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Abstract

This thesis explores the automation of stock management in retail stores, with a specific focus on
stores specializing in the sale of fruits and vegetables. Traditionally, these stores have relied on
manual stock management methods, involving periodic inspections to maintain product availability. In
response, this study proposes the application of Deep Learning techniques, particularly object
counting models, to automate stock management.

The automation process comprises two key steps. Initially, a camera positioned above a shelf of fruits
and vegetables captures an image, which is processed to identify boxes containing fruits and
vegetables, along with their respective categories. Afterward, a Deep Learning counting model is
employed to provide an estimation of the number of objects present within each box. These
estimations can then be continuously monitored or subjected to analysis to optimize store operations.

The research encompasses four distinct data scenarios: supervised learning, semi-supervised learning,
few-shot learning, and zero-shot learning. Within each scenario, existing object counting methods are
evaluated using object detection and density estimation methodologies. The primary goals of this
research are to establish an experimental setup for assessing object counting models across different
learning frameworks, evaluate their performance in various scenarios, and analyze the practical
strengths and limitations of these techniques in retail store environments.

Key findings from the study highlight the superior performance of YOLO models, especially
YOLOv5, in supervised learning scenarios, striking a balance between speed and model size. In
semi-supervised learning, the application of the Efficient-Teacher approach to YOLO models
enhances performance with limited labeled data. Zero-shot learning, specifically the CLIP-Count
method offering a balance between speed and acceptable error rates, is recommended for data-scarce
environments with sufficient computational resources. While few-shot learning, represented by the
SAFECount approach, remains as the last option due to its relatively higher error, and it is suggested
for situations with limited data and computational resources.

Furthermore, our study reveals that improving the counting model's performance can be achieved
through the removal of certain complex-shaped categories that present counting difficulties, such as
grapes and hot peppers. Additionally, merging categories of fruits and vegetables with similar
appearances emerges as a viable strategy for optimization.

Overall, this thesis offers practical insights into automating stock tracking in retail stores. It
emphasizes the importance of selecting the right learning framework and model based on specific
operational needs and constraints such as data availability, providing valuable guidance to improve
stock management efficiency in diverse data scenarios.
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Abbreviations and Acronyms

CLIP Contrastive Language-Image Pre-training

Detic Detector with image classes

FamNet Feature, Affinity and Multi-dimensional assignment Network

Dino Self-distillation with no labels

MAC Multifaceted Attention Counting

OWL-VIT Open-World Localization by Vision Transformer

P2PNet Point to Point Network

R-CNN Region-Based Convolutional Neural Network

SAM Segment Anything Model

SAFECount Similarity-Aware Feature Enhancement Counting

YOLO You Only Look Once
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1. Introduction

Retail stores have been around for a very long time, gradually expanding in size until we now
encounter extensive chains of retail outlets. Among these, stores that specialize in selling fruits and
vegetables at the retail level are emerging as a significant presence. Managing such stores presents its
own set of challenges.
Traditionally, the management of these stores relies on manual labor, where workers periodically
inspect the stock levels of each shelf. This routine is essential to ensure product availability and to
prevent shortages. Hence, effective tracking of stock levels plays a pivotal role in the successful
management of these types of stores.
An example illustrating a shelf stocked with fruits and vegetables is shown in Figure 1.

COP AMACO1 aims to automate this process through the application of Deep Learning, as illustrated
in Figure 2. A camera is positioned above the shelf to capture an image of its contents. In the initial
stage, the focus is on identifying and extracting various boxes within the image. This can be achieved
either manually by predefining specific locations, or automatically through the use of an algorithm.
Once the boxes are identified, the next step is to pass these images to a counting model, which will
provide an estimate of the number of items contained within each box or image. It is important to note
that the first step, involving box identification, falls outside the scope of this thesis. Instead, the focus
will be on the counting part. The outcomes of this automated process can then be displayed for the
store manager, who has the capability to receive alerts when products are nearing depletion, thereby
preventing shortages. This automation offers significant advantages: it enables us to monitor stock
levels automatically with minimal human intervention, resulting in faster and more cost-effective
management. Moreover, it grants us the ability to gauge the rate at which specific product categories
are sold, facilitating trend identification and more informed decisions when procuring supplies for the
store.

In recent years, the field of Deep Learning has seen remarkable progress, giving rise to various
techniques for object counting. These techniques range from object detection models [1, 8, 17, 18],
which identify objects coordinates within an image and subsequently tally their numbers, to density
models [2, 21, 22, 23], which aim to capture the probability density of objects within an image instead
of individually counting them.
As is widely recognized, Deep Learning models heavily rely on data, and the acquisition of this data
can be costly. Moreover, the ideal scenario of having ample labeled data for supervised learning is not
always feasible. Fortunately, prior researchers have delved into scenarios where data availability
varies. For instance, in zero-shot learning [32, 36], they have addressed situations where no data is
required except a textual description. While in few-shot learning [29, 30], they have tackled cases
with limited data. Additionally, in semi-supervised learning [24, 25], researchers have explored
situations where a reasonable amount of data is available, but only a small portion of it is labeled.
Notably, both zero-shot and few-shot learning possess the advantage of accommodating a flexible
number of classes without necessitating the creation of entirely new models.
Due to data constraints, we should carefully select a learning framework (supervised,
semi-supervised, few-shot, or zero-shot) that is well-suited to our task.

1 COP AMACO is a store furniture production company. https://www.cop-amaco.fr
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However, to our knowledge, no previous study has assessed the performance of object counting
models in both detection and density estimation across the four aforementioned frameworks especially
given the recent release of many new approaches. Therefore, the primary objective of this thesis is to
address the following research questions:

1. What experimental setup and evaluation criteria can be employed to assess the performance
of state-of-the-art object counting models within different frameworks?

2. How do state-of-the-art counting models, operating within each framework, perform when
evaluated using the established experimental setup and evaluation criteria?

3. What are the strengths and limitations of the assessed counting techniques, and how do these
factors influence their applicability in retail store environments?

4. In what ways can the findings derived from this research guide the selection of the most
suitable framework and counting approach to meet specific retail store needs?

In order to answer these questions, we will conduct a benchmark of existing counting approaches,
focusing on the counting of fruits and vegetables in shelves across the four scenarios. Supervised,
when we have access to an ample amount of labeled data. Semi-Supervised, where a dataset is
available, but only a fraction of it is labeled. Few-shot, when facing a flexible number of categories
represented by only a handful of examples. Zero-shot when no visual data is available; instead, we
rely solely on textual descriptions while accommodating a flexible number of categories.

It is important to clarify that our study's scope is confined to the benchmarking of existing counting
approaches. We do not undertake the development of new model architectures or provide detailed
explanations of the inner workings of each presented model.

Consequently, the principal contributions of this thesis can be summarized as follows:

● Implementation of state-of-the-art object counting methods through detection and density
estimation.

● Evaluation of the performance of these methods across four distinct data scenarios.

● Provision of a comparison of the strengths and limitations of these techniques

The structure of the remaining sections in this thesis is as follows: Section 2 provides a background
to facilitate comprehension of the methods used in this study. Section 3 reviews relevant prior research
related to our thesis. In Section 4, we introduce the selected approaches. The experimental setup and
evaluation metrics are detailed in Section 5. Section 6 presents the results, followed by their
discussion in Section 7. Lastly, Section 8 concludes the thesis by addressing the research questions,
highlighting challenges, and suggesting potential avenues for future research.
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Figure 1: Example of a fruit and vegetable retail shelf.2

Figure 2: Automation setup using deep learning: a camera placed above captures an image of the
shelf, which is then processed to extract boxes with their corresponding categories. Afterward, a
counting model is employed to predict final estimates.

2 “Fruits and vegetables on shelves in supermarket Photos,” Adobe Stock. https://stock.adobe.com
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2. Background

In this section, we will cover fundamental concepts that will aid in understanding the methods used
later. Specifically, we will explain how Deep Learning counting methods function through detection
and density estimation. Subsequently, we will examine various learning paradigms tailored to
different types of data.

2.1. Deep Learning and Computer Vision

2.1.1. Machine Learning

Machine learning is a process that develops algorithms capable of approximating unknown real-world
mappings without explicit coding. This iterative approach relies on examples of data to enhance
algorithm quality through a series of error corrections.

