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Abstract
Unmanned aerial vehicles (UAVs), or drones, are revolutionizing industries due to their
versatility, affordability and applicability. Reliable communication links are essential
for UAV operations, especially for beyond visual line of sight scenarios where drones are
flown beyond the operator’s line of sight. Cellular networks, particularly in the context
of 5G and beyond, offer potential solutions to meet the data-intensive demands of UAV
applications. This study explores the feasibility of predictive quality of service for
forecasting uplink (UL) throughput quality of service (QoS) parameter in UAV payload
communication links. Comprehensive field tests were conducted to ensure accurate
real-world results, as simulations may not fully capture real-world complexities. Field
trial measurements were conducted in a sub-urban area to evaluate drone performance
at various altitudes and bands. This sheds light on potential challenges and trade-offs
for cellular-connected drones and their coexistence with terrestrial users. Drones
flying at high altitudes often experience line of sight propagation, causing them to
undergo frequent handovers between multiple base stations. Field trials demonstrated
that drones connected to a 700 MHz signal encountered minimal interference and
no handovers. Conversely, drones connected to the 3500 MHz frequency band faced
multiple handovers, highlighting the complexities of UAV-cellular integration and
emphasizing the significance of frequency band selection in drone applications. By
harnessing machine learning (ML) models and comparative analysis of centralized
and federated learning methods, this research investigates ML model performances
in forecasting UL throughput based on prediction accuracy. The findings emphasize
the importance of diverse training data and highlight the impact of frequency bands
on UAV communication. These insights lay the groundwork for addressing UAV
communication complexities and advancing the integration of machine learning and
network dynamics for improving UAV operations.

Keywords UAV, Predictive QoS, UAV Payload Communication, 5G , Machine
Learning



Preface
I would like to extend my sincere appreciation to Professor Petri Mähönen and my
advisors at VTT, Antti Heikkinen and Ijaz Ahmad for their invaluable guidance and
support during the course of my thesis. I am thankful to my previous advisor, Tiia
Ojanperä, in helping me navigate the process of selecting my research topic. My
heartfelt thanks to Timo Lind from VTT for drone flights, Antti Heikkinen for his
guidance in planning the experimental setup as well as Riku Seppanen from Mediatek,
for his contributions in data collection, all of which has been integral to this work’s
completion. I would also like to express my appreciation to Yasintha Rumesh from
VTT for helping me set up the federated learning environment and to Perttu Kurvi
from MediaTek for co-ordinating the data collection process and sharing the data. I
also extend my gratitude to the Drolo project, funded by Business Finland, and VTT
for providing me with this opportunity.

Finally, I want to extend my deepest gratitude to my family and friends for their
consistent encouragement and belief in me throughout this journey.

Otaniemi, 7 August 2023

Ann Varghese

4



Contents
Abstract 3

Preface 4

Contents 5

Symbols and abbreviations 7

1 Introduction 9

2 Cellular connected UAV communication 11
2.1 5G cellular technology overview . . . . . . . . . . . . . . . . . . . 11
2.2 UAV communication links . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Wireless channel propagation . . . . . . . . . . . . . . . . . . . . 14
2.4 Overview of UAV propagation in cellular network . . . . . . . . . . 15
2.5 Cellular communication performance indicators . . . . . . . . . . . 17
2.6 Characteristics and challenges of UAV channel propagation . . . . . 18

3 Overview of machine learning techniques used for QoS prediction 21
3.1 Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Extreme Gradient Boosting . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Long Short-Term Memory . . . . . . . . . . . . . . . . . . . . . . 23
3.4 Gated Recurrent Units . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5 Hyperparameters for LSTM and GRU . . . . . . . . . . . . . . . . 24
3.6 Federated Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.7 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 State-of-the-Art 28
4.1 Predictive Quality of Service . . . . . . . . . . . . . . . . . . . . . 28
4.2 Drone field trials . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5 Experimental evaluation 33
5.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.3 Analysis on performance difference in UE1 and UE2 . . . . . . . . 38
5.4 Implementation of ML techniques . . . . . . . . . . . . . . . . . . 42

5.4.1 Data pre-processing . . . . . . . . . . . . . . . . . . . . . 42
5.4.2 Feature engineering . . . . . . . . . . . . . . . . . . . . . . 44
5.4.3 Model training and hyper parameter tuning . . . . . . . . . 45
5.4.4 Random Forest and XGBoost hyperparameter tuning . . . . 46
5.4.5 LSTM and GRU hyperparameters . . . . . . . . . . . . . . 46

5



6 Results, analysis, and discussion 49
6.1 Evaluation of model performance on UE1 data . . . . . . . . . . . . 49
6.2 Evaluation of model performance on UE1 and UE2 data . . . . . . 52
6.3 Federated learning evaluation . . . . . . . . . . . . . . . . . . . . . 54
6.4 Insights and observations from the analysis . . . . . . . . . . . . . 56
6.5 Analysis on frequency 700 Mhz and 3500 Mhz for UAV . . . . . . . 58
6.6 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7 Conclusion 62

References 64

6



Symbols and abbreviations

Abbreviations
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NR_RSRQ New Radio Reference Signal Received Quality
NWDAF Network Data Analytics Function
PCI Physical Cell Identity
PC Payload Communication
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UE User Equipment
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UTM Unmanned Aircraft Systems Traffic Management
UAS Unmanned Aircraft System
UAV Unmanned Aerial Vehicle
V2X Vehicle to Everything
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1 Introduction
In recent years, unmanned aerial vehicles (UAVs), also known as drones, have gained
significant attention due to their availability, affordability, and ease of installation
and use. This has led to their widespread adoption across various fields, including
surveillance, search and rescue operations, packet deliveries, entertainment, and
military applications. Secure and reliable communication links between UAVs are
vital for the safe operation of both UAVs and their ground control stations, especially
in beyond visual line of sight (BVLoS) scenarios [5]. UAVs use two communication
channels: the command and non-payload communication (CNPC) link for control
instructions and the payload communication link for transmitting payload data, such
as video feedback and sensor information [10]. In order to meet the demands of both
CNPC and payload communications, it is necessary for UAVs to ensure uninterrupted
connectivity, reliable performance, and efficient data transmission, despite their
mobility in three-dimensional (3D) free space. Cellular networks equipped with
advanced technologies offer the potential to meet the high data rate demands of UAV
applications, such as real-time video streaming, due to their dense infrastructure and
advanced capabilities in 5G and beyond [1].

Specific requirements for key performance indicators in UAV usage have been
established by the 3rd Generation Partnership Project (3GPP) [30]. Key performance
indicators include latency and bandwidth within the 5G network for CNPC and payload
communication link. 5G cellular technology offers significant advancements in terms
of higher data rates, lower latency, improved reliability, and wider bandwidth, making
it highly promising for cellular-connected UAVs. However, the current cellular network
design primarily focuses on ground users, which poses challenges for UAVs due to
factors such as air to ground channel models, interference with base stations, and
frequent handovers, all of which affect communication performance [25].

Previous studies have evaluated the performance of uplink (UL) throughput in LTE-
A and 5G networks for UAVs, highlighting the impact of altitude on data transmission
and frequent handovers [8],[7],[9]. Network planning for UAVs presents challenges,
particularly in relation to potential problems with Physical Cell Identity (PCI) collision
and confusion [20]. Although accurate Channel State Information (CSI) is crucial
for resource allocation, communication delays and mobility-related beam switching
pose difficulties for UAVs [22]. These network-related issues interfere with data
transmission, emphasizing the need for differentiated treatment of ground and aerial
users as well as the identification of specific antenna configurations [7]. Moreover,
the dynamic nature of wireless channel conditions and network-related issues present
significant challenges in maintaining uninterrupted data transmission over cellular
networks, particularly in the context of automated piloting.

Uninterrupted data transmission could be achieved by using quality of service
(QoS) prediction. QoS ensures that network traffic is managed and prioritized to meet
specific service quality requirements, using metrics like latency, throughput, reliability,
jitter, and availability. The transmission of sensor data, including video streams, from
the vehicle to the operator, requires high uplink (UL) data rates, making data rate
predictions crucial for QoS among other metrics [55]. Recently, predictive quality of



service (PQoS) has emerged as a proactive approach for delivering efficient and reliable
services in autonomous systems [3]. However, no studies have attempted to predict
QoS parameters specifically for UAV payload communication links. By accurately
forecasting the QoS parameter, PQoS framework enables application adaptation, such
as video adaptation, based on the anticipated quality of service.

Therefore, the objective of this thesis is to evaluate the feasibility of using PQoS
for predicting the UL throughput QoS parameter in the payload communication link
of the UAV. In order to achieve this objective, physical layer radio metrics and UL
throughput at a particular time will be measured to collect data by flying a drone at
different altitudes to train time series machine learning (ML) models. To determine
the ML model most accurate in predicting uplink throughput, the thesis will compare
various centralized and decentralized ML models. The predictive ability of the ML
models will be validated by comparing the model predictions with a test dataset.

Since the scope of the thesis will be limited to evaluating the feasibility of using
ML techniques for predicting the UL throughput in 5G network for UAV mobility
scenarios, implementing application adaptation will be excluded from the scope.

The remainder of this thesis is organized as follows. Chapter 2 provides background
information related to UAV communication over cellular networks. Chapter 3 gives
an overview about the ML models used for QoS Prediction in this thesis. Chapter 4
presents the current state-of-the-art and related works in various applications. Chapter
5 describes the process of data collection and analysis, discussing the methodologies
employed for training of ML models. Chapter 6 presents the results obtained from
the experiments and proposes the development of future applications, potential future
research directions and highlights the challenges that may arise. Finally, chapter 7,
concludes by discussing the impact of the thesis results.
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2 Cellular connected UAV communication

2.1 5G cellular technology overview
The mobile access technology has undergone revolutionary changes approximately
every ten years, with each generation providing significant performance enhancements.
5G, the fifth generation of cellular network technologies established by the 3GPP,
builds upon previous generations (2G, 3G, and 4G) with significant performance
enhancements. The key technology that provides these performance enhancements for
5G are the following [50]:

• Millimeter wave spectrum: 5G operates in the high-frequency millimeter wave
spectrum ranging from 28 GHz to 95 GHz, in addition to the traditional frequency
spectrum below 6 GHz. This wider frequency band minimizes congestion and
enhances performance.

• Massive MIMO and beamforming: 5G employs massive multiple-input and
multiple-output (MIMO) technology, enhancing data transmission paths through
large antenna arrays in base stations and devices. This results in high spectral
efficiency and better energy utilization. Beamforming, directs signals by
modifying phase and magnitude, enhancing data delivery efficiency while
reducing interference. 5G utilizes full-duplex technology, allowing devices to
simultaneously transmit and receive data on the same frequency. This innovation
doubles wireless link capacity at the physical layer.

• Small cells and densely distributed networks: 5G incorporates small cell net-
works, especially in millimeter wave areas, to improve mobile broadband and
minimize latency. This facilitates edge computing, making it ideal for services
requiring low delays.

• Device-to-Device (D2D) Communication: 5G enables direct communication
between devices, reducing reliance on centralized infrastructure. D2D com-
munication supports applications like vehicle-to-vehicle communication and
peer-to-peer data sharing.

• Virtualization: 5G networks embrace virtualization technologies, including
software-defined networking (SDN) and network function virtualization (NFV).
SDN decouples data and control planes, enhancing configurability, while
NFV employs commodity hardware such as firewalls and routers for flexible
networking services [24].

• Network Slicing: Leveraging SDN and NFV, 5G employs network slicing to
create multiple virtual networks over a single physical infrastructure. This allows
tailored services for various users, but introduces complexities in security and
management [50].
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Compared to 3G and 4G, 5G promises lower latency (around 1 ms), increased
energy efficiency, and peak throughput of 10-20 Gbps. This greater bandwidth supports
diverse connected devices such as drones, vehicles, and augmented reality tools. A 5G
network can accommodate up to a million devices per square kilometre, significantly
enhancing user experiences and supporting edge deployment. 5G usage scenarios can
be classified across three main categories [2]:

• Enhanced mobile broadband (eMBB): This category aims to provide an improved
user experience with higher performance. 5G networks are designed to handle
a massive number of connected devices and support a high density of users
in crowded areas and also promises significantly faster data transfer rates
compared to previous generations. This improved capacity ensures a seamless
and consistent user experience, even in busy urban environments or at large
events.

• Ultra-reliable and low latency communications (URLLC): In this category,
strict requirements for reliability, low latency, and availability are essential.
5G networks offer ultra-low latency, reducing the time it takes for devices to
communicate with the network. Applications include tactile internet, intelligent
transport systems, vehicle-to-everything (V2X) communication, remote medical
surgery, smart grids, public protection and disaster relief, and wireless control
of industrial manufacturing.

• Massive machine type communications (mMTC): This category encompasses a
variety of applications, although traffic patterns are not fully characterized. It
involves a very large number of devices with relatively low or high volumes of
non-delay-sensitive data. The emphasis here is on low-cost devices with long
battery life.

