,, Aalto University
School of Science

Master’s programme in ICT Innovation

Content Adaptive NN-Based In-Loop Filter
for VVC

Hyperparameter Pruning

Zhijie He

Master’s Thesis
2023

© 2023

This work is licensed under a Creative Commons
“Attribution-NonCommercial-ShareAlike 4.0 Interna- @ @ @ @

tional” license.

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

,, Aalto University
School of Science

Author Zhijie He

Title Content Adaptive NN-Based In-Loop Filter for VVC — Hyperparameter
Pruning

Degree programme ICT Innovation

Major Data Science

Supervisor Prof. Juho Kannala

Advisor Dr. Francesco Cricri
Collaborative partner Nokia

Date 24 September 2023 Number of pages 50 Language English

Abstract

The most recent video coding standard VVC contains five in-loop filters to reduce
compression artifacts that come from the common drawbacks of block-based hybrid
compression framework. However, those traditional in-loop filters are insufficient to
deal with the complicated compression artifacts. The emergence of Neural Networks
(NNs) has brought significant advancements in the realm of image and video processing,
offering a promising avenue for improving video compression. Many prior studies in
this domain have focused on training models on large datasets to achieve generalization,
rather than catering to specific content characteristics. In this work, we introduced a
content-adaptive in-loop filter for Versatile Video Coding (VVC) working with other
in-loop filters. The content adaptation is achieved by over-fitting a pre-trained model at
the encoder side on the test data. To reduce the bitrate overhead, the Neural Network
Compression and Representation (NNR) standard has been introduced which focuses
on compressing NN efficiently. Furthermore, rather than over-fitting all parameters
within the NN model, we introduce a set of learnable parameters known as multipliers,
which serve to further reduce the bitrate overhead. The proposed model takes auxiliary
information including Boundary Strength (BS) and Quantization parameter (QP) as
input. Additionally, we have conducted a comprehensive series of experiments to
identify the optimal combination of hyperparameters for this approach. The results
indicate coding gains of -2.07% (Y), -5.54% (Cb), -1.95% (Cr) Bjgntegaard Delta rate
(BD-rate) for Class B and -1.34% (Y), -1.88% (Cb), -0.52% (Cr) Bjgntegaard Delta
rate (BD-rate) for Class D with respect to the Peak Signal-to-Noise Ration (PSNR)
on top of the Versatile Video Coding (VVC) Test Model (VVC) 12.0 with NN-based
Video Coding (NNVC) 5.0, in Random Access (RA) configuration.

Keywords Neural network , in-loop filter, video compression , Versatile Video
Coding (VVC) , NNR

Preface

As I sit down to write this preface, I am filled with a sense of accomplishment and
gratitude. The journey leading to the completion of this master’s thesis has been
challenging, yet immensely rewarding.

Throughout this endeavor, I have had the privilege of receiving guidance, support,
and inspiration from a multitude of sources. I would like to take this opportunity to
express my sincere gratitude to all those who have played a pivotal role in shaping this
research and my academic journey as a whole.

First and foremost, I am deeply indebted to my thesis supervisor, Juho Kannala,
and thesis advisor, Francesco Cricri, whose guidance, expertise, and unwavering
support have been instrumental in shaping this research. Your insightful feedback and
encouragement have been invaluable, and I am grateful for the opportunity to learn
from you.

I would also like to thank my colleagues, Maria Santamaria, Ruiying Yang, and
Jozsef-Hunor Janosi, for their valuable input and constructive feedback, which have
greatly improved the quality of this work.

I extend my appreciation to the Aalto University faculty and staff for providing a
conducive academic environment and access to resources essential for this research.

To my friends and family, who have provided unwavering support and understanding
during this demanding journey, I am eternally grateful. Your belief in me has been my
source of strength.

Lastly, I want to express my gratitude to the participants and organizations who
generously contributed their time and resources to this study. Your willingness to
engage in this research made a significant impact on the quality and depth of my
findings.

This thesis is a testament to the collaborative spirit that permeates academia, and I
am humbled by the collective effort that has brought it to fruition. It is my hope that
this work will contribute to the body of knowledge in video compression and inspire
future research in this area.

Thank you to everyone who has been a part of this journey, directly or indirectly.
Your support and encouragement have made this thesis possible, and I dedicate this
work to all of you.

Otaniemi, 9 September 2023

Zhijie He

Contents

Abstract

Preface

Contents

Symbols

and abbreviations

1 Introduction

1.1
1.2
1.3
1.4
1.5

How to resolve compression artifacts?
Content Adaptation
Compress NN parameters
Research Proposal
Structure of the thesis L L.

2 Background

2.1

2.2
2.3

Video Compressiono
2.1.1 The general path of video coding development
2.1.2 Discrete Cosine Transform
2.1.3 Versatile Video Coding(VVC)
Traditional In-Loop Filters for VVC
Neural Network Based In-Loop Filter for Video Coding

3 Research Methodology

3.1
3.2
33
34
3.5

3.6

3.7

Over-fitting Video pipeline
Network Architecture L.
Training Dataset
Proposed filter positionin VVC
Over-fitting e
3.5.1 Model Evaluation Metrics
3.5.2 Hyperparameter Selection
Weight-update compression NNR
3.6.1 Hyperparameter Selection
VIMInference,

4 Simulation Results and Discussions

4.1
4.2

4.3
4.4
4.5
4.6

Default Configuration
ColorWeight Test
4.2.1 Over-fitting Color Weight Test
42.2 NNR Color Weight Test
Learning Rate and Learning Schedule Test
Loss Function Test
Model Save Metric Test,
NCTM Max Degradation Test

10
10
12
13
13
13

15
15
15
16
16
17
19

21
21
21
23
23
24
24
27
28
29
29

4.7 Optimal Base Model Test
4.8 Hyperparameter Selection

5 Conclusions

Symbols and abbreviations

Symbols
Y luminance (Y)
Cb, Cr Red and Blue chrominance color channels
r reference (original) images or videos
c compressed images or videos
A delta symbol
> summation symbol

Absolute value

Abbreviations

Al

ALF
BD-rate
CABAC
CCALF
chrominance or chroma
CNNs
Codec

CPU

CTC

CTU

CU

DBF

DCT

GPU
H.264/AVC
H.265/HEVC
H.266/VVC
1IEC

ISO

ITU

JPEG
JVET
LMCS
luma
MPEG

NN

NNR
NNVC
PSNR

PU

QP

RA

RelLU
SADL

SAO

TU

VTM
VCEG

All-intra

Adaptive Loop Filter

Bjgntegaard Delta rate

Context-Adaptive Binary Arithmetic Coding
Cross-Component Adaptive Loop Filter
Colour difference component
Convolutional Neural Networks
Coder-Decoder pair

Central Processing Unit

Common Test Conditions

Coding Tree Unit

Coding Units

De-Blocking Filter

Discrete Cosine Transform

Graphics Processing Unit

Advanced Video Coding

High-Efficiency Video Coding

Versatile Video Coding

International Electrotechnical Commission
International Standards Organization
International Telecommunication Union
Joint Photographic Experts Group

Joint Video Experts Team

Luminance Mapping Chrominance Scaling
represents brightness information in image
Moving Picture Experts Group

Neural Network

Neural Network Compression and Representation
Neural Network-based Video Coding

Peak Signal-to-Noise Ratio

Prediction Units

Quantization Parameter

Random Access

Rectified Linear Unit

Small AdHoc Deep Learning Library
Sample Adaptive Offset

Transform Units

Versatile Video Coding Test Model

Video Coding Experts Group

List of Figures

o) S O R S

Diagram of a block-based hybrid video coding system 11
In-loop filtersin VVC oL 18
Over-fitting video pipeline 22
NN architecture from JVET-ADO156 23
Proposed filter positionin VVC 24
NNRpipeline 28

List of Tables

1

JVET Mandatory Test video sequences 25
Network Information for NN-based Video Coding Tool Testing in

Over-fitting Stage e 26
Network Information for NN-based Video Coding Tool Testing in

Inference Stage Lo L 30
Default configuration 32
BD-rate of the default configuration. Anchor: NNVC 50 32
Over-fitting Color Weight Test. Anchor: NNVC 5.0 33
NNR Color Weight Test. Anchor: NNVC5.0 34
Learning Rate and Learning Schedule Test. Anchor: NNVC 5.0 .. 36
Loss function Test. Anchor: NNVC50 37
Model Save Metric Test. Anchor: NNVC50. 38
Fixed Max Degradation Test on Class D. Anchor: NNVC5.0 40
Fixed Max Degradation Test on Class C. Anchor: NNVC 5.0 41
Adaptive Max Degradation Test on Class D. Anchor: NNVC 5.0 . . 42
Optimal Base Model Test. Anchor: NNVC50. 43
Optimal Configuration 44
BD-rate of the Optimal Configuration. Anchor: NNVC 5.0 44

1 Introduction

In the ever-evolving landscape of multimedia technology, video compression stands as
a vital pillar that bridges the gap between the ever-increasing demand for high-quality
video content and the limited resources available for its storage, transmission, and
playback.

Following the successful standardization of video coding standards such as
Advanced Video Coding (H.264/AVC) [1] and High-Efficiency Video Coding
(H.265/HEVC) [2] in the field of video compression technology, Versatile Video
Coding (H.266/VVC) [3] emerged as the next generation of video compression
technology, aiming to further advance the state of the art in video coding.

This achievement was made possible through the collaborative efforts of the Joint
Video Experts Team (JVET), a collaborative group formed by the ITU-T Video
Coding Experts Group (VCEG) and the ISO/IEC Moving Picture Experts Group
(MPEG). In July 2020, VVC was officially ratified. The VVC standard represents a
significant advancement in video compression technology compared to its predecessor.
In Random Access (RA) Common Test Conditions (CTC) [4], VVC has demonstrated
an impressive improvement in compression efficiency, achieving a reduction in bit
rates by approximately 37% when compared to HEVC.

These standards brought about substantial improvements in video compression
efficiency, paving the way for high-quality video delivery over various networks and
devices.

1.1 How to resolve compression artifacts?

Versatile Video Coding (H.266/VVC) [3], which includes several fundamental modules
prediction, transform, quantization, and entropy coding, follows the traditional block-
based hybrid video coding structure, just like previous video coding standards [1, 2],
as depicted in Figure 1, which presents a simplified diagram of a blocked-based hybrid
video coding structure [5].

Within the hybrid coding framework, the encoding process begins with block
partitioning, which involves dividing a video frame into discrete, non-overlapping
coding blocks. These individual blocks serve as the foundational coding units (CU)
and become the building blocks for subsequent processing steps, including prediction
units (PU), transform units (TU), and so on. Compared to previous standards, extensive
partitioning options and more adaptable partitioning combinations are introduced to
VVC that provide higher coding efficiency [6].

This hierarchical structure allows for a systematic and efficient approach to video
compression, where each coding block undergoes specific operations to achieve
optimal compression results. A block-based coding system is distinguished by its
ease of development and hardware compatibility. It simplifies code and works
well with modern hardware designs, making it a viable option for video compression
solutions. Furthermore, this method effortlessly supports critical coding characteristics,
particularly parallelization, which is required for efficient video encoding and decoding.

