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Abstract
Log analysis is a crucial aspect of maintaining and improving the performance,
security, and reliability of modern computer systems. The increasing complexity of
these systems along with the exponential growth of log data has driven the need for
the development of more advanced techniques for understanding and analyzing logs.
In this project, we propose a log management infrastructure with Elastic Stack for
statistical analysis equipped with visualization features and natural language processing
(NLP) based approaches for the process of log analysis and anomaly detection. We
build upon a classification model with 4 different classes on a small sampled dataset
to develop a proof-of-concept (POC) to validate that the proposed solution aligns with
the problem statement. We then scale up the solution to the full dataset to develop
anomaly detection in real-world syslog data generated in industrial settings. This
enables faster and more effective decision-making which in turn frees the human
workforce from the manual repetitive process of log inspection. First, raw textual and
unstructured logs in various formats and from different sources such as Continuous
Integration/Continuous Deployment (CI/CD) servers, ambulatory monitoring devices,
and automated test builds are collected. Then, the obtained logs are preprocessed to
clean, normalize, and tokenize into tokens. The tokenization is carried out using word
and sub-word tokenization techniques to obtain word and sub-word tokens respectively.
The tokens are then converted into meaningful numerical representations using static
and contextual word embedding algorithms such as Word2Vec, BERT, and DistilBERT
pretrained models to generate word embeddings. The word embeddings are thus fed
into neural networks for the classification of log lines into designated labels. The
experiments performed with the combination of DistilBERT embedding model and
LSTM classifier network for logs generated from patient monitoring devices achieved
an accuracy of 0.99 with macro-averaged precision of 0.96, recall of 0.93 and F1-score
of 0.94 in a multi-label classification. The results showed promising signs towards the
automation of log analysis of syslogs generated from test-builds and patient monitoring
systems.

Keywords Log Analysis , Anomaly Detection , Elastic Stack , Word Embeddings ,
Machine Learning, Natural Language Processing
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1 Introduction
Logs are a diagnostic resource to record runtime information about processes, including
critical events executed within software systems. These logs help developers and
product owners to understand system behaviour, monitor system health, and resolve
various problems and anomalies that already exist or that could potentially arise in
the systems. With the increase in complexity and ever-growing scale of systems,
the volume of generated logs has been growing exponentially [1]. This explosive
growth in logs has resulted in a corresponding exponential rise in anomaly cases. This
scenario underscores the urgent need for effective log management solutions along
with effective log analysis and log anomaly detection in the industrial landscape.

The process of log management and analysis includes the practice of continuously
gathering, storing, processing, synthesizing, and analyzing log data and its distribution
collected from disparate sources. This helps to optimize system performance, identify
technical issues, better manage resources, strengthen security, and improve compliance.
Historically, log analysis has been conducted by software developers, testers, or system
administrators by manually reviewing the log lines of individual log files. This manual
analysis involves simple keyword searches such as "failed", "error", "exception" or
some rule-based methods to locate suspicious logs that might be associated with
system problems. However, as the volume of logs is growing exponentially, manual
approaches are inefficient in terms of time and resources. Moreover, simple keyword
searches are susceptible to errors, so they cannot completely grasp the sequence of
events that leads to an anomalous log event.

This thesis mainly focuses on the syslogs generated from patient monitoring
systems in GE (General Electric) Healthcare. Currently, these logs are analysed
manually in the company with keyword searches and rule-based filters which is
tiresome and inefficient. Thus, there is a need for a better solution for the process
of log analysis and anomaly detection in the company. With the recent advances in
machine learning and natural language processing (NLP), the nature of log analysis
has shifted towards data-driven approaches. However, treating logs as natural language
has its own challenges because of the semi-structured or unstructured nature of log
data generated in large volumes. Logging statements have a significant proportion of
high-cardinality fields which adds complexity to the application of NLP techniques to
log data. High-cardinality field refers to the unique field or data such as timestamps
and Internet Protocol (IP) address. Despite the challenges, many studies have been
conducted to investigate the benefits of recent NLP techniques with machine learning
to improve the results of detecting anomalies in logs [2, 3, 4, 5]. This thesis expands
on previous studies on log anomaly detection by applying machine learning and NLP
techniques to real-world log data in an industrial context.

1.1 Objective and Research Goals
The objective of this thesis is twofold: 1) To design and implement a log management
system using the Elastic Stack for exploratory data analysis, and 2) To employ machine
learning and natural language processing techniques to analyze and detect anomalous
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log events. Based on these objectives, the thesis aims to answer the following research
questions:

RQ1 How can a log management tool be configured to aggregate logs from multiple
sources into a central analytics engine for visualizing numerical insights of the
log data?

RQ2 How can the logs be preprocessed such that meaningful information can be
extracted by removing high-cardinality fields in log data?

RQ3 What kinds of word embedding models can be used for effective representation
of log data? How can these word embeddings derived from log data be leveraged
for downstream tasks of log analysis and anomaly detection?

RQ4 What kinds of machine learning classifiers are effective for log anomaly detection
which are robust to real-world log data generated from ambulatory monitoring,
test builds, and clinical devices?

RQ5 As large language models based on neural networks are computation-hungry and
demand large computational resources, how can a trained model be deployed in
a resource-constrained environment?

To achieve the objectives of this research, an exploratory data analysis tool was
developed using the Elastic Stack. This helped to obtain numerical insights of log
data in large volumes before applying machine learning solutions to the problem.
Following this, NLP techniques for the analysis of logs and anomaly detection were
implemented. Various word embedding techniques were explored to convert text in
log files into numerical representations, and subsequently, machine learning classifiers
were applied. To support this process, a dataset was prepared involving the labeling of
logs into several distinct classes. This comprehensive approach ensured a robust and
systematic analysis of the log data leading to the effective log analysis and anomaly
detection in log files.

1.2 Structure of the Thesis
This thesis is organised and structured into 7 chapters. Chapter 2 presents the overview
of the log management system which is composed of Elastic stack, which serves as
an exploratory data analysis tool. Chapter 3 presents the overview of the theoretical
details of tokenization and word embedding techniques implemented in this research.
Chapter 4 walks through the theoretical concepts of machine learning algorithms
used in the area of NLP along with insights on model deployment. Chapter 5 gives
the implementation and experimental details of generating word embeddings and
implementing machine learning classifiers for the purpose of anomaly detection.
All experimental results conducted in this thesis, along with their evaluations, are
presented in Chapter 6. The findings of the thesis are summarised and concluded in
Chapter 7.
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2 Log Management and Exploratory Data Analysis
This chapter provides a theoretical overview of logs, supplemented by examples
from logs generated in GE Healthcare. It describes the different formats of logging
statements practiced in the company. It provides a high-level overview of a log
management tool, Elastic Stack and its components, Elasticsearch and Kibana. The
log shipping and processing tool, Elastic Agent is also described in this chapter.

System logs and their structures and the logging platform in GE Healthcare are
presented in Section 2.1.1. Section 2.2 covers the log management tools and current
approaches about log management platforms in the industry. Elastic Stack is broadly
covered in this chapter along with shipping tools and mechanisms. Section 2.2.1 gives
an overview of Elasticsearch and gives a detailed description of implementation steps.
Section 2.2.2 discusses a visualization tool "Kibana" along with the implementation
details. Section 2.2.3 gives in-depth information about Elastic Agent along with its
implementation details. Within this section, the mechanisms by which Elastic Agent
collects data from various sources and processes for transforming data prior to its
indexing into Elasticsearch are explained. Section 2.4 presents how Elastic Stack with
its search and analytical features helps to explore the data and its distribution prior to
the application of machine learning algorithms.

2.1 System Log and Structure
Log data is a chronological sequence of single or multi-line events generated by software
systems to permanently capture specific system states, and run-time information for
diagnostic analysis in the events of certain failures or unexpected incidents [5]. Log
data is generally text data stored in files with detailed run-time information about the
system. Log data ranges from structured vectors (comma-separated values) over semi-
structured objects (key-value pairs) to unstructured human-readable messages with
heterogeneous event types. Generally, any well-established software or an operating
system service writes sufficient log data, but a team of software engineers developing
new software has to take into account that logging does not come automatically and
could be executed in many different ways. General understanding while writing log
statements is mixing different formats should be avoided and writing unstructured
logs is discouraged as it makes the debugging unnecessarily complex and inefficient.

Generally, log data is generated in a sequential order in the form of log lines and
each single line, commonly known as log message is a result of print statements
placed as a form of logging statement in a source code. These print statements are
also called logging statements placed purposefully by software developers throughout
their code-base to support understanding of program activities and debugging. These
print statements consist of static parts i.e. hard-coded strings and variable parts i.e.
parameters that are dynamically determined during run-time. The single log line gives
information about the system at one particular point in time as surrounding logs in
the group give a dynamic workflow of the underlying program logic. Although there
is no standard format for placing logging statements, each log message is at least
expected to have some common information, such as timestamp, device name where it
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is generated, log label, and a free text message with information about the system.
However, in practice, software developers sometimes knowingly or unknowingly
implement logging systems in a free-style format according to their convenience
without any common parts. Also, these print statements could change a lot when
the source code is updated and sometimes totally new kinds of log entries are added
when the software is updated. Although log messages are typically contained in a
single line in text format, it is also possible that log messages span multiple lines
and are represented in other formats such as Extensible Markup Language (XML) or
JavaScript Object Notation (JSON) [6].

These kinds of log data are stored as files on a disk. This approach allows to
appending of new messages at the end of the file resulting in a file containing log
messages in chronological order. There are also other methods of saving these log
data such as storing them in a database or transmitting it directly into a log collector
solution that could be part of a central log management system. Software logs are
especially useful in debugging while the software is still under development and for
troubleshooting when the software is actively used [6]. System administrators are
one of the heaviest log file users as logs can be used to monitor system health and
detect undesired behaviour. Log data can also be used for many other purposes such
as profiling and benchmarking the software, and it can provide various possibilities
such as user behaviour analysis.

With the increase in software complexity, the amount of generated log data has
seen an unprecedented level. The amount of logs generated each hour has surpassed
tens of gigabytes in volume spanning 100s of millions of lines in large corporations.
This is where an effective log management system and automated log analysis become
a necessity.

2.1.1 Syslogs in GE Healthcare

This section presents the type of syslogs generated in GE Healthcare which are the
main source of data used in this research work. This section describes the log sources
in GE Healthcare, the formats that are commonly practiced during logging statements,
and protocols used in saving those log lines into a logging system. This section also
presents different examples of log data generated across different systems.

Figure 1 shows the example of a log message that follows the standard syslog format
used in GE Healthcare generated by the system during nightly tests built in wearable
devices. This log message is built on a format where ’<135>’ is facility+priority,
’1’ is a version, ’2022-11-18T10 :06:59.115439+00:00’ is timestamp, ’qemux86’ is
hostname, ’axone_comm’ is application name, ’765’ is process id and rest of the text
is a free text message. The hostname ’qemux86’ here is a virtual hub from where this
syslog was generated and this plays an important role in the analysis process. The use
of the field ’facility+priority’ is not always prevalent across all syslogs and those kinds
of syslogs are documented as we walk through the examples.
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<135>1 2022−11−18T10:06:59.115439+00:00 qemux86 axone_comm 765 − −
0 | main |337 | P a t i e n t R e g i s t r y I p c . cpp : 8 2 | [ P a t i e n t R e g i s t r y I p c ] Pa t i en t

r e g i s t r y changed : { " Pat ientAss ignmentState " : NOT_ASSIGNED, "
Pa t i en t " : , " source " : AXONE }

Figure 1: Example of syslog generated during nightly test build

Figure 2 shows three syslog messages typically in the same format as in the above
example in Figure 1. In the examples, we can see hostname as ’44-4b-5d-00-01-99’
which is a physical hub device. The log messages are generated in a chronological
sequence in a log file. We can see some errors in the example log lines which are
interesting regions in log analysis both manual inspection and automated anomaly
detection using machine learning. The log examples presented show the abundance
prevalence of inconsistent use of whitespaces and special characters.

<134>1 2022−11−22T01:12:45.118006+02:00 44−4b−5d−00−01−99
axone_logger 2278 − − 1669072365.111 ( 5 ) axone_logger
[2278/1968621488] <L> 0 | main | 1 9 | Main . cpp :334 | E x i t i n g

<131>1 2022−11−22T01:12:48.047901+02:00 44−4b−5d−00−01−99 axone_comm
2274 − − 0|1960809376|11| RegistryDataAccessor . cpp : 3 3 |

ge tReg is t r yDa taL i s t f a i l u r e : E r ro r r e t u r n : Query t imed out .
P a r t i a l r e s u l t s may s t i l l be a v a i l a b l e .

<131>1 2022−11−22T01:12:48.048607+02:00 44−4b−5d−00−01−99 axone_comm
2274 − − (ERROR) axone_comm[2274/1960809376] <L>

0|1960809376|11| RegistryDataAccessor . cpp : 3 3 | ge tReg i s t r yDa taL i s t
f a i l u r e : E r ro r r e t u r n : Query t imed out . P a r t i a l r e s u l t s may s t i l l
be a v a i l a b l e .

Figure 2: Example of syslog generated from Hub

Figure 3 shows another example of a log message that is generated by the patient
monitoring system. The host-name "DESKTOP-0TVE4F" is a viewer platform. In
the log message presented in Figure 3, log level "WARN" is present giving a clear
indication of something happening within the system or patient enrolled with the
system. This label is important to diagnose the system during the inspection process.
It can be noticed that ’facility+priority’ and ’version’ are not included in this log
format and the rest of the log message follows a similar format as in examples shown
in Figure 1 and 2.
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"2023−04−10T19 :48:40.232+0000" , "5632" , "5632" , "WARN" , "DESKTOP−I0TVE4F
" , "744 d9ad9−727c−4cb9−8d9c−6545d9522c32 " , " " , " S o l a r f l a r e
[27820 :113 ] " , "com. ge . hc . l c s . axone . s o l a r f l a r e . source . a . a : 23 4 " , "
General " , " umfnum sample l o s t : SampleLostStatus [ t o t a l _ c o u n t =7685 ,
tota l_count_change =30 , las t_ reason=LOST_BY_WRITER ] "

Figure 3: Example of syslog generated from patient monitoring viewer platform

With the introduction of log levels, it is important to know the types of log levels
that are used in logging statements practiced in the company. The message field in
the logging statements "level" is restricted to 8 types, namely ’CRITICAL’, ERROR,
WARNING, NOTICE, INFO, DEBUG, TRACE. Here, we give a brief glossary of
the log levels typically exercised in logging statements by software developers in GE
Healthcare.

CRITICAL: Indicates an anomalous condition from which a service or application
cannot recover. For example, a non-recoverable error causes the service or application
to stop working.

ERROR: Indicates anomalous condition in which a specific function of a service
or application cannot recover. For example, failure to read configuration settings;
however, default settings can be used.

WARNING: Indicates a potential condition, however, it does not cause the service or
application to stop functioning. For example, a loss of expected network packets a
loss of connectivity, or a docker container unexpectedly restarted.

NOTICE: Indicates a normal condition but significant condition. For example, a
persistent storage is 90 percent storage full, or the Network Time Protocol (NTP)
configuration was changed.

DEBUG : Useful for developer-related info. A log message at this level tends to be
useful only to software developers for debugging. Its use is discouraged in production
environments and should be turned off by default.

INFO: Indicates a normal event or condition that does not require intervention and is
not anomalous. For example- logging of performance Metrics.

TRACE: Useful for developer-related info, including high resolution and potentially
high overhead traces. A log message at this level tends to be useful only to software
developers for debugging. When possible, production software is built with the
TRACE level compiled out (language-dependent feature). Trace should not be enabled
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in a production environment.

Figure 4 shows the snippet of another log message. This log is generated from
the hospital bed where the patient is assigned to devices with respiration and pulse
oximetry. It can be seen that the protocols and association state machines in the
log example. Protocol "R" means the respiration sensor and "Association state":
"ASSOCIATED_NO_BATTERY" means the respiration sensor has lost connection
to the battery. As we can see this log message also does not include the field
’facility+priority’ but all other format remains the same as in previous examples. The
length of this message is comparatively longer than that of regular log messages.