Machine learning broadly falls into three categories. Supervised Learning, where datasets consist of
input-output pairs. The objective is to learn a function that accurately maps inputs to outputs.
Unsupervised Learning, that deals with unlabeled data and aims to discover meaningful patterns or
structures within it. Clustering is a common application. Reinforcement Learning, where agents
interact with environments, making decisions to maximize cumulative rewards. This approach is
prevalent in games and robotics.
It is noteworthy that certain tasks within unsupervised and reinforcement learning can also be framed
as instances of supervised learning.

The key components of supervised machine learning include: the data, the model, and the loss
function. The model represents a function mapping inputs from the input space (X) to outputs (y =
f(x)) in the output space. Models have parameters, known as weights, which are not manually set but
determined iteratively through Gradient Optimization. While the loss function quantifies the error
between the model's predictions and actual outcomes, it guides the optimization process. This iterative
process entails predicting labels for inputs, calculating prediction errors, and adjusting weights
accordingly. As iterations progress, the model improves its predictions. Figure 3 provides an
illustration.

Figure 3: Illustration of supervised machine learning: modeling the input-output function, then
optimizing its parameters to make good predictions through gradient optimization, involving the
model, the data, and settings such as the loss function.
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2.1.2. Deep Learning

Deep learning is a subfield of machine learning. It follows the same data, model, and loss function
logic. What distinguishes deep learning is the use of neural networks, a type of functions that are well
suited for complex tasks. It tries to simulate the working principle of brain neurons. A typical neural
network, as depicted in Figure 4, comprises three essential components. The input layer takes in the
input data, which can be represented as a vector or matrix. Hidden layers can be viewed as smaller
functions within the network. Each layer receives the output from the preceding layer's neurons,
applies transformations using its associated weights, and passes the result to the subsequent layer. The
stacking of these layers contributes to the network's depth, making it more capable to learn complex
patterns. The output layer produces the final prediction or label, serving as the network's ultimate
decision-making stage.

Deep neural networks, constituting deep learning, feature multiple hidden layers, hence their name.
The learning process within each layer involves the adjustment of weights, which is accomplished
through gradient optimization.

During training, the network performs a forward pass to make predictions, calculates the error by
comparing these predictions to the actual outputs using the chosen loss function, and subsequently
updates the weights through a backward pass. This iterative weight adjustment process progressively
enhances the network's ability to make accurate predictions.

2.1.3. Convolutional Neural Networks

Convolutional Neural Networks, or CNNs, represent a specialized subset of neural networks better
suited for image processing tasks. They harness the concept of image filters, or kernels, to extract
distinctive features from images. These kernels, such as the commonly used 3x3 matrix for edge
detection, perform mathematical operations called convolutions. The result is a new image that
accentuates specific aspects like edges. CNNs take this idea further by employing learnable kernels.
Unlike predefined kernels, CNNs learn their kernel parameters using gradient optimization alongside
network weights. This approach enables the network to adapt and extract more informative features
from images, enhancing their utility compared to using raw images.

A typical CNN architecture, illustrated in Figure 5, encompasses three essential components.
Convolutional layer with learnable kernels, that applies convolution operations, allowing the network
to capture meaningful features from the input data. Activation function, that introduces non-linearity
to the network, enabling it to model complex mappings effectively. Without them, the composition of
linear functions would remain linear, limiting the network's capacity to learn intricate relationships.
Pooling operator, which reduces the spatial dimensions of image features, promoting efficient
processing and reducing the overall number of network weights. This contributes to faster
computation. After traversing multiple CNN layers, the network extracts final image features. These
features can be further processed using standard neurons, culminating in the prediction made at the
final layer.

12



Figure 4: Illustration of the structure of a typical neural network: involving two essential processes.
The forward pass, where neurons in each layer receive the output from the preceding layer and apply
layer-specific weights to generate outputs for subsequent layers, culminating in the final output layer,
where prediction-loss calculations occur. Subsequently, the backward pass involves weight
adjustments across layers to optimize predictive performance.3

Figure 5: Application of CNN in image classification: the input image undergoes initial processing
through convolutional layers, succeeded by activation and pooling layers, resulting in a reduction in
size and an augmentation in the number of feature maps. These extracted features are then processed
through multiple layers of neurons, enabling the generation of a final prediction providing the
probability of the image belonging to each class.4

4 Kh. Nafizul Haque, “What is Convolutional Neural Network — CNN (Deep Learning)”, Apr. 2023,
https://www.linkedin.com

3 JayeshBapuAhire, “The Artificial Neural Networks handbook: Part 1,” Data Science Central, Aug. 2018,
https://www.datasciencecentral.com/
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2.1.4. Counting by Object Detection

In contrast to image classification, where a single prediction pertains to the entire image, object
detection is tasked with the identification of multiple objects within an image. This process involves
providing coordinates for each detected object in the form of the top-left corner's (x, y) position, along
with the width and height dimensions of the bounding box or rectangle encapsulating the object.
Additionally, object detection furnishes valuable information such as the category id of each detected
object and a confidence score, expressed as a probability ranging from 0 to 1. Consequently, an object
detection model, as visualized in Figure 6, functions as a mapping that takes an image as input and
generates output consisting of object coordinates (x, y, w, h) that define the bounding boxes, along
with category ids and confidence scores for each detected object within the image. Counting objects
through object detection involves the straightforward process of tallying the number of predictions or
the number of distinct objects detected within the image.

2.1.5. Counting by Density Estimation

An alternative approach to object counting involves the use of density estimation models. These
models function as mathematical functions that take an image as input, but instead of providing
coordinates for each object, they generate a density map for the entire image. This density map takes
the form of a 2D matrix, which serves as a visual representation of the probability distribution for the
presence of objects. In regions where the likelihood of an object's existence is high, the values in the
matrix approach 1, while areas with a lower likelihood exhibit values closer to 0.

Counting objects through density estimation can be achieved by integrating over the density map.
This practical integration is performed through a summation of pixel values within the 2D matrix.
Alternatively, we can employ contour detection algorithms to identify dense areas or spots and
subsequently count the number of detected spots.
It is worth noting that the default counting method, both during training and inference, is the first
approach involving summation. The second approach, which we have experimented with, has
demonstrated its ability to yield superior results in numerous scenarios, although it may not
consistently outperform the first approach. An illustration is shown in Figure 7.

Figure 6: Object detection and counting example with YOLOv5 [1]: the detection model processes the
input image and generates output containing the coordinates of each detected object, along with their
corresponding category ids and associated confidence scores. These detected objects can subsequently
be visualized or counted.
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Figure 7: Object counting example through Density Estimation using MAC [2]: the density model
processes the input image, resulting in a 2D probability density map that visualizes the likelihood of
object presence. This density map can be employed for object counting through either summation or
spots detection and counting.

2.2. Different Learning Paradigms

In the following axis, we provide insights on harnessing unlabeled data to improve the training instead
of relying only on labeled data in semi supervised learning. We also explore how a model can make
predictions on unseen classes in zero-shot and few-shot learning.

2.2.1. Semi-supervised Learning

Leveraging unlabeled data can be achieved through various methods, one of which is
pseudo-labeling. This approach involves training the model using the labeled data while
simultaneously making predictions on the unlabeled data and using these pseudo or simulated
predictions in the training process. Although this may seem strange, it proves effective in enabling the
model to generalize well to unseen data, particularly when augmentation techniques are applied. As
demonstrated in [3], training with pseudo-labels acts as a form of regularization that helps mitigate
overfitting, ultimately leading to improved results.

2.2.2. Zero-shot & Few-shot Learning

Predicting outcomes for unseen data belonging to classes used during the training, poses a challenge
in machine learning. The fundamental objective of machine learning is to equip models with the
ability to generalize effectively to novel data instances. However, making accurate predictions for data
belonging to entirely new, unforeseen categories represents an even greater challenge. Such scenarios
frequently arise in practice, where either limited data is available for new categories or retraining the
model for each new category is impractical.

One approach to illustrate the feasibility of making accurate predictions for new, previously unseen
categories involves training a supervised image classification model on a predefined set of classes.
Subsequently, the model's underlying architecture, often referred to as the ‘backbone’, is employed to
extract embeddings or features from new data instances belonging to previously unencountered
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categories. Classification of these new instances is achieved by computing the distances between the
instance's features and the features of each known category and assigning the instance to the category
with the closest feature representation.