Transform
- +) A
— Quantization

A
Inv. Transform
Inv. Quantization

. | Entropy | Bitstream
[7| Coding
3/ — Intra [* Y
Y
Loop filter
Reconstructed o
\ picture
s P Decoded
U Buffer
Y
\ v,
Motion
Estimation|

Figure 1: Diagram of a block-based hybrid video coding system

However, it’s worth noting that the block-based prediction and quantization
techniques employed in these existing compression frameworks [1, 2, 3] come with
certain drawbacks, including the emergence of discontinuities near the boundaries of
these blocks, the propagation of error information around texture contours, the loss of
high-frequency details. These problems correspond to the appearance of blocking,
ringing, and blurring artifacts, respectively. Addressing these artifacts is a central
focus in the ongoing evolution of video compression technologies.

Over the past several decades, considerable research efforts have been devoted to
addressing and mitigating compression artifacts in video coding. Hence, filters play
a crucial role in mitigating compression artifacts and enhancing the reconstruction
quality of the decoded video. There are two main categories of filters employed to
mitigate compression artifacts: in-loop filters and post-processing filters. The key
distinction between them lies in their application and impact on the video compression
process. In-loop filters, as the name suggests, are applied within the encoding and
decoding loops. They directly influence the compression process itself, and the filtered
data serves as a reference for subsequent stages. On the other hand, post-processing
filters come into play after the data has been decoded, hence the term "post-processing".
Their primary purpose is to enhance the visual quality of the decoded content.

In particular, extensive research has yielded a variety of in-loop filters [7, 8, 9, 10]
designed to mitigate artifacts and distortions in video coding. The VVC standard
incorporates five essential in-loop filters, each with a specific purpose to enhance
the quality of compressed videos. These filters are integral to mitigating various
compression artifacts and distortions: The luma mapping with chroma scaling (LMCS)
[11] aims at adaptively modifying the distribution of the coded sample for improved
coding efficiency [12], The de-blocking Filter (DBF) [13] is primarily utilized to

11

alleviate blocking artifacts, The sample Adaptive Offset (SAO) [14] is to minimize
ringing artifacts, The adaptive Loop Filter (ALF) [15] is dedicated to refining the
reconstructed signal with a particular focus on luma (brightness) samples concerning
the original signal, and The Cross-Component Adaptive Loop Filter (CCALF) aims to
correct adaptive clipping [12]. However, traditional filtering techniques often face
challenges in effectively reducing compression artifacts in videos.

In recent times, deep learning (DL) [16], particularly Convolutional Neural
Networks (CNNs), has achieved huge success in the field of image processing tasks,
including image recognition and classification, which provides a promising way for
image/video compression. Neural Network (NN) filters [17, 18, 19, 20, 21], leveraging
the power of artificial intelligence, offer promising solutions to this issue. NN filters
have demonstrated the ability to address multiple artifacts concurrently, making them
a valuable tool in enhancing video quality during the compression process. However,
most of the NN filters proposed in prior research are trained on large video datasets,
emphasizing the importance of generalization across various content rather than
specializing in content-specific adaptation.

1.2 Content Adaptation

Several previous studies have explored content adaptation by employing a selection
mechanism to choose the most appropriate CNN filter from a collection of candidate
models [18, 22]. In some cases, the selection of the optimal CNN filter is determined
using an additional learning-based NN model. In [9], the in-loop filters utilize a
discriminative Convolutional Neural Network (CNN) to choose the optimal NN filter.
Likewise, [22] treated filtering as a decision process and trained an agent to select the
best NN filter from a set of CNN filters with various architectures. These approaches
leverage machine learning to intelligently determine the suitable filter for artifact
reduction.

Meanwhile, several strategies have tackled content adaptation through NN over-
fitting [23, 24, 25]. In these approaches, the weight updates of neural networks are
transmitted to the decoder side along with the video bitstream. This allows the decoder
to adapt its processing based on the specific content of the video, enhancing the overall
compression and quality of the encoded video. In [23, 24], encoder-side over-fitting
was investigated to facilitate content adaptation for a pre-trained post-processing CNN
filter. This approach involves training or fine-tuning a pre-trained neural network
on the encoder side to adapt it to the specific characteristics of the video content
being processed. The weight updates resulting from this over-fitting process are then
transmitted along with the video bitstream to the decoder side. On the decoder side,
these weight updates are used to reconstruct the over-fitted CNN model before applying
it to the filtering process.

However, it’s important to take into account the additional bitrate overhead
associated with signaling weight updates. Neural Networks (NNs) have evolved
into more complex structures with a growing number of parameters, making them
increasingly demanding in terms of transmission between devices. Applications like
encoder-side over-fitting require efficient compression techniques to reduce bandwidth

12

requirements.

1.3 Compress NN parameters

In response to this need, the Moving Picture Experts Group (MPEG) has developed
the Neural Network Compression and Representation (NNR) standard [26]. The NNR
codec design encompasses a range of compression-efficient quantization methods,
which include uniform reconstruction, codebook, and dependent scalar quantization.
Additionally, it leverages the Deep Context-Adaptive Binary Arithmetic Coding
(DeepCABAC) [27] arithmetic coding method as a core encoding and decoding
technology. Furthermore, NNR provides NN pre-processing tools like sparsification,
pruning, low-rank decomposition, unification, batch norm folding, and local scaling,
which further optimize the compression of NN parameters.

Moreover, the NNR standard’s high-level syntax is equipped with mechanisms
that facilitate parallel decoding at both the block-row and sub-tensor levels. These
comprehensive features collectively contribute to the efficiency, effectiveness, and
adaptability of the codec, catering to a wide range of applications and use cases.

1.4 Research Proposal

This work introduces a content-adaptive in-loop filter for video compression working
with other VVC in-loop filters. Figure 3 illustrates the complete video over-fitting
pipeline. The content adaptation is achieved by over-fitting a pre-trained model at
the encoder side during the test phase using the input video sequence. Only a set of
new learnable parameters called multipliers [25] are over-fitted and signaled. Both
the encoder and decoder are expected to know the pre-trained models. To reduce the
bitrate overhead, the weight update resulting from the over-fitting process is efficiently
encoded using the Neural Network Compression and Representation (NNR) standard
and transmitted alongside the video bitstream. On the decoder side, the over-fitted
model is reconstructed before video decoding takes place. The proposed approach was
evaluated on the VVC Test Model (VTM) 12.0 with NN-based Video Coding (NNVC)
5.0 in the Random Access Common Test Conditions (RA CTC) for NNVC [4].

The results indicate coding gains of -2.07% (Y), -5.54% (Cb), -1.95% (Cr)
Bjgntegaard Delta rate (BD-rate) for Class B and -1.34% (Y), -1.88% (Cb), -0.52%
(Cr) Bjgntegaard Delta rate (BD-rate) for Class D with respect to the Peak Signal-to-
Noise Ration (PSNR).

1.5 Structure of the thesis

The remainder of this work is structured as follows:

2. Background briefly summarizes the existing research and literature and discusses
the traditional in-loop filter limitations.

13

3. Research Methodology details the methodology for the content adaptation
concept, including video over-fitting pipeline, Neural network architecture, and
hyperparameter pruning.

4. Simulation Results and Discussions we present and explain our results.

5. Conclusion concludes the main findings and suggests paths that are worthwhile
for future research activities.

14

2 Background

In this section, we will begin by reviewing the evolution of traditional video compression
standards. Subsequently, we will introduce the traditional in-loop filters incorporated
into the latest video compression standard, VVC (Versatile Video Coding). Finally,
we will summarize some research papers that delve into the application of neural
networks in the context of in-loop filters within the field of video compression.

2.1 Video Compression
2.1.1 The general path of video coding development

Over the past few decades, advancements in internet technology and device proliferation
have greatly facilitated the global transmission of information. Beyond the internet
speed and bandwidth capacity, the size of the data is equally pivotal, underscoring the
significance of data compression.

The history of video compression is a journey marked by relentless innovation and
continuous adaptation to the evolving needs of multimedia technology. Historically,
video compression began with analog methods aimed at reducing the bandwidth
required for transmitting video signals. Techniques such as time-division multiplexing
and frequency-division multiplexing allowed multiple video signals to share a common
channel. However, the digital revolution heralded a new era, bringing with it techniques
that would shape the future of video compression.

Among the pivotal milestones in this journey was the introduction of the Discrete
Cosine Transform (DCT) [28] in the 1970s. The DCT marked a watershed moment,
enabling spatial compression by converting image blocks into frequency domain
coeflicients. This technique found its first major application in the JPEG standard
[29] for image compression and later became the foundation for video compression
standards like MPEG-1.

In the early 1990s, MPEG-2 extended the capabilities of video compression,
enabling the storage and transmission of digital video content on DVDs, digital
television, and satellite broadcasts. The compression efficiency of MPEG-2 was a
significant leap forward, allowing for the delivery of high-quality video within limited
bandwidth constraints.

The next significant milestone in the evolution of video compression after MPEG-
2 was the development of H.264, also known as Advanced Video Coding (AVC)
[1]. H.264 represented a substantial improvement in compression efficiency over
its predecessors. It introduced advanced techniques such as inter-frame prediction,
variable block sizes, and entropy coding, which significantly reduced the bitrates
required for high-quality video.

H.264 quickly became the dominant video compression standard and played a
pivotal role in enabling high-definition video streaming and video conferencing over
the Internet. Its efficiency made it possible to deliver high-quality video content even
in environments with limited bandwidth.

15

Following H.264, the next major advancement was the introduction of High-
Efficiency Video Coding (HEVC or H.265) [2] in 2013. HEVC further improved
compression efficiency, making it possible to transmit 4K and 8K video content with
reduced bitrates. It became the foundation for modern video streaming services and
high-resolution video formats.

Indeed, following High-Efficiency Video Coding (HEVC or H.265), the next
significant advancement in video compression technology is the introduction of
Versatile Video Coding (VVC) [3], also known as H.266. VVC is the latest generation
video compression standard that aims to push the boundaries of compression efficiency
even further. Versatile Video Coding (VVC) was introduced to address the growing
demand for high-resolution video content, including 4K, 8K, and beyond while
optimizing data transmission and storage. VVC employs a range of innovative
techniques, including more advanced intra-frame and inter-frame coding, improved
motion compensation, and enhanced entropy coding. These advancements collectively
result in higher compression ratios and improved video quality.

Looking forward, the video compression field continues to evolve. Emerging
technologies such as the Alliance for Open Media’s AV1 codec, which offers royalty-
free and open-source compression, are poised to make significant contributions to the
industry. Additionally, research into machine learning-based compression algorithms
and real-time adaptability is ongoing, promising even more efficient and flexible video
compression solutions for the future.

2.1.2 Discrete Cosine Transform

The Discrete Cosine Transform (DCT) stands as a pivotal mathematical technique in the
domain of multimedia compression, serving as a cornerstone in numerous image and
video compression standards. Its significance lies in its capacity to transform spatial
pixel data into the frequency domain, thereby facilitating efficient data compression
while preserving essential visual information. Through its block-based processing
approach, where data is partitioned into manageable blocks, such as 8x8 pixel segments,
the DCT enables the removal of less perceptually significant data, leading to the
reduction of file sizes. This technique, coupled with quantization and optional entropy
coding, renders DCT-based compression typically lossy, balancing compression ratios
with acceptable image quality. As a fundamental component of standards like JPEG
for images and MPEG for video, the DCT plays a vital role in multimedia storage,
transmission, and display, underscoring its enduring relevance in the digital age.