The deployment options for 5G consist of two architectures: Non-Stand Alone
(NSA) and Stand-Alone (SA). In the NSA architecture, the 5G Radio Access Network
(RAN) i.e., gNB and its new radio (NR) interface are utilized alongside the existing
LTE eNB and evolved packet core (EPC) infrastructure core network. This means
that the NR technology is integrated into the current 4G network without a complete
network replacement. In this architecture, control plane functionalities are anchored
to LTE. In this configuration, only the 4G services are supported, but the 5G New
Radio offers additional capabilities such as lower latency. The NSA architecture as
shown in Figure 1 is also referred to as "E-UTRA-NR Dual Connectivity (EN-DC)"
or "Architecture Option 3" [46].

The SA architecture as illustrated in Figure 1 involves the NR being directly
connected to the 5G Core Network (CN). In this configuration, the full set of 5G Phase
1 services is supported. Unlike NSA, which relies on existing 4G infrastructure, the SA
architecture provides a complete 5G network, enabling the full range of 5G services.
In the Stand-Alone (SA) architecture of 5G, the New Radio (NR) base stations, also
known as "gNB" (gNodeB), establish connections with each other through the Xn
interface. The Access Network, referred to as Next-Generation Radio Access Network
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Figure 1: 5G deployments.

(NGRAN) i.e., gNB for SA architecture, connects to the 5G Core Network (5GC)
using the NG interface. This setup allows for the establishment of a complete and
independent 5G network, providing the full range of 5G services and functionalities
[46].

2.2 UAV communication links
Cellular-enabled UAV communication utilizes existing 4G LTE or 5G/B5G cellular
networks via base stations (BSs) unlike traditional point-to-point connections between
UAV and controller. This approach enhances performance compared to traditional
UAV-ground communication in terms of reliability, security, coverage, and throughput.
It enables safe and reliable CNPC links for BVLoS operations, extending UAV
operation range. The high-capacity and global reach of cellular networks allow UAVs
to communicate with end users even at great distances through high-speed backhaul
links between cellular BSs [10]. UAVs can operate autonomously without direct
piloting, executing predefined tasks. The control center, responsible for guiding and
supervising the UAV, can be located remotely, leveraging an Internet connection to
manage the UAV’s actions.

The effectiveness and safety of a UAV flight depend on the data flows that appear
throughout the mission. UAV connectivity is made possible using two separate
communication channels, called the Command and Non-Payload link also referred as
Command and Control (C2 or C&C) and payload communication link as illustrated in
Figure 2. C2 link ensures secure and reliable communication between UAV and the
controller. C2 is responsible for navigation, waypoint updates, telemetry reports, air
traffic control just to name a few [39].

Payload communication link is used for data applications like video streaming,
aerial surveillance, and data backhaul hence demands larger throughput. UAVs often
require high-capacity data communication links with ground terminals to promptly
transmit payload data, such as high-quality video and high-rate backhauled data. This
payload communication is distinct from CNPC and typically demands significantly
higher transmission rates [10]. Latency requirement for payload communication is
application specific, for instance, in the case of real time communication (real time
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Figure 2: An overview of UAS/UTM ecosystem connected through 5G system [47].

video communication for surveillance), higher throughput and reliability are QoS
parameters of interest, while applications where the UAV records data and offloads it
after the flight, latency requirement is not a strict measure as the former scenario.

Figure 2 presents a simplified view of the unmanned aerial system (UAS) ecosys-
tem interconnected through 5G system (5GS). UAV equipped with a 5G terminal
(i.e., UE) utilizes communication channels for C2, unmanned aerial system traffic
management (UTM) connectivity, and exchange payload data tailored to specific
use cases. Ground Control Stations (GCS) can connect through the 5G network or
other wireless technologies. The 5G system includes Radio Access Network (RAN)
and Core Network (CN), facilitating user communication in the User Plane (UP)
via Control Plane (CP) mechanisms [47]. Communication between UAVs and their
control stations falls under the scope of the 3GPP standards. This communication
includes the exchange of C&C instructions from the control station to the UAV, as
well as UL and DL data transmission between various components of the UAS. The
3GPP core network integrates UTM services, including UAV authentication, policy
enforcement, and UAV location tracking [27].

2.3 Wireless channel propagation
In wireless communication systems, three main components are involved: the trans-
mitter (Tx), the receiver (Rx), and the wireless channel connecting them. The wireless
channel represents the real environment through which the transmitted signal prop-
agates. Understanding the wireless channel is crucial for designing and analysing
wireless communication systems. Large-scale fading and small-scale fading are the
two types of fading. Path loss (P), and shadowing (S) both belong to the category of
large-scale fading [31].

Path loss is a crucial element in wireless communication, since it denotes the
reduction in signal strength during transmission from the Tx to the Rx. The reduction in
signal strength, known as attenuation, can be attributed to a range of factors including
free-space loss, refraction, diffraction, and reflection. The received power (𝑃𝑅) in
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free-space path loss is given by the formula:

𝑃𝑅 = 𝑃𝑇𝐺𝑇𝐺𝑅

(︃
4𝜋𝐷
_

)︃2
, (1)

where: 𝑃𝑅 is the received power, 𝑃𝑇 is the transmitted power, 𝐺𝑇 is the transmitter
antenna gain, 𝐺𝑅 is the receiver antenna gain, 𝐷 is the distance between the transmitter
and receiver, and _ is the carrier wavelength.

Equation (1) demonstrates the correlation between path loss and carrier wavelength,
revealing that shorter wavelengths result in higher path loss. A line of sight (LoS)
connection between the Tx and Rx corresponds to a propagation in free space, which is
considered the most basic path-loss model. Under conditions of free-space propagation,
it can be observed that the power of the received signal diminishes proportionally to
the square of the distance between the Tx and Rx. Nevertheless, it is important to
note that wireless signals in real-world settings seldom encounter ideal free-space
propagation conditions. Therefore, many path-loss models have been presented in
order to accurately represent the propagation characteristics in urban, rural, and indoor
environments. Several often-employed models in the field are Okumura-Hata, Lee,
and Walfish-Ikegami. Practical investigations have demonstrated that the path-loss
exponents seen in these models generally span from 3 to 8, implying a greater degree
of signal attenuation compared to free-space environments [31].

In addition to path loss, wireless signals also encounter shadowing or shadow
fading. This effect is caused by stochastic fluctuations in the received power at a given
distance, resulting from obstructions such as buildings and trees. Shadowing can
be modelled as a lognormal random variable, following a log-normal distribution.
Large-scale fading is significant for network-level system design, as it has a direct
impact on several aspects such as cell coverage area, outage, and handoff decisions
[31].

Small scale fading (h) results from constructive and destructive interference of
multiple signal paths between the Tx and Rx. It leads to rapid variations in received
signal power over distances of the order of the wavelength. Small scale fading plays a
crucial role in link-level performance, impacting factors like bit error rates and average
fade duration [31].

Therefore, the overall characterization of the wireless channel can be expressed as:
g = P · S · h, where g represents the combined effects of path loss, shadowing, and
multipath fading [31].

2.4 Overview of UAV propagation in cellular network
UAV to base station propagation is influenced by flying environment and surroundings.
The propagation models are subject to alterations not just based on flight altitude
and distance, but also due to the specific environmental conditions present [48]. The
illustration in Figure 3 depicts the primary propagation paths, including LOS paths
and multipath components (MPCs) resulting from reflection, scattering, or diffraction
by obstacles (scatterers) [37].
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Figure 3: UAV air-ground propagation paths adapted from [37].

The presence of LOS links is more likely for small UAVs, and it depends on the
heights of the UAV, base station, and local obstacles. LOS links help reduce fading
and path loss, enabling the use of smaller transmit power levels, which is beneficial
for reducing hardware size, weight, cost, and interference to nearby receivers [32].

The channel impulse response (CIR) comprises both the LOS component and
MPCs. MPCs are influenced by the number of objects near the GS and the UAV’s
altitude. If LOS components and numerous MPCs coexist, small-scale fading can
often be modelled as Ricean [32].

Delay dispersion in low-altitude scenarios is primarily influenced by geometric
factors, typically resulting in small root mean square delay spreads (RMS-DS) of less
than 1 microsecond, often around a few hundred nanoseconds. In most cases, higher
UAV altitudes lead to decreased delay spreads due to the increased likelihood and
strength of the LOS component. However, unique scenarios can lead to the opposite
behavior; for instance, in a study, a UAV’s ascent near reflective metal shipping
containers caused strong reflections at a certain altitude threshold, resulting in an
increase in RMS-DS above this threshold altitude [48].

The velocity of UAVs affects Doppler shifts and spreads, and mobility can
introduce rapid changes in the CIR, including intermittent MPCs. Antenna effects play
a significant role in UAV channels. Simple monopole antennas mounted vertically on
UAVs may exhibit nulls directly below the aircraft, and the aircraft’s structure and
materials can affect the antenna patterns, leading to amplitude variation even in strong
LOS channels as UAVs ascend or descend [32].
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2.5 Cellular communication performance indicators
In the context of cellular communication, network performance indicators differ
between 4G and 5G due to their associations with specific signal components. In 4G,
these indicators are linked to the Cell Specific Reference Signal (CRS), whereas in 5G,
CRS is not used. Instead, the Channel State Information (CSI) and Synchronization
Signal (SS) are employed as part of the performance evaluation. The common
performance indicators for assessing cellular communication are elaborated below
[56]:

• Reference Signal Received Power (RSRP) computes the average power of the
received signal from the base station. This metric is used for various purposes
like UE cell selection, reselection, and handover. RSRP is measured in decibel
milliwatts (dBm). A lower RSRP value could potentially suggest an unreliable
or unstable connection.

• Reference Signal Received Quality (RSRQ) is a cell specific measure that
indicates the quality of the reference signal received. RSRQ is utilized to
differentiate between cells based on signal quality. It complements RSRP
measurements and aids in making decisions regarding cell reselection and
handover.

• Received Signal Strength Indicator(RSSI) measures the total power of the
signal received by the UE across the entire frequency band .RSSI metric takes
into consideration the primary signals, cochannel non-serving signals, and noise
present within the designated frequency range. In LTE systems, it contributes to
calculating the RSRQ indicator. RSSI is expressed in dBm.

• Signal-to-Noise Ratio (SNR) signifies the quality of the signal and represents the
ratio between the power of the received signal and the combined interference and
noise. SNR helps in determining throughput values based on radio conditions.
SNR can also assist in calculating the channel quality, particularly the channel
quality indicator. SNR is measured in dB.

• Channel quality indicator (CQI) assesses the quality of the communication
channel. CQI messages are periodically exchanged between the UE and gNB,
enabling the reporting and validation of the current channel quality. The indicator
ranges from 0 to 15, with higher values indicating superior channel quality. CQI
value reflects the modulation and coding level that the UE can operate on.

Typical parameter values associated with signal quality levels are illustrated in Table
1 ranging from very poor (cell edge) to poor (mid cell), good and excellent reception
conditions [60]. These performance indicators play a crucial role in evaluating the
quality, stability, and efficiency of cellular communication in both 4G and 5G networks
[56].
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Table 1: Range of 5G signal quality indicators.

Radio frequency conditions RSRP (dBm) RSRQ (dB) SINR (dB)
Excellent >=-80 >=-10 >=20

Good -80 to -90 -10 to -15 13 to 20
Midcell -90 to -100 -15 to -20 0 to 13

Cell Edge <=-100 <-20 <=0

2.6 Characteristics and challenges of UAV channel propagation
A cellular-connected UAV has more flexible mobility and a higher altitude working
environment compared to terrestrial users in a cellular network. These factors
present opportunities and problems for the optimization of cellular-enabled UAV
communication [13]. Shadow fading, also referred to as large-scale fading, incorporates
the environment’s impact on radio transmission, including hills, buildings, and other
obstructions. The surroundings (for example, urban, rural, etc.), the radio frequency
being used, and the likelihood of LoS between the sender and receiver are some of the
factors that affect this [14].

UAV to ground channels is complex, altitude dependant and is susceptible to
blockage [15]. The mobility of the UAV also introduces challenges like beam selection
even though 5G comes with better directional beams. Higher altitudes give good LoS
connectivity with the base station and has less shadowing, whereas lower altitude
comes with lesser pathloss [16]. LoS probability with base station increases with height
of UAV, a UAV flying at a height of 100 m is considered to be in LOS connectivity with
multiple BS deployed in the network [26]. Figure 4 illustrates the same. Therefore,
the optimal altitude for UAV operation is hard to estimate.

Figure 4: UAV Communication link and interference from other BS’s.

The current base stations are designed considering the terrestrial users, and the
base station antennas have a downward tilt for better connectivity for ground users.
This also impose a challenge to cellular connected UAV communication. Hence for
seamless connectivity, in case of drones, specific antennas or antenna configurations
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need to be identified. The authors in the literature [17], [18] studies the performance
evaluation of UAV connected to a commercial 5G base station.

Performance evaluation of UL throughput of UAV in LTE-A networks is performed
in [8]. The experimental setup analyses the effect of throughput and signal quality with
respect to UAV altitude. A decreased performance suggests that data transmission uses
more resources and takes longer time. Frequent handovers associated with increased
LoS connectivity base station with height is also demonstrated in [8].

