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Abstract
Unmanned Aerial Vehicles (UAVs) have gained significant attention for their potential
in various sectors, including surveillance, logistics, and disaster management. This
thesis focuses on developing a novel onboard mission and contingency management
system based on Behavior Trees for UAVs. The study aims to assert if behavior trees
can be effectively applied to this domain and how they perform with respect to other
modelling architectures. Furthermore, this document explores which tree structures
are more efficient, good-design practices and behavior tree limitations. Overall, this
thesis addresses the challenge of autonomous onboard decision-making of UAVs in
complex and dynamic environments, particularly in the context of delivery missions in
off-shore wind farms. The developed architecture is tested in a simulated environment.

The research integrates a Skill Manager, a Mission Planner, and a Mission
and Contingency Manager. The architecture leverages Behavior Trees to facilitate
both mission execution and contingency management. The thesis also presents a
quantitative analysis of key performance indicators, providing a comparative evaluation
against traditional architectures like Finite State Machines. The results indicate that
the proposed system is efficient in mission execution and effective in handling
contingencies.

This study offers a comprehensive structure targeting onboard planning, contin-
gency management and concurrent actions execution. It also presents a quantitative
analysis of Behavior Trees’ performance in UAV mission execution and reactivity
to contingent situations. It contributes to the ongoing discourse on UAV autonomy,
offering insights beneficial for the broader deployment of UAVs in various industrial
applications.

Keywords Autonomy, Mission management, Flight management system, Behavior
trees, UAV
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1 Introduction
Recently, Unmanned Aerial Vehicles (UAVs), also addressed as Unmanned Aerial
Systems (UASs) or drones, have attracted attention as their deployment in several
sectors is expanding. Possible application domains span from industry environments
and warehouses to urban areas and surveillance. As reported from [1], the military
industry is particularly interested in UAV development as well. Applications examples
are surveillance and reconnaissance activities. The civil field also benefits from
the development of such solutions. Indeed, drones are also employed for prison
surveillance, alongside firefighters to detect and locate survivors after natural disasters
[2], to monitor natural parks and act against pyromaniacs and poachers, and to provide
support during the extinguishing of forest fires [3]. In general, UAS operations can
be categorized into two families, in visual line-of-sight (VLOS) and beyond visual
line-of-sight (BVLOS). In the former case, the pilot, or a co-pilot addressed as the
observer, must be capable of directly and clearly seeing the drone. The latter case
includes all situations where the first does not hold, specifically full autonomous
flights. While flying under visual VLOS is regulated and allowed both for professional
and non-professional users, regulations for BVLOS are particularly restricted and
hard-to-get certifications are necessary. For example, the European Union Aviation
Safety Agency (EASA), regulating drone operations in European regions, requires
specific authorisations for BVLOS UAV operations. Nevertheless, industries are
pressing for such operations to be regulated, as current laws represent the main limita-
tion to autonomous UAVs deployment. A UAV use case which attracted particular
interest is mid or short-range delivery as industries are increasingly focusing on logistic
improvements. A particularly successful application is Zipline [4], which started by
developing fixed-wing drones to deliver medicines in Rwanda. Dense urban areas may
also benefit from these services. Indeed, as stated in [5], the growing population in
metropolitan cities is increasing drastically the traffic. Thus, using UAVs would allow
for fast short-range delivery by exploiting free aerial space.

The German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt, DLR)
reserves particular interest in the development of UAV technologies. An experimental
test bed on which the institute is focusing its research is an autonomous helicopter:
the "superARTIS". The drone, shown in figure 1.1, is being used to tailor the problem
of autonomous delivery in several industrial scenarios. A recent study case that DLR
is addressing, in collaboration with the energy provider Energie Baden-Württemberg
(EnBW), is the transportation of materials and tools to supply Off-shore Wind Farms
(OWFs).

Recently, the German government has been investing major resources in the green
energy transition. For this country, wind turbines are one of the main sources of
clean energy [6]. These complex machines may be installed on land or at sea. In the
first case, the wind park is addressed as an on-shore farm, and in the second case as
an off-shore farm. The main benefit of the latter is the presence of more stable and
continuous wind currents in the sea environment. However, it poses severe challenges
for the maintenance and management of the wind farm. Notably, maintenance figures



as one of the main costs when operating off-shore wind turbines. In fact, the current
means of transportation are dedicated helicopters or ships, meaning that companies
need to lease expensive resources and hire specialized crews to operate them.

To cope with this problem, DLR has launched the Upcoming Drone Wind Farm
(UDW) project [7]. The objective is to employ aerial drones as a transportation channel
for the maintenance supply to off-shore wind farms. In this scenario, there will be
mainly two actors: the drone delivering the supply and the wind park control tower.
The drone must be equipped with deliberative capabilities and a human operator is
in charge of its monitoring. Ideally, the drone control station is not equipped with
instruments to pilot the UAV manually, but it rather provides an interface to supervise
the mission and the UAS activities. The operator should be capable of controlling
the drone, or a fleet of drones, by prompting high-level commands in order to change
its behaviour. The control tower is in charge of managing maritime and aerial traffic
in the wind farm, providing permission to the UAV to enter specific flight zones and
managing the wind turbine operations during the delivery process.

Within the delivery mission, four main phases are highlighted in [7]:

1. Route planning and departure The UAV plans the route to reach the off-shore
sites, along with emergency and contingency routes in case of mission abortion.
The operator approves the plan and the mission starts.

2. Flight to the wind farm The UAV follows the planned trajectory while sharing
its state via a narrow-band data connection. The operator is capable of triggering
a mission replanning, abortion and prompting other high-level commands at
any moment.

3. Entering the wind farm The UAV connects to the wind farm network, updates
weather and wind-farm operations data and plans a route to the target location,
which must be approved by the operator. Then, the UAV asks the control tower
for permission to enter the wind farm. The drone can wait to approach the target
site by following specific loitering trajectories.

4. Approach and landing on the target platform Before approaching the target,
the drone requests detailed information about the wind turbine state and weather
conditions. Then, computes a safe approach route and emergency routes, taking
into account turbulence and other risk factors. Lastly, the plan is approved by
the pilot and the drone enables a different flight controller to accomplish the
landing.

Notably, the UAV operates in a sea territory with dense traffic of both aerial and
maritime transportation, a dynamic environment situated dozens of kilometres from
the coast. Nevertheless, the operator monitoring the mission should be capable of
operating several drones at once exploiting their high autonomy. For these reasons,
the employed system needs to be resilient and capable of mitigating arising risks or
unforeseen situations by executing contingency procedures autonomously.

Indeed, safety and usability pose two major barriers to the deployment of UAS in
everyday activities. In different studies [1, 8], experts explain how ensuring the safety
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Figure 1.1: Frame of a video taken during a flight test of the superARTIS.

of UAVs is a particularly challenging task given the dynamic environments in which
drones operate, combined with the increasing complexity of the current technology.
Moreover, in [9], the authors point out how these complex robotic systems require
trained experts to be operated. Thus, to reach broad employment, it is necessary to
program autonomous systems that allow end-users to easily instruct the drone with the
desired activities, e.g. automatically starting a delivery mission or an inspection activity.

To overcome these limitations, experts emphasize the necessity for deliberative
architectures [10, 11], i.e. systems able to automate activities and overcome unfore-
seen hazards through autonomous reasoning, coupled with reactive behaviours and
recovery strategies. In [12, 13], researchers underline modularity as a key design
characteristic to program deliberative and robust systems. Several architectures have
been studied and tested [2, 14], but recently many researchers [8, 15] are exploring the
adoption of Behavior Trees. Behavior trees were first developed and applied in the
video game industry to program the behaviour of non-playable characters. They are
structured as directed trees, where intermediate nodes are control nodes, which direct
the information flow inside the tree, and the leaf nodes are conditions checks or actions
[16]. This structure allows for high modularity and reusability by encapsulating more
complex behaviours into subtrees and using them as leaf nodes. Moreover, several
studies [15, 17] state how behavior trees are a promising approach for designing
autonomous control architectures. Nevertheless, using proper structure and control
flow nodes, behavior trees can endow robustness and safety to control systems, as
analytically proved in [18]. Additionally, due to the information flow mechanism used
in behavior trees, they can program reactive strategies to handle unexpected events or
failures, as presented in [19, 20].

A mission management system represents the highest level in the control architecture
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of the drone and is endowed with the task of operating and monitoring the UAS mission
and managing hazardous situations. While behavior trees are largely adopted in ground-
industrial robots, their application in state-of-the-art UAV mission management systems
is more sparse [21]. In particular, the UDW project requires switching between control
modes for the different phases of the mission, e.g. takeoff control, trajectory following
and high-performance landing controller, used to reach the target platform. The
management of concurrent tasks and several communication interfaces is another
important requirement for the correct execution of the mission. For example, the UAV is
equipped with two broadcasting devices to communicate its motion data and metadata
to other participants of the air and maritime traffic. Furthermore, communications
with the OWF control tower and the operator overseeing the operation exert a key
role in the delivery process. They provide permissions for the execution of several
steps of the mission and the concurrent management of these requests-answers would
benefit the overall efficiency of the operation. Lastly, the drone must be capable
of handling different contingency situations, such as adverse weather conditions,
incoming collisions both in the aerial and maritime traffic and internal faults.

Behavior trees present a suitable mechanism for the governance of Unmanned
Aerial Vehicles (UAVs), showing potential advantages in modularity and extensibility
in contrast to traditional control architectures such as Finite State Machines (FSMs)
or Hierarchical Finite State Machine (HFSM) [19, 22]. To validate this hypothesis,
this study proposes the design of a novel mission management system for UAVs
based on behavior trees, providing proof-of-concept of their applicability in this
field. This structure focuses on onboard planning and mission management, while
simultaneously equipping the system with reactive behaviours required for contingency
management, i.e. the mitigation of operational and safety risks occurring from non-
nominal situations. The architecture exploits skill programming, i.e. the definition
of abilities that a drone can execute repeatably and their assembly in more complex
behaviour, to build a modular system decoupled from the flight management system of
the operated drone. Additionally, the tree is designed to facilitate parallel planning and
execution of actions. Concurrently, the research aims to discern if the tick method,
employed by behavior trees during execution, matches the reactivity exhibited by
FSMs, which function through an event-based state transition. The investigation is
structured to assess these aspects through an appropriate tree design, extending into a
quantitative analysis of the performances of the designed tree structure in terms of
execution efficiency and reactivity. Finally, the study identifies best design practices
and examines the inherent limitations when applying behavior trees to the specialized
use case.

The research is specifically aimed at the application of Unmanned Aerial Vehicles
(UAVs) in complex and dynamic environments, with a particular focus on off-shore
wind farms. While it explores the use of behavior trees for both mission execution
and contingency management in this context, the study does not directly address
other potential applications of UAVs, where requirements might be different. This
study provides a comparative analysis with traditional architectures like Finite State
Machines, but it focuses primarily on behavior trees and does not delve into the
details of other possible architectures. Results are generated in a simple simulation
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environment, where detailed dynamics of the UAV are neglected. Furthermore,
collected data consists of run-time timestamps, thus they depend on the performances
of the machine running the simulation and they might differ in a flight test.

The document is organized as follows. Section 2 provides a more detailed
explanation of skill programming and behavior trees, along with the existing research
in these fields. It also presents an overview of several studies about different control
architectures deployed on UAVs and the benefits of using behavior trees as a paradigm
to program autonomous drones. In section 3 the framework of the management
systems is presented, along with a detailed explanation of the design choices. Section
4 describes the software architecture derived from the proposed method and the
simulation environment used to test it. Follows in section 5 a report of the simulation
results and their evaluation. The thesis ends with the conclusions about the elaborated
study in section 6.
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2 Literature review

2.1 Skill programming
Skill programming plays a pivotal role in the development of autonomous systems,
serving as the building blocks to execute complex tasks and adapt to dynamic
environments. By abstracting tasks into modular and reusable skills, developers can
more efficiently program, update, and extend the capabilities of autonomous systems.
This modular approach not only streamlines the development process but also enhances
the system’s adaptability and fault tolerance, making skill programming a valuable
tool in the creation of reliable and flexible autonomous systems.

The paper [23], authored by Archibald et al., introduces the concept of "robot
skills", which are abilities that a robot can execute repeatably and can be described
unambiguously. These skills serve as building blocks for creating more complex robot
operations. The paper presents a paradigm for simplifying the programming of robotic
systems called Skill-Oriented Programming (SKORP). The SKORP paradigm aims
to separate the responsibilities of application specialists and systems programmers,
thereby reducing the cost and complexity of programming robotic systems. The
paper also discusses the underlying software architecture and how it accommodates
sensor-based actions. Skill programming has emerged as a critical area of research
in robotics, aiming to simplify the complex task of programming robots for various
applications. Also Bøgh et al. in [24] propose that a small set of predefined skills can
solve a wide range of industrial tasks, thereby enabling easier programming and greater
flexibility in robotic systems. The authors introduce a terminology that distinguishes
between tasks, skills, and motion primitives, aiming to simplify the programming
process. Tasks are production-related goals, while skills are the building blocks that
enable the robot to complete these tasks. The paper emphasizes the importance of pre
and postconditions for each skill to ensure its correct functioning. The authors also
analyze industrial applications to identify the skills needed in logistics and assistive
tasks.

On the same line, the paper [12] by Franz Steinmetz and Roman Weitschat
argues that as industries shift from mass production to low-batch, highly customized
production, there is a need for more flexible and user-friendly robotic programming.
The authors introduce a software architecture that makes human-robot interaction
more robust and allows for easier process control. The architecture employs "action
blocks", software modules that change the system state and consist of an activity, an
exit handler, and condition observers. These action blocks can be nested hierarchically,
providing a structured way to handle various conditions and events. The paper also
discusses four basic demands for skill parameterization to make the process faster
and more intuitive. These include parameterization of the skill, direct parameter
application and verification, parameter reduction by automatic derivation, and the use
of different parameter sets depending on the user’s expertise.

Formalizing skills provides a standardized way to define, describe, and implement
them. This is crucial for ensuring that skills are consistently understood and executed,
whether by human operators, developers, or the robots themselves. The paper [25],
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authored by Lesire et al., aims to bridge the gap between operational and descriptive
models of robot skills. Operational models focus on how a skill is executed, while
descriptive models focus on what the skill does. The authors introduce a Domain
Specific Language (DSL) that allows for the specification of both types of models,
ensuring their consistency. The paper elucidates the significance of preconditions,
invariants, and postconditions, serving as essential verifications before, during, and
after the execution of a skill. Preconditions delineate the requisite circumstances
for skill execution. Invariants monitor ongoing adherence to specified conditions,
and postconditions, which declare data modifications, are pivotal in affirming the
correct realization and conclusion of skills. The paper also discusses tools that can
translate these skill models into standard languages or frameworks, facilitating the use
of state-of-the-art algorithms and tools.

The study [26] from Albore et al. introduces an executive layer structured using
formally defined skills. The authors propose a three-layered structure consisting of a
decisional layer for autonomous reasoning, a functional layer for reactive tasks and
processing, and an executive layer that bridges the two. The executive layer is of
particular interest as it is responsible for the system’s robustness and fault tolerance.
These skills serve as both an abstraction of the functional architecture and as controllers
for the functional layer. The paper also provides tools for verifying these models,
generating code, and assessing fault tolerance, thereby contributing to developing
more reliable and autonomous robotic systems.

Leite et al. in [14] implements a skill-based approach to address the problem
of fault tolerance as well. The proposed architecture incorporates a novel risk
assessment and decision-making model. This architecture aims to enable the robot to
autonomously decide whether to proceed with or abandon a mission based on various
risk factors. They use a mathematical model, specific to each skill, to compute a risk
score associated with the current state and skill deviation. The advantage of using
a general mathematical function is to be able to evaluate any situation the system
might encounter. The output value is then evaluated using a specific threshold and
subsequently, a decision-making model computes proper reactions.