To put it into perspective, consider a model that has been trained to recognize various animal species.
Now, if we encounter a new, unidentified animal species, rather than undergoing the laborious process
of retraining the model from scratch, we leverage the model's existing knowledge of animal
characteristics to infer the most likely category for the new species. This process is akin to saying,
‘This unfamiliar creature shares strong resemblances with known big cat species, so we classify it as a
type of large feline’. In essence, this methodology underscores the potential for leveraging existing
model knowledge to make informed predictions for entirely novel and unforeseen data instances.

To obtain the distinctive features of each class, several methods can be employed. One approach
involves utilizing a text-based model, which translates a textual description of the class into a vector
within the same feature space as that of the image features. An example of such a technique is CLIP
[4], which enables zero-shot classification. Alternatively, one can provide multiple images for each
class. These images are then processed through the same underlying backbone architecture used for
feature extraction, and their feature representations are averaged to create a prototype for each class, a
method exemplified by the Prototypical Network [5]. This approach facilitates few-shot classification.

16



3. Related work

We recall that our objective is to assess state-of-the-art deep learning based counting methodologies in
various data availability scenarios. This assessment aims to offer retail store managers valuable
insights for enhancing store management by optimizing their stock tracking.

This section will offer an overview of relevant prior research related to our study, accompanied by
pertinent discussions. Specifically, we will focus on existing deep learning techniques for object
counting, which can be broadly categorized into two main approaches: object detection and density
estimation. The selected methods will be presented in the subsequent section (Section 4).

3.1. Existing Supervised Approaches

In recent years, deep learning-based object detection methods have attracted significant attention,
categorized into three main groups. To facilitate comprehension of the subsequent discussion, Figure 8
provides an illustrative representation. The first, known as two-stage methods, was pioneered by
R-CNN [6], which exhibited promising results compared to non-deep learning approaches. R-CNN
employed selective search to identify regions of interest in an image, followed by a CNN network for
classification. However, this method suffered from slow processing speed, making it unsuitable for
real-time applications. The introduction of Fast R-CNN [7] addressed this issue, delivering improved
performance and faster predictions by replacing multiple CNN predictions with a single one. This
streamlined approach utilized Region Of Interest (ROI) pooling for feature extraction, resulting in
faster and more efficient object detection. Subsequently, Faster R-CNN [8] further improved speed
and accuracy by replacing selective search with a neural network called the Region Proposal Network
(RPN). This enhancement enabled multiple predictions per second, making it close to real-time usage.
In contrast, one-stage methods, such as the YOLO series [9], focus on achieving real-time object
detection. Although slightly less accurate than two-stage models, YOLO introduced significant
improvements with YOLOv2 [10], incorporating batch normalization, anchor boxes, and multiscale
training. Further advancements in YOLOv3 [11] and YOLOv4 [12], featuring new loss functions,
architectures, multiscale feature extraction, and augmentations, aimed to balance accuracy and speed.
YOLOv5 [1] continued this trend, emphasizing ease of use and portability by adopting the PyTorch5

environment with Python, departing from the Darknet6 framework based on C. Subsequent iterations,
YOLOv6 [13], YOLOv7 [14], and YOLOv8 [15], focused on enhancing performance through novel
architectures, loss functions, optimizers, and regularization techniques, positioning YOLO as a
state-of-the-art solution for high-performance and real-time object detection. However, it is important
to note that YOLO is not the sole representative of one-stage detectors. Other models like SSD [16]
and RetinaNet [17] have also operated in this domain. While they may no longer be considered
state-of-the-art, RetinaNet remains a notable option, appreciated for its acceptable performance when
compared to other alternatives in the field. In addition to these models, transformer-based
approaches emerged, inspired by the success of transformer networks in natural language processing.
These models made their foray into computer vision tasks with Detr [18] and Deformable Detr [19],
which combine CNN networks with transformer networks for object detection. While these models
performed well, they are resource-intensive and computationally demanding compared to other
alternatives.

6 Darknet is a C based deep learning framework. https://pjreddie.com/darknet/
5 PyTorch is a python deep learning framework. https://pytorch.org
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Turning our attention to density models also known as crowd counting models which garnered
substantial research interest as well. These models were first introduced in [20], where they
transformed the task of counting individual elements within an image into an integral calculation over
the probability (density map) of object presence. Subsequent efforts were dedicated to enhancing the
predictive capability of these models, particularly in scenarios with highly dense images. This
endeavor led to various innovations, including the utilization of multi-scale predictions in MCNN
[21], which aimed to reduce counting errors by employing distinct CNN filter kernels at different
scales within the network. Additionally, the adoption of the U-Net architecture, renowned for
image-to-image tasks like segmentation, was applied in models such as W-Net [22], resulting in better
quality density maps and further reductions in counting errors. Further strides in this direction
introduced a purely point-based framework in P2PNet [23], which contributed to cleaner density maps
and lower counting errors. Furthermore, the fusion of transformers and attention mechanisms with
CNN networks was leveraged to enhance the performance of crowd density models, exemplified by
the approach taken in MAC [2] (Figure 9). The latter two methods are regarded among the
state-of-the-art.

3.2. Existing Semi-Supervised Approaches

Over the last few years, there has been notable interest in semi-supervised training of object detection
models. The strategies employed to harness unlabeled data for enhanced generalization can be
succinctly summarized as follows. Student-Teacher Setup, this entails the concurrent training of two
models, where the student aims to replicate the predictions of the teacher. The teacher model can be
obtained through various means, including methods like Exponential Moving Average (EMA) applied
to the student's weights over multiple training iterations. Consistency, in this approach, perturbations
are introduced to the data, and the models are tasked with producing similar predictions for perturbed
versions of similar images. Pseudo Labeling, as previously described in (Section 2.2.1), pseudo
labeling enables the utilization of unlabeled data during training. After initial training on labeled data,
the model is employed to make predictions on unlabeled data, with some of these predictions
considered as new labels. Subsequently, the model is retrained on this augmented dataset.

These innovative techniques have found application in recent state-of-the-art approaches. For
instance, the Consistent-Teacher method [24] effectively combined the teacher-student setup with
pseudo labeling and data augmentation, along with a specialized loss function tailored to the
RetinaNet model. This approach yielded superior results compared to the baseline model trained
solely on labeled data. Similarly, the Efficient-Teacher method [25] (Figure 11), another recent entrant
achieving state-of-the-art results, adopts the student-teacher framework with EMA updates. It
incorporates both strong and weak data augmentations as perturbations to facilitate robust
generalization. This approach was applied to the YOLOv5 model, resulting in state-of-the-art
performance. While this technique is adaptable to various YOLO model variants, YOLOv5 was the
default choice in this study.

Furthermore, these methodologies have been extended to semi-supervised density models, as
demonstrated in [26]. In this context, student and teacher networks, combined with EMA updates and
perturbations, were employed to advance the performance of semi-supervised density models.
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3.3. Existing Few-Shot Approaches

As previously discussed, few-shot techniques are specifically designed for scenarios where the
number of categories is flexible, and new categories are represented by only a few examples. Various
approaches can be employed to address this challenge. For instance, in the domain of few-shot object
detection, models like DeFRCN [27] and Meta-DETR [28] utilize meta-learning and fine-tuning
strategies. They incorporate the concept of a query set and support set during inference, in addition to
the training dataset. This enables these models to quickly adapt and generalize to new categories
through fine-tuning. However, it is worth noting that these approaches may not be practical in a retail
store context, as fine-tuning typically necessitates domain knowledge, debugging skills, and a training
device that store managers may not possess.
In contrast, few-shot density-based counting models offer a more practical solution, as they do not
require fine-tuning. Instead, these models take two inputs during both training and inference: the
query (the object to be counted) and the support images (the reference shots). They employ a principle
known as "matching" (Figure 10). A shared CNN neural network backbone is applied to both inputs
to extract meaningful features. Subsequently, these features are projected into the same feature space,
and the features of the support images are treated as kernels for CNN operator layers, which are then
applied to the features of the query image. Further normalization layers and additional operations are
employed to refine the localization of support images features within the query image. This process
aids in generating the final density map, which is used for counting through summation.
The concept of matching is effectively employed in state-of-the-art few-shot density counting models
such as FamNet [29] and SAFECount [30].

