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Preface

It is my pleasure to invite readers to study the results of the longest,
largest, and by far the most challenging project I have undertaken so
far. The work for this doctoral thesis was performed during a decade
in the Autonomous Systems Group at the Department of Automation
and Systems Technology, later merged into the Department of Electrical
Engineering and Automation at Aalto University, School of Electrical
Engineering, in Espoo, Finland. This journey to the world of science
and engineering has been long but worthwhile. I have learned much
about sensors, algorithms, robotics, machine perception as well as forest
management, heavy machinery, and instrumentation.

The focus of the work is interdisciplinary, and it connects many seemingly
separate scientific fields. I hope it will be valuable to other researchers
working with probabilistic machine perception or forest robotics. This
book is related to instrumentation, sensor modeling, and sensor fusion,
as well as navigation, remote sensing, and estimation. The work is also
closely related to machine perception, artificial intelligence, and cognitive
science, but also knowledge of forest sciences, forest management, and
forest machinery is required to understand the framework. Since the focus
is wide and probably only a few readers possess sufficient background
knowledge from all the related fields, this thesis provides some insight into
these disciples so that researchers working only partly on the same topic
could also learn from this work.

I could have not completed this thesis without all the help and support
I have received from many other people and organizations. Firstly, I
wish to thank Professor Arto Visala for all his guidance and supervision.
Secondly, I thank all my co-authors in the publications included in my
thesis, namely, Professor Ville V. Lehtola, Dr. Jouko Kalmari, Tuomo
Palonen, and Mikko Vihlman. I especially wish to thank Professor Lehtola,
who has helped me a lot by guiding me through the writing part of this
thesis and also co-authored Publication I, and Dr. Jouko Kalmari, who also
participated in several publications included in this thesis. Furthermore, I
wish to thank Professor Ville Kyrki for assisting me with the sensor fusion
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algorithms related to inertial measurements and Professor Themistoklis
Charalambous for his support with particle filtering. I also wish to thank
Matthew Billington for his excellent proofreading services.

The research for the thesis also included a large amount custom hard-
ware, such as an instrumented prototype forest machine, rotating laser
scanners and a camera lift mechanism. I wish to thank Matti Öhman
for participating in planning and building the crane joint position sensor
instrumentation for our prototype forest machine, the camera lift mecha-
nism, and the two 3D laser scanner prototype constructions used in this
thesis. I also wish to thank laboratory engineers Tapio Leppänen and
Vesa Korhonen for helping with planning and building the equipment.
Furthermore, I would like to thank Sami Kielosto for helping me with the
electronics design. I also wish to thank Raimo Linkolehto from MTT Agri-
cultural Engineering Research (at the Vakola premises, which was later
merged into Natural Resources Institute Finland), who serviced our proto-
type forest machine for years and also helped with other hardware-related
issues.

I have also been educated by the multitude of discussions with my col-
leagues during this long project. In that respect, I wish to thank Mikko
Miettinen, Jakke Kulovesi, Teemu Tammi, Ville Matikainen, Andrei San-
dru, Visa Jokelainen, Ville Toiviainen, Niko Nyrhilä, Juha Backman, and
Timo Oksanen. In addition, I would like to thank the unit of Cognitive
Science at the University of Helsinki, where I completed a bachelor’s de-
gree in cognitive science alongside my doctoral studies. I wish especially to
thank Docent Otto Lappi for all his efforts to direct and teach his cognitive
science students. Those studies have clearly guided my thinking towards
perception being an active and highly complex process.

The research behind this thesis was performed between 2010 and 2018
with the Autonomous Systems research group at the department of Au-
tomation and Systems Technology and at the department of Electrical
Engineering and Automation, Aalto University, and at the department of
Remote Sensing and Photogrammetry at the Finnish Geospatial Research
Institute (FGI), which is part of the National Land Survey of Finland. After
that, I have worked at the FGI as a researcher and have consequently
struggled to find time to write this summary.

I wish to thank all the funders who have made this project possible.
The thesis was initially financed by the Doctoral School of the School of
Electrical Engineering, Aalto University. The remainder of the funding
for this prolonged work has come from several research projects, such as
the Tekes (the Finnish Funding Agency for Technology and Innovation)
NeoSilvix project, and two large Tekes SHOK (Strategic Centres for Sci-
ence, Technology and Innovation) consortia: Value Through Intensive and
Efficient Fibre Supply (EffFibre) and Data to Intelligence (D2I), where our
research group worked on the Forest Big Data research area. In addition,
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this work has been supported by the COMBAT/Pointcloud project1, which
is funded by the Strategic Research Council of the Academy of Finland.

In addition, I greatly appreciate the financial support provided by multi-
ple foundations and funds, including the Aino and Kaarlo Tiisala Fund of
the Satakuntalainen Osakunta student nation, the Finnish Foundation for
Technology Promotion, and the Automation Foundation in Finland.

Furthermore, I would like to thank Research professor Harri Kaartinen,
Professor Antero Kukko, and Professor Juha Hyyppä for supporting my
work and allowing me to complete the thesis while working with the COM-
BAT/Pointcloud project1. The work is now continued in the Academy of Fin-
land’s Flagship of Science for Forest-Human-Machine-Interplay (UNITE)2

Finally, I would like to thank my family and friends for supporting me
during this long process. Special thanks go to my partner Jenna Järvenpää,
who has tolerated me writing this thesis during weekends and holidays.

Espoo, September 19, 2023,

Heikki Hyyti

1Read more about the COMBAT project at http://pointcloud.fi
2Read more about UNITE flagship at http://uniteflagship.fi
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the algorithm and writing the conference paper. Tuomo Palonen, as part
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ŷ−
k a predicted measurement estimate at time index k

Functions and matrices
1i an indicator function for particle i
n
bC a DCM from the body-fixed frame to the navigation frame
n
bCi ith row vector in a DCM matrix
n
bCi j a value at the ith row and jth column in a DCM matrix

fk(·) a time-varying nonlinear system equation at time index k

hk(·) a time-varying nonlinear measurement equation at k

[v×] a skew-symmetric matrix of a vector v

03×3 a 3×3 sized matrix of zeros

I3 a 3×3 sized identity matrix

Fk,Gk matrices representing linear dynamic system model at k

Hk a linear measurement model at time index k

Kk a Kalman gain at time index k

Lk,Mk matrices representing linearized noise processes at k

Pk a covariance of the state xk at time index k

P−
k a predicted covariance of the state xk at time index k

Q a state-prediction covariance of a noise process {ννν}

R a measurement covariance of a noise process {υυυ}

Sets
S a set of system states

Sf a subset of feasible states (Sf ⊂S)

T a set of targets

U a set of control inputs u

X(k) a set of particles xi, i ∈ [1, . . . , Np] at time index k

Y a set of measurements y

19



Nomenclature

Color channels
EG,RB, I excessive green, redness-blueness, and intensity
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1. Introduction

Boreal forests, which extend as a band through Fennoscandia, Russia,
Alaska, and Canada, cover an area of about 1.7 billion hectares (Vanhanen,
Jonsson, Gerasimov, Krankina, & Messieur, 2012). They are globally signif-
icant, since they produce approximately 45% of the world’s stock of growing
timber. These forests are also of local importance, since the forestry sector
(including the sub-sectors logging, solid wood products, pulp & paper, and
furniture) directly accounts for approximately 1% of gross domestic prod-
uct(GDP)in Russia, Norway and Canada, 2% in Sweden, and 3% in Finland
(Y. Li, Mei, & Linhares-Juvenal, 2019; World Bank, 2019). Moreover, the
importance of boreal forests is expected to increase in the future. For
example, it has been estimated that Finland’s annual timber harvest vol-
ume could be increased by more than 50%, from approximately 55 million
to more than 85 million m3 by using more intensive forest management
practices (FIBIC, 2014). Similarly, in Sweden, forest production could
be almost doubled by using more intensive forest management methods
(Nilsson, Fahlvik, Johansson, Lundström, & Rosvall, 2011).

There is an urgent need to increase the productivity4 of the forest sector.
The European Commission has set a target to raise the share of renewables
to at least 32% of energy consumption by 2030 (Council of European Union,
2018), and there are plans to increase this target to 42.5% (Wilson, 2021).
Forests are considered an important resource to meet these renewable
energy targets. Errera, Dias, Maya, and Lora (2023) forecast in their
optimistic, yet plausible scenario, that bioenergy share in the global energy
matrix could increase from today’s 9.8% to 37%, but it would require gains
in productivity. However, it should be noted that an increase in harvest
demand of even 20% has been estimated to approach the maximum harvest
potential of the world’s forest area (Pilli, Grassi, Kurz, Fiorese, & Cescatti,
2017).

Much has already been achieved to increase productivity. For example,
according to Nordfjell, Björheden, Thor, and Wästerlund (2010), the pro-

4Productivity can be understood as the total efficiency of resource (e.g., money,
work, and material) usage per number of units produced (Schreyer & Pilat, 2001).
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ductivity of logging by the Swedish forest enterprise SCA increased almost
three-fold in the period 1985—2010. Nonetheless, such increases have been
driven primarily by the mechanization of forest machinery. Mechanization
has a long history, from manually operated tools through powered tools
towards increasingly automated forest machinery (Silversides & Rajala,
1997; Lindroos, La Hera, & Häggström, 2017). However, today, the easy
mechanical solutions for increasing the productivity of machinery have
already been attempted. Moreover, further increasing the size, power,
or capabilities of forest machinery is expensive and might not bring the
expected benefits. According to Lindroos et al. (2017), there is no single
perfect solution in view, but, instead, future forest machine development
will be influenced by the necessity for local adaptation.

Some tasks are more difficult to mechanize and automate than others.
In many countries, due to rising labor costs, full mechanization of the har-
vesting and transport system has already become competitive (Asikainen,
Anttila, Verkerk, Diaz, & Röser, 2011). However, in these countries, many
early forest-management operations are still mostly performed either man-
ually or motor-manually (e.g., Kärhä et al., 2014; Ersson, 2014; Strand-
ström, 2016). Manual work is favored in these tasks, since mechanized
techniques either struggle to achieve the required quality or are insuffi-
ciently cost efficient (Pettersson, Fahlvik, Karlsson, & och Skogsstyrelsen,
2012; Hämäläinen et al., 2013; Uotila, 2017). Management of younger
stands remains a particular challenge. Young trees are smaller and grow
more densely, which impedes the work of forest machine operators using
crane-mounted tools. For example, when thinning or cleaning a young
stand, the operator should avoid damaging the remaining target trees
while cutting or uprooting neighboring ones. This problem is exacerbated
by the fact that young target trees are usually concealed by other faster
growing vegetation. Thus, in many cases, laborious motor-manual work
with a clearing saw is still preferred.

Productivity increases are also limited by the capabilities of machine
operators, who are under high pressure to work efficiently with limited
information. In most cases, they must rely on their own senses, which is
difficult in poor lighting conditions, especially during night shifts, rain, or
snowfall. Moreover, it should be noted that, even in good weather, only
one side of each tree can be inspected from the cabin (Liziniewicz, Ekö, &
Klang, 2016). It has been found that the complexity of modern forestry
work calls for long training before the operator can reach full productivity
(Asikainen et al., 2011). In addition, the differences between machine
operators in productivity are significant (Ovaskainen, 2009; F. T. Purfürst
& Erler, 2011), which suggests that the operator’s skills or capabilities are
the bottle neck.

Consequently, instead of developing traditional mechanized solutions
where the operator performs all the sensing and machine control, produc-
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tivity increases are currently sought by adding more sensors, algorithms,
and artificial intelligence to forest machinery. Research is ongoing in areas
such as operator tutoring and decision support systems (e.g., Väätäinen
et al., 2011; Mohtashami, Bergkvist, Löfgren, & Berg, 2012; Maglioc-
chetti, Prandi, Panizzoni, Lotto, & De Amicis, 2015), mixed, virtual, and
augmented reality displays (e.g., Nordlie & Till, 2015; Palonen, 2016),
intelligent boom control and automated functions (e.g., Hansson & Servin,
2010; Ortiz Morales et al., 2014; Kalmari, Backman, & Visala, 2014),
tele-operated forestry vehicles (e.g., Milne, Chen, Hann, & Parker, 2013;
Westerberg & Shiriaev, 2013), unmanned self-navigating vehicles (e.g.,
Vestlund & Hellström, 2006; Hellström, Lärkeryd, Nordfjell, & Ringdahl,
2009; Ringdahl et al., 2011), forest mapping for inventory purposes (e.g.,
Melkas, Miettinen, Hämäläinen, & Einola, 2014; S. W. Chen et al., 2020),
and unmanned aerial vehicles (UAV) in forestry (e.g., Torresan et al., 2017).

It is believed that, in the future, better use of information (e.g., by using
sensors, algorithms, and optimizers) in forest machinery will help increase
productivity. Vanclay (2011) proposes that sensing technology will allow
harvesters to optimize vehicle movements and improve the handling of
harvested material in the future. In addition, harvesters could provide a
comprehensive inventory of the residual stand and the soil underneath,
which may assist the later management of the residual forest.

In this work, perception systems are proposed for autonomous or semi-
autonomous forest machinery to tackle the many challenges related to
gaining the required productivity increases. By enabling the effective use
of various sensors in a forest machine, productivity could be improved
by 1) finding novel solutions to enable the use of a minimal number of
low-cost sensors to provide maximal information, 2) improving the user
interface of the forest machine, thus allowing the machine operator to make
better decisions while working in the forest, 3) increasing the autonomy
of the forest machine in selected tasks to offer more time for the operator
to focus on planning and decision making, 4) providing more accurate
measurements from the forest machine itself and from the surrounding
forest to enable accurate data collection on the forest machine operations
and the work quantity and quality, and 5) enabling the collection of forest
inventory information from the residual forest after operation.

This work aims to find solutions, applicable for industrial purposes, for
placing suitable sensors on forest machinery and to develop methods to
process the sensor data to produce a more usable form of knowledge about
the machine and its surroundings. The work contains several model-based
and sensor-fusion methods for integrating measurements into an artificial
understanding in real time—a machine perception of the vehicle itself and
its environment.

25



Introduction

1.1 Background

The design of a perception system for autonomous forest machinery is de-
pendent on many aspects of the environment where the machine operates.
Traditionally, to increase the level of automation, for instance in factories,
the common approach has been to simplify the problem by simplifying the
environment. To accomplish this, the environment has been modified until
it corresponds to an applicable mathematical model (Bessière, Laugier, &
Siegwart, 2008, p. 4). For example, in factories where a robot picks items
from a conveyor belt, the machine vision problem has been simplified by
using specially designed lighting, and the belt in the background has a
matte, untextured surface finish to avoid reflections and to expose target
objects on the belt (e.g., Horn, 1986, pp. 3–4).

The forest environment, however, is not a factory that can be modified to
ease the task of the forest machine. Forests are living, naturally growing
ecosystems and home to a large variety of plants, animals, fungi, and bacte-
ria. Hence, a forest is defined as an uncontrolled environment5 in contrast
to a factory, which is an example of a controlled environment. Therefore,
perception problems are also different. In a controlled environment, the
prior model of the environment can be trusted. By contrast, in an uncon-
trolled environment, all methods must be devised to take account of the
high level of uncertainty that arises from a lack of knowledge (Bessière
et al., 2008, p. 4). In an uncontrolled environment, the methods must be
robust against random disturbances, and they should be able to function
with approximate models and imperfect observations.

The forest as an uncontrolled environment raises some new challenges
compared to the factory environment. An autonomous forest machine
requires, for example, the ability to measure the trees, select suitable
trees for cutting, and estimate traversability in the forest. Traversability
(e.g., Suger, Steder, & Burgard, 2015; Ahtiainen, Stoyanov, & Saarinen,
2017; Ruetz, Borges, Suenderhauf, Hernández, & Peynot, 2022) relates
to the robot’s ability to safely navigate and distinguish obstacles such as
fallen trees, rocks, potholes, cliffs, and ravines from traversable ground.
Furthermore, wet areas and, especially in winter, thin ice on top of them
can be a potential hazard (Vestlund & Hellström, 2006).

In the following sections, the relevant aspects of boreal forests and the
Nordic countries as an environment are first introduced. Then, the current
available information sources from forests are outlined. These are forest
inventory systems and the sensors mounted on forest machinery. Finally,
the basics of machine perception methods and autonomous robots are
introduced.
5Some authors define a forest as highly unstructured environment (e.g., Lindroos,
Mendoza Trejo, La Hera, & Ortiz Morales, 2019), but since nature is full of various
biological structures, the level of human control is emphasized here instead.
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Fennoscandian Boreal Forests as an Environment

Boreal forests grow on gently rolling terrain, either on glacial till, or on
shallow-soiled and infertile uplands alternating with wetlands and poorly
drained organic soils (Burton et al., 2003). The climate and soils are cold,
which causes trees to grow slowly—mostly during short growing seasons.
These forests are dominated by a few tree species, mostly conifer species of
the pine (Pinus), larch (Larix), spruce (Picea), and fir (Abies) genera and
broadleaf species of usually the birch (Betula), poplar (Populus), willow
(Salix), alder (Alnus), and rowan (Sorbus) genera (Burton et al., 2003).

The intensity of forest activities varies significantly across the boreal
zone. It ranges from timber logging with minimal consideration for forest
regeneration, through extensive management with simple silvicultural
approaches, to extremely intensive management with frequent manage-
ment interventions (Vanhanen et al., 2012). The least managed forests
are found in the Russian Federation (e.g., only one third of the stands
managed are thinned), and the most intensively managed forests are in
Fennoscandia (e.g., much land is drained, the forest road network is dense,
and most of the stands are thinned at least once) (Burton et al., 2003).
This is important, since the level of structure of the otherwise uncontrolled
environment usually increases when the forests are more managed.

The ownership structure is also strikingly different around the boreal
zone. Forests are mainly owned by public (regional, provincial, and federal)
institutions in Russia, Alaska, and Canada, and by private (industrial or
non-industrial) entities or in Fennoscandia (Vanhanen et al., 2012). The
large institutional ownership seen in Russia, Alaska, and Canada is a
legacy of the extensive harvesting rights assigned to primary processing
facilities (e.g., pulp mills or sawmills) (Burton et al., 2003). By contrast,
there are over 600,000 forest owners in Finland, and the size of the average
forest holding is only 25 hectares, with an average stand size of less than
2 ha (Kankare et al., 2017). These varying ownership characteristics have
different practical implications for forestry around the area.

Forestry in the Nordic countries has long been based upon the prin-
ciple of sustainable management (NOLTFOX, 2006) and Nordic coun-
tries have been shown to succeed in keeping the forest sector sustainable
(A. C. Hansen, Clarke, & Hegnes, 2021). In intensively managed forests in
Fennoscandia, guided by official recommendations, forest owners mainly
focus on only a small number of commercially viable tree species. In recent
decades, conifers have been favored and broad-leaved trees have usually
only been left in gaps or as replacements for severely damaged conifers
(Fahlvik, Ekö, & Petersson, 2015). For example, in Finland, as a result of
regulations, recommendations, and intensive management, roughly 50%
of the growing stock is Scots pine (Pinus sylvestris), 30% Norway spruce
(Picea abies), and 17% silver and downy birch (Betula pendula and Be-
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tula pubescens), while only 3% of the trees are other hardwoods, mainly
gray alder (Alnus incana) and aspen (Populus tremula) (Tapio, 2014; Lier,
Korhonen, Tuomainen, Viitanen, & Mutanen, 2017).

Due to the long tradition of intensive forest management, most forests in
Fennoscandia are even-aged, same-species forests. However, some forests
contain mixed species growing either at the same age or in multiple age
groups. This dualism relates to two conventional management systems,
even-aged management with a clear-cutting system and uneven-aged man-
agement employing a single tree-selection system. These represent the two
extreme cases in the continuum of removed versus retained trees per each
cutting event (Kuuluvainen, Tahvonen, & Aakala, 2012). Between these
two extremes, a wide range of methods have been proposed in which the
forest cover remains more or less continuous, although sometimes patchy
and partly open to facilitate regeneration (Kuuluvainen et al., 2012).

(a) Mature even-aged Scots pine forest (b) Mature even-aged Norway spruce forest

(c) Young even-aged Scots pine forest (d) Uneven-aged mixed species forest

Figure 1.1. Examples of Finnish forests visited in the research for Publication VII
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Because even the most managed man-made forests are composed of
native species, they differ only slightly from naturally regenerated but
intensively managed stands (Hakkila, 1989). However, for detecting and
measuring trees, these managed forests are significantly different from
forests in a natural state. They are somewhat controlled environments,
but the level of structure varies significantly. This can be seen from the set
of examples of several typical Finnish forests in Figure 1.1. As can also be
noted from the example figures, the difficulty of traversability estimation
(i.e., passable ground and obstacle detection), tree detection, species classi-
fication, and tree measurement tasks may vary from reasonably easy to
extremely difficult in Fennoscandian forests.

Other Specific Aspects of the Nordics

The Nordic countries Sweden, Finland, and Norway are among the most
important producers of wood and forest products in the world (NOLTFOX,
2006). The northern forest industry is currently dominated by a few
large global companies (Donner-Amnell, Lehtinen, & Sæther, 2017). This
increased international orientation and ownership has changed how com-
panies view their stake holders and, for example, how they respond to
environmental questions and aim for social responsibility (Donner-Amnell
et al., 2017). Today, the main challenge for the forestry sector in the
Nordic countries is to maintain their global competitiveness while balanc-
ing production costs with environmental objectives (Vanhanen et al., 2012).
One plausible way to couple profitable but environmentally friendly and
socially acceptable operation is through technological development. For ex-
ample, the Finnish forest industry expects next-generation forest inventory
techniques to improve current wood procurement practices (Holopainen,
Vastaranta, & Hyyppä, 2014).

Finland and Sweden are home to many competitive forest machine manu-
facturers, providing the most technologically advanced cut-to-length forest
operations technology (Nordfjell et al., 2010; Lindroos et al., 2017), In
addition, the Nordic countries are world leaders in the utilization of forest
biomass for energy production (Routa, Asikainen, Björheden, Laitila, &
Röser, 2013) and host several significantly large forestry sector companies
(Blocker, Bromley, & Murdoch, 2016). Moreover, the sector enjoys a high
level of research and development investment from governments and the
private sector alike. This is important, since developing a technology as
complex as autonomous forest machinery requires a significant amount of
research and investment (Lindroos et al., 2019).
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Forest Inventories

Forest inventories employing aerial and satellite imagery and airborne
laser scanning (ALS) have long been in operation in the Nordic countries
(Næsset et al., 2004; Kangas et al., 2018). Currently, forest inventory
attributes are commonly derived using an area-based approach (ABA)
in which low-density (∼0.5 pulses per m2) ALS data are used to gener-
alize field-measured inventory attributes over the entire inventory area
(Holopainen et al., 2014). However, the use of higher density (∼5 pulses per
m2) ALS data was introduced during 2020 in Finland (Laaksonen, 2019).
Nonetheless, remote sensing methods are often used merely as background
material for manual generation of forest inventories (Kangas et al., 2018).
Nevertheless, there is plenty of potential in forest data. Owners’ associ-
ations can use them to plan individual operations, and forest companies
can utilize them to optimize the bucking of logs, timber trade, and plan
wood procurement, harvests, and logistics, to mention but a few benefits
(Kangas et al., 2018). It has been estimated that better forest data could
increase the profitability of the forestry sector by more than 250 million
euros a year in Finland (Kangas et al., 2019).

Information on forest resource attributes such as species-specific timber
assortments, the diameter distribution of trees, tree quality, and biomass
distribution cannot be obtained accurately enough from the current inven-
tory system (Kankare et al., 2017). Therefore, there is a strong incentive to
develop more accurate data collection methods and forest inventory tech-
niques. Single-tree-level forest inventory methods have been proposed to
solve the problem (Holopainen et al., 2014; Kankare et al., 2017). However,
they require significantly denser point clouds than traditional statistical
ABA methods. Furthermore, as each tree is measured and modeled individ-
ually, the tree trunk (or at least the stem and the largest branches) should
also be incorporated into the measurements. This limits the use of aerial
imagery and ALS data and favors the use of terrestrial and mobile laser
scanning approaches. In addition, data measured by harvesters offer much
potential for single-tree-level methods (Olivera & Visser, 2016; Kankare et
al., 2017).

Modern Forest Machinery

Nordic cut-to-length (CTL) harvesting using two specialized machines, a
harvester and a forwarder, is the most technologically advanced forest
harvesting scheme in the world (Nordfjell et al., 2010; Lindroos et al.,
2017). In CTL, forest machine operators use a harvester to fell, delimb,
and cross-cut the tree into logs, and a forwarder to transport the logs to a
roadside landing (Gellerstedt & Dahlin, 1999; Häggström, 2015). The main
tools of these machines are large hydraulic serial manipulators, known
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as cranes. To control these cranes, as well as the machine, operators sit
inside the cabins and use joysticks to control the hydraulic valves (La Hera
& Morales, 2019). Modern forest harvesters allow the boom tip to be
controlled in Cartesian coordinates, which removes the need to control
each hydraulic valve individually (La Hera, Morales, & Mendoza-Trejo,
2021). The machine operator is responsible for planning the operations and
for performing synchronized control actions to safely work in the forest.

One of the features of the CTL system is that in the first thinning phase,
harvesting tracks, called strip roads (i.e., treeless corridors for the machine
to travel around the forest), must be cut at about 20 meters distance
from each other, since the harvester crane reach is approximately 10
meters (Gellerstedt & Dahlin, 1999; Ovaskainen, Uusitalo, & Sassi, 2006).
Operators are free to choose the location of the strip roads as well as the
selection of thinned trees in their normal work (Ovaskainen, 2009). In the
past, tree marking prior to harvesting was a common task performed by
experienced foresters, but currently prior selection is omitted to reduce
costs (Holzleitner et al., 2019). These strip roads are used for forwarding
and on later thinnings, and they exert a large effect on the productivity of
later operations.

CTL harvesting is challenging for machine operators. It has been de-
scribed as joystick-intense, mentally demanding work in which visual
information and supervision play a key role (Gellerstedt, 2002; Häggström,
2015). The operator requires silvicultural knowledge and experience with
different kinds of stands, thinning principles, seasons and weather condi-
tions. For example, it takes an average of five years to become fully skilled
in thinning (Gellerstedt, 2002). Productivity differences between operators
of over 40% have been measured (e.g., Ovaskainen, Uusitalo, & Väätäinen,
2004).

Modern commercial computerized CTL machines contain many built-in
sensors, and many new sensors have been proposed in the research litera-
ture. Such sensors may be divided into three distinct categories: 1) linear
and angular position sensors, 2) orientation and global positioning sensors,
such as inertial measurement units and satellite navigation sensors, and
3) remote sensing sensors, such as lidars6, radars, sonars, and optical
cameras (Lindroos, Ringdahl, La Hera, Hohnloser, & Hellström, 2015).

In CTL machinery, linear and angular position sensors are used, for
example, to measure the posture of the forestry crane (Lindroos et al.,
2015) as well as log length and diameter (Miettinen, Kulovesi, Kalmari,
& Visala, 2010) and to estimate traveled path and distance using wheel
odometry (Hellström et al., 2009). In turn, inertial techniques and tilt
sensors are used to measure the inclination of the machine or crane parts
(Lindroos et al., 2015). Furthermore, it has been proposed that the position

6Lidars which have also been called laser scanners, scan the environment by
combining multiple point-wise range measurements as a point cloud.
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of the tip of the forestry crane be estimated and combined from multiple
inclination measurements (e.g., Vihonen, Honkakorpi, Tuominen, Mattila,
& Visa, 2016).

Satellite navigation systems are commonly used to pinpoint the machine
on the map for the operator. However, in a forest, positioning accuracy is
a limiting factor. Positioning errors under the forest canopy are usually
larger than 4 meters with conventional satellite navigation sensors and
about 0.7 meters with a high-end inertial-navigation integrated satellite
navigation system (Kaartinen et al., 2015). Using modern smartphones
Tomaštík, Chudá, Tunák, Chudỳ, and Kardoš (2021) achieved centimetre-
level accuracy under open-area conditions but, in forest, the accuracies
varied from meters to tens of meters. In a recent evaluation by T. Purfürst
(2022), the most accurate smartphone with multi-frequency GNSS receiver
reached 3.2 m average positioning error under the forest canopy.

The use of remote sensing instruments has often been proposed in the
research literature. These sensors mostly concern 2D laser scanners (e.g.,
Miettinen, Öhman, Visala, & Forsman, 2007; Öhman et al., 2008; Ross-
mann et al., 2011; Zheng, Liu, Wang, & Yang, 2012; Salmivaara et al.,
2018), but 3D lidars (e.g., Sihvo, Virjonen, Nevalainen, & Heikkonen,
2018; Pierzchała, Giguère, & Astrup, 2018), machine vision solutions (e.g.,
Kulovesi, 2009; Miettinen et al., 2010; Kalmari, Kulovesi, & Visala, 2011),
and combined sensor fusion solutions (e.g., D. Wang, Lia, Wang, & Li, 2013)
have also been proposed. However, they are not yet used in commercial
forest machinery (Lindroos et al., 2019). Only some rear-view and surveil-
lance cameras have been installed in commercial CTL machines to assist
the operator (e.g., Komatsu, 2019).

Even without remote sensing, forest machinery can nonetheless collect
forest inventory data. If properly calibrated, the harvester head can
individually measure the dimensions of harvested logs using its mechanical
sensors (Rasinmäki & Melkas, 2005; Marshall, Murphy, & Boston, 2006).
If the position of the harvester head is also measured (Lindroos et al.,
2015), forest data may be composed from the information collected (Olivera
& Visser, 2016). However, accurate harvester head positioning is difficult
and unavailable in most commercial forest machines (Lindroos et al., 2015;
Hauglin et al., 2017; Noordermeer, Sørngård, Astrup, Næsset, & Gobakken,
2021), and thus the use of harvester data is currently limited. In a recent
work by Noordermeer et al. (2021), a forest machine was upgraded with
a dual-wavelength high-end GNSS receiver and the harvester head was
positioned with errors ranging from 0.14 to 2.85 m, with a mean of 0.88 m.

On the other hand, remote sensing with lidars, radars, and cameras are
commonly used to collect data from various environments, including forests
(C. Toth & Jóźków, 2016). Similarly, in robotics, for example in advanced
driver assistance systems, cameras, radars, sonars, and lidars already
play an important role (Ziebinski, Cupek, Erdogan, & Waechter, 2016).
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These sensors offer much potential for collecting inventory information
and guiding the machine operator when installed in commercial forest
machinery. However, machine manufacturing companies must see a clear
benefit to adding such sensors before they are willing to integrate them
into their machinery. Another limiting factor is automatic sensor data
processing. If remote sensing equipment are integrated into forest machin-
ery, the data must be processed automatically with a minimal amount of
human intervention to increase productivity. Such automatic sensor data
processing is studied in the field of machine perception.

Machine Perception

According to Nevatia (1982), the field of machine perception concerns the
building of machines that sense and interpret their environments. In
robotics, the term perception is used to describe a system which allows
a robot to perceive, comprehend, and reason about the surrounding en-
vironment (Premebida, Ambrus, & Marton, 2018). Machine (or robotic)
perception is a way to connect the computer to the raw, "unwashed" world,
and it is a key subfield of artificial intelligence (AI) (Russell & Norvig,
2016, p. 928). Perception enables a computer or robot to use its sensory
input to gather information and present it in a way that is appropriate to
the task at hand.

This thesis argues that perception should be built using sensors from
multiple modalities. In addition to visual remote sensors such as cameras
and lidars, the robot’s perception capabilities can be improved by mea-
suring the position and orientation of the robot and its parts. However,
most earlier research on machine perception has focused on visual sensors,
such as optical cameras (e.g., Nevatia, 1982). For these sensors, such
research has, arguably, been conducted under the names of machine vision,
computer vision (Jain, Kasturi, & Schunck, 1995), and photogrammetry
(Granshaw & Fraser, 2015).

Similar to the way animals benefit from senses other than the visual,
robots can also use other types of sensors and related perception methods
to function better in the environment. Machine hearing (Lyon, 2010),
also known as machine listening or computer audition (W. Wang, 2010),
and machine touch, which concerns robotic tactile perception and surface
properties (Edwards, 2013) belong to the field of machine perception. In
addition, the proprioceptive senses of robots are studied within the field
of machine perception. Such senses are, for example, vestibular sense for
balance and kinesthetic perception for the robot’s own motion (J. Ferreira,
Lobo, Bessiere, Castelo-Branco, & Dias, 2013; S. Chaudhuri & Bhardwaj,
2018, p. 7). These other perception modalities can provide the system with
new information that would otherwise be difficult or even impossible to
obtain using visual sensors alone.
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Early approaches to machine perception have largely relied on the re-
covery and manipulation of geometric world models (Nevatia, 1982; Elfes,
1989). At a low level, this has meant the extraction of geometric features
such as line segments or surface patches from sensor data. From this
geometric perspective, high-level sensing processes have been designed to
use symbolic models, geometric templates, and heuristic prior assumptions
of the environment. Elfes (1989) has referred to this as the geometric
paradigm in robot perception.

Geometric approaches to machine perception succeed in highly controlled
environments such as factory settings, but have limited applicability in
more complex scenarios (Elfes, 1989). In uncontrolled environments such
as forests, sensor measurements are inherently uncertain. This uncer-
tainty arises from sensor limitations, noise, and the unpredictability of
the uncontrolled environment (Thrun, 2000). In contrast to the geometric
approach, less deterministic, probabilistic methods compute a probability
distribution over what might be the situation in the world. Instead of rely-
ing solely on a single best guess (e.g., when a geometric shape is detected
from the data), the probabilistic system attempts to make inferences from
multiple observations based on likelihoods from the observations. As a
result, a probabilistic robot may recover from errors, handle ambiguities,
and integrate sensor readings in a consistent way. Furthermore, a prob-
abilistic robot possesses a measure of its own ignorance, which is a key
prerequisite for autonomous operation (Thrun, 2000).

The benefits of the probabilistic paradigm also involve trade-offs. The
limitations of probabilistic algorithms are computational inefficiency and
the need to approximate (Thrun, 2000). Probabilistic algorithms are in-
herently less efficient than their non-probabilistic counterparts because
they consider entire probability densities instead of the best guess alone.
In addition, most real environments are difficult to model, since they are
continuous spaces, where algorithms assuming discrete posterior distribu-
tions are difficult to model and computationally infeasible (Thrun, Burgard,
& Fox, 2005, pp. 5–6). This leads to the need for approximations in the
models and the computation. However, research has led to a range of ideas
and algorithms that enable the development of computationally feasible
and sufficiently accurate methods (Thrun, 2000).

Autonomous Forest Machinery

Autonomous systems are defined by their ability to perform certain func-
tions without the direct control of a human operator (Visser & Obi, 2021).
According to Visser and Obi (2021), the challenges of forest operations
are so complex that no fully autonomous systems currently work in tim-
ber harvesting. Previous research has suggested that the path towards
fully autonomous forest robots will first involve a hybrid approach: semi-
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autonomy, in which the robot cooperates with the human operator (e.g.,
Westerberg, 2014). Such cooperation may occur on site from the cockpit,
by remote control from nearby, or from a greater distance by using, for
instance, virtual-environment-based teleoperation (Westerberg & Shiri-
aev, 2013). Semi-autonomy can be considered a set of intermediate steps
between the current mechanized CTL harvesting scheme (Gellerstedt &
Dahlin, 1999) and full autonomous operation (Lindroos et al., 2017). This
cooperation may be beneficial when the robot can outperform the human
operator in some specific tasks, but, at the same time, some other tasks
may be too difficult to automate. Hellström et al. (2009) lists three possible
scenarios for increasing automation in forest machinery: 1) remote super-
vision of a semi-autonomous system where a remotely working operator
may take control when necessary, 2) remote-control of a semi-autonomous
harvester from a forwarder, and 3) use of semi-autonomous forwarders,
called wood shuttles, which are remotely operated from the harvester for
loading and unloading.

For autonomous or semi-autonomous operation in a forest environment,
the robustness of machine perception is essential. Both fully autonomous
and semi-autonomous systems require knowledge from the environment
and from the robot’s states, for example the pose of the robot and its
crane. A probabilistic framework may enable the system to collect and
fuse information from multiple uncertain sources and build a coherent
view of the environment (Thrun et al., 2005, pp. 230–231). This could be a
viable solution to the challenges identified in the literature to automating
forest machinery. For example, when studying the requirements for an
autonomous robot cleaning young stands, Vestlund and Hellström (2006)
found that obstacle avoidance and identification of the stems of target trees
were the greatest challenges to achieve autonomous operation. Similarly,
Hellström et al. (2009) list the detection of obstacles as one of the most
important challenges for automating forest machinery. They observe that
in addition to the ability to find and detect objects blocking the machine’s
path, it is also necessary to consider negative obstacles, for instance a ditch
or a steep slope.

The minimal requirements for a perception system for an autonomous
forest machine involve the robot’s ability to sense a) its own state and b)
the surrounding forest. To adequately sense its own state, a forest machine
must know its own position and orientation in the forest. Then, it can
operate in the right forest plot given the location of the plot borders. It
must also know its own inclination to avoid falling and crashing on sloped
terrain. Furthermore, it must be aware of the position of its crane and
tool and how they are oriented in order to effectively control them. The
surrounding forest must be measured and modeled so that the robot knows
where the forest floor is traversable and where to cut free space for strip
roads. Naturally, it must also be capable of detecting, classifying, and
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modeling the trees to be able to cut them, safely fell them, delimb them,
and buck them to the right length. Finally, the logs must be piled on the
forest floor, from where they are later carried to the roadside landing.

The role of the user interface is important in research aiming for semi-
autonomous operation (e.g., Westerberg & Shiriaev, 2013; Westerberg,
2014). In semi-autonomous operation, information must flow seamlessly
between the robot and the user. For example, augmented and virtual reality
have been seen as plausible technologies to share the robots knowledge
with the human operator (Westerberg & Shiriaev, 2013; Nordlie & Till,
2015; Palonen, 2016).

1.2 Research Objectives

The main target of this research is to increase the level of automation in
forest machinery. In particular, it strives to develop sensors and methods
to enable the forest machine to perceive its own state and the surrounding
environment.

One major challenge is accurate and reliable measurement of the forestry
crane boom tip and tool position while the machine is in operation. This
problem can be divided into two challenges: 1) measurement of the posture
of the forestry crane, i.e., the position and orientation of each of the flexible
segments of the crane, and 2) measurement of the orientation of the tool
which is hanging freely from the end of the crane. In addition, the position
and orientation of the forest machine itself must also be measured to fix
relative crane tip and tool positions to world coordinates. This can also be
divided into two parts: A) the orientation of the body of the forest machine
with respect to the Earth coordinate frame (i.e., the attitude) and B) the
position and heading of the machine.

The surrounding environment must be observed to enable safe and pro-
ductive autonomous or semi-autonomous work in it. The most important
challenges to enabling autonomous operation are the reliable detection
of all trees and the accurate classification of their species (Vestlund &
Hellström, 2006). These are both challenging tasks, especially in dense
younger forests where different tree species compete against each other.
For autonomous operation, it is also important to be able to measure the
forest floor and the free traversable space around the machine. This is a
challenge in forests containing rocks, ditches, pits, large stumps and trees,
where the automated machine should still be able to avoid any collision
and navigate safely (see, e.g., Ahtiainen et al., 2017; Ruetz et al., 2022)7.

As many of these challenges are extremely complex, full autonomy of
forest machinery is difficult to achieve. Therefore, semi-autonomous so-

7Note that this dissertation does not study traversability nor object detection as
such but instead sensors and perception methods to provide suitable data.

36



Introduction

lutions, where the machine operator and the robot cooperate, are favored
in the attempts to increase the productivity of forest machinery. In these
semi-autonomous solutions, a new challenge emerges, however. The opera-
tor and robot must share the same knowledge about the problem at hand.
This may be solved by visualizing data for operators to allow them to make
better decisions. In addition, suitable selection of measurements about the
machine and surrounding environment may enhance the operator’s ability
to perform various tasks.

To achieve shared knowledge between the operator and the robot, a user
interface that is more efficient than traditional displays, touchscreens,
joysticks, keyboard, and mouse is required. Virtual and augmented reality
have been seen as plausible means of intuitively showing the machine
operator information that the robot knows. (Westerberg & Shiriaev, 2013;
Nordlie & Till, 2015; Palonen, 2016). Augmented reality, on the other hand,
creates some new challenges, as it is difficult to measure the position and
orientation of the operator’s head in the forest machine cabin. Furthermore,
a sufficiently large field of view (FoV), an adequately low time delay in
head pose estimation, and sufficiently rapid visualization without excessive
jitter on the head-mounted display (HMD) are necessary to avoid motion
sickness (Lawson, 2015, pp. 567–568). Naturally, head movement and
visual-field movement must correspond with each other.

To find solutions to all these challenges, the thesis is divided into 10
research questions. They fall into two categories: The first seven search for
solutions to individual problems arising directly from these challenges (Q1–
Q7) and the last three relate to more general machine perception solutions
by combining the individual studies (Q8–Q10):

Q1 Can an optical method, for example, a laser scanner, be used to
advance the state of the art in estimating the posture of a forestry
crane and the position of the boom tip?

Q2 Can a low-cost inertial measurement unit (IMU) reliably measure
the attitude of a forest machine in the presence of noise and non-
gravitational accelerations?

Q3 How can the rotator link mechanism be instrumented to measure the
three-dimensional orientation of the tool of the forest machine when
it is freely swaying from the end of the crane?

Q4 Is it plausible to present sensory information in real-time from the
perception system of the forest machine to the machine operator
using augmented reality in the forest machine cabin?

Q5 Is it possible for a forest machine to operate autonomously in an envi-
ronment that presents significant challenges to the human operator?

Q6 How can tree species be identified and classified in a young forest
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using forest-machine-mounted sensors?

Q7 How can a forest-machine-mounted laser scanner be used to measure
the surrounding forest and segment trees and ground surface from
the measurements?

Q8 What kind of trade-offs help to enable real-time capable methods?

Q9 What benefits are offered by different actuated laser scanning config-
urations?

Q10 How can sensor fusion with inertial measurements benefit machine
perception for forest machinery?

Table 1.1. Relationship between the Research Questions (Q1–Q10) and the Publications
(PI–PVII) summarized in Section 1.3

PI PII PIII PIV PV PVI PVII

Q1 x

Q2 x

Q3 x

Q4 x

Q5 x

Q6 x

Q7 x

Q8 x x x x x

Q9 x x x

Q10 x x x x x x

The research questions and their relationship to the publications is
shown in Table 1.1. The first seven questions (Q1–Q7) are covered one
by one in publications I to VII. The last three questions (Q8–Q10), on the
other hand, contain a wider scope than any of the individual publications.
The publications are briefly summarized in the next section to provide an
initial perspective on the research included in this thesis.

1.3 Summary of Publications and Contribution

Publication I (Forestry crane posture estimation with a two-dimensional
laser scanner) proposes a novel method to estimate the posture of a flexible
forestry crane by using a two-dimensional laser scanner, a rotary encoder,
and two cylindrical metal targets attached to the crane boom. The method
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uses a particle filter to track the two cylindrical targets in the laser scanner
data with the help of digital control signals from the forestry crane, which
are read from the vehicle’s controller area network (CAN) bus. In contrast
to conventional particle filter implementations, the proposed method uses
an approximate inverse measurement model to track the two cylindrical
targets in scanner measurements. This avoids the computational burden
normally required in similar particle filter implementations of ray-casting
each laser beam in each scan. This approximation enables the particle
filter to be computed in real time with low-computational requirements
(Q8).

The proposed method is shown to work robustly in real time in the
presence of obstructions and noise under practical operating conditions.
Publication I advances the state of the art in estimating the posture of a
forestry crane and the position of the boom tip (Q1). As the method observes
the crane tip position directly, the crane posture estimate therefore also
observes the bending of the flexible crane. This is the first method to
estimate the posture of a flexible forestry crane in real time using an
optical sensor in such a way that it is robust with respect to line-of-sight
obstructions. By using a vertical laser scanning configuration with the
scanner attached on the side of the forestry crane boom, Publication I
allows most of the scanner data to be simultaneously used to measure the
environment around the working area in 3D in the same coordinates as
the crane position (Q9).

Publication II (A DCM based attitude estimation algorithm for low-cost
MEMS IMUs) proposes an attitude estimation algorithm for fusing triaxial
accelerometer and gyroscope measurements from an inexpensive micro-
electro-mechanical system (MEMS) inertial measurement unit (IMU). The
proposed adaptive, extended-Kalman-filter-based algorithm enables on-
line gyroscope bias estimation with only triaxial acceleration and angular
velocity measurements. The method also estimates the number of tempo-
rary (or transient) non-gravitational accelerations and adapts its attitude
and bias estimation accordingly. In practice, this enables robust attitude
estimation, for example, on a mobile phone or vehicle such as a robot or
a forest machine, which are susceptible to accelerations, vibrations, and
shocks. Furthermore, an opensource code and a test dataset are published
for the proposed algorithm (Hyyti, 2015).

The contribution of Publication II is that it integrates many key modifica-
tions into the same extended Kalman filter, enabling attitude estimation in
challenging conditions (Q2). These modifications include: 1) adaptation to
temporary or transient accelerations, 2) use of the lowest row of a direction
cosine matrix (DCM, i.e., a rotation matrix) as an attitude estimate to
exclude the otherwise problematic estimation of unknown rotation around
the gravity vector (i.e., the heading), 3) use of gyroscope signals as control
inputs in the filter, 4) allowance of variable time steps in the filter, and 5)
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inclusion of online gyroscope bias estimation in the filter. The publication’s
contribution also lies in the fact that all this can be achieved using mea-
surements from a low-cost integrated triaxial accelerometer and gyroscope
MEMS chip alone. This method also contributes to publications III–VII,
which require the orientation of the sensor (or at least part of the system)
to be known (Q10).

Publication III (Sway estimation using inertial measurement units for
cranes with a rotating tool) proposes a novel method to estimate the pose of
a freely swaying tool (e.g., a gripper or a cleaning tool) mounted on the tip
of a forestry crane. The method uses a Kalman filter to fuse signals from
two similar low-cost MEMS IMUs to estimate the three angles of a rotator
link and a rotator motor: swaying angles sideways and back-and-forth,
and the rotation angle of the hydraulic motor, called a rotator. The first
IMU is mounted on the boom tip before the rotator link, and the second
IMU is fitted to the tool hanging from the rotator. The computation occurs
in real time on an embedded computer in the vicinity of the first IMU and
the estimated joint angles and angular velocities are transmitted to the
vehicle through a CAN bus. Therefore, only one cable is required to be fed
through or pass the rotator link and the rotator.

The main contribution of Publication III is that its proposed method
enables practical measurement of the tool orientation (Q3). It is almost im-
possible to build traditional mechanical angle instruments into the rotator
link mechanism, since any constructions must be mounted inside the steel
structure to avoid damage when parts strike, for instance, the ground, logs,
or trees. In addition, the sensors and cabling must be completely sealed
against water and withstand freezing temperatures. Furthermore, the
joint has three degrees of freedom and contains a hydraulic motor in an
extremely compact space, which makes it challenging to integrate three
angle position sensors inside the same structure. Therefore, these angles
of the tool hanging from the tip of a forestry crane are seldom measured at
all, which significantly limits computer-controlled or robotic use of forest
machinery. The proposed method is the first known practical proposal to
measure the orientation of the freely hanging and swaying tool of a forest
machine.

Publication IV (Augmented reality in forest machine cabin) is the first pub-
lished demonstration of a real-time augmented reality system in a forest
machine cabin. Here, a head-mounted camera and an IMU are used to es-
timate head pose using a Kalman-filter-based sensor-fusion method. Laser
scanner measurements, which are collected with the instrumentation of
Publication I, are drawn on the video from the operator’s helmet-mounted
camera in real time. The demonstration aims to demonstrate that aug-
mented reality is a viable user interface for a semi-autonomous forest
machine, since it represents a feasible means of visualizing measurements
and derived models intuitively for the human operator. The main contri-
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bution of Publication IV is that it shows how augmented reality can be
achieved by tracking the pose of the forest machine crane and the pose of
the operator’s head in a forest machine cabin (Q4).

Publication V (Real-time detection of young spruce using color and tex-
ture features on an autonomous forest machine) demonstrates a real-time
machine perception system for detecting young spruce trees among other
vegetation using extracted color and texture features. Here, a machine
vision camera is mounted in the center of a point cleaning tool to look down-
wards and observe the trees and the forest floor. The publication’s main
contribution is the use of a fully instrumented forest machine research
prototype (Kalmari, Pihlajamäki, Hyyti, Luomaranta, & Visala, 2013) to
perform the cleaning operation autonomously based on the real-time detec-
tion results (Q5). Publication V documents the first demonstration where
a perception system is used within a control loop in a forestry cleaning
operation performed without any human intervention by an autonomous
forest machine.

Publication VI (Detection and species classification of young trees using
machine perception for a semi-autonomous forest machine) proposes a
method for young tree detection and species classification using a machine
perception system. The system combines a machine vision camera and
a three-dimensional (3D) lidar built from an actuated laser scanner (Q9).
This is a novel approach to the automatic detection and classification of
young trees in a forest. The method segments separate trees using lidar
data before attempting to classify their species. The main contribution of
the work is that it exemplifies how lidar and camera data may be combined
and used for tree detection and classification purposes (Q6).

Publication VII (Feature based modeling and mapping of tree trunks
and natural terrain using 3D laser scanner measurement system) proposes
methods for using a rotated two-dimensional (2D) laser scanner to collect
3D data from forests and to model and map the forest environment in real
time. The method employs a 45° tilted rotating 2D laser scanner in a novel
way to efficiently classify the collected point cloud into ground surface,
tree edge, and center-of-tree-stem classes (Q9). The method is efficient
to compute in real time. As demonstrated in the study, these classes
can later be efficiently used to search and segment individual trees from
the point cloud. The publication’s main contribution is its demonstration
of how a forest-machine-mounted laser scanner can be used to measure
the surrounding forest and segment trees and ground surface from the
measurements (Q7). This work also represents an example of how data
from an actuated 2D laser scanner can be combined into a 3D point cloud
around the vehicle.
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1.4 Thesis Outline

After the introductory sections in Chapter 1, the contents of this thesis
are divided as follows. Chapter 2 reviews machine perception in the forest
environment. It discusses the probabilistic sensing and sensor fusion
methods that can best utilize the noisy sensor data available in forest
machinery. Two interconnected problems are identified: 1) sensing the
robot/machine’s own state or motion (i.e., proprioceptive perception) and
2) sensing the surrounding environment (i.e., exteroceptive perception).
Both of these problems must be solved simultaneously, and the solutions
often require measurements from multiple different sensors. Therefore,
in addition to different perception modalities, probabilistic sensor fusion
methods are important in this context.

Chapter 3 presents the proposed proprioceptive perception methods and
their sensor setups. The novel sensor setups include minimal instrumenta-
tion for crane posture estimation and dual-IMU instrumentation of a forest
machine tool. They are explained in more detail than in the published
articles to facilitate the industrial adaptation of the methods developed in
the studies. The proprioceptive perception methods include a particle filter
for crane posture estimation in Publication I, and three extended Kalman
filters, one for robust and adaptive attitude estimation using an IMU in
Publication II, another for tool swaying angle estimation in Publication III,
and the third for operator’s head pose estimation in a forest machine cabin
in Publication IV.

Chapter 4 presents the exteroceptive perception methods and their sen-
sor setups proposed in this thesis for autonomous and semi-autonomous
forest machinery. The sensor setups include three different actuated laser
scanner configurations and the machine vision instrumentation for the
point cleaning tool to detect young spruce trees. In the sensor setups, the
practical hardware innovations and industrial applicability are elaborated.
The exteroceptive perception methods include real-time machine vision for
young spruce detection in Publication V, young tree detection and species
classification in Publication VI, and tree stem and ground model estimation
in Publication VII.

In Chapter 5, the benefits and limitations of the proposed perception sys-
tem are discussed, the key findings are identified, the sensor and method
selection is justified, and the research questions are answered. Finally,
Chapter 6 concludes the work.
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2. Machine Perception in Forest

In this chapter, the state of the art in machine perception relevant for
autonomous forest machinery is reviewed. Most state-of-the-art meth-
ods for machine or robot perception are probabilistic, aiming to use all
available information (see Machine Perception under Section 1.1 for de-
tails). Furthermore, many perception setups combine multiple similar or
different sensors, so fusing signals and information from various sources
is essential.

Here, we may learn something from the way nature has solved similar
problems. Recent studies on perception in animals and humans indicate
that it is a result of a probabilistic inference process (e.g., Ma, Beck,
Latham, & Pouget, 2006; Doya, Ishii, Pouget, & Rao, 2007; Girshick,
Landy, & Simoncelli, 2011). These studies have suggested that the brain
somehow represents and manipulates uncertain information, which can be
described in terms of probability distributions (J. F. Ferreira & Dias, 2013,
p. 4).

Analogously to animals, the perceptual capabilities required in an au-
tonomous forest machine can be divided into internal (i.e., proprioceptive)
and external (i.e., exteroceptive) senses (Spero, 2004; Campbell et al., 2018;
Yeong, Velasco-Hernandez, Barry, & Walsh, 2021). Proprioceptive senses,
such as the vestibular sense (i.e., the sensations of body rotation and of
gravitation and movement) help to balance the vehicle and measure its at-
titude, the relative orientation of the Earth and body frames. Additionally,
the kinesthetic sense (i.e., the positions and movements of one’s skeletal
joints) also help the forest machine know where its crane and tool are lo-
cated and how they may be moved. For example, this includes the posture
of the crane and the pose of the tool. Pose comprises the position and the
orientation of an object in 3D space and posture consists of the relative
poses of all parts of a flexible structure, such as the hydraulic crane of a
forest machine.

Exteroceptive senses are required to detect relevant objects, such as
trees, rocks, and other obstacles, and to find safely passable ground and
avoid sinking into mud. In autonomous vehicles, exteroceptive senses
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are usually built using sensors, such as machine vision cameras, radars,
sonars, or lidars (Spero, 2004; Campbell et al., 2018; Yeong et al., 2021).
These sensors collect a large amount of data from the surrounding environ-
ment, but their observations contain significant uncertainties and noise.
The environment and the sensors are usually modeled to make sense of
the measurements. A sensor model is a mathematical description of the
relation of sensor measurements to real objects in the environment. For
example, if a measurement can be related to a specific location, the data
may be represented as a point cloud, which is a high-resolution, densely
spaced network of 3D points (Campbell et al., 2018). The point cloud
can also contain some extra information, such as the color or intensity
attached to each point. Alternatively, a map can be constructed from the
surrounding environment to pinpoint the location of each detected object.

As explained earlier in the Background (Section 1.1), a forest is an
uncontrolled, less structured environment, where sensors readings are
uncertain and difficult to interpret. A perception system must cope with
imperfect data, as forest machines operate in an environment where even
the best remote sensing equipment struggles to measure trees precisely
(e.g., X. Liang et al., 2018; J. Hyyppä et al., 2018) and where even state-
of-the-art navigation sensors lack sufficient positioning accuracy (e.g.,
Kaartinen et al., 2015). When measurements tend to contain significant
amount of noise and errors, it is beneficial to focus on probabilistic methods
that can effectively combine multiple uncertain measurements to construct
more reliable perception. When algorithms are built to cope with such
errors and noise in the data, instead of focusing on the best possible sensors,
lower cost but less accurate sensors can also be utilized for the task.

Cost is one of the limiting factors for adding sensors to commercial forest
machinery. Therefore, expensive sensors (e.g., military grade IMUs, custom
built radars, high quality 3D lidars, multi- or hyper-spectral cameras, and
X-ray sensors) are excluded from consideration. Instead, low-cost sensors,
such as MEMS IMUs, machine vision cameras, and laser scanners are the
focus of this work. They are introduced in their own sections after the
following section on probabilistic sensing and sensor fusion.

2.1 Probabilistic Sensing and Sensor Fusion

All measurements contain uncertainty. Uncertainty arises from sensor
limitations, noise, and the fact that most interesting environments are
complex and largely unpredictable (Thrun, 2000). For example, our forest
machine uses a lidar sensor (see Lidar under Section 2.4) to measure
ranges to nearby objects by timing a time-of-flight (ToF) delay between
emitted and received laser pulses. If we aim the laser beam towards a tree,
assume that we hit the tree, and wait for the returning echo, the range can
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be computed using the ToF equation (J. Shan & Toth, 2018, p. 3),

r = vt
2

, (2.1)

where r is the range or slant distance, v is the speed of light in air, and t is
the time interval measured between emitted and received pulses. Tradi-
tionally, the classical measurement error theory8 concerns only random
errors in the measurement, and results in a probabilistic model, the normal
distribution around the most likely value (Rossi, 2014, p. 26). However, in
the forest, we need something else instead. The distance measured varies
considerably depending on whether the laser pulse has been reflected back
from branches or needles at the front or rear of the tree, or whether the
pulse has hit the trunk. The laser pulse might also collide with other ob-
jects in between the target and the sensor, which might shorten the range
measurement drastically. Furthermore, it is possible that the laser pulse
is reflected from an obstructing object in an unknown direction, resulting
in the loss of the pulse or a random range measurement.

In the previous example, a simplistic deterministic algorithm would
use a single range measurement and the equation (2.1) to resolve the
distance to the tree. Because of the high number of possible error sources
in the range measurement process, the range might vary significantly
between measurement events. Therefore, it might be inadvisable to trust
any single measurement. By contrast, a probabilistic algorithm is able
to model uncertainty in the measurement process and combine multiple
measurements. It computes a probability distribution over what might
be the situation in the world instead of using an uncertain measurement
per se (Thrun, 2000). This probabilistic computation is usually performed
using a Bayesian framework, as explained in the following subsections.

Detection of an Event

According to the Bayesian worldview, probability is seen as the measure of
belief or confidence in the occurrence of an event (Davidson-Pilon, 2015,
p. 2). In the Bayesian context, an event is whatever can be precisely
described by a proposition (D’Agostini, 2003, p. vii). The event can also be
defined as a set of outcomes (Forsyth, 2017, p. 55). If it contains just two
possible outcomes (e.g., true or false), it is called as a binary event. For
instance, whether or not the input data contain a tree is an illustrative
example of a binary event. The same example is followed throughout the
chapter.

Even before measurement occurs, a Bayesian observer assigns a belief to
the event based on their previous knowledge of the world. If they assign
a belief of 0 to an event, they believe with absolute certainty that the

8Developed mainly thanks to the contributions of Carl Friedrich Gauss (1809,
1823) and Pierre-Simon Marquis de Laplace (1812).
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event (e.g., tree detection) will not occur, and, conversely, assigning a belief
of 1 implies absolute certainty that the event will occur. Naturally, the
belief may be any rational number between these two extremes. To align
with traditional probability notation, the probability of an event A can be
expressed as p(A) ∈ [0,1]. A belief based on previous knowledge is called a
prior probability (Davidson-Pilon, 2015, p. 2).

When our Bayesian observer obtains new information (for example, evi-
dence through a set of range measurements), they now know more about
the occurrence of the event and can change their belief. The updated belief
can be denoted as p(A | Y ), which is interpreted as the probability of A
given (conditioned on) the evidence Y (Rossi, 2014, p. 95). This is called
the posterior probability (Davidson-Pilon, 2015, p. 3). The belief is updated
from prior to posterior probability via the following equation, known as
Bayes’ rule (Davidson-Pilon, 2015, p. 5; Bar-Shalom, Li, & Kirubarajan,
2001, pp. 47–48):

p(A |Y )= p(Y | A)p(A)
p(Y )

, (2.2)

where p(A) is the prior probability of the event, p(Y | A) is the sampling
distribution (i.e., the probability of evidence when the event A occurs),
and p(Y ) is the prior probability of the evidence. After this step in the
tree detection example, the observer now possesses an updated belief as
to whether a tree is present. This belief combines prior knowledge with
information acquired through an uncertain measurement.

The term sampling distribution is used for p(Y | A) in Equation (2.2),
when the event A is fixed. Instead, the same term may be considered a fixed
measurement in the light of different hypotheses of events {A, A′, A′′, . . . }.
In its dependence on A for fixed Y , P(Y | A) is called a likelihood (Jaynes,
2003, p. 89). The likelihood of event A (denoted as L (A)) is not itself the
probability of A. Instead, it is a dimensionless numerical function which,
when multiplied by a prior probability and divided by a normalization
factor, may become the probability of A. If these are constant, they are
often omitted, and the proportionality between the posterior probability
and the likelihood remains,

p(A |Y )∝L (A). (2.3)

For example, in the tree detection case, the likelihood of tree detection
could be computed for our input data. It would tell us how likely our
different hypotheses of a tree are, given the measurements.

If the Bayesian observer possesses multiple different measurements,
assuming that the measurements are conditionally independent (Thrun
et al., 2005, p. 15), the observer can sequentially combine them all by
just repeating Equation (2.2) for each piece of evidence Y using the latest
posterior probability as a prior for the second measurement update, and so
forth. If the observer possess knowledge about all probabilities, they can
optimally integrate the available information.
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Continuous Variables and Sensor Measurements

Contrary to the example of deciding on the presence or absence of a tree,
measurements are rarely binary events. Rather, they are commonly contin-
uous variables (e.g., readings from a measuring tape) or at least discrete
variables with such fine discrete steps that the value can be treated as
being drawn from a continuous probability distribution (e.g., a range mea-
surement from a laser scanner). In the Bayesian framework, we usually
make an assumption that these measurements are continuous random
variables, i.e., samples from a continuous random process that has a proba-
bility density function (PDF) (Thrun et al., 2005, p. 10; Rossi, 2014, p. 105).
This allows the Bayesian rule explained above (2.2) to be also used for
continuous variables.

Electrical devices that automatically and repeatedly take measurements
from the robot and its environment are called sensors. They convert
the physical and chemical variables of a process or an installation into
electrical (at first, usually analog) signals (Placko, 2007, p. 41). As a basic
principle, the sensor converts measurand m into an electrical variable
called s. The relation that joins these is a function s = F(m), which may
be linear or nonlinear depending on the physical law determining the
sensor, the structure of the sensor, and the sensor’s environment (Placko,
2007, p. 42). Sensor-measured analog signals can then be transformed into
a digital form using an analog-to-digital converter. Several such digital
variables can be combined as a single measurement. For example, laser
scanners combine multiple sensor readings taken at different scanning
angles as a 2D scan. Similarly, cameras sample received light intensities
on each pixel, and together all pixel values form an image.

In a probabilistic framework, noise and inaccuracies in sensor measure-
ments are explicitly modeled. These models account for the inherent
uncertainty in the robot’s sensors (Thrun et al., 2005, p. 121). The inabil-
ity of the sensor to provide exact values for the assumed measurand is
often paraphrased as sensor noise. These errors can be caused by random
electrical signals or inaccuracies in the electronics and computation. In a
probabilistic framework, possible errors in the measurement process can
also be included in the sensor model. In a forest environment, these could
be, for example, a false assumption of the target the laser beam has hit.
As explained at the beginning of this chapter, such an error could provide
overly short range measurements if the laser pulse has struck something
else before the assumed target. Alternatively, the range can also be far
larger than expected if the laser beam has missed the tree and, instead,
hit something else behind it.

In a probabilistic framework, in addition to sensors, the environment
in which a measurement is generated must also be specified. A common
way to model the world is to use a map representation. A map of the
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environment is a list of objects, indexed in one of two ways, namely feature-
based and location-based (Thrun et al., 2005, p. 123). A feature-based
map is usually represented as a list of detected objects (such as trees or
rocks) or features (such as coded representations of sample points), and a
location-based map is usually represented as a grid of coordinates (e.g., a
voxel grid) that list the occupancy of all locations in the world. The grid
can have one or more dimensions. Usually, 2D or 3D grids are used.

The internal representation of the map can be metric or topological
(Thrun, 1998). In the more common metric framework, objects are placed
with precise coordinates. This representation is very useful in robotics,
since the map is easier to build, represent, and maintain, it allows ge-
ometric place recognition, it is view-point independent, and facilitates
computation of shortest paths on the map. The downside is that metric
approaches are more space-consuming, computationally inefficient, and
they require precise location and orientation of the robot to be known.