2.1.3 Versatile Video Coding(VVC)

Versatile Video Coding (VVC), also known as H.266, is considered the most advanced
and contemporary video compression standard. The development of Versatile Video
Coding (VVC) was primarily motivated by the ever-increasing demand for higher-
resolution video content. This demand has been driven by the widespread adoption
of ultra-high-definition displays and the emergence of 4K and 8K video streaming
technologies. VVC was designed to address the need for more efficient compression

16

methods to deliver such high-resolution content over various networks and platforms.
In response to this evolving landscape, VVC has emerged as a transformative force,
pushing the boundaries of what’s achievable in video compression. It goes beyond its
predecessors by optimizing compression efficiency to an unprecedented level while
simultaneously elevating video quality. This remarkable achievement is the result of
extensive research and innovation, encompassing novel encoding techniques, improved
algorithms, and adaptive tools designed to address the diverse challenges posed by
modern multimedia applications. As the successor to High-Efficiency Video Coding
(HEVC), VVC not only inherits the legacy of its predecessors but also sets a new
standard for versatility and adaptability, making it an indispensable cornerstone in the
ever-evolving landscape of digital video technology.

2.2 Traditional In-Loop Filters for VVC

To mitigate the compression artifacts induced by the block-based compression process,
numerous in-loop filtering techniques have been proposed. VVC defines a set of
in-loop filters, each designed to address specific compression artifacts, ultimately
enhancing the quality of the encoded video [12].

In Figure 2 [30], we can observe the simplified VVC (Versatile Video Coding)
decoder block diagram, which places particular emphasis on the in-loop filter coding
blocks, highlighted by the red dashed line. This diagram offers a visual representation
of the complex procedures within VVC decoding and underscores the essential function
performed by the in-loop filters in improving both video quality and compression
efficiency. These filters play a critical role in refining the reconstructed video signal.
Before storing the reconstructed samples in the decoded picture buffer, five sequential
processing steps are employed. This process begins with the Luma Mapping with
Chroma Scaling (LMCS) Process, followed by the utilization of the deblocking filter
(DBF). Next in line is the application of the Sample Adaptive Offset (SAO) filter, and
lastly, the deployment of both the adaptive loop filter (ALF) and the Cross-Component
Adaptive Loop Filter (CC-ALF).

Here’s an overview of these in-loop filters:

* Luma Mapping with Chroma Scaling (LMCS) [11]: The LMCS step involves
adjusting the luma (brightness) values of the video samples and simultaneously
scaling the chroma (color) information. LMCS is a technique used to optimize
the visual quality and compression efficiency of the video by adjusting the
luminance and chrominance components separately.

* De-Blocking Filter (DBF) [13]: The DBF is a critical component for mitigating
discontinuities that frequently manifest at block boundaries. These discontinu-
ities arise due to the block-based prediction and transformation processes used
in video compression. DBF plays a pivotal role in ensuring that adjacent blocks
blend seamlessly, thus reducing the visual artifacts commonly associated with
block-based compression.

17

input residualf_\ transform/ | quant. transf. coeff.
video) 1 quantization i
1
1
l i
intra prediction inv. quant/ "
_ inv. transform ?;(;?Ifg >
T bitstreams
predicto ,
4 |
1 ! 9 i
| decoded ! :
E picture buffer | !
........... 1_________________-___ :
] ¥ I :
I] ALF,] I
' SAO [DBF M LMCS | ;oo - !
: CC-ALF : filter control data

in-loop filters

Figure 2: In-loop filters in VVC

» Sample Adaptive Offset (SAO) [14]: SAO is a crucial tool in the fight against
ringing artifacts, acommon consequence of the quantization step in compression.
By applying SAO, these unwanted visual distortions within individual blocks
are effectively diminished, resulting in a smoother and more pleasing visual
experience.

» Adaptive Loop Filter (ALF) [15]: ALF takes video quality enhancement to the
next level by precisely refining the luma (brightness) samples in the reconstructed
signal concerning the original input. This meticulous adjustment minimizes
discrepancies and further enhances the perceived image quality, ensuring that
viewers receive a more faithful representation of the source content.

* Cross-Component Adaptive Loop Filter (CC-ALF) [31]: In addition to luma
refinement, CC-ALF extends its capabilities to chroma (color) samples. By
meticulously adjusting both luma and chroma components, CC-ALF contributes
to the harmonization of color information, delivering a reconstructed signal that
remains faithful to the original source across all aspects of the video.

In addition to the in-loop filters that are integrated into video coding standards, there
have been studies [32, 33, 34] exploring various traditional filters aimed at reducing
compression artifacts. For instance, [32] leveraged non-local image information by
imposing a low-rank constraint on similar image patches, with the goal of reducing
compression noise. On the other hand, [33] introduced an adaptive wavelet domain
filter designed to suppress quantization noises in coded blocks within the frequency
domain. Furthermore, [34] utilized a bilateral filter to further diminish coding artifacts,
with particular emphasis on addressing ringing artifacts. However, it’s worth noting
that traditional filters typically make ideal assumptions about the nature of compression
artifacts and may not be capable of effectively addressing all situations. Due to the

18

complexity and diversity of compression artifacts stemming from video coding, the
performance improvements achieved by traditional filters remain relatively limited.

2.3 Neural Network Based In-Loop Filter for Video Coding

The successful utilization of Convolutional Neural Networks (CNNs) in various
low-level computer vision tasks, such as image restoration [35], recognition, and
classification, has propelled extensive research into CNN-based in-loop filters. These
investigations aim to significantly enhance the efficiency and effectiveness of in-loop
filters within the realm of video coding. By harnessing the potential of CNNss,
advancements in in-loop filtering have garnered substantial attention and effort,
contributing to a more refined and optimized approach to video coding. The success of
NN has spread to the field of video coding, where they have demonstrated the ability
to remove compression artifacts either as in-loop filters [10, 18, 19, 25, 20, 21, 17]
or post-filters [36, 37, 38]. In [20], a highly sophisticated recursive residual
convolutional neural network (RRCNN) is introduced as a solution for the reconstruction
of intra-frames. Additionally, in another study highlighted in [17], an innovative
approach employing a deep residual highway convolutional neural network (RHCNN)
is presented. This approach seamlessly integrates RHCNN into the in-loop filtering
process within the High-Efficiency Video Coding (HEVC) standard, effectively
addressing both intra and inter-mode filtering. However, in most frameworks, a single
offline trained NN does the filtering, in other frameworks, a set of candidate NNs are
evaluated and the one that offers the best results is selected.

NN over-fitting has emerged as a method to achieve content adaptation, leading to
enhanced coding efficiency. Figure 3 provides an overview of the complete over-fitting
pipeline.

On the encoder side, a pre-trained NN model is over-fitted on the input video
data. The pre-trained NN model is selected out of four candidate models based on
specific metrics, such as the model that achieves the highest PSNR gain. Rather than
transmitting the entire over-fitted NN model, a weight update is created by calculating
the difference between the over-fitted model parameters and the pre-trained model
parameters. This weight update is then compressed and encoded using the NNR
standard before being transmitted along with the video bitstream. Since over-fitting
only occurs on the encoder side, it is assumed that both the encoder and decoder know
the pre-trained models.

On the decoder side of the video compression system, the weight update that
was initially signaled from the encoder is received and undergoes a crucial sequence
of steps. The signaled weight update is first decompressed using the NNR (Neural
Network Representation) standard. Following the successful decompression, the
next step involves the careful integration of the received weight update with the
corresponding pre-trained NN model to reconstruct the over-fitted model before the
filtering process.

Earlier methods in this field primarily focused on addressing the bitrate overhead
incurred during the transmission of weight updates, with a particular emphasis on
mitigating over-fitting biases. The aim was to strike a balance between maintaining

19

video quality and reducing the data required for transmitting weight updates. However,
the landscape of video compression and neural network-based encoding has witnessed a
significant advancement with the introduction of innovative techniques, as exemplified
in [39]. In this groundbreaking work, a novel set of multipliers takes center stage as
a game-changing approach. These multipliers are strategically employed to further
minimize the already reduced bitrate overhead while simultaneously enhancing the
overall performance of the system.

20

3 Research Methodology

This section will discuss the proposed content adaptation scheme in detail, including
the base model network architecture, dataset, over-fitting process, and inference.

3.1 Overfitting Video pipeline

The over-fitting video pipeline is visually represented in Figure 3, and it can be
divided into two distinct parts: the encoder and the decoder side. The process of
content adaptation is accomplished by over-fitting a pre-trained neural network model
to the input video data. This adaptation step plays a pivotal role in optimizing the
video compression process to suit the specific characteristics of the content being
encoded or decoded. The pre-trained neural network (NN) model utilized as the default
low-complexity neural network loop filter in NNVC 5.0 was detailed in JVET-AD156
[40]. After the over-fitting process, the calculated weight updates (overfitted model
parameters - pre-trained model parameters) are coded with the MPEG-NNR standard,
and the bitrate overhead is considered in the BD-rate calculation. Then the weight
update will be signaled with the compressed video bitstream to the decoder. Since only
weight updates are signaled, not the entire NN models, the pre-trained NN models are
expected to be known by both the encoder and decoder sides.

The inference process was executed using the Small AdHoc Deep Learning
library (SADL) [41] and quantization was applied to achieve int16 precision. The
evaluation was performed on the JVET-NNVC common test conditions (CTC) [4] in
Random Access (RA) configurations. Notably, this evaluation enables neural network
intra-prediction and the (overfitted) low-complexity neural network loop filter.

On the encoder side, two essential signals are signaled to the decoder side: the
NNR bitstream (compressed weight updates) and the video bitstream. The decoder
side utilizes the signaled NNR bitstream to reconstruct the overfitted neural network
(NN) model. This reconstructed NN model is then employed to reconstruct the video
content, contributing to the enhancement of video quality during the decoding process.
A scaling factor is also signaled for each color component in picture headers which is
used to scale the residues before being added to the input data. The residues are the
difference between the input data and the reconstructed NN model output data.

3.2 Network Architecture

The pre-trained NN (NN-based loop filter) model network architecture is based on
JVET-ADO0156 [40] (Figure 4) which is the default (low-complexity) neural network
loop-filter in NNVC 5.0. The key difference is the integration of multiplier layers after
each convolutional block, serving to implement content adaptation and simultaneously
reduce the size of the signaled NNR bitstream.

This model comprises a total of N filter blocks, with N — 2 of them being
hidden layers (Figure 4). Within each hidden filter block, a configuration of two 1x1
convolution layers is connected by a leaky Rectified Linear Unit (ReLLU) activation

21

Overfitted

i Sm—
Video Overfit NN model

Pretrained Compute NN
NN model update

Pretrained
NN NN model

uj ptlate

NNR codec

Decoded
NNR decoder NN Update NN
update

NNR
bitstream

Decoded

NN update
f H Reconstructed

overfitted NN model

Update NN

Convert to SADL
Reconstructed (optional: quantize
overfitted NN model NN)

Convert to SADL
(optional: quantize
NN)

Encode video Video H Decode video Decoded
with VTM + NN . with VTM + NN)
bitstream Video
loop filter loop filter

Encoder Decoder

Figure 3: Over-fitting video pipeline

layer [42], followed by a subsequent 4 layers with rank R followed by fusion of
adjacent 1x1 convolution:

1. Ix1xKxR pointwise convolution
2. 3x1xRxR separable convolution
3. 1x3xRxR separable convolution

4. 1x1xRxK pointwise convolution

The base model takes as input a block of reconstructed samples measuring 128x128
CTU, along with 8 neighboring samples on each side of the CTU. Furthermore,
frame-level parameters, such as the Quantisation Parameter (QP) step and Deblocking
boundary strength (BS), are incorporated as additional input planes into the neural
network. The luma samples are interleaved into four 72x72-sized blocks, matching
the size of the chroma blocks. The model generates an output consisting of six filtered
blocks, sized at 64x64, comprising four luma blocks and two chroma blocks.