3.4. Existing Zero-Shot Approaches

Since the past year, there has been a significant interest in class-agnostic detection and segmentation
techniques. Segmentation is akin to object detection, but instead of providing a bounding box around
the object, it outlines all the individual pixels that form the object. These methods have the capability
to identify common objects within an image without necessarily categorizing each object, rendering
them well-suited for zero-shot detection scenarios. The fundamental principle behind zero-shot
detection can be summarized as follows. Initially, a class-agnostic segmentation or detection model is
employed, which, upon receiving an input image, identifies all salient objects present. A classification
filter is then applied to retain only those objects belonging to the desired categories. This classification
filter leverages the concept of distance embeddings, as discussed in (Section 2.2.2). Specifically, a
text-image model, primarily CLIP [4], transforms textual descriptions of each category into vectors.
Simultaneously, objects detected in the image are transformed into vectors within the same vector
space as the textual descriptions. Subsequently, the distances between the object's vector and all
classes vectors are computed, and the object is assigned to the class with the shortest distance.

One notable example of such a model is SAM [31], a recent and potent segmentation model capable
of locating objects in an image without class identification. However, due to its substantial size, it can
be challenging and slower to use on standard devices. To address this limitation, FastSAM [32]
endeavors to create a model similar to SAM but more compact and faster. It adopts the architecture of
Yolov8-seg [15], a recent segmentation model, in addition to a prompting model. Despite its reduced
size, FastSAM manages to achieve performance levels close to SAM, while offering improved
efficiency. Several other class-agnostic detectors are available, including Detic [33], Grounding-Dino
[34], and OWL-VIT [35]. These models share common traits, such as pretraining on large datasets
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and the utilization of transformers and attention mechanisms, which empower them to achieve
state-of-the-art performance.

In contrast, zero-shot density counting models have not garnered as much attention as their detection
and segmentation counterparts. However, a recent breakthrough paper titled CLIP-Count [36]
addresses this issue (Figure 12). CLIP-Count leverages pre-trained CLIP encoders with fine-tunable
prompts and utilizes a patch-text contrastive loss to align visual and textual features. The model
incorporates a hierarchical text-patch interaction module to generate multi-modal feature maps at
different resolutions, which are then decoded using a CNN decoder. This approach enables effective
fusion of visual and textual information for density counting tasks, and demonstrates promising results
in the realm of zero-shot density counting.

Figure 8: General architecture of object detection models: the initial step is to process the input image
through a backbone network, which extracts valuable feature maps. More sophisticated feature
extraction techniques include multiscale feature extraction and refinement using a neck block,
resulting in improved features at various resolutions. These extracted features can be employed in the
head for prediction, directly through one-stage models, or by ROI pooling in two-stage detectors.7

7 From YOLOv4 paper
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Figure 9: Multifaceted Attention Network structure: it initiates the process by extracting valuable
features from the input image through the VGG19 backbone. These features are then passed through a
sequence of transformers that incorporate attention mechanisms. Then, a decoder network is
employed to generate the final density map, which is utilized for counting.8

Figure 10: SAFECount model design: it commences with feature extraction from both the query
image and the support images (shots). The support features are then utilized as a convolutional kernel
to identify regions of interest within the query features. Following a sequence of refinement steps, a
regression head is employed to produce the final density map used for counting.9

9 From SAFECount paper
8 From MAC paper
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Figure 11: Efficient-Teacher training pipeline: it employs two pipelines. The first is dedicated to
labeled data and incorporates mosaic augmentation before being fed into the student model for
supervised training. While the second pipeline involves an additional strong augmentation to data
before being used to generate two predictions: one by the student and another by the teacher model.
Afterward, a loss function is computed by comparing these two predictions, constituting the
unsupervised loss.10

Figure 12: The training pipeline utilized for CLIP-Count: it involves the processing of an input image
and an input text prompt through the frozen encoders of CLIP to extract embeddings. These are then
aligned using a contrastive loss, and are passed through a multi-resolution text-patch interaction block
before being forwarded to the decoder, which generates the density map.11

11 From CLIP-Count paper
10 From Efficient-Teacher paper
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4. Methods

After presenting relevant prior research related to this thesis, we will now introduce the selected
methods that will be implemented and evaluated in this study. Our choices were influenced by several
key considerations:

Time Efficiency: Training a model involves comprehending the research paper and the provided code
by the authors, followed by the actual training process, which can span up to a full day. Furthermore,
obtaining final results often necessitates a significant amount of time for hyperparameter tuning and
configuring the training setup. Given these time constraints, we had to be selective and prioritize
models that could be implemented within a reasonable time frame.

Library Support: Some methods lacked published code, or the available code proved challenging to
run due to dependency issues when trying to recreate the author's training environment. Consequently,
we favored models that were supported by libraries offering a consistent training syntax. This
approach allowed us to train multiple models using a familiar syntax, rather than investing additional
time in learning new complex setups.

Recent Performance: In the vast landscape of methods within each area of study, we opted for recent
ones that have demonstrated strong performance on publicly available datasets. This selection
criterion ensured that we were working with models at the forefront of research.

Diversity: To provide a comprehensive evaluation, we made an effort to choose a diverse set of
models rather than restricting ourselves to a single type. Consequently, we incorporated both density
and detection models, as well as one-stage and two-stage detectors, ensuring a well-rounded
exploration of the subject matter.

4.1. Selected Supervised Methods

In accordance with the categorization discussed in the preceding section, our choice of supervised
counting models falls within three distinct categories:

Two-stage Methods: We have excluded R-CNN and Fast R-CNN, ultimately selecting Faster R-CNN
for its superior speed and precision relative to its predecessors. Faster R-CNN deploys two backbone
architectures, ResNet50 and ResNet101, both of which we have employed in our experiments.

One-stage Models: Within this category, our selection encompasses the YOLO series, specifically
YOLOv5, YOLOv6, YOLOv7, and YOLOv8, chosen for their enhanced performance compared to
earlier YOLO models and the convenience of consistent training syntax across them. Each version
comprises multiple submodels, denoted as small (s), medium (m), large (l), extra-large (x), and a
deeper ‘6’ variant (e.g., s6, m6, l6) for YOLOv5. Our chosen models include YOLOv5 (s6, m6, l6),
YOLOv6 (s, m, l), YOLOv7 (l, x), and YOLOv8 (s, m, l). The sizing nomenclature corresponds to the
model's complexity.
Additionally, we have selected the RetinaNet model as another one-stage detector, featuring both
available backbones: ResNet50 and ResNet101, and we have utilized both for our experiments.

Density-Based Models: In this category, we have chosen the state-of-the-art P2PNet and MAC
models.

This comprehensive selection comprises a total of 17 models, encompassing 15 dedicated to object
detection and 2 specialized in density estimation.
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4.2. Selected Semi-Supervised Methods

The semi-supervised training setup used in our study, which will be explained in the next section
(Section 5), is equivalent to training 15 distinct models. Given the complexity and time required for
such an undertaking, we made a decision to opt for a single method.
In light of this, we chose the Efficient-Teacher method for several reasons. Firstly, Efficient-Teacher
implementation is based on the YOLOv5 implementation, which streamlined the replication of the
training environment compared to other models. Additionally, it has proven its effectiveness among
state-of-the-art techniques, making it a suitable choice for our research.
It is important to note that the Efficient-Teacher method is specifically based on YOLOv5 (l), which
distinguishes it from YOLOv5 (l6) that has increased depth and more parameters. The provided code
by the authors supports only the (l) version.

4.3. Selected Few-Shot Methods

In the context of few-shot counting methods, we have opted to stick with density-based approaches
due to their inherent advantage of not requiring fine-tuning when introducing new classes. This
characteristic makes them a better fit for retail store management. To be more precise, our chosen
methods are FamNet and SAFECount.

4.4. Selected Zero-Shot Methods

In the case of zero-shot counting approaches, our decision was to explore all the previously mentioned
methods. These methods are advantageous because they don't necessitate any training or fine-tuning
and can be applied directly. Consequently, we utilized all six methods: SAM + CLIP, FastSAM +
CLIP, Grounding Dino, OWL-VIT, Detic + CLIP, and CLIP-Count.
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5. Experimental design

In this section, our objective is to provide a clear explanation of our approach to benchmarking all the
selected methods. We will also outline the structure of our datasets, the training setup, and the
evaluation metrics employed.