In the direction of decision-making algorithms, many studies adopted skills as
foundation blocks to compose plans. Crosby et al. in [27] uses predefined skills to
automate task planning. The authors propose a framework that automatically generates
planning problems based on existing skill definitions, allowing industrial robots to
perform new tasks without manual reprogramming. The framework integrates these
skills into a world model, which serves as the basis for automated planning. The paper
demonstrates the effectiveness of this approach in a simulated industrial environment
and confirms its applicability in real-world settings. The authors argue that their
method simplifies the task-level programming of robots, making it more efficient and
adaptable to changing manufacturing requirements.

Instead, Pane et al. propose in [28] the implementation of reactive and com-
posable skills using an autonomous replanning and acting framework that utilizes
constraint-based programming. These skills can be dynamically composed at runtime
to adapt to unforeseen disturbances, such as human-induced changes. The framework
integrates a task planner that computes a sequence of skills to perform a task, and when
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a disturbance is detected, it replans to include a reactive composed skill to address
the issue. The paper validates the framework through an industrial assembly task
performed by a dual-arm robot system, demonstrating its effectiveness in real-world
scenarios. It also provides quantitative results of the experiment, providing interesting
insights about the replanning performances of the proposed algorithm.

Skill-level programming emerges as a foundation in the architectural design for
drone mission planning and execution. The approach offers a layered abstraction,
transforming complex actions into parameterized units, referred to as "skills", which
serve multiple functions in mission planning and execution. The use of preconditions,
invariants, and postconditions abstracts the skills in a manner that makes them modular
and versatile. This modularity provides the system with the capability for autonomous
reasoning, where skills become building blocks enabling the system to handle both
planned and unplanned scenarios in a dynamic environment. Moreover, skill-level
programming acts as a facilitator for autonomous monitoring, providing a framework
for validating actions in real time and allowing for swift re-calibrations in the plan
when necessary. The integration of skill-level programming is expected to improve
the existing models of drone mission planning and navigation by making them more
robust, adaptable, and user-friendly.

2.2 Behavior trees
In the context of skill execution management, behavior trees serve as a robust decision-
making framework that facilitates the systematic implementation of skills, taking into
account both system and environmental states.

The book [16] by Colledanchise and Ögren offers a comprehensive overview of
behavior trees and their applications in robotics and artificial intelligence. Behavior
trees are a formal, graphical modelling framework used predominantly in robotics and
video game design to describe complex, hierarchical behaviours. Unlike FSMs, which
represent state transitions, Behavior Trees focus on the hierarchical organization of
various tasks, represented as nodes in the tree structure. To evaluate and execute the
behaviours encapsulated within the tree, this framework adopts a "tick" system. A
"tick" refers to a single update or iteration through the tree, starting from the root node
and progressing through the structure based on the logic defined by its nodes. Each
node has a specific state that it returns upon the execution of a tick. These states are
essential for the parent nodes to decide how to proceed with the tree traversal and are
integral to the overall behaviour the tree is designed to execute. The typical states
returned by nodes are:

• Success: returned when a tick is processed on a node and the node successfully
completes its task.

• Failure: as opposed the the previous type, it is returned when the node fails to
complete its task.
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• Running: returned when a node needs multiple ticks to complete its task. This
is common for actions that take time to execute.

Success and failure states are also addressed as terminal states. In a Behavior Tree,
the nodes are categorized into three different families: composite nodes, decorator
nodes, and leaf nodes. Composite nodes, also addressed as control nodes, determine
the flow of tasks, executing their child nodes based on their returned state. The basic
control nodes are:

• Sequence: returns failure whenever a child node returns failure, and the next
tick starts by ticking the first child. If a child returns running, the sequence node
returns running as well and ticks the same child during the next cycle. When a
child node returns success, the sequence node proceeds by triggering the next
node. If all child nodes return success, the sequence node returns success as
well.

• Selector or fallback: returns success whenever a child node returns success,
and the next tick starts by ticking the first child. If a child returns running,
the selector node returns running as well and ticks the same child during the
next cycle. When a child node returns failure, the fallback node proceeds by
triggering the next node. If all child nodes return failure, the selector node
returns failure as well.

• Parallel: is the only node that can have more than one child running. Ideally,
the parallel node ticks all child simultaneously, keeping track of their returned
state. However, in programming implementation, it usually ticks all child nodes
one by one. Nodes reaching a terminal state are not ticked again. The parallel
node returns either success or failure based on defined thresholds. The success
threshold indicates how many nodes must return success for the parallel node
to return success as well. The same logic applies to the failure threshold with
the corresponding state. If neither of the two thresholds is reached, the parallel
node returns running.

Decorator nodes modify the behavior of their child nodes, for instance by repeating
an action a specified number of times. Leaf nodes, usually at the tree’s extremities,
execute specific actions or conditions, forming the base functionality of the Behavior
Tree. Notably, conditions nodes are particular as they return either a success or a
failure state. Moreover, designers can define new nodes to fit their necessities, e.g.
expanding the basic control nodes to achieve different behaviours. A typical example
is the memory sequence node, which on the tick cycle subsequent to returning failure,
instead of restarting from the first child node, ticks again the last failed node.

To share data among the nodes of the tree, the framework uses a blackboard
approach. This is a common approach in several applications [26, 27], as represents
a simple, yet efficient solution to achieve global access among several modules. It
consists of a data-sharing structure available to all nodes forming the tree. Data is
saved as key-value pairs and any node can access the value and update it.
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Regarding the programming implementation, it is imperative that the nodes
maintain a minimal computational load. This constraint arises from the necessity to
preserve the tick frequency of the tree structure from a substantial cut-off. Indeed, if
any node running time is too high, it prevents the tree from executing the next tick
cycle, thus considerably increasing the ticking period. If circumstances necessitate
intensive computations, it is advisable to execute them within a separate thread using
the node solely as an interface to start and monitor the process, as suggested in [29].
This approach guarantees the preservation of system reactivity and responsiveness.

Colledanchise and Ögren also discuss the limitations of Finite State Machines
and emphasize the need for systems that are both reactive and modular, qualities
that behavior trees inherently possess. Their book also explores how behavior trees
relate to and generalize earlier control architectures. It outlines design principles,
extensions, and formal tools for analyzing properties like safety, robustness, and
efficiency. Furthermore, in [18], Colledanchise et al. provide a mathematical proof of
the robust and safety features provided by behavior trees. The paper focuses on the
formalization and analysis of behavior trees as a framework for designing controllers.
The authors present a functional model of behavior trees and discuss how they can be
recursively combined while preserving key properties like robustness and safety. The
authors also draw parallels between behavior trees and earlier ideas in robotics control
theory.

Marzinotto et al. address the problem of behavior tree formalization in [30]. The
study introduces a unified framework that is both mathematically rigorous and compact.
The framework also offers equivalence notions between behavior trees and Controlled
Hybrid Dynamical Systems (CHDSs), providing insights into their representational
capabilities. The authors validate their framework through a real-world grasping
mission involving a NAO robot.

The study [19] from Ghzouli et al. delves into the application and effectiveness
of behavior trees in robotics. In particular, the authors conduct an empirical study
to understand how behavior trees are employed in real-world robotic applications,
comparing them with traditional behaviour modelling languages like state and activity
diagrams. They find that behavior trees offer a pragmatic and extensible language that
allows for project-specific adaptations. The paper also highlights that behavior trees
are increasingly becoming an alternative to state machines for high-level coordination
in robotics, offering modularity and flexibility. Even when compared to Hierarchical
FSMs, which were introduced as an extension to address FSM’s limited modularity,
behavior trees exhibit a lower level of complexity during the design phase. Similar
conclusions are reported in the survey [21] conducted by Iovino et al. The authors
compare finite-state machines with behavior trees, highlighting the advantages of the
latter in terms of modularity and maintainability.

An interesting application of behavior trees, that exploits their descriptiveness and
modularity, is the field regarding model checking and safety. In [31] Grunske et al.
propose an automated approach that integrates formal and informal methods, utilizing
behavior trees and model checking. The authors aim to address the limitations of
traditional Failure Modes and Effects Analysis (FMEA) in safety-critical systems.
This approach aims to automate the tedious and error-prone aspects of FMEA by
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injecting component failure modes into behavior trees and translating them into SAL
code for model checking. The paper argues that this method allows for more effective
and efficient safety analysis, especially for large-scale systems. It also provides a
detailed procedure for translating behavior trees into SAL code, thereby offering a
tool-supported process for automating FMEA. Lindsay et al. [32] focus on the use of
behavior trees, combined with formal methods, to build a model-checking framework
and evaluate the safety of systems with substantial redundancy. The authors employ a
case study of the hydraulics systems of the Airbus A320 aircraft to demonstrate their
methodology. These systems are designed to handle up to three different component
failures without a complete loss of hydraulic power. The paper argues that behavior
trees offer a simplified yet sufficiently rich model for capturing a wide range of
component behaviours and system safety requirements. The authors also introduce a
systematic method for using counterexamples to identify combinations of component
failures that could lead to hazardous system failures.

One feature that makes Behavior Trees especially appealing for use in robotics
is the ease with which their functionalities can be extended through the creation
of custom nodes. Colledanchise et al. address in [33] the challenges of managing
concurrent actions in behavior trees. The authors introduce two new behavior
tree nodes specifically designed to tackle concurrency issues, thereby enhancing
the predictability and performance of autonomous agents. The paper also argues
that parallel configurations within behavior trees showcase superior scalability as the
intricacy of the desired behaviour increases. This stands in contrast to alternative control
architectures where the overall system complexity results from the multiplication of
the complexities inherent in its subsystems. Instead, the study [17] by Pereira and
Engel delves into the integration of Reinforcement Learning (RL) into behavior trees
to enhance the adaptability of constrained agents. The authors introduce a new node
in the Behavior Tree, called "learning node," which embeds a local RL model. The
learning node can be used either for learning how to perform a task, or which task
execution, among a given set, yields the most desirable outcome. This integration
aims to maintain the advantages of both behavior trees and RL while minimizing the
risks associated with learning. The paper also establishes a relationship between this
framework and Options in Hierarchical Reinforcement Learning, thereby ensuring the
convergence of nested learning nodes. Empirical validation is provided through agent
simulation experiments in a fire control scenario. Lastly, Colvin et al. [34] addresses
the limitations of standard behavior trees in modelling time-critical systems. The
authors introduce timed behavior trees, an extension of behavior trees, to incorporate
the concept of time. They provide operational semantics based on timed automata,
which serves as a formal basis for translating timed Behavior Trees into the input
notation of the UPPAAL [35] model checker. This enables automatic verification of
system-level timing properties. The paper also introduces timed FMEA, a process for
identifying cause-consequence relationships between component failures and system
hazards in real-time safety-critical systems.

As behavior trees represent a tool to execute plans, researchers have also explored
techniques to automatically generate behavior trees as a planning problem. The
paper [20] by Segura-Muros and Fernández-Olivares proposes an architecture that
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automatically converts plans generated by a hierarchical task network (HTN) planner
into executable behavior trees. These behavior trees serve as the foundation for an
execution monitoring process that can adapt to unexpected changes in the environment.
The architecture is modular and minimizes the need for replanning by incorporating
both deliberative and reactive behaviours. The algorithm breaks down the objective
into a sequence of skills. Subsequently, an executor generates a behavior tree composed
of two sequences, one managing the mission execution and the other handling the
contingency actions. Employing this approach, the system initially examines potential
triggers for contingency behaviour; if none are detected, it proceeds with the nominal
mission execution. The authors propose to endue the user to manually design the con-
tingency actions. Indeed, the faults that may occur during a mission are dependent on
the system, its underlying hardware and the specific use case. Thus, a deep knowledge
of the application is necessary to adequately program the contingency actions. The
system was tested in a simulated scenario, demonstrating its ability to handle complex
problems with interleaved goals in a dynamic environment. Another example is
provided in [36] by Haotian Zhou et al., where the authors propose an autonomous task
algorithm that utilizes behavior trees to enable robots to complete tasks autonomously
in dynamic environments. The paper introduces a unified representation model based
on behavior trees that facilitates the transformation of abstract commands into specific
robotic operations. The algorithm generates a plan according to the user’s intention,
maps it into a behavior tree model, and executes it. The plan can be dynamically
updated based on the status feedback of the execution. The authors validate their
approach through simulations and actual experiments, both of which always succeeded.
Notably, the resulting behavior tree structure is complex and the algorithm is tested on
industrial ground robots. The results do not discuss replanning performances, nor re-
active response time, thus the application feasibility of this method on UAVs is not clear.

In conclusion, in academic research behavior trees are highlighted as a versatile
framework that effectively balances skill execution management and contingency
planning in autonomous systems. Their modular design facilitates real-time adaptabil-
ity, making them an instrumental tool for both mission-specific tasks and unforeseen
challenges. The integration of these features positions behavior trees as an integral
component in the current study, bridging the gap between traditional decision-making
models and the dynamic requirements of modern autonomous operations.

2.2.1 Reactive behavior trees

In [37], Klöckner introduces the concept of "transient tasks", defined as nodes that
do not yield a running state and therefore do not require activation. This implies that
condition nodes inherently fall into the category of transient nodes. Adhering to this
principle, the paper suggests the execution of entire subtrees or their segments within
a single tick, contingent upon encountering a sequence of transient nodes. In typical
setups, which involve a prolonged action node coupled with a condition node meant
for monitoring purposes, this approach has been recommended to prevent chattering
activations of the action node. A similar problem arises when implementing reactive
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sequences. Reactive nodes are a specific extension of the standard control nodes used
to implement reactive behaviours. In particular, the node of interest is an expansion
of the sequence node. The ticking rule of the reactive sequence node is defined as
follows: the sequence node always starts ticking the first child, and ticks the next
whenever the predecessor returns with a success state. If any node returns failure, the
reactive sequence returns failure as well. This ticking rule is particularly suitable for
monitoring actions. In this context, the first node is a condition node whose role is
checking that the invariant conditions of the skill are met throughout its execution,
and the second is the action to be monitored. To achieve a constant monitoring of the
action, it is important that its precedent node immediately returns either success or
failure, otherwise the ticking frequency of the skill node gets substantially reduced.
Thus, as proposed by Klöckner, the reactive sequence executes all children in sequence
in a single tick, as long as the nodes can be identified as transient tasks. Only one node
should be able to return with a running state, otherwise the subsequent nodes undergo a
substantial reduction of their tick frequency, losing the advantages of adopting reactive
sequences.

The reactive sequence node is used in the proposed design to implement reactive
behaviors. When the conditions overseeing the routine currently running are no longer
met, the reactive sequence will halt the action node and return failure. Notably, the
action can also be represented by a subtree. This is used as the main mechanism to
trigger replanning routines or contingency actions.

2.3 Mission and contingency management in UAVs
Mission management is crucial for UAVs as it orchestrates the various operational ele-
ments, ensuring that the vehicle successfully navigates through dynamic environments
to achieve its objectives. In the context of UAV mission management, deliberation
serves as the mechanism that enables autonomous acting based on real-time data
and predefined objectives. It integrates planning, monitoring, and decision-making
functions to adaptively manage contingencies and faults, thereby ensuring mission
success and system safety.