2022−10−15T15:28:03.159+0000 44−4b−5d−01−04−89 data 586
Associat ionManager . cpp 807 Sensor s ta te changed : { " Assoc ia t ion key
" : "0 x444b5dff01000f58 " , " Pa i r i ng key " : "0 xfe043895cae56480 " , "
Connection key " : "0 xe2 " , " C l i e n t address " : "0 xe2 " , " i s A l i v e " : " 1 " ,

" Overtaken " : " 0 " , " Nodes " : [ { " Address " : "0 x26 " , " Bandwidth " : 3 , "
C a p a b i l i t i e s " : [ { " Pro toco l " : "A" , " Version " : " 0 " , " Parameters " :
" " } , { " P ro toco l " : " b " , " Version " : " 0 " , " Parameters " : "0
x3cef0a640fed014a013c014c013df f f f06bc0007071800f f f3 f f f f f f f f00005c0000
" } ] , "Sw vers ion " : " : tsb : mPuck : v1 .0 .4 .1 .1 .1 −1183.1 .207 e f f f a . master
. re lease " } , { " Address " : "0 x27 " , " Bandwidth " : 8 , " C a p a b i l i t i e s " :
[ { " P ro toco l " : "R" , " Version " : " 0 " , " Parameters " : "0 x0101 " } ] , "Sw
vers ion " : " : tse :mResp : v1 .0 .4 .1 .1 .2 −1068.1 .68181520. master . re lease
" } ] , " Assoc ia t ion s ta te " : "ASSOCIATED_NO_BATTERY"

Figure 4: Syslog example generated from ambulatory monitoring sensor platform in
hospital settings
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2.2 Elastic Stack
Elastic Stack is best described as a stack consisting of a group of four product projects
from Elastic, namely, Elastisearch, Logstash, Kibana, and Beats. It was formerly called
ELK stack, consisting of only three sets of components - Elasticsearch, Kibana, and
Logstash. After the addition of the fourth component, Beats, the ELK stack evolved
into a complete stack, making it an Elastic Stack. All the components of the Elastic
Stack are designed to work together, enabling users to securely take data from any
source, in any format, and then search, analyse, and visualise it [7]. Elastic, as a
company develops and maintains tools and shares many similarities for configuration
of directory layouts with their own configuration represented in ".yml" files. Although
these components are often used together, each component can be used independently
or integrated with other systems depending on the specific requirements of a project.
Moreover, learning one component of the Elastic Stack makes it easier to learn other
components as they share commonalities in design philosophy, terminologies and
technical workflow.

Elastic Stack was used as a tool for exploratory data analysis in this research. By
executing a variety of search operations using Kibana Query Language (KQL), we
were able to obtain the statistical distribution and numerical insights of log data. This
also acted as a centralised logging system as logs from different sources were dumped
into a central unit, Elastic Stack. This was used as a complementary tool before the
application of machine learning for log analysis. This process was vital in gaining a
deeper understanding of the data and its underlying statistical features.

As there were multiple sources of syslogs in the company, it was necessary to
build custom log shippers to Elasticsearch which could integrate multiple sources.
Elastic Agent with custom log integration was used as a data shipper to ingest data to
Elasticsearch. The analytics performed with Elasticsearch were visualized in Kibana
in a browser. It was discovered that the Elastic Stack can serve as an effective log
management tool where logs can be analysed as a central logging unit. This section
gives detailed information about Elasticsearch and Kibana along with Elastic Agent
as these components are extensively used in this project. Moreover, this chapter
also presents the implementation details and configuration settings of components
used in Elastic Stack. This section presented detailed information involving the
implementation details and challenges that arose during the process. This section also
gives insights on target log data along with parsing and indexing into Elasticsearch.
The section follows the development process from the initial plan to the deployment
of Elastic Stack in a sequential order. The system design of Elastic Stack is shown in
Figure 5.
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Figure 5: Design framework of the implemented Elastic Stack for log management
and exploratory data analysis
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2.2.1 Elasticsearch

Elasticsearch is a distributed search and analytical engine that is built on Lucene,
an open-source full-text search library. It was first released in 2010 and has been
the core component of the Elastic Stack. It was operated as an open-source project
with Apache Licence 2.0 since its creation in 2011 until January 2021. When the
company moved from the ELK stack to Elastic Stack along with the major release
of 8.0.0 version, Elastic, as a company changed the licensing model of Elasticsearch
and Kibana from open-source to a dual licensing model under Server Side Public
Licence (SSPL) and Elastic Licence, which are not recognised as open-source licenses
by the Open Source Initiative (OSI). This move was a response to what Elastic
saw as a threat from cloud service providers, particularly Amazon Web Services
(AWS), offering Elasticsearch and Kibana as services without contributing back
to the open-source project or collaborating with Elastic. This change in licensing
sparked a lot of controversy in the open-source community. In response, AWS, along
with other partners, launched OpenSearch, a community-driven, open-source fork of
Elasticsearch and Kibana, which continues to be licensed under Apache 2.0.

As Elasticsearch is built on Apache Lucene, all the search operations are carried
out by Lucene. However, Elasticsearch provides additional functionality and a more
user-friendly interface to Lucene’s powerful capabilities, making it easier to use and
manage. Elasticsearch simplifies using Lucene by providing REST (Representational
State Transfer) API (Application Programming Interface) making it easier to perform
operations in many programming languages. This is simplified compared to Lucene
where direct Java code is needed to interact with the library. Elasticsearch uses a
flexible data model, accepting JSON documents for storage and indexing. This is
much easier to work with compared to Lucene’s more rigid data structure. Also,
Elasticsearch provides many additional features out of the box, including support for
multi-tenancy, an integrated analytics engine, and features for security, monitoring,
alerting, etc. [8]

Elasticsearch is designed to operate in a distributed and scalable manner. This
design allows multiple instances (nodes) of Elasticsearch to work together as a cluster
to efficiently handle API calls and provide high performance for search and data
retrieval operations. In Elasticsearch terms, each instance is called a node, and a group
of instances is called a cluster where each node has different roles. Each cluster is
assigned with at least one elected master node which is responsible for cluster-wide
changes such as creating and deleting an index. The master node oversees cluster-wide
modifications like index creation/deletion and node addition/removal, as well as load
balancing. If it fails, another master-eligible node takes its place. Ingest nodes prepare
incoming documents for indexing by applying transformations, then return them to
their origin for actual indexing. Data nodes store indexed data and respond to queries.
It’s generally recommended to allocate dedicated nodes for each role within a cluster.

Elasticsearch, a distributed JSON document store, has some similarities to relational
databases but operates differently due to its use of an inverted index and other
data structures. Unlike relational databases that store data in rows and columns,
Elasticsearch indexes serialized JSON documents, making them fully searchable in
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real time. An Elasticsearch index is a collection of documents that are related to each
other. Each document correlates a set of keys (name of fields and properties) with their
corresponding values (string, numbers, Booleans, dates, arrays of values, geolocations,
and other kinds of data). Elasticsearch uses a data structure called an inverted index,
which is designed to allow very fast full-text searches. An inverted index lists every
unique word that appears in any document and identifies all the documents where each
word occurs.

Elasticsearch divides its indices into shards, each being a Lucene index that
contains a portion of the Elasticsearch index’s documents. Each Lucene index can
store up to approximately 2.1 billion documents, due to limitations of a 32-bit signed
integer. Furthermore, these Lucene indices are split into smaller parts known as
Lucene segments. Lucene segments, generated when new documents are indexed, are
immutable once created. Though Elasticsearch can merge smaller Lucene segments,
either automatically or manually via API. Fewer segments enhance efficiency because
Lucene processes segments sequentially, not in parallel. Therefore, a larger number of
segments can slow down the search performance.

Elasticsearch communication is done by a comprehensive REST API that uses
HTTP requests (GET, PUT, POST, DELETE) for data operations, paralleling CRUD
(Create, Read, Update, Delete) operations in databases. Interactions can be done
via the Kibana console, cURL on a command line, or other clients. For instance,
entering "GET /_cat/indices" in the Kibana console retrieves information about existing
Elasticsearch indices using the cat API. Similarly, if Elasticsearch is hosted locally,
the command would be curl -XGET http://localhost:9200/_cat/indices.

Installation of Elasticsearch
Elasticsearch is free and open to use and has clear documentation on installation
and configuration procedures. However, there are some caveats in the process. The
firewall and proxies in the corporate environment make it painful to access the required
ports and network configuration. The Elasticsearch version of 8.3.0 was installed
which was the latest version during the start of this research project. The computer
was a standalone system with Ubuntu 22.4 LTS as the operating system and with a
Random Access Memory of 32 GB. The steps were followed according to installation
guidelines in the documentation with some customization done in the allocation of
memory. As Elasticsearch installation defaults to allocating 1 Gigabytes of RAM
dedicated to Elasticsearch, it was necessary to allocate more memory as we had more
computationally demanding tasks. So, for this Elasticsearch.yml file was amended
to increase the allocated memory to 8 Gigabytes. Elasticsearch was configured in
localhost however, but Elasticsearch provides the customization feature which can be
implemented in "Elasticsearch.yml" file to operate it over the network in other system
browsers or command line interface (CLI) through the terminal. After the installation
of Elasticsearch, it was tested using the curl command and also through the browser to
verify the installation. The result from the browser using Universal Resource Locator
(URL) on port number 9200 is shown in Figure 6.
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Figure 6: Installation verification of Elasticsearch in browser with localhost and
specified port number

2.2.2 Kibana

Kibana is a visualization tool for the Elastic Stack with a friendly user interface. It was
developed and designed by Rashid Khan in 2012 and it quickly became an integral
part of the Elastic Stack together with Elasticsearch and Logstash [9]. Kibana is tightly
integrated with Elasticsearch and the larger Elastic Stack and this makes it ideal for
searching, viewing, and visualizing data indexed in Elasticsearch. It also makes an
ideal platform to analyze data through the creation of bar charts, pie charts, tables,
histograms, and maps. A dashboard view assembles these visual elements, which
can be shared via a web browser to provide real-time analytical views into large data
volumes to various use cases. Kibana is also used to monitor, manage, and secure
Elastic Stack instances easily through a web interface. Kibana gives centralized access
to Elastic Stack for observability, security, and enterprise search applications.

Data visualization in Kibana can be carried out from an Elastic index or multiple
Elasticsearch indices. The analytics section in Kibana, known as Kibana Analytics, is
used for data exploration, visualization, and analysis. It incorporates the "Discover"
tool that serves as an interface to the data stored in Elasticsearch. By default, it utilizes
KQL for search queries and filtering, although Lucene query syntax is an alternative.
The queries can be personalized by selecting specific fields to display, which can
then be saved and integrated into a dashboard. After the queries are carried out, the
results can be visualized through standard chart options or built-in chart options like
Lens, Canvas, and Maps. Placing these "Discover" windows on a dashboard allows
for a useful display of varied data types from multiple indices simultaneously. The
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dashboard tool facilitates the creation and administration of all these dashboards.
Moreover, Kibana provides a feature for exploring the context around specific

documents or log entries. This ’surrounding documents’ functionality is particularly
useful when users need to understand the conditions or events happening around a
specific log entry or indexed document. The resulting data views can be saved and
added to a customized dashboard. These dashboards can host multiple ’Discover’
windows, offering a flexible way to display diverse types of data from different indices
in a consolidated view. The comprehensive dashboard tool facilitates the creation,
customization, and management of these insightful visual displays, making data
analysis more efficient and intuitive.

The Visualize Library in Kibana enables the creation of varied styles of visual-
izations, including pie charts, gauges, line graphs, bar graphs, tag clouds, and more.
The tools section permits the incorporation of text, images, dropdown menus, and
range sliders into dashboards. These controls can adjust the filters within a dashboard.
For instance, a dropdown menu can be set up to display all values of a specific field
in an index. Selecting a value from this menu triggers a filter that updates all the
views within the dashboard, including ’Discover’ objects, to display documents where
the chosen value appears within that field. However, to include text fields in the
dropdown menu, they must be indexed as keywords since the options are dynamically
generated using terms aggregation, which is only possible when text fields are indexed
as keywords.

Enterprise Search in Kibana provides tools to create, deploy, and manage search
experiences for websites and mobile applications, and to execute search queries across
connected platforms. The "Observability" section offers tools for monitoring metrics,
log collection, and alert generation. The Security section provides tools related to
Elasticsearch cluster security. While these components of Kibana are valuable and
offer a wide range of utilities, they are beyond the scope of this project as a Proof of
Concept (PoC) and hence, aren’t utilized.

Installation of Kibana
After the successful installation of Elasticsearch, visualization tool, Kibana in-
stalled following the guidelines in elastic documentation [10]. The configuration file
"kibana.yml" was updated to specify the port details and required Internet Protocol
(IP) address and Domain Name System (DNS) configuration. The process itself was
not difficult but the corporate proxies and firewall along with CA certificates made
the installation process difficult. As Kibana is tightly integrated with Elasticsearch,
it was necessary to match the configurations in "elastisearch.yml" settings to the
"kibana.yml". As Kibana runs on a browser, the security over the Hyper Text Transfer
Protocol (HTTPS) and Transport Layer Security (TLS) was configured following
the documentation [11] provided by Elastic. The login window of Kibana with an
integrated Elasticsearch in the backend is shown in Figure 7.
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Figure 7: Kibana login window with Elasticsearch integrated in the backend

2.2.3 Elastic Agent

Elastic Agent is a single, unified way to add monitoring for logs, metrics, and other
types of data to a host. It serves as a safeguard against security risks, can request data
from operating systems, and transmit data from distant services or hardware among
other functions. A single agent makes the process of deploying monitoring across the
whole infrastructure becomes quicker and easier. Each Agent comes up with a unique
policy that supports the integrations to be added for the new data sources security
protections, and so on [12].

Elastic Agent and Beats processors enable the users to manipulate the data at the
edge. This becomes particularly useful if the user needs to control what data is sent
across the wire, or needs to enrich the raw data with information available on the
host. This data manipulation is facilitated by the Elasticsearch ingest pipeline as the
processing of data is done as it arrives on the fly. This prevents additional processing
overhead on the hosts from which the data is being collected.

Preprocessing logs before indexing data into Elasticsearch is done usually by
processors using the ingest pipeline to apply transformations in the incoming data.
Some examples of transformations are adding or removing fields, extracting values
from text, and using filters such as grok, dissect, etc. The processors are stacked in
series in a pipeline and they operate in a sequential manner making specific changes
to incoming documents. After the operation of processors is completed, Elasticsearch
finally performs the indexing of transformed documents. Ingest pipelines can be
created using the ingest pipelines in Kibana or using ingest APIs in elastic [13]. The
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ingest pipeline is shown in Figure 8 which shows that the incoming documents are
transformed through a series of processors before indexing to Elasticsearch. Figure
8 shows one example of a Dissect processor, however, multiple processors can be
stacked in series.

Figure 8: Ingest Pipeline with data transformation processors for transforming data
before indexing to Elasticsearch

As demonstrated in Figure 9, the Elastic Agent has the capability to monitor the
host where it is deployed, as well as collect and relay data from remote services and
hardware where direct installation is not feasible.

Fleet server
policies

monitoring
Elastic Agent
(supervisor)

Processors Queues OutputsInputs

Shippers

Data providers

enrichment

operate

monitoring

operate

dynamic
inputs
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Figure 9: Elastic Agent architecture with fleet server deployed in host machine
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Elastic integrations provide an easy way to connect Elastic to external services
and systems and quickly get insights or take action. These integrations are designed to
collect data from novel sources and typically come prepackaged with readily usable
resources such as dashboards, visualizations, and pipelines. These pipelines are
beneficial in extracting structured fields from logs and events. The process of insights
is therefore significantly seamless, often providing useful information within a matter
of seconds. Elastic has made available integrations for a variety of popular platforms
and services like AWS, Ngnix, in addition to several generic input types such as log
files, making it versatile for many use cases. Here in this thesis, we use custom log
integration with Elastic Agent for shipping logs to Elasticsearch.