5.1. Research plan

Following the introduction of the topic, problem statement, background information, discussion of
related works, and the selection of the methods for our study, we will now delve into the experimental
setup used for training and evaluating these approaches.
The primary goal is to create a test dataset and assess all models from various frameworks using it.
While some models, such as zero-shot and few-shot models, do not require training, others in the
supervised and semi-supervised frameworks necessitate training. Consequently, we will create a
training dataset to facilitate this purpose. The evaluation will encompass measuring the speed, size,
and accuracy of each presented model, enabling us to compare their performance across different
scenarios. To achieve this, we will proceed as follows:

1. Data Collection and Annotation: We will gather and annotate the necessary data to construct
both our training and test datasets.

2. Training Supervised and Semi-Supervised Models: For models within the supervised and
semi-supervised frameworks, we will undertake training to prepare them for evaluation.

3. Performance Evaluation of All Models: Using our test dataset, we will evaluate the
performance of all models, focusing on aspects such as speed, model size, and accuracy.

4. Discussion of Results: Finally, we will discuss the outcomes of our evaluations and draw
conclusions regarding the performance of the various models under different circumstances.

It is worth noting that this study has been conducted using Python 3, a widely adopted and popular
programming language, particularly in the field of Deep Learning.

5.2. Dataset

5.2.1. Background

Object detection and density estimation models rely on training data composed of pairs such as (x, y)
or (image, label) or (image, annotation). In this context, the label or annotation typically represents the
information about objects within an image. For detection models, this annotation consists of (x, y),
which specifies the top-left corner of the object's bounding box, along with (w, h), representing the
width and height of the object's bounding box, and the category id indicating the object's category.
Density estimation models, however, require a different label format, commonly expressed as the (x,
y) coordinates of the object's center. To create a dataset that accommodates both annotation
requirements, we have adopted the format used for detection, specifically the YOLO format:
category_id, center_x, center_y, w, h. This format allows for flexibility and enables us to write and
execute a Python script to convert between different annotation formats.

The process of assigning a label to an image, achieved by manually locating and defining an object
within the image, is known as labeling or annotating. Various tools are available for this purpose,
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which display the image and enable users to select objects using the mouse cursor. In our case, we
have opted to utilize an online platform called Roboflow12. It offers assisting tools that alleviate the
tedium of this process, although it remains time-consuming.

5.2.2. Collection and Annotation

The dataset we are working with is organized as shown in Table 1, comprising three distinct
components:

● Training Set: This set consists of 10,000 images encompassing 41 categories of fruits and
vegetables. In total, it contains 51,200 objects.

● Test Set: It comprises 606 images, covering the same 41 categories of fruits and vegetables.
Within this set, there are a total of 12,500 objects.

● Unlabeled Data: We have also collected a dataset of 3,200 images. This dataset includes most of
the 41 categories of fruits and vegetables, along with images of other categories. Importantly, this
data is unlabeled and serves the purpose of semi-supervised training.

The selection of these 41 categories was made through a specific process. Initially, we gathered
images from various sources on the internet, primarily from platforms like Roboflow Universe and
Kaggle13, where public datasets are available. Notably, not all of the collected images came with
annotations. To address this, we compiled multiple datasets containing fruits and vegetables and
merged them. Additionally, we augmented classes with fewer images by adding more data and then
proceeded to annotate the images. After this meticulous process, we arrived at a final set of 41
categories for our dataset.

Table 1: Dataset structure

5.2.3. Statistics

Figure 13 provides an overview of the categories along with the corresponding number of annotations
for each class. It is evident that the classes are well-balanced, with the majority having over 1000
examples. On average, there are approximately 1252 objects per category, which provides a
sufficiently large dataset for effective training while minimizing the risk of overfitting. Furthermore,
the dataset exhibits diversity, as reflected in the names of the categories, which encompass a wide
range of common fruits and vegetables.

13 https://www.kaggle.com
12 https://roboflow.com
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Dataset Images Resolution Annotations Categories

Train 10000 640x640 51200 41

Test 606 640x640 12500 41

Unlabeled 3200 640x640 None Includes most
41 categories



Turning to Figure 14, we find statistics related to the test set. In this set, all categories are represented
by more than 230 examples, with an average of 305 examples per category. Additionally, there is an
average of 20.6 objects per image. It is important to note that we took care to ensure diversity within
each class, covering both dense and sparse situations. This diversity makes the test set well-suited for
counting tasks.

Figure 13: Statistics about training set

Figure 14: Statistics about test set

5.2.4. Dataset Examples

In Figure 15, we have displayed images from almost all categories in alphabetical order, showcasing
the diversity and image quality across various categories. This arrangement allows for a
comprehensive view of the dataset, highlighting the range of fruits and vegetables represented and the
clarity of the images.
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Figure 15: Illustrative Samples from the dataset
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5.3. Training Setup

5.3.1. Supervised

For the supervised models, including both detection-based and density-based approaches, the training
process will involve using the entire training set for training purposes. Additionally, the test set will be
used as the validation set to evaluate model performance during training. Here is an outline of the
training process:

1. Hyperparameter Tuning: Before the final training run, preliminary runs will be conducted to
fine-tune hyperparameters. This includes optimizing parameters such as learning rate, number of
epochs, weight decay, and other relevant settings. The goal is to find the best configuration that
maximizes model performance.

2. Final Training Run: Once the optimal hyperparameters have been determined, the final training
run will take place. During this run, the model will be trained on the entire training dataset while
monitoring its performance on the test (validation) set.

3. Weight Saving: After the final training run, the model's weights will be saved. These saved
weights will be used for later evaluation, particularly for counting tasks.

5.3.2. Semi-Supervised

The semi-supervised experimental setup differs from the supervised setup, as our primary objective is
not merely to train a model and evaluate its performance. Instead, our aim is to investigate the impact
of data scarcity by assessing the efficacy of the Efficient-Teacher method in augmenting the
performance of a supervised model through the incorporation of unlabeled data. In parallel, we seek to
examine the merits of utilizing pretrained model weights versus starting with random weight
initializations. To this end, we intend to partition our dataset into five splits, as delineated in Table 2,
each comprising a combination of labeled and unlabeled data. The images for these experiments will
be drawn from the training set consisting of 10,000 labeled images and the 3,200 unlabeled images.
For instance, in the case of the 10% split, our dataset will be partitioned into 1,000 labeled images and
12,200 unlabeled images. Specifically, the 1,000 labeled images will be selected from the original
training set, while the remaining 9,000 images from the training set will be included as unlabeled data.
Additionally, the 3,200 unlabeled images will be added, resulting in a total of 12,200.
We have ensured a balanced distribution of labeled examples within each split to maintain a
representative dataset, as depicted in Figure 17.
For each of these five splits, we plan to train three models:

● YOLOv5 (l) trained exclusively with random weight initialization on labeled data.
● YOLOv5 (l) initialized with COCO weights and trained solely on labeled data.
● YOLOv5 (l) initialized with COCO weights and trained on a combination of labeled and

unlabeled data.

It is important to note that the COCO weights refer to the model parameters obtained from pretraining
on the COCO14 dataset provided by the authors.

Our hypothesis is that both pretraining and the inclusion of unlabeled data will contribute to an
improvement in the performance compared to the model trained solely on labeled data with random
weight initialization.

14 COCO is a renowned publicly available dataset. https://cocodataset.org
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Table 2: Composition of each experimental split

5.3.3. Codes & Libraries

The training of supervised and semi-supervised models, along with the utilization of few-shot and
zero-shot models, was accomplished by harnessing a variety of resources. These resources encompass
author-provided codes, libraries, and documentations.

For YOLOv5 and YOLOv8 models, we used the Ultralytics15 library, which provided us with the
necessary tools for effective training. In the case of RetinaNet and Faster R-CNN, we employed the
Detectron216 library. For all other models, we used the respective GitHub repositories maintained by
the authors. Furthermore, our research benefited from the helpful resources and tutorials offered by
Roboflow blog and Hugging Face17.

5.4. Evaluation Metrics

5.4.1. Errors

For each image in the test set, we denote as the true number of elements and as the predicted𝑦̂ 𝑦
number of elements. Let represent the total number of images, and represent the average𝑛 𝑎𝑣𝑔(𝑛)
number of objects per image. As depicted in Figure 16, the Mean Absolute Error (MAE) quantifies
the average absolute difference across the entire test set between the actual and predicted counts. This
metric is commonly employed in counting evaluations due to its intuitive nature and widespread use.

However, relying solely on MAE may not provide a comprehensive assessment of model
performance. For instance, an error of 3 when estimating a box of 100 apples amounts to only 3%,
whereas the same error on a box containing 10 watermelons equates to 30%. To address this, we
introduce the concept of Relative Error (Rel) by normalizing MAE with respect to the average number
of objects. By doing so, we can gauge model performance based on a percentage scale, allowing us to
set relevant thresholds for different use cases, such as 10% or 20%.