Ingrand and Ghallab [10] provide a comprehensive overview of deliberation func-
tions in the realm of autonomous robotics. The authors identify five key deliberation
functions: planning, acting, monitoring, observing, and learning, and discuss their
characteristics, design choices, and constraints. The paper argues that deliberation is
essential for autonomous robots operating in diverse and unpredictable environments,
as it allows them to act deliberately to fulfil their missions. The authors also emphasize
that deliberation in robotics is not limited to task planning but involves a coherent
integration of multiple functions.

As stressed by Guiochet et al. [13], key features to be included in the development
of robotic systems are fault prevention, fault forecasting, fault tolerance and fault
removal. The paper also discusses the different layers of autonomous systems and their
potential hazards, as well as the limitations of current safety standards and certification
methods.
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Several papers address the problem of safety and fault management for autonomous
systems, as it represents the primary step to enable a broader employment of UAVs.
Zaman et al. present in [38] the development of a novel diagnosis and repair architecture
for robot systems operating on the ROS framework. The paper makes three major
contributions: it integrates diagnosis and repair into a single system, incorporates both
hardware and software components in the diagnostic and repair process, and builds
upon the widely-used ROS framework. The research also provides a running example
inspired by the RoboCup Rescue competition to demonstrate the effectiveness of the
proposed architecture.

The study [1] by Drozeski et al. focuses on enhancing the reliability and autonomy of
unmanned aerial vehicles through a fault-tolerant control architecture. This architecture
combines fault detection and identification (FDI) with reconfigurable flight control
to ensure the UAV’s stability and performance. In particular, one objective of the
study was to test the feasibility of the control reconfiguration proposed by Osder
[39] in a real flight test. The authors employ an adaptive neural network feedback
linearization technique for stabilization post-fault detection. However, as mentioned
in the document, neural networks are deficient in specific stability properties. Thus,
in case the network diverges, the system switches to a PID controller as a fail-safe
strategy. The architecture is validated through actual flight tests on an unmanned
helicopter, demonstrating its ability to recover from different catastrophic faults of the
actuators. Moreover, the neural network never failed to converge during the several
flight tests.

In [11] the authors present a structured methodology that integrates specific fault-
tolerant mechanisms into an adaptive control architecture. The system consists of an
observer, running introspection routines, and a layered control system supervising the
robot’s operation at three different levels. The supervisors are addressed as global,
local and adapter, from the higher to the lower control tier. When a fault is detected, the
robot’s autonomous behaviour is automatically adjusted to address the issue, triggering
the proper supervisor depending on the severity of the fault. Experimental results
on a mobile robot illustrate the effectiveness of the proposed autonomy adaptation
approach.

Skoog et al. present in [5] the development of a run-time assurance (RTA) network
architecture aimed at ensuring the safe operation of highly autonomous aircraft. The
paper builds upon the ASTM industry standard F3269-17, proposing an architecture
that shifts the responsibility for aircraft safety from the pilot to automated systems.
This shift is crucial for the development of future pilotless transportation concepts.
The paper discusses the architecture’s critical features, such as the use of multiple
separate monitors for different safety functions. Indeed, the study mentions that it is
advisable to keep safety tasks separated, as their merging into a single behaviour usually
results in more intricate algorithms than the addition of the single task complexity.
This approach reflects the response of human pilots when confronted with multiple
emergencies. They always give precedence to addressing the most pressing threat
when the current situation necessitates rapid action.

Always concerning enhancing the safety enhancement of UAVs, the paper [9] by
Vachtsevanos et al. introduces a novel framework that focuses on self-organization
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and control reconfiguration strategies to improve system resilience in real-time. The
authors propose to embed a Learning-enabled component (LEC) to forecast faults and
hazards based on past data and to manage the system, combined with particle filtering
as a nonlinear filtering method for managing uncertainty in long-term prediction. To
achieve self-organization, the system represents internal components relations using a
graph and applies graph spectral and epidemic spreading modelling tools. The goal is
to reorganize the graph and maximize the connectivity while observing the system
constraints. As a reconfigurable control strategy, the paper combines reinforcement
learning and model predictive control. Lyapunov stability conditions are used to
ensure that the resulting strategies are effective and safe, especially when the system is
subjected to severe threats or hazards.

Pippin [2] further delves into the architectural considerations for enabling au-
tonomous flight in UAVs. It emphasizes the need for modular, open, and extensible
architectures that can adapt to varying levels of human interaction and onboard data
processing. The paper introduces the frontseat-backseat driver paradigm, where
the frontseat driver focuses on immediate flight control, while the backseat driver
deals with mission-level planning. This separation allows for better fault tolerance
and extensibility. The paper also discusses the importance of a message-oriented
middleware for inter-process communication, which enables the system to be loosely
coupled and easily extensible. It concludes by highlighting the need for rigorous
testing and introspection capabilities to ensure the safety of autonomous UAVs.

Castano and Xu discuss in [8] the development of a theoretical framework for
rapid and safe decision-making. The authors employ Behavior Trees to design UAS
behaviours that can quickly respond to flight anomalies, such as encountering obstacles
or experiencing system faults. The framework aims to detect and identify hazards
and activate the safest response, which may include fault-tolerant operation, obstacle
avoidance, or emergency landing procedures. The FDI process is divided into initial
detection, classification and verification, stressing the importance of asserting the
correctness of the identification process. Instead, a more recent paper [22] by Stojcsics
et al. proposes a Behavior Tree-based autonomy architecture that incorporates a Fault
Detection and Isolation Learning-Enabled Component (FDI LEC) and an Assurance
Monitor to assert the prediction reliability. Utilizing Inductive Conformal Prediction
techniques, the architecture aims to manage real-time contingencies through fault de-
tection, isolation, and system reconfiguration. The paper also discusses the scalability
of the FDI LEC and its ability to adjust thresholds for fault coverage and risk. The
study contributes to the field by offering a novel system architecture that enhances
mission execution robustness against faults and anomalies.

Mission planning and management is another key feature to develop a deliberative
UAV. However, when examining current frameworks used in the industry, they present
limitations in managing complex missions. An example is the PX4 Autopilot [40] open-
source flight control framework. This comprehensive platform encompasses various
critical aspects of UAV operation, including flight control, mission planning, sensor
integration, and communication. In PX4, missions are typically defined as a sequence
of waypoints that a vehicle follows autonomously. As discussed by Junger et al. in [41],
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traditional waypoint-based command and control (C2) interfaces are not well-suited
for managing tasks at different levels of abstraction. To overcome this, they propose
a new C2 interface that employs task decomposition into modular skills. The paper
demonstrates the application of this interface in two different UAS mission scenarios,
emphasizing its potential to replace existing waypoint-based C2 systems and enhance
the capabilities of next-generation autonomous UAS. Skill-based approaches for UAV
mission management are explored in other studies as well. Albore et al. propose in
[42] a layered approach, central to which is a skill management layer based on formal
skill models. This layer serves as an abstraction between the decision-making, based
on behavior trees, and functional layers, facilitating the implementation of resilient
behaviours in autonomous systems like UAVs. The skill management layer allows for
the structuring and testing of the functional layer while providing a simplified interface
to the decision layer. The paper also discusses the application of this architecture in
scenarios involving sensor failures and communication losses, demonstrating its utility
in real-world conditions. The architecture has been particularly used to support the
implementation of resilient behaviours in autonomous UAV missions. However, it
does not consider the importance of deliberation and automatic planning to achieve
increased autonomy.

Exploring more solutions based on behavior trees, the paper [37] by Klöckner
focuses on the formalization of mission plans for UAVs using behavior trees and
Description Logic. It argues that to rigorously analyze mission plans, they must be
translated into a tractable formalism. The study proposes to use the description logic
Attributive Language with Complements and Concrete Domains (ALC(D)) as the
input formalism for a mission plan based on behavior trees. The paper describes
an interface using the safety circuit of an exemplary UAV and demonstrates that
the system can be used as a first step towards the verification of mission plans with
formal methods. Always regarding behavior trees as a tool for mission planning,
the paper [15] by Gao et al. addresses the challenge of automatically generating
behavior trees that are both time-efficient and reactive to environmental changes. The
authors introduce a new domain knowledge definition method that considers the time
efficiency of actions. They propose a novel algorithm that automates the generation
of behavior trees with time constraints, encompassing construction, simulation, and
online re-planning. The algorithm builds the behavior tree starting from the defined
goal state, and back-chaining actions until the preconditions match the starting state.
This method yields a tree structure representing the entire mission, where the actions
are nested over several layers, each progressively guiding the system’s state toward
satisfying the precondition of the subsequent planning step. This algorithm is easy to
implement and customize. However, the generated behavior tree results in a complex
structure developed over several levels. The paper validates the effectiveness of the
proposed method through simulation experiments involving UAVs in search and
rescue missions. However, the generated structure may result in inefficient tick signal
propagation within the tree in case of a more complex mission. Moreover, direct
tree generation does not facilitate the mission progressions monitoring. The study
contributes to the field by being the first to propose a time-constrained behavior tree
synthesis and re-planning framework.
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In summary, the comprehensive body of research in both safety and mission
management for UAVs underscores a move towards more integrated, adaptive, and
real-time systems. On the safety side, there is a strong focus on fault detection and self-
repair, while on the mission management side, the trend is towards more flexible and
responsive frameworks, incorporating skill-based and behavior-tree methodologies.
Both domains aim to enhance the robustness, resilience, and real-world applicability of
autonomous UAVs. The presented work advances the existing literature on mission and
contingency management in Unmanned Aerial Vehicles (UAVs). The paper focuses
on dynamic re-planning and reactive behaviors for contingency management while
designing a modular and extensible architecture. The work also addresses the problem
of concurrent action execution using specialized tree structures. Unique to this study
is its quantitative evaluation of the proposed infrastructure’s performance, filling a gap
in the current literature. In addition to providing performance metrics, the study also
delves into an exploration of the limitations inherent to Behavior Trees and suggests
efficient design structures to mitigate these constraints.
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3 Methodology

3.1 Top-level Architecture
The proposed architecture follows a structured approach, as suggested in various
studies [26, 42], which delineates it into three distinct layers to efficiently manage the
drone’s operations. A comprehensive overview of the structure is shown in figure 3.1
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Figure 3.1: High-level architecture of the proposed design.

Deliberation Layer Occupying the top layer, the deliberative reasoning is responsi-
ble for orchestrating the platform’s actions by dispatching high-level directives to the
layer below. Essentially, it serves as the commander of the drone’s mission plan, taking
into account the dynamic environment and responding to any unforeseen situation
that may arise. By issuing specific commands to the Skill Manager, the deliberation
layer effectively translates the mission’s objectives into concrete actions that the drone
executes.

At this level, three main blocks cooperate in order to achieve the desired function-
alities. Central to it is the Mission and Contingency Manager (MCM) incorporated
into a single behavior tree. It oversees the whole mission execution, consisting of two
main duties: Task Management and Contingency Management. The Task Management
oversees the execution of the skills to carry out the steps provided in the current
mission plan. This is created by the Mission Planner, responsible for examining the
mission objectives and producing a sequence of actions to achieve them. The Task
Management is also responsible for triggering a re-plan procedure to recover the
current mission from unexpected events.
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On the other hand, the Contingency Management process works in tandem with
the Monitor module. The latter runs an introspection routine providing real-time data
about the status of the system and eventual external hazards. The former incorporates
decision-making rules based on these data in order to protect the system and the
surroundings from contingent situations.

Executive Layer Positioned in the middle, this layer acts as an intermediary,
connecting the Mission and Contingency Manager with the underlying hardware
platform. Its primary goal is to establish a clear separation between MCM and
hardware-related functions. This demarcation ensures that the MCM remains hardware-
agnostic and maintains a consistent interface to instruct actions to the UAV. Within
the Skill Manager, high-level directives from the MCM are translated into commands
suitable for transmission to the functional layer below. Moreover, it runs control
routines to process the feedback received from the Functional Layer and monitor the
progress of the instructed actions. The Executive Layer also act as the communication
bridge between the first and third layer. It’s important to note that this portion of the
software stack might require reorganization if implemented on different platforms due
to inherent hardware differences.

Functional Layer This constitutes the lowest layer in the architecture and plays a
critical role in managing the hardware components of the drone. Its responsibilities
include collecting essential data, managing communication interfaces, conducting
fundamental estimation processes, ensuring stability through control mechanisms, and
acting as a flight controller. Most importantly, it encompasses the autopilot system
capable of flying and controlling the drone based on different inputs and control
strategies. Usually, it provides a collection of controllers which the user can trigger in
order to enter different flight modes. However, due to its platform-dependent nature,
this layer is not extensively discussed, as it falls outside the study’s primary scope.
Section 4.2 provides a practical description of the adopted system, which serves as
background information to better understand the implementation of the upper layer.

These layers provide a structured and efficient framework for managing the drone’s
operations, ensuring that high-level mission objectives are translated into precise
commands that the drone can execute. The following subsections delve deeper into
the functionalities and interactions within the several blocks composing the system.

3.2 Skill Manager
In the proposed architectural framework, the MCM assumes the role of instructing
the Skill Manager regarding the actions that must be executed. In this discussion, the
terms skill and action are used interchangeably. The Skill Manager operates as the
central system responsible for the execution and coordination of the drone’s actions
and capabilities. Its principal function consists of translating high-level instructions
coming from the upper layer into commands understandable by the lower level. This
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role provides a higher-level abstraction that shields the MCM from the intricacies of
low-level commands expected by the functional layer.

For instance, consider the fly-to-waypoint as an illustrative example. The MCM
specifies just one skill parameter, which corresponds to the target position. Subse-
quently, the Skill Manager acts as an outer-level control loop, calculating velocity
set-points to reach the indicated waypoint. These velocity commands are then dis-
patched to the functional layer, which, in turn, directly governs the robot’s actuators
through specialized, real-time control loops. This process ensures consistent and
effective performances of the executed skill. This oversight is critical, as it involves
continuous monitoring of skill execution, ensuring that skills progress as expected
and promptly addressing any deviations or errors that may occur during execution.
When errors arise during skill execution, it promptly reports these issues to the upper
layer. The upper layer then provides directives on how to respond effectively to
the current situation, facilitating error resolution. Lastly, resource allocation is a
central part of the Skill Manager’s responsibilities. It involves the efficient allocation
and utilization of various resources essential for the smooth operation and optimal
performance of robotic systems. For mobile robots like UAVs, this often entails
overseeing motion-related and hardware resources, such as actuators and motors, as
well as computational resources, including specific controllers within the functional
layer. For instance, the Skill Manager orchestrates multiple manoeuvre requests from
the MCM and decides whether to reject the last request or to interrupt the ongoing
manoeuvre to execute the latest received command.

In the proposed design, each skill has been implemented using a finite state
machine. In this case a FSM is sufficient to represent the skill architecture as no
concurrency is necessary and the workflow is fairly simple. Moreover, an event-based
transition method accurately fits the model of an action, as the skill must respond both
to internal and external stimuli. The resulting structure is shown in figure 3.2. Upon
receiving a request for a specific action from the MCM, the Skill Manager initiates the
corresponding skill, which enters the state "Process request" (PR). Moreover, the Skill
Manager associates a unique identifier, called skill ID, with each request coming from
the MCM. When entering the PR state, the skill sends the command to enable the
desired controller to the functional layer and waits for the acknowledgement. If the
acknowledgement is negative, thus the functional layer has rejected the command, or
none has been received after a predefined timeout, the skill terminates and the Skill
Manager reports the error to the MCM. Otherwise, if a positive acknowledgement
has been received, it means the underlying layer accepted the command and started
to execute it. In this case, the state switches to "Execute" (E) and the Skill Manager
registers the current skill as running. While in state E, the skill updates the controlling
signal to feed to the functional layer to achieve the desired behavior, and the Skill
Manager reports the skill advancement to the MCM. Once the action execution
terminates, either because successful or because the functional layer reported an error,
the skill enters the "Report" (R) state. When in state R, the system communicates
the outcome to the deliberation layer, and the skill process terminates. If the MCM
prompts the cancellation of the current action, the skill enters in "Cancel" (C) state and
forwards the request to the functional layer. The request consists of a switch to a loiter
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Figure 3.2: Structure of the FSM representing every skilled programmed in the Skill
Manager. The filled circle represents the starting point, while the circled filled circle
the termination. Transitions in bold are triggered by the Skill Manager, and transitions
in italics are triggered internally.

routine to command the drone to enter a neutral state. If the functional layer accepts
the instruction, the skill terminates and the successful cancellation is reported to the
MCM. Otherwise, if the functional layer rejects the request to enter into the idle state,
the skill switches back to state E and the error is communicated to the deliberation
layer.