Kibana offers a user-friendly interface that allows users to add and manage these
integrations with little effort. One of the standout features of Kibana is the unified
view it provides of the available integrations, showcasing both Elastic Agent and Beats
integration in one place. This unified view simplifies the process of selecting and
implementing integrations, providing a clear overview of all the options at a glance.
Users can conveniently browse through the available integrations, compare their
features, and select the most suitable ones for their specific needs. This approach not
only reduces the time and effort involved in managing integrations but also optimizes
their performance by ensuring they are well-aligned with the user’s objectives and
system requirements. In addition, the unified view is continuously updated, ensuring
that users have access to the latest Elastic Agent and Beats integrations as soon as
they become available. This ensures that users can always take advantage of the latest
features and improvements to enhance their system’s performance and functionality.
This streamlined integration management, combined with the power and versatility
of Elastic integrations, ultimately enables users to maximize the value of their data
and achieve their operational objectives more efficiently and effectively. Elastic Agent
Policy is used to specify the choice of integrations that the user wants to run on the
host that the user specifies. Elastic Agent policy can be applied to multiple agents,
making it easier to manage configuration at scale.

Logs are append-only time series data occurring in a sequential manner with
timestamps where successive data points are added at the end of the series. Append-
only refers to the data structure’s property where once data has been added, it is
considered immutable, meaning existing data is never modified or deleted. This is
highly useful for use cases such as logging and event tracking where it is critical to
preserve the original data for analysis, monitoring, and debugging.

Indexing and search requests can be submitted directly to a data stream. The
request is automatically routed to backing indices that store the stream’s data. Index
Lifecycle Management (ILM) can be used to automate the management of these
backing indices. For example, ILM can be used to automatically move older backing
indices to less expensive hardware and delete unneeded indices. ILM helps to reduce
costs and overhead as the volume of data increases.

A data stream needs a matching index template. An index template is a way to
tell an Elasticsearch how to configure an index at the time of indexing. For data
streams, the index template configures the stream’s backing indices as they are created.
Templates are configured prior to index creation.
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Installation of Elastic Agent
After the successful integration of Elasticsearch and Kibana, the installation was
verified and we explored the features of this combined integration of Elasticsearch
with Kibana. Kibana, with its robust user interface, provides the feature for where
ingestion of single files up to 100MB via a simple drag-and-drop operation. However,
this research work required a logging system where logs from a multitude of sources
could be received by a single engine. Additionally, a prerequisite to the indexing of
data into an Elasticsearch index was the parsing of the data as logs from different
sources do not follow the same format or structure. To fulfill these requirements, the
Elastic Stack is equipped with the provision of the Filebeat module, which acts as
a lightweight data shipper. This module is used for the transportation of data from
several sources to Elasticsearch or to Logstash to parse and transform data before
indexing into Elasticsearch.

Logstash, another open-source tool, is frequently employed with Elasticsearch
to transform data prior to indexing. It is essentially an open-source data processing
pipeline that allows us to process logs and other event data from various sources. It
is proficient in performing Extract, Transform, Load (ETL) transformations, which
include extracting data from outside sources, transforming it to fit operational needs,
and loading it into the end target (in this case, Elasticsearch).

However, with the introduction of of Elastic Agent presents a consolidated approach,
capable of performing most tasks accomplished by the combination of Filebeat and
Logstash. The Elastic Agent provides a unified way to add monitoring for logs, metrics,
and other types of data from your hosts and services. This flexibility and ease of
management are further enhanced with the Elastic Agent’s integrations, significantly
simplifying the data ingestion and transformation process.

The installation of Elastic Stack was carried out by following the Elastic docu-
mentation. Elastic Agent was installed on the same machine where Elasticsearch and
Kibana were installed. The operating system of the system was 22.04 LTS Ubuntu. The
system was equipped with 32 GB of Random Access Memory (RAM). Prerequisites
of installing Elastic Agent are mentioned in [14]. One of the prerequisites is the
installation of Fleet which is described below.

Installation of Fleet in Air-gapped environments
As this research was conducted in a corporate environment, Elastic Agent is run
in a restricted network. Thus we had to perform extra steps to ensure Kibana was
able to reach the elastic package registry to download package metadata and content.
Similarly, it must be ensured that Elastic Agent must be able to download binaries
during upgrades. The orderly documentation for upgrading all the components in an
air-gapped environment can be found in the elastic documentation guide [15].

The Kibana downloads package metadata and content from the public Elastic
Package Registry at epr.elastic.co. Thus, Kibana needs to have network access
to connect to the elastic package registry. There were two options for that and those
options are:

• Using a proxy server to access the Elastic Package Registry.
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• Host own Elastic Package registry using Docker Image.

The routing of traffic through a proxy server did not materialize because of strict
policies inside GE Healthcare. Thus, the Elastic Package Registry was deployed and
hosted online using the available distribution of docker images. Every distribution
contained packages that could be integrated with different versions of Elastic Stack
and a suitable version of 8.3.3 docker image was installed. The steps for hosting the
in-house elastic package registry in the docker image are given below:

• A docker image was pulled from the public docker registry.

• The pulled docker image was saved locally.

• "Elastic Package Registry" was run with a docker image. The instance of running
the docker image with elastic package registry is shown in Figure in 10.

• Configuration file of Kibana kibana.yml was updated to connect Kibana to
the in-house package registry. xpack.fleet.registryUrl property in the
kibana.yml was set to the URL of the hosted package registry.

• File path to ca-certificates of the company was added to the Kibana startup file
with NODE_EXTRA_CA_CERTS environment variable.

Figure 10: Docker image instance hosted with Elastic Package Registry

After the fleet server was configured and Kibana was accessed by the fleet server
and integrations, Elastic Agent was installed and enrolled in the fleet. Installation
steps are given below:

• Agent policy was created from the fleet screen in Kibana. Once the policy was
created, the enrollment token was copied from the "Enrollment Tokens" tab in
Fleet.

• Ingest Pipeline was created as logs data are custom data. Elastic Agent has
default policies suitable for log files. So this step can be skipped if the log
data is used for trivial analysis. This research was not only about Elastic
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Stack so default policies also worked fine. However, the ingest pipeline was
created for experimental purposes. Different processors such as grok, dissect,
date, timestamp, etc. were used to transform the data before indexing to an
Elasticsearch index. Ingest pipeline management UI allowed us to test custom
pipelines with sample documents.

• Default Index Lifecycle Management (ILM) policy available in Elastic Stack
was used for the experiments conducted in this thesis. However, it is advised to
define its own ILM policies so that the system can be managed in accordance
with the need for performance, scalability, and retention.

• Data stream was set up using a matching custom component template.

After this, custom logs integration was added to the Elastic Agent policy. The
custom integration is shown in Figure 11.

Figure 11: Elastic Agent integration with custom logs integration policy on a fleet
server
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2.3 Adding data to Elasticsearch
Elastic Stack provides several available options for getting data into Elasticsearch,
which is known as ingesting or indexing the data. This project leveraged the Elastic
Agent hosted in the fleet server with custom log integration with Elasticsearch and
Kibana. The setup details of Elastic Agent are mentioned in the section above. This
choice of use of Elastic Agent with custom log integration was made because the
syslog data used in this thesis always followed a format with timestamps in each of the
log lines.

The data ingestion pipeline was designed as when we send data directly into
Elasticsearch. The data ingestion pipeline often includes additional steps to manipulate
the data, ensure data integrity, or manage the data flow. It was necessary to sanitize,
normalize, transform, or enrich log data before it was indexed or stored in Elasticsearch.
The flow graph of implementing timestamped data in Elastic Agent is shown in Figure
12.

Is Elastic Agent
Available?

Install the integration
and set up Elastic

Agent

Is a Beat or Beats
module available?

Is data processing
essential?

sanitize or enrich raw
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schema at query time

something else

Use processors Use Ingest Pipeline Use runtime fields Use Logstash plugins

Use Logstash

Start sending data to
Elasticsearch

Set up Beats
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No

to enrich data

yes
No

No
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Figure 12: Data ingestion pipeline for timestamped data using Elastic Agent to be
indexed into Elastisearch
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Here in this research, data ingestion to Elasticsearch is implemented using Elastic
Agent and custom logs integration. Logs from multiple sources were seamlessly
integrated using custom log integration using Elastic Agent. Log data source path was
defined and it is modular to accommodate different sources. The ingest pipeline was
defined to process our logs before they get imported to Elasticsearch. Ingest pipeline
is not a mandatory step for indexing as Elastic Agent does seamless integration. One
of the examples of ingest pipelines written for the logs from test builds is shown in
Figure 13. An example of the Ingest pipeline shown in Figure 13 shows that "Grok"
and "Remove" processors are stacked in series.

Figure 13: Ingest Pipeline for logs generated from test builds which are to be indexed
into Elasticsearch
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Log data used in this research comes from different platforms and does not follow a
uniform format for all generated logs from multiple sources. Thus we need a bridge in
between to flatten the incoming data to a common ground. Here, Elastic Common
Schema comes to the rescue to ensure that all the incoming data are "speaking the
same language". This helps to make common field names for the incoming data from
multiple sources. This approach made the process of query using KQL a lot easier
as it was possible to run queries in a central logging station. The Elasticsearch data
stream concept is used in the research as log files have timestamps in each log line
and thus log lines can be interpreted as append-only time series data. Data streams
are used by Elastic Agent for all available integrations. After ingesting data using the
ingest pipeline to create a data stream into Elasticsearch, the Kibana Discover window
is segmented into different custom fields as shown in Figure 14.

Figure 14: Kibana Discover window after data is ingested using ingest pipeline

2.4 Elastic Stack as an Exploratory Data Analysis Tool
After the ingestion of logs into Elasticsearch using custom log integration and Elastic
Agent, a centralized logging system was established. This enabled us to perform
complex queries and keyword searches from logs acquired from various sources. KQL
was used to perform queries. KQL is a simple and efficient text-based language designed
specifically for data filtering purposes. KQL, however, is limited to data filtering
and does not provide features for data aggregation, transformation, or sorting. A
comprehensive overview of Kibana features can be found in the official documentation
of Elastic [16].

Upon execution of certain queries, immediate access to their distribution data was
possible. This enabled rapid identification of respective sources of log data along
with the distribution. The executed queries provided the number of hits per query
and identification of the corresponding log lines. The Elastic Stack also offered the
advantage of exploring surrounding documents via a user-friendly interface. This
made the navigation and exploration of logs in a large volume convenient and efficient.
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The integration of Elasticsearch with Kibana allowed for in-depth visualization
and understanding of distribution parameters such as hostname, application name, file
paths, and process IDs. This was a valuable tool for constructing datasets, enabling
the filtering out of numerous log files that lacked significant features. As a result, we
could focus only on log files as well as their sources that had interesting errors and
anomalies. This drastically improved efficiency and data quality prior to the application
of machine learning algorithms. The careful preprocessing steps are essential to ensure
that machine learning models are trained on meaningful and relevant data, enhancing
their performance and predictive power. Figure 15 shows the distribution of the
’application-name’ field in the log message.

Figure 15: Pie-chart showing the distribution of application name along with the path
of their source files
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3 Logs as Text Embeddings Spaces
In mathematics, embedding roughly refers to a mapping between different representa-
tion spaces in a way that specific properties are preserved [17]. It can be inferred from
the definition that a word embedding is some kind of representation bounded by some
function that is mapped from one space to another that has similar properties. Word
embedding is represented by a d-dimensional vector 𝑤 ∈ R𝑑 .

3.1 Tokenization
Almost all of the text processing tasks either traditional or recent state-of-the-art begin
with tokenization. Tokenization is a method of splitting or transforming a text, such as
a sentence or document into sub-components called tokens. These tokens are stored in
a list and these collections of all the tokens produced from a text corpus are represented
as vocabulary, often denoted asV. The size of vocabulary |V| has a direct influence
on almost all language modeling tasks. Mainly tokenization is achieved by splitting
the text into words, subwords, or characters. The method of splitting text into words
or subwords differs from the morphological structure of the languages. Since the logs
used in this research are based in the English language, the tokenization procedure
used in this literature is based on English text.

The process of tokenization of text into tokens of word, subword, or characters
is achieved by the use of tokenizers. Generally, the tokenizers used in language
processing can be categorized into rule-based and trainable tokenizers. Rule-based
tokenizers mostly follow the technicality of linguistics to split text into words or
characters. They mostly leverage the characters to split text into words like whitespace,
commas, and punctuation to split the text into smaller units. There are several libraries
developed for achieving this tokenization some of them are Spacy [18], which uses
whitespaces and punctuation to split words. They have separate hard-coded rules for
cases like ”ℎ𝑎𝑣𝑒𝑛′𝑡”⇒ [”ℎ𝑎𝑣𝑒”, ”𝑛′𝑡”].

This rule-based method of tokenization is an effective technique but it comes with
certain limitations. As log messages are written for the ease of developers, they aren’t
formed with clean sentence formation obeying the rules of linguistics. For example, in
the example log message shown in Figure 16, splitting the log message into smaller
units by whitespace and punctuation doesn’t lead to consistent tokens for the same text.
For example, there are single terms like "dateOfBirthRequired", "lastNameRequired",
"pid1NomenclatureDesignation", "sampleInfo", ”𝑛𝑢𝑙𝑙𝑙𝑎𝑠𝑡_𝑠𝑎𝑚𝑝𝑙𝑒? = 𝑡𝑟” which are
composed of combination of different words. Similarly, there is extensive use of
special characters and they are used inconsistently which makes it difficult to operate
the use of the special characters in splitting text to produce uniform tokens for the
similar text. This causes the problem of out-of-vocabulary (OOV) words. These
OOV words are those words or tokens that are not present or filtered out in training
vocabulary but appear during testing or inference/prediction state. For example, if
there are words like required, admission, and fields separately are present in a training
vocabulary but the prediction log comes up with a word "requiredAdmissionFields",
this word is treated OOV word. There are numerous cases of these characteristics
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in the log data used in this research as log messages don’t abide by common and
consistent standards. The common approach to dealing with OOV words in language
modeling is the use of special tokens such as [𝑈𝑁𝐾] or pad with zeros or unique
random representation of each OOV word [19].

"2023−04−11T11 :45:36.893+0000" , "87274" , "87274" , " INFO " , "um−pm−0.
nova loca l " , " 6 bca2187−ec97−4f89 −bac7−98ac691464d5 " , " axone− con f i g " , "
axone−conf igMain [30934 :112 ] " , "com. ge . hc . l c s . axone . con f i g se r v i ce .
message . ConfigMessageProcessor : 33 1 " , " General " , "RECEIVED:
Subsc r ip t i on − ConfigStateMessage { con f i gS ta te =: umf_cfg_state :
cfgContextHash : f5a3ae6fc9759da4c7f93fee1c6b2af0011f218a
cfgContext : 0 : name : f a c i l i t y value : Cleveland C l i n i c Main Campus
1: name : f a c t o r y value : GE scope : / / params / system / c fg / p o l i c y /
pid1NomenclatureDesignat ion , / / params / system / c fg / p o l i c y /
pid2NomenclatureDesignat ion , / / params / system / c fg / p o l i c y /
requ i redAdmiss ionF ie lds / dateOfBi r thRequi red , / / params / system / c fg /
p o l i c y / requ i redAdmiss ionF ie lds / f i rstNameRequired , / / params / system /
c fg / p o l i c y / requ i redAdmiss ionF ie lds / genderRequired , / / params / system
/ c fg / p o l i c y / requ i redAdmiss ionF ie lds / lastNameRequired , / / params /
system / c fg / p o l i c y / requ i redAdmiss ionF ie lds / pid1Required , / / params /
system / c fg / p o l i c y / requ i redAdmiss ionF ie lds / pid2Required , i n f o =
SampleInfo : [ sample_state=NOT_READ_SAMPLE_STATE view_sta te=
NOT_NEW_VIEW_STATE ins tance_s ta te=ALIVE_INSTANCE_STATE
instance_handle=2f287325−c370−2345−dd0c− f007d29b94af va l i d_da ta=
t rue sample_rank=0 generat ion_rank=0 absolu te_generat ion_rank=0
recept ion_t imestamp =[ sec=1681213536,nanosec=892564998]
publ icat ion_sequence_number =[ high =0 , low =2363]
reception_sequence_number =[ high =0 , low =15777]
o r i g i n a l _ p u b l i c a t i o n _ v i r t u a l _ g u i d =a8350a9f−cdd3−c596−864c−0
f5480000002 or ig ina l_pub l i ca t ion_v i r tua l_sequence_number =[ high =0 ,
low =3] source_guid=a815ff19 −bc59−1b8c−d9da−88d680004202
top ic_query_gu id= n u l l last_sample?= t r

Figure 16: Syslog generated from medical devices in hospital settings

To mitigate the problem of OOV words in language modeling, a different tok-
enization method of splitting words into sub-words was introduced. This kind of
tokenization method is referred to as trainable tokenization. These methods such
Byte-Pair-Encoding [20], WordPiece [21], Sentence-Piece [22], take a statistical
approach to disintegrate a word into smaller sub-units. During the training process,
the first analysis is run on a text corpus, and unigram probabilities are computed
for substring occurrences. This facilitates the tokenizer to learn the distribution
of substrings and thus it can define the optimal way to split the text and create a
vocabulary of words. This method of tokenization helps to counter the problem of
OOV words that could potentially arise at the prediction time of log lines. For example,
the word "Filemanager" is tokenized into ["File", "man", "nag" "age", "ger"]. Thus
these sub-units are fit for words like File, Manager, and some extensions as well file
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filemanager.txt.