22

n Hidden Layers

nv IxIXMxK |

x1 cor

QStep =i
=3
]
> 11z 3
8
BS info
NxN &

Yxd+U+V
72x72x10

x1 cony IxIxKx
/ al elu
Ix1xRxM |

. Layers approximated with CP decomposition

Ix1 c

. Separable Convolution layers

ZH| CP decomposition + Fusion of adjacent 1x1 conv

Figure 4: NN architecture from JVET-ADO0156

3.3 Training Dataset

The pre-trained NN models are trained using two datasets: DIV2K [43] for All-Intra
(AI) and the BVI-DVC dataset [44] for Random Access (RA). Al involves compressing
each video frame independently, while RA enables quick and direct access to specific
frames within a video sequence. BVI-DVC provides video sequences containing 64
frames per frame, encompassing a range of resolutions from 2160p down to 240p.
DIV2K comprises 800 high-resolution images and six sets of low-resolution images
produced at various scales, each generated using distinct methods. The original image
and video data underwent compression using the VIM 12.0 NNVC 5.0. Consequently,
four pre-models were generated, comprising two models trained on Al-compressed
data and an additional two models trained on RA-compressed data. The pre-trained
models from this offline training stage are referred to as base models.

3.4 Proposed filter position in VVC

A Neural Network (NN) based loop filter is a neural network model that becomes part
of the loop filter chain within a video codec. It offers the flexibility to either replace
one of the existing loop filters or be seamlessly integrated into the existing loop filter
structure at any chosen position. Typically, the most commonly adopted positions for
its integration are just prior to (or concurrently with) the deblocking filter (DBF) and
similarly before (or in parallel with) the Sample Adaptive Offset (SAO) filter.

For a visual representation of this concept, Figure 5 offers a simplified overview of
the in-loop filter process and clearly illustrates the placement of the proposed NN-based
filter, which is positioned in parallel with the DBF filter. When an NN-based loop
filter operates in parallel with a non-NN loop filter, its outputs are combined using a
weighted sum, such as 0.5 times the NN output plus 0.5 times the DBF output, as an
example of blending.

23

In-loop filters

ALF, |
CC-ALF|

f S

Residual

Intrafinter Predicted

filter/block ——>»| Error compensation %Reconslmmion*%—b LMCS |—> DBF |——> Blending —» SAO |—>

Figure 5: Proposed filter position in VVC

3.5 Over-fitting

The test video sequences as shown in Table 1 are the mandatory sequences from JVET
common test conditions for NNVC [4]. The test video sequences are encoded with the
VTM 12.0 NNVC5.0 and the JVET CTC RA for NNVC. In this way, the reconstruction
video sequences are used as input to the base model to be overfitted. During over-fitting,
each reconstructed video sequence will utilize five distinct quantization parameter
(QP) values, specifically: 22, 27, 32, 37, and 42.

Four offline base models were generated using the mentioned training dataset. The
weight updates resulting from the over-fitting need to be signaled to the decoder, and
thus represent a bitrate overhead, only one base model was over-fitted per test (sequence
and QP) to reduce such overhead [45]. The optimal base model for over-fitting selection
is done by selecting the one providing the highest Peak Signal-to-Noise Ratio (PSNR)
gain on the first RA segment of the input video sequence. The selected optimal base
model will be over-fitted at the encoder side using the test video sequence as input data.
Since the optimal base model has a relatively large number of parameters, only a subset
of them are over-fitted to further lower the weight-update bitstream overhead. The
over-fitted parameters are a new set of learnable parameters, named multipliers [39]:

6 ((Wxx+b)+m)

where W is the kernel, * is the convolution operator, x is the input, b is the bias, m is
the multiplier and ¢ is the activation function.

Following the over-fitting process, NNR is employed to encode and compress the
weight-update information.

Table 2 shows the Network Information during the over-fitting stage.

3.5.1 Model Evaluation Metrics

We use multiple objective image quality metrics to measure the compressed videos.
Given a reference image r and the corresponding compressed image c, both of size
MxN.

* MSE (Mean Squared Error): The Mean Squared Error between the reference
and compressed images. The MSE between r and c is defined by:

M N
1
MSE(r.c) =~ > > (rij = 8i)°
I 1

24

Table 1: JVET Mandatory Test video sequences

Class Sequence name Frame count Frame rate Bit depth

A1 Tango2 294 60 10
A1 FoodMarket4 300 60 10
A1 Campfire 300 30 10
A2 CatRobot1 300 60 10
A2 DaylightRoad2 300 60 10
A2 ParkRunning3 300 50 10
B MarketPlace 600 60 10
B RitualDance 600 60 10
B Cactus 500 50 8
B BasketballDrive 500 50 8
B BQTerrace 600 60 8
C RaceHorses 300 30 8
C BQMall 600 60 8
C PartyScene 500 50 8
C BasketballDrill 500 50 8
D RaceHorses 300 30 8
D BQSquare 600 60 8
D BlowingBubbles 500 50 8
D BasketballPass 500 50 8
E FourPeople 600 60 8
E Johnny 600 60 8
E KristenAndSara 600 60 8
F BasketballDrill Text 500 50 8
F ChinaSpeed 500 30 8
F SlideEditing 300 30 8
F SlideShow 500 20 8

* PSNR (Peak Signal-to-Noise Ratio) [46]: Measures the ratio of the peak signal
power to the noise power and is typically expressed in decibels (dB). The
formula for PSNR is as follows:

MAX?
PSNR = 10><10g10()

MSE

where M AX is the maximum possible pixel value of the image or video (e.g.,
255 for 8-bit images).

* Delta PSNR (dPSNR): A measure of the change in PSNR before and after
applying the over-fitting process to an image or video. It is calculated as the
difference in PSNR values. The formula for delta PSNR is:

dPSNR = PSNRafter - PSNRbefore

25

Table 2: Network Information for NN-based Video Coding Tool Testing in Over-fitting
Stage

Network Information in Over-fitting Stage

GPU Type GPU NVIDIA A100-SXM-80GB

Framework TensorFlow 2.8.0

Number of GPUs per Task 1

Epoch 100 and 200 epochs
Mandatory | Batch size 64

Weighted-MAE and

Loss function Weighted MSE

Training time (for 1 model)

JVET CTC RA

Training data information
mandatory sequences

Training configurations for
generating compressed training
data (if different to VTM CTC)

Patch size 72x72
Learning rate
Optional Constant Learning Rate,
Learning rate update strategy ExponentialDecay and
ReduceLROnPlateau
Optimizer ADAM
Convert 144x144 YUV420
Preprocessing signal to 6 72x72 blocks.

(Normalize to 0 ~1)

26

* Positive delta PSNR (Positive dPSNR): A variation of delta PSNR that focuses
on the positive change in PSNR, indicating improvements in image or video
quality. It is calculated as the difference in PSNR values when the PSNR
improvement is greater than zero (positive values indicating better quality):

Positive dPSNR = max(0,dPSNR)

3.5.2 Hyperparameter Selection

To find the optimal hyperparameter combination, we conducted experiments encom-
passing various aspects, including the selection of:

* Over-fitting Color Weight: We employed two color weight configurations: 4:1:1
and 12:1:1, allocating weights to the luminance (Y), chroma blue (Cb), and
chroma red (Cr) components, respectively.

* Loss Function: Weighted Mean Absolute Error (MAE) and Weighted Mean
Squared Error (MSE). The weight comes from the pre-defined over-fitting color
weight, the formula for Weighted MAE loss is as follows:

C
MAEc, + ’

: MAE = _h
Weighted T Ycher YCbCr

Y MAEc,

YCbCr

where MAE is the Mean Absolute Error. The MAE between reference image r
and compressed image c is defined by:

| M
MAE(r,c) = WZZ Irij = &ij
T

We calculate separate MAE values for each color channel, denoted as MAEy,
MAEcp, MAE ¢, corresponding to the luminance (Y), chroma blue (Cb), and
chroma red (Cr) channels, respectively.

Similarly, the formula for weighted MSE is:

Cr

Weighted MSE =
ergnte YChCr

MSE
vcoer B * verer

MSEc) +

MSEc,

* Learning Rate: A set of learning rates that are determined empirically.

* Learning Schedule: Constant Learning Rate, ExponentialDecay and ReduceL-
ROnPIlateau.

* Model Save Metric: This parameter defines the metric utilized for selecting the
optimal model checkpoint during the over-fitting process. The available options
include Loss, PSNR, delta PSNR, and Positive delta PSNR concerning color
channels (Y, Cb, Cr).

27

NNR Encoder

Uniform Nearest
Neighbor Q.

Codebook Q.

Sparsification

g./\lcc)yo E> Pruning Bﬂ:;r;i :;m ‘

LR-Decomp.

Local Scaling

Original Unification P; Dependent Q.
Neural Net
o Optional Prepracessulngf Quantization Entropy Coding
Parameter Reduction 010111
NNR Decoder Bitstream $

Value
Reconstruction /
Rescaling

8\,0 Network Reconstruction /
/ O/O Re-Cormposition

Reconstructed
Neural Net Optional Postprocessing /

R FineTuning

i | Value Reconstruction! | Entropy Decoding

Figure 6: NNR pipeline

3.6 Weight-update compression NNR

As shown in Figure 3, base models (pre-trained NN models) are expected to be
known by both the encoder and decoder sides. Considering that over-fitting only
occurs at the encoder side, the NN weight update needs to be sent to the decoder side
to reconstruct the over-fitted base model. In order to compress NN weight update
efficiently, the Neural Network Compression and Representation standard (NNR) is
introduced which is the first international standard for efficient compression of neural
networks (NNs)[47, 26].

Figure 6 describes an overview of the NNR coding and decoding process which is
structured into three key stages [26]:

1. Parameter Reduction Methods: Obtain a more compact representation of the
model.

2. Parameter Quantization Methods: Discretize or represent parameter values with
lower precision, optimizing the efficiency of encoding.

3. Entropy Coding Methods: Encode the quantized parameters effectively which
ensures that the compressed data can be efficiently transmitted or stored while
minimizing information loss.

In this work, the weight updates were coded with the Neural Compression Test
Model (NCTM) [26]. The coding process involved uniform quantization, a QP density
of 2, and the CABAC unary length set to 10. The selection of the best QPs was
carried out through the application of the Inference-Optimized Quantization (I0Q)
technique [48] based on the performance of the NN at the inference stage. The iterative
I0Q process initiates with a small QP value. In each iteration, the NN weights are
quantized and encoded, resulting in a quantized NN. Subsequently, this quantized
NN is evaluated based on a specific performance criterion. The algorithm ends when

28

the performance gets lower than a given threshold, and the QP used in the previous
iteration is chosen as the optimal one.