A special case arises when a skill is currently running and the MCM commands
the execution of a new skill which requires the same resources as the first. The adopted
behavior is to overwrite the current action with the new one requested. Firstly, the
Skill Manager triggers the new skill to be executed and the request process unfolds
as previously described. In case the functional layer rejects the new command, the
new skill terminates and the one currently running is not influenced by the process.
Otherwise, the Skill Manager updates the ID of the skill currently registered as running.
Upon this update, the running skill recognizes that the skill has been overwritten, thus
it switches to the "Abort" (A) state. In this case, the skill terminates its execution
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sending to the MCM an abort message. Simultaneously, the new skill switches to state
E and starts to command the triggered controller of the functional layer. By using a
unique code to identify the current running skill, the MCM can overwrite it with an
action of the same type, but with different parameters. This is particularly useful if it
is necessary to vary fly direction or speed or to specify a different target point to be
reached.

3.3 Mission planner
By incorporating a mission planning module into the behavior tree, the previously rigid
structure becomes more flexible. This flexibility enables the addition of adaptability
to behavior trees, a challenge highlighted in [17]. Furthermore, it empowers end-
users to define missions as sequences of objectives, eliminating the need for manual
programming of individual steps in the plan. This aspect is particularly crucial, as it
simplifies the utilization of the proposed technology while providing the system with
autonomous reasoning.

The proposed solution bases its functionalities on skill-level programming. Skills
are parameterized through the use of preconditions, invariants, and postconditions [12,
25]. These conditions pertain to the system state and specify requirements that must
respectively hold before, during, and after the execution of an action. This framework
facilitates action monitoring, enabling the assessment of whether the system can
initiate the skill, identifying any errors during execution, and verifying if the achieved
state aligns with the desired outcome. Furthermore, this approach for defining skills
finds application during the planning phase as well. In this context, the Mission
Planner views the action as a black box, with knowledge limited to its initial and final
states. These states are also referred to as start or back-propagated states and goal
states, respectively. Consequently, when presented with an objective and the current
state, it calculates a plan by chaining the skills through the alignment of their start and
goal states. Upon the start-up of the system, the Mission Planner loads a sequence
of objectives defined by the user. For each objective, the planner tries to define a
plan to accomplish it, which is then handed to the MCM to start its execution. Every
objective is marked with either "success", "failure" or "waiting", with the first two
cases addressed as terminal states. The first indicates that the Mission Planner was able
to define a plan to fulfil the objective and that the plan has been executed successfully
by the MCM. Instead, a goal is marked as failed when the Mission Planner is unable
to define a plan to accomplish it. Lastly, the waiting state means that either the system
is trying to fulfil the objective, or it has not been attempted yet. The Mission Planner
starts by processing the first objective, and every time a goal reaches a terminal state,
the next one is selected. The Mission Planner finishes executing planning routines once
the last objective reaches a terminal state. In this situation, the mission is considered
as terminated.

The approach adopted in this thesis shares the planning strategy outlined in [15],
but results in a structure and executing method similar to the algorithm introduced in
[20]. The plan is formulated as a sequence of actions through a back-chaining process

32



Action N
GOAL

START

Action i+1
GOAL

START

Action i
GOAL

START

FAILED

Action N
GOAL

START

Action i+1
GOAL

START

Action i
GOAL

START

replan

Action N
GOAL

START

Action i+1
GOAL

START

Action 1
GOAL

START

new
current
state

Action i
GOAL

START

OBJ. OBJ. OBJ.

Figure 3.3: Schema presenting graphically the procedure to execute a replan after an
action failed.

of skills that initiates from the objective state. The algorithm is presented in detail
in section 4.4. Notably, by adopting this method, the resulting arrangement can be
identified as a Last-In-First-Out (LIFO) queue, given that the first step inserted in
the succession is the last to be executed. This plan is called the Action Plan and is
stored in the planner and accessed by the MCM, which performs each planned step
by generating a sub-tree as described in section 3.4.3. Additionally, by employing a
sequence to represent the plan, the planner can effectively monitor the execution of
the mission and detect any failed or interrupted steps.

This significantly facilitates the re-planning procedure, depicted in figure 3.3.
Assuming that the objective does not change after a skill fails, all actions planned
subsequent to the failed skill remain valid, as the plan was established through backward
chaining. Thus, the planner reinitiates the planning procedure starting from the action
that follows the failed step, propagating backwards until the new current state is
reached. It is advisable to provide the UAV with an action to be executed during this
process. This way, the drone does not stop every time a re-planning is triggered, but it
executes a predefined skill to achieve a smooth transition between actions. Thus, the
Mission Planner needs to define two different sets of parameters for each skill added to
the Action Plan. The first identifies the "nominal action", which defines the parameters
sent to the Skill Manager to execute the mission step under ordinary circumstances.
The second set defines the "transition action", which is the instruction to be processed
during a planning phase. Illustrative transition actions include loitering or proceeding
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Figure 3.4: Schema presenting graphically the algorithm used to generate the
Communication Plan in parallel to the Action Plan.

in the same direction as defined by the nominal action with a reduced speed.
The drawback of this approach lies in the planning algorithm being "greedy".

Indeed, the planner propagates backwards by using skills that result optimal for the
current step, which resembles an optimizer finding a solution by following local
minima. In complex scenarios, this aspect may lead to inefficient plans or, in the
worst scenario, to the planner not being able to solve the planning problem. Another
limitation lies in the dependency of the planning algorithm on the system’s state
representation. The state variables must provide sufficiently detailed information to
enable the planner to make optimal choices among the available actions.

Key steps of the delivery mission in the UDW project are the permission requests to
enter the wind farm and asking for approval from the operator for the planned route or to
perform particular manoeuvres. It would be optimal to perform such communications
in parallel to ordinary navigation tasks to execute the mission efficiently. However, the
current algorithm does not allow for the planning of concurrent actions. Thus, it is
necessary to adapt it to implement this specific feature. The approach proposed in this
paper is to generate different sequences related to specific sets of skills, i.e. "autopilot
skills", "control skills" and "communication skills". By producing inter-dependent
action sequences for more than one set of skills, concurrent tasks can run on multiple
subsystems at the same time. The method described below is a proof-of-concept
implementation that is tailored for the UDW-specific use case of requesting permissions
while approaching specific air space volumes.

In order to add concurrent communication, the planner creates an additional plan,
called Communication Plan. For every step in the Action Plan, there exists a step in
the Communication Plan. This step may be empty or specify a list of permissions
the UAV must ask for, concurrently with the execution of the corresponding skill in
the Action Plan. The algorithm to compose the Communication Plan follows the
explanation presented below. The steps are reported in the schema of figure 3.4 using
numbered diamond shapes.
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1. When the planner adds a new skill to the Action Plan, the corresponding
communication step is always empty.

2. Consequently, the planner checks if the action goal and its starting state differ
in necessary permissions. In the schema, the starting point is associated with
permission of type "A", and the goal point with permission of type "B".

3. If the goal indicates permissions that are not present in the back-propagated state,
it means the plan needs an auxiliary action during which the UAV performs the
necessary requests. In this case, a request for permission of type B is added.

4. The auxiliary action depends on the one previously planned. In the example,
the drone has planned for a fly-to-waypoint action from point A to point B that
causes the UAV to cross the border of a flight area that needs specific permission
in point C. Thus, the auxiliary skill is an additional fly-to-waypoint instruction
from point A to point C. This skill commands the drone to reach the border
while asking for permission to enter the area.

5. Finally, the starting state of the nominal action is updated to match the cross
point.

Using this method, it is possible to chain multiple auxiliary actions in case the borders
of several special flight zones are crossed. In fact, the back-propagated state of the first
planned auxiliary action is the same as the nominal action before the plan is updated.
In the schema, the nominal action in "Plan before" and the auxiliary action in "Plan
after" both start from state A. Thus, the algorithm can be iterated until the permissions
of the starting state and the goal state for the last planned action match. In the example,
this is not necessary as the starting and goal states of the auxiliary action do not differ
in necessary permissions.

The drawback of this method dwells, again, in the exploitation of local minima.
Indeed, the algorithm always takes as reference the border crossing point closest to
the goal point, which may result in sub-optimal solutions. For example, in case two
crossing points are particularly close to each other, the planner allocates two different
action steps. Nevertheless, it would be more convenient to conceive one single action
associated with two permission requests. Another edge case is the presence of concave
flight zones, which may lead to multiple permission requests for the same area. This
issue, however, is strictly related to the management of permissions and their expiration
rule, thus it is dependent on the specific use case. In general, all these flaws can be
addressed by a more precise algorithm design, but they are ignored in this study for
simplicity.

35



3.4 Mission and Contingency Manager
The primary objective of the developed design is to enable a drone to execute a
nominal mission plan while also being able to adapt to unexpected changes in its
environment. This is achieved through a combination of proactive and reactive
behaviors. The drone’s nominal mission refers to its intended course of action under
normal conditions. However, the real world is dynamic and can present unforeseen
challenges. In addition to the nominal mission, there are elements of uncertainty, such
as changes in the environment or unexpected events. These uncertainties can impact
the drone’s ability to execute its plan successfully. An example scenario is provided:
when the drone needs permission to enter a wind farm, it needs to move to a target
point and simultaneously communicate with the control tower to request permission.
This illustrates the parallel execution of multiple actions, where the success of one or
more actions is crucial for the overall mission’s progress. In the context of executing a
complex plan involving parallel actions, the concept of a scheduling problem arises.
The successful completion of certain actions is a prerequisite for the drone to move on
to subsequent steps of the plan.

Nevertheless, it is a fact that not all stages of the plan might unfold according to
their intended course due to possible failures or unforeseen contingencies. This is when
the Mission Planner assumes a pivotal role. It is responsible for dynamically creating
the mission plan from start to finish. Rather than relying on a fixed, predetermined
plan, the drone autonomously generates its plan based on the current situation. If any
step fails to be completed or if the drone encounters unexpected obstacles, the MCM
triggers a process of re-planning. This involves generating a new sequence of actions
that can help the drone recover from setbacks and continue progressing toward its
mission objectives.

The structure of the behavior tree designed to govern the mission management
process is depicted in figure 3.6. This choice of behavior trees as the underlying control
mechanism not only aligns with their proven advantages in modularity, scalability, and
concurrency management, but also sets the foundation for an efficient and effective
mission management framework.

3.4.1 Behavior tree structure

The convention used to display behavior trees in this paper is reported in figure 3.5.
Used control node types are:

• (par) parallel node.

• (fb) fallback node.

• (seq) sequence node.

• (reac seq) reactive sequence node.

Moreover, in all behavior tree figures, every node has a label that indicates its
function inside the tree. Lastly, every parent node ticks its children from left to right,
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Figure 3.5: Convention used in this document to draw behavior tree schemes.

or from top to bottom. During the description, the node being examined is linked to
the schema representation indicating between brackets the label used in the figure,
followed by the specific type of node, if necessary.

Follows the detailed description of the behavior tree structure, shown in figure
3.6. The architecture consists of four main branches: monitoring, contingency
management, executing and planning, respectively represented by the nodes named
"monitor", "contingency behavior (fb)", "exec plan (seq)" and "re-plan proc (par)".
The arrangement begins with the root node (root), succeeded by a parallel node
(main threads, par). This parallel node oversees the two fundamental processes of the
structure: monitoring and mission and contingency management. The monitoring
process is symbolized by the monitor node (monitor), which consistently returns a
running state. It serves as the bridge between the Mission and Contingency Manager
and the data collection running on the Executive layer. This node receives a stream
of data, which is loaded inside the behavior tree blackboard. The monitor is also
responsible for partial data elaboration. It processes the data and raises specific flags
to trigger contingency measures when necessary. The position of the monitor node
in the tree structure is crucial, ensuring a high update frequency of the information
saved in the blackboard and the state of the flags. Notably, the flags are reset in the
contingency management branch upon the termination of the associated action to
ensure proper information flow inside the tree, i.e. no interruption of the contingency
manoeuvre if during its execution the states are set back to nominal values. The mission
and contingency management branch starts with a decorator node functioning as the
primary loop node (loop, run until failure). This loop node continues its operation
until the associated child node encounters a failure. Given the returned state rule of
monitor and loop nodes, the parallel node ticking them has a failure threshold set
to one. This way the tree fails as soon as the MCM branch fails, interrupting the
execution of the whole system. Notably, this is the only method to define an exit point
of the program because the loop node returns a terminal state only when its child fails.

The mission and contingency management continues with a fallback node (MCM,
fb), responsible for orchestrating the transitions between standard mission execution
(nominal behavior, reac seq), contingency management (contingency behavior, fb) and
mission termination (end mission). This design choice, similar to the solution proposed
by Segura-Muros et al. in [20], reflects the necessity of deliberative autonomous
systems to be composed of a high decisional level and a low reactive level, as underlined
by several papers [27, 28]. The first represents the deliberative and dynamic behaviour
where the nominal mission is generated and executed. The second is a static subtree
where the actions triggered to cope with specific contingency events are manually
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programmed. This method avoids a planning phase when reacting to unforeseen
situations, ensuring a quick response. It is important to remember that control nodes
have an intrinsic priority between their children. These nodes tick the children in
the same order as they are defined in the tree structure. The nominal behavior is
the left-most node of the mission management fallback node, hence it is the first to
be ticked. To rapidly switch to the contingency management branch, the nominal
behavior node is a reactive sequence node. The associated condition node (check
no errors) evaluates whether any error that could activate a contingency action has
occurred, and returns a failure state if the evaluation is positive. The subsequent node
is the nominal mission execution, which orchestrates the switch between planning and
execution phases. The second child node within the MCM fallback node contains the
contingency management subtree (contingency behavior, fb). This subtree employs
condition nodes to assess flag errors and initiate necessary contingency actions, as
elaborated further in section 3.4.2. This design decision prevents the unnecessary
ticking of extra condition nodes during the standard mission execution. Instead, it
utilizes an auxiliary flag to transition to the contingency behavior when needed. The
third and last child of the MCM node (end mission) represents the mission termination
state.

The core execution of the mission is overseen by a fallback node (nominal execution,
fb). This node splits into two primary phases, which, when combined, define the
standard behavior expected within the system. The first of these phases is the execution
phase (exec plan, seq), while the second is the planning phase (re-plan proc, par). In
both these phases, the executor represents a key module of the tree. It is endowed with
the responsibility of managing and overseeing the execution of every step planned by
the Mission Planner. This is achieved by generating a subtree with a predefined layout
designed particularly to initiate the skill and monitor its progress, as further described
in section 3.4.3.