3.2 Word Embeddings Algorithms
Word embeddings are used in Natural Language Processing to convert words into
numerical vectors. The process of converting words into vectors is known as text
vectorization. One of the simplest word vectorization techniques is One-Hot Encoding.
One-hot encoding creates a vector for each word in a vocabulary, where all the vector
values are labeled as 0 except the index of the word which is labeled as 1. One-Hot
Encoding creates word vectors in multiple dimensions. The number of dimensions is
equal to the total number of words in the vocabulary.

Word embeddings are a powerful natural language processing (NLP) technique
that converts words into fixed-size numerical vectors, capturing semantic and syntactic
relationships between words. Word embeddings have been successfully applied
in various NLP tasks, such as sentiment analysis, machine translation, and text
classification. This paper discusses the potential of word embeddings for system log
analysis, highlighting their benefits and possible applications. Word embeddings
represent words in a high-dimensional vector space, where semantically similar
words are placed close together [23]. This representation enables the application of
mathematical operations on words, capturing relationships like analogy, synonymy,
and autonomy. The two most popular methods for generating word embeddings are
Word2Vec [23] and GloVe [24]. Both techniques rely on unsupervised learning from
large text corpora, leveraging co-occurrence statistics to generate continuous word
vectors.

3.2.1 Static Word Embeddings

A static word embedding model is a function that maps each word type to a single
vector. These vectors are typically dense and have much lower dimensions than the
size of the vocabulary. This is a significant advantage to one-hot-encoding as one-hot
encoding has a dimension the same as the size of the vocabulary and this creates
serious problems when applied to a text corpus with a large vocabulary size. There
have been multiple approaches to developing this mapping function to create static
word embeddings. This mapping function assumes the fixed size vocabulary so rare
words are treated as UNK tokens such that OOV words during prediction are also
treated as UNK. Neural networks based models were used by Mikolov et al. to
develop Word2Vec [23] and FastText [25], matrix factorization was used to create
word embeddings in GLoVE [24]. Other approaches like probabilistic methods based
on abstract mathematical concepts have also been explored in the realm of static word
embedding techniques but however, but in this research, we primarily focus on the
Word2Vec family of algorithms for the generation of static embeddings.

Word2Vec Algorithm
Word2Vec is a two-model architecture developed by Mikolov et al. [23] for computing
continuous vector representation of words from large data sets. It consists of a shallow
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neural network with an input layer, one hidden layer, and an output layer with a softmax
activation function. The training of this neural network-based architecture is based on
two different context representations: continuous bag-of-words (CBOW) or skip-gram
model. The high-level overview of the context representation is shown in Figure 17.

Figure 17: Word2Vec model architectures. The CBOW architecture predicts the
current word based on the context, and the skip-gram architecture predicts surrounding
words given the current word [23].

The inputs for the Word2Vec algorithm are pairs (w, C), where w is a single word
and C is the context surrounding w. These inputs are fed to the input layer of the neural
network as one-hot-encoded vectors of size 1 x |V|. The output of the algorithm is a
vector of probabilities of z of all words in the vocabularyV [17].

The difference between CBOW and skip-gram methods is for CBOW, the context
C is taken as input and a single word w is predicted. Whereas in the skip-gram
method, the process is exactly the opposite as a single word is given as input, and
the context C is the target word to predict. Word order in a text is ignored for both
of the methods meaning that Word2Vec does not preserve the positioning of text
in a sentence. Similarly, two different optimization objectives are used - negative
sampling or hierarchical softmax. Both of the models of Word2Vec namely, skip-gram
and CBOW are relevant to this thesis work. Thus, this section walks through the
introduction and training procedures of Skip-Gram and CBOW respectively. The
high-level architecture of the two model families of Word2Vec according to the original
paper by Mikolov et al. [23] is given in Figure 17.

Skip-Gram Model
The skip-gram model assumes that the word can be used to generate its surrounding
words in a text sequence. For example, the text sequence in the log line - The sensor
module configuration has changed. Let’s choose "configuration" as the center word
and set the context window size to 2. As shown in Figure 18, given the center
word "configuration", the skip-gram model considers the conditional probability for
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generating context words: "The", "sensor", "module", "has", "changed", which are no
more than two words away from the center word can be written as

𝑃(”𝑠𝑒𝑛𝑠𝑜𝑟”, ”𝑚𝑜𝑑𝑢𝑙𝑒”, ”ℎ𝑎𝑠”, ”𝑐ℎ𝑎𝑛𝑔𝑒𝑑”|”𝑐𝑜𝑛 𝑓 𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛”) (1)

The skip-gram model assumes that the context words are independently generated
given the center words. Thus, the above conditional probability can be written as,

𝑃("sensor"|"configuration").𝑃("module"|"configuration").
𝑃("has"|"configuration").𝑃("changed"|"configuration")

(2)

Figure 18: Conditional probability of generating the surrounding context words given
a center word.

In the skip-gram architecture, each word is represented by two vectors, each of
dimension 𝑑, for the purpose of determining conditional probabilities. Specifically, for
a word indexed as 𝑖 within the vocabulary, it has two vector representations, v𝑖 ∈ R𝑑
and u𝑖 ∈ R𝑑 when used as a *center* word and a *context* word, respectively. Given
the center word 𝑤𝑐 (with index 𝑐 in the dictionary), the conditional probability of
generating any context word 𝑤𝑜 (with index 𝑜 in the dictionary) can be modeled by a
softmax operation on vector dot products as shown in Equation 3.

𝑃(𝑤𝑜 | 𝑤𝑐) =
exp(u⊤𝑜 v𝑐)∑︁
𝑖∈V exp(u⊤

𝑖
v𝑐)

, (3)
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In the Equation 3, the vocabulary index set is represented asV = {0, 1, . . . , |V| −
1}. Given a text sequence of length 𝑇 , where the word at time step 𝑡 is denoted as 𝑤 (𝑡) .
It is assumed that context words are independently generated given any center target
word. The likelihood function of the skip-gram model for context window size 𝑚 is
the probability of generating all context words given any center word as,

𝑇∏︂
𝑡=1

∏︂
−𝑚≤ 𝑗≤𝑚, 𝑗≠0

𝑃(𝑤 (𝑡+ 𝑗) | 𝑤 (𝑡)), (4)

where any time step that is less than 1 or greater than 𝑇 can be omitted.

The skip-gram model parameters are the center word vector and context word
vector for each word in the vocabulary. In training, the aim is to maximize the
likelihood function (i.e., maximum likelihood estimation) to learn model parameters
optimally. This is equivalent to minimizing the following loss function in equation 5.

−
𝑇∑︁
𝑡=1

∑︁
−𝑚≤ 𝑗≤𝑚, 𝑗≠0

log 𝑃(𝑤 (𝑡+ 𝑗) | 𝑤 (𝑡)). (5)

When using stochastic gradient descent for loss minimization, shorter sub-
sequences are randomly sampled in each iteration. This sampling aids in determining
the gradients for that specific sub-sequence, which is then employed to update the
model’s parameters. To compute the gradients, it’s imperative to derive the gradients
of the log conditional probability relative to both the center word vector and the context
word vector [26]. In general, according to equation 3 the log conditional probability
involving any pair of the center word 𝑤𝑐 and the context word 𝑤𝑜 is,

log 𝑃(𝑤𝑜 | 𝑤𝑐) = u⊤𝑜 v𝑐 − log

(︄∑︁
𝑖∈V

exp(u⊤𝑖 v𝑐)
)︄
. (6)

Through differentiation, we can obtain its gradients with respect to the center word
vector v𝑐 as

𝜕log 𝑃(𝑤𝑜 | 𝑤𝑐)
𝜕v𝑐

= u𝑜 −
∑︁
𝑗∈V exp(u⊤

𝑗
v𝑐)u 𝑗∑︁

𝑖∈V exp(u⊤
𝑖

v𝑐)

= u𝑜 −
∑︁
𝑗∈V

(︄
exp(u⊤

𝑗
v𝑐)∑︁

𝑖∈V exp(u⊤
𝑖

v𝑐)

)︄
u 𝑗

= u𝑜 −
∑︁
𝑗∈V

𝑃(𝑤 𝑗 | 𝑤𝑐)u 𝑗 .

(7)

The calculation in 7 requires the conditional probabilities of all words in the
dictionary with 𝑤𝑐 as the center word. The gradients for the other word vectors can be
obtained in the same way.

After training, for any word with index 𝑖 in the dictionary, we obtain both word
vectors v𝑖 (as the center word) and u𝑖 (as the context word). In natural language
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processing applications, the center word vectors of the skip-gram model are typically
used as the word representations. [26]

The Continuous Bag Of Words (CBOW) Model
The continuous bag of words (CBOW) model assumes that a center word is generated
based on its surrounding context words in a text sequence. Let’s take the same example
as in the skip-gram model, "The sensor module configuration has changed " where
"configuration" is the center word. The context window size is 2 as in the skip-gram
example, continuous probability of generating center word "configuration" based on
the context words "sensor", "module", "has", and "changed" is

𝑃(”𝑐𝑜𝑛 𝑓 𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛”|”𝑠𝑒𝑛𝑠𝑜𝑟”, ”𝑚𝑜𝑑𝑢𝑙𝑒”, ”ℎ𝑎𝑠”, ”𝑐ℎ𝑎𝑛𝑔𝑒𝑑”) (8)

The word "The" has been omitted because it is the third word from the center word
and the context window size is 2. This representation is shown in Figure 19.

Figure 19: Conditional probability of generating the center word given surrounding
context words.

The choice of a number of context words is a hyperparameter that can be tuned
during the training process. These context word vectors are averaged in the calculation
of the conditional probability. The conditional probability of generating any center word
𝑤𝑐 (with index 𝑐 in the dictionary) given its surrounding context words 𝑤𝑜1 , . . . , 𝑤𝑜2𝑚

(with index 𝑜1, . . . , 𝑜2𝑚 in the dictionary) can be modeled by the Equation 9.

𝑃(𝑤𝑐 | 𝑤𝑜1 , . . . , 𝑤𝑜2𝑚) =
exp

(︂
1

2𝑚u⊤𝑐 (v𝑜1 + . . . + v𝑜2𝑚)
)︂

∑︁
𝑖∈V exp

(︂
1

2𝑚u⊤
𝑖
(v𝑜1 + . . . + v𝑜2𝑚)

)︂ (9)
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which can be simplified as,

𝑃(𝑤𝑐 | W𝑜) =
exp

(︁
u⊤𝑐 v̄𝑜

)︁∑︁
𝑖∈V exp

(︁
u⊤
𝑖

v̄𝑜
)︁ . (10)

Given a text sequence of length 𝑇 , where the word at time step 𝑡 is denoted as
𝑤 (𝑡) . For a context window of size 𝑚, the likelihood function of the CBOW model is
the probability of generating all center words given their context words, which can be
represented as,

𝑇∏︂
𝑡=1

𝑃(𝑤 (𝑡) | 𝑤 (𝑡−𝑚) , . . . , 𝑤 (𝑡−1) , 𝑤 (𝑡+1) , . . . , 𝑤 (𝑡+𝑚)). (11)

The training process of the CBOW model is almost similar to training skip-gram
models. The maximum likelihood estimation of the CBOW model is equivalent to
minimizing the following loss function:

−
𝑇∑︁
𝑡=1

log 𝑃(𝑤 (𝑡) | 𝑤 (𝑡−𝑚) , . . . , 𝑤 (𝑡−1) , 𝑤 (𝑡+1) , . . . , 𝑤 (𝑡+𝑚)). (12)

It can be noticed that,

log 𝑃(𝑤𝑐 | W𝑜) = u⊤𝑐 v̄𝑜 − log

(︄∑︁
𝑖∈V

exp
(︁
u⊤𝑖 v̄𝑜

)︁)︄
. (13)

We can obtain its gradient with respect to any context word vectorv𝑜𝑖 (𝑖 = 1, . . . , 2𝑚)
through differential equation as,

𝜕 log 𝑃(𝑤𝑐 | W𝑜)
𝜕v𝑜𝑖

=
1

2𝑚
⎛⎜⎝u𝑐 −

∑︁
𝑗∈V

exp(u⊤
𝑗
v̄𝑜)u 𝑗∑︁

𝑖∈V exp(u⊤
𝑖

v̄𝑜)
⎞⎟⎠

=
1

2𝑚
⎛⎜⎝u𝑐 −

∑︁
𝑗∈V

𝑃(𝑤 𝑗 | W𝑜)u 𝑗
⎞⎟⎠ . (14)

The gradients for the other word vectors can be obtained in the same way. Unlike
the skip-gram model, the continuous bag of words model typically uses context word
vectors as the word representations.

3.2.2 Contextual Embeddings Models

Contextual embedding models as the name suggests are those models that take into
account the context in which a word appears in a text to generate word representations
of a text document. Unlike static word embedding models like Word2Vec, Glove, etc.
which assign a fixed representation of word token, the contextual embedding models
generate different vector representations for a word depending on the context where
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it appears. For a token 𝑥, contextual embedding can be represented by a function
𝑓 (𝑥, 𝑐(𝑥)) depending on both 𝑥 and its context 𝑐(𝑥). With the empirical success of
static embeddings, contextual embeddings attracted a lot of research communities
considering the importance of context in text analysis. Some seminal works in context
embeddings include TagLM(Semi-supervised sequence tagging with bidirectional
language models) [27], ELMo(Embeddings from Language Models) [28].

All the details of ELMo are out of the scope of this thesis so the interested readers
can look at the paper [28]. Although improved solutions compared to static embeddings
model for language understanding it was task-specific architecture. Keeping this in
mind, the task agnostic model was introduced in the form of GPT (Generative Pretrained
Transformer) [29] architecture to generate contextual embeddings. It encodes context
from left to right in a unidirectional format. It was built on a Transformer Decoder
and it is a pre-trained language model representing text sequences. The Decoder of
the Transformer is explained in Section 4.2.

As unidirectional language encoder GPT turned out to be a huge success, the
directional nature of encoding for task agnostic tasks was introduced in the form of
BERT (Bidirectional Encoder Representation from Transformers) [30]. BERT encodes
the context words in both directions left and right in a text sequence, and requires
minimal changes for a broad range of natural language processing tasks. BERT acts as
an excellent choice to extract features from a text sequence and it has been used as a
feature extractor in many diverse tasks. This research also experiments with BERT as
a feature extractor for the log sequences.

Words in text don’t appear in isolation and this holds true in log lines. The use of
the special key word means nothing if the context is not known. There are many cases
of words and collections of words in log lines in a file which might represent anomaly
or normal depending on the context within a log line or prior log events. Also, the
different texts might mean the same thing in the log line because of the inconsistent
use of whitespaces and special characters. Thus it is extremely important to learn the
representations of each word in log lines. BERT is useful to capture nuances in word
meanings in log lines that can change depending on the typos or inconsistent use of
white spaces and characters.