The challenge of drone handovers is depicted in Figure 5, illustrating the connec-
tivity of the same drone at different positions with base stations (Base Station A and
Base Station B). In the case of a ground user equipment (GUE), a handover occurs
when the received power from base stations is similar, otherwise, the GUE remains
connected to the serving cell. However, as shown in Figure 5 a drone positioned at
Position 1 is connected to base station A (𝐵𝑆𝐴), even though it is in proximity to base
station B (𝐵𝑆𝐵). By ascending to Position 2, the drone switches its connection to 𝐵𝑆𝐵.
Transitioning horizontally from Position 3 to Position 4 results in a switch back to
𝐵𝑆𝐴 [7].

Figure 5: Handovers experienced by drone at different positions [7].

In article [7] the authors present this frequent handover challenge associated with
cellular connected drones through experiments. In comparison to ground users moving
at the same pace, a drone flying at an average height of 150 meters is anticipated to
experience five cell changes per minute as opposed to just one [7]. Frequent handovers
increase the likelihood of handover failures as the UE must restore connection which
results in increased latency and failed data transmissions [19]. GUEs and aerial UEs
need to be treated differently and specific antenna or antenna configurations should be
defined [7].

Challenges associated with network providers when planning network coverage
considering coverage for flying users as well as the potential PCI collision and
confusion problems are discussed in [20]. At present PCIs are allocated considering
terrestrial users. 5G has almost the double the number of distinct PCIs than LTE [20].
PCI’s allocation is in such a way that same PCIs are reused at a distance to avoid PCI
collision. The UAV flying at a higher altitude have the possibility of LOS connectivity
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to multiple cells with same PCI and therefore makes it difficult to detect the best
serving cell.

A CSI is an indication of the state of the channel like CQI. UAV’s need to send
the CSI information to the base station so that the scheduler at the base station can
schedule resources according to the channel quality [22]. If the communication time
between UAV to base station (feedback delay) is very long, then the scheduler might
not adapt to the sudden change which in-turn affects resource allocation. If the base
station underestimates the channel quality, there can be a waste of spectral resources.
On the other hand, if the base station overestimates channel quality, it can result in
failed transmission [22]. UAV’s need to send CSI information more frequently than
base stations due to their higher mobility and 3D movement [23]. In high mobility,
UAV encounter more beam switching due to the narrower beams which makes it
difficult to perform channel estimation and link adaptation. A decreased performance
suggests that data transmission uses more resources and takes longer time.
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3 Overview of machine learning techniques used for
QoS prediction

3.1 Random Forest
Decision trees are the central component of the random forest (RF) regression method.
A decision tree is a model that looks like a tree and simplifies the process of making
difficult decisions by breaking them down into a series of questions. Each internal
node, also known as a decision node, in the tree indicates a query pertaining to a
particular aspect of the data. Based on the answer to this question, the model follows
one of the branches to reach the next node or leaf node.

Random forest builds an ensemble of decision trees, each of which is trained on a
distinct subset of the training data, as opposed to depending on a single decision tree
to make its predictions. Bootstrap sampling is a method that draws random samples
from the initial set of training data in order to construct these subsets. This method is
used to generate these subsets. Because each tree is trained independently on its own
subset, the resulting perspectives offered by the trees are distinct from one another.

Once all decision trees have been trained, they predict the target variable in-
dependently for new data points. The final prediction of the random forest model
for regression tasks (such as predicting UL throughput) is derived by averaging the
predictions of all the individual trees, i.e., the output is the average of all decision tree
predictions.

The role and function of each hyperparameter during the model training process
are outlined as follows [44]:

• n_estimators: The number of decision trees in the random forest ensemble is
determined by this parameter.

• max_depth: It regulates the depth to which the tree can grow during the training
procedure. A higher value may result in overfitting, whilst a lower value may
result in underfitting.

• min_samples_split: This option defines the minimum number of samples
required to split a tree’s internal node. It ensures that a node has at least this
many samples before being evaluated for splitting.

• min_samples_leaf: This option specifies the minimum number of samples that
must be present at a leaf node. It guarantees that each leaf node has at least this
many samples.

• max_features: This parameter specifies the number of features to take into
account while determining the optimal split.

Random forest regression decreases the risk of overfitting by aggregating the
predictions of numerous trees. Overfitting occurs when a model becomes too particular
to the training data and performs poorly on new data. The ensemble of various trees
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strengthens the model, allowing it to generate correct predictions even in the presence
of noisy or missing data. Random Forest can handle both numerical and categorical
variables, making it adaptable to a wide range of data sources. It maintains huge
datasets efficiently, making it suited for data-intensive applications [69].

3.2 Extreme Gradient Boosting
Extreme gradient boosting (XGBoost) regressor is a sophisticated machine learning
model that is well-known for its outstanding performance and popularity in numerous
data science competitions and real-world applications. It is a member of the boosting
algorithm family, which builds a strong predictive model successively by integrating
the outputs of numerous weak learners.

Decision trees, similar to the random forest are at the heart of XGBoost regressor.
XGBoost, on the other hand, uses decision trees as "base learners" rather than merging
them in parallel, like random forest does. Each decision tree is a simple model that
deconstructs complex data patterns into a set of if-else rules, which allows the model
to generate correct predictions.

XGBoost’s main technique is boosting. It iteratively constructs a sophisticated
prediction model by incrementally adding decision trees. Each tree is trained to rectify
the mistakes committed by the ones before it. XGBoost focuses on difficult to predict
data points in this manner, steadily boosting its effectiveness as additional trees are
added.

To maximize the model’s performance, XGBoost employs gradient boosting. It
minimizes the loss function by iteratively fitting fresh trees to the loss function’s
negative gradient with regard to the expected values. This aids the model’s ability to
learn and improve its predictions over time.

XGBoost also includes regularization algorithms to control overfitting. Complex
models are penalized by regularization, ensuring a balance between predicted accuracy
and model complexity. As a result, XGBoost achieves superior generalization to
previously encountered data [67].

The learning rate and the number of trees are two critical hyperparameters in
XGBoost. Each iteration’s step size is determined by the learning rate, while the
number of trees indicates the total number of decision trees in the ensemble. It is
critical to tune these hyperparameters in order to achieve peak performance. The
important hyperparameters are explained below [63]:

• learning_rate: The learning rate, also known as the step size or eta, controls the
contribution of each tree in the ensemble. A smaller learning rate makes the
model more robust but may require more boosting iterations to converge.

• max_depth: This parameter determines the maximum depth of each individual
tree. A smaller value limits the depth of the trees, making them shallow.
Shallow trees are less complex and tend to generalize better, reducing the risk
of overfitting. For instance, if the maximum depth is set to 3, each tree will have
a maximum depth of 3 levels.
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• n_estimators: The number of boosting rounds or trees to build. More trees can
improve the model’s performance, but it also increases the computational cost.
For example, if n_estimators is 200, the ensemble will consist of 200 trees and
the model will iteratively add trees to the ensemble during the training process.

• max_features: This parameter controls the number of features to consider when
looking for the best split at each tree node.

3.3 Long Short-Term Memory
Long Short-Term Memory (LSTM) is an advanced type of neural network introduced
in by Hochreiter in 1997 to tackle the challenge of learning long-term dependencies in
sequential data. It is designed with memory cells comprising simpler units and various
gates for controlling information flow. LSTM addresses the vanishing gradient issue
in time series data by effectively controlling information flow. It manages essential
information transfer and prediction. The hyperbolic tangent (tanh) activation function
facilitates the passage of the previous hidden state to the subsequent unit. The hidden
state serves as a memory for past data. LSTM incorporates gates, namely, forget,
input, and output gates to determine the retention or elimination of information before
passing it forward. The basic components in LSTM architecture are the following:

• Memory cells: The memory cells are the core of the LSTM and play a crucial
role in storing information over time. They have an internal state, also known as
internal memory which allows the model to remember important patterns and
dependencies in the sequential data.

• Input node: The input node receives sequential data and passes it through the
hidden layers of the LSTM for further processing. The input node processes the
incoming data and prepares it to be fed into the memory cells.

• Constant error carousel: This is a self-connected recurrent edge with a constant
weight in the memory cells. This mechanism allows error signals to flow across
time steps without diminishing, addressing the vanishing gradient problem that
can occur in deep networks and recurrent neural networks (RNN).

• Multiplicative gates: LSTM uses sigmoidal units, known as gates, to control
the flow of information within the memory cells. These gates include the Input
gate, output gate, and forget gate.

– Input gate controls which new information from the current input should
be stored in the memory cell. Sigmoid activation function decides on the
information to retain.

– Output gate decides what information from the internal memory state
should be used to produce the output. It regulates the output, thereby,
allowing the LSTM to focus on relevant information for the given context.
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– Forget gate determines what information from the previous memory cell
state should be discarded. It helps the LSTM discard irrelevant information
enabling efficient memory management.

By using these gates, the LSTM can selectively update its memory cells, retain
important information, forget unnecessary details, and produce relevant output when
needed. This ability to control the flow of information through the gates is what allows
the LSTM to handle long-term dependencies effectively [34] [35].

3.4 Gated Recurrent Units
The Gated recurrent unit (GRU) is a type of RNN architecture that uses gating
mechanisms to control information flow between its cells. Introduced in 2014, GRUs
are a more recent development compared to LSTM networks proposed in 1997.

GRU’s structure includes gating units responsible for selectively capturing de-
pendencies from long sequences of data, avoiding the vanishing/exploding gradient
problem of traditional RNNs. These gates regulate the information to be kept or
discarded at each time step.

The GRU cell functions similarly to an RNN, with sequential input data and hidden
state flowing through each time step, producing the desired output.

GRUs have two gates: the reset gate and the update gate. These gates, represented
as vectors of values between 0 and 1, selectively filter out irrelevant information while
preserving important data. The reset gate determines what portion of the previous
hidden state is used, while the update gate decides how much of the past information
is retained for the future.

The computations within a GRU cell involve calculating the reset gate and update
gates based on the previous hidden state and current input data. The reset gate helps the
model remember relevant information, while the update gate determines the amount
of past information to keep for the future. The final output is a new hidden state,
capturing both short and long-term dependencies [66].

Due to one fewer gate and fewer matrix multiplications, the GRU structure is
simpler than LSTM. Particularly in instances involving lengthy text and small datasets,
this advantage enables GRU to reduce time without compromising efficiency. However,
actual study demonstrates that this benefit of GRU is restricted to particular cases.
In other circumstances, particularly when working with larger datasets or more
complicated sequences, GRU frequently experiences a more pronounced performance
loss than LSTM. With the advancement in computing power and when computational
bottlenecks are eliminated, LSTM is better able to manage long-term dependencies
and capture complicated patterns in sequential data, making it more suitable for these
scenarios [33].

3.5 Hyperparameters for LSTM and GRU
The configuration of each hyperparameter can notably influence the LSTM’s effec-
tiveness. The experiments in [34] emphasize that the construction of LSTM layers and
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the weighting of parameters play a crucial role in achieving greater accuracy. Dense
layers in the model lead to a deep and comprehensive representation of the data [34].
Prior research in this had demonstrated that fine-tuning LSTM hyperparameters can
result in competitive performance, even against LSTM models with more complex
architectures [57].

hyperparameter combination tested for LSTM and GRU were the same because
they followed a similar model architecture. These parameters include:

• neurons_1: This hyperparameter represents the number of neurons in the first
layer of the model.

• neurons_2: This hyperparameter represents the number of neurons in the second
layer of the model.

• learning_rate: This hyperparameter determines how quickly the model adjusts
its internal parameters during training, influencing the convergence speed.

• epochs: The number of epochs represents the number of times the model will
iterate through the entire training dataset during training.

• batch_size: This hyperparameter defines the number of training examples used
in a single iteration of training. It impacts training speed and memory usage.

3.6 Federated Learning
Federated learning (FL) presents a promising strategy for applications that require
sensitive inference in beyond 5G networks. This approach offers several advantages,
including reduced end-to-end latency, efficient network resource utilization, and
enhanced user data privacy [38]. In this context, both the training time and global
model accuracy play crucial roles in federated learning.

Internet of Things (IoT) devices engage in local dataset training, and subsequently,
the trained parameters are transmitted to an edge server-based global model for
further processing. The edge server aggregates the model parameters and determines
the coherent global model after collecting contributions from all IoT devices. This
process significantly reduces the training duration of the global model, as local
training and parameter transfer to the global model are less time-consuming [38]. The
communication delay to the edge server depends on the dynamic wireless channel
conditions, and this delay varies due to the changing radio resources. As different
devices provide local training parameters at various times, it impacts the accuracy of
the resulting global model. Federated learning encompasses different scenarios:

• Cross-device FL involves millions of devices with sensitive information. The
server orchestrates the cooperation among these devices/clients for model
training. Once training is complete, the models are deployed on selected
devices.
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• Cross-silo FL involves coordination with various institutions, often with larger
datasets. Institutions might be hesitant share all sensitive data, so collaboration
involves privacy-preserving methods.

In classical ML flow, data is gathered and stored in the cloud, a model is trained
by an individual, tested, and then deployed to devices. In federated learning, data is
decentralized across individual devices, and coordination is necessary between the
service provider and these devices to enable the training and evaluation of machine
learning models.