In the context of this work, the performance criterion utilized is the APSNR,
which represents the Peak Signal-to-Noise Ratio (PSNR) difference between the
reconstructed output after the application of the over-fitted filter and the original input
prior to the filter’s application.

3.6.1 Hyperparameter Selection

* NNR Color Weight: We employed two color weight configurations: 4:1:1 and
12:1:1, allocating weights to the luminance (Y), chroma blue (Cb), and chroma
red (Cr) components, respectively.

* Max Degradation: The Maximum allowed degradation represents the difference
between the reference PSNR (typically the PSNR of the output of the non-
quantized NN model) and the quantized PSNR. This Max Degradation value
can be adaptative based on the bitrate of the video, which includes factors like
the quantization parameter (QP) and the resolution of the video.

3.7 VTM Inference

During the inference phase, SADL (Selective AdaDeep Learning) employs int16
precision, which means that the model’s parameters and intermediate activations
are quantized to int16 precision. The approach of quantization was presented in
JVET-ADO0156 [40] by means of normalization of weights and bias by scaling factors
to reduce the weights with large values. The scaling factor is signaled in the picture
headers for each color component and it is applied to scale the difference between the
input samples and the NN filtered samples, known as residues. These scaled residues
are then added to the input samples as part of the processing procedure.

After this process, the weights are quantized using a naive approach, and the
quantizers of bias, multipliers, input, and output are 11, 13, 11, and 13 respectively.

More information during the inference stage is shown in Table 3.

29

Table 3: Network Information for NN-based Video Coding Tool Testing in Inference

Stage
Network Information in Inference Stage

GPU Type CPU only
Framework SADL
Number of GPUs per Task
Number of Parameters (Each Model) | 53724

Mandatory | Total Number of Parameters
(All Models) 107448
Parameter Precision (Bits) Int16
Memory Parameter (MB) 0.21
Multiply Accumulate 16.5
(kMAC/pixel) '
Calculation Method on a block basis
Total Conv. Layers 46
Total FC Layers 0

. Total Memory (MB)

Optional Patch size 72X72
Changes to network
configuration or
weights required to
generate rate points
Peak Memory Usage (Total)

30

4 Simulation Results and Discussions

This section presents the results of performing the over-fitting video pipeline and
explores the results of minor modifications to the model and NNR configuration
based on those initial values. Section 4.1 presents the outcomes of the over-fitting
video pipeline with the default configuration. Section 4.2 examines the influence
of various loss functions. Section 4.3 investigates the impact of fixed learning rates
versus adaptive learning rates with different schedules on the final BD rate. Section
4.4 delves into the consequences of various model save metrics. Section 4.5 studies the
Max Degradation impact on NNR results and the final BD rate. Section 4.6 illustrates
the process of selecting the optimal base model based on various insights. Finally,
section 4.7 summarizes the best hyperparameter combination.

The over-fitting phase was conducted on GPU NVIDIA A100-SXM-80GB with
TensorFlow version 2.8.0. Subsequently, the inferences are performed on the JVET-
NNVC common test conditions in RA configurations [4]. The video encoding and
decoding processes were executed on CPU cores, specifically the Intel Xeon Gold
6154 clocked at 3.00 GHz.

The weight update compression was done with the Neural Compression Test
Model (NCTM) [26]. For 10Q the initial QP was -40. The coding used the default
configuration, uniform quantization, and QP density 2.

The anchor is NNVC 5.0, where both the default neural network low-complexity
filter and the neural network intra-filter are enabled. In the test, the neural network
intra-filter and the (overfitted) low-complexity loop filter are enabled. The base models
were obtained based on data coded by the NNVC 5.0 anchor.

The video quality is measured with the PSNR and the BR-rate [49] quantifies
the coding performance (lower means better). While the NNR bitstream is signaled
independently from the video bitstream, its bitrate was taken into account in the
BD-rate computation.

4.1 Default Configuration

Table 4 displays the default configuration of our over-fitting proposals while Table
5 presents the coding performance is improved by the over-fitted models [50]. For
the simulation results shown in Table 5, one of the base models is replaced with an
over-fitted one. The overall results are averages computed across classes Al, A2, B,
and C. The over-fitting process, conducted on a GPU, took approximately 11 hours for
classes A1l and A2, 7 hours for class B, 2.5 hours for class C, 1 hour for class D, and 4
hours for class F.

Due to time constraints, our forthcoming tests will primarily focus on the evaluation
of classes C and D.

4.2 Color Weight Test

In this section, we examine how different color weight configurations affect the
final BD-rate. Two color weight configurations were employed: 4:1:1 and 12:1:1,

31

Table 4: Default configuration

Hyperparameter Selection

Over-fitting Color Weight

4:1:1

NCTM Color Weight

4:1:1

Loss Function

Weighted-MSE

200 epochs for class C, D

Epoch 100 epochs for class A, B,F
Learning Rate 1e-3

Learning Schedule Constant Learning Rate
Model Save Metric Loss YCbCr

NCTM Max Degradation 0.05

Optimal Base Model

Highest PSNR

Table 5: BD-rate of the default configuration. Anchor: NNVC 5.0

Class Y -PSNR U-PSNR V-PSNR EncT DecT CPU
A1 -1.59% -3.96% -7.97% 97% 107%
A2 -0.22% -7.77% -6.84% 97% 106%

B -1.70% -8.42% -5.13% 98% 107%
C -1.06% -4.80% -3.17% 99% 106%

Overall -1.21% -6.43% -552% 98% 107%

D -0.80% -7.86% -7.23% 98% 107%
F -1.07% -7.51% -5.16% 98% 107%

32

Table 6: Over-fitting Color Weight Test. Anchor: NNVC 5.0

Over-fitting BD-rate Over NNVC-5.0

Color Weight Test | Y-PSNR | U-PSNR | V-PSNR | EncT | DecT CPU
4:1:1 -0.80% | -7.86% | -7.23% | 98% | 107%
12:1:1 -1.083% | -5.42% | -4.36% | 98% | 106%

with weights allocated to the luminance (Y), chroma blue (Cb), and chroma red
(Cr) components, respectively. Indeed, Y (luminance) is typically considered more
important than Cb and Cr (chrominance) in video coding and processing. This is
because the human visual system is more sensitive to changes in brightness (luminance)
than changes in color (chrominance). As a result, video compression algorithms often
allocate more bits and resources to preserving the quality of the luminance channel to
ensure that the overall video quality is visually acceptable.

4.2.1 Over-fitting Color Weight Test

Table 6 presents the results of testing various over-fitting color weight configurations
and their effects on the BD-rate.

Boosting the weight on the Luma (Y) component while reducing the weight on the
Cb and Cr components results in a notable improvement in the BD rate of Y-PSNR.
This adjustment places more emphasis on enhancing the luminance component,
which leads to better Y-PSNR performance. However, it comes at the cost of reduced
performance in the Cb and Cr components. This trade-off allows for more tailored
optimization of video quality based on priorities in different color channels.

4.2.2 NNR Color Weight Test

This experiment aims to find the most suitable NNR color weight configuration for
optimizing video quality during the coding process. Different weight combinations
for color channels (e.g., Y, Cb, Cr) are tested to understand how they affect the
overall video quality. Table 7 displays the results of testing different nnr color weight
configurations and their impact on the BD-rate.

Using a 12:1:1 color weight setting has shown significant improvements in Y-PSNR
(luma channel) while causing fewer changes in the chroma channels, namely U-PSNR
and V-PSNR. This indicates that the 12:1:1 color weight configuration prioritizes
enhancing the performance of the luma channel while accepting some trade-offs
in the chroma channels. In contrast, the over-fitting color weight setting sacrifices
performance in the chroma channels to achieve more gains in the luma channel,
making the 12:1:1 setting a more acceptable compromise.

4.3 Learning Rate and Learning Schedule Test

Table 8 provides the results of experiments testing different learning rates and learning
schedules. Three types of learning schedules were employed:

33

Table 7: NNR Color Weight Test. Anchor: NNVC 5.0

NNR BD-rate Over NNVC-5.0

Color Weight Test | Y-PSNR | U-PSNR | V-PSNR | EncT | DecT CPU
4:1:1 -1.03% | -5.42% | -4.39% |99% | 107%
12:1:1 -1.08% | -5.41% | -4.36% | 98% | 106%

34

* Constant Learning Rate The learning rate remains constant throughout training.

* Exponential learning rate decay In this schedule, the learning rate starts with
an initial value and is then reduced exponentially over time. The formula for
this decay is typically:

learning rate (t) = initial learning rate X decay rate'

where ¢ represents the current epoch. The decay rate is a hyperparameter that
controls the rate at which the learning rate decreases.

* ReduceLROnPlateau This learning rate schedule dynamically adjusts the
learning rate based on the model’s performance. If the monitored metric (e.g.,
MSE loss) stops improving or plateausing for a specified number of consecutive
epochs (controlled by the "patience" parameter), it triggers a reduction in the
learning rate.

For the Exponential learning rate decay and ReduceLROnPlateau schedules, a
common decay rate of 0.9 was used. These different learning rate schedules were
evaluated to determine their impact on training and coding efficiency. The choice of
learning rate and schedule can significantly influence the convergence and performance
of a neural network model.

Table 8 illustrates the impact of different learning rates and learning schedules
on the final BD-rate in video compression. The results indicate when using a bigger
learning rate (e.g., 1e-03), using learning schedules could help us improve model
performance, but when using a smaller learning rate, a constant learning rate works
best.

Table 8 provides insights into the impact of various learning rates and learning
schedules on the final BD-rate in video compression. The results suggest that the choice
of learning rate and learning schedule can significantly influence model performance:

* When using a larger learning rate (e.g., 1e-03), employing learning schedules
such as Exponential Decay and ReduceLROnPlateau can lead to improvements
in model performance. These schedules help adjust the learning rate during
over-fitting, allowing for better convergence.

* In contrast, when using a smaller learning rate, a constant learning rate appears
to work best. This finding suggests that with a sufficiently small learning rate,
the model’s weights are updated optimally without the need for learning rate
decay strategies.