Within the execution phase, there are two distinctive steps. Initially, a tree is gener-
ated to execute a single nominal action using the executor module (nominal executor).
Once the action is completed, the subsequent node (next action) acknowledges its
completion. This acknowledgement is forwarded to the Mission Planner and serves as
the authoritative signal for the behavior tree to advance to the next pre-defined action.
The planner updates the stored plan by eliminating the completed step and sends the
next action to be executed to the "next action" node. This subsequently loads the new
step into the behavior tree and returns a successful state. This procedure is depicted
in figure 3.7. The state propagates backwards until it reaches the main loop node
and, given that the loop persists until a child node reports a failure state, it proceeds
to tick the execution subtree once more. This starts a new execution phase, which
manages the last loaded action. However, failure during execution can arise under
different circumstances: when no action is currently selected, if the plan is empty with
no following action to select, or if the executor encounters a failure while attempting
to execute the action. In any of these scenarios, the planning branch is triggered.

During the planning stage, the planner node collects the current system state and
shares it with the Mission Planner. A timeout check is also implemented by the planner
node to ensure the planning process doesn’t exceed a certain time limit. Once the
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Mission Planner receives the system state, it initiates the planning procedure. The
resulting plan is then returned to the planner node. Subsequently, the node loads the
initial action from the formulated plan into the behavior tree and signals a successful
completion, thereby initiating a new execution routine. The process is reported in
figure 3.8 for clarity.

Concurrently, a decorator node (succ is run) propagates the tick signal to a fallback
node (trans action, fb) whose first child is the executor (transition executor) responsible
for running the transition action specified by the step currently loaded in the tree. In
case no action is available, e.g. during the initial planning when the tree is ticked for
the first time, a default wait action is selected. Notably, if the transition action node
fails, its parent ticks the following child (rise action flag). This node raises an error
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flag to trigger the contingency branch and then returns failure. The decorator node
has a key role in the planning phase and applies a special ticking rule to its child.
As long as the child node status is running or failure, it is propagated upward with
no alteration. Instead, when the received state is success, the decorator node signals
running, and continues to return this state as long as its branch is not interrupted,
without ticking its child again. This assembly is adopted to execute the transition
action without signalling its completion to the parallel node supervising the planning
phase. In this arrangement, both the success and failure thresholds of this parallel
node are set to one. Using this strategy, the planning branch can be terminated as soon
the Mission Planner produces a valid plan in order to immediately start to process
it, even if the transition action is not completed. On the other hand, the decorator
node never returns success, ensuring that the executor does not terminate the planning
branch when completing the transition action. Nevertheless, the action can still trigger
a failure in the branch, allowing for proper contingency management.

A fundamental edge case occurs when the Mission Planner finishes the objectives
to elaborate. In this scenario, no plan is forwarded to the planner node, which as a
result returns failure. This leads the nominal execution branch to fail with no error flag
currently up. Under these circumstances, the contingency subtree detects no error,
skipping all children and returning with a failure state as well. Thus the MCM node
proceeds with ticking its last child: the "end mission" node. This node reflects the
mission termination as perceived by the Mission Planner. It defines the exit point of the
tree by always returning failure after predefined functions are eventually executed, e.g.
reporting the mission result by listing the fulfilled and failed objectives and disarming
the UAV. The failure state of this node propagates to the loop node, which returns
failure as well, thus terminating the entire tree.

A notable characteristic of the system’s design is the method used to handle mission
failures. The nominal mission branch, representing the primary course of action,
fails only when the system is unable to generate a feasible plan within the current
context. This highlights the system’s commitment to maintaining a logical approach
to problem-solving. This approach ensures that the mission itself is safeguarded
from failure except in scenarios where the system’s logical reasoning is unable to
converge to a viable solution. Importantly, the system accommodates various minor
setbacks during the actual execution of actions. These setbacks, which might arise
due to environmental conditions, technical faults, or other transient factors, do not
inherently trigger mission failure. This design philosophy acknowledges the inherently
dynamic and uncertain nature of real-world operations, emphasizing the separation
between the logical feasibility of a plan and the practical obstacles that might emerge
during its execution. In essence, the system’s robustness is built on its ability to
pivot from execution to re-planning in response to failures. This approach ensures
that mission success remains achievable, contingent upon the system’s capability
to logically address the current situation, while also accommodating the inherent
complexities that can arise during the execution of actions. This dynamic capability to
shift from execution to reevaluation reflects the system’s adaptability and resilience in
the face of unforeseen challenges.
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3.4.2 Contingency management

The contingency management subtree operates as a fallback mechanism (contingency
behavior, fb), as suggested by Albore et al. in [42]. It diverges into distinct subtrees,
each overseeing the resolution of a single error occurrence. To achieve this, a sequence
node (ERR#, seq) is utilized, serving as a mechanism for checking individual errors.
Within this sequence, the first child is a condition node (check err #) responsible
for evaluating whether the associated error flag has been activated. When the flag
indicates an issue, the sequence advances to initiate the corresponding error response
action. Conversely, if the flag remains inactive, the sequence returns a failure signal,
prompting the evaluation of the subsequent error flags. To address specific errors, the
design accommodates the inclusion of multiple potential actions for resolution. To
streamline this, all desired actions are linked to a single fallback node (solve err #, fb),
which systematically attempts each action (action; action2; emerg action) in sequence
until a successful one emerges. Lastly, the sequence node associated with the solved
error ticks its last child (reset err #), resetting the appropriate flag. An advisable design
practice is to incorporate an "abort-mission" action (emerg action) as the final option
within this fallback node. This ensures an additional layer of safety in cases where
earlier actions prove inadequate in addressing a specific emergency. Notably, if the
user desires to terminate the mission after executing the emergency action, the skill
should terminate with a failure status. This way the entire branch associated with the
error fails and the system reaches the end mission node, effectively terminating the
mission.

The inherent priority structure of control nodes plays a pivotal role in this frame-
work. It can be exploited to establish priority relationships between raised errors
and the corresponding triggered actions. A visual representation of this concept is
provided in Figure 3.9, where "error 1" is processed before "error 2", and the system

contingency
behaviour

(fb)

error 1
(seq)

error 2
(seq)

solve
err 1
(fb)

reset
err 1

check
err 1

solve
err 2
(fb)

reset
err 1

check
err 2

action1 action2 ...

Figure 3.9: Basic behavior tree structure used for contingency management.
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attempts "action 1" before resorting to "action 2" if the former proves unsuccessful. In
case multiple flags are raised from the monitor, the contingency management branch
triggers the action associated with the most urgent error, returning with a successful
state and resetting the appropriate flag when the action is completed. Consequently,
the main loop ticks again the contingency behavior node, reevaluating all error flags
from scratch. This ensures that, if a flag rises during the contingency action execution,
the system properly follows the priority encoded in the tree structure when checking
the contingency conditions.

Additionally, by effectively segmenting the branches and introducing auxiliary
error flags, a hierarchical organization of errors can be achieved within subbranches.
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Figure 3.10: Basic behavior tree structure used for organizing contingency errors
hierarchically.
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An illustrative instance of this arrangement is presented in figure 3.10 for clarification.
Within this structure, the primary contingency fallback node (contingency behavior,
fb) partitions into subgroups: battery errors (battery error, seq) and estimation errors
(estimation error, seq). An auxiliary flag is raised when any error within the given
subgroup is detected. Each subgroup in itself forms a sequence node, characterized
by an initial condition node (check battery error; check est error) that assesses the
auxiliary flag’s status. If the flag signals that an error belonging to the subgroup is
active, the subsequent fallback node is ticked (solve battery error, fb; solve estimation
error, fb). This node unfolds similarly to the first contingency fallback node, ticking
a set of sequence nodes, each one addressing a specific error. This structure rapidly
bypasses branches where no pertinent errors have transpired, thus enabling rapid
access to the correct contingency case. This approach significantly improves the
handling of complex systems, particularly those situations waiting for the assessment
of several prior flags. Notably, the structure is repetitive and multiple nesting levels can
be added by associating a subgroup of errors to every sequence node. The arrangement
terminates with the fallback node attempting the desired actions for the identified error.
Oppositely to the ordinary flags, the auxiliary ones are reset by the monitor node. In
its routine, it always resets all auxiliary flags and then proceeds by raising them again
according to the normal ones. This avoids adding a reset node for the auxiliary flags
while also ensuring no interruption of the contingency actions.

The architecture built upon behavior trees offers a straightforward mechanism
for contingency management through the inherent tree structure, specifically through
fallback or sequence nodes. This clarifies the pathway for state transitions, a feature
not transparently offered by FSMs. Indeed, in FSM architectures, the central challenge
arises from the ambiguity of event origins. FSMs lack a built-in signalling mechanism
to handle state transitions, requiring external events to manage them. By contrast,
behavior trees provide an unambiguous framework for managing the outcomes of
subtrees, with control nodes explicitly designed to handle successes or failures.
Addressing the use of HFSMs, particularly those modelled after Harel Statecharts
[43], one might argue that they too allow a nominal-to-contingency state transition.
However, this transition is not as straightforward as it initially appears. HFSMs
require the failed action to post an "error" event, triggering a transition from a
nominal to a contingency state. While this can be manageable, it introduces additional
complexity by adding potentially non-prioritized events to an already existing event
queue. The lack of mechanisms for event prioritization in FSMs could lead to delayed
critical transitions, thus reducing the advantages HFSMs might have over alternative
architectures. In contrast, behavior trees provide a clear and structured framework
for efficiently managing both standard and contingency scenarios, making them a
compelling option for navigating complex, dynamic environments.
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Figure 3.11: Behavior subtree structure used for executing a single action.

The executor module is responsible for carrying out the actions generated by the
planner. Once the planner synthetizes a plan, the action to be executed is loaded on
the tree blackboard. The information loaded on the blackboard comprehends a set of
preconditions, invariants, and supplementary parameters used to define the execution
of the skill. The executor makes use of preconditions and invariants to initiate and
oversee the execution of the skill. When the executor is ticked for the first time, it
generates an appropriate behavior tree to carry out the current action and starts it.
Whenever the executor node is ticked again, it propagates downwards the tick signal
and then propagates upwards the state resulting from the subtree. Thus, it behaves as a
connection node that solely propagates information from the main tree to the action
tree. The advantage of this solution is the remarkably simple generated sub-tree, with
respect to the opposite design choice of generating a behavior tree representing the
entire plan execution, adopted in [15]. This allows for a swift propagation of the
tick signal through the behavior tree, being the depth of the overall tree significantly
reduced. Moreover, the tree creation is also faster, a positive aspect if the system
runs several replanning phases where a new subtree is generated each time. The
drawback of this design choice is the need to create a subtree for each action, rather
than instantiating the whole structure once at the start of the mission. Thus, in case
the mission proceeds smoothly, the adopted solution is less efficient.

Illustrated in Figure 3.11 is the structure of the subtree generated by the executor.
At its root stands the executor itself, serving as the port for propagating the tick signal
from the main tree. Directly beneath it lies a sequence node (precond check, seq)
that splits into two child nodes. The initial node in this sequence is a condition node
(precondition) responsible for asserting whether the preconditions of the currently
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Figure 3.12: Behavior subtree structure used for executing the auxiliary action along
with the necessary permission requests.

executed action are met. If this condition is validated, the subsequent node in line for
evaluation is a reactive sequence node (invariant check, reac seq). This particular node
incorporates the reactive behavior essential for monitoring the execution of the skill. It
achieves this by regularly testing invariant conditions of the skill. Henceforth, the first
child node in the reactive sequence node is a condition node (invariant) tasked with
confirming whether the invariant constraints align with the current state of the system.
Meanwhile, the second child node (action) is entrusted with the actual execution of
the planned step.

Regarding the coordination of the communication and auxiliary action, a specific
subtree structure is used, shown in figure 3.12. In this arrangement, a parallel node
(execution, par) oversees the execution of the auxiliary action and the permission
requests. All communication skills are grouped in a dedicated parallel node (com-
munication, par). Notably, the auxiliary action is preceded by a success-is-running
decorator node (succ is run) to avoid propagating upwards the success of the skill.
The "execution" node has both the success and failure thresholds set to one. This
means that the action can trigger a failure, but can’t lead the parent node to return
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success thanks to the interface provided by the decorator node. On the other side, the
communication parallel node has the failure threshold set to one and returns success
only if all its children succeed. This strategy guarantees that the system triggers a
re-plan whenever either the communication skill or the auxiliary action reports a
failure. Additionally, the executor refrains from advancing to the next planned step
until confirmations for all the permission requests are received.

This design highlights the integration between the executor and the Mission
Planner. In cases where a third planning sequence needs to be generated, for example,
to incorporate an additional skill set relying on a distinct subsystem, the executor
can easily be expanded. This is achieved by adding a new sub-branch beneath the
"execution" node, which manages the execution of the skills defined by this third
sequence. Finally, the tick system allows for a flawless propagation of the states upward
in the tree nodes hierarchy, allowing for proper elaboration of errors.

Implementing a similar system using FSMs or HFSMs would be a complex task.
FSMs fundamentally operate on a bottom-up event-handling system. This constrains
the architecture by making it difficult to introduce higher-level logic that can override
or preempt lower-level states, a functionality crucial for tasks like invariant checks
that need to execute on every tick. In dynamic and unpredictable settings, the FSM
model’s lack of event prioritization is a drawback, as all events are treated with the
same urgency unless explicitly programmed to do otherwise. Additionally, FSMs have
a state-centric design that demands explicit definitions for transitions between states.
This makes them less adaptable to changing conditions, as introducing a new behavior
often necessitates updating multiple transitions. While HFSMs offer a hierarchical
structure, the super-state usually remains unaware of the activities within its sub-states.
This makes it challenging to coordinate complex, parallel activities across different
hierarchical layers without resorting to custom logic. Conversely, behavior trees
enable a more scalable and flexible architecture, allowing for independent nodes
whose transitions are regulated by their parent nodes. This makes them particularly
well-suited for managing complex behaviors in dynamic environments.
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4 Implementation

4.1 Employed middleware and libraries
For the implementation of the presented design, the Robot Operating System (ROS)
[44] has been used as the foundation and linking system between the architecture
layers. Specifically, this project is based on ROS 2 Foxy, one of the many available
versions of ROS 2, the latest ROS major version. ROS is used in several robotic
studies [22, 25] to cope with the necessity of a middleware to manage real-time
communications. It provides a robust communication infrastructure that allows various
software components (nodes) to communicate with each other in a distributed and
scalable manner. This communication is based on a publish-subscribe messaging
system. ROS is highly modular, allowing developers to design and build robotic
systems by combining existing software components. It abstracts the hardware layer,
making it possible to write robot control software that is hardware-agnostic. This
abstraction simplifies development and facilitates the use of different robot platforms.

In ROS, communication between nodes is achieved through a flexible and modular
system consisting of topics, services, and actions. These communication mechanisms
enable nodes to exchange data and interact with each other in a distributed robotic
system. Follows an overview of topics, services, and actions in ROS 2:

• Topics are one of the core communication mechanisms in ROS 2. They facilitate
asynchronous, publish-subscribe communication between nodes. Nodes can
publish data on a topic, and any interested nodes can subscribe to that topic to
receive the data.

• Services provide synchronous, request-response communication between nodes.
They allow one node (the client) to send a request to another node (the server),
which processes the request and sends back a response.

• Actions extend the capabilities of ROS 2 by providing asynchronous, goal-
oriented communication. They allow a client node to send a goal request to a
server node, which processes the goal over time and provides feedback on its
progress. Once completed, the server sends a result back to the client.