Devices periodically communicate with the server to check if they need data to train
a model. The server responds based on its availability. If available, the server instructs
the device to compute or update a model using local data. This marks the initiation of
the federated learning process. The model can start with random initialization or be
pre-trained on publicly available data. Devices perform local model training using
their own data. The updates made to the model are based on local computation, often
involving multiple stochastic gradient descent (SGD) iterations.

After updating the model locally, the device sends the update back to the server.
Only the updates to the model, and not raw data, are shared with the server to maintain
privacy. These updates are transient and are only retained for a short time before being
erased, ensuring privacy. The server collects the model updates from the devices and
calculates an overall model update using a weighted average. This process is known
as Federated Averaging (FedAvg).

The FedAvg process can be repeated for multiple iterations to improve the global
model’s accuracy over time. Once the global model has reached a desired accuracy
or convergence level, it can be used for inference. The trained global model resides
on the central server. Devices can request predictions from the central server without
sharing their local data. The central server performs inference using the global model
and returns predictions to the devices. Offloading computation to multi-access edge
computing (MEC) can reduce communication delays and enhance critical Beyond-
5G applications [38]. However, optimizing UAV trajectories, communication, and,
computation scheduling is a challenge due to their mobility and the need for frequent
parameter exchange [25].

3.7 Evaluation metrics
The average absolute difference between the true values and the anticipated values
is measured by the mean absolute error (MAE). It offers a simple method to rate
how accurate the model’s predictions are. Since MAE takes the absolute value of the
errors, it is less susceptible to outliers. MAE is calculated as follows:

MAE =
1
𝑛

𝑛∑︁
𝑖=1

|predicted𝑖 − true𝑖 |. (2)

The mean squared error (MSE) computes the average of the squared differences
between the predicted values and the true values. MSE is frequently employed in

26



regression tasks and, because it assigns larger weights to large mistakes, is more
susceptible to outliers. MSE is calculated as in the following equation :

MSE =
1
𝑛

𝑛∑︁
𝑖=1

(predicted𝑖 − true𝑖)2. (3)

The square root of the MSE is the root mean squared error (RMSE). A more
comprehensible indicator of prediction accuracy is provided by RMSE, which obtains
the error in the same units as the target variable. RMSE is computed by :

RMSE =
√

MSE. (4)

The average percentage difference between the predicted values and the true values is
calculated using the mean absolute percentage error (MAPE), which is calculated by
the given equation:

MAPE =
1
𝑛

𝑛∑︁
𝑖=1

|︁|︁|︁|︁predicted𝑖 − true𝑖
true𝑖

|︁|︁|︁|︁ × 100. (5)

In the case of MAE, MSE and RMSE metrics, lower values are better. Values closer
to zero indicate that the model’s predictions are closer to the actual values, which
is a desirable outcome. The ideal value of MAPE is generally as low as possible,
ideally close to zero. In many cases, a MAPE of 10% or less is considered quite
good. The assessment metric chosen is determined by the specific problem, the
nature of the data, and the context of the research. For example, MAE and RMSE are
frequently employed for regression assignments, whereas MAPE is frequently utilized
in forecasting scenarios [36].
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4 State-of-the-Art
In this section, previous research efforts concerning predictive quality of service and
experimental investigations involving drones are explored.

4.1 Predictive Quality of Service
The concept of PQoS is presented in [3], where the authors describe PQoS as a
proactive approach to QoS management that enables fully autonomous systems to
deliver efficient and reliable services. Proactive behaviour allows for more effective
network modifications than reactive solutions similar to those used in 5G, which react
to unexpected occurrences only after they happen. The authors also illustrate use
cases like autonomous vehicles, particularly teleoperated driving (ToD), and industrial
automation. The authors also describe how PQoS aids in safe adaptations to a different
operational mode with network conditions and point out that the prediction horizon is
case-specific. As a case study, the measurement campaign was conducted in Munich,
Germany, and ML training was done on real-time data collected during measurements.
The measurement scenario resembled a ToD scenario where the vehicle sends a video
stream to the teleoperating centre with a maximum uplink throughput of 40 Mb/s.
The input features used were RSRP, SINR, uplink and downlink throughput, location
information, and the velocity of the vehicle. Deep Neural Networks (DNN) vs. linear
regression were compared, and it was observed that the DNN based deep learning
model gave good prediction results over the long term. SINR and location were
determined to be the most prominent features in both linear regression and DNN.
End-to-end PQoS implementation (RAN and CN aspects) is also briefly discussed
here [3].

In [6], author highlights the importance of incorporating spatial, temporal and
network related features in predicting UL and DL throughputs in LTE networks. The
dataset is collected from real world measurements. The measurement setup included
moving vehicles with multiple devices connecting to various cells, all requesting
maximum throughput. The feature group includes parameters related to physical layer
metrics (RSRP, RSSI, SINR), channel conditions (i.e., CQI) from the serving cell,
base station data, handover statistics, vehicle information, and previous vehicle data.
Since the measurements were done in a private network, the base station data could be
calculated by aggregating the throughput information from all the devices connected
to the base station. The authors uses random forest model for predictions as the model
is immune to outliers. A comparison on which features resulted in good UL and
DL throughput prediction is also discussed. Selecting the input features for training
the ML model accurately would streamline data collecting processes and make ML
algorithm deployment simpler. MAE and MAPE are used to evaluate the performance
of the model. Incorporating additional features from base stations led to better model
performance, resulting in a reduction of MAPE. It was also observed that the quality
of throughput prediction decreased significantly when attempting to predict over a
longer time horizon. However adding previous vehicular measurement for training
also improved the accuracy of predictions [6].
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Data-rate prediction in terminal side for high mobility use cases like ToD is
discussed in [55]. Real time measurements are collected by doing drive tests and the
dataset is publicly available for future research. The available features for prediction
include various measurements related user equipment (UE) radio metrics, position,
advanced UE parameters, weather, and traffic information. The measurement were
done in different geographical locations with different UE density. The measurements
were collected using the Rohde&Schwarz ROMES software, which was linked to a
Rohde&Schwarz TSMW network analyzer on a mobile device. The study involves
predicting average data rates and quantiles using machine learning approaches like
random forests, XGBoost, and neural networks. The accuracy of predictions differs
significantly between ML approaches and between uplink and downlink scenarios.
Gradient boosting (XGBoost) performs exceptionally well in the uplink. For critical
applications like ToD, robust prediction intervals are identified to be better than a single
mean value. Using quantile regression, especially conformal quantile regression, offer
reliable and low-complexity solutions. The conformalized variants show comparable
performance between random forests and neural networks in the context of classical
quantile regression.

Sensor data transmission are usually done periodically irrespective of the current
channel condition. This will result in non-efficient transmission resulting in re-
transmission and more consumption of energy. The choice of optimal transmission
timings can significantly affect the effectiveness of the entire system. The raw data
is available open source. Machine learning is used to combine multiple context
metrics, further improving data throughput while slightly increasing the delay [11].
The measurements were taken from both highway routes with speed limitation of
130 km/h and suburban area with speed limits from 30 km/h to 70 km/h. ML based
datarate prediction artificial neural network, M5 decision tree, support vector machine,
linear regression are tested and compared in terms of error metrics like MAE and
RMSE values here. M5 decision tree performed better than others.

AI broadly refers to the idea of duplicating human abilities; where as ML is a
subset of AI which that enables systems to learn and get better on their own from
experience, without having to be explicitly coded [53]. Continuous data transfer and
a cellular connection are necessary for remote services to function. Predicting both
uplink and downlink channels latency and throughput will be beneficial for this service
class for remote services. Especially important in case of safety critical application
where the communication link should be very reliable. Remote services like car as a
cloud (predicting the end to end QoS and offloading the computation to cloud), traffic
homogenization (traffic congestion mitigation strategies) and ToD are discussed here.

In ToD the vehicle is operated remotely over a wireless link by a human. The
vehicle transmits sensor data to the tele-operator, and receives command and control
instructions. QoS requirements like reliability, throughput, and latency should be of
high priority in tele-operation. The extend to which a functionality is limited could
be predicted and decisions can be made based on that. For instance, if the desired
uplink throughput is not available, the compression of video streams may need to
be increased; similarly, if the anticipated latency is too high, the speed may need to
be reduced [53]. Out of all the QoS parameters, UL and DL throughput play central
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role. The UL throughputs are even critical as the current networks does not guarantee
the demanding data rates in UL direction. UL And DL latency’s are also important
as command and control instructions delay is not recommended. Automated guided
vehicles scenario (AVG) also demands similar requirements and is a use case discussed
in scenarios like mines where monitoring and controlling the large AGV is critical.
This would be similar in use cases with drones that are remotely piloted.

Throughput prediction (TP) system that utilizes machine learning algorithms to
estimate downlink throughput in cellular networks is presented in [28]. The TP system
comprises three components: the collector, predictor, and trainer. The collector gathers
device-level and network-level data, preparing it for the predictor and trainer. Two
different training approaches are compared: one using raw data and the other using
statistical measures of raw data. The data used for training includes both device-level
and network-level metrics. The results show that the quantile summarization approach
improves TP accuracy for random forests and support vector machines. LSTM achieves
similar results using raw input. The study also explores data granularity and history
duration, finding that finer data granularity reduces prediction error significantly.
Moreover, the paper examines the impact of integrating network-level metrics on
TP accuracy, showing that combined network-level and device-level data improve
TP results. The main use case discussed is HTTP adaptive video streaming, where
TP assists in achieving better streaming performance with fewer stalls and bit rate
switches.

Safe and efficient driving, especially for automated vehicles, relies on the ability
to predict changes in QoS and provide early notifications to vehicles to adapt to
these changes at the application level. 3GPP introduced the Network Data Analytics
Function (NWDAF) as part of the 5G core network architecture [41]. NWDAF plays
a crucial role in collecting data from various sources, including user equipment,
applications, and operations, administration, and maintenance (OAM) systems. It then
uses this data to perform data analytics and generate predictions related to network
behaviour and performance. The predictions made by NWDAF are helpful in enabling
application adaptation and optimizing the network’s performance. In [12] the authors
discusses about the importance of predictions and early notification to application that
would help with application adaptation in terms of mission critical operations in V2X
communication. They also demonstrates an approach where future predictions are
made using RF regressor model and tests the results using simulation environment
(ns-3 network simulator with with SUMO vehicular mobility simulator). Key findings
include the identification of crucial input features for accurate ToD UL throughput
prediction, such as vehicle location, load demand from serving and neighbouring
cells, and data rate demand and average distance of user equipment not attached to the
base station (BS) to which the ToD vehicle is connected. The article also highlights
the importance of selecting an appropriate prediction horizon, as longer horizons
introduce more uncertainty. This study suggests exploring advanced techniques like
online learning and federated learning to handle dynamic network environments with
limited data sharing between different network entities.

Real-time QoS prediction using an LSTM-based Multivariate multistep autoen-
coder method for a certain forecast time horizon is discussed in [29]. The scheme
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considers a set of different ToD service and network-related features, including location
of the ToD vehicle, vehicle speed, distance from the cell, cell load percentage, number
of connected vehicles in the cell, and uplink throughput. The proposed LSTM-based
model aims to predict the uplink throughput of a ToD vehicle for multiple time steps
into the future, using historical information of each input feature. The model follows
an Encoder-Decoder LSTM architecture for sequence-to-sequence prediction. The
evaluation of the model is performed using data generated from the discrete-event
network simulator ns-3. The simulation setup includes an Urban Macro deployment
for connected cars and multiple traffic load levels. The LSTM model’s performance is
evaluated based on normalized mean squared error (NMSE) and root mean squared
error (RMSE) metrics. The results show that the LSTM model can successfully
capture the uplink throughput fluctuations of the ToD-UE. The performance evaluation
indicates promising results, with the model performing best from the 2nd second
onwards in the 7-second prediction time window.

4.2 Drone field trials
Wireless communication between a drone and a commercial 5G base station in
[17] , through experimental investigations. Various flight scenarios, including lift
off and horizontal flights at different heights, were analysed in terms of radio link
parameters, throughput, connectivity, and handovers. Results indicate that the drone
achieves substantial downlink throughput over 5G. However, uplink throughput in
5G remains lower compared to 4G. Handovers between 5G and 4G networks were
observed during flights, with increased frequency at higher altitudes. The study
discusses the implications of 5G deployment and broader network coverage for drone
communications.

5G network performance for urban UAV services at different altitudes is explored
in [18]. KPIs like RSRP, SINR, throughput, latency, and jitter are crucial for different
types of UAV services. An airborne measurement platform is introduced to assess
5G NSA network performance. Results show challenges in maintaining consistent
communication quality at higher altitudes due to factors like antenna beams. DL
throughput is more altitude-sensitive than UL throughput, and handovers impact
latency and throughput. New 5G features like network slicing and beamforming can
help, but effective isolation of UAV control traffic is crucial.

Research in [21] discusses the use of UAVs for assessing outdoor interference in
private 5G networks. With industrial automation driving demand for such networks,
UAVs offer a flexible solution for compliance with emission regulations. The article
highlights challenges, methods, and recent results of UAV-mounted radio scanner
measurements, demonstrating their promise in managing interference from indoor 5G
networks while adhering to regulatory constraints.