4.4 Loss Function Test

Both MAE (Mean Absolute Error) loss and MSE (Mean Squared Error) loss are
commonly used in video compression for evaluating the quality of compressed video.
These loss functions measure the difference between the original (reference) video

35

Table 8: Learning Rate and Learning Schedule Test. Anchor: NNVC 5.0

Learning Rate and BD-rate Over NNVC-5.0
Learning Schedule Test Y-PSNR | U-PSNR | V-PSNR | EncT glicL:JT
16-02 ClassC | -1.09% | -1.28% | -0.58% | 99% | 107%
ClassD | -0.83% | -4.87% | -4.07% | 99% | 107%
Constant 16-03 ClassC | -1.28% | -1.68% | -0.52% | 99% | 106%
Learning Rate ClassD | -1.08% | -541% |-4.39% |99% | 107%
26-04 ClassC | -1.35% | -1.94% |-0.56% |98% | 106%
ClassD | -1.11% | -4.30% | -3.77% | 98% | 106%
1602 ClassC | -1.28% | -1.82% |-0.39% |98% | 107%

ClassD | -0.97% | -4.83% | -4.10% | 98% | 107%

ExponentialDecay | 1e-03 ClassC | -1.33% | -1.51% | -0.52% | 98% | 106%

ClassD | -1.11% | -4.69% | -4.29% | 98% | 106%

ClassC | -1.15% | -0.87% | -0.37% | 98% | 106%
2e-04

ClassD | -1.00% | -3.23% | -3.03% |98% | 106%

ClassC | -1.29% | -1.83% |-0.40% | 98% | 107%

1e-02 ClassD | -0.98% | -5.64% | -4.87% |98% | 106%

ClassC | -1.30% | -1.53% | -0.40% | 98% | 107%

ReducelROnPlateau | 1603 1-clocs D | 1.01% | 5.14% | -4.07% | 98% | 106%

ClassC | -1.14% | -0.89% | —0.36% | 98% | 107%
2e-04

ClassD | -1.01% | -3.39% | -3.33% | 98% | 106%

36

Table 9: Loss function Test. Anchor: NNVC 5.0

BD-rate Over NNVC-5.0
Y-PSNR | U-PSNR | V-PSNR | EncT | DecT CPU
MSE -1.14% | -493% | -4.23% | 98% | 107%
MAE -0.65% | -6.40% | -5.13% | 98% | 107%

Loss Function Test

and the compressed video. We calculate separate loss values for each color channel,
denoted as LossFunctiony, LossFunctioncp, LossFunctionc, corresponding to
the luminance (Y), chroma blue (Cb), and chroma red (Cr) channels, respectively.

e MAE (Mean Absolute Error): MAE loss calculates the absolute difference
between corresponding pixels in the reference and compressed videos and then
takes the mean of these absolute differences. It gives equal weight to all errors,
regardless of their magnitude. The formula for Weighted MAE loss is as follows:

Cr
ECb +

ohted MAE = MA
Weighted YChCr YChCr

AEy + MAE¢,

M
YCbCr

* MSE (Mean Squared Error): MSE loss calculates the squared difference between
corresponding pixels in the reference and compressed videos and then takes the
mean of these squared differences. It gives more weight to larger errors, making
it sensitive to outliers. The formula for weighted MSE is:

C
Ey + ——— MSE¢p + —

MSEc,
YChCr ycoor MSEe

Y
Weighted MSE =
clgnte YChCr

Based on the results from previous tests, it’s recommended to use the following
configuration settings:

* Learning Rate: 2e-4
» Learning Schedule: Constant learning rate

* Over-fitting and NNR Color Weight: 12:1:1

Table 9 illustrates the impact of different loss functions on the final BD-rate in
video compression. The results indicate that MSE loss outperforms MAE loss in terms
of achieving a lower BD-rate, suggesting that MSE is more effective in this specific
over-fitting (content adaptation) scenario.

4.5 Model Save Metric Test

Typically, the default model save metric is loss YCbCr. As we analyze in the Color
Weight Test, the luminance (Y) component is more important than other color channels.
Therefore, three types of model save metrics that are experimented with:

37

Table 10: Model Save Metric Test. Anchor: NNVC 5.0

BD-rate Over NNVC-5.0

Model Save Metric Test Y-PSNR | U-PSNR | V-PSNR

ClassC | -1.33% | -1.89% | -0.64%

Loss Y ClassD [1.14% | 4.93% | -4.28%
Constant Learning Rate Class C | -1.34% | -1.87% | -0.54%
2e-04 dPSNR Y Class D | -1.14% | -4.98% | -4.25%

Positive ClassC | -1.34% | -1.88% -0.54%

dPSNRY | ClassD | -1.10% | -4.87% | -4.28%

ClassC | -1.28% | -1.29% | -0.40%

LosSY ' GlassD [1.15% | -4.83% | -4.10%
ExponentialDecay ClassC | -1.31% | -1.39% | -0.53%
1e-03 dPSNR Y Class D | -1.12% | -4.52% -4.10%

Positive ClassC | -1.31% | -1.39% | -0.51%

dPSNRY | Class D | -1.07% | -5.19% | -4.15%

ClassC | -1.27% | -1.59% | -0.59%

Loss Y SlssD [1.05% | 5.14% | -4.15%
ReducelLROnPlateau ClassC | -1.27% | -1.31% -0.34%
1e-03 dPSNR ¥ ClassD | -1.05% | -5.18% | -4.09%

Positive ClassC | -1.30% | -1.53% | -0.40%

dPSNRY | Class D | -1.06% | -5.14% | -4.12%

1. Loss Y This model save metric focuses on the luminance (Y) component’s loss

during training. It prioritizes minimizing the loss in the Y channel, which is
typically considered the most important for visual quality. Saving the model
based on Loss Y means that the model version with the lowest loss in the Y
channel will be selected for further use or evaluation.

. dPSNRY (deltaPSNR Y): dPSNR Y represents the change in PSNR specifically
for the Y (luminance) channel. It measures how much the PSNR of the Y
component improves compared to the previous model checkpoint. Saving the
model based on dPSNR Y ensures that selecting the model checkpoint provides
the most significant improvement in Y channel quality.

. Positive dPSNR Y Similar to dPSNR Y, Positive dPSNR Y measures the
improvement in PSNR for the Y channel. However, it focuses on positive
improvements only. This means it considers only the cases where the Y channel
quality has improved, disregarding any negative changes. Saving the model
based on Positive dPSNR Y aims to prioritize models that consistently enhance
the Y channel’s quality.

Table 10 provides insights into how various model save metrics affect the final
BD-rate in video compression. The findings suggest that the positive dPSNR Y metric
yields the most favorable outcomes.

38

4.6 NCTM Max Degradation Test

The Max Degradation is defined by re fypsnr — quantized psyg. 1t could be adaptive
with respect to the bitrate of the video, e.g., adaptive wrt QP and resolution. For
example, for high bitrate video (low QP and/or high resolution), a lower max degradation
value may be used, allowing only for a small drop in accuracy and accepting a bit
more bitrate overhead from NNR. Conversely, for lower bitrate video (high QP and/or
low resolution), we cannot afford much bitrate overhead from NNR, thus we use a
high "max degradation" value, i.e., we allow for a bigger accuracy drop.

Table 11 presents the results of fixed max degradation experiments on class D, and
Table 12 displays the results of fixed max degradation experiments on class C. These
experiments involved testing max degradation values ranging from 0.001 to 0.006 for
all QPs (22, 27, 32, 37, 42) and using the same max degradation settings for each QP.

Table 13 provides the results of adaptive max degradation experiments on class
D. The max degradation is adaptive with respect to QP, and the value is defined as
follows:

adpative max degradation = de fault + Q Pipg.x * interval

This adaptive max degradation approach takes into account the QP value, allowing
for adjustments based on the video’s bitrate and resolution characteristics.

In the experiments, it was found that for fixed max degradation, the best max
degradation for class C is 0.002, and the best max degradation for class D is 0.005.
This result aligns with expectations, as for videos with lower bitrates (class D), a
higher max degradation can be tolerated. When using adaptive max degradation, the
best max degradation for class D was found to be de fault = 0.001 with an interval of
0.002. But as we could see from the max degradation experiment results, compared to
fixed max degradation, adaptive max degradation performs slightly better. Besides,
the adaptive max degradation with respect to the content of the video may be a future
topic, for example, in class D, the video Racehorses final BD rate improves a lot with
the max degradation increasing.

Overall, using adaptive max degradation with respect to QP or resolution does
show some improvement in performance, but not to the extent that was expected.
When comparing the default setting with a fixed max degradation of 0.005, for class
D BD rate Y-PSNR, the improvement ranged from —1.04% to —1.06%, and for class
C BD rate Y-PSNR, it ranged from —1.34% to —1.36%.

4.7 Optimal Base Model Test

The default base model selection involves choosing the model with the highest PSNR
gain and subsequently over-fitting that selected model. However, it’s possible that
the chosen model is already performing well and cannot be over-fitted significantly.
Therefore, we propose another alternative method for selecting the base model.
Table 14 provides insights into the impact of different base model selection
metrics. The findings demonstrate that over-fitting the base model with the highest
PSNR gain outperforms the model with the lowest PSNR gain. This discrepancy can

39

Table 11: Fixed Max Degradation Test on Class D. Anchor: NNVC 5.0

NCTM Fixed Max

BD-rate Over NNVC-5.0

Degradation Test Class D Y-PSNR | U-PSNR | V-PSNR | EncT g(;(l:JT
All -0.98% | -5.06% | -4.22% | 97% | 106%
BasketballPass | -0.58% | -3.62% | -3.64%

0.001 BQSquare -2.55% | -8.70% | -8.01%

BlowingBubbles | -0.64% | -2.35% | -2.30%
RaceHorses -0.15% | -5.57% | -2.95%
All -1.01% | -5.06% | -4.19% | 97% | 106%
BasketballPass | -0.61% | -3.56% | -3.51%
0.002 BQSquare -2.61% | -8.75% | -8.01%
BlowingBubbles | -0.66% | -2.37% | -2.27%
RaceHorses -0.15% | -5.57% | -2.95%
All -1.083% | -511% | -4.22% | 96% | 106%
BasketballPass | -0.61% | -3.56% | -3.51%
0.003 BQSquare -2.61% | -8.75% | -8.01%
BlowingBubbles | -0.68% | -2.31% | -2.37%
RaceHorses -0.23% | -5.80% | -3.00%
All -0.98% | -5.01% | -4.18% | 97% | 106%
BasketballPass | -0.54% | -3.45% | -3.49%

0.004 BQSquare -2.62% | -8.78% | -7.94%

BlowingBubbles | -0.68% | -2.31% | -2.37%
RaceHorses -0.07% | -5.49% | -2.91%
All -1.04% | -523% |-4.04% | 97% | 106%

0.005 BasketballPass | -0.57% | -3.76% | -3.45%

(default | BQSquare -2.62% | -8.78% | -7.94%

setting) | BlowingBubbles | -0.68% | -2.31% | -2.37%

RaceHorses -0.31% | -6.05% | -2.40%
All -1.04% | -5.23% | -4.04% | 97% | 106%
BasketballPass | -0.57% | -3.76% | -3.45%

0.006 BQSquare -2.62% | -8.78% | -7.94%
BlowingBubbles | -0.68% | -2.31% | -2.37%

RaceHorses -0.31% | -6.05% | -2.40%

40

Table 12: Fixed Max Degradation Test on Class C. Anchor: NNVC 5.0

NCTM Fixed Max

BD-rate Over NNVC-5.0

Degradation Test Class C Y-PSNR | U-PSNR | V-PSNR | EncT ggl:JT
All -1.35% | -1.76% | -0.45% | 100% | 107%
BasketballDrill -1.46% | -4.87% -2.04%

0.001 BQMall -0.89% | -0.37% | 1.23%

PartyScene -1.94% | -0.70% | -0.76%
RaceHorses -1.13% | -1.12% | -0.25%
All -1.36% |-1.82% |-0.56% | 100% | 107%
BasketballDrill | -1.47% | -4.89% | -2.03%
0.002 BQMall -0.90% | -0.44% | 1.18%
PartyScene -1.94% | -0.69% | -0.76%
RaceHorses -1.14% | -1.27% | -0.64%
All -1.36% | -1.82% | -0.53% | 100% | 107%
BasketballDrill | -1.46% | -4.92% | -1.94%
0.003 BQMall -0.91% | -0.39% | -1.23%
PartyScene -1.94% | -0.69% | -0.76%
RaceHorses -1.14% | -1.27% | -0.64%
All -1.34% | -1.88% | -0.49% | 100% | 107%
BasketballDrill -1.42% | -5.28% -1.81%
0.004 BQMall -0.90% | -0.48% | -1.81%
PartyScene -1.93% | -0.63% | -0.75%
RaceHorses -1.12% | -1.12% | -0.63%
All -1.34% | -1.87% | -0.54% | 98% | 106%