A key component of the ROS 2 framework is the "executor". It refers to a
component responsible for executing the tasks associated with nodes and managing the
communication and coordination among these nodes. Specifically, the ROS 2 executor
is a part of the middleware that facilitates the execution of callbacks for various nodes
and handles message passing between them. It allows nodes to work asynchronously
by managing their concurrency and synchronization, meaning that they can run their
callbacks independently. Notably, all communications mechanisms described above
run using callbacks. Indeed, ROS 2 nodes are designed to work in an event-driven
architecture. This means that nodes can be idle most of the time, waiting for events to
occur, such as receiving a message on a topic or a service request. Instead of using
busy-wait loops, ROS 2 nodes use "spinning" to efficiently handle events. To ensure
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that the callbacks are executed when the corresponding events occur, it is necessary to
"spin" the node. This means that the node enters a mode where it actively checks for
events and executes the associated callbacks.

In a typical ROS 2 application, multiple nodes run concurrently, each with its
spinning loop initiated by a spin function. The executor, on the other hand, is
responsible for coordinating the execution of these multiple nodes. It ensures that
each node gets a chance to execute its callbacks in a non-blocking manner and that the
overall application remains responsive to events. To do this, callbacks are registered in
a First-In-First-Out (FIFO) queue. Then, the executor consumes the queue by properly
managing the function execution and parallelism constraint.

A major concern is the interfacing between behavior tree nodes and ROS nodes.
It primarily arises from the different execution paradigms and thread management:
behavior trees use a tick-based execution, while ROS nodes are event-driven. ROS 2
typically manages its nodes and callbacks in a multi-threaded manner, with separate
threads for spinning nodes, handling incoming messages and executing callbacks. A
behavior tree, on the other hand, operates in a single-threaded manner by design, as it
expects its nodes to be executed sequentially. This sequential execution can conflict
with the ROS multi-threaded execution model. The solution used in this project is to
assign one ROS node to a tree node, an approach also implemented in Nav2 [45], the
ROS Navigation Stack which is also based on behavior trees. This way, the behavior
tree oversees the execution of the ROS functionalities. Every time a tree node that
embeds a ROS node is ticked, it spins the associated ROS element, thus starting the
execution of the queued callbacks. This way, the execution is constrained to follow the
behaviour specified by the tree and interactions with the ROS environment are enabled
only when requested.

As for the design of the behavior tree orchestrating the mission manager, there
exist mainly two libraries to design behavior trees: "BehaviorTree.CPP" [29] and
"py_trees" [46]. Other libraries like "Behavior3" [47], "task_behavior_engine" [48],
"beetree" [49] and "behavior-tree" [50] are no more maintained. "BehaviorTree.CPP"
is written using C++, while "py_trees" is based on Python. Both programming
languages are widely used in the robotic field and the libraries provide overall the same
functionalities. However, these two programming languages present some intrinsic
differences. For this project, one key aspect is concurrency. C++ provides fine-grained
control over memory management and low-level system resources, making it suitable
for creating high-performance multithreaded applications. It also offers standard
libraries that provide thread management (thread), synchronization primitives, and
memory management tools (mutex). On the other hand, Python offers a built-in
threading module for creating and managing threads. However, Python’s Global
Interpreter Lock restricts the execution of multiple threads in a Python process,
limiting true parallelism. Moreover, C++ is well known for its high efficiency and large
employment in real-time applications, while Python may suffer lower performances
due to its high-level scripting and the presence of an interpreter. For these reasons,
and also considering that the current software stack developed by DLR for the UDW
project is mainly developed using C++, the same programming language has been used
for the coding of this thesis project. Thus, the employed library to manage behavior
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trees is "BehaviorTree.CPP".
The "BehaviorTree.CPP" library is built with modularity as a key characteristic.

It allows developers to define and reuse individual nodes and compose them into
complex behavior trees. This modular approach simplifies code maintenance and
promotes code reusability. "BehaviorTree.CPP" supports various types of nodes
commonly found in behavior trees, including action nodes, condition nodes, control
nodes and decorator nodes. Developers have the capability and responsibility to craft
customized node types, tailoring behavior trees to suit their particular application
requirements. This extensibility fosters adaptability and versatility across different
use cases. Furthermore, programmers can delineate the structure of the behavior tree
in separate Extensible Markup Language (XML) files facilitating runtime loading of
the behavior tree layout, a key characteristic to implement the design proposed in this
thesis for the executor. This approach also enables the reuse of subtrees defined in
distinct files by assigning a unique ID to each behavior tree, making it possible to insert
them as subtrees within another behavior tree. Regarding the adopted data-sharing
infrastructure across different nodes, the "BehaviorTree.CPP" library implements
a "port" system to access the key-value pairs saved in the blackboard. Every node
defines a set of input and output ports to access and set the blackboard entries. Each
port is defined by an ID, which is then linked to the key of the associated blackboard
variable in the XML schema. Thus, the linking is done in run-time when the tree is
built, and the definition of the nodes is completely decoupled from the tree in which
they are used, allowing their full reusability in different structures.

Furthermore, it is crucial to highlight that the library prioritizes real-time applica-
tions, making it particularly suitable for robotics use cases. Efficiency in executing
behavior trees is fundamental in robotics applications, and "BehaviorTree.CPP" has
been purposefully crafted to meet these demands. Notably, it seamlessly integrates
with ROS, solidifying its position as a valuable tool in the field of robotics. It is worth
mentioning that this library is also adopted in Nav2, underlining its significance within
the robotics community.

4.2 Functional layer
4.2.1 PX4 Autopilot

For the execution of simulation tests of the proposed solution, the functional layer of
the control architecture is built upon the PX4 Autopilot software suite [40]. The PX4
Autopilot stack plays a pivotal role, managing the core control mechanisms of the
drone and serving as the principal agent for autonomous navigation and operation.
As an autopilot, it is charged with overseeing essential flight operations, including
position, orientation, and velocity control, to ensure precise adherence to prescribed
flight paths and responsiveness to incoming navigational commands. Within the
structure of the control architecture, it operates as the functional layer, providing an
interface for high-level command inputs and translating them into real-time operational
commands, thereby bridging the gap between abstract control directives and practical
drone behaviors.
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To facilitate comprehensive testing without the prerequisite of physical hardware,
PX4 provides support for multiple simulation environments. Two prominent PX4
simulation environments are Gazebo and jMAVSim (Java MAVLink Simulator). For
this project, jMAVSim has been selected for its simplicity and ease of use. It is a
lightweight, Java-based multirotor simulator primarily designed for PX4 development.
While not as high-fidelity as Gazebo, jMAVSim provides reasonably realistic dynamics.
In the context of these simulations, jMAVSim serves as the hardware/physics layer
simulating the flight dynamics, while the PX4 Autopilot stack represents the functional
layer operating on the UAV.

4.2.2 Communication interface

The communication protocol adopted by the PX4 Autopilot employs micro Object
Request Broker (uORB) messages. These messages are designed to provide a
lightweight and efficient means of inter-process communication in real-time and
embedded systems, particularly for sharing information between different modules,
tasks, and processes in PX4’s architecture. uORB messages follow a publish-subscribe
pattern, where one module publishes data, and other modules can subscribe to receive
that data. This decoupled communication paradigm allows for modularity, as modules
can be developed independently and exchange information seamlessly through uORB.
Within PX4, uORB messages facilitate the exchange of critical information related to
flight control, sensor fusion, navigation, mission planning, telemetry, and various other
aspects of UAV operations. Their structured and reliable communication capabilities
enable the different components of PX4 to collaborate seamlessly, enabling effective
control and navigation of UAVs.

4.3 Executive layer
In the implementation, the entire executive layer is programmed as a single ROS
node. It communicates with the functional layer via several topics provided by the
PX4 Autopilot running in the jMAVSim simulation. On the other side, it provides
several action servers as an interface for the mission manager, composing the Skill
Manager. Moreover, the ROS node represents the monitor module, elaborating the
data coming from the PX4 Autopilot and providing them to the MCM packed in a
single introspection topic. A comprehensive representation of the executive layer ROS
node, called "px4_commander", is provided in figure 4.1.

4.3.1 Functional layer interface

The uORB topics of interest for interfacing the functional layer with the executive layer
are listed below. Topics marked as "in" provide input messages to the functional layer,
while topics identified by "out" contain messages generated by the PX4 Autopilot.

• "/in/vehicle_command" allows external systems or modules, such as ground
control stations or companion computers, to send high-level commands to the
autopilot. These commands can include requests for takeoff, landing, waypoint
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Figure 4.1: Graph showing the ROS messaging structure of the executive layer ROS
node, generated using RQT Graph, a standard tool of the ROS framework.

navigation, loitering, and other mission-related instructions. It is also used
to switch the vehicle between different flight modes, such as manual mode,
altitude control mode or position control mode. The Skill Manager sends
"vehicle_command" messages to execute commands like arm/disarm, takeoff,
land and loiter.

• "/out/vehicle_command_ack" is used to provide feedback and acknowledgements
regarding the execution of high-level commands and instructions sent via the
"vehicle_command" topic. When a command is sent to the autopilot through the
"vehicle_command" topic, the autopilot processes the request and then generates
an acknowledgement message. This acknowledgement indicates whether the
command was received and executed successfully or if there were any issues
during execution. The returned status can include information about successful
execution, errors encountered during execution, or the current state of the vehicle
in response to the command.
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• "/in/offboard_control_mode" allows for the control of the vehicle by an offboard
system. When the autopilot receives specific commands through this topic, it
transitions the vehicle into offboard mode. In the PX4 Autopilot system, this
mode allows external systems, such as companion computers, to take direct
control of the vehicle’s movements. External systems can send commands that
specify the desired vehicle behaviour, such as setting target positions, velocities,
or attitudes. This control paradigm is often used in automation scenarios where
external systems take over control for tasks like precision landing, package
delivery, or inspection missions.

• "/in/trajectory_setpoint" is used to communicate high-level trajectory setpoints
to the flight controller. It works in tandem with the offboard mode to enable
autonomous flight and advanced control of the vehicle. The topic typically
includes information about the desired position, velocity, acceleration, and yaw
(heading) setpoints for the vehicle. These setpoints describe how the vehicle
should move through space over time.

• "/out/vehicle_status" provides a comprehensive snapshot of the vehicle’s op-
erational state, including various modes, armed/disarmed status, safety flags,
and more. These flags can indicate critical conditions or events, such as GPS
glitches, sensor failures, or low battery levels, which may affect the vehicle’s
operation. The topic is essential for fault detection and management. Anomalies
detected in the vehicle’s systems or sensors can trigger safety measures or mode
changes to ensure safe operation.

• "/out/vehicle_attitude" provides real-time data about the vehicle’s orientation
in three-dimensional space. The attitude information is represented using
quaternions.

• "/out/vehicle_local_position" contains data related to the vehicle’s position in
a local reference frame. Local position data is reported in a local coordinate
system, often referred to as the North-East-Down (NED) frame. In this frame,
the initial takeoff position serves as the reference point (0,0,0), and the vehicle’s
position is measured relative to this reference. The position data is usually
reported in meters.

• "/out/vehicle_global_position" contains data related to the vehicle’s position
on the Earth’s surface in a global coordinate system. This means it provides
information about the latitude, longitude, altitude, and other global position-
related parameters. Latitude and longitude are specified in degrees, while
altitude is usually reported in meters above a reference point.

• "/out/vehicle_land_detected" is used to determine if the vehicle has initiated or
detected a landing manoeuvre. It provides information regarding the landing
state of the vehicle. Various conditions can trigger landing detection, including
altitude, velocity, and proximity to the ground. These conditions are typically
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topic name publish rate [hz]
vehicle_land_detected 1
vehicle_attitude 240
vehicle_local_position 123
vehicle_global_position 123
vehicle_status 2
battery_status 99

Table 4.1: Publish rate of the topics provided by the PX4 Autopilot used as the source
of data for the identification of the system’s current state.

defined by the flight controller’s software and may vary depending on the vehicle
configuration.

• "/out/battery_status" provides information about the vehicle’s battery, including
voltage, current, capacity, charge percentage, temperature, and health.

Table 4.1 reports the publish rate of the topic listed above. The topic "/out/ve-
hicle_command_ack" is not reported as it does not provide a continuous stream of
information. The above data must be taken into consideration for the design of the
executive and deliberative layers. As different information is updated at different rates,
the system might need to wait for the information to be refreshed before initiating
specific functions.

To translate uORB topics into ROS topics, it is necessary to run a bridge or a
middleware that supports both UORB and ROS and acts as a translator between the
two. The official documentation of the PX4 Autopilot [40] suggests to use of the
Micro XRCE-DDS (uXRCE-DDS) communications middleware. It is a lightweight
and efficient Data Distribution Service (DDS) implementation designed for resource-
constrained and embedded systems. DDS is a standardized middleware protocol used
for data-centric communication in distributed systems, particularly in the field of
robotics. Like other DDS implementations, uXRCE-DDS is focused on data-centric
communication. It allows devices and applications to publish and subscribe to data
topics, enabling efficient and flexible data exchange. uXRCE-DDS supports various
Quality of Service (QoS) policies that allow developers to specify the reliability,
durability, and other characteristics of data communication. This ensures that data is
delivered according to the desired constraints and requirements.

The uXRCE-DDS middleware consists of a client operating on PX4 and an agent
operating on the companion computer, as depicted in figure 4.2. These two components
run bidirectional data communication, using serial, UDP, TCP, or a custom link for con-
nectivity. The agent serves as a mediator for the client, facilitating the publication and
subscription of topics within the global DDS environment. The client is an integral part
of the PX4 Autopilot software suite and comes pre-installed. Therefore, it is necessary
to only initiate the agent on the companion computer to enable the translation process.
The configuration file "PX4-Autopilot/src/modules/uxrce_dds_client/dds_topics.yaml"
defines which uORB topics generate a corresponding ROS topic. Not all topics are
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Figure 4.2: Schema showing the role of the Micro XRCE-DDS (uXRCE-DDS)
communications middleware in the interfacing between the executive layer and
the functional layer. The figure is inspired by the schema provided in the official
documentation of the PX4 Autopilot [40] covering the PX4-ROS2 integration.

listed in this file by default, it is necessary to add them based on the needs of the
project. Regarding the topics previously listed, "vehicle_command_ack", "vehi-
cle_land_detected" and "battery_status" must be inserted manually.

Once all topics are set up, the executive layer node subscribes to all "out" topics,
while it publishes on all "in" ones, as shown in figure 4.1. Notably, in order to subscribe
to the PX4 Autopilot topics, it is necessary to define a compatible QoS profile.

4.3.2 Mission and contingency manager interface

The Skill Manager provides a set of actions, which the MCM can initiate in order to
carry out the planned steps. Each skill is represented by a ROS action server managed
by the Skill Manager. The action servers created to test the proposed design are
described below.

Land The system lands in the current (𝑋,𝑌 ) position. This is achieved by publishing
a message on the "vehicle_command" topic, specifying "land" as the type of the
command. The system marks the landing as successful once the functional layer
reports on the "vehicle_land_detected" topic that the UAV is on the ground.
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• Goal: none.

• Result: reached altitude, in meters.

• Feedback: current altitude and 𝑍 velocity, in meters and meters per second,
respectively.

Takeoff The UAV takes off in the current (𝑋,𝑌 ) position, varying the altitude by the
amount specified by the goal in meters. For instance, if the current altitude is 3 meters
and the goal specifies 3, the final altitude is 6 meters. To carry out a takeoff task, the
Skill Manager first arms the drone, if necessary. Then, initiates the takeoff procedure
by publishing a message on the "vehicle_command" topic, specifying "takeoff" as the
type of the command and the target altitude. The takeoff action terminates when the
target altitude is reached with a 𝑍 velocity close to zero.

Action definition:

• Goal: differential altitude for takeoff, in meters.

• Result: reached altitude, in meters.

• Feedback: current altitude and 𝑍 velocity, in meters and meters per second,
respectively.