BERT as Contextual Embedding Model
Bidirectional Encoder Representations from Transformers, known commonly as BERT
is designed to pretrain deep bidirectional representations from unlabeled text by jointly
conditioning on both left and right context in all layers [30]. As the name suggests it is
based on an encoder of transformer architecture [31] and applies a transformer encoder
to attend bidirectional contexts during pretraining. It proposes masked language
modeling and next-sentence prediction (NSP). In masked language modeling, some
of the tokens of an input sequence are randomly masked and the objective is to predict
these masked positions taking the corrupted sequence as input. In addition, BERT
uses NSP where the given two sentences, NSP predicts whether the second sentence
is actual/true next sentence of the first sentence. BERT uses special tokens to obtain a
single contiguous sequence for each input sequence. The first token is [CLS] which is
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a classification token and sentence pairs are separated using [SEP] token. The final
hidden state of [CLS] token is used for sentence-level tasks and the final hidden state
of each token is used for token-level tasks.

In particular, the final hidden state corresponding to the [CLS] token is used as
the aggregate sequence representation for sentence-level tasks. Alternatively, the final
hidden state for each token can be used for token-level tasks. This is represented by
the following equation:

𝐶 = 𝐵𝐸𝑅𝑇𝐶𝐿𝑆 (𝑥1, 𝑥2, ..., 𝑥𝑛). (15)

where C is the output vector corresponding to the [CLS] token and 𝑥𝑖 represents
the input tokens.

However, utilizing the [CLS] token for sentence embedding is not a strict require-
ment. The BERT framework allows flexibility in the manner one can obtain the final
representation of the sequence. A popular alternative to using [CLS] token is to perform
a pooling operation to the final hidden states of all tokens in the sentence. Various
pooling mechanisms such as mean pooling and median pooling can be employed.

Mean pooling calculates the average of the final hidden states of all tokens.
Mathematically, it is represented by:

𝐶𝑚𝑒𝑎𝑛 =
1
𝑛

𝑛∑︁
𝑖=1

𝐵𝐸𝑅𝑇 (𝑥𝑖). (16)

On the other hand, median pooling selects the median value among the final hidden
states. These alternative methods provide different benefits. Mean pooling takes into
account the semantic information from all tokens in a sentence and thus, can capture
more context. However, it may be influenced by outlier values. Median pooling is less
susceptible to outliers, offering a more robust representation.

The choice of the pooling method depends on the specific application. In the context
of log line feature extraction, the pooling mechanism should be chosen considering
the nature of log data. If the logs contain outliers or high variance in their semantic
content, median pooling may be a better choice. On the other hand, if the logs are
relatively uniform and all tokens contribute equally to the overall semantics, mean
pooling can provide a better representation. Thus, BERT, with its flexible mechanisms,
offers powerful options for log line feature extraction.

42



4 Machine Learning and Natural Language Process-
ing

Machine learning (ML) enables computers to extract knowledge from data, enhance
performance through experience, and make forecasts on unseen examples. In the case
of supervised machine learning, it leverages labeled data for learning, i.e, each piece of
training data is associated with a specific label. The objective of this learning approach
is to identify the hidden pattern in the data, enabling accurate predictions on unseen
data exhibiting a similar pattern. This method has found significant applications in log
analysis, particularly in the identification of anomalies in log files. Such anomalies
could stem from equipment malfunction or a cyber intrusion in the network. The ability
to pinpoint these deviations helps in mitigating fraudulent activities, enemy attacks,
and network breaches that could jeopardize the company’s future. In the context of
log analysis with supervised learning, the dataset used for anomaly detection consists
of both normal and anomalous examples, each accurately labeled. However, log files,
while textual in nature, may not consistently exhibit a structured format. They can often
be semi-structured or unstructured, with a multitude of special characters and tokens.
Unlike natural languages, they lack morphological richness and do not offer much
context. They usually consist of a sequence of lines generated in a particular order as
seen in Section 2.1. The progression in natural language processing algorithms, such as
BERT and Transformer, enables the conversion of semantic information from log files
into mathematical vector representations. This capability allows us to uncover hidden
patterns that would otherwise be indiscernible without precise feature engineering.

The following subsections discuss different existing machine learning architectures
applied in the area of NLP for identifying anomalies within log files. Section 4.1
presents the theoretical details of recurrent neural network architectures practiced in
the area of NLP. Section 4.2 provides a description of the transformer architecture,
recognized as a seminal work in the domain of NLP.

4.1 Recurrent Neural Networks (RNNs)
Log files represent data as sequences of events occurring over time. This sequential
nature makes it crucial to consider the temporal dependencies between different events
in the sequence. RNNs are particularly adept at handling such temporal sequences.
They achieve this by allowing previous outputs to be reused as inputs in subsequent
steps, maintaining hidden states that effectively capture the memory of past events.
As depicted in Figure 20, this unique architecture of RNNs enables them to model
long-term dependencies in data, making them highly suitable for tasks where context
from earlier steps is essential for accurate predictions. Their ability to process and
remember sequential data has led to their successful application in various domains,
including natural language processing and time-series forecasting. When applied
to log files, RNNs have shown promising results, particularly in tasks like anomaly
detection. The study by [32] is a testament to their efficacy, demonstrating how RNNs
can be employed to identify unusual patterns or outliers in log sequences, helping in
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proactive system monitoring and timely detection of anomalies in log data.

Figure 20: Diagram showing RNNs capturing sequential data using hidden states.

There are various versions of RNNs, such as many-to-many (employed in language
translation) and many-to-one (utilized in anomaly detection), among others. When it
comes to identifying and classifying anomalies from log files, the process begins by
transforming log texts into vector format using word embeddings. Following this, there
are multiple hidden layers, each of which applies an affine transformation function (like
a matrix dot product multiplication), succeeded by a non-linear function. The final
hidden layer is followed by an activation function, resulting in an output layer. This
output layer predicts or classifies the input into various types of anomalies. However,
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RNNs suffer from vanishing gradient problems. The vanishing gradient problem is
characterized by the significant reduction of gradient values during backpropagation
over time, which can result in slow learning or complete stagnation of learning in the
initial layers of the network. To overcome these problems, Long Short-Term Memory
(LSTM) networks have been proposed.

LSTM cell in an LSTM network uses a memory block that makes it convenient for
a network to store a given input over many time steps [33]. LSTM is able to capture
temporal dependencies through connections between LSTM units in sequential data
that allow information to cycle through a loop across adjacent time steps. It creates an
internal state of feedback, allowing the network to understand the temporal information
present within the data. The memory state in LSTM allows the network to selectively
forget and remember information. This allows information of higher importance to be
retained and backpropagate and exclude irrelevant information simply by forgetting
using the forget gates. Each block in LSTM has three gates: the input gate, the forget
gate, and the output gate. Gates allow information to pass through selectively using
sigmoid activation function:

𝜎(𝑡) = 1
1 + 𝑒−𝑡 . (17)

This passes information when true, else no information is passed into the gate. The
equation of gates is:

𝑖𝑡 = 𝜎(𝑤𝑖 [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖), (18)

𝑓𝑡 = 𝜎(𝑤 𝑓 [ℎ𝑡−1, 𝑥𝑡] + 𝑏 𝑓 ), (19)

𝑜𝑡 = 𝜎(𝑤𝑜 [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜). (20)

where 𝑖𝑡 , 𝑓𝑡 and 𝑜𝑡 are input gate, forget gate, and output gate respectively. 𝑤 𝑗 and 𝑏 𝑗
refer to weight and bias of the respective gate (j) and 𝜎 refers to sigmoid activation.
Further, output vector ℎ𝑡 and cell state vector 𝑐𝑡 is calculated as:

𝑐 �̃� = 𝑡𝑎𝑛ℎ(𝑤𝑐 [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐), (21)

𝑐𝑡 = 𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑡 ∗ 𝑐 �̃� , (22)

ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝑐𝑡). (23)

Where 𝑐 �̃� represents the vector on how much update each state vector requires, tanh
is hyperbolic tangent activation. A single unit of LSTM block is shown in Figure 21.
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Figure 21: A block diagram of a single unit in an LSTM network

4.2 Transformers
Introduced in 2017 [34], Transformers were designed to address sequence-to-sequence
tasks, excelling in managing long-term dependencies. This offers a significant
advantage over traditional RNNs and LSTM networks that struggle with issues such as
vanishing gradients or computational inefficiency when dealing with long sequences.
An important innovation in Transformers is the implementation of the self-attention
mechanism, which allows the model to weigh the importance of tokens within the
sequence dynamically.

A Transformer model is composed of an encoder-decoder architecture. The
encoder processes the complete input sequence, condensing it into a fixed-length
vector representation. This encoded information is then passed to the decoder, which
generates the output sequence from the fixed-length vector. Transformers incorporate
the sequence order of words in the input by utilizing positional encoding. In this
method, each word embedded in the input sequence is embedded with a corresponding
positional encoding vector, which represents its location in the sequence.

The operation of a Transformer generally follows these steps [35]:

• The input sequence is transformed into word embeddings and then, positional
encoding encodes the position information of each word, which is fed into the
first encoder.

• The output from the first encoder is further transformed and propagated through
the subsequent encoders in the stack.

• The final encoder’s output in the stack is forwarded to all the decoders in the
decoder stack, setting the stage for generating the output sequence.

This sequence of operations allows Transformers to handle tasks that require
understanding the context and dependencies in an input sequence, such as machine
translation, text summarization, and more.
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Attention mechanism in Transformer: Rather than relying solely on preceding
hidden vectors within the input word embedding, the attention layer in a network
strategically focuses on a weighted average of all word embeddings. By doing so, it
can capture contextual relationships between words regardless of their positions in the
sequence, ensuring that the semantic essence of the text is maintained.

In the Transformer architecture, this attention mechanism is executed by trans-
forming word embeddings into three distinct matrices: queries, keys, and values. Each
word in the sequence gets its own query, key, and value representation through this
transformation, which is achieved by multiplying the word embeddings with three
separate weight matrices that are learned during training. The relationship between
these matrices is fundamental to the attention mechanism. The query from one word
interacts with the key of every other word to generate an attention score, determining
how much focus the model should place on that word.

To illustrate, consider the sentence "False input leads to error". In trying to
represent the significance of the word "False", the attention layer calculates these
attention scores by comparing the query of "False" with the keys of all words in the
sentence. The resulting scores dictate the importance of each word in relation to
"False". After obtaining these scores, they are used to take a weighted average of the
value representations of all words, producing a contextually rich representation for the
word "False". This dynamic allocation of focus allows the model to better understand
the intricate relationships between words in the sequence, especially when faced with
longer sentences or more complex semantic structures.

Furthermore, the self-attention mechanism’s ability to provide different weights
for different words gives the Transformer model its unique capability to handle a
variety of tasks, from machine translation to sentiment analysis. Over time, as the
model is trained, these weights (residing in the query, key, and value matrices) are
continuously updated, ensuring that the model’s representation of sequences becomes
more accurate and nuanced. This continual refinement allows Transformers to capture
subtleties in language that many traditional models might overlook.

4.3 Machine Learning Deployment and Optimization
4.3.1 Large Language Model (LLM) Compression

Even though large language models have taken over NLP with their performance, they
are computation-hungry and demand a lot of resources for training, inference, and
subsequent deployment. The weights and parameters of these large models are in 10s
to 100s of Gigabytes making it challenging to deploy in low-resource applications.
Thus, it has gathered huge research interest to compress the models to reduce model
footprints and enable faster computation because of the high performance of these
large transformer models. The compression must be able to reduce the model’s size
without significantly hurting the performance. The four approaches of compressing
the large models practiced in research and industrial community presented in a survey
paper by Cheng et al. in 2020 [36] are as follows:

47



• Parameter Pruning and Quantization

• Low-rank Factorization

• Transferred/Compact Convolution Filters

• Knowledge Distillation

The extensive details on the theory of LLM compression are out of the scope
of this research. However, knowledge distillation is used in this research because
the original BERT model was computationally heavy for the resources and thus, its
distilled version, DistilBERT was used. Therefore, this section presents some literature
on knowledge distillation and empirically proven distilled models of BERT. There
have been published works claiming that knowledge distillation is the best performance
in terms of accuracy and computational among these four large models compression
methods [37].

Knowledge Distillation [38] [39] is a compression technique in which a smaller
model i.e. student model is trained to mimic the output of the larger model i.e. teacher
model for the same given data set. Hinton et al. [39] in their paper discovered that
the student model trained on a larger model generalized better than the same model
trained from scratch. The reasoning they have put forward in the paper is that the
teacher model gives extra information by showing some wrong predictions are more
wrong than others. The student model learns through either offline distillation, online
distillation, or self-distillation process. During the process of offline distillation the
student model mimics a fine-tuned teacher model’s performance whereas during online
distillation, the training of student models runs together with the teacher model. During
self-distillation, the student model learns from the previous version of itself.[40].

The student model mimics the teacher model based on three kinds of knowledge
in general. They are response-based knowledge, feature-based knowledge, and
relation-based knowledge. There have been many distilled models of BERT such as
DistilBERT[41], TinyBERT [42], and MobileBERT [43]. DistilBERT has reduced
the size of a BERT model by 40%, while retaining 97% of its language understanding
capabilities and being 60% faster [41]. In the DistilBERT paper, they have introduced
triple loss combining language modeling, distillation, and cosine-distance losses. The
cosine-distance loss is used to align the hidden states of the student and teacher model.
The DistilBERT model is a general-purpose pre-trained model that can be fine-tuned
with good performances on downstream tasks, retaining the flexibility and modularity
of larger models [41]. The downstream task of extracting feature embeddings from
log lines in the large pool of log files is utilized in this research.
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5 Implementation of NLP techniques using Machine
Learning

This section describes the text vectorization techniques that were involved in this
research. This chapter presents a detailed description of the dataset, labeling pro-
cedure, preprocessing techniques and tokenization methods that were implemented,
and the methods of generating text embeddings. It also gives a detailed justification
for the selection of certain algorithms for the process of tokenization and generating
word embeddings. The system design of different NLP techniques generating word
embeddings and the use of different machine learning algorithms to classify anomalous
log events into designated labels is shown in Figure 22. As seen in Figure 22, raw
log messages are preprocessed to remove high-cardinality fields like timestamps, and
special characters before applying word embedding algorithms. Then the word em-
beddings are fed into a neural network-based classification model for the classification
of log lines into different classes for the purpose of anomaly detection.

Figure 22: Design framework for the implemented solution of anomaly detection in
logs with NLP techniques
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5.1 Raw Log Messages
This section gives details of the syslog dataset and its attributes used in this research.
The format of the syslogs generated in GE Healthcare is already explained in Section
2.1.1. The syslog dataset is comprised of different log sources, such as hubs, virtual
hubs, and patient monitoring viewer platforms. Each individual log file contains
thousands of log lines with uneven formats. These log files are thus aggregated into a
single file in a ’csv’ format with the respective order of their presence in the source
directory of storage. The log dataset consisted of normal and anomalous events where
the number of anomalous events was rare compared to normal events thus making it a
highly imbalanced dataset. These log lines are then subsequently labeled into different
classes. The details of syslog data composition are given in bullet points below:

• Total number of log files - 150

• Total number of log lines - ∼ 2.5 million

• Total number of classes - 5

The research work started with a large volume of log files and did not have any
explicit strategy on how to approach the problem statement. The problem statement
was to identify specific anomalous log events in a large pool of syslogs data as
mentioned in Section 1. For this purpose, supervised machine learning was chosen for
classification as the most appropriate method for classifying normal and anomalous
log lines. For supervised learning, the first step is to label the data into different classes
and thus labeling of the full dataset was carried out. A custom Python script was
written for this process of labeling the log lines into different classes. We established
a structure such that four different anomalous events were classified into four specific
classes and a fifth class was assigned to incorporate all standard log events. There
were 4 classes for specific keywords and one normal log class totaling 5 classes. The
classes were labeled as 0, 1, 2, 3, 4.