A flexible approach to assess 5G networks using aerial mobility for the benefit
of mobile network operators is presented in [9]. They explore two scenarios: one
involving agile antenna pattern measurements using a smartphone-equipped UAV over
a 5G test network, and the other estimating 5G network availability across different
operators in Finland. The results demonstrate that aerial measurements are efficient
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for validating 5G antenna equipment and evaluating network performance for aerial
mobility services. The measurement dataset is publicly available. Such agile aerial
network measurements complement traditional methods and help operators optimize
their 5G deployments for UAV readiness.

Feasibility of integrating drones into existing cellular networks for various ap-
plication is explored in [4]. Extensive field trial measurements were conducted
within a sub-urban environment, exploring drone performance across varying altitudes
and frequency bands. The research investigates the impact of drones on terrestrial
user performance, analyses coexistence scenarios, and evaluates connectivity against
minimum requirements. Field trials demonstrated that while current networks can
support command and control and data transmission, enhancements are needed for
more demanding applications. Findings emphasize the need for enhancing network
capabilities to support advanced drone applications and minimizing interference with
terrestrial users.

Field trial study using a DJI Phantom drone connected to an LTE network at different
altitudes (15 m, 30 m, 70 m, and 100 m) is presented in [49]. The measurement
results and discussions cover various performance metrics. It was observed that RSRP
values changed with increasing flight altitude. RSRP initially increased, due to LOS
propagation, and then decreased due to stronger interference from neighboring cells.
RSRQ is examined to understand signal quality levels, which decrease as drones fly
higher due to increased interference from neighboring cells. Both uplink and downlink
throughput are analysed. Throughput generally decreases as flight altitude increases.
Higher altitudes experience more interference and LOS propagation issues. Handover
rates are explored, indicating that as altitude increases, more handovers occur due to
varying drone height, speed, and wind conditions affecting signal quality. The study
provides valuable insights for designing cellular networks that cater to drone users.
It emphasizes the need for optimized antenna tilting, interference management, and
revised handover techniques.
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5 Experimental evaluation
QoS prediction is a critical aspect in modern wireless communication networks,
especially at the application layer, where user experience is critical. This section
focuses on the application of ML techniques for forecasting uplink throughput, a
crucial QoS parameter, based on data collected from UAV mobility scenario.

The uplink throughput represents the data transmission rate from user equipment
(UE) to the network and directly impacts the performance of applications running
on the user’s device. Accurate QoS prediction is essential for ensuring seamless and
reliable data transmission, as well as optimal resource allocation.

To predict uplink throughput, ML models are leveraged to analyse historical data
on a comprehensive set of input features. These features are designed to capture
various aspects that influence the application layer’s QoS.

The set of input features comprises four main groups. The feature group and the
basis of selection of each feature group are explained in Section 5.4.2. Various ML
techniques discussed in Section 3 are utilized for predicting UL throughput for the
next timestep and the performance is evaluated based on evaluation metrics mentioned
in Section 3.7. The process flow of ML implementation is illustrated in Figure 6.

Figure 6: Process flow of ML implementation.

5.1 Experimental setup
Accessing data from public networks, like base station data, is difficult, and most of the
works in literature uses measurement collected from UE side [6]. Publicly available
dataset for this scenario is hardly available. Research project in [9] employed drones
to assess operator performance (DNA, Telia, and Elisa). Even though, the dataset is
publicly accessible, the data collection frequency was measured in fractions of second
which did not align optimally with our specific scenario. Aggregating the dataset
based on time resulted in a smaller dataset which is not ideal for ML specific task.
Network simulation software ns-3 was considered to simulate the situation and collect
data based on simulation, however, handovers with 5G are not yet implemented in ns-3
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and UAV specific channel model are not available in ns-3 [51]. In addition to that,
simulations may not capture the full range of real-world complexities [4]. Therefore,
field tests were conducted to guarantee that findings are accurate and reflective of
real-world scenarios.

The ideal measurement location for this experiment was chosen based on a previous
research work done by Mediatek on cellular connected UAV [40]. The study explored
the performance of UAVs in 5G networks for civilian use cases, focusing on mobility
scenarios and communication requirements and compared the results with C&C
requirement set by 3GPP. The networks available were mostly 5G NSA networks. The
data collected from [40] were shared by Mediatek, but, the measurements performed
during these study did not measure the maximum throughput. Therefore, real time
data collection was considered to be the best approach for our scenario and throughput
configuration setting was enabled to maximum during measurements for our study.

The civil aviation authority is in charge of maintaining the security and environ-
mental viability of air travel as well as fostering an efficient and seamless flow of
air traffic. Finland’s civil aviation regulatory body is Traficom [52]. All the safety
measures and rules were followed and the maximum flying limit was kept under
120 meters. The location chosen for measurement trials was not a prohibited area
to fly the drone [43]. Mobile network operator’s permission was also ensured for
the measurements. MediaTek prototype phones were used for measurements. The
measurements were taken along a predetermined route as shown in Figure 7.

Figure 7: 2D drone route (blue points).

The measurements were taken on May 15, 2023, between 12 and 4 p.m., in an
old landfill near Haukipudas, Oulu. The measurements were carried out in bright
sunny weather condition with light winds. Because the venue was in the outskirts of
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Oulu, traffic congestion expected was low. The terrain was quite uneven, and four
base stations could be seen from our vantage point. The available networks were 5G
NSA commercial networks. In this thesis, mobile network operator’s identity has been
anonymized and will be referred to as ’Operator A’. The measuring phones utilized
SIM cards with an unlimited subscription from Operator A. The expected maximum
uplink throughput ranged between 80 and 100 Mbps.

A similar measurement setup as in [18] and [9] is employed for this research. A
MediaTek prototype phone was attached to one of the legs of a DJI M300 drone as
shown in Figure 8 for carrying out the measurements. The Mediatek device measures
altitude with respect to sea level. The location where the drone flights were performed
was 18m above the sea level. Throughout the flights, the frequency of data collection
was set to 3 seconds. The route was flown numerous times at various altitudes,
including 50 m, 70 m, 80 m, and 90 m and 100 m. In addition to these test flights with
predefined way points, a random manual test flight was also conducted. The flights
maintained a constant pace of 5 meters per second. During manual flights, the speed
varied between 5 and 15 meters per second.

Figure 8: Drone measurement setup.

The drone was programmed to follow way points that instructed it to make a 90
degree turn every 300 m at the designated altitude. The measurements from each
altitude were repeated at least 3 times. This helped in capturing the measurements from
that particular altitude better. The drone batteries required replacement approximately
every 20-25 minutes of flight time.The measurements were stopped every time the
drone battery needed replacement. Throughout the flights, it was ensured that the
drone remained within the operator’s line of sight.

35



During the measurements, two phones were used. In this thesis, the phones are
referred as UE1 and UE2. The phones were configured to send maximum uplink
traffic during mobility events. UE1 was used for measurements at altitudes of 50 m,
70 m, 80 m, and 90 m, whereas UE2 was used for measurements at altitudes of 100 m
and manual flight. The UE2 was utilized because the UE1’s battery drained rapidly
during the measurements. The maximum uplink traffic setting on the UE1 caused a
battery constraint, resulting in rapid battery drain. A single flight of 3-4 rounds at a
specific altitude used about 20-25 percent of the phone’s battery. Each round lasted
approximately 5 minutes. The measurements were concluded when the drone’s battery
ran out.

5.2 Data analysis
5G related metrics are the point of interest of this thesis, therefore those metrics are
carefully chosen based on earlier works mentioned in Section 4. Physical layer radio
metrics, network features and location information are collected during flights. Table
2 describes the data collected.

Table 2: Measurements collected.

Column Name Meaning
timestamp Timestamp of the observation
LTE_PCI Physical Cell ID of LTE network
NR_PCI Physical Cell ID of NR network
LTE_RSRP Reference Signal Received Power in LTE
LTE_RSRQ Reference Signal Received Quality in LTE
LTE_SNR Signal-to-Noise Ratio in LTE
NR_RSRP Reference Signal Received Power in NR
NR_RSRQ Reference Signal Received Quality in NR
NR_SNR Signal-to-Noise Ratio in NR
MCC Mobile Country Code
MNC Mobile Network Code
RAT Radio Access Technology
Tput_DL Downlink Throughput in Mbps
Tput_UL Uplink Throughput in Mbps
ULBLER Uplink Block Error Rate
DLBLER Downlink Block Error Rate
NR_DL_Modulation Downlink Modulation in NR
NR_UL_Modulation Uplink Modulation in NR
Altitude Altitude of drone
Latitude Latitude of the drone
Longitude Longitude of the drone
SPEED Speed of the device
Device Device identifier
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Figure 9 gives an overview of the features collected and used for the rest of the
study. It could be observed that UE2’s performance was better than UE1 during the
trials. An analysis of the factors influenced the performance difference is studied
before looking into ML model training. As the altitude increased in the 5G network,
handovers occurred more frequently. On the other hand, 4G handovers were observed
during takeoff and landing. It was noted that the drone connected to multiple base
stations as the altitude increased and is explained further in the coming sections.
Additionally, there was a decrease in throughput as the altitude increased when using
the UE1 as illustrated in Figure 9.

Figure 9: Overview of measurements performed with UE1 (blue) and UE2 (orange).

Table 3: Statistics of the UE1 data.

NR_RSRP NR_RSRQ NR_SNR Tput_UL
Mean -99.381038 10.39833 4.760883 35.962375

Standard Deviation 6.527138 1.54563 5.294947 15.432943
Minimum -117.000000 3.00000 -10.000000 0.005472

First Quartile (25%) -103.000000 9.00000 1.000000 30.677704
Median (50%) -99.000000 11.00000 3.000000 39.565008

Third Quartile (75%) -93.000000 12.00000 9.000000 45.782408
Maximum -88.000000 12.00000 20.000000 66.891192

Table 3 shows the statistics of the UE1 data. There was a total of 1677 data points
collected for UE1. Table 4 shows the UE2 data statistics. There are 581 data points
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Table 4: Statistics of the UE2 data.

NR_RSRP NR_RSRQ NR_SNR Tput_UL
Mean -84.874355 9.741824 2.180723 70.722694

Standard Deviation 6.850350 1.640686 6.035816 18.292799
Minimum -111.000000 4.000000 -5.000000 0.005544

First Quartile (25%) -85.000000 9.000000 -2.000000 68.063104
Median (50%) -82.000000 10.000000 0.000000 77.151272

Third Quartile (75%) -81.000000 11.000000 2.000000 81.379640
Maximum -79.000000 13.000000 22.000000 95.957664

collected for UE2. The fewer measurements collected for UE2 was due to the fact that
the drone battery ran out, and only the measurements at attitude close to 100 meters
and manual flight was conducted with UE2.

5.3 Analysis on performance difference in UE1 and UE2
The hardware differences between the phones are not explicitly known, which suggests
that, this could potentially be a factor influencing the performance disparities observed.
However, it is worth noting that UE2 did not experience any intercell handover during
the flights, which is an interesting observation considering that drones at higher
altitudes typically encounter frequent handovers due to interference from base stations.

Figure 10 illustrates the 2D plot showcasing the cell changes experienced by each
UE during the flights with respect to altitude. Figure 11 displays the cells that the
drone connected to throughout the flights and this gives a good understanding of the
handover mechanism when the drone moved both horizontally and vertically.

Figure 10: 2D plot of NR_PCI change during the flight trials with respect to altitude.

It could be observed from Figures 10 and 11 that, while UE1 connected to different
PCIs when the drone changed direction, UE2 initially connected to NR_PCI 899 and
subsequently remained connected to NR_PCI 933 throughout the entire flight. Table
5 summarizes the base station and the frequency bands that the UEs connected to
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duing the flight trials. UE2 connected to both n78 (3500 MHz time division duplexing
(TDD)) and n28 (700 MHz frequency division duplexing (FDD)) frequency bands
while UE1 only connected to n78 (3500 MHz TDD) band throughout the flight trials.
This observation with respect to frequency bands is discussed further in this section.

Figure 11: 3D representation of the drone’s position and the PCIs to which the user
equipment was connected to.

Table 5: UE1 and UE2 base station connections and frequency bands.

Base station NR_PCI Frequency band UE connected
gNB ID 3571 (Macro) - NR 899 3500 (n78 TDD) UE1 and UE2
gNB ID 3571 (Macro) - NR 933 APT (n28 FDD) UE2
gNB ID 1563 (Macro) - NR 125 3500 (n78 TDD) UE1
gNB ID 956 (Macro) - NR 657 3500 (n78 TDD) UE1
gNB ID 943 (Macro) - NR 946 3500 (n78 TDD) UE1
gNB ID 2074 (Macro) - NR 375 3500 (n78 TDD) UE1

Figure 12 illustrates the base stations to which UE1 and UE2 were connected to.
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These base stations are identified with NR_PCI from CellMapper [54]. Figure 12
shows that gNB 2074 (NR_PCI 375) was located farther away from the measurement
location. Interestingly, when the drone was flying at an altitude of above 80 meters,
UE1 connected to gNB 2074 twice, which was an unexpected occurrence. This can be
noted from Figure 10. This highlights the impact of interference from base stations on
the handover mechanism with respect to UAV flights.