Stop The UAV stops in the current position, initiating a loiter procedure. This
command is also called when an action is cancelled in order to overwrite it. When
this action is requested, the system first checks if the UAV is flying. If the drone
is on the ground, it will keep the current armed/disarmed state. Otherwise, if the
drone is flying, a loiter mode is initiated. This is done by sending a message on the
"vehicle_command" topic specifying the nature of the command (set mode), the main
mode (auto), and the sub-mode (loiter). The system terminates the action and returns
the result once the velocity has reached a value close to zero.

Action definition:

• Goal: none.

• Result: (𝑋,𝑌, 𝑍) position, in meters.

• Feedback: current (𝑋,𝑌, 𝑍) position and velocity, in meters and meters per
second, respectively.

Offboard It commands the UAV to follow a specified position or velocity-controlled
command. In case it receives a position command, the drone will reach the specified
waypoint following a straight trajectory. The command also specifies a velocity
constraint using the velocity goal field. The action terminates once the target position
is reached with a velocity close to zero. Instead, if the velocity is controlled, the
command moves the UAV with the specified velocity and terminates when the timeout
specified in the goal description runs out. Upon termination, the Skill Manager initiates
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a loiter procedure. It is also possible to specify the timeout as infinite. In order to switch
to offboard mode, the PX4 Autopilot expects to receive an "offboard_control_mode"
message with a minimum frequency of 2 Hz as "proof of health" [40] of the companion
board and its connection status. This message also specifies the type of offboard mode,
e.g. position or velocity control. The actual position/velocity command is specified
in a "trajectory_setpoint" message, which needs to be sent only once. In the current
implementation of the planner, only the position control mode is used, hence this skill
is also referred to as "position-control" action.

Action definition:

• Goal: a "mode" field indicates whether the action is a position command (mode
0), or a velocity command (mode 1). Then, the desired position and velocities
are specified, respectively with yaw or yaw rate to vary the drone orientation.
All values are referred to the NED frame, in meters, meters per second, radiants
and radiants per second, respectively. Finally, the timeout is defined in seconds.

• Result: reached (𝑋,𝑌, 𝑍) position and velocity, in meters and meters per second,
respectively.

• Feedback: current (𝑋,𝑌, 𝑍) position and velocity, in meters and meters per
second, respectively.

Finally, the executive layer provides a topic called "introspection" where all
information provided by the functional layer about the system is elaborated and
aggregated. This represents the foundation of the introspection routine run by the
system being the primary source of real-time information about the current status
of the UAV. The monitor node of the MCM tree subscribes to this topic to receive
constant updates about the UAV status. Given the different publishing rates of the
combined topics reported in table 4.1, the rate set for the introspection topic is 100𝐻𝑧.
The chosen value aims to update almost all data consistently, while not overloading
the system with a high number of requests. Notably, "vehicle_attitude" is the only
topic whose publish rate is considerably higher than the chosen value. This is because
the stability control of the drone is not addressed in the MCM, as it is considered a
fundamental functionality provided by the flight controller.

The overall information flow, starting from the MCM until the simulation environ-
ment offered by jMAVSim, is summarized in figure 4.3.
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4.4 Mission Planner
In order to implement the outlined algorithm for the Mission Planner, one key aspect is
a proper definition of the state. As previously stated, it is important to design the state
such that it is descriptive enough to allow proper action selection from the Mission
Planner. For the testing of the proposed solution, current position, flying state, and
received permission are the fundamental information necessary to properly select a
skill among the previously defined actions. Additionally, the current flight mode of
the PX4 Autopilot is included in the state definition to monitor whether the selected
skill is currently being executed. This attribute of the state is particularly used in the
invariants definition. The definition of a goal consists of associating an additional
flag to a state variable. While this last defines the objective, the additional attributes
memorize whether the goal is successful, failed, or is still waiting to be attempted.

The next step is to define the action entity. First, it stores the state it is programmed
to reach to facilitate future replanning. This state is labelled as the "goal state" of the
skill. Second, the action defines two sets of parameters to memorize both the nominal
action and the transition action associated with the planned step. Each set defines the
information necessary to send a proper action request to the Skill Manager, along with
two state definitions. These are used to define the preconditions and the invariants
associated with the skill. Each set also stores an action type, selected among the ones
previously described in section 4.3.2. While the type stored in the set associated with
the nominal action always matches the type of the action object itself, the type saved
in the transition action set may be different. Every action provides three fundamental
functions. The first is called the test function, and it is used to assert whether the
current action is able to reach a given state. For example, if the input state specifies
that the drone is flying, such a state can’t be reached using a land action, while a
takeoff or a position-control skill represents a feasible action. The second method is
"propagate backwards" and takes as input two states: the current skill goal and the
starting state of the system. Given those inputs, the function computes the closest
possible state to the starting one which respects the preconditions and execution of the
skill. For instance, for a land action, the backwards-propagated state is equal to the
goal state, but the flying state switches from "on ground" to "in air" and the altitude
is raised by the default takeoff differential altitude. Instead, for a "position control"
skill, the flying state and the altitude are the same as the goal state while the 𝑋,𝑌

coordinates match the starting point. The last function, addressed as "set parameter",
sets the parameters of the skill to reach the given goal. Internally, it first checks if the
selected skill is feasible to reach the objective state. Then, given the goal, generates
the correct parameters both for the nominal action and the transition action.

The last entity necessary to implement the planner is the plan. The plan object
stores two sequences, one associated with the nominal plan and the other with the
communication plan. The items sharing the same position in the two different
sequences define a plan step. For this reason, the two queues must share the same
length. Moreover, the plan object links to the goal it tries to accomplish, facilitating
the objective progression monitoring. If the plan is emptied during execution, the
goal is marked as successful. Instead, if the planner fails to back-propagate the goal to
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the starting state, the plan is deleted and the objective is set as failed. The goals are
loaded at the startup of the program from a configuration file and saved in the Mission
Planner. Regarding the plan, only the one currently under execution is stored.

CGS

BPS

Area
A

Area
B

I1

I2

(a) First step.

BPS

Area
A

Area
B

I1

CGS

(b) Second step.

BPS

Area
A

Area
B

CGS

(c) Third step.

Figure 4.4: Example of a possible scenario where is necessary to plan several auxiliary
actions for a position-control action taking the drone from point BPS to point CGS.
The red crosses denote the intersection point of the drone trajectory with the border of
the areas.

When the system starts, the Mission Planner loads the configuration file where the
desired goals of the mission are defined. Moreover, this file contains information about
special areas accessible only after requesting and receiving specific permission. When
the MCM send a request to the Mission Planner to create a plan, it communicates
the starting state of the system. Consequently, the Mission Planner first asserts if the
memorized plan is empty. If the check is confirmed, it fetches the first goal in the
memorized queue, marking it as the current goal state (CGS). Otherwise, if the plan
is not empty, the planner interrogates the next step to be executed. This represents
the failed step which needs to be replanned. Thus, the Mission Planner extracts the
goal state of the associated action, marks it as the CGS, and deletes the step. After
the initialization of this state, the planner iterates over all available actions, checking
which of them are feasible using their test function. All feasible actions are then
back-propagated using the proper function and the resulting states are compared using
a "matching score". This score assesses how close are the starting state of the system
and the given one. The action whose back-propagated state (BPS) scores higher is
the one selected as the next step of the plan and the corresponding parameters are
generated using the "set parameter" function.

Afterwards, the Mission Planner assigns the permission to the two states. This is
done by checking if the position specified in them lies inside a special area, adding
the corresponding permission to the state. This procedure is skipped for the BPS if it
matches the starting state. In case, after this step, BPS and CGS differ in assigned
permissions, the routine to plan the auxiliary action starts. Notably, this routine is
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action-dependent and it is planned to be integrated into the action object in future
developments. For land, takeoff and stop actions, the associated auxiliary action is a
stop action during which the missing permissions are requested. Instead, the algorithm
used for position-control skills takes into consideration the single intersections with
the border of the areas, as shown in figure 4.4. After all crossing points are computed,
the one closest to CGS is selected; in the example is the point "I2". Then, the planner
adds a position-control action with I2 as the goal, and a communication request for
the area whose border is crossed; in the example area "B". Lastly, the Mission Planner
marks point I2 as the CGS and iterates the procedure. The algorithm ends when
the path going from BPS to CGS does not cross any area’s border. Notably, in the
implementation of this algorithm, it is not necessary to update the preconditions of
the already planned actions. Indeed, the precondition of the position-control skill does
not evaluate the position attribute of the state. This is because the position-control
action is agnostic of the starting point and needs only the goal point to be executed.

After the necessary communication steps are planned, the Mission Planner marks
the BPS as the new CGS and proceeds to plan the next step for the current goal. The
planning phase is completed successfully when the BPS matches the starting state.
Instead, the goal is marked as failed if, when asserting which action can reach the
CGS, none is found. In this case, the Mission Planner proceeds to select the next
memorized goal. The mission terminates once all goals have been processed.

4.5 Mission and Contingency Manager
The mission manager is composed of several building blocks: the skill nodes,
responsible for sending requests to the Skill Manager, the monitor node, the nodes
checking and resetting the flags, the executor node and the planner node.

The skill nodes all access the same blackboard entry to retrieve the parameters
used to build the request for the Skill Manager. This blackboard variable is sufficient
to define any of the previously defined skills. It contains one integer to represent the
mode of the skill, two sets of three floating-point values to define general parameters,
and one more floating-point variable to indicate a timeout. Every different skill node is
associated with the corresponding action server provided by the Skill Manager. When
first ticked, the node fetches the parameters from the blackboard, composes the request
for the server, and sends it. On subsequent ticks, it receives the acknowledgement
from the server if the request has been accepted and later the feedback from the action
execution. Once the server signals the termination of the action, the positive or negative
outcome is returned to the tree using the corresponding node status success or failure.

The monitor node subscribes to the introspection topic provided by the Skill
Manager. When the node is ticked, it consumes all available callbacks, but it only retains
the last received message. This method ensures the lowest possible computational
load on the node while providing the system with updated data. However, only
the most recent message is considered and processed by the tree node, while any
previous messages are overwritten and effectively discarded. The system mitigates
this drawback by setting a tick period of the behavior tree low enough to match the
publishing rate of the introspection topic. Thus, being the publish rate of the topic
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100𝐻𝑧, the upper bound for the tick period of the tree is 10𝑚𝑠. Precisely, the tick period
is used as a "sleeping" period between two different ticks of the tree. Consequently, the
resulting tick frequency is diminished, but the provided value serves as a suitable first
approximation. After the data has been received, the monitor processes it and raises
the appropriate flags. Flags are saved in the blackboard as arrays of boolean variables.
Check and reset flag nodes are created specifying which flag they can access. This
way, it is possible to modify and expand the raised flags without modifying the ports
of the nodes.

The role of the executor nodes is to generate a subtree to run and monitor skills.
This process occurs when the node is ticked for the first time, switching to the running
state. The executor first reads from the blackboard the specified step to be executed,
containing both the skill and the communication definition. From the skill, it extracts
the skill identifier, the parameters necessary to compose the request, the preconditions
and the invariants. Parameters, preconditions and invariants are separately loaded in
specific blackboard entries and the skill name is used to define the subtree. For this last
step, the executor uses templates defined in separate XML files, shown in listing 1 and
3. The first is used to define a standalone action, the second outlines the sub-branch
used to execute an auxiliary action along with the necessary communications. Notably,
the name of each tag is the node name, the attributes define the ports of the node
and the assigned value is the corresponding blackboard key between curl brackets.
The executor parses the file and substitutes the "ACTION" placeholder with the skill
name. If communications are planned, it further modifies the text by adding the
necessary requests. To facilitate this process, the placeholder "COMMUNICATIONS"
is used. To define single request nodes, the executor parses the layout shown in listing
2 substituting the placeholder "AREA_ID" with the identifier of the permission. In
this case, the port reads a default value rather than accessing a blackboard entry,
which otherwise should be specified between curl brackets in the XML schema. This
allows for the concurrent request of several permissions without creating multiple
blackboard entries. The "permissions" attribute is used to save on the blackboard
the list of received permissions. Notably, for the testing of the system, there is no
expiration rule for the permissions. Thus, once the UAV receives the authorization to
enter an area, such a permit is never lost during the mission.

Lastly, the planner node serves as the interface with the Mission Planner. When
a planning is triggered by the tree, this node sends a request, containing the current
system state, to the Mission Planner. Then, the planner routine is started in a different
thread and the planner node monitors its advancement. This method aligns with
the general design rule for behavior tree nodes to run computationally expensive
algorithms in separate processes in order to preserve the tick frequency of the tree. If
a plan is successfully created, the planner node reads the first planned step, loads it on
the blackboard and returns with a success state. Instead, it returns failure if no plan
has been defined, or running if the planning process is still under execution.
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<BehaviorTree ID="executor">
<Sequence>
<PrecondCheck
state="{state}"
precond="{precond}"
/>
<ReactiveSequence>
<InvCheck
state="{state}"
inv="{inv}"
/>
<ACTION
params="{params}"
state="{state}"
/>
</ReactiveSequence>
</Sequence>
</BehaviorTree>

Listing 1: Template used by the ex-
ecutor to create the subtree to run and
monitor a skill.

<RequestPermission
area_id="AREA_ID"
permissions="{permissions}"
/>

Listing 2: Template used by the ex-
ecutor to create a "request permission"
node.

<BehaviorTree ID="executor">
<Parallel name="execution"
success_count="1"
failure_count="1"
>

<SuccessIsRunning>
<Sequence>
<PrecondCheck
state="{state}"
precond="{precond}"
/>
<ReactiveSequence>
<InvCheck
state="{state}"
inv="{inv}"
/>
<ACTION
params="{params}"
state="{state}"
/>
</ReactiveSequence>
</Sequence>
</SuccessIsRunning>

<Parallel>
COMMUNICATION
</Parallel>

</Parallel>
</BehaviorTree>

Listing 3: Template used by the ex-
ecutor to create the subtree to run and
monitor an auxiliary skill and perform
the necessary communication requests
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5 Results
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Figure 5.1: Representation of the 2D map used to run the tests.

In this section, the results from the simulated tests are discussed. The simulation
environment provided by jMAVSim is extremely simple, consisting of an infinite flat
space. To test the basic functionalities of the MCM, the system defines two square
areas with restrictive permissions, as shown in figure 5.1. The drone is positioned in
coordinates (0,0,0) with respect to the NED reference frame, in meters, by default.
The position is marked in the figure with a blue circle named "START". Also, the
UAV starts in a disarmed state, i.e. it is on the ground, not flying. The Mission Planner
is provided with two goal states. The first is to reach position (0,500,0) in a no-flying
state. This corresponds to the "GOAL" point marked in the figure in orange. This
means that the UAV needs to take off from the starting position, cross the border of both
areas and finally land in the target position. This step is used to test the functionality of
the MP to instruct the necessary communications and the executor’s ability to assemble
the subtree correctly to ask for the necessary permissions. The execution of this goal
is also used as a testbed for the replanning capabilities of the MCM, evaluating if the
planned steps are correctly generated, loaded in the tree and executed, and to assert the
performances of the designed execution-replanning structure. The second goal is the
starting state itself. In this setup, the mission represents a delivery to the goal point
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and the consequent return-to-home instruction. This step is used to test the execution
of multiple objectives and the procedure to correctly terminate the mission.

For the data collection, the ROS log system is used. This is present by default in
all skill nodes, which signal the start and the termination, either successful or not,
of the action. If necessary, key nodes, e.g. the executor node and the planner node,
are equipped with a dummy ROS node to access the logging function it provides.
This allows all nodes to use the same interface, providing a common clock to register
the timestamp of the messages. Thus, log messages are used as the main source of
information to elaborate the performance of the system.