• Log lines containing ASSOCIATED_CONNECTED: 4

• Log lines containing ASSOCIATED_CONNECTION_LOST: 3

• Log lines containing NOT_ASSOCIATED: 2

• Log lines containing ASSOCIATED_NO_BATTERY: 1

• Normal standard log lines: 0

These categories were assigned numerical identifiers ranging from 0 to 4 for
simplicity and ease of processing. These log classes are expected to be expanded over
the course of the study as there are plenty of other anomalous events with certain
attributes. This structure of organizing logs into multi-tiered classifications according
to their attributes provides a structured approach to navigating the area of solving the
problem statement.
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Sampling of Anomalous Syslog Lines
Sub-sampling is a strategic method employed when dealing with large datasets,
especially in situations where computational resources are limited. It involves selecting
a smaller, representative sample from the larger dataset to work with. The main benefit
of sub-sampling is that it reduces computational complexity without losing significant
information, making the processing more time and resource-efficient.

In our case, the implementation of sub-sampling facilitated the development of a
proof-of-concept. This smaller dataset not only made the analysis more feasible given
our resource constraints, but it also enabled us to refine the methodologies before
applying them to the larger dataset.

From a statistical perspective, the key to successful sub-sampling lies in the
distributional representation of the sample. It’s crucial that the sub-sample maintains
the variability and structure of the original data. Therefore, our Python script was
carefully designed to extract log lines with labels as numbers 1, 2, 3, 4 ensuring
that these chosen labels encapsulated the various log data anomalies of interest. By
focusing on these labels, we were able to maintain the integrity of the data while
reducing its size. Although the total number of log lines was reduced to 3240, this
sub-sampled dataset provided comprehensive insights into the patterns and anomalies
for the overall log data.

In the context of our log data, the traditional sub-sampling technique was not
used but rather a stratified sampling was used to extract specific anomalous classes.
This process of sampling does not fully capture the range of normal behaviors in log
data, which could be a limitation in understanding the complete context of log events.
So, it does not represent the true distribution of the log events real scenario. This
potentially impacts the model’s ability to distinguish between normal and abnormal
events accurately. However, this sampling provided us with a manageable small dataset
which was well enough to establish a proof-of-concept, ultimately paving the way for
the optimization of our methodologies for the larger dataset.

5.2 Word Embedding Generation
After the dataset was labeled into distinct classes, it was necessary to convert these
text corpus into numerical representation, often called with term "text vectorization".
With the development of techniques such as text embeddings, the majority of NLP
tasks have demonstrated superior results with the use of these embedding techniques.
Prior to the concept of text embeddings, other techniques such as Bag-of-Words, Term
Frequency-Inverse Document Frequency (TF-IDF), and Latent Semantic Analysis
(LSA) were used. However, these methods had inherent limitations, including a
failure to capture contextual information and semantics of words. Thus, embedding
techniques such as Word2Vec and BERT and its distilled variant DistilBERT are
implemented in this research work for generating embeddings.

Before converting the text into embeddings, it was necessary to preprocess each
log line such that unnecessary elements can be removed from the log lines. The
preprocessing step was kept simple, with an emphasis on maintaining the integrity of
the data. The process of preprocessing was carried out using regex operators in Python.
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The simple preprocessing involved the removal of the timestamp field along with the
facility and version. The special characters such as square brackets ([]), curly braces
(), parentheses (()), quotation marks (’ ’), and inverted commas(" "), semi-colons(;)
were also removed during the course of preprocessing. These elements were deemed
unnecessary as they did not contribute meaningful information for our purpose of
anomaly detection. Finally, all the texts were converted into lowercase to eliminate
the potential inconsistencies. The reason for not undergoing extensive preprocessing
was based on several reasons. Primarily, excessive preprocessing can lead to the loss
of crucial data thus distorting the true representation of original logs. Additionally,
the complexity of the logs can make extensive preprocessing a time-consuming task,
potentially slowing down the overall process without any significant improvement in
the results. The extensive preprocessing was also tested in a separate dataset which
severely slowed down the process and also did not offer any substantial benefit as the
log files are not consistent with the format and use of whitespaces and characters. After
preprocessing the log data, the processed log lines were forwarded for tokenization
and subsequently for the generation of word embeddings. The different tokenization
methods along with different text embedding methods implemented in experiments
during this research work are presented in Section 5.2.1 and 5.2.2.

5.2.1 Word Tokenization and Word2Vec Experiments

As the dataset or number of log lines was relatively large for the available resources
allocated for this research, the experimental framework was designed carefully. First,
it was necessary to sub-sample the dataset into smaller units and proof-of-concept had
to be delivered before processing the full dataset. For that purpose, a Python script
was written to extract those log lines with labels from 1..4 from a large dataset to
sub-sample and label it into 4 classes. These labels were the most interesting labels in
the entire dataset. This process resulted in a fairly small dataset with 3240 log lines
with 4 anomalous classes. The composition of a smaller sampled dataset is given
below:

• Total number of log lines in a sampled dataset: 3240

• Total number of log lines with class 1 : 241

• Total number of log lines with class 2 : 75

• Total number of log lines with class 3 : 787

• Total number of log lines with class 4 : 2141

The dataset was comprised of data points and labels and stored in "CSV" format.
The dataset was processed using the Pandas library [44] leveraging "DataFrame"
feature in the library. Python regular expressions were used to remove the high-
cardinality fields from the dataset. Then, the dataset was partitioned into training and
testing sets in an 80/20 ratio, leveraging the scikit-learn [45] library, with a consistent
random seed of 42 and stratification of the labels. This stratification ensured that even
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in the face of imbalanced data, each class was proportionally represented during the
split. Setting a random seed to 42 ensures consistent data splits, thus facilitating the
reproducibility of results. Prior to training the Word2Vec models, this partitioning
method was crucial to prevent data leakage, thereby minimizing the risk of model
overfitting and ensuring result consistency between training and testing sets.

Word2Vec Models for Word Embedding Generation:
Following the preprocessing of the dataset, the Word2Vec of family algorithms, CBOW,
and skip-gram model were trained to generate word embeddings in an unsupervised
manner. The algorithmic process of training the Word2Vec models is presented in
Algorithm 1. Gensim [46], which is an open-source Python library for processing
raw, unstructured digital texts (“plain text”) using unsupervised machine learning
algorithms was used to train the Word2Vec models. The output of a trained Word2Vec
model is a set of word embeddings. Each word in the model’s vocabulary is represented
by a dense vector of fixed size. These vectors capture semantic information about words
based on the context in which they appear in the training corpus. The embeddings
were generated and those embeddings were used for downstream classification tasks
to classify these 4 using machine learning classifiers.

Algorithm 1 Word2Vec Log Embedding
Require: Log lines {𝑙 : 𝑙 ∈ 𝐿}
Ensure: Word embeddings {𝑣𝑤 : 𝑤 ∈ 𝑊}

1: Initialize WordEmbeddings as an empty list
2: Initialize Word2VecModel from gensim.models
3: for all log line 𝑙 in 𝐿 do
4: Preprocess 𝑙 to get 𝑝𝑙 (e.g., removing timestamps or other non-relevant data)
5: Tokenize 𝑝𝑙 to get words 𝑤𝑙
6: Add 𝑤𝑙 to the corpus for training
7: end for
8: Train Word2VecModel on the corpus
9: for all log line 𝑙 in 𝐿 do

10: for all word 𝑤 in 𝑤𝑙 do
11: Pass 𝑤 to Word2VecModel to get 𝑣𝑤
12: Append 𝑣𝑤 to WordEmbeddings
13: end for
14: end for
15: return WordEmbeddings
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5.2.2 Subword Tokenization and BERT/DistilBERT Encoder

Following the experiments with the static word embedding models (Word2Vec), the
quality of the generated word embeddings was evaluated. Upon evaluation, it was
found that the static word embeddings had certain limitations. Keeping this in mind,
we experimented with contextual word embedding models which are more dynamic
and preserve the semantic relationship between words used in different contexts.
After the comparative study of various alternatives, the BERT pretrained model was
chosen to generate word embeddings in the form of feature vectors. The selection
was motivated by a trade-off between the model parameters and resources available to
compute. As in Word2Vec experiments, similar preprocessing techniques were used
to remove the high-cardinality fields and special characters from the data.

The tokenization process in the Word2Vec family of algorithms was carried out
at word level to create word tokens using whitespace tokenization. Because of the
inconsistent use of characters and spaces, it was essential to evaluate the performance of
subword tokenization techniques to produce small subwords as tokens. The tokenizers
splitting text int subword level are called trainable tokenizers. As BERT is built on
Transformer encoder architecture as mentioned in Section 4.2, it was a perfect choice
to encode the features into embeddings from preprocessed log lines.

Huggingface [47], which is a hub of open-source models for Natural Language
Processing, computer vision, and other fields, was used to download pretrained BERT
"bert_base_uncased" tokenizer and encoder to be applied to the input data. As in earlier
experiments, the models were tested in a small dataset initially to generate embeddings
from pretrained model and subword tokenizer. The process began with the input of
each log line into a tokenizer ("bert_base_uncased") after simple preprocessing steps.
The same level of preprocessing for the log lines was done as in Word2Vec tokenization
5.2.1 with the removal of some special characters using regex operations in Python.
As some of the log lines were very long sequences of words, a maximum length of 512
was used as a hyperparameter in the tokenizer to get tokens. Then obtained tokens were
split of words into smaller units. The log lines are composed of error keys and codes,
and other protocol codes, which are split into smaller units make the occurrences of
new keys to be included in the vocabulary. Similarly splitting of words into sub-words
made the embeddings robust to inconsistent use of spaces and characters in log lines.
For example "managerfile" is treated as a familiar word if "mana", "##ger" and "##file"
tokens are present in the vocabulary of subwords. These obtained subword tokens are
passed into pretrained model ’bert_base_uncased’ imported from Huggingface library.
BERT pretrained model acted as a feature extractor to the ingested log data corpus.
The outputs were obtained from the last hidden state of the transformer model as this
is used as a feature extractor. The vectors obtained from the last hidden state is a tensor
containing the final embedding vector of each token in the log lines. Then, the pooling
operation is carried out using the Numpy library’s mean function for all the vectors
in the list. Pooling operation is a technique that takes the collection of vectors and
condenses them into a single vector. By taking the mean, a single vector was created
that represented the entire log line based on the embeddings of individual tokens. This
operation was done to represent each log line as a single vector in a large log corpus,
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which can be considered as word embedding which represents the entire sentence.
These embeddings are stored as numpy arrays which are used for downstream tasks.

As the BERT model has 110 million parameters thus making it computationally
heavy even to use as a feature extractor. Thus it became infeasible to use it for a full
dataset with 2.5 million log lines. Thus, model compression techniques were studied to
reduce the model weights and parameters. It was found DistilBERT which is a distilled
version of BERT produced comparable results to BERT. This pretrained model was
already implemented in Huggingface [47] so the pretrained DistilBERT model from
Huggingface along with a pretrained tokenizer was used for the full dataset to reduce
the computational time. First, it was tested in a small dataset and after the comparable
results, it was then applied to the full dataset. The preprocessing and tokenization
followed the same steps as in the BERT pretrained tokenizer to obtain the encoded
inputs. Then, similar to the BERT pretrained model, DistilBERT was fed with those
encoded inputs and the process of obtaining the embeddings followed similar operations
as in the BERT experiment. The embeddings generated from the DistilBERT in a
full dataset was used for the downstream task of classification. Algorithm 2 shows
the pseudo code for the implementation of using pretrained BERT/DistilBERT as a
feature extractor to generate contextual word embeddings as semantic vectors

Algorithm 2 BERT/DistilBert Log Embedding
Require: Log lines {𝑙 : 𝑙 ∈ 𝐿}, Pre-trained Bert/DistilBert model and associated

Bert/DistilBert Tokenizer
Ensure: embeddings {𝑣𝑙 : 𝑙 ∈ 𝐿}

1: Initialize Embeddings as an empty list
2: Initialize BertModel/DistilBert from pre-trained BERT/DistilBert
3: Initialize BertTokenizer/DistilBert associated with the pre-trained BERT/DistilBert

4: for all log line 𝑙 in 𝐿 do
5: Preprocess 𝑙 to get 𝑝𝑙 (e.g., removing timestamps or other non-relevant data)
6: Tokenize 𝑝𝑙 using BertTokenizer/DistilBertTokenizer to get tokens 𝑡𝑙
7: Convert 𝑡𝑙 to InputIDs 𝑖𝑙 with padding and truncation
8: Pass 𝑖𝑙 to BertModel/DistilBert to get HiddenStates ℎ𝑙
9: Calculate 𝑣𝑙 as the mean of ℎ𝑙

10: Append 𝑣𝑙 to Embeddings
11: end for
12: Form a matrix 𝑋 whose columns are semantic Embeddings, and let 𝑢 be its first

singular vector
13: for all 𝑣𝑙 in Embeddings do
14: 𝑣𝑙 ← 𝑣𝑙 − 𝑢𝑢𝑇𝑣𝑙
15: end for
16: return Embeddings
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5.3 Neural Network-based Classification
After the process of generation of word embeddings from the data corpus, machine
learning downstream tasks were performed for the purpose of anomaly detection using
classification models. Open-source libraries like Numpy, Pandas, and TensorFlow with
Keras [48, 49] were used. The experiments were conducted on two computers with
processors operating at individual levels. The CPU capabilities were 32 GB and 64
GB of RAM. The Anaconda [50] was used as a virtual environment which helped to
manage the experiments. Similar to word embedding experiments, machine learning
experiments were conducted in two separate datasets and their respective embeddings.
As the experiments were conducted with relatively constrained computation resources,
the experiments had to be crafted carefully. The machine learning experiment was
started with a simple Multi Layer Perceptron (MLP) as a base classifier. The MLP
classifier achieved good performance with Word2Vec embeddings. The MLP classifier
was then followed by the use of Long Short Term Memory (LSTM) models. The
literature on log analysis and anomaly detection performed in public datasets showed
the extensive use of LSTM networks for better classification results.

5.3.1 Multi Layer Perceptron Classifier

Multi Layer Perceptron (MLP) was used as a base classifier to check the quality of word
embeddings generated from Word2Vec models. TensorFlow [48] version 2.10 was
used throughout this research work. MLP as a classifier was used only in a sampled
dataset with 3240 log lines. This is motivated by the hypothesis that MLP would act
as base classifier which would be a stepping stone towards more sophisticated neural
network architectures. MLP is a simple neural network architecture only composed
of Dense layers connected in a feed-forward network. The input layer was a Dense
layer with 128 nodes or neurons. As the embeddings generated from Word2Vec were
of dimension 100, the input shape of embeddings was assigned as 100. Activation
function ’relu’ was used. The hidden layer was again the Dense layer with 64 nodes
with ’relu’ activation function. Finally, the Dense layer with 4 output nodes was
assigned with the softmax function.

The MLP model was trained using a cross-entropy loss function with adam
optimizer. The model was trained for 20 epochs with a batch size of 16 in a training
corpus with the corresponding labels in a supervised manner. The trained model was
thus evaluated in a test corpus. The test corpus was converted into embeddings using
the trained Word2Vec model from the training corpus. The trained Word2Vec model
acted as a feature extractor for the test data to be evaluated during inference. The
pseudo-code used for the MLP classifier is presented in Algorithm 3.
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Algorithm 3 MLP Classification
Require: Training vectors 𝑋train, Training labels 𝑌train, Testing vectors 𝑋test
Ensure: Predicted labels 𝑌pred

1: Define MLP architecture: Dense layer with 128 units (ReLU activation), Dense
layer with 64 units (ReLU activation), and a Dense layer with 4 units (softmax
activation)

2: Fit MLP model on 𝑋train and 𝑌train for a specified number of epochs
3: Predict 𝑌pred on 𝑋test
4: return 𝑌pred

5.3.2 Long Short Term Memory Classifier

The generated embeddings were then used for downstream classification tasks with
the LSTM network. A shallow LSTM network was used because of an imbalanced
and relatively small number of samples for anomaly classes. By opting for a shallow
LSTM, the model’s complexity was effectively limited, reducing the risk of overfitting
in the context of the small dataset. Shallow LSTMs have fewer layers and parameters,
making them less prone to memorizing noise in the training data, and promoting better
generalization to the validation and test set.

The number of layers and cells used in all the experiments was consistent throughout
all the experiments carried out during the research. This was mainly motivated for
the purpose of comparison of the results from static and contextual embeddings
mainly Word2Vec and BERT pretrained models and its distilled version DistilBERT.
TensorFlow [48] version 2.10 was used for all the experiments.