Figure 12: Base stations that both UE1 and UE2 connected to during flights.

Therefore, in Figure 13, the main cells and approximate coverage areas of each
cell are considered, while gNB 2074 is not included. Figure 13 clearly demonstrates
that cell NR_PCI 933 had a wider coverage compared to other cells that the UE’s
connected to.

Figure 12 provides insights into the frequency bands supported by each gNB.
Specifically, NR_PCI 933 supported the n28 FDD frequency band, whereas UE1
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Figure 13: Cell coverage.

connected to cells that solely supported the n78 band. Therefore, this discrepancy
in performance between the phones can be attributed to the variance in frequency
bands they were connected to. UE2 had the advantage of supporting both n28 and
n78 frequency bands, whereas UE1 was limited to the 3500 (n78 TDD) band. This
distinction could potentially come from hardware disparities within the phones.

UE2’s ability to connect to the n28 (700 MHz) band enabled it to operate without
any handovers, benefiting from a strong signal and the extensive coverage area
provided by this frequency band. The 700 MHz signal exhibited increased tolerance
to interference and superior penetration through obstacles. Although the n78 band
offers improved data rates, it proved to be highly susceptible to interference from
neighbouring base stations, as depicted in Figures 10 and 11.

Figure 10 also demonstrates an increase in handover rates for UE1 as altitude
rises. This implies that as the drone’s altitude increased, UE1 experienced a greater
number of handovers. This could be due to the shorter range of the n78 band. The
higher frequency signals have shorter range. The wider coverage area offered by the
n28 band, as illustrated in Figure 13, explains the absence of handovers for UE2, even
during flights at 100 meters.

The n28 band plan divides the 600 MHz and 700 MHz bands into segments for
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optimal mobile broadband deployment.This frequency band is considered suitable
for mobile broadband subscribers moving with medium to high velocity, particularly
in rural environments. This band is preferable for scenarios where maintaining
communication with mobile subscribers under conditions of high Doppler carrier
frequency shift is important. The low frequency of the 700 MHz band is advantageous
for maintaining communication with subscribers moving at higher speeds [42].

n78 band is 3500 MHz C-Band 5G spectrum that falls between the low-band
and high-band. It provides faster data speeds compared to the low-band spectrum
while offering wider coverage compared to the high-band spectrum. It offers enough
spectrum for 5G’s performance needs [45]. This frequency band is considered useful
for various scenarios, including mobile broadband connection of fixed user stations
and users moving with low velocity indoors [42]. This characteristic makes C-Band
spectrum well-suited for a variety of 5G ground user applications, because of the
favorable balance it provides between speed and coverage.

However, this might not be the best for aerial user application such as UAVs. It
could be seen from Figure 10 and 13 that n28 (700 Mhz) gave good coverage and stable
performance during the flight operations at higher altitude. Therefore, it could be a
favourable frequency band for UAV operation without compromising performance
because the throughput rates was higher compared to UE1 even though both the
phones used the same operator subscription. However, further research is necessary
to determine the optimal frequency within the n28 band for aerial applications,
considering various traffic conditions and geographical locations for UAV operations.

5.4 Implementation of ML techniques
The collected dataset is trained on ensemble-based methods like Random Forest and
XGBoost, as well as RNNs like LSTM and GRU. These models were chosen based on
previous research and related works done in Section 4.

5.4.1 Data pre-processing

The collected data is analysed in Section 5.2. The data is cleaned by removing outliers,
and any null values are updated with the previous measurement value. The collected
data was found to be relatively clean, requiring minimal cleaning. To prepare the data
for the RNN model, it is transformed into sequences of length 5, where each sequence
represents a historical time step of 5 data points. For training and testing the model,
90 percent of the data is used for training, and the remaining 10 percent is used for
testing. The train test split is not done randomly and is done in such a way that the
last 10 percent of the data collected is used for testing. Furthermore, it is observed in
[55] that random test-train splits significantly reduced prediction errors, resulting in
overoptimistic outcomes. Also, since the interested parameter is the future throughput
prediction, it seamed ideal to not shuffle the data. To scale the data, the MinMaxScaler
[59] function from scikit-learn is employed. The normalization is done as [36] and
feature scaling is done in the range between 0 and 1 using Equation (6).
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𝑥𝑖−scaled =
𝑥𝑖 − 𝑥min

𝑥max − 𝑥min
, for 𝑖 ∈ [0, 𝑁] . (6)

where, 𝑥𝑖 refers to the data point in the original dataset that needs to be normalized.
𝑥min is the minimum value in the original historical data. 𝑥max is the maximum value
in the original historical data. 𝑁 indicates the number of data points in the dataset.
𝑥𝑖−scaled represents the normalized value of the original data point 𝑥𝑖.

Python and Jupyter Notebook [61] are utilized for model training and implementa-
tion. The RNN training is performed using the TensorFlow and Keras libraries. Only
UE1 data is used for training as UE1 and UE2 performed differently. Feature selection

Figure 14: Feature Correlation Heatmap

was conducted using a correlation matrix and insights from related works mentioned
in Section 4. The correlation heatmap, depicted in Figure 14, was generated using
the seaborn library’s co-relation function function, based on Pearson’s correlation
coefficient calculated using Equation (7) from pandas library [68]. This matrix
provides insights into the strength and direction of the relationships between different
features. Correlations can be either positive or negative, indicating the degree of
association between the features.

𝑟 =

∑︁𝑛
𝑖=1(𝑥𝑖 − �̄�) (𝑦𝑖 − �̄�)√︃∑︁𝑛

𝑖=1(𝑥𝑖 − �̄�)2 ∑︁𝑛
𝑖=1(𝑦𝑖 − �̄�)2

. (7)

where: 𝑥𝑖 and 𝑦𝑖 are the individual data points for the two variables, �̄� and �̄� are
the means of the two variables, respectively, and 𝑛 is the total number of data points.

Figure 14 illustrates that "Tput_UL_next" (uplink throughput in the next time step)
has a:
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• Strong positive correlation with "Tput_UL" (Current Uplink Throughput).

• Moderate positive correlation with "NR_RSRQ" and "NR_RSRP".

• Weak positive correlation with "NR_PCI" and "SPEED". Speed was constant
(5m/s) most of the time. NR_PCI identifies the cell, eventhough it is a numerical
value, it is also a categorical feature.

• Weak negative correlation with "ULBLER".

• Strong negative correlation with "Altitude". As altitude increased throughput
decreased in case of UE1.

• The other features have weak or limited correlations with "Tput_UL_next".

It should also be highlighted that these results are specific to this dataset (UE1 data
only) and cannot be applied to all data. For instance, the correlation matrix for UE2
data would be different to UE1 because of the difference in UL throughput observed.

5.4.2 Feature engineering

Features considered for training the ML model are grouped into 4 groups respectively.
These feature groups are created by selecting different subsets of columns from the
original data set, each capturing specific aspects of the data for analysis and model
training. Feature groups and the feature columns included in each group are shown in
Table 6.

Table 6: Feature groups.

Features Feature A Feature B Feature C Feature D
NR_RSRP x x x x
NR_RSRQ x x x x
NR_SNR x x x x
Tput_UL x x x x
ULBLER x

NR_UL_Modulation x
NR_PCI x
Altitude x x x
Latitude x x

Longitude x x
SPEED x x x

• Feature A includes all available features in the data set. This is the most
comprehensive set of features available in the dataset.

• Feature B includes essential radio-related features along with location and speed
information. These features are relevant for radio signal evaluation and also
consider the spatial and speed characteristics of the data.
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• Feature C comprises the features that have been selected based on correlation
metrics. These features have demonstrated strong correlations with the target
variable(UL_Tput_next) as seen from Figure 14.

• Feature D focuses on radio-related metrics and throughput. These features
primarily capture the radio signal strength, quality, and throughput and the
spatial and speed characteristics are not considered. This would help to identify
whether the spatial characteristics influenced the model’s accuracy in a positive
or negative way.

5.4.3 Model training and hyper parameter tuning

The steps involved in training each ML models and hyper parameter tuning are
described in this section.

Hyper parameter tuning process performed for RF Regressor, XGBoost, LSTM,
and GRU Models are as follows:

1. For each model (RF Regressor, XGBoost, LSTM, GRU):

1.1 Split data into train, validation, and test sets.
1.2 Define the set of hyperparameters to tune.
1.3 For each hyperparameter combination:

1.3.1 Train the model with the current hyperparameters on the training data
set.

1.3.2 Evaluate the model on the validation set using a chosen metric (MSE
is used in this study, because it penalizes the large errors heavily)

1.3.3 Record the evaluation metric for the current hyper parameter combi-
nation.

1.3.4 Repeat 1.3.1 to 1.3.3 for the next set of hyperparameter combination.
1.4 Select the hyperparameter combination that yielded the best validation

performance
1.5 Evaluate the model on the test set using the chosen metric.
1.6 Record the test performance and selected hyperparameters.

2. Compare the test performance and selected hyperparameters of all models.

3. Select the best-performing model based on the test performance.

4. Repeat the steps from 1 to 3 for feature group A, B, C and D with each model.
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5.4.4 Random Forest and XGBoost hyperparameter tuning

Optimizing model performance necessitates identifying the most effective hyper-
parameter combinations. This is achieved through hyperparameter tuning, wherein
GridSearchCV [62] from the sklearn library is employed for cross-validation and
hyperparameter optimization for both the RF regressor and XGBoost models.

The training process involves utilizing the sklearn RF regressor and XGBoost
regressor. To determine the best set of hyperparameters, a grid search combined with
cross-validation is executed. After a thorough assessment of various hyperparameter
combinations through cross-validation, the most favorable set is chosen. This optimal
set is then utilized for training the final RF regressor [64] and XGBoost regressor [65]
models.

Hyperparameter tuning is carried out individually for each feature group. The
time required for hyperparameter tuning is influenced by the number of features
utilized. The feature group with the least number of features (Feature D) necessitated
approximately 120 seconds for hyperparameter tuning using the RF regressor model.
XGBoost, on the other hand, demonstrated faster hyperparameter tuning, taking less
than 30 seconds for Feature D. Notably, XGBoost consistently exhibited quicker
prediction times compared to RF regressor.

Table 7 illustrates the most important hyperparameters for the RF regressor:

Table 7: RF regressor hyperparameters.

Hyperparameter Value
’n_estimators’ 100, 200, 300
’max_depth’ 5, 10, 15

’min_samples_split’ 2, 5, 10
’min_samples_leaf’ 1, 2, 4

’max_features’ "sqrt", "log2"

Table 8 illustrates the most important hyperparameters for the XGBoost regressor:

Table 8: XGBoost regressor hyperparameters.

Hyperparameter Value
’n_estimators’ 100, 200, 300
’max_depth’ 3, 6, 9

’min_samples_split’ 2, 5, 10
’min_samples_leaf’ 1, 2, 4

’learning_rate’ 0.1, 0.01, 0.001

5.4.5 LSTM and GRU hyperparameters

For optimizing the neural network architecture, hyperparameters are optimized using
a validation set. The best-performing hyperparameters are selected based on repeated

46



evaluations, and the final model is trained on the complete training set. 70 percent of
the data is used for training 20 percent of the data is used for validation and final 10
percent is used for testing. The evaluation on test set is summarized in 13. The model
architecture of LSTM and GRU models are as summarized in the following steps and
the hyperparameters used to get the best models as illustrated in Table 9:

1. Input layer: The input layer accepts the input data in the shape of (batch_size,
timesteps, features) where time steps corresponds to the time steps in defined
in sequences(i.e., n_past =5 which corresponds to the past 5 time steps) and
features represents the number of features for each time step.The features value
is the number of columns corresponding to each feature group defined in Section
5.4.2.

2. Hidden layers: The hidden layers are located between the input layer and the
output layer, where the actual computation takes place. the model is defined
with two hidden layers composed of LSTM/GRU units. These hidden layers
contain neurons, also referred to as hidden nodes or hidden units. The number
of these neurons is determined by the hyperparameters, specifically neurons_1
and neurons_2 as illustrated in Table 9. The first LSTM layer is designed to
return sequences (return_sequences=True), i.e., it outputs sequences that can be
used as input for the next LSTM layer. The second LSTM layer doesn’t return
sequences (return_sequences=False).In these hidden layers, the Rectified Linear
Unit (ReLU) activation function is utilized. ReLU produces output values that
range between 0 and the input value. This activation function aids in introducing
non-linearity to the network’s computations.

3. Output layer: Following the LSTM layers, a Dense layer with n_future neurons
is added. n_future is to be the number of values to be predicted in the future.
Here, n_future is set to ’1’ because the data measurement frequency was every 3
seconds. So n_future =1 would forecast the UL throughput at (t+3)th time, where
t is the current time. This layer constitutes the output of the neural network.

4. The network’s final compilation includes an optimizer (Adam) with a specified
learning rate (learning_rate) and a loss function (i.e., MSE).The loss function
(MSE), computes the squared differences between the real labels and the
predicted labels is used to heavily penalize the errors. The optimizer adjusts
the model’s weights during training to minimize the loss, which measures the
discrepancy between predicted and actual values.