Consider a scenario with two test images: the first containing 100 apples and the second featuring 10
watermelons, resulting in an average object count of 55. Suppose our model achieves a MAE of 3. In

17 https://huggingface.co
16 https://github.com/facebookresearch/detectron2
15 https://ultralytics.com
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Split Labeled Images Unlabeled Images

10 % 1000 12200

30 % 3000 10200

50 % 5000 8200

70 % 7000 6200

100 % 10000 3200



this case, the Relative Error (Rel) is calculated as 3/55*100 = 5.45%, indicating a low error while the
model made 30% error on the second image. Therefore, Rel alone may not adequately convey model
performance when dealing with sparse object distributions within images. To address this limitation,
we introduce the Mean Relative Error (MRE), which takes into account the individual error
percentages and averages them. In the example provided, it results in an MRE of 16.5%, offering a
more balanced assessment.
Nonetheless, relying solely on MRE may introduce issues when dealing with outliers. An excellent
model performance on most images can be overshadowed by a single instance where the model makes
a substantial error, leading to a high MRE and potentially misleading conclusions. To strike a balance
and harness the advantages of both Rel and MRE, we propose a combined error metric, as outlined in
Figure 16. This composite metric, calculated as 8.2% in our example, synthesizes the strengths of
both Rel and MRE, by considering the higher error in the second image, while also being cautious not
to overly emphasize it, recognizing that it may potentially be an outlier. The formula employed is a
commonly used two-variable function that aligns with the goal of minimizing both metrics (or
maximizing, as the case may be). This approach provides a more comprehensive evaluation of model
performance, accommodating varying scenarios and accounting for potential outliers. For the rest of
this thesis, the terms 'combined error' and 'error' will be used interchangeably.

5.4.2. Size & Speed

To gauge the speed of our models, we will perform the counting of objects within all the images in our
test set. The time taken to perform these predictions will then be divided by the total number of
images, yielding the average prediction time per image. It is important to highlight that this timing
data was collected using a mid-range laptop equipped with an Nvidia T600 mobile GPU.
Consequently, it is essential to acknowledge that results may vary depending on the hardware
configuration, and they should be interpreted in light of this variability. Nevertheless, this information
will enable us to compare the relative speed of different models effectively. Additionally, we will
provide insights into the size of each model employed in our study. This is especially valuable since
some models, due to their substantial size, may pose practical challenges when deployed in real-world
retail store scenarios. Conversely, lighter models are more conducive to practical implementation and
will be favored for their efficiency.

Figure 16: Mathematical definitions of used metrics: the mean absolute error quantifies the
discrepancy between actual values and predictions, and it becomes more insightful when converted
into the relative error, which when combined with the mean relative error offers improved robustness
against outliers and provides a more accurate representation of the model's performance.
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Figure 17: Labels statistics of each split
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6. Results and Analysis

In this section, we present the evaluation results based on the experimental design previously
outlined for each framework, and discuss the results. We also discuss the counting challenges
we encountered and the strategies we used to surmount them.

6.1. Supervised

6.1.1. Counting Difficulties Arising from Obscuration and Visual Similarity

In our dataset comprising 41 distinct categories of fruits and vegetables, we frequently
encounter situations where deciding whether an object in an image is a fruit or a vegetable is
manageable, but categorizing it accurately becomes challenging due to obscured or partial
views. Even human observers may struggle with such identifications. This challenge is
illustrated in Figure 18, where our model adeptly identified pears and oranges but
inaccurately categorized them as mangoes and abricots, respectively. This misclassification is
natural given the difficulty of distinguishing these categories without a complete and
unobstructed view of the entire piece, which is typically not available.

However, it is important to note that this classification discrepancy does not affect the overall
object count within each image. If we count all objects in the image, we arrive at the same
total count, which is the primary focus of our analysis. This approach aligns seamlessly with
the automation framework illustrated in Figure 2, as we assume that each image contains
only one known type of fruits and vegetables, and our objective is solely to determine the
quantity of these objects. Consequently, by tallying all objects within the image, we
effectively overcome the challenges associated with categorization ambiguity.

One might question whether, given our approach of counting all objects in the image
regardless of their categories as long as they are detected as fruits and vegetables, it would be
more efficient to treat all 41 categories as a single category and train the model accordingly,
transforming the problem into a binary detection task. In fact, we did explore this option by
training models on all 41 categories as a single category. However, our findings revealed that
training on the 41 distinct categories and counting all of them during inference yielded
superior results compared to the alternative method. As a result, we made the decision to
stick with the initial approach.

It is worth noting that density models are not trained to differentiate among the 41 distinct
categories, as they support only a single possible class. Instead, we amalgamate all classes
into one to ensure the model's functionality.

6.1.2. Counting Results

Now, let's turn our attention to the outcomes yielded by supervised counting models.
For detection-based models, as shown in Figure 19, most models have managed to maintain
an error rate below 15%. Except for RetinaNet, which exhibits a somewhat higher error rate,
ranging from 17% to 18%. Faster R-CNN, on the other hand, has achieved a lower error rate
of 13%, especially when coupled with the bigger Resnet101 backbone. In contrast, YOLO
models, specifically YOLOv7 and YOLOv5, achieve better results with an error rate below
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12%. In addition to their accuracy, YOLO models also offer advantages in terms of model
size, ranging from 25 MB to 150 MB, and faster inference speeds, falling within the range of
14 ms to 115 ms per image. In comparison, RetinaNet and Faster R-CNN models have larger
model sizes, spanning from 280 MB to 460 MB, and require more time for inference, ranging
from 160 ms to 220 ms per image. More comprehensive results can be found in Table 3.

Regarding density-based models, as indicated in Table 3, MAC exhibited a low error rate of
13.88%, in contrast to the significantly higher error rate of 39.95% observed with P2P. Both
models share similar attributes in terms of size, ranging from 250-300 MB, and inference
times averaging between 173ms and 185ms. For MAC, we explored both counting methods:
summation and contour detection. Interestingly, both methods produced comparable results.
However, P2P being a point-based approach, it supports only the default summation way.
It is important to emphasize that the poor performance of P2P in this specific context does not
necessarily reflect its overall effectiveness in other scenarios. This discrepancy may be
attributed to the fact that objects detected in our dataset exhibit a wide range of shapes and
characteristics, spanning across 41 distinct categories. In contrast, density models are
typically designed to count objects of a single class.

In summary, it is evident that the majority of models exhibited lower error rates, with YOLO
models consistently delivering the lowest errors. Moreover, YOLO models stand out for their
speed and efficiency, making them particularly well-suited for retail store scenarios. Notably,
YOLOv5 (m6) shines with its impressive inference time of 30 ms, compact size of 70 MB,
and an error rate of 12%, making it a compelling choice that strikes a favorable balance
between performance and deployment constraints.

Figure 18: Comparison of actual labels (left) and YOLOv7l predictions (right): the model successfully
identified the presence of objects of interest and their spatial locations within the image. But, it
struggled to accurately determine their categories due to their similarity and partial obscuration.
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Figure 19: Performance, size, and inference speed for detection models
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Rank Model Size Time MAE Rel MRE
Combined
Error

9 Yolov5s6 25 MB 14.04 ms 3 14.65 % 11.8 % 13.25 %

4 Yolov5m6 71 MB 28.89 ms 2.78 13.46 % 10.54 % 12.02 %

2 Yolov5l6 147 MB 51.15 ms 2.71 13.12 % 10.21 % 11.69 %

7 Yolov6s 40 MB 27.55 ms 2.83 13.7 % 11.67 % 12.7 %

5 Yolov6m 74 MB 50.66 ms 2.8 13.54 % 10.93 % 12.25 %

6 Yolov6l 115 MB 64.52 ms 2.81 13.61 % 11.31 % 12.48 %

3 Yolov7l 74 MB 58.74 ms 2.65 12.86 % 10.52 % 11.71 %

1 Yolov7x 142 MB 114 ms 2.64 12.81 % 10.48 % 11.66 %

14 Yolov8s 22 MB 18.36 ms 3.28 15.91 % 13.46 % 14.7 %

10 Yolov8m 52 MB 39.10 ms 3.05 14.76 % 12.05 % 13.43 %

11 Yolov8l 88 MB 68.64 ms 3.01 14.59 % 12.65 % 13.63 %

16 Retina 50 282 MB 162 ms 3.74 18.12 % 18.28 % 18.2 %

15 Retina 101 427 MB 213 ms 3.84 18.59 % 15.42 % 16.86 %

13 Faster 50 316 MB 168 ms 2.98 14.42 % 14.57 % 14.49 %

8 Faster 101 461 MB 223 ms 2.97 14.38 % 11.96 % 13.06 %

12 MAC 300 MB 185 ms 2.97 14.39 % 13.4 % 13.88 %

17 P2P 250 MB 173 ms 7.06 34.18 % 48.06 % 39.95 %

Table 3: Benchmark results of supervised models

6.1.3. Analysis of Performance Limitations

From our previous findings, it is evident that the performance of all models under
consideration was consistently constrained by an 11% error margin. This limitation can be
attributed to various factors, including model architecture, training data volume, and
hyperparameter settings. However, upon closer examination of prediction instances, we
discerned that this issue predominantly stemmed from confusion between specific categories.