The number of LSTM cells in the input layer was 128 and the number of cells
in the hidden layer was 64 with the output Dense layer consisting of 4 or 5 layers
depending on the number of classes to be classified with a softmax function. On a
small sub-sampled dataset, the output layer was composed of a Dense layer with 4
neurons whereas the full dataset had 5 neurons with softmax output function. The
layers were stacked in a sequential manner.

The input to the LSTM using word embeddings generated from Word2Vec was
of dimension (1, 100) as the embeddings generated consisted of 100 dimensions.
The LSTM model was trained with adam optimizer with categorical_crossentropy
as a training loss function. Adam optimizer was chosen for this task because of its
low memory requirements and less effort in initializing and tuning of learning rate.
Word2Vec model for word embeddings small dataset was mainly purposed for creating
a base classifier using MLP and LSTM networks. Adam performed exceptionally well
for the task so the choice of adam was also continued for the training with a full dataset.
However, other optimizers such as Stochastic Gradient Descent (SGD) with tuning a
learning rate could be experimented with to compare and evaluate performance as a
future work. The model was trained for 30 epochs for a small sampled dataset for the
embeddings generated from CBOW and skip-gram Word2Vec models. The training
process underwent 20 epochs for the embeddings generated from the DistilBERT
model.
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After the model training was completed, the test set was evaluated with the obtained
trained LSTM model. First, the raw test data went through the same preprocessing
steps like removing some unwanted characters and timestamps as in training data.
Then the test data was fed to the trained Word2Vec model to obtain test embeddings
which can also be termed test set vectors. The trained Word2Vec model acted as a
feature extractor for the test data which was fed to the trained LSTM model. The
pseudo-code for the LSTM classifier is presented in Algorithm 4.

Algorithm 4 LSTM Classification
Require: Training vectors 𝑋train, Training labels 𝑌train, Testing vectors 𝑋test
Ensure: Predicted labels 𝑌pred

1: Standardize 𝑋train and 𝑋test
2: Reshape 𝑋train and 𝑋test to three dimensions for LSTM input
3: Define LSTM architecture: LSTM layer with 128 units (return sequences), LSTM

layer with 64 units, and a Dense layer with 4 units (softmax activation)
4: Fit LSTM model on 𝑋train and 𝑌train for specified epochs
5: Predict 𝑌pred on 𝑋test
6: return 𝑌pred

58



6 Experiments
This chapter presents the results of all the experiments conducted during this thesis re-
search. The experiments involved multiple algorithms for generating word embeddings
and multiple machine learning models for the classification of those word embeddings
in a supervised method. Section 6.1 gives insights on evaluation metrics and section
6.2 presents the results in numerical format along with the confusion matrix with all
the metrics described in Section 6.1.

6.1 Evaluation Metrics
In the domain of machine learning and data analytics, accuracy is frequently used as
a primary metric for evaluating the performance of classification models. However,
its utility becomes limited in the case of imbalanced datasets—where one class
significantly outnumbers the other classes. Specifically, for datasets where the majority
class dominates, a naive classifier predicting solely the majority class can yield high
accuracy, even if it entirely misclassifies the minority class. Such a scenario is not
merely hypothetical as it is the case with log anomalies where the occurrence of
a single anomalous event is seen in hundreds or thousands of normal log events.
Relying solely on accuracy in these cases obscures the model’s failures, rendering
it an unreliable and potentially misleading metric. Thus, for imbalanced datasets,
it is imperative to incorporate more granular metrics, such as precision, recall, and
the F1 score, which offer a nuanced understanding of a model’s performance across
multiple classes. To evaluate these metrics we have used a confusion matrix for the
performance of a machine classifier in a test dataset. Some of the terminologies used
for the calculation of these evaluation metrics are as follows:

1. True Positive (TP): When a prediction is both correct and positive, it is referred to
as a true positive.
2. False Positive (FP): When a prediction is incorrect but still positive, it is referred to
as a false positive.
3. True Negative (TN): When a prediction is both correct and negative, it is referred
to as a true negative.
4. False Negative (FN): When a prediction is incorrect and negative, it is referred to
as a false negative.

Based on these technical specs, the evaluation metrics such as accuracy, precision,
recall, and F1-score are calculated. The brief introduction of aforementioned the
evaluation metrics are as follows:

▶ Accuracy: Accuracy is the ratio of the total number of correct predictions to the total
number of images in a dataset. The total number of correct predictions is calculated by
summing the true negatives (TN) and true positives (TP). In mathematical notation,
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accuracy (AC) can be expressed as:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃 (24)

The ideal value for accuracy is 1, indicating perfect predictions, while the lowest value
is 0, indicating completely incorrect predictions.

▶ Recall: Recall is the ratio of true positive predictions to the total number of positive
predictions. The total number of positive predictions is calculated by summing the
true positives (TP) and false negatives (FN). Therefore, the formula for recall can be
expressed as:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (25)

The ideal value for recall is 1, indicating that all positive instances are correctly
identified, while the lowest value is 0, indicating that no positive instances are correctly
identified.

▶ Precision: Precision is the ratio of true positives to the sum of true positives and
false positives. Therefore, the formula for precision can be expressed as:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 (26)

The ideal value for precision is 1, indicating that all positive predictions made by the
model are correct, with no false positives, while the lowest value for precision is 0,
indicating that there are no correct positive predictions, resulting in only false positives.

▶ F-measure: F-measure (F1-score) combines precision and recall into a single value
to indicate the performance of the model.

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 × Precision × Recall
Precision + Recall

(27)

The ideal value for F-measure (F1-score) is 1, indicating that the model achieves an
optimal balance between precision and recall, resulting in the best possible overall
performance.
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6.2 Results
Recalling from Section 5, the full dataset used in this research consisted of ∼ 2.5
million log lines, with around ∼ 3240 anomalies (i.e., four classes of anomalies), while
the remaining log lines were considered normal. This resulted in a total anomaly
distribution of 0.1261%. This kind of distribution is commonly encountered in regular
log streaming sessions in real-world scenarios. Therefore, as explained in Section 5.2.1,
our first step involved analyzing a subset of samples containing ∼ 3240 anomalies.
The objective was to classify the four different classes of anomalies in a sampled
dataset and select the best-performing model with a trade-off between performance
and computational cost. Once the selection of the suitable model was completed, we
would then proceed to train the model on the full dataset consisting of 2.5 million log
lines with the best-performing model. The goal was to classify the full dataset into
five labels, where class 0 is attributed to the normal category.

Comparative Study of Best-performing Word Embedding Model
In order to evaluate the effectiveness of various word embedding techniques, we
conducted a comparative study on a smaller, sampled dataset. Different combinations
of word embedding methods and a constant discriminator/classifier were utilized
in the experiments. The rationale behind such a methodology was to understand
the distinct ways in which these methods generate word representations, and how
these disparities impact the performance of the classifier. Different word embeddings
capture semantic and syntactic relations between words in unique ways, which can
dramatically influence the outcome of the task. Therefore, comparing embeddings
created by different algorithmic methods offers insights into techniques that are most
suited for the specific application.

In our study, we employed a variety of word embedding techniques, including
Word2Vec with CBOW and Skip-Gram variants, BERT, and DistilBERT. In all the
cases, we kept the discriminator constant, specifically MLP, while changing the word
embedding models. This strategy allowed us to eliminate potential confounding
factors, thereby enabling a more direct and isolated assessment of the impact each
word embedding method had on the overall model performance. The preprocessing
steps remained consistent across all the word embedding models. We implemented a
simple preprocessing procedure to ensure that any variations observed in the model
performance could be attributed solely to the differences in the word embedding
methods and not to any discrepancies in preprocessing.

This comparative study was conducted in a smaller sampled dataset before being
implemented on a full dataset with a large volume of log data. The process of training
machine learning models, especially with vast volumes of data, can be both time-
consuming and demanding in terms of computational resources. By initially assessing
the performance of different word embedding techniques on a smaller scale, we were
able to identify the most effective methods. This approach, in turn, saved significant
time and computational resources when scaling up to larger datasets. It ensured an
efficient and cost-effective strategy for the overall machine-learning process, which
was critical given the complexities associated with handling large datasets.

61



We evaluated the performance of four different combinations of embedding generation
and machine learning classifiers on the subset of ∼ 3240 anomalies. We present our
evaluation result for these combinations:

▶Combination 1: Word2Vec (CBOW) as Embedding Generator+ MLP Classifier:
After the sampling of 3240 log lines of 4 classes and preprocessing of those log

lines, word embeddings were generated using the Word2Vec algorithm (CBOW) model
as presented in Algorithm 1. First, we performed a train/test split of 80/20 ratio to split
the separate dataset into separate train and train sets. Then, simple prepossessing was
applied and the training dataset was trained using the CBOW variant of Word2Vec
model. The experimental details of the Word2Vec model is already presented in 5.2.1.
The generated word embeddings were trained using the MLP classifier with a softmax
loss function. The results obtained on a test set using this combination is presented as
a confusion matrix in Table 1.

It is well known that a confusion matrix is used in machine learning and statistics to
understand the performance of a classification model. It shows the true positive, false
positive, true negative, and false negative values for the model predictions compared
to the actual class labels. Here in Table 1, the rows represent the actual classes, while
the columns represent the predicted classes of a classification model. For a class X,
the entry at row X, column X gives the count of true positives (TP), i.e., the number
of instances correctly identified as class X. Entries outside the main diagonal give the
count of misclassifications. The diagonal entries represent the correct classifications
for each class and this structure remains consistent throughout all the experiments. It
can be observed in Table 1 that 42 instances were correctly identified (True Positives)
while 6 instances were incorrectly classified for class label 1. 13 instances were
correctly identified for class label 2 while 2 instances were misclassified as class 3.
Similarly, 134 instances out of 158 instances were correctly identified for class 3 while
24 of them were misclassified. Here, 4 instances were misclassified as class 1 and
4 instances as class 4. Similarly, for class 4, 364 instances were classified correctly
out of 428 instances. Here, 63 instances were classified incorrectly as class 2, and 1
instance was misclassified as class 3. We also observe a combined macro-averaged
precision of 0.75, a macro-averaged recall of 0.83, an overall accuracy of 0.83, and a
macro-averaged F1 score of 0.72. In summary, the model performed well for class 1,
class 3, and class 4 but struggled to correctly identify class 2. This is indicative of the
minority class being harder for the model to distinguish, possibly due to them being
less represented in the training data.

Table 1: Confusion matrix for Combination 1
Actual/Predicted Class 1 Class 2 Class 3 Class 4

Class 1 43 5 0 0
Class 2 3 12 0 0
Class 3 0 24 120 14
Class 4 0 63 1 364
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▶ Combination 2: Word2Vec (Skip-gram) as Embedding Generator + MLP
Classifier:

Next, the experimental study was done with the combination skip-gram variant of
Word2Vec with MLP classifier. All the parameters and hyperparameters were kept the
same as in the earlier experiment of Word2Vec with the CBOW model with an addition
of "sg=1". The ratio of train/test split and preprocessing steps remained the same
as in combination 1. The word embeddings that were generated from the Word2Vec
skip-gram model were trained using an MLP classifier with a softmax function in the
output layer. The parameters and hyperparameters in MLP also remained identical
as in combination 1. Our result using this combination is presented as a confusion
matrix in Table 2.

As we can see in Table 2, 41 instances were correctly identified (True Positives) for
class 1 while 7 instances were incorrectly classified. Among the misclassifications, 5
instances were misclassified for class 2, and 2 instances were misclassified for class 3.
For class 2, 11 instances were classified correctly while 4 instances were misclassified.
Similarly, 133 instances out of 158 instances were correctly identified for class 3 while
25 instances were misclassified. Here, 24 instances were misclassified as class 2, and
a single instance was misclassified as class 1. Similarly, for class 4, 364 instances
were classified correctly out of 428 instances. Here, 63 instances were misclassified
as class 2, and 1 instance was misclassified as class 3. We observed a macro averaged
precision of 0.74, recall of 0.85, F1-score of 0.74, and an overall accuracy of 0.85.

Table 2: Confusion matrix for Combination 2
Actual/Predicted Class 1 Class 2 Class 3 Class 4

Class 1 41 5 2 0
Class 2 4 11 0 0
Class 3 1 24 133 0
Class 4 0 63 1 364

▶ Combination 3: BERT (Subword Tokenization) as Embedding Generator +
MLP Classifier:

After the experiments with static word embedding models utilizing Word2Vec for
both CBOW and skip-gram models, we proceeded to further experiments with contex-
tual embedding models. For this, we used the Bidirectional Encoder Representations
from Transformers (BERT) pretrained model to generate word embeddings. The
experiments conducted with the Word2Vec family of algorithms resulted in numerous
misclassifications, prompting us to explore a more advanced, context-aware BERT
model. A detailed explanation of the BERT experimental setup has been already
presented in Section 5.2.2, while the outcomes are presented in the form of a confusion
matrix in Table 3.

As seen in Table 3, the combination of a BERT model as an embedding generator
and MLP as a classifier achieved almost perfect results in all of the evaluation metrics.
This implies that BERT generates rich context-aware feature embeddings. However,
this came with a price of computational cost. As BERT pretrained model has 120
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million parameters, the process of feature extraction was a slow process. With the
available computation resources in our hands, it took almost 46 seconds to process
a batch of 128 log lines. This turned out to be a significant hurdle which acted as a
bottleneck for deployment as the computational resources should be feasible along
with the model’s performance.

Table 3: Confusion matrix for Combination 3
Actual/Predicted Class 1 Class 2 Class 3 Class 4

Class 1 48 0 0 0
Class 2 0 15 0 0
Class 3 0 0 158 0
Class 4 0 0 0 428

▶ Combination 4: DistilBERT as Embedding Generator + MLP Classifier:
The DistilBERT pretrained model was identified as an alternative to the computa-

tionally demanding BERT model without compromising performance. Then, MLP
was used as a discriminator/classifier model was used to classify the classes. The
embeddings from DistilBERT were generated using similar preprocessing and mean
pooling steps as in BERT in the earlier experiments. The results are presented in the
confusion matrix in Table 4.

We observed impressive results in an experimental study with a combination of
DistilBERT to extract embeddings/features and LSTM classifier. All the instances of
class 1, class 3, and class 4 were classified correctly. There were 5 misclassifications
out of 15 instances for class 2 where they were misclassified as class 3. We observed a
macro average precision of 0.99, recall of 0.92, accuracy of 0.99, and an F1 score of
0.95. The misclassification occurred with the log class which had the fewest training
examples which is justified in supervised learning. The computational cost also aligned
with the paper [41] as it took an average of 22 seconds to extract embeddings for 128
log lines. This was consistent with the authors’ claim that DistilBERT is 60% faster
retaining 97% of the BERT’s performance.

Table 4: Confusion matrix for Combination 4
Actual/Predicted Class 1 Class 2 Class 3 Class 4

Class 1 48 0 0 0
Class 2 0 10 5 0
Class 3 0 0 158 0
Class 4 0 0 0 428

Selection of Best Performing Word Embedding Model
The comparative evaluation of word embedding models revealed distinctive strengths
and drawbacks of Word2Vec, BERT, and its lightweight version, DistilBERT.
Word2Vec with both of its variants was computationally effective and also pro-
duced satisfactory results with an accuracy of approximately 85 percent per class.
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However, for the problem statement of automated log analysis, this level of perfor-
mance was not sufficient for production and deployment. Further, Word2Vec models
encountered problems with Out-of-Vocabulary (OOV) words. As we move towards
larger datasets, the number of OOV words can be expected to increase, potentially
leading to a regression in performance. While BERT emerged as the most robust
model in terms of performance, it presented significant computational demand, a
factor that could not be overlooked in the context of processing larger datasets. On the
other hand, DistilBERT proved itself to be an effective alternative to BERT. Despite
its smaller size and faster computational speed, DistilBERT managed to retain the
strong performance characteristics of its teacher model, BERT. Considering these
observations, it became evident that the DistilBERT struck the right balance between
performance and computational efficiency. Therefore, it was chosen as a preferred
word embedding generator for future experiments involving the full dataset.

