEE:

L
V2

Tracing out the system register then yields the following re-
duced density matrix on the control qubit:

({1 (U
Pec = E((U>* 1 ) 3)

One may estimate the expectation value of Re(U) := %(U +
U™) by measuring the control qubit in the X basis, which
returns Tr[X p.] = (%(U +U")).

To prove the equivalence between HT and binary POVM,
we explicitly construct one from another. To construct the
binary POVM corresponding to the HT, we define the mea-
surement operators that represent the back-action of the

|®) = —=(0)|¥) + [)U[¥)). 2)

measurement on the system register

1+U
My = (£|.CU|+), = — ()
and the relative positive operators 11 = MlMi used to com-
pute probabilities py = (¥ |I1|¥) of measuring =1 on the
ancilla. Vice versa, given a binary POVM {I1,, [1_}, we can
construct a corresponding Hadamard test by choosing a uni-
tary U that satisfies Re(U) = 1, — I1_,

U = expli arccos(ITy — IT_)]. (®)]

This is always possible because IT; — I1_ is Hermitian and
ITTy — II_|| < |14+ + II_|| = 1. It is easy to check that the
Hadamard test constructed from this unitary return the correct
positive operators IT..

B. Echo verification

The name echo verification (EV) refers to a class of pow-
erful error mitigation techniques [12-14], applicable in most
algorithms that make use of a Hadamard test to perform
measurements on a system register. This technique was orig-
inally introduced by the name of verified phase estimation
[12] as it considered estimating expectation values of mul-
tiple unitaries U; = ¢, with an archetypal application in
the context of single-ancilla phase estimation. However, in
this work, we consider the more general expectation-value
estimation subroutine yielding (Re(U)). We prefer the name
echo verification (used also in [15,27]) due to the similarities
to a Loschmidt echo.

Echo verification relies on a key idea: exploiting the infor-
mation left in the system register after the application of the
controlled-unitary operator prescribed by the Hadamard test.
This information is used to detect errors and mitigate their
effect on estimated quantities. This is done by “echoing” the
preparation unitary V, i.e., applying V' after the controlled
evolution, and verifying whether the register s returns to the
initial state |0). The corresponding circuit is

+1 +1
|0>/7‘X=jF "

|OEV U V*/7‘

[0){0[V]{0,1}
where the multiplication of the classical information channels
(red double lines) sets the circuit output to zero upon failed
verification (i.e., if the final system state is orthogonal to |0),),
and to the output of the Hadamard test otherwise.

Let us denote the combined state after the controlled
unitary as |®), and let Iy = [¢) (Y] = VT|0)(0]V be the
projector on the state |i),. The estimate of (Re(U)) can be
obtained by measuring the operators XV := X ® 1y, on |®)
(EV circuit), as opposed to X, := X ® 1 (HT circuit). One
can confirm that, in the absence of error, these operators have
identical expectation values on the state at the end of the
circuit [12]

(DIXEY|®) = (®[X| D) = (¥ |Re(U)|¥). (6)
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For an intuitive explanation, note that if the controlled unitary
changes the state of the system register, the ancilla qubit must
have been in the |1) state, and (1|X|1) = 0. This implies that
the expectation value of X ® (1y — ITy ) is 0.

In the presence of a circuit error, verification is likely to
fail. This decreases the expectation value measured by the
error probability, which can be measured separately. Rescal-
ing the result by the error probability yields a noise-mitigated
estimate of the expectation value (y¥|Re(U)|y). The error
mitigation power of this method is explored in [12-14,27,28]
and experimentally tested in [15]. In this work, we only con-
sider noiseless circuits.

The EV circuit implements a ternary measurement, with
outputs +1, —1, 0. Compared to a standard HT defined by the
same unitary, the probabilities p; and p_ are reduced by the
same amount (%), yielding a result with the same expected
value. As a consequence, the variance of an EV measurement
is always smaller than that of the corresponding HT (this is
formalized in Appendix A).

An extension of Echo verification allows extracting more
than one qubit of information per circuit run by using multiple
auxiliary qubits. However, as the measurement is quadratic in
[¥) (| (resulting by the use of two copies of V,, in the circuit),
reconstructing the desired expectation values requires non-
linear processing of the measurement results. Furthermore,
as each measurement interferes with the verification of the
others, all the variances of estimated expectations increase.
In Appendix B we explore this, and we prove that measuring
more than one bit of information per EV experiment is always
counterproductive in terms of final variance, for a fixed total
number of shots.

C. Ancilla-free echo verification

The direct (control-based) measurement via the HT may
often be replaced by an indirect measurement using an altered
circuit [12,29,30], allowing control-free implementations of
these single-bit measurements. We review briefly the control-
free echo verification scheme.

In the Hadamard test, the control qubit provides a clock-
reference state |0)|y), which is not changed by the application
of CU. This clock-reference state is necessary to give physi-
cal meaning to the phase U induces on the system register
states, thus making it measurable. If U has a known eigenstate
Ul|¥,) = e |y, orthogonal to |), this state can be used as
a clock-reference removing the need for a control qubit. In
quantum simulation, this state can often be found thanks to the
symmetries of the system. For example, in second-quantized
simulation of particle systems the vacuum state |0) is an
eigenstate of any particle-number preserving operator.

The control-free EV scheme prescribes preparing a cat
state \/%(W) + |¥,)), applying U, and measuring X “FEV =
()Y (| + | ) (¥ ]). This can be done with the circuit

o—l H H HZ [+

t -1

= }‘ 0
[0}V

where Vi |0...00) = |¥,) and Vi |0...01) = |). After the
application of U, the state is |®) = JLE(UW) + e ), thus

(PIXTEY D) = (Y[Re(Ue ™)|y). (7)

If ¢, # 0, the desired result (y|Re(U)|y) can be obtained by
substituting U — Ue™® or applying a phase gate e~/?Z to
the first qubit before measurement.

D. Variance of a binary POVM

The Hadamard test differs from the projective measure-
ment of Re(U) := %(U + UT) (the Hermitian partof U). Each
instance of the Hadamard test can only output +1 or —1,
whereas the spectrum of Re(U) can have up to 2V distinct
eigenvalues in the range [—1, 1]. This has a direct impact on
the estimation uncertainty: performing the Hadamard test M
times and measuring the control qubit in the X basis yields an
estimator of (Re(U)) = Re((U)) with a variance

\ 1 — Re(U))?
Var*[(Re(U))] = , ®)
M
which can be seen to be strictly larger than the variance
one would obtain by performing a projective measurement of
Re(U) on M copies of |¢) [Eq. (1)],

Var[(Re(U))] < Var*[(Re(U))], €))

as (Re(U)?) < 1. Our goal is to optimize estimators of ex-
pectation values (O) of a given operator, which use data from
multiple HTs with different unitaries U [each with the given
variance Eq. (8)], and assuming one test per state preparation.
We want to minimize the total number of state preparations
(distributed over different choices of U) needed to achieve an
estimator of (O) with error smaller than a fixed €.

III. OPERATOR DECOMPOSITIONS

It is common in quantum computing to estimate the
expectation value of an operator O by writing O as a lin-
ear combination of simpler terms (i.e., a decomposition)
which have their expectation values estimated independently
[10,31,32]. In this work, we make use of this method, and
consider estimating these simpler terms via Hadamard tests.
Let us fix a decomposition' X,

0= cReU) < (0) =) c(Re(Uy),  (10)

xeX xeX

and consider estimating (O) by estimating each (Re(U,)) in-
dependently and summing the results. As Re(U,) and O are
Hermitian operators we may assume c, to be real without loss
of generality, and we may further assume ¢, > 0 by absorbing
a minus sign onto U,. Note that the arrow in Eq. (10) points
both ways as the set of expectation values on all states [i/)
uniquely defines an operator.

'In a slight abuse of notation, throughout this work we will use
the same label (e.g., X) to represent the entire linear decomposition
defined by the set {c,, U,} in Eq. (10), and the set of labels x that we
sum over.

012403-3
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Once a suitable decomposition X of an operator O
[Eq. (10)] has been chosen, to calculate the total cost of the al-
gorithm we must allocate a number m, of repeated single-shot
HT experiments to estimate individual (Re(U,)). We assume
a single-bit measurement per state preparation, i.e., each HT
requires resetting the circuit and repreparing |), and the total
number of re-preparations My = Y _y m, is the relevant cost
of implementing our measurement scheme. If each (Re(U,))
is estimated independently, the variance on a final estimate of
(O) can be calculated by standard propagation of variance

Vark[(0)] = ) ¢?Var[(Re(Uy))] (11)
xeX
2r1 2
:Zcx[l (Re(U))*] 1)
xeX MMy

Equation (9) implies that under the same decomposition of O
Vary [(O)] := Zc)fVar[(Re(Ux))] < Vary[(0)],  (13)
xeX

for all states p.

A. Adaptive shot allocation

Given a decomposition X and a total shot budget My,
an optimal choice for the m, may be found using Lagrange
multiplier methods [33]

V1= (Re(Uy))*
m, = My Cx (Re(U,)) 7 (14)
ZyEX ey 1 — <Re(Uy)>2

recalling that ¢, > 0. This yields a bound on the required My
to estimate (O) with Var*[(0)] = €

2
My > My := €2 [Zcﬂ/l - (Re(Ux))2:| . 15)

xeX

We call My the cost of the decomposition X. This may
be compared to well-known results for measurement bounds
using standard tomography methods [9,32—34] by substituting
Var* for Var in Eq. (11). Although exact values of (U,) will
not be known in advance, these can be estimated using a small
initial fraction of measurements before a final distribution of
measurements is allocated.

B. Decomposition hierarchy

We have shown above how to optimize measurement allo-
cation given a linear decomposition X [Eq. (10)]. Let us now
consider how to optimize X to minimize Eq. (15).

We first consider the effect of possible rescalings of
Re(U,). If any term c,Re(U;) has |Re(U,)| < 1,> one can
find some unitary U, for which Re(U, ) = Re(U,)/|Re(U,)||;
substituting U, — Uy (and ¢, — ¢, accordingly) will always
improve the bound in Eq. (15). (For now we do not worry
about how the unitaries may be implemented as quantum
circuits; we will consider this issue later.)

2Unless stated otherwise, all norms in this work are the spectral
norm.

One may next consider subdividing individual terms
Re(U,) of X, by writing

che(Ux) = Cx,ORe(Ux,O) + Cx,lRe(Ux,l)s (16)

where U, ¢ and Uy are both unitary, and c,, ¢, 0, ¢y,; > 0. As
we can assume [|[Re(U, )| = 1, such a decomposition requires
¢x.0 + Cx.1 = ¢y, to preserve the spectral norm of Re(U, o) and
Re(Uy,1). When this inequality is saturated, we call the subde-
composition norm preserving. It turns out that this condition is
sufficient for the subdecomposition to be nonincreasing in the
cost M of estimation [Eq. (15)], for all states |¥); formally:

Lemma 1. Given a linear decomposition X of a target
operator O [Eq. (10)], a subdecomposition X’ [Eq. (16)]
that is norm preserving has nonincreasing cost, My < My
[Eq. (15)], for any state |\V).

We give a proof of this lemma in Appendix C 1

We would like to extend the above lemma to a statement
that norm-increasing subdecompositions of a linear decom-
position X are always suboptimal in some sense. To achieve
this, note that as a corollary to Lemma 1, we can improve on
all terms c,Re(U,) in a linear decomposition X by a norm-
preserving identity shift

CxRe(Ux) = Cx(l - X,\)Re(Ui) + Cx)_‘le’ (17)

where A, = %(Ai“i“ + Ay Amin and AM are the lowest and
highest eigenvalues of Re(U,), respectively, and Re(Uz) has
the same eigenvectors of Re(U) (with its spectrum shifted
and rescaled). We call the outcome decomposition X of the
procedure above the center of X. Although a norm-increasing
subdecomposition of X may not be suboptimal relative to X,
it is suboptimal relative to this center:

Lemma 2. Let X be a linear decomposition of O with all
|Re(U,)|| = 1; let X be the center of X and let X’ be a strictly
norm-increasing subdecomposition. There exists at least one
state W) for which the cost My < M.

We give a proof of this lemma in Appendix C 2.

To recap, the above two lemmas show (a) that norm-
preserving subdecompositions do not increase the cost of
estimating expectation values via Hadamard tests on any
given state, and (b) norm-increasing subdecompositions not
only can increase expectation value estimation costs on some
states, but are guaranteed to do so on at least one. This result
is in direct contrast to standard expectation value estimation,
where independent estimation of (A) and (B) is suboptimal
to joint estimation of (A + B) whenever the latter is possi-
ble. This suggests a path towards optimizing HT expectation
value estimation, by repeatedly dividing terms Re(Uy) in a
norm-preserving manner, until no further subdecomposition
can reduce the cost any state. It turns out that not all choices
of division lead to the same end point, however, all end points
of this procedure have one common property (proven in Ap-
pendix C 3):

Lemma 3. A decomposition X of an operator O has no
nontrivial norm-preserving subdecompositions if and only if
all operators Re(U,) in X are reflections: Re(U,)> = 1.

It should be no surprise that we find reflection operators
Re(U,)? = 1 to be a crucial ingredient to optimize HT tomog-
raphy, as these are the only operators that saturate the bound
in Eq. (9) for all states |W). We call a decomposition X that

012403-4
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consists of reflection operators only a reflection decomposi-
tion. We give some simple examples of these in Appendix C4.

C. Optimizing reflection decompositions

Above we demonstrated that, for a decomposition X of
an operator O to be optimal with regards to the cost My of
estimating expectation values on a set of states [Eq. (15)],
all terms in X must be reflection operators. Otherwise, we
demonstrated a means of subdividing single terms in the
distribution to generate a new distribution with lower cost.
However, this is not to say that all reflection decompositions X
have the same cost M. (These two statements are consistent
as we cannot transform between reflection decompositions
using subdivision.) The set of reflection decompositions of
O form a convex set that is 22' ~V dimensional if all U, are
diagonal in the eigenbasis of O. This raises two questions: Is
there an optimal decomposition amongst the set of reflection
decompositions, and does it achieve the von Neumann bound
[Eq. (13)]?

Lemma 4. Let O be an operator and II; be projectors
onto the eigenvalues of O; OIl; =TI1;0 = A,I1;. The E-
decomposition of O, given by

Ao+ Ay Ly
0= 1 Ex, 18
7 + 2 (18)
Be=1-) 20, 8ky=he— i, (19)
j<x

uniquely achieves the bound Varg[O] = Var[O] on all states
|W) with support on up to two eigenstates of O. No such de-
composition achieves this bound on all states |\W) with support
on three or more eigenstates of O.

We prove this lemma in Appendix C5. Note that the E
decomposition can be immediately restricted to any subspace
of the full 2V-dimensional Hilbert space containing |¥) (i.e.,
if we knew that due to a symmetry or by virtue of being
a low-energy state, |¥) had support only on such a space),
and the optimality result still holds. This implies in turn that
no linear decomposition X can achieve the von Neumann
variance bound even for as small as a three-dimensional sub-
space. This makes sense, as our restriction to measure one bit
of information per state preparation forms a bottleneck with
respect to the three nonzero-probability outcomes of a von
Neumann measurement on this space.

D. Implementing the optimal decomposition

In order to realize the E-decomposition estimator, we need
to implement HT circuits that (approximately) estimate (Z,).
This may be achieved by realizing that

Ay Ay
P e S

Ex =sgn[0 — u,], 5

where sgn is the sign function. An approximation of this
unitary operator can then be realized using quantum signal
processing (QSP) [16—-18] of the sign function [35], requir-
ing only one additional ancillary qubit. The QSP circuit is

given by
repeat for r =0,..., R — 1
0)e — Rx(9r) _ Rx(ér)
e*’LZ®(O*Mw)t
|1/)>S 9

where Ry (¢,) = e~2% implements a unitary block encoding
Qg of a degree-R trigonometric polynomial Sy of the operator

(0 - /J/x)t:
R

(11.010)c = > c (e " O 1= S4[(0 — pu)t].  (21)

r=0

Here, ¢ is a vector containing the individual angles ¢,
implemented during the QSP circuit. We can then sample
(Re{Sg[(O — y)t]}) through HT (or EV), using another qubit
controlling all gates in the QSP circuit. To approximate
Eq. (20) with our block-encoded operator Sg, we must choose

t < m to avoid aliasing, and find the optimal ¢:

$=argming _ , /

0+4

T4

dolsgn(w) — Im[Sy(w)]].

(22)

Here, the constraint ¢, = —¢g_, ensures Im[Sy(w)] is an odd
function of w. A resolution parameter § > 0 can be intro-
duced to improve the approximation away from the nodes
w = {0, 7} of Sy (). In Appendix D we give further details
of this decomposition, and analyze the approximation error
numerically. We find that this error converges exponentially
in the number of circuit blocks R.

IV. NUMERICAL EXPERIMENTS

To investigate performance of various decompositions on
states that have support on more than two eigenstates of O, and
therefore are not covered by Lemma 4, we perform numerical
simulations using random variationally generated states and
a simple toy operator O = ) ;Zj. (In Appendix F, we report
this scaling for other systems.) We measure the variances on
states generated by a hardware-efficient Ansatz [36] with ran-
dom input parameters using PENNYLANE [37]. For each data
point 100 random states are generated. We consider estimating
(O) in a realistic scenario where the (Re(U,)) values will not
be known in advance to optimally choose m, via Eq. (14).
Instead, for each random state we generate a prior estimate of
each (Re(U,)) from 10° measurements of the state, and use
these to determine m, (which are then only approximately op-
timal). This leaves the total shot count My as a free parameter;
we resolve this in Fig. 1 by calculating My Vary[(O)]. (This
gives a quantity that is relevant regardless of the number of
the shots actually used to estimate (O).)

An average of My Var[(O)] over the 100 states is formed
and plotted in Fig. 1 for each grouping method. This is com-
pared to the von Neumann measurement variance Var[O],
which does not require any shot allocation, and sets a lower
limit to the other estimators [see Appendix C5, Eq. (C15)].
The E decomposition (orange, “=”) has the best asymptotic
scaling of all decompositions, being suboptimal to Var[O] by
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V¥V SGN,m=14440.02
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FIG. 1. Comparison study of variances of different decomposi-
tions on random states generated by a hardware-efficient Ansarz (see
text for details). Different colors correspond to different decomposi-
tions [Eq. (10)] of the target operator O (see text for the description
of all decompositions). Dashed lines are power-law fits to the data
(obtained exponents are given in legend).

a factor &~ N'/3, The QSP approximation of Z, (teal, “SGN”),
has a slightly worse asymptotic scaling, which we associate to
the error in approximating sgn(O — ;). At the largest consid-
ered N = 13, these two decompositions suffer approximately
a factor 2 penalty in their total cost compared to Var[(O)].
The generalized parameter-shift kernel decomposition [19]
(green, “GPSK,” described in Appendix E) has the worst
overall performance out of the investigated estimators, due to
the constant factor. It has, however, a better asymptotic scal-
ing than a simple Pauli decomposition U, = Z; (red, “Pauli,”
Appendix C4). In Appendix F we investigate the scaling
of different sets of observables. We observe that the order
of the performance of the different decompositions remains
consistent throughout, but the relative gains and losses in
performance can be significantly different.

V. CONCLUSION

In this work we studied the optimization of expectation
value estimation for a quantum state in the case where we are
only allowed to measure a single qubit per state preparation
(e.g., through Hadamard tests, with relevant application to
echo verification). We calculated the cost of estimating the
expectation value of an operator O by linearly decomposing
O into a linear combination of subunitary terms, assuming
an optimal shot allocation. We demonstrated that this cost
is strictly nonincreasing when terms are further subdivided,
under the constraint that this subdivision preserves the in-
duced 1-norm of the term coefficients. We showed that the
end points of this procedure of repeated division are linear
decompositions of O where all terms are reflection operators:
a so-called “reflection decomposition.” We identified one such
decomposition, the E decomposition, as unique in its ability
to estimate (O) with a variance matching the von Neumann

measurement limit on any linear combination of up to 2
eigenstates of O. We demonstrated how the & decomposition
may be approximately implemented through quantum signal
processing. Numerical results demonstrate that on simple sys-
tems, the E decomposition and its approximate counterpart
demonstrate clear constant and asymptotic improvements over
other reflection decompositions (in the cost of estimating (O)
on random states), with up to a factor 10x improvement for
estimation on 20 qubits.

Although these results are encouraging, the significant dis-
crepancy between Varg[O] and Var[O] is worrying for NISQ
algorithms that already incur a significant cost to tomograph
complex Hamiltonians [7,9,32,38—40]; either one incurs a
large overhead for measurement due to the need to invoke
quantum signal processing or incur the clear asymptotic scal-
ing cost that comes with measuring single Pauli terms per
state preparation. Given that echo verification has a sampling
cost scaling as 1/F? (for a circuit fidelity F) [12], this result
adds to the unlikelihood of beyond-classical NISQ variational
algorithms in chemistry. Finding reflection decompositions
with lower circuit depth is a clear avenue for future work.
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APPENDIX A: ECHO VERIFICATION ESTIMATORS

The estimator used for echo verification is not identical to
the one studied in the main text, and so its variance is not quite
identical. In particular, we have (X®V)? = IT,, which implies
that the variance on an estimate of (®|Xgy|®P) is

(P11 ® Iy |®) — (Y [Re(U)|y)?

Vargy [(Re(U))] = i

(AD)

Clearly [(®|y)|> <1, which implies Vargy [Re(U)] <
Var*[Re(U)] [by comparison with Eq. (8)]. In other words,
the variance of the EV estimator is always smaller or equal to
the variance of the relative HT estimator. It is easy to calculate
from the circuit above that

(@M ® 1|®) = 5]1 + (Y |UIY)I? (A2)

[noting that (Re(U)) = Re({U)], which can be substituted
back into our variance estimate to obtain

1 = (Y Re(U)|y)?

Varky[Re(U)] > s (A3)
Thus, we have
Var[(Re(U))] > Variy [(Re(U)] > S LRI )

2

This justifies our focus in the main text on optimizing the
estimator from a standard Hadamard test; this estimator is
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simpler to analyze, more general, and differs from the EV
estimator (that motivated this work) by at most a factor 2.

APPENDIX B: PARALLELIZING ECHO VERIFICATION

In absence of echo verification, we can trivially paral-
lelize Hadamard tests measuring K commuting operators
{Re(Uy), - .., Re(Uk-1)} using K ancillary qubits, one con-
trolling each Uy. If each Uy is controlled by a separate
ancillary qubit (labeled k, where CU; represents the kth uni-
tary controlled by the kth control qubit), the combined state of
the system register s and ancillary qubits after all the unitaries
are applied will be

Q) Celil+)i ). (B1)
k

The probabilities of obtaining +1 when measuring X on the
Jjth control qubit are
2

U.
Lly) (B2)

iz = | Q) Celil+);
kj

= %(WI(liU})(lin)lw (B3)
which coincides with the probabilities of a single Hadamard
test with unitary Uj.

When performing echo verification, parallelization is more
complicated. The result of verification (the measurement of
[Ty = [¥)(¥| on the system register) is affected by all the
controlled Uy, and thus its result cannot be simply associated
to one specific ancilla being in the state |1). To mitigate
errors, all the cases in which the register is found in a state
orthogonal to |y) should be considered as null towards all of
the ancilla measurement results. The echo-verified probability
of measuring the binary string & = (oy, .. . , 0x), Where each
oy is £1 corresponding to the state |£) measured on the kth
ancilla, is then

2

EV _ ‘(1//| 1_[ (o1 CrUr|+) i 1Y)
k

2

— I ]+ ool (B4)
k

The product in this equation can be then developed into a
linear combination of 2K expectation values (note that, as
all U, commute, the order does not matter). Under the as-
sumption that all these expectation values are real [granted
if Uy, = Re(U;)] Eq. (B4) defines a quadratic system of 2K
equations with 28 — 1 unknowns.? Solving such system we
find that the expectation value of a single Re(U;) can be

3In the case of a more general U = Re(U) + ilm(U), a similar
system can be constructed by measuring each Uy and iU with 2K
ancillas. Showing this is out of the scope of our work, and for the
sake of simplicity we restrict ourselves to the case of Hermitian
Uy = Re(Uy).

estimated by processing the sampled =V as

X ) - 5 ). as

0'0'/ 0'(7/——

(Re(U)) =

EV EV
Pjy pj-

where we denoted pF e V the terms that reproduce the probabil-
ities that would be returned by a single, un-parallelized EV
experiment

PR = 1 £ Uy 1P (B6)
We assume pgv are sampled by averaging M shots of the
parallel EV experiment. These are probabilities of mutually
exclusive measurements, thus the covariance matrix of the p&"
estimators is defined by

var[ 5] = 2B (1 - ). ®7)
Cov[pgv,pgv] ! pEVp];?V if & #p. (B8)

M

We can then propagate the error through Eq. (BS) to obtain
the variance on the parallel-EV (PEV) estimator of (Re(U;)):

MVarppy[(Re(U)))]
[ EV [ EV
p/tf EV Pjo; \/Pin; EV EV
—Z Ev/ Ps =D — T ov Tv
G#P P—
Zp,a

= 2K ](pj0+ + p};‘Y) -
which explodes exponentially with the size of the paralleliza-
tion K.

More generally, we can compute the covariance matrix for
all the p];"Xj through error propagation

(Re(Uj))

(Re(U))), (B9)

EV EV (~AK—1 EV
Var[py ] = iy (2571 = P, (B10)
Cov[ply . Piyp] = 85, k\/m -5 Py, (Bl

[where the covariance assumes (j, o) # (k, p)]. This shows
that, increasing K, we effectively add to the covariance ma-
trix a positive-semidefinite term with a norm that scales
exponentially in K. As all the decompositions Eq. (10) are ul-
timately to be estimated as linear combinations of the sampled
probabilities p‘;:;’j, parallelizing error verification is counter-
productive. '

APPENDIX C: PROOF OF DECOMPOSITION
OPTIMALITY HIERARCHY

In this Appendix we build up to the proof that the E
decomposition is optimal in terms of cost (15), by proving
the lemmas introduced in the main text. We first prove that
a norm-preserving subdecomposition has nonincreasing cost
with respect to its parent decomposition, for all states |y).
We then prove that a subdecomposition that does not have
the norm-preserving property is always suboptimal (i.e., it has
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strictly greater cost than an alternative norm-preserving
subdecomposition). The iteration of the norm-preserving sub-
decomposition procedure leads to one of many alternative
improving sequences of decompositions. The end point of
each sequence is a norm-preserving linear decomposition of
O for which all unitaries are reflection operators. Finally, we
prove that one of such decompositions (the & decomposition)
achieves the von Neumann measurement variance bound on a
certain set of states, and that no unbiased estimator based on
single-qubit measurements can achieve this bound on a larger
set of states.

1. Proof of Lemma 1, and corollaries

Given a linear decomposition X of an operator O
[Eq. (10)], consider a norm-preserving subdecomposition X’
where a single term x € X is split according to Eq. (16). The
bound on the total number of shots, Eq. (15), will then change:

MX — MX/

=2 Y /1 = (Re(Uy)? + croy/ 1 — (Re(Ur0))?
YF#X
2

+ criy/ 1 — (Re(Uy 1))? (C1)

[with the change with respect to Eq. (15) being the second
row]. This results in a reduction of the cost, as can be seen by
calculating

[l — (Re(Uy))*]
= (Cx0 + €x1)* = [cx0(Re(Uyr0)) + cx1 (Re(Uy1))T
=2 o[l — (Re(Uy o)1+ ¢2 1 — (Re(Uy1 )]
+ 2¢r06x1[1 — (Re(Uy0))* (Re(Uy1))’]
> i o[l — (Re(Uy0))?1 + c; 1 [1 — (Re(Uy.1))?]

+ 2cx,ocx,1\/ [1 — (Re(Ur0))?1[1 — (Re(Ux,1))’]

= [eeoy/1 = (Re(0))? + cx1y/1 = (Re(Ue )]
(C2)

where, in the center inequality we have used the fact that for
0<a b,

1—ab>+(1—-a*>(1 - b?).

As a corollary and example, we look at identity shifts of
a term x € X. For Re(U,) with unit norm, we can assume
without loss of generality the largest eigenvalue iS Ay = 1,
and the smallest is Apj,. We can then perform the simple
norm-preserving decomposition

(C3)

c;Re(Uy,) = ¢ (1 — MRe(Uy) + ¢ Al (C4)

with A = %(kmin + Amax). The resulting Re(U,) has maxi-
mum eigenvalue 41 and minimum eigenvalue — 1, thus it does
not admit nontrivial identity shift.

A norm-preserving subdecomposition (16) of a term with
|Re(Uy)| = 1 will only admit terms with |Re(U; ;)| = 1. [This
can be checked by taking the expectation value of both sides
of Eq. (16) on the eigenstate on which |(Re(U,))| = 1.] By the
same reasoning, terms with Re(U,) having maximum eigen-
value +1 and minimum eigenvalues —1 [like those obtained
by the identity shifts (C4)] only admit subdecompositions
whose terms have the same property.

2. Proof of Lemma 2

In this Appendix we compare the costs of two decompo-
sitions derived by an original decomposition X: the center X
where all terms are transformed according to Eq. (17), and
the norm-increasing subdecomposition X’ where a term x € X
is changed according to Eq. (16) assuming c, o + ¢x.1 > Cy.
Remembering that all coefficients are positive ¢, > 0, the cost
of each decomposition (15) is the square of a sum of positive
values; the terms in this sum for y # x do not change for
X — X', and have a nonincreasing value for X — X. We thus
focus only on the term x € X and the derived ones, highlighted
here:

/ 2
My =€2 Z cei/T— ReW ) +--- |, (C5)
jelo.n)
2
Mg =€ (1 = Ly 1 — (Re(Up))> +- - (C6)

We now prove there exists a state |W) for which /m < m/,
which implies M3z < Mx.

Let |y4) and |/_) be eigenvectors of Re(U;) with eigen-
values +1 and —1, respectively. We consider three cases:

(1) [{¥5|Re(Uy,j)|¥s)| < 1 for at least one combination
of 0 € {+, —} and j € {0, 1}. In this case, on the state |¥) =
Vo) we getimm =0 <m' #0.

(2) (Yo |Re(Uy j)Ys) = o for all combinations of o €
{+,—} and j € {0, 1}. By combining Egs. (16) and (17) and
taking the expectation value on |/, ) we obtain o' [c,0 + ¢y, 1 —
cx(1 = A,)] = cxAy, which implies ¢, o + ;.1 = ¢y, violating
one of the hypotheses of the lemma.

3) (Vs IRe(Uy, )HIVs) = (=1)/o for all combinations of
o €{+,—} and je{0,1}. We define the state |¥) =
WYL on which (Re(Uy) = (Re(Ur0)) = (Re(Uy,1) =
0. On this state, the costs are My = ech(l — Ay)? and
MX’ = EZ(CX,O + cx,1)2~ As Xx 2 0 and Cx,0 + Cx,1 = Cyx,
MX/ < ./\/lg

3. Proof of Lemma 3

In this Appendix, we prove that the end point of norm-
preserving decomposition sequences are reflection operators.
In other terms, if Re(U, ) is a reflection operator, it only admits
a norm-preserving subdecomposition [Eq. (16)] if Re(Uy o) =
Re(Uy 1) = Re(Uy).

To prove this, consider a state |{) in the +1 eigenspace
of Re(U,). For a norm-preserving decomposition, we
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must have

Cx0 + Cx1 = ¢ = (Y IRe(Un)|Y)

= cro(¥IRe(Ux o) 1Y) + cx1 (¥ IRe(U,)[¥).
(C7)

As |[Re(Uy0)ll, IRe(Uy 1) < 1, this equality can only be sat-
isfied if |y) is also a 41 eigenstate of both U, ¢ and U, ;. A
similar argument holds for all —1 eigenstates of Uy, and so
U0, U1, and U, share the same eigenstates and eigenvalues
and must be equal. Taking such a subdecomposition has no
effect on the estimator of (O), as the same HT are performed
and the total number of shots does not change, i.e., My = M
in Eq. (C1).

4. Examples of reflection decompositions

The simplest example of a reflection-based decomposition
is a decomposition in terms of Pauli operators

J
OZZCij, (CS)
j

with ¢; > 0. We could be tempted to measure (O) with a
single HT circuit (assuming access to a block encoding of H_gll’
which is optimal). In this case, as O = ||O||Re(U), the bound

(15) is
(0)?
- _||0||2}' (C9)

M > e2||0||2[1
To improve on this, we can estimate each (Z;) separately,
each with a Hadamard test with U; = (Z;) (a binary operator).
As the spectral norm of O is equal to the induced 1-norm
IOl = Zj ¢;j, Bq. (C8) is a norm-preserving decomposition.
The bound (15) then becomes

2
M=e?| > /12 .
j

which is always smaller or equal than Eq. (C9) [easily proven
through Eq. (C3)]. This inequality is only saturated when the
considered state p has support only on the ||O|*-eigenvalue
subspace of 0?; the operator O projected on this subspace is
effectively a binary operator.

Norm-preserving decompositions do not need to involve
only mutually commuting Pauli operators. As a practical ex-
ample, we consider the two-qubit operator O = XX + YV,
which appears commonly in quantum Hamiltonians. As O =
2Im[iSWAP], this operator can be measured with a single
Hadamard test circuit. Furthermore, in the context of elec-
tronic structure Hamiltonians, O preserves particle number,
so in general a control-free scheme using the vacuum as
reference state can be employed for the measurement. This
operator has three eigenvalues {0, =1}, which means we can
improve its measurement by decomposing it in binary oper-
ators. We propose three decompositions O = RelUj + ReU;
The obvious Pauli decomposition Uy = XX, U; =YY has the
downside of not conserving particle number. To fix this, we

(C10)

can take

Uy = 1[(XX +YY)+ (=1)/(Z1+12)].

! (C11)

These are particle-number preserving, reflection operators and
can be easily implemented by combining iSWAP with single
qubit e*Z7/4 rotations on both qubits. The last decomposition,

U= XX +YY)+ (-1)(ZZ +11)], (C12)

uses particle-preserving reflection operators with different
eigenvalue multiplicities: unlike Pauli operators, the =1-
eigenvalue subspaces of U; have unequal dimension 1 and
3. For any state in the O-eigenvalue subspace, spanned by
{100}, |11)}, the estimate variance Var*[(Re(U;))] = 0 for de-
composition Eq. (C12). This is not true for the other two
decompositions, which indicates that not all decompositions
in binary operators are born equal. We will deal with this in
the next section. Another example of a few-qubit reflection
operator that is a sum of noncommuting Pauli operators is the
three-spin all-to-all Heisenberg coupling

2 -1

SO XX + VoY + ZuZ,
I=1 m=0

1

0= (C13)

which appears, e.g., in the kagome-Heisenberg Hamiltonian.

5. Proof of Lemma 4

In this Appendix we prove Lemma 4, which formally states
the optimality and uniqueness of the E decomposition. To do
this, we first define a variance bound for a class of estimators
of (O) on a state |y). We prove that the bound is achieved
on all eigenstates of O if all the sampled operators Re(U,)
are diagonal in the eigenbasis of O. We then construct the E
decomposition, and prove that the related estimator saturates
the bound on the set S, of all states with support on at most
two eigenstates of O. Finally, we prove no other decompo-
sition satisfies this requirement (i.e., the E decomposition
is unique), and no decomposition satisfies the bound on a
superset S D S».

A decomposition X [Eq. (10)] of an operator O is opti-
mal on a state |i) if no other decomposition produces an
estimator with lower cost [Eq. (15)] for that state. Optimality
can be defined for a set S of states: X is optimal on S if, for
each |) € S, no decomposition X’ has lower cost My, < My.
(Note that this can be readily generalized to mixed state, with-
out changing any of our next results.) Lemmas 1-3 imply a
necessary condition for optimality on the whole Hilbert space:
X can only be optimal on all states if it has the form

0 =%ol+ Y cRe(Uy),
xeX

Zol+ ) ex=10l, ReU,)’ =1,

xeX

(C14)

ce >0,

where 1 is the average of the largest and smallest eigenvalues
of O. In other words, X is a norm-preserving decomposition
of the center of O where all sampled terms are reflection
operators. This condition is not sufficient, as many nonequiv-
alent instances of such decompositions exist, as exemplified
in Appendix C 4.
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We now construct a bound on the variance of the estimator
of (O) based on the decomposition X: saturating this bound
on all |¢) € S implies optimality of X on S [the cost of the
decomposition (15) is defined as the minimum value of M
required to achieve target variance €2, so minimum variance
at fixed M implies minimum cost at fixed €]:

2
[Zcﬂ/l— (Re(U, >>} > 22

(C15)

Vark [(O)

This bound is implied by Eqgs. (9) and (12), with the choice
of optimal shot allocation (14). Its physical interpretation is
rooted in the following observation: a von Neumann mea-
surement of O is the lowest-variance unbiased estimator of
(O) when given access to a single state preparation. Thus,
given M independent experiments each with a single state
preparation, the mean of von Neumann measurements is the
lowest-variance unbiased estimator.

We first consider the set S; of all eigenstates of O. For
any |¢) € S;, the value of the bound in Eq. (C15) becomes
Var[O] = 0. The bound is thus saturated only if we choose all
reflection operators Re(U,) diagonal in any eigenvector basis
of O,ie., [Uy, O] = 0and U,|¢p) = £|¢) for any |¢) € S;. For
any decomposition of this form, we can write all U, in terms
of the eigenspace projectors of O:

J—1
Ue=D & M1, & e (£l (C16)
j=0

where I1; is the projector on the (eventually degenerate) A ;
eigenspace of O, J is the number of distinct eigenvalues {A;}
of O, and without loss of generality we assume A; > Aj_j.
The coefficients will then have to satisfy the relation A; =

Zx cxéx,]*
We define the E decomposition based on Eq. (C16), by
choosing &, ; = —1 if j < x, and +1 otherwise. The result-

ing decomposition is presented in Lemma 4, Eq. (18). The
operators E, are reflections by definition, and it is easy to
check that the decomposition satisfied the necessary condition
(C14). Note that ¢y = (A¢ + A;)/2 defines the optimal identity
shift (producing the center of O) and the ¢, = (Ay — A,—1)/2
complete the decomposition.

We now prove that the E decomposition is optimal on the
set S, of states with support on two eigenstates of O:

o Am) + BlAn)
Ja?+ g2
On a general state |) with eigenspace occupations a; =

(Y |I1;]4r), the estimator based on the E decomposition has
variance

Sy = ), [An) € Sl}. (C17)

J—1

Var*s[<0>]=$ Z% A a D a

J i<j iz]

(C18)

For a state |¢) € S», only two occupations are nonzero
am, a, 7 0 (we assume without loss of generality m < n), thus
the term under square root is reduced to 4a,a, it m < j <n
and O otherwise. The resulting variance

| 2
Vars[(#1019)] = M[ \/m}

2

= Manam()‘n - )\m) = Var[(O)], (C19)
thus saturating the bound (12).

We now prove that the only optimal decomposition on S, is
the E decomposition (or equivalent up to relabeling and trivial
subdecompositions). First of all, §; C S», so the terms of the
decomposition need to be of the form of Eq. (C16). Consider a
family of states /@y |Anm) + \/Gn|A,) for any n > m, with only
two nonzero eigenstate occupations a,, + a, = 1. On such a
state,

2
Var;k( [O] = %[Z Cx\/l - [am‘i:x,m + angx,n]2:|
aman |:Z 2 éx WLSX n:| .

The bound (C15) is then saturated when

|:22 Ex méxn:| — )m _ )\m’ (C21)

where we simplified out the free parameter “+%*. This can be
rewritten as

Z Cxben(Exn — Exm) =

(C20)

Z Cx(Exn — Exm)

X

(C22)

using the condition on the decomposition coefficients A; =
>, cxéx ;. This implies that if &, , = —1, then (&, — &) =
0 (recall that ¢, > 0), i.e., & ,, = —1. Thus, the only U, that
can appear in this decomposition are of the same form as the
operators in the E decomposition (§;,, = —1,&;, = +1 for
m < j < n), and thus X is either E or a trivial subdecomposi-
tion of it.

We now show that the E decomposition does not saturate
the bound (C15) for a state |y) with three nonzero occupa-
tions a,,, a,, a, # 0 (m < n < p). On this state we can write

1
Varz[(O)] = < [(n = hm)/an(an +ap)  (C23)
+ A = r)ap(am +a)l?.  (C24)

Subtracting from this Var[(O)], expanding and then collecting
terms we get

Varg[(0)] — Var[(O)]
= [()\n - )&p)()"n - )\m)]
Vamay(an + ay)(a, + a,)] > 0,

as both the terms in square brackets are strictly smaller than
zero. This (along with the uniqueness of E as the optimal esti-
mator on S,) implies that no HT-based estimator can saturate
the bound (C15) for arbitrary states.

(C25)

x [ana, —
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In fact, the bound can only be saturated on states in S,:
on these states the von Neumann measurement has only
two possible outcomes (A, and A,) with nonzero probabil-
ity. The adaptive shot allocation scheme then ensures (for a
large enough M) that most of the measurements we take (E,
with m < x < n) reproduce the statistics of the von Neumann
measurement, with the single bit we sample in every experi-
ment always distinguishing between A, and A,. On any state
[¥) € S,, the von Neumann measurement has three or more
outcomes with nonzero probability, and we cannot repoduce
its statistics by sampling a single qubit per experiment. This,
along with the uniqueness of E, implies that no decomposition
can satisfy the sufficient condition for optimality on a superset
S D S,. The numerical results presented in this paper quantify
the increase in variance with respect to the bound, along with

J

confirming the E decomposition outperforms other decompo-
sitions on all states.

APPENDIX D: IMPLEMENTATION OF THE E
DECOMPOSITION VIA QUANTUM
SIGNAL PROCESSING

Verifiable sampling of QSP polynomials. To measure the
operators in the E decomposition (20), we implement a
Hadamard test (or EV) on trigonometric polynomials of (H —
Wy )t generated by the quantum signal processing. We tune the
QSP coefficients such that the polynomials approximate the
sign function in a suitable range. In this Appendix we display
and analyze this technique.

The full circuit we use to achieve this is

0)srr @ * T T @ @
10)qsp Rx(¢r) et HH Rx (or) H By (r) (verify)
lV)s 7 (verify)

The first control qubit (labeled HT) takes care of the
Hadamard test. The second ancilla (labeled QSP) manages the
quantum signal processing subroutine, extended through the
sign-controlled evolution e #®©~1J to implement a quan-
tum signal processing (QSP) on the operator ¢ We
now describe how the measurement scheme works, and how
to select the ¢ parameters to approximate a measurement of
sgn[(O — w,)t] in the interval [—m, 7 ].

First, we analyze the QSP routine. Let us assume |¢) to
be an eigenstate of (O — w, )t with eigenvalue w € (—m, ),
and only consider the effect of the controlled gates (removing
the HT qubit). Then, we can reduce the circuit to an effective
single qubit gate on the QSP qubit, with action

R
Qp(w) = e 5730 |:l_[ e"gz‘“e"}z("’kf:|
r=1

B :) (D1)
which is a block encoding of Sy (w), a degree-R trigonometric
polynomial of w. For the sake of simplicity we inserted the
final gate e i3 = —iY, shifting the polynomial of interest S
from the block (1]/Q|0) to (0|Q|0). We ensure Sg(w) is real
and odd by constraining

<S¢(w)

¢ = —pp—r = S(w) = —S(—w) € R. (D2)
Reintroducing the system register, i.e., taking a general |{)g,
can be done by linearity taking Q(w) +— Q[(O — u,)t] and
recovering the circuit above.

The result of the verified Hadamard test (or EV) is obtained
by measuring on the output state of the circuit the expec-
tation value of Zyr (or Zur ® 0)(0lgsp ® [¥)(¥]s). (In the

repeat for r =0,.... R —1

(

absence of noise these two expectation values are equal. In
the presence of noise, an additional measurement at ¢ = 0 can
be taken to mitigate errors. For more details on the technique
we refer the reader to the original work on EV [12].)

Approximating the sign function. To approximate the op-
erators (20) that make up the E decomposition, we need to
choose the QSP parameter ¢ such that S4(w) in Eq. (D1)
approximates sgn[w]. The polynomial Sg¢(w) is odd, real,
and 27 periodic, thus having nodes S4(0) = S¢+-) = 0. To
account for the approximation error in the neighborhood of
these nodes, we introduce a resolution parameter § > 0, and
request the approximation to be effective only in the [§, m — §]
interval. Choosing § > 0 implies accepting a larger error in
approximating the sign function close to zero. For exam-
ple, we know the eigenvalues of (O — p,)t closest to zero
have absolute value ‘ngt, and we can use this knowledge to
choose §.

We define a loss function to characterize the quality of the
approximation: the average error

Ls(¢) =

T+
S /s do[sgn(w) — Im[Sy(w)]]. (D3)

To choose the optimal parameters ¢, we minimize this loss
under the constraints (D2). Although an analytical approach to
this problem is possible building on the techniques described
in [18], we take the numerical route to this approximation
(which is efficient, scalable, and easy to implement). The
integral is thus substituted with a sum on a grid with a number
of points much larger than the degree of the trigonometric
polynomial. We plot in Fig. 2 the minimized cost function,
as a function of the approximation’s order R and of the
resolution parameter §. We find that the loss always decays
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FIG. 2. Loss equation (D3) for the optimal choice of QSP pa-
rameters ¢, as a function of the order R (number of QSP layers) and
resolution parameter §. The dotted lines are log-lin fits for R > 10.
The dependence of the fit parameter 8 on the resolution § is shown
in the inset.

exponentially with an increasing order R, with a decay rate
depending on §.

APPENDIX E: THE GENERALIZED PARAMETER-SHIFT
KERNEL DECOMPOSITION OF A DIAGONAL OPERATOR
WITH LADDER SPECTRUM

In [19] the authors propose techniques to estimate deriva-
tives (%U (t)) of a unitary U(t) = €'” generated by O, by
sampling (sin(Ot;)) = (Re[U (t;)]) at a discrete set of points
{t;}. This technique can be used to estimate expectation values
of 0, as (O) = ([—i;—teim],:o), and it is clearly compatible
with Hadamard test or EV measurements (as it only requires
sampling (ReU (1;))).

For an operator O with equispaced -eigenvalues
Q,29,...,RQ (commonly referred to as a “ladder
spectrum”), the authors give a choice of {f} and
explicit coefficients ¢;(t) for the linear combination
(j—tU(t)) =Y, c{Re[—iU(t)]). Assuming Q=1 (which
can be considered a choice of units for the energy), the time
points are chosen as {f; = 53 +ln} We can then define a
modified version of the Dirichelet kernel,

1 1 R—1
Dg(t):l—ecos(tg) Esin(Rt)—i—j;sin(jt) , (E1)

which satisfies D;(f;) = 8;;. This is a linear combination of
the R basis functions {sin(jt)};=1,. g, like (sin(Ot)). Thus, as
the equality

.....

=

(sin(0n) = Y (sin(0)) D (1) (E2)

=1

holds for all {#;},—..._r, it must to hold for all z. We can then
differentiate the kernel rather than the expectation value itself.
Evaluating [ Dl (t)];=o0 and combining the equations above

¥ SGN,m=1.72+0.01 R
=, m=1.684+0.01 _’\“‘*
B GPSK,m =19240.01 ¥ S v
X Pauli, m = 2.03 4 0.01 N O R o
102 4 e K &
. € Von Neumann, m = 1.53 + 0.01 N o .t +
S Ty o
= st | * e 4
S s - o
> P
<& 102 4 I .
;j'. -4 N
0=3 iz
wi b j=1

10!
Spectal norm ||O]|

FIG. 3. Comparison study of variances of different decompo-
sitions on random states generated by a hardware-efficient Ansatz
(see text for details). Different colors correspond to different de-
compositions [Eq. (10)] of the target operator O (see text for the
description of all decompositions). Dashed lines are exponential fits
[a exp(mN + b)] to the data (the parameter m is given in legend).

we obtain
i
(0) = Z mmn(om) (E3)
= Z c1(Re[—iU (1))]). (E4)

=1

This matches the form of decompositions (10). We call this
the generalized parameter-shift kernel (GPSK) decomposi-
tion. Under the optimal shot allocation choice [Eq. (14)], the
shot variance of the estimator based on this decomposition is

N vi1-— s1n(0tl
MVargpg = |:Z :| .

|2R sin? ) | E5)

APPENDIX F: DETAILS ON NUMERICAL SIMULATIONS
AND FURTHER NUMERICAL RESULTS

We measure the variances on random states generated by
hardware-efficient Ansdtzes using PENNYLANE [37]. For each
value of N, 100 random set of parameters (and therefore
100 random states) are generated and measured for all de-
compositions. For each decomposition X, we first use 10°
shots (allocated proportionally to the weight of each term) to
obtain a rough estimate of the expectation value of each term
(Re(Uy)) for x € X. These values are plugged in Eq. (14) to
get an estimate of the optimal shot allocation ratios r, = [’%
The variance of each term Var*[(Re(U,))] is obtained by
Eq. (8) (or by sampling in the case of the QSP-approximation
decomposition SGN). With these we compute the final
shot variance My Vary[(0)] =Y , ry ' Var*[(Re(U,)). Fi-
nally, we average the values of My Vark[(O)] obtained for
each random state. This average is the quantity reported in
Figs. 1, 3, and 4.

The terms Z, are constructed as per Eq. (18) using the
known eigenvectors of O, and projectively measured on the

012403-12



OPTIMIZING THE INFORMATION EXTRACTED BY A ...

PHYSICAL REVIEW A 108, 012403 (2023)

10°4 Vv SGN,m=201+00 e
=, m=2.01+0.0 e
. B  GPSK,m=198+0.0 "
10°4 X Pauli, m = 2.04+0.01
€ Von Neumann, m = 1.99 + 0.0

N
0=> 227
j=1

102 10°
Spectal norm ||O||

FIG. 4. Comparison study of variances of different decomposi-
tions on random states generated by a hardware-efficient Ansatz (see
text for details). Different colors correspond to different decomposi-
tions [Eq. (10)] of the target operator O (see text for the description
of all decompositions). Dashed lines are exponential-power-law fits
[exp(aN? + bN + c)] to the data (the dominant scaling parameter a
is given in the legend).

prepared state (as these are reflection operators, Hadamard test
samples match projective measurement samples). The terms
in the Pauli decomposition are also directly measured on the
prepared state. The GPSK decomposition is constructed as de-
scribed in Appendix E and measured through a Hadamard test.
The von Neumann variance Var[O] is computed analytically.

The QSP approximation of E (denoted SGN from the
sign term approximation) is implemented as described in
Appendix D for R = 20 and § = 0. For fair comparison with
the other methods, echo verification is not used. The compar-
ison between the E and SGN decomposition shows how the
approximation increased the final variance. (The approxima-
tion also introduces a bias, see Appendix D.)

All the simulations assume Hadamard-test-based measure-
ment in an ideal circuit simulation: no circuit-level noise is
considered and EV is not implemented.

We additionally report scaling results for the shot variances
of two other observables, O =}, jZjand O =} _; 2/7;. The
overall scaling of all decompositions matches the scaling of
the operator norm | O||. Similarly to the case of Fig. 1, the
E decomposition performs best, the SGN approximation has
a relatively small effect on the shot variance, and the Pauli
decomposition shows the worst scaling.
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