As exemplified in Figure 20, instances where multiple pieces of plum were arranged closely
resembled a cluster of grapes. Consequently, the models, instead of detecting individual plum
pieces, often identified the entire cluster as a single entity, resulting in significantly higher
errors. To investigate this issue further, we devised a modified training and testing dataset that
excluded grape and hot pepper categories. The rationale behind omitting hot pepper was its
real-world distribution, which is typically sold in large quantities, making a per-piece count
inaccurate. Therefore, any error in predicting hot pepper quantity could result in substantial
error inflation. Additionally, we amalgamated several categories with similar shapes and
appearances into unified categories, reducing the overall class count to 31, as indicated
depicted in Figure 21.
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Subsequently, we conducted a re-evaluation of existing models without retraining,
specifically YOLOv5m6, YOLOv6m, YOLOv7l, and YOLOv8m, with the modified dataset
excluding grape and hot pepper. Afterward, we trained new models using the updated dataset
with 31 classes. The outcomes of these assessments are presented in Table 4.

Notably, the removal of grape and hot pepper categories yielded a discernible reduction in
error across all models. For instance, YOLOv5 exhibited an initial error of 12.02%, which
decreased to 10.2% upon exclusion of these categories. Furthermore, training a new model on
the revised dataset directly led to a further error reduction to 8.73%, representing an overall
reduction of approximately 3.5%. Similar improvements were observed in YOLOv6, with a
2.8% error reduction, YOLOv7 with a 2.81% reduction, and YOLOv8 with a 2.71%
reduction.

In summary, the removal of categories that presented counting difficulties due to their
intricate shapes, like grapes and hot peppers, along with the consolidation of visually similar
classes, has improved the model performance.

Figure 20: Visualization of performance limitations: mis-detecting plum pieces as grape
branches due to their visual resemblance (Actual vs. Predicted)
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Figure 21: Formation of novel categories through visual similarity grouping

Table 4: Benchmark results with new settings (suffix '31' denotes model retained on new
dataset)
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Model MAE Rel MRE Combined Error

Yolov5m6 2.23 10.93% 9.57% 10.2 %

Yolov5m6-31 1.88 9.22% 8.30% 8.73 %

Yolov6m 2.28 11.22% 10.57% 10.88 %

Yolov6m-31 1.95 9.60% 9.30% 9.45 %

Yolov7l 2.22 10.93% 9.59% 10.22 %

Yolov7l-31 1.84 9.05% 8.75% 8.9 %

Yolov8m 2.53 12.43% 11.10% 11.73 %

Yolov8m-31 2.18 10.76% 10.69% 10.72 %



6.2. Semi-Supervised
After conducting exhaustive training sessions on three different models across five distinct data splits,
the results are graphically presented in Figure 22. Notably, the impact of pre-training on model
performance was particularly prominent, especially within the 10% split, where labeled data were
significantly limited. Without pre-training, the model exhibited an error rate of 24%, which was
notably reduced to around 20% with pre-training. What is more intriguing is the subsequent
application of semi-supervised learning, which further lowered the error rate to 14%, a substantial
improvement. This trend continued as the dataset proportion increased, with the error decreasing from
18% to 13% in the case of 30% split, and from 14% to 12% in the case of 50% split. However, an
anomaly emerged with the 70% split, as all three models exhibited higher error rates. To contextualize
this anomaly, it is crucial to understand that achieving the favorable results seen in previous splits was
not an instantaneous process. It involved numerous training iterations and the fine-tuning of
hyperparameters, particularly those related to Efficient-Teacher settings, which consumed a
significant amount of time. While we achieved impressive results for the previous splits, the 70% split
did exhibit reduced error rates but not to the same extent as the other splits. This is also observed in
the pretrained model in the 100% split, which displayed a slightly higher error rate compared to the
model with random initialization. However, we believe that with more time and additional training
resources, further exploration of hyperparameters could yield improved results, potentially aligning
the anomalous outcomes with the overall trend, as depicted in Figure 23.
It is noteworthy to consider the diminishing returns observed in the gains provided by pre-training and
semi-supervision when transitioning from 10% to 30% and 50% data splits. This can be attributed to
the fact that in the 10% split, we introduced 9,000 unlabeled images, which is nine times the quantity
of labeled data utilized. In contrast, for the 100% split, we added only 3,200 unlabeled images, which
represents 32% of labeled images already in use. This phenomenon is indicative of the model's
increasing difficulty in leveraging additional data to substantially boost its performance beyond a
certain point. Additionally, it is worth highlighting that the semi-supervised model trained in the 100%
split achieved the best performance across all frameworks examined with an error of 11%. More
comprehensive results can be found in Table 5.

Figure 22: Semi-supervision results across different data split
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Figure 23: Semi-supervision results across different data split with adjustment

Table 5: Detailed benchmark results of semi-supervised training
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Split Type MAE Rel MRE Combined Error

10 %

Random 5.05 24.44 % 23.72 % 24.07 %

Pretrained 4.44 21.5 % 19.65 % 20.53 %

Semi 3.24 15.7 % 13.3 % 14.4 %

30 %

Random 3.88 18.8 % 16.3 % 17.46 %

Pretrained 3.51 17.01 % 14.89 % 15.88 %

Semi 2.92 14.14 % 12.05 % 13.01 %

50 %

Random 3.11 15.08 % 13.54 % 14.27 %

Pretrained 2.77 13.44 % 12.18 % 12.78 %

Semi 2.67 12.92 % 11.15 % 11.97 %

70 %

Random 3.27 15.83 % 13.53 % 14.59 %

Pretrained 3.18 15.43 % 13.12 % 14.18 %

Semi 2.86 13.84 % 12.71 % 13.25 %

100 %

Random 2.8 13.56 % 10.76 % 12 %

Pretrained 2.8 13.58 % 12.22 % 12.29 %

Semi 2.52 12.21 % 10.11 % 11.06 %



6.3. Few-Shot

6.3.1. Shots Preparation

The two models we employed in our study require both an image and the coordinates of rectangles
(x1, y1, x2, y2) denoting specific objects or "shots" within the image. It is important to maintain an
image size close to 512x512, although 640x640 can also be used. To accommodate our models'
requirements, we adopted an image resolution of (512+64) for the height and 512 for the width. The
additional height of 64 pixels allows us to stack eight images of size 64x64 within a single image,
facilitating the positioning of these shots. Consequently, we can input this composite image to the
models to generate density maps.

For the purpose of model evaluation, we have prepared templates for each category. These templates
are images with dimensions of (512+64)x512, and they include the eight shots corresponding to the
specific category, pre-positioned within the template. When we want to make predictions for a given
image, we first resize it to 512x512, and then we place it within the template corresponding to its
category. Subsequently, we feed this composite image into the models for prediction, after which we
count the results excluding the 8 already present objects.

The process of selecting the eight representative shots for each category involved careful visual
inspection of the images. We aimed to ensure that the selected shots were diverse and effectively
represented the category in question.

6.3.2. Counting Results

As outlined in Table 6, we employed two counting strategies for each model: summation and contours
counting. SAFECount exhibited an error rate of 54.5% when using the summation method, which was
notably reduced to 47.23% when employing the contour-based counting method. On the other hand,
FamNet demonstrated even higher errors, especially when applying the summation method, with an
error rate of 105.8%. This error was considerably improved to 61.57% when utilizing the
contour-based counting approach. It is important to note that both models have comparable sizes,
ranging from 108MB to 125MB, with SAFECount being slower in terms of inference time, taking
588ms, while FamNet has a faster inference time of 207ms.