5. The neural network is trained using a specified number of training epochs and a
chosen batch_size. The number of epochs dictates how many times the entire
training data set is presented to the network. Batch size determines the number
of training samples used in each iteration.

Best hyperparameters were identified by iteratively assessing all possible combi-
nation in Table 9. The total number of iterations depended on the number of values
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Table 9: Hyperparameters used for LSTM and GRU model training

Hyperparameter Value
’neurons_1’ 32, 64, 128
’neurons_2’ 8, 32, 64

’learning_rate’ 0.0001, 0.001, 0.01, 0.1
’epochs’ 5, 10, 20, 30, 40

’batch_size’ 10, 20, 32, 64

tested for each hyperparameter. Here, there were three options for neurons_1, three
options for neurons_2, four options for learning_rate, five options for epochs, and four
options for batch_size, the total number of iterations were, 3 * 3 * 4 * 5 * 4 = 720
iterations. This was performed for each set of feature group. The time taken to find the
best set of hyper parameters for a feature group was at least 6 hours for each model.
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6 Results, analysis, and discussion

6.1 Evaluation of model performance on UE1 data
The test data consists of the last 140 data points from the data set. During most of
these data points, the drone’s altitude is approximately 90m above sea level. However,
the last 7 data points were recorded when the drone was descending. Tables 10 – 13
show the model performance from the training of ML model on each feature group.

Within the test data, there are instances of both rapid increases (e.g., 33, 44, 45,
46 Mbps) and decreases (e.g., 16, 21 Mbps) in the UL throughput values. These
rapid changes signify significant fluctuations in the UL throughput over short periods.
The data set also includes data points where minor fluctuations with UL throughput.
The visualization (Figures 15 – 18) of model performances offers a comprehensive
overview of the test data points and how well the model performed on them.

The analysis of the RF model’s performance on the test data set, as shown in Figure
15, reveals that predicted throughput values generally stay close to the actual values.
Despite the deviations during rapid changes, the model still follows the overall trend
quite well. RF model gave its best performance when it was trained with all feature
columns (Feature A) as shown in Table 10 with least MAE (1.888 Mbps).

Table 10: Performance of RF regression model.

Feature group MAE MSE RMSE MAPE
Feature A 1.888 7.601 2.757 0.060
Feature B 2.235 8.919 2.986 0.071
Feature C 2.172 9.216 3.036 0.069
Feature D 2.310 9.976 3.158 0.073

Figure 15: Best RF model predictions (Feature A) on UE1 data.
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XGBoost regressor model’s predictions when trained with Feature A is shown in
in Figure 16. It could be observed that the model tend to overestimate the throughput
and a difference of 3-4 Mbps could be observed between predicted and actual UL
throughput at most times. This overestimation could result in failed transmissions.
XGBoost regressor models performed consistently well with all feature groups as
shown in Table 11. The XGBoost model’s performance showed minimal change when
adding or reducing feature columns as illustrated in Table 11, and it also demonstrated
the fastest prediction times.

Table 11: Performance of XGBoost regression model.

Feature group MAE MSE RMSE MAPE
Feature A 2.389 9.936 3.152 0.078
Feature B 2.397 9.936 3.152 0.079
Feature C 2.427 10.571 3.251 0.079
Feature D 2.381 10.566 3.250 0.076

Figure 16: Best XGBoost model predictions (Feature A) on UE1 data.

The GRU regressor model performance when trained with Feature C, as depicted
in Figure 17, also exhibits slight underestimations in throughput most of the time.
However, GRU regressor model demonstrates better adaptability to rapid changes
compared to other models. GRU model performed the best when trained with Feature
C as observed from Table 12. A difference of 2-3 Mbps is observed between actual
and predicted UL throughput at most times.

Meanwhile, the LSTM model’s performance when trained with Feature D is shown
in Figure 18. It could be noted from this that LSTM model both overestimates and
underestimates the throughput at times, but it fails to adapt well to rapid changes.A
difference of 3-4 Mbsp is observed and and the performance metrics from Table 13
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Table 12: Performance of GRU regression model.

Feature group MAE MSE RMSE MAPE
Feature A 2.906 13.326 3.650 0.089
Feature B 3.165 16.642 4.079 0.099
Feature C 2.148 10.166 3.188 0.065
Feature D 2.232 11.220 3.349 0.068

Figure 17: Best GRU model predictions (Feature C) on UE1 data.

shows that LSTM model trained with Feature D resulted in best performance compared
to other feature groups.

Table 13: Performance of LSTM regression model.

Feature group MAE MSE RMSE MAPE
Feature A 3.002 14.593 3.820 0.092
Feature B 3.142 17.310 4.161 0.100
Feature C 2.588 11.462 3.386 0.080
Feature D 2.171 11.395 3.376 0.068

The results show that RF regressor generally performs well across all feature
groups, achieving low MAE, MSE, RMSE, and MAPE values. This suggests that RF
regressor is a robust and versatile model for this particular dataset.

The evaluation of different feature groups gives insights on the relevance of specific
features to the predictive task. For example, Feature D with radio metrics and UL
throughput performs well across the models, suggesting that these radio-related metrics
are critical for accurate predictions. On the other hand, excluding certain features, as
seen in Feature C, can lead to reduced model performance, indicating that spatial and
speed characteristics are also important for the prediction task.
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Figure 18: Best LSTM model predictions (Feature D) on UE1 data.

The performance of the models varies significantly based on the feature groups
used. For example, Feature A consistently yields better results compared to Feature B,
Feature C, and Feature D in terms of MAE, MSE, and RMSE. This indicates that
including a broader range of features leads to improved predictive accuracy.

The performance of the LSTM and GRU models is generally competitive with
RF regressor and XGBoost regressor. However, LSTM and GRU tend to have higher
MAE, MSE, RMSE, and MAPE values compared to RF regressor, especially in
certain feature groups. This suggests that, for this specific task, simpler models like
RF regressor can achieve comparable or better performance.

It is essential to consider the specific use case when evaluating model predictions.
In critical scenarios like military operations or rescue missions, overestimating the
UL throughput value could lead to transmission failures. To improve the accuracy of
the models, they need exposure to a broader range of scenarios and data to better learn
and adapt to various situations.

6.2 Evaluation of model performance on UE1 and UE2 data
The RF model trained with Feature A was identified as the best performing model in
ensemble model category. GRU model trained with Feature C performed better in
neural network category as observed from previous section. To further analyse the
model performance and generalizability, the RF regressor model was trained using
Feature A and GRU model was trained using Feature C with both UE1 and UE2 data.
UE2 measurements were added along with UE1 to the dataset. To differentiate between
the phones, a device identifier column was introduced, with UE1 being identified
by ’1’ and UE2 by ’2’. The dataset consisted of a total of 1995 data points, with 90
percent of the data used for training and 10 percent for testing.

During training, the drone measurements were taken at altitudes of 50, 70, 80, 90,
and 100 meters, while the test data points were mostly measured between altitudes 80
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and 100 meters, with the drone flown manually at speeds ranging from 5 to 15 m/s.
Best models for the new dataset is identified by hyper parameter tuning training and
evaluating the model with UE1 and UE2 data.

Figure 19 illustrates that the RF regressor model’s performance was better when
tested with UE1 data compared to when both UE1 and UE2 data were used together.
This discrepancy can be attributed to the fact that the UE2 measurements were taken
only at 100 meters altitude and were not measured under the same altitude scenarios
as the UE1 measurements. The maximum UL throughput measured for UE1 was 80
Mbps. As shown in Figure 19, the UL throughput predictions with UE2 test data fall
within the range of maximum UE1 UL throughput predictions i.e., between 70-80
Mbps. There was a difference of approximately 8 Mbps between actual and predicted
UL throughput as observed from Table 14 when RF model trained with Feature A
was used for predictions. However, it is worth noting that, despite variations in flying
speed, the model’s predictions still followed the general trend observed with the actual
values. Therefore, it is evident that the model could have provided more accurate
predictions for UE2 if similar scenarios to UE1 had been observed in its measurements.

Figure 19: RFRegressor model predictions when trained with both UE1 and UE2
data.

Table 14: Model predictions on test data points when trained with UE1 and UE2 data.

Model Dataset MAE MSE RMSE MAPE
RF UE1 and UE2 data 6.168 63.780 7.986 0.087

GRU UE1 and UE2 data 25.444 718.660 26.807 0.331

The results of GRU models predictions on UE2 test data points are displayed
in Figure 20. The performance evaluation metrics are summarized in Table 14. It
could be seen that the model performed poorly compared to all the other models. The
model is severely under predicting the throughput all the time, a difference of 25 Mbps
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between actual throughput and predicted throughput is observed from Figure 20. One
reason for this could be due to the split of data set. Testing data points included final
10 percent of total dataset which corresponds to almost one third of UE2 data set.
This means that model did not have enough data points of UE2 to learn from which
resulted in poor performance of the model. It is worth noting, however, that the model
quite accurately forecasted the trend that UL throughput values followed over the test
data points as depicted in Figure 20.

Figure 20: GRU model predictions when trained with both UE1 and UE2 data.

6.3 Federated learning evaluation
Googles Tensorflow Federated (TFF) was used for federated learning implementation
[58]. Federated learning implementation is summarized in the following steps:

1. Prepossessing of the dataset is done. outliers are handled by dropping the
parameters that are non critical and updating with the previous value in other
cases. Pre-processing is done in the same manner for UE1 and UE2 data set.

2. Tensorflow data set was created for each clients.

• UE1 and UE2 are considered as two clients for federated learning process.
• Training and testing set is defined.
• Data is split into sequences for GRU model training. the input data contains

past 5 data points and the output is the UL throughput at the next time step
(n_past = 5 and n_future = 1).

• MinMaxscaler is used to scale the data.

3. GRU model is defined in create_GRU_regressor() function.
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4. Federated learning setup:

• Used tff.learning.algorithms.build_weighted_fed_avg for federated aver-
aging.

• Defined client and server optimizer.
• Ran a loop for rounds, sampling clients.
• Performed federated training on client datasets.
• Updated server state and metrics after each round.

5. Federated evaluation:

• Built federated evaluation computation using
tff.learning.build_federated_evaluation.

• Calculated evaluation metrics on test datasets using the trained model.

6. Assigned optimized weights from federated model to global Keras model.

7. Global model was used to evaluate the predictions for each client (UE1 and
UE2).

The results from the evaluation of model predictions using federated learning is
shown in Figures 21, 22 and Table 15. GRU model was considered for model training
because it performed better than LSTM when model training was done with UE1 data.
Therefore GRU model could be the ideal model considering this dataset. The initial
hypothesis was federated learning might not perform very well with this data set.
However, even though the federated learning model did not yield the best performance,
it demonstrated reasonably satisfactory results with UE1 test data, as indicated by
the evaluation metrics in Table 15 and Figure 21. It is worth noting that the models
predictions when the data rates were consistent were quite good, but the model fails
to detect the sudden increase and decrease in UL throughput. The model tends to
underestimate predictions by 3-6 Mbps most of the time and struggles to detect the
sudden change.

Table 15: Federated Learning GRU Model Performance on Feature C.

Client device MAE MSE RMSE MAPE
UE1 2.539 12.144 3.484 0.035
UE2 8.749 98.097 9.904 0.116

In contrast, UE2 predictions did not match the quality of UE1 as illustrated in
Figure 22 and Table 15 but performed better than centralized GRU model results on
UE2 test data points. Poor performance of GRU FL model on UE2 test data points
compared to UE1 test data points could be due to the imbalance in dataset. UE1 had
recorded three times the data compared to UE2, this might have affected the global
models performance. Representative of the underlying data distribution of UE1 and
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Figure 21: Federated GRU model predictions on UE1 client test data.

Figure 22: Federated GRU model predictions on UE2 client test data.

UE2 was different. UE1s data is more diverse or representative of the measurement
scenarios, because of the drone flights at different altitudes. This could be another
reason for the models improved performance with UE1.

Tweaking the model further or training with a different ML model might give
slightly improved performance, but it would be ideal to have more representative data
to yield better results.

6.4 Insights and observations from the analysis
The centralized learning results from Section 6.1 shows that the model performed
quite well with all the centralized learning ML models. RF regressor with trained on
Feature A performed the best with least MAE value signifying its robust performance.
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During the training phase, the models were exposed to diverse flying scenarios at
varying altitudes. This comprehensive exposure facilitated effective learning from
these scenarios.

However, the findings from Section 6.2 reveal that the centralized ML models
trained on both UE1 and UE2 did not exhibit satisfactory performance when evaluated
with UE2 test data. This underperformance can be attributed to the model’s limited
exposure to UE2 data points during training, leading to a lack of generalization.
Although the RF model outperformed the GRU model in terms of UL throughput
predictions, the GRU model accurately captured trends involving rapid fluctuations in
UL throughput values.

The federated learning results mentioned in Section 6.3 show that federated learning
predictions were better compared to centralized learning results based on UE1 and
UE2 data. The last 10% of the UE1 (last 140 data points) and UE2 (last 40 data
points) data set was used for FL testing. This means that the model got to see more
of UE2 data during training and this resulted in improved performance compared to
centralized models with both UE1 and UE2 data training on GRU model.