The system on which the simulation is running is a desktop computer equipped
with 16 GB of RAM and an Intel i7-6700 CPU working with a clock frequency of
3.40 GHz. The installed OS is Windows 10 Enterprise, and the simulation runs on a
Windows Subsystem for Linux (WSL), version 2. The installed Linux distribution is
Ubuntu 20.04, the recommended version to run ROS2 Foxy. Every test is executed
with three different values for the behavior tree’s tick period: 10, 5 and 1 milliseconds.
This asserts that the switching mechanic between branches is not influenced by this
parameter.

The tests aim to inspect two different aspects. The first is the mission execution
speed of the tree, analysed by measuring the interval between the end of the execution
of a skill, or its interruption, and the start of the next action. For this purpose, the
timestamps published by the executor logs are used. The second aspect is the reactivity
of the system in response to contingency situations. It is measured as the delay between
the signalling of the contingency case and the start of the associated response action.

5.1 Mission execution performances
In order to test the switch between the execution and planning branches, the request
from the UAV to enter a specific area is either denied or not answered. This way, the
"request permission" node fails and triggers the replanning routine. Notably, during
the simulation events are triggered randomly, thus they differ between different runs.
This experiment wants to examine if the proposed structure works as expected and
what is its impact on the performances of the tree. Samples register the time delay
between the success or halt of one executor and the start of the next one.

Data is sorted into three different classes:

• Nominal-to-Nominal transitions (N2N): This represents the transition interval
between the completion of a step and the start of the next one. It measures the
performance of the adopted design choice of executing single actions instead of
creating a unique tree for the whole plan.

• Nominal-to-Trans transitions (N2T): This value measures the delay between
the nominal action failure and the start of the transition action. The interval
represents the reactivity of the system to switch from the execution branch to
the planning branch.
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Transition type reported value
tick period

10 ms 5 ms 1 ms

N2N

max [s] 0,0823 0,0878 0,0824

min [s] 0,0493 0,0472 0,0435

avg [s] 0,0648 0,0693 0,0625

std dev [s] 0,0114 0,0121 0,0119

N2T

max [s] 0,0557 0,0680 0,0682

min [s] 0,0204 0,0302 0,0249

avg [s] 0,0422 0,0506 0,0523

std dev [s] 0,0080 0,0079 0,0108

T2N

max [s] 0,1208 0,1103 0,1043

min [s] 0,0317 0,0359 0,0316

avg [s] 0,0714 0,0791 0,0797

std dev [s] 0,0258 0,0185 0,0232

Table 5.1: Elaborated data reporting the time duration of the transitions between
execution and planning branch, or between two consecutive steps of the plan.

• Trans-to-Nominal (T2N): The final case occurs when a plan has been successfully
generated and its execution starts. This value is also related to the same
performance inspected in the first case. Indeed, the generation of a subtree for
single planned steps is expected to result faster than the creation time of a whole
tree. Even if the latter case is not tested, the computed interval is considered a
key performance indicator (KPI) of the system.

For each class of data, the number of collected samples is between fifteen and
thirty, depending on the frequency of occurrence of each transition. For example,
the N2N transition is the one occurring less frequently, given that the generated plan
consists of a limited number of steps. Table 5.1 reports the maximum value (max),
minimum value (min), average (avg) and standard deviation (std dev) for each class of
samples. All values are reported in seconds.

Firstly, the system behaves as expected. It correctly switches between planning
and execution behaviors, it is capable of processing multiple goals and terminating the
mission properly. As expected, the average values across all types of transitions reveal
that a higher tick rate does not lead to reduced transition times. Indeed, transitions
from the execution branch to the planning branch and vice versa occur in a single tick
loop, without any state being completely propagated upward to the root node.

However, in order to properly analyze these data, an important aspect to consider is
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Transition type reported value
tick period

10 ms 5 ms 1 ms

P2P

max [s] 0,1208 0,1103 0,1036

min [s] 0,0395 0,0399 0,0481

avg [s] 0,0658 0,0697 0,0724

std dev [s] 0,0219 0,0195 0,0187

P2O

max [s] 0,0812 0,0878 0,0824

min [s] 0,0317 0,0472 0,0435

avg [s] 0,0574 0,0735 0,0611

std dev [s] 0,0175 0,0165 0,0133

O2P

max [s] 0,0545 0,0699 0,0650

min [s] 0,0493 0,0489 0,0498

avg [s] 0,0529 0,0555 0,0560

std dev [s] 0,0021 0,0085 0,0050

O2O

max [s] 0,0504 0,0560 0,0630

min [s] 0,0204 0,0302 0,0249

avg [s] 0,0359 0,0430 0,0377

std dev [s] 0,0083 0,0090 0,0109

Table 5.2: Elaborated data reporting the time duration of the transitions considering
the type of actions.

the type of actions involved in the transition. Indeed, in a second analysis, the data has
been parsed differently by focusing on the type of actions composing the transition.
The intuition is that the skill type was also impacting the transition delay. Particularly,
given the mission setup, a "position-control" action results more complex than the
others, because it is the only skill during which permission requests are sent. For this
reason, data are clustered as follows: transition from a "position-control" action to
another "position-control" action (P2P), transition from a "position-control" skill to a
different one (P2O), identified as "other" action, transition from an "other" action to
a "position-control" action (O2P) and transition from an "other" action to a another
action from the same family (O2O). Results are reported similarly as before in table
5.2.

The data indicates that transitions involving "position-control" skills generally
exhibit longer duration compared to other types. This extended duration can be
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attributed to two main factors: the complexity of the subtree associated with steps
requiring communication, and the time-consuming nature of the "halting" procedure.
The latter involves recursively calling a function to interrupt all nodes in a branch and
is particularly impactful when a transition occurs, interrupting the existing branch.
Additionally, the creation of a more complex subtree itself takes longer, contributing
to the overall duration. A review of table 5.1 supports this observation, revealing that
"T2N" transitions have longer durations than "N2T" transitions. This is likely because
the planning branch, consisting of five nodes, is more complex than the execution
branch, which has only three nodes. Given that these branches are static, their inherent
complexity becomes more significant when a transition triggers the "halting" pro-
cedure. Moreover, transitions from planning to execution are more time-consuming
than the reverse because only during the execution phase communication nodes are
instantiated. This process includes the construction of the associated ROS nodes,
which by default assert if the associated ROS server is available. This process results
in extra waiting time for the response from the server, increasing the duration of the
transition.

In conclusion, this analysis offers a detailed examination of transition performance
metrics within the UAV system, categorizing them into distinct types and scrutinizing
the influence of action complexity. The empirical data suggests that the nature of the
action involved in the transition, specifically "position-control" actions, exerts a notable
impact on transition duration. This is ascribed to the complexity of the corresponding
subtree and the requisite "halting" procedures. These insights contribute to a more
refined understanding of system performance, underscoring the necessity for targeted
optimization strategies, particularly in contexts necessitating swift transitions between
planning and execution branches. From these findings, it can also be predicted the
performances achieved by adopting the opposite design choice, hence building a
behaviour tree representing the entire plan. In this case, the resulting complexity would
be several orders higher than the subtree representing a single action. The positive
result would be improving considerably the execution of the plan under nominal
conditions. Indeed, the system would not need to retrieve the next action and generate a
new subtree to execute it. The negative outcome resides in the impact on the transition
time between planning and execution, where the halting and creation processes would
need to manage a considerably bigger tree. When selecting the design choice for a
specific case, two main aspects must be taken into consideration. First is how often
could a replanning phase be triggered, a situation that depends on the type of mission
and the environment in which the operations are conducted. Second is in which case
higher performances are preferred, and the desired trade-off between the two cases.
Addressing the problem of system safety, it is advisable to focus on a higher reactivity
in case an action fails, rather than obtaining a faster execution of the mission. An
example is the case where a path-following skill deviates from the given path over a
desired threshold. In this case, the failure of the action may also result in a hazardous
state of the system, and the switch to the transition action should be prioritized. An
important aspect to consider is that the halting procedure occurs also when the system
needs to switch to the contingency branch, hence adopting a complex structure for the
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plan execution would also deteriorate the reactivity performances of the contingency
management system. Under these circumstances, it is preferable to adopt the design
proposed in this study.

5.2 Contingency management performances

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Contingency
management root

(a) Flag structure used in the first test case.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Contingency
management root

group 0 group 1 group 2 group 3

(b) Flag structure used in the second test case.

Figure 5.2: Flag structures used in the two different test cases used to analyse the
performances of the contingency management branch.

This test evaluates the reactivity performances of the proposed behaviour tree
design. In particular, it serves as a KPI to assert how the behaviour tree performs
with respect to FSMs. Even if data regarding the performances of the counterpart
are not available, this test wants to analyze the reactive time concerning other system
characteristics, such as the number of possible single contingency cases. Moreover,
this test wants to explore possible strategies to achieve a higher reactivity of the system,
e.g. by segmenting the contingency actions into subgroups.
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To address these questions, two cases are explored. In both scenarios, sixteen
different flags are used, numbered from zero to fifteen to represent their position
in the array where they are stored in the blackboard. In the first case, all flags are
positioned at the same level below the main contingency management node. In the
second case, the sixteen flags are partitioned into four groups, numbered from zero to
three representing the array position of the corresponding auxiliary flag memorized in
the blackboard. The two hierarchies are reported in figure 5.2.

To inject errors inside the tree, a dedicated ROS node has been created. It provides
a service to prompt the flags to rise and publish them on a topic to which the monitor
node subscribes. The flags are up only during one publication, after which they are
immediately reset. This is sufficient given that the monitor processes the message
from the topic and updates the flag array stored in the blackboard, but never reset the
flags afterwards. The objectives of the mission are not changed, but the presence of the
areas is ignored for easier testing. The action associated with each flag is a stop skill.
The time interval used to represent the reactivity of the tree starts when the monitor
processes the message containing the flags up and finishes when the contingency
action is triggered. The results of the tests are reported in figures 5.3, 5.4 and 5.5.
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Figure 5.3: Test results of the reactivity of the system to contingent events, using a
tick period of the tree equal to 10𝑚𝑠.
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Figure 5.4: Test results of the reactivity of the system to contingent events, using a
tick period of the tree equal to 5𝑚𝑠.
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Figure 5.5: Test results of the reactivity of the system to contingent events, using a
tick period of the tree equal to 1𝑚𝑠.
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Tick
period [ms]

Average reactivity [s]

sequence nested

1 0.00062 0.00039

5 0.00060 0.00051

10 0.00067 0.00051

Table 5.3: Average time of reaction of the system to contingent events using sixteen
different triggers.

During these tests, the architecture correctly executed the contingency actions,
regenerated a plan starting from the new resulting state, and proceeded with fulfilling
the given goals by carrying out the planned steps. As expected, the reactivity of the
system is not impacted by the tick period of the tree, as the average reactivity time,
reported in table 5.3, does not present any relation with the used tick period. As
expected, fallback and sequence nodes, governing the switching between different
branches, do not back-propagate the returned state of the children at each tick if it
results in a terminal state. Instead, they proceed with the execution of their tick rule.
This means that the tick period applied to the tree influences only the waiting time
triggered when the root node is fed back with a running state. Thus, the tick period
influences the frequency at which the monitor node is executed, hence the refresh
rate of the flags triggering the contingency action. However, the "BehaviorTree.CPP"
library provides "wakeup" methods to initiate the ticking process on the occurrence of
specific events, representing an efficient solution to mitigate this problem. Regarding
the two different proposed structures to manage the triggering of contingency actions,
it can be observed from table 5.3 that the nested architecture shows always an average
response time lower than having all flag checks at the same level. Hence, proper
structuring of the contingency management branch can lead to better performance of
the system.

In conclusion, the observed delay in the response of the system is due to the
execution of the internal mechanism of the control nodes. The average response time
is always lower than one millisecond, hence the system presents high reactivity to
hazardous situations. The maximum registered delay in the response is 0.0013𝑠. The
value is probably not comparable to the capabilities of FSMs, where the interval
between the switching from one state to another is expected to be a low constant,
comparable to a function call operation. However, if we consider the performances of
other systems operating onboard the UAV, one milliseconds represent an acceptable
value. For example, flight controllers provided by PX4 have a nominal operating
frequency of 50 Hz, which can be raised to a maximum of 200 Hz. Finally, it must
be considered that presented data are collected from a simulation environment, thus
reaction intervals may vary depending on the machine running the simulation and may
differ during an actual flight test.
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6 Conclusions
This thesis is centred on the development and evaluation of a novel onboard mission
and contingency management system for Unmanned Aerial Vehicles, with a particular
emphasis on the use of behavior trees. The objective is twofold. First, the thesis
aims to test the feasibility of behavior trees for UAV control by creating a robust,
modular, and autonomous system capable of effectively navigating complex and
dynamic environments, such as those encountered in off-shore wind farm maintenance.
Second, it seeks to assess the performance of behavior trees in this specific context,
offering a quantitative analysis of their efficiency through key performance indicators.

The research addresses several critical questions, including how to design an
autonomous system that is both safe and efficient, how to manage contingencies
effectively, and how to plan and execute concurrent actions. An additional contribution
of this work is its quantitative analysis of the performance of behavior trees, filling
a gap in existing academic literature. The evaluation of these KPIs also allows for
a comparison of the proposed design, based on behavior trees, with applications
adopting a different modelling formalism, e.g. FSMs. This comparative analysis is
crucial for substantiating the advantages and potential limitations of using behavior
trees for UAV mission and contingency management.

The design choices made in the thesis are carefully aligned with the addressed
problems underlined before. The architecture of the proposed system is divided into
several components, including a Skill Manager, a Mission planner, and a Mission and
Contingency Manager. Each of these components serves a specific purpose and is
designed to contribute to the overall robustness and flexibility of the system. The Skill
Manager is designed for modularity, allowing for the easy addition or modification
of skills. The Mission Planner endows deliberation by planning missions based on
real-time data and user inputs. The Mission and Contingency Manager, which is
the core of the system, employs behavior trees to manage both regular mission tasks
and contingencies. This choice leverages the proven efficiency of behavior trees in
managing complex behaviours in a modular and robust manner.

One limitation of the proposed approach resides in the static design of the
contingency management system. Even if underlined as an important constraint to
ensure high reactivity, it also constitutes a limitation in the design phase. Indeed, it is
necessary to cover all faulty situations the UAV can encounter, otherwise the system
will face immediate mission failure. This concept goes under the term "brittleness of
autonomy", which refers to the limitations or vulnerabilities in an autonomous system
that can cause it to fail or behave unpredictably when it encounters situations that it
was not specifically designed to handle.

The results of the study offer valuable insights into the efficiency and effectiveness
of the proposed system. A quantitative analysis of key performance indicators shows
that behavior trees are an efficient design choice for this application. The study
regarding mission execution performances led to the conclusion that the complexity of
the behavior tree is one of the major factors negatively affecting its effectiveness. Fur-
thermore, by evaluating the responsiveness of the tree in reacting to unforeseen events,
this thesis demonstrates that the system can operate safely in complex environments
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and manage contingencies effectively. Moreover, the quantitative analysis validates
the design choices made, confirming that behavior trees are effective in this context.

In summary, the thesis contributes to the current academic research by not only
introducing a novel tree design tailored for UAV mission and contingency management,
but also by offering a quantitative analysis of the performance of behavior trees in this
specific application. This research holds the potential to impact not just the specialized
domain of offshore wind farm maintenance, but also a diverse range of other fields
where the deployment of UAVs could offer substantial benefits.

The current work provides a proof-of-concept of the design, thus further testing
on a more complex system is necessary. Moreover, it would be interesting to test
the modular capabilities of the system, embedding more complex monitoring and
planning modules and extending the existing architecture.
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