These few-shot models, as demonstrated, exhibit relatively high error rates, even with the
best-performing method achieving an error rate of 47%. This error rate is substantial and indicates that
these models fall short when compared to supervised or semi-supervised methods, which generally
yield superior results in object counting tasks.

Table 6: Benchmark results of few-shot models
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Model Size Time Method MAE Rel MRE Combined Error

SAFECount 125
MB

588
ms

Sum 8.44 40.88 % 81.76 % 54.5 %

Contours 8.4 40.67 % 56.33 % 47.23 %

FamNet 105
MB

207
ms

Sum 16.63 80.55 % 154.1 % 105.8 %

Contours 10.86 52.61 % 74.22 % 61.57 %



6.4. Zero-Shot

After conducting a comprehensive evaluation of zero-shot models, both detection-based and
density-based, we present the results in Table 7 and Table 8. It is evident that all the models in this
category exhibit error rates exceeding 30%. Among these models, FastSAM and SAM emerge as the
top performers, with error rates of 32.94% and 34.52%, respectively. Notably, FastSAM stands out for
its superior speed and lighter resource requirements compared to SAM. Following closely behind are
CLIP-Count with the contours method, Detic, and Grounding Dino, which report combined error rates
of 36.58%, 39.10%, and 43.10%, respectively. These models offer faster inference times, clocking in
at less than 200ms, and are more resource-efficient, with sizes below 1GB. Conversely, the OWL-VIT
model delivers the poorest performance in this evaluation, with a staggering error rate of 90.82%. It is
noteworthy that this model generated numerous zero predictions, contributing to its exceptionally high
error rate.

Upon considering the results, CLIP-Count with the contours method appears to be a favorable choice,
as it offers an error rate close to that of FastSAM while maintaining higher speed and resource
efficiency.

It is crucial to acknowledge that all the models in this category are considered large, which may pose
constraints during deployment. Furthermore, while these zero-shot models outperform few-shot
models (with the best few-shot model achieving an error rate of 47%), they still fall short of the
performance achieved by supervised and semi-supervised models.

Model Size Time MAE Rel MRE Combined
Error

FastSAM 0.75 GB > 1 sec 5.6 28 % 40 % 32.94 %

SAM 3 GB > 2 sec 5.78 28 % 45 % 34.52 %

CLIP-Count 0.75 GB

< 200 ms

5.67 27 % 54 % 36.58 %

Detic 1 GB 7.06 34 % 46 % 39.10 %

Grounding
Dino

0.7 GB 9.5 46 % 42 % 43.10 %

OWL-VIT 0.6 GB > 1 sec 19.7 95 % 87 % 90.82 %

Table 7: Benchmark results of zero-shot models

Model Method MAE Rel MRE Combined Error

CLIP-Count
Sum 15.39 74 % 242 % 114 %

Contours 5.67 27 % 54 % 36.58 %

Table 8: Detailed results of CLIP-Count method

42



7. Discussion

The primary objective of this thesis is to establish a comprehensive benchmark for various counting
methodologies across four distinct data scenarios, facilitating a discerning evaluation of their
respective strengths and limitations. As outlined in the results section, our analysis indicates that
trained models have demonstrated superior performance, particularly with regard to YOLO models,
which exhibited an error rate below 12%. Notably, YOLO models, with their compact and efficient
nature, further improved their performance when specific problematic shape classes, such as grapes
and hot peppers, were excluded from the training data, achieving an impressive error rate as low as
8.73%. Additionally, the utilization of unlabeled data, particularly in scenarios with limited annotated
data (e.g., 10% and 30% semi-supervised training cases), substantially enhanced model performance.
The utilization of Efficient-Teacher, a YOLO-based approach, optimized the results without resorting
to less accurate [few-shot] or bigger [zero-shot] models.

Furthermore, our investigation revealed that few-shot models exhibited inferior performance
compared to other categories, with the best-performing model having a relatively high error rate of
47%. On the other hand, zero-shot models demonstrated a lower error rate, approximately 30%,
despite the expense of larger model size and slower inference times. These trade-offs may pose
practical challenges, particularly in contexts like retail stores, where access to high-end computational
resources may be limited.

In light of these findings, we propose a guide to aid users in selecting the most suitable framework
and model based on their specific use case:

1. Supervised: When a sufficient amount of annotated data is available, we recommend opting for
supervised learning, with a particular emphasis on the YOLO series. Notably, models like
YOLOv5(m6) or YOLOv5(l6) offer a compelling combination of fast inference times and a small
model size, making them ideal for deployment on resource-constrained devices commonly found
in retail settings.

2. Semi-Supervised: In scenarios where only a portion of the data is labeled, the semi-supervised
learning approach is advised, with a highlight on the Efficient-Teacher approach applied to
YOLO models. This approach stands among the state-of-the-art and has demonstrated impressive
results, especially when dealing with limited labeled data.

3. Zero-Shot: If data is scarce but robust computational resources are available, the preference
should lean towards zero-shot learning, specifically the CLIP-Count method. This approach
offers a balance between speed and acceptable error rates, making it a viable choice in such
circumstances.

4. Few-Shot: As a last resort, when data is insufficient and computational resources are limited,
few-shot learning can be considered, with the SAFECount approach being a suitable option. This
approach can work on less powerful devices, ensuring compatibility with resource-constrained
environments.

To summarize, this thesis has developed a benchmark designed to assist in the selection of the most
suitable counting framework and model based on the specific demands of the use case,
accommodating situations characterized by diverse levels of labeled data and computational
resources.
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8. Conclusion

Throughout this study, we have undertaken a comprehensive exploration of the subject matter and its
underlying motivation. We initially provided an overview and motivation for our research, followed
by an examination of the working principles and prior literature relevant to our work. Subsequently,
we conducted a series of experiments and thoroughly discussed the obtained results.

Returning to our research questions:

1. Experimental setup and evaluation criteria: In Section 5 (Experimental Design), we delineated
our approach to establishing a benchmark, including the creation of datasets for both training and
testing purposes, along with the presentation of evaluation criteria encompassing accuracy, speed,
and model size.

2. Performance of counting models: Section 6 (Results and Analysis) extensively detailed the
performance of each method within the four data frameworks, featuring illustrative examples of
encountered challenges and proposed solutions.

3. Strengths and limitations of counting techniques: Our exploration of the advantages and
drawbacks of each method across various frameworks was addressed in both the Results and
Analysis (Section 6) and Discussion (Section 7) sections.

4. Guidance for framework and model selection: We have indeed put forth a comprehensive
guide in Section 7 (Discussion), informed by our research findings, to assist users in selecting the
most appropriate framework and model for their specific retail store needs.

During the course of this study, we confronted several noteworthy challenges. Firstly, comprehending
recent, cutting-edge approaches, particularly those emerging in 2023, posed difficulties due to the
necessity for manual experimentation to grasp fundamental concepts. Additionally, replicating the
working environment of provided codes, especially when dealing with updates to Python libraries,
presented significant challenges. Furthermore, data compilation for this thesis involved annotating
numerous classes manually, which was a laborious and time-consuming task. Coupled with extensive
model training times, which could span up to a full day for a single run, these challenges added
complexity to our research process.

As a natural extension of this work, there exists room for enhancement. Acquiring larger datasets and
exploring the utility of more substantial models can improve generalization and prediction accuracy.
Continuous monitoring of new model releases to ascertain state-of-the-art performance is advisable.
Furthermore, the implementation of ensemble learning or distillation techniques, along with rigorous
hyperparameter optimization, could further enhance model performance, contingent upon the
availability of resources and time, as discussed previously.

Another potential enhancement lies in addressing the challenge of differentiating between visually
similar categories of fruits and vegetables. The development of novel architectures that enable the
detection model to classify objects with higher accuracy could streamline the counting process.
Specifically, we envision a unified approach where a single model can take an image of a fruit and
vegetable shelf and provide both object counts per category and category verification. This approach
can be extended to scenarios involving multiple shelves captured by high-resolution cameras,
enabling precise counting across all shelves. Such advancements could lead to increased efficiency
and cost reduction by minimizing the need for multiple cameras and the initial step of box
identification, as depicted in Figure 2.
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