In the study, measurements were performed in a relatively stable environment,
allowing the prediction horizon to be set to 3 seconds, the same as the frequency of
data collection. The results in the Section 6.1 indicate that the model could determine
the system’s behaviour for future data points when trained only with UE1 data and
tested with UE1 test data. However, in a more dynamic environment where conditions
change rapidly, the effectiveness of longer prediction horizons may be limited. If the
input parameters experience frequent and significant variations, the model’s ability
to make precise predictions for longer time horizons could be affected and shorter
horizons are recommended. The success of predictions will depend on how quickly
the relevant parameters change and how well the machine learning model can adapt to
these dynamic variations.

These findings highlight how the type of data used for training directly affects the
model’s predictions. To make accurate forecasts for uplink throughput, it is crucial
to train the model using a wider variety of scenarios. This idea is supported by the
outcomes discussed in Section 6.1, where including a diverse set of scenarios improved
the model’s accuracy.

The model’s predictions are influenced by the thorough learning it gains from the
UE1 dataset. This impact is noticeable in both the centralized and federated learning
approaches. To ensure that the model can provide precise forecasts and perform
well for UE2, it is essential to expose it to a larger amount of UE2 dataset during
training. This increased exposure will lead to better predictions and improved overall
performance for UE2’s unique characteristics and better generalization.

Federated learning offers a better solution for enhancing model predictions in
scenarios where data diversity is a critical factor. By aggregating insights from various
sources without compromising data privacy, federated learning can contribute to more
accurate and adaptable predictions, ultimately improving the performance of cellular
communication systems for UAVs.
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6.5 Analysis on frequency 700 Mhz and 3500 Mhz for UAV
It was observed that 3500MHz being the higher frequency among the two might have
suffered from higher path losses and fading.

_ =
𝑐

𝑓
, (8)

where: _ is the wavelength, c is the speed of light and f is the frequency. Due to
the shorter wavelength, approximately 8.57 centimeters, rapid variations in received
signal power (small-scale fading) occur over shorter distances. Higher-frequency
signals experience more significant path loss compared to lower-frequency signals.
The path loss is directly proportional to frequency as seen in Equation (1) leading
to higher attenuation as the signal travels through the environment. The impact of
shadowing is more pronounced at 3500 MHz due to its shorter wavelength. Obstacles
and large terrain features, such as buildings, trees, might have cause rapid fluctuations
in received signal power over short distances.

The longer wavelength, approximately 42.86 centimeters, of 700 Mhz frequency
signal, allows the signal to penetrate obstacles more effectively, resulting in less rapid
signal fluctuations. Lower-frequency signals experience less path loss compared to
higher-frequency signals. The signal can travel longer distances without significant
attenuation, making it suitable for wider coverage especially in the case of drone
missions. The impact of shadowing is still present, but it may be relatively less
pronounced compared to higher-frequency signals. The longer wavelength allows
the signal to diffract around obstacles, providing more consistent signal strength over
larger areas.

Another possible explanation is that the altitude of operations, i.e., 100 meters with
UE2 could have facilitated LoS connectivity to the serving base station when operated
in 700 Mhz frequency band. This LoS link could have contributed to a more stable
and reliable communication link, thereby reducing the impact of small-scale fading
effects. In scenarios where there is a LoS component present among the multipath
components, the small-scale fading effects tend to be more moderate compared to
NonLOS cases. When there are large number of MPCs and a LOS component, the
movement of UAV or ground station can lead to small-scale fading, which can often
be modelled as Ricean fading. In such situations, the presence of the LOS component
helps to mitigate the severity of the fading effects [32].

Analysis of path loss samples as a function of the distance from a drone to a cell
is also studied based on simulation environment in [70][32], considering different
frequency bands including 700MHz. The path loss models with exponents 2.0 and
4.0, which are commonly used for free space and ground models are analysed based
on simulation. The results suggest that the free space model with an exponent of 2.0 is
suitable for airborne vehicles in simulations.

However, it is also important to note that these observations are determined based
on the assumption that the antenna structure remains consistent and scaled for both
the UEs.
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6.6 Future work
In practical scenarios, a major challenge arises due to the limited availability of data
on the terminal side, while accessing network data proves to be difficult. The main
issue is to achieve accurate and reliable predictions based solely on terminal-side data,
which lacks crucial information about parameters such as network and cell load. This
information significantly impacts interference, resource availability, and ultimately
the achievable throughput [55]. Despite having favourable radio conditions in these
situations, the throughput achieved by a specific UE can still be influenced by the
decisions made by the scheduler as discussed in [6].

Cellular base stations schedule transmissions to connected devices by allocating
radio resources based on factors like reported channel quality and recently allocated
resources. Schedulers aim to balance resource fairness and efficiency. By combining
physical (PHY) measurements with throughput data, the accuracy of throughput
prediction can be significantly enhanced. Traditional methods rely on single metric,
while machine learning and deep learning excel in leveraging multiple features for
more precise throughput prediction [28]. Therefore the effect of the influence of
base station data on future throughput needs to be investigated. Exploring various
prediction approaches and examining different prediction time horizons with different
features could potentially lead to further enhancements in prediction performance.
NWDAF function defined in 5GC could be leveraged for UAV related application
scenarios which could possibly address the above issues.

High mobility and fast time-varying fading create different types of outliers, and
ML models must be considered so as to apply to these fast-moving scenarios. Data
collection from multiple sources poses difficulties. Additionally, there is a lack of
publicly-available data sets that encompass information from all parts of the network.
To address these data limitations, simulators are often used, but they introduce inherent
uncertainties. Simulators with UAV specific channel and routes models needs to be
introduced.

The development of drone-based simulators that emulate real-world scenarios with
accurate spatial coordinates could be a promising area for future research. This would
help with replication of various use cases like package delivery, military surveillance,
and aerial imaging, facilitating the exploration of UAV behaviour and communication
performance in controlled environments. Given the limitations of physical data
collection due to factors such as battery constraints, these simulators could serve as
valuable tools for predictive analysis, testing, and optimization of UAV operations
before actual deployment.

In conjunction with this, it is worth considering the utilization of theory-based
propagation models within the simulators to assess how theoretical models align
with practical measurement results. This can give valuable insights into how UAV
communication signals propagate under different conditions. This modeling can serve
as a complementary tool to practical measurements, providing a comprehensive view
of the UAV communication dynamics and aid in the development of more robust and
efficient UAV systems. This offers opportunities for addressing challenges related
to signal propagation and improving the overall reliability and performance of UAV
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communication systems.
The insights from analysis about higherpathloss with increasing frequency are based

on the assumption that the UE’s had the same antenna structure, it is worth exploring the
benefits of using advanced antenna technologies for UAV communication enhancement.
Integrating advanced antenna technologies such as directive phased antenna arrays
into UAV communication systems may yield improved channel conditions. Directive
phased arrays allow precise control over signal directionality, potentially mitigating
issues related to interference and signal attenuation. Therefore, examining the impact
of incorporating advanced antenna technologies in UAV communication systems is a
promising future research area.

Real-time operation with limited training data and the ability to reuse ML models
on different data sets are other challenges. Transfer learning techniques are suggested
to reduce data collection and training overhead. Transfer learning enables adapting
pre-trained models to new scenarios with similar characteristics, saving data and
computational resources. Instead of training from scratch for each situation, a model
can build on past knowledge to learn new patterns in specific scenarios. This suits
UAV applications where limited data, battery life, and processing power are key
concerns. For example, a model trained to predict uplink throughput in a specific
environment or altitude could be fine-tuned using a smaller dataset collected in a
new environment. The model’s ability to generalize from the initial training data and
adapt to the new conditions through transfer learning would significantly enhance its
predictive accuracy without the need for starting training from scratch.

Robustness in QoS prediction, especially for safety-related applications is critical.
Robust ML tools capable of providing prediction bounds and handling outliers and rare
events needed to be developed [53]. For UAV applications, selecting the appropriate
ML algorithms involves considering multiple crucial factors. The accuracy of the
prediction is of utmost importance as it directly impacts the effectiveness of UAV
operations. Additionally, the time taken for the model to make predictions is critical,
as real-time or near-real-time responses are often essential in UAV missions.

Resource consumption is another significant consideration, incorporating factors
such as latency, bandwidth usage, battery life, and computing power. UAVs have
limited resources, so the model’s efficiency in utilizing these resources plays a crucial
role in determining its suitability. The efficiency of a model in this context refers
to its ability to perform well while consuming minimal resources. For instance, a
machine learning model that requires a lot of computational power to make predictions
might not be suitable for deployment on a UAV, as it could drain the onboard battery
quickly and hinder the UAV’s operational time. Similarly, a model that demands
high bandwidth for communication might struggle in scenarios where the available
communication resources are limited.

If the machine learning model is deployed on the cloud, it can take advantage of
powerful computational resources available in data centers. However, this approach
introduces the challenge of latency in communication between the UAV and the
cloud. The delay in transmitting data to the cloud and receiving predictions back
can significantly impact the forecasting accuracy and real-time responsiveness of the
UAV’s operations.
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On the other hand, deploying the model directly on the UAV’s onboard hardware
can reduce the latency since predictions are generated locally. However, this approach
needs to carefully balance the computational resources available on the UAV. Models
requiring substantial computing power might strain the limited resources of the UAV,
affecting its battery life and overall performance.

An alternative solution is to offload computations to Multi-Access Edge Computing
(MEC) servers located closer to the UAV’s operation area. MEC servers are positioned
at the edge of the network and offer a balance between computational capabilities and
reduced latency. However, the availability and scalability of MEC infrastructure need
to be thoroughly investigated to ensure its feasibility for UAV applications.

The stable performance of UE2 could be attributed to its location under the
coverage of the 700 MHz frequency band, which likely contributed to consistent
performance. On the other hand, the 3500 MHz band had shorter coverage and
was situated farther from the measurement location. Additionally, minimal traffic
congestion was anticipated. Further investigation is needed to determine if UE
performance remains consistent across various locations, traffic conditions, and when
involving multiple UAVs. This analysis should consider the 700MHz frequency band
and assess whether the observed performance aligns with different scenarios and under
various conditions.
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7 Conclusion
In recent years, the increase of UAVs or drones has captured substantial attention due
to their affordability, accessibility, and diverse applications. These versatile devices
have found utility across sectors ranging from surveillance to entertainment. Among
their numerous applications, ensuring robust and seamless communication channels
for UAVs stands out as a critical aspect, particularly in scenarios where they operate
BVLoS.

This thesis has looked into the challenges and opportunities presented by UAV
communication within cellular networks. The study revealed that while the potential
of 5G technology is promising, its current design primarily caters to ground users,
necessitating adaptations for UAV-specific requirements. Addressing challenges such
as frequent handovers, channel models, and interference from base stations is crucial
to ensuring reliable communication links.

The exploration of PQoS introduced an innovative approach to maintaining uninter-
rupted data transmission for UAVs. By accurately predicting QoS parameters, proactive
adaptations can be made to applications based on the anticipated service quality. The
feasibility of employing machine learning techniques to forecast uplink throughput
QoS parameters in the payload communication link of UAVs was investigated.

Through practical experiments involving data collection, model training, and
performance evaluations, this thesis provides insights into the effectiveness of different
machine learning models in predicting uplink throughput. The insights gained from
comparing centralized and decentralized models emphasize the importance of diverse
training data for accurate predictions. The results suggest that to enhance predictions,
models need exposure to a wider range of scenarios, especially when addressing the
unique characteristics of different UAVs.

Furthermore, the application of Federated Learning emerges as a promising avenue
to enhance the model’s predictive capabilities. By aggregating insights from various
sources without compromising data privacy, FL offers a potential solution to address
the data diversity challenge. This approach contributes to more accurate and adaptable
predictions, ultimately improving the performance of cellular communication systems
for UAVs.

In addition to addressing model performance, an analysis of the frequency bands,
specifically the 700 MHz and 3500 MHz bands, offered valuable insights into signal
propagation characteristics. The findings indicated that the longer wavelength of the
700 MHz frequency band resulted in superior signal penetration, reduced path loss,
and more stable communication links compared to the higher frequency 3500 MHz
band. This analysis emphasizes the significance of frequency selection in optimizing
UAV communication performance.

As we look to the future, the challenges of UAV communication continue to
inspire potential research directions. Exploring innovative prediction approaches,
incorporating robustness in QoS predictions, and developing drone-based simulators
for replicating real-world scenarios offer exciting opportunities for further investigation.
Additionally, the interaction between resource consumption, model efficiency, and
deployment decisions emphasizes the balance between performance and constraints.
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As the UAV field continues to evolve, the findings of this thesis offer valuable
guidance for designing more reliable communication systems for UAVs. The research
paves the way for improved connectivity and emphasize the significance of data-driven
approaches in tackling challenges specific to UAV communication. The thesis opens
avenues for future investigations, suggesting the potential for advanced machine
learning techniques, including FL, to enhance UAV communication and contribute to
the seamless integration of these aerial devices into modern networks.
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