Experiments for Selection of the Best Performing Classifier
Following the selection of DistilBERT as our primary word embedding model, the next
stage of our research involved evaluating the performance of various machine learning
classifiers. The goal of this study was to determine the most effective classifier for
distinguishing between normal operations and different types of anomalies in log data.
For this, we utilized DistilBERT-generated embeddings as a fixed input across all tests,
focusing our variations on the classifier. This contrasts with our previous approach,
where the word embedding model was changed whereas the classifier model remained
constant.

The classifiers chosen for evaluation were a mix of simpler models, including
Logistic Regression, and MLP, and more sophisticated models such as the LSTM
network. The use of simpler and more sophisticated models was to understand how
changes in the complexity of the classifier affected the performance of our system.
This approach could offer insights into the model complexity of the classifier and
its performance in terms of accuracy, precision, and recall. The results of this
comparative study, which were obtained by varying the classifier while keeping the
word embeddings model constant, are presented in the following section under the
names of the respective combinations used.

▶ Combination 5: DistilBERT as Embedding Generator + Logistic Regression
Classifier:

Logistic Regression is the simplest machine learning classifier used in the field of
machine learning. The theoretical details of logistic regression can be found in [51].
The use of Logistic Regression in this research is to understand how the classifier
model impacts the classification of generated word embeddings. As in MLP, Logistic
Regression as a classifier was used only in a sampled dataset with 3240 log lines. The
train and test split ratio of the dataset was the same as in MLP.

The combination of DistilBERT with Logistic Regression demonstrated varying
performance across the different classes. For Class 1, the model successfully predicted
23 instances correctly. However, it also misclassified 3 instances as Class 2 and 22
instances as Class 4. In the case of Class 2, the classifier failed to classify any instances,
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instead, incorrectly classifying all 15 instances as Class 4. The model’s performance
was better with Class 3, correctly classifying 136 instances out of 158 instances, but
also incorrectly predicting 22 instances as Class 2. For Class 4, the model showed
better performance, correctly predicting 428 instances, while incorrectly classifying
54 instances as Class 2. In summary, while the DistilBERT and Logistic Regression
combination showed good performance for Class 3 and Class 4, it struggled with Class
1 and Class 2. The results as a confusion matrix are shown in Table 5. We obtained
a macro-averaged precision of 0.68, recall of 0.73, accuracy of 0.82, and F1-score
of 0.7. Accuracy is not always the right metric for multi-class classification in an
imbalanced dataset as we can see in the results. Per-class accuracy of class 2 is 0,
however the overall accuracy is 82 %.

Table 5: Confusion matrix for Combination 5
Actual/Predicted Class 1 Class 2 Class 3 Class 4

Class 1 23 0 3 22
Class 2 0 0 0 15
Class 3 0 22 136 0
Class 4 0 54 0 374

▶ Combination 6: DistilBERT as Embedding Generator + LSTM Classifier: The
combination of DistilBERT and Logistic Regression did not produce satisfactory results
in our experiment. The experiment showed that the performance of Logistic Regression
was inferior when compared to the combination of DistilBERT embeddings and MLP
classifier which was previously tested during the word embeddings assessment phase.
This outcome was somewhat expected, given that Logistic Regression is a simpler
model compared to MLP. This led us to explore a more advanced classifier, namely the
Long Short-Term Memory (LSTM) model. The results of the experiment involving
the DistilBERT + LSTM combination are presented in Table 6.

We can see impressive results with a combination of DistilBERT features and
the LSTM classifier. All the instances of class 1, class 3, and class 4 were classified
correctly. There were 2 misclassifications out of 15 instances for class 2 where they
were misclassified as class 4. We observed a precision of 0.99, a recall of 0.9787,
an accuracy of 0.99, and an F1 score of 0.98. The computational cost also aligned
with the paper [41] as it took an average of 22 seconds to extract embeddings for 128
log lines. This was consistent with the authors’ claim that DistilBERT is 60 % faster
retaining 97 % of the BERT’s performance.

Table 6: Confusion matrix for Combination 6
Actual/Predicted Class 1 Class 2 Class 3 Class 4

Class 1 48 0 0 0
Class 2 0 13 0 2
Class 3 0 0 158 0
Class 4 0 0 0 428

66



Selection of Best Performing Classifier and Implementation in Full Dataset
The comparative study of classifier models was conducted in embedding generated

from DistilBERT using Logistic Regression, MLP, and LSTM and results are presented
in confusion matrices in Table 4, 5, 6. Based on the results, Logistic Regression, the
simplest of the three models, performed notably worse, possibly due to its inability to
capture complex feature relationships in the data. On the other hand, both the MLP and
LSTM models showed significant improvements in performance, performing nearly
on par with each other. This indicates that they are both capable of capturing more
intricate patterns in the data.

However, the LSTM model was chosen as the superior model despite this.
The ability of LSTM ability to retain sequential information is critical, especially
considering the nature of text data where order matters. This sequential understanding
provides additional context which can enhance model performance and robustness.
Moreover, as we consider scaling up to larger datasets and adding additional features
such as timestamps as a part of future work, the LSTM’s capacity to handle sequence
data could become even more valuable. MLP, while it performed well on this
dataset, may not handle these challenges as effectively due to its lack of sequence
understanding. It assumes that inputs are independent of each other, which may not
be the case with larger datasets and timestamped data. In conclusion, while both
MLP and LSTM showed strong performance, the LSTM’s potential for scalability and
enhanced handling of sequential data made it the preferable choice for this task and
for possible future extensions of the work.

After the selection of a suitable word embedding model and classifier, we progressed
to apply the suitable combination to our full dataset, which presents a more complex
task due to its increased volume and number of classes. The dataset is heavily skewed,
with normal logs accounting for approximately 99.87 % of the total log lines. This
imbalance in classes represents a challenging condition for machine learning models.

Initially, we applied our selected model to five classes, including the four previously
tested classes and a new class representing normal logs. This setup allowed us to
evaluate the performance of our chosen combination of DistilBERT and LSTM under
conditions and data distributions closer to real-world scenarios. Subsequently, we
expanded our system further by introducing an additional class, allowing us to examine
the scalability of our selected approach and its effectiveness when handling an even
greater number of classes.
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▶ Combination 7: DistilBERT as Embedding Generator + LSTM Classifier on a
full dataset:

From our series of experiments, it was proven empirically that DistilBERT was the
most suitable balance between performance and computational efficiency. Therefore,
we chose DistilBERT as our primary feature extractor for the task at hand. Combined
with the LSTM classifier, which has a proven ability to effectively process sequential
data and capture long-term dependencies, the pairing turned out to be a powerful and
resource-efficient solution. We trained our final model on a full dataset, consisting of
the DistilBERT encoder and LSTM classifier. The results are shown in Table 7.

In this experiment, class 0 was assigned to the normal log events which represented
99.8739 % of the log lines. This was an enormous class imbalance in the dataset.
Despite a huge imbalance in the dataset, performance aligned with the small sampled
dataset. As we can see in Table 7, all the instances of class 0 which represented the
normal log events were predicted correctly. There was 1 misclassification out of 46
instances of log lines belonging to class 1 predicting 45 correctly. There was relatively
dismal performance in class 3 where the trained model predicted 10 correct instances
out of 15 and 5 instances were misclassified as class 4. For class 3, 157 instances were
classified correctly and 1 instance was predicted wrongly to class 2. All the instances
of test log lines for class 4 were predicted correctly. We obtained macro-averaged
precision of 0.99, recall of 0.92, F1-score 0.95, and accuracy of 0.999.

Table 7: Confusion matrix for Combination 7

Actual/Predicted Class 0 Class 1 Class 2 Class 3 Class 4
Class 0 512846 0 0 0 0
Class 1 0 45 1 0 0
Class 2 0 0 10 0 5
Class 3 0 1 0 157 0
Class 4 0 0 0 0 428
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Scaling the number of classes
As already discussed, generating word embeddings is an unsupervised task and is
independent of the class labels. This approach ensures that the focus remains on
representing the raw data as effectively as possible, which provides a degree of
scalability to the system. In our experiment, we initially created embeddings for our
dataset, disregarding the class labels, and saved the obtained embeddings in a ’.npy’
file. We wanted to test if the model could effectively handle an increase in the number
of classes so that the same embeddings could be used for a variety of downstream
tasks. Hence, we introduced an additional class, which was initially a part of the
’normal’ log class and labeled as ’0’. This new class was designated as ’5’ and it was
identified as ’error event’.

▶ Combination 8: DistilBERT as Embedding Generator + LSTM Classifier on a
full dataset with 6 classes:

Table 8 shows the confusion matrix of 6 classes where the word embeddings
generated from DistilBERT are fed into an LSTM classifier. We can see that all the
instances of class 0 which represented the normal log events were predicted correctly.
There were 2 misclassifications out of 48 instances of log lines belonging to class 1
predicting 46 instances correctly and 2 misclassified as class 1. As in combination 7,
there was relatively dismal performance in class 2 where the trained model predicted
9 correct instances out of 15 where 3 instances were misclassified as class 2, and 3
instances were misclassified as class 4. For class 3, all 157 instances were classified
correctly. For class 4, 427 instances were predicted correctly out of a total of 428
instances. All the instances of test log lines for class 5 were predicted correctly. We
obtained a macro-averaged precision of 0.96, recall of 0.93, accuracy of 0.99, and
F1-score of 0.94.

Table 8: Confusion matrix for Combination 8

Actual/Predicted Class 0 Class 1 Class 2 Class 3 Class 4 Class 5
Class 0 512308 0 0 0 0 0
Class 1 0 46 2 0 0 0
Class 2 0 3 9 0 3 0
Class 3 0 0 0 157 0 0
Class 4 0 0 1 0 427 0
Class 5 0 0 0 0 0 539
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Summary of Results:
A comprehensive experiment of eight distinct combinations of word embedding

methods and machine learning classifiers was conducted and results were obtained
which are presented above in the confusion matrix with the evaluation metrics. Initially,
we began by identifying the best and most suitable word embedding model through
a comparative evaluation study conducted on a smaller dataset, while keeping the
classifier constant. Subsequently, we shifted our focus to identifying the optimal
classifier, maintaining the selected word embedding model as constant during the
experiments.

The combined assessment, as depicted in Figure 23 and Figure 24, exhibits the
performance of each combination based on accuracy, F1-score, precision, and recall
metrics. Although the BERT model as the embedding generator produced ideal results,
it was important to consider the computational demands of this setup. BERT, while
delivering excellent performance, was computationally heavy, potentially impacting
its deployment in resource-limited environments. So, DistilBERT was selected as a
more efficient and effective alternative to BERT. DistilBERT, being a lighter version,
nearly retained the performance of BERT while significantly reducing computational
requirements. The combination of DistilBERT as an embedding generator and LSTM
as a classifier was the ideal choice in terms of both performance and computational
efficiency.

It can be seen that contextual embeddings like BERT/DistilBERT outperformed the
static embedding technique, Word2Vec, in our experiments. This can be attributed to
the Transformer-based architecture and attention mechanisms inherent to BERT/Dis-
tilBERT. These models encode context into their representations by applying different
levels of attention to all the words in the context, thus providing a richer representation
of the input text. Additionally, BERT/DistilBERT utilizes subword tokenization,
which has turned out to be effective in handling out-of-vocabulary (OOV) words, a
common issue in natural language processing. By breaking down words into smaller
subword units, these models can construct representations for new words based on
their constituent subwords. This helps in better generalization to unseen/unknown data
and also improves the robustness of the model against the limitations of vocabulary,
especially in a log data context where new terminologies can frequently occur.

For the classifier, The LSTM classifier demonstrated superior performance over
Logistic Regression and MLP. This is due to LSTM’s ability to capture long-term
dependencies in sequential data, which is crucial for analyzing the context of log
data. LSTM’s inherent capacity for handling sequences makes it suitable for our task
and future work where timestamps need to be taken into account. With this optimal
combination of DistilBERT and LSTM, we performed experiments in a full dataset
with 5 classes and later scaled to 6 classes.

Once we scaled to the full dataset with a combination of DistilBERT and LSTM,
we found results remained consistent with impressive performance. This was achieved
amidst a significantly skewed class distribution where approximately 99.87% of the
log lines belong to the ’normal’ category. Despite such an imbalance, our chosen
combination demonstrated the capacity to effectively handle this issue, maintaining
good performance across the classes. However, we also observed that for certain
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classes where the training sample size was relatively small, the performance appeared
weaker, as illustrated in the confusion matrices (Tables 6, 7, and 8). Despite this, the
overall performance of the chosen combination confirmed its suitability for the task at
hand.

Figure 23: Accuracy and F1-score for all 8 combinations

Figure 24: Precision and Recall for all 8 combinations
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7 Conclusion
The main objective of this thesis work was to detect anomalies in the large volume
of syslog data using machine learning and natural language processing techniques.
To perform log analysis, an Elastic stack comprised of Elasticsearch and Kibana was
studied and implemented to perform exploratory data analytics of syslogs. Kibana
was used to visualise the results of analytics and queries performed during the study
of statistical distribution of various keywords and sources of log events. Elastic agent
was used as a shipping agent and parsing tool to ingest data into Elasticsearch. Elastic
Stack served as an effective tool to get numerical insights from the data prior to
applying machine learning for the purpose of log analysis and anomaly detection.
Elastic stack also served as a multi-purpose tool that could be used by the Continuous
Integration/Continuous Development (CI/CD) team as a log management and analysis
tool.

Log analysis and anomaly detection were carried out by using machine learning
and natural language processing techniques. First, the dataset was labeled into
different anomalous classes and normal classes. Then, the dataset was sampled
into a small version with only 4 classes of anomalies. Then, static embeddings and
contextual embedding algorithms were applied to generate word embeddings. For static
embedding, two Word2Vec algorithms, namely CBOW and skip-gram models were
used. The generated embeddings were used for the downstream task of classification
using Logistic Regression, MLP, and LSTM networks. For contextual embeddings,
BERT and DistilBERT were implemented to select the best-performing model with a
trade-off between performance and computational complexity. DistilBERT with LSTM
classifier was chosen as a suitable combination to perform the task of log anomaly
detection in the full log dataset. The classification results of detection of anomalous
events with our approach achieved overall accuracy in excess of 0.99 with the macro
averaged precision of 0.96, recall of 0.93, and F1 score of 0.94 in a comparatively
large dataset with approximately 2.5 million log lines and 6 classes.

This research offers multiple benefits for the organization for which this thesis work
was conducted for log management and the detection of anomalies in logs. The Elastic
Stack integrated during this study could function as a centralized logging unit for a
company’s Continuous Integration/Continuous Delivery (CI/CD) team. It provides an
enhanced visualization and analysis tool compared to existing solutions in effectively
analyzing log data. The Elastic Stack, as used in this research for exploratory data
analysis and visualisation tool can be used in other data analysis and machine learning
experiments. Our experimental results are promising with high performance in all of
the evaluation metrics. The high performance can be attributed to a good embedding
model where it could capture the high-level representation of words in log files. There
was limited variability in our dataset which made the model easier to learn which was
also another cause for good performance metrics in the test data. This is however one
of the limitations of this thesis work. But, on the other hand, it shows that the problem
can be tackled and more complicated problems can be tackled in the future using a
similar approach. Despite this, it is important to note that the current model will need
further improvements before it can be fully deployed in a production environment for
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complete automation of log analysis and anomaly detection process.
Future work could potentially involve quantization of LLMs thereby speeding

learning and inference time. Researchers in their paper, DeepSyslog [52] separate
event metadata such as timestamps from the rest of the log message. The text data is
then preprocessed, converted into word embeddings, and processed into an LSTM
model. Then the timestamps were concatenated with the outputs of the LSTM network
by appending them to the feature vectors produced by the LSTM. These combined
features (LSTM output and timestamps) are then fed into a dense (fully connected)
layer for final classification. This process was designed to allow the LSTM to focus
on learning the structure and patterns within the text data, while still preserving
the time-based context provided by the timestamps. Future work on this would be
beneficial in maximizing performance as timestamps are important fields to debug
the system errors. Additionally, the model could be further developed to predict
future events based on preceding log lines, providing valuable foresight for anomaly
detection.
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