The metric map may be constructed recursively by concatenating mea-
sured objects or modifying the occupancy grid over time, given that the
robot’s location and orientation are precisely known. If the pose is not
known, which is the usual case, it must also be ascertained in the pro-
cess. Then the mapping problem becomes a significantly more challenging
"chicken-and-egg" problem, since the robot’s own pose also affects the
location of the sensed objects on the map. This problem is termed simul-
taneous localization and mapping (SLAM) (Thrun et al., 2005, p. 222).
SLAM is a much-researched topic (e.g., see the following reviews, Spero
& Jarvis, 2007; Lu, Hu, & Uchimura, 2009; Khairuddin, Talib, & Haron,
2015; Taheri & Xia, 2021). It is explained in more detail at the end of
Section 2.2.

The topological framework, on the other hand, only considers places and
relations between them. Often, the distances between places (or objects)
are stored. The map can be represented as a graph, in which the nodes
corresponds to places and arcs correspond to the paths between them.
This approach is difficult to construct and maintain in large-scale envi-
ronments if sensor information is ambiguous (Thrun, 1998). Furthermore,
the recognition of places and objects is often difficult and sensitive to the
point of view. However, precise positioning of the robot is not needed while
constructing a topological map.

State Estimation

In control theory, a system can be modeled mathematically using state
variables to describe the state of that system. The states of a system
are those variables that provide a complete representation of its internal
condition or status at a given instance in time (Simon, 2006, p. xxi). If the
states develop with respect to time, the system is dynamic. A controlled
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dynamic system may be described with equations,

xk = fk−1 (xk−1,uk−1,νννk−1)

yk = hk (xk,υυυk) ,
(2.4)

where k is a time index (and k−1 is the previous one), xk is the state, uk is
a known control input, νννk is the process noise, yk is the measurement, υυυk

is the measurement noise, and functions fk (·) and hk (·) are time-varying
nonlinear system and measurement equations, respectively (Simon, 2006,
p. 463; Bar-Shalom et al., 2001, p. 372).

For example, the attitude of a forest machine may be modeled with a rota-
tion matrix (which can be constructed through a few different formalisms
described later in Section 2.2). At least three state variables are required to
represent rotation in 3D space (e.g., Euler angles) (Diebel, 2006). Here, the
function fk (·) in Equation (2.4) would predict how the attitude represented
by the state variables changes from the current time step to the next. The
function hk (·), on the other hand, would model the measurement process
for this system given the state and uncertainties.

A state is deemed complete if it is the best predictor of the future (Thrun
et al., 2005, p. 17). This means that knowledge of past states, measure-
ments, or given control inputs carry no additional information to predict
the future more accurately. Such systems are commonly known as Markov
processes and, in discrete systems, Markov chains9 (Bharucha-Reid, 2012,
p. 4). However, in practice, it is impossible to specify a complete state for
any realistic system (Thrun et al., 2005, p. 18). A complete state includes
all aspects of the environment and the robot that may exert any impact
in the future. Therefore, all practical implementations are limited to a
small subset of all state variables, i.e., an incomplete state. For example,
the previous attitude-estimation example assumed that the body of the
forest machine is rigid, which means that it does not bend or contain any
moving parts. Otherwise, more parameters would be required to explicitly
determine the posture of a non-rigid object. These parameters might be
difficult to define as demonstrated, for instance, in Publication I. Therefore,
even for this limited attitude estimation example, the complete state is too
difficult to obtain, and instead an approximated incomplete model must be
used.

The process of inferring the best value of a quantity of interest from
indirect, inaccurate, and uncertain observations is called estimation (Bar-
Shalom et al., 2001, p. 1). For a mobile robot, a large amount of important
knowledge about itself and the environment is not directly measurable.
Instead, the robot must rely on its sensors to gather the relevant informa-
tion. As noted earlier, sensors only collect partial information about the

9Named after the Russian mathematician A. A. Markov (1856–1922), who intro-
duced the concept of chain dependence (Bharucha-Reid, 2012, p. 4).
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required quantities, and their measurements are corrupted by noise. State
estimation aims to recover these (partially) hidden state variables from the
data (Thrun et al., 2005, p. 9). For example, the robot is unable to directly
measure its attitude in the world. Instead, accelerometers and gyroscopes
are usually used to estimate the selected state variables representing the
attitude, as employed in Publication II.

In the estimation process, state estimation algorithms are used to com-
pute belief distributions over all states S (Thrun et al., 2005, p. 9). A belief
reflects the robot’s knowledge about the state of the world (Thrun et al.,
2005, p. 22). At time index k, the belief distribution can be represented
with a conditional probability distribution, p(xk |Yk,Uk−1), which is a PDF
of the state xk conditioned on all measurements in a time series y1, y2,
..., yk and all given control inputs u1, u2, ..., uk−1 (Simon, 2006, p. 463;
Thrun et al., 2005, p. 23). Assuming that the process is Markovian9, the
current state values contain all knowledge in the system (Bar-Shalom et
al., 2001, p. 195). Then only the current round measurements and last
control inputs are required. For these systems, the belief can be simplified
as p(xk | yk,uk−1).

The belief is usually updated in two distinct phases, which are termed
a prediction10 and a measurement update (Thrun et al., 2005, p. 23). In
the prediction step, the state of the system is updated using a prior belief
of the state, a model of the system, and an optional control signal, which
may have been given to the robot. In the measurement update step, sensor
signals and a sensor model are used to update the belief. These steps are
applied in turn to update the belief for each time instance in a series.

Bayes Filter

The belief update can be formulated as two distinct equations forming
the most general algorithm for calculating beliefs, called the Bayes filter
algorithm (Thrun et al., 2005, pp. 23–24; Simon, 2006, p. 465). The
prediction step combines the last round belief p(xk−1 | yk−1,uk−2) and the
model to predict state values with the optional known control inputs,
p(xk | xk−1,uk−1). The integration results in an a priori belief,

p(xk | yk−1,uk−1)=
∫

p(xk | xk−1,uk−1)p(xk−1 | yk−1,uk−2) dxk−1. (2.5)

The measurement step computes the a posteriori belief using Bayes’ rule
in Equation (2.2) for the sampling distribution p(yk | xk) and the a priori
belief:

p(xk | yk,uk−1)= p(yk | xk)p(xk | yk−1,uk−1)∫
p(yk | xk)p(xk | yk−1,uk−1) dxk

. (2.6)

10Names such as time update (Bar-Shalom et al., 2001, p. 208; Simon, 2006,
p. 127) or control update (Thrun et al., 2005, p. 23) are also used.
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Note that the prior probability of the measurement (the denominator in
Equation (2.6)) is computed through integrating over all possible state
values. It is equivalent to normalization of the resulting PDF with a
normalization constant η, and thus the equation may be simplified as
(Thrun et al., 2005, pp. 23–24):

p(xk | yk,uk−1)= ηp(yk | xk)p(xk | yk−1,uk−1). (2.7)

In the previous equations, the control u is thought to occur after the update
of the belief, so the newest control is always one step behind and has time
index k−1.

Unfortunately, this general Bayes filter can only be implemented for
very simple estimation problems. This is because we must either be able
to perform the integration in Equation (2.5) and the multiplication in
Equation (2.7) in closed form or restrict ourselves to finite state spaces,
such that the integral in Equation (2.5) becomes a finite sum (Thrun et
al., 2005, p. 24). Analytical, closed form solutions to Bayes filter equations
are available for only a few special cases. In particular, if f (·) and h(·) are
linear, and the initial state x0, and noises {νννk} and {υυυk} in Equation (2.4)
are additive, independent, and Gaussian, then the closed form solution to
Bayes filter equations is a Kalman filter (Simon, 2006, p. 465).

Kalman Filtering

Nonlinear and modified versions of the original Kalman filter (KF) are used
in publications II, III, and IV. To introduce the basics of these algorithms,
the original KF is quickly reviewed.

The KF11 is probably the most studied technique for implementing the
Bayes filter (Thrun et al., 2005, p. 34). It is used for filtering and predicting
dynamic linear systems with additive, independent, and Gaussian noises
and initial state. As an analytical Kalman filter is simpler to implement
and significantly faster to compute than the Bayes filter or other numerical
alternatives, it has become an extremely popular estimation approach
despite the fact that the required assumptions are not always fully met.
Briefly, if noises are zero-mean, uncorrelated, and white, then the KF is
the best linear solution, and even if the noise is not Gaussian, the KF is
still the optimal linear filter (Simon, 2006, p. 130).

Originally, the KF was derived for continuous time systems, but the
discrete version is currently more common, since it is easier to implement
on computers which operate in discrete time steps. In the discrete-time KF,
the dynamic system is given by the following equations, which determine
how the system changes from the previous time step (k−1) to the current

11The Kalman filter was invented in the 1950s by Rudolph Emil Kalman (1960).
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step (k) (Simon, 2006, p. 128):

xk =Fk−1xk−1 +Gk−1uk−1 +νννk−1

yk =Hkxk +υυυk,
(2.8)

where Qk is a state-prediction or time-update covariance of a noise process
{νννk}, and Rk is a measurement covariance of a noise process {υυυk}. The
noises νννk and υυυk are assumed to be white, zero mean, and uncorrelated.
In Equation (2.8), Fk and Gk are matrices representing linear dynamic
system models for the state xk and control input uk, respectively. Similarly,
Hk is a linear measurement model giving the measurement yk.

In the KF, the belief is represented with Gaussian distributions, i.e., the
mean x̂k and the covariance Pk, and the filter is initialized at the beginning
(k = 0) as follows:

x̂0 = E[x0]

P0 = E[(x0