0.005 BasketballDrill | -1.45% | -5.45% | -1.98%

(default | BQMall -0.90% | -0.48% | 1.23%

setting) | PartyScene -1.88% | -0.41% | -0.77%

RaceHorses -1.12% | -1.12% | -0.63%
All -1.34% | -1.87% | -0.54% | 98% | 106%
BasketballDrill -1.45% | -5.45% | -1.98%
0.006 BQMall -0.90% | -0.48% | 1.23%
PartyScene -1.88% | -0.41% | -0.77%
RaceHorses -1.12% | -1.12% | -0.63%

41

Table 13: Adaptive Max Degradation Test on Class D. Anchor: NNVC 5.0

NCTM Adaptive Max

BD-rate Over NNVC-5.0

Degradation Test Class D Y-PSNR | U-PSNR | V-PSNR | EncT gﬁﬂ-

All -0.99% | -5.04% |-4.20% |99% | 107%
. BasketballPass | -0.61% | -3.56% | -3.51%
ic:i?\ljzi-odoooo11 BQSquare 2.62% | -8.78% | -7.94%
T BlowingBubbles | -0.72% | -2.46% | -2.43%
RaceHorses -0.03% | -5.36% | -2.91%

All -1.06% | -5.15% | -4.06% | 100% | 107%
BasketballPass | -0.63% | -3.45% | -3.52%
?net:::'l\jllati-O(iO:JZ BQSquare 262% | 8.78% | -7.94%
T BlowingBubbles | -0.68% | -2.31% | -2.37%
RaceHorses -0.31% | -6.05% | -2.40%

All -1.04% | -5.15% |-4.06% |99% | 107%
) BasketballPass | -0.55% | -38.44% | -3.51%
ﬁﬁtgi-odoooo; BQSquare 2.62% | -8.78% | -7.94%
T BlowingBubbles | -0.68% | -2.31% | -2.37%
RaceHorses -0.31% | -6.05% | -2.40%

All -1.05% | -5.22% | -4.05% |99% | 107%
) BasketballPass | -0.55% | -3.44% | -3.51%
%‘ﬁ\‘jgi_(’dooo& BQSquare 262% | -8.78% | -7.94%
T BlowingBubbles | -0.68% | -2.31% | -2.37%
RaceHorses -0.31% | -6.05% | -2.40%

All -1.05% | -5.11% |-4.22% |98% | 107%
] BasketballPass | -0.63% | -8.45% | -3.52%
%i?::i-odooooi BQSquare 262% | -8.78% | -7.94%
T BlowingBubbles | -0.68% | -2.31% | -2.37%
RaceHorses -0.28% | -5.89% | -3.03%

All -1.04% | -5.15% | -4.06% | 100% | 107%
) BasketballPass | -0.55% | -3.44% | -3.51%
ic:i;\ljgi-odoooozz BQSquare 2.62% | -8.78% | -7.94%
s BlowingBubbles | -0.68% | -2.31% | -2.37%
RaceHorses -0.31% | -6.05% | -2.40%

All -1.05% | -5.22% | -4.05% | 98% | 106%
) BasketballPass | -0.58% | -3.74% | -3.49%
ﬁ;ﬁtgi-odoooozs BQSquare 262% | -8.78% | -7.94%
T BlowingBubbles | -0.68% | -2.31% | -2.37%
RaceHorses -0.31% | -6.05% | -2.40%

42

Table 14: Optimal Base Model Test. Anchor: NNVC 5.0

BD-rate Over NNVC-5.0
DecT
Y-PSNR | U-PSNR | V-PSNR | EncT CPU

Optimal Base Model Test

The model achieves ClassC | -1.34% | -1.88% -0.52% | 98% | 107%

the highest PSNR gain | Class D | -1.11% | -4.93% | -4.28% | 97% | 107%

The model achieves Class C | 0.37% 1.25% 1.29% 99% | 105%

the lowest PSNR gain | Class D | 0.57% -1.92% | -1.79% | 99% | 104%

be attributed to the fact that the model with the lowest PSNR gain requires a greater
number of epochs to converge when compared to the model with the highest PSNR
gain.

* The model achieves the highest PSNR gain (default setting). Then we have 3
base models and one over-fitted model.

* The model achieves the lowest PSNR gain. Then we have 2 suboptimal models
and 2 good models (one is the base model with the highest PSNR gain, and the
other is the overfitted model derived from the base model with the lowest PSNR
gain).

4.8 Hyperparameter Selection

This section provides a summary of the results from the preceding tests, presenting the
optimal hyperparameter combination in Table 15. Furthermore, Table 16 illustrates
the BD rate results achieved using the configuration outlined in Table 15.

It’s worth noting that the over-fitting process, which was conducted on a GPU,
required approximately 2 days for classes Al and A2, 1 day for class B, 7 hours for
class C, 3 hours for class D, and 8 hours for class F. These processing times provide
an overview of the computational resources involved in the over-fitting experiments.

As observed from the preceding experiments, the following key insights and
summaries can be derived:

* Color weight Impact: Allocating more weights to the luma channel can lead to
a higher Y-PSNR in BD-rate. This is significant because, compared to the other
two color channels, the luma channel holds greater importance. Human eyes are
more sensitive to changes in brightness, making the quality of the luma channel
crucial in video compression and perception.

* Base Model Selection Impact: The choice of the base model significantly
influences the over-fitting process.

* Content-Adaptive Over-fitting: Over-fitting the base model to suit the specific
characteristics of the input video sequence improves performance. Content adap-
tation, achieved through over-fitting, enhances coding efficiency and perceptual
quality.

43

Table 15: Optimal Configuration

Hyperparameter Selection
Over-fitting Color Weight 12:1:1
NCTM Color Weight 12:1:1
Loss Function Weighted-MSE
Epoch 200 epochs
Learning Rate 2e-4
Learning Schedule Constant Learning Rate
NCTM Max Degradation | adaptive Max Degradation
Movel Save Metric Positive PSNR Y
Optimal Base Model Highest PSNR

Table 16: BD-rate of the Optimal Configuration. Anchor: NNVC 5.0

Class Y -PSNR Cb-PSNR Cr-PSNR EncT DecT CPU
B -2.07% -5.54% -1.95% 98% 107%
C -1.34% -1.88% -0.52% 99% 106%
D -1.11% -4.93% -4.28% 98% 107%

* NNR for Weight Compression: Utilizing the Neural Network Compression and
Representation (NNR) standard for compressing weight updates is an effective
strategy to minimize bitrate overhead while maintaining performance.

* Optimal Hyperparameters: Extensive experiments on hyperparameters for both
the over-fitting and NNR processes are crucial. Finding the optimal set of
hyperparameters is essential for achieving the best possible results.

44

5 Conclusions

In this work, we introduced a content-adaptive NN-based in-loop filter for VVC.
Content adaptation is achieved by over-fitting the base model selected from four
candidate models based on the input video sequence. As content adaptation only
occurs at the encoder side, weight updates need to be signaled to the decoder side to
reconstruct the over-fitted base model. For this purpose, we employed NNR, which is
the NN model parameters compression standard, to code and compress the weight
updates. Furthermore, rather than over-fitting all parameters of the base model, a set
of parameters known as multipliers is introduced. These multipliers play a crucial role
in reducing the overall bitrate overhead while simultaneously enhancing the overall
performance. Additionally, we understand that the success of our approach relies
not only on content adaptation but also on the careful selection and fine-tuning of
hyperparameters. Thus, we conducted a series of extensive experiments to identify the
optimal hyperparameters for both the over-fitting process and the NNR compression.
These experiments played a pivotal role in shaping the performance of our content-
adaptive in-loop filter. The results demonstrate the success of content adaptation and
the significant improvements achieved through hyperparameter pruning.

45

References

[1] T. Wiegand, G.J. Sullivan, G. Bjontegaard, and A. Luthra. Overview of the
h.264/avc video coding standard. IEEE Transactions on Circuits and Systems
for Video Technology, 13(7):560-576, 2003.

[2] Gary J. Sullivan, Jens-Rainer Ohm, Woo-Jin Han, and Thomas Wiegand.
Overview of the high efficiency video coding (hevc) standard. IEEE Transactions
on Circuits and Systems for Video Technology, 22(12):1649-1668, 2012.

[3] Benjamin Bross, Ye-Kui Wang, Yan Ye, Shan Liu, Jianle Chen, Gary J. Sullivan,
and Jens-Rainer Ohm. Overview of the versatile video coding (vvc) standard
and its applications. [EEE Transactions on Circuits and Systems for Video
Technology, 31(10):3736-3764, 2021.

[4] Jill Boyce, Karsten Suehring, Xiang Li, and Vadim Seregin. Jvet-j1010: Jvet
common test conditions and software reference configurations. 07 2018.

[S] Mohsen Abdoli. Intra Coding Tools for Versatile Video Coding (VVC). PhD
thesis, 06 2019.

[6] Yu-Wen Huang, Jicheng An, Han Huang, Xiang Li, Shih-Ta Hsiang, Kai Zhang,
Han Gao, Jackie Ma, and Olena Chubach. Block partitioning structure in the

vvc standard. IEEE Transactions on Circuits and Systems for Video Technology,
31(10):3818-3833, 2021.

[7] Tsu-Ming Liu, Wen-Ping Lee, and Chen-Yi Lee. An in/post-loop deblocking
filter with hybrid filtering schedule. Circuits and Systems for Video Technology,
IEEE Transactions on, 17:937 — 943, 08 2007.

[8] Siwei Ma, Tiejun Huang, Cliff Reader, and Wen Gao. Avs2 ? making video
coding smarter [standards in a nutshell]. IEEE Signal Processing Magazine,
32(2):172-183, 2015.

[9] Andrey Norkin, Gisle Bjontegaard, Arild Fuldseth, Matthias Narroschke, Masaru
Ikeda, Kenneth Andersson, Minhua Zhou, and Geert Van der Auwera. Hevc de-
blocking filter. IEEE Transactions on Circuits and Systems for Video Technology,
22(12):1746-1754, 2012.

[10] Ming-Ze Wang, Shuai Wan, Hao Gong, and Ming-Yang Ma. Attention-based
dual-scale cnn in-loop filter for versatile video coding. IEEE Access, 7:145214—
145226, 2019.

[11] Taoran Lu, Fangjun Pu, Peng Yin, Sean McCarthy, Walt Husak, Tao Chen,
Edouard Francois, Christophe Chevance, Franck Hiron, Jie Chen, Ru-Ling Liao,
Yan Ye, and Jiancong Luo. Luma mapping with chroma scaling in versatile
video coding. In 2020 Data Compression Conference (DCC), pages 193-202,
2020.

46

[12]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Marta Karczewicz, Nan Hu, Jonathan Taquet, Ching-Yeh Chen, Kiran Misra,
Kenneth Andersson, Peng Yin, Taoran Lu, Edouard Francois, and Jie Chen. Vvc
in-loop filters. IEEE Transactions on Circuits and Systems for Video Technology,
31(10):3907-3925, 2021.

Xiaoyan Sun, Feng Wu, Shipeng Li, and Wen Gao. In-loop deblocking filter for
block based video coding. In 6th International Conference on Signal Processing,
2002., volume 1, pages 33-36 vol.1, 2002.

Chih-Ming Fu, Elena Alshina, Alexander Alshin, Yu-Wen Huang, Ching-Yeh
Chen, Chia-Yang Tsai, Chih-Wei Hsu, Shaw-Min Lei, Jeong-Hoon Park, and
Woo-Jin Han. Sample adaptive offset in the hevc standard. IEEE Transactions
on Circuits and Systems for Video Technology, 22(12):1755-1764, 2012.

Chia-Yang Tsai, Ching-Yeh Chen, Tomoo Yamakage, In Suk Chong, Yu-Wen
Huang, Chih-Ming Fu, Takayuki Itoh, Takashi Watanabe, Takeshi Chujoh, Marta
Karczewicz, and Shaw-Min Lei. Adaptive loop filtering for video coding. IEEE
Journal of Selected Topics in Signal Processing, 7(6):934-945, 2013.

Yann LeCun, Y. Bengio, and Geoffrey Hinton. Deep learning. Nature,
521:436-44, 05 2015.

Yongbing Zhang, Tao Shen, Xiangyang Ji, Yun Zhang, Ruiqin Xiong, and
Qionghai Dai. Residual highway convolutional neural networks for in-loop
filtering in hevc. IEEE Transactions on Image Processing, 27(8):3827-3841,
2018.

Chuanmin Jia, Shiqi Wang, Xinfeng Zhang, Shanshe Wang, Jiaying Liu, Shiliang
Pu, and Siwei Ma. Content-aware convolutional neural network for in-loop
filtering in high-efficiency video coding. IEEE Transactions on Image Processing,
PP:1-1, 01 2019.

Dandan Ding, Lingyi Kong, Guangyao Chen, Zoe Liu, and Yong Fang. A
switchable deep learning approach for in-loop filtering in video coding. IEEE
Transactions on Circuits and Systems for Video Technology, 30(7):1871-1887,
2020.

Shufang Zhang, Zenghui Fan, Nam Ling, and Mingiang Jiang. Recursive residual
convolutional neural network- based in-loop filtering for intra frames. /EEE
Transactions on Circuits and Systems for Video Technology, 30(7):1888—1900,
2020.

Jian Yue, Yanbo Gao, Shuai Li, Hui Yuan, and Frédéric Dufaux. A global
appearance and local coding distortion based fusion framework for cnn based
filtering in video coding. IEEE Transactions on Broadcasting, 68(2):370-382,
2022.

47

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Zhijie Huang, Jun Sun, Xiaopeng Guo, and Mingyu Shang. Adaptive deep
reinforcement learning-based in-loop filter for vvc. IEEE Transactions on Image
Processing, 30:5439-5451, 2021.

Yat Hong Lam, Alireza Zare, Caglar Aytekin, Francesco Cricri, Jani Lainema,
Emre B. Aksu, and Miska M. Hannuksela. Compressing weight-updates for
image artifacts removal neural networks. ArXiv, abs/1905.04079, 2019.

Yat-Hong Lam, Alireza Zare, Francesco Cricri, Jani Lainema, and Miska M.
Hannuksela. Efficient adaptation of neural network filter for video compression.
In Proceedings of the 28th ACM International Conference on Multimedia, MM
’20, page 358-366, New York, NY, USA, 2020. Association for Computing
Machinery.

Maria Santamaria, Francesco Cricri, Jani Lainema, Ramin G. Youvalari, Honglei
Zhang, and Miska M. Hannuksela. Content-adaptive neural network post-
processing filter with nnr-coded weight-updates. In 2022 IEEE International
Conference on Image Processing (ICIP), pages 2251-2255, 2022.

Heiner Kirchhoffer, Paul Haase, Wojciech Samek, Karsten Miiller, Hamed
Rezazadegan-Tavakoli, Francesco Cricri, Emre B. Aksu, Miska M. Hannuksela,
Wei Jiang, Wei Wang, Shan Liu, Swayambhoo Jain, Shahab Hamidi-Rad, Fabien
Racapé, and Werner Bailer. Overview of the neural network compression and
representation (nnr) standard. IEEE Transactions on Circuits and Systems for
Video Technology, 32(5):3203-3216, 2022.

Simon Wiedemann, Heiner Kirchhoffer, Stefan Matlage, Paul Haase, Arturo
Marban, Talmaj Marin¢, David Neumann, Tung Nguyen, Heiko Schwarz,
Thomas Wiegand, Detlev Marpe, and Wojciech Samek. Deepcabac: A universal
compression algorithm for deep neural networks. [IEEE Journal of Selected
Topics in Signal Processing, 14(4):700-714, 2020.

N. Ahmed, T. Natarajan, and K.R. Rao. Discrete cosine transform. [/EEE
Transactions on Computers, C-23(1):90-93, 1974.

G.K. Wallace. The jpeg still picture compression standard. /IEEE Transactions
on Consumer Electronics, 38(1):xviii—xxxiv, 1992.

Zhijie Huang, Jun Sun, Xiaopeng Guo, and Mingyu Shang. Adaptive deep
reinforcement learning based in-loop filter for vvc. IEEE Transactions on Image
Processing, PP:1-1, 06 2021.

Kiran Misra, Frank Bossen, and Andrew Segall. On cross component adaptive
loop filter for video compression. In 2019 Picture Coding Symposium (PCS),
pages 1-5, 2019.

Xinfeng Zhang, Ruiqin Xiong, Weisi Lin, Jian Zhang, Shiqi Wang, Siwei Ma,
and Wen Gao. Low-rank-based nonlocal adaptive loop filter for high-efficiency

48

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

video compression. [EEE Transactions on Circuits and Systems for Video
Technology, 27(10):2177-2188, 2017.

Suhong Wang, Xiang Zhang, Shanshe Wang, Siwei Ma, and Wen Gao. Adaptive
wavelet domain filter for versatile video coding (vvc). In 2019 Data Compression
Conference (DCC), pages 73-82, 2019.

Jianle Chen, Marta Karczewicz, Yu-Wen Huang, Kiho Choi, Jens-Rainer Ohm,
and Gary J. Sullivan. The joint exploration model (jem) for video compression
with capability beyond hevc. IEEE Transactions on Circuits and Systems for
Video Technology, 30(5):1208-1225, 2020.

Vardan Papyan and Michael Elad. Multi-scale patch-based image restoration.
IEEE Transactions on Image Processing, 25(1):249-261, 2016.

Mingze Wang, Shuai Wan, Hao Gong, Yuanfang Yu, and Yang Liu. Anintegrated
cnn-based post processing filter for intra frame in versatile video coding. In 2079
Asia-Pacific Signal and Information Processing Association Annual Summit and
Conference (APSIPA ASC), pages 1573-1577, 2019.

Ren Yang, Mai Xu, Tie Liu, Zulin Wang, and Zhenyu Guan. Enhancing quality
for hevc compressed videos. IEEE Transactions on Circuits and Systems for
Video Technology, 29(7):2039-2054, 2019.

Fan Zhang, Chen Feng, and David R. Bull. Enhancing vvc through cnn-based
post-processing. In 2020 IEEE International Conference on Multimedia and
Expo (ICME), pages 1-6, 2020.

Maria Santamaria, Ruiying Yang, Francesco Cricri, Honglei Zhang, Jani
Lainema, Ramin G. Youvalari, Hamed R. Tavakoli, and Miska M. Han-
nuksela. Overfitting multiplier parameters for content-adaptive post-filtering
in video coding. In 2022 10th European Workshop on Visual Information
Processing (EUVIP), pages 1-6, 2022.

H. Wang, J Chen, Reuze A.M.Kotra, and M. Karczewicz. Eel-1.4: Tests on
neural network-based in-loop filter with constrained computational complexity.
Journal of Advanced Video Compression, 2021.

N. Liu, E. Segall, and R.-L. Liao. Jvet common test conditions and evaluation
procedures for neural network-based video coding technology. 2021.

Andrew L. Maas. Rectifier nonlinearities improve neural network acoustic
models. 2013.

Eirikur Agustsson and Radu Timofte. Ntire 2017 challenge on single image
super-resolution: Dataset and study. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) Workshops, July 2017.

49

[44] Di Ma, Fan Zhang, and David Bull. Bvi-dvc: a training database for deep video
compression. /IEEE Transactions on Multimedia, 2021.

[45] H. Wang, J Chen, Reuze A.M.Kotra, and M. Karczewicz. Eel-1.4: Tests on
neural network-based in-loop filter with constrained computational complexity.
Journal of Advanced Video Compression, 2021.

[46] Alain Horé and Djemel Ziou. Image quality metrics: Psnr vs. ssim. In 2010
20th International Conference on Pattern Recognition, pages 23662369, 2010.

[47] Compression of neural networks for multimedia content description and analysis.
Standard, ISO/IEC, 2022.

[48] Paul Haase, Daniel Becking, Heiner Kirchhoffer, Karsten Miiller, Heiko Schwarz,
Wojciech Samek, Detlev Marpe, and Thomas Wiegand. Encoder optimizations
for the nnr standard on neural network compression. In 2021 IEEE International
Conference on Image Processing (ICIP), pages 3522-3526, 2021.

[49] Gisle Bjgntegaard. Calculation of average psnr differences between rd-curves.
2001.

[50] Ruiying Yang, Maria Santamaria, Francesco Cricri, Honglei Zhang, Jani
Lainema, and Miska M. Hannuksela. Ahgl1: Content-adaptive neural network
loop-filter. In Journal of Advanced Video Compression, 2023.

50

	Abstract
	Preface
	Contents
	Symbols and abbreviations
	1 Introduction
	1.1 How to resolve compression artifacts?
	1.2 Content Adaptation
	1.3 Compress NN parameters
	1.4 Research Proposal
	1.5 Structure of the thesis

	2 Background
	2.1 Video Compression
	2.1.1 The general path of video coding development
	2.1.2 Discrete Cosine Transform
	2.1.3 Versatile Video Coding(VVC)

	2.2 Traditional In-Loop Filters for VVC
	2.3 Neural Network Based In-Loop Filter for Video Coding

	3 Research Methodology
	3.1 Over-fitting Video pipeline
	3.2 Network Architecture
	3.3 Training Dataset
	3.4 Proposed filter position in VVC
	3.5 Over-fitting
	3.5.1 Model Evaluation Metrics
	3.5.2 Hyperparameter Selection

	3.6 Weight-update compression NNR
	3.6.1 Hyperparameter Selection

	3.7 VTM Inference

	4 Simulation Results and Discussions
	4.1 Default Configuration
	4.2 Color Weight Test
	4.2.1 Over-fitting Color Weight Test
	4.2.2 NNR Color Weight Test

	4.3 Learning Rate and Learning Schedule Test
	4.4 Loss Function Test
	4.5 Model Save Metric Test
	4.6 NCTM Max Degradation Test
	4.7 Optimal Base Model Test
	4.8 Hyperparameter Selection

	5 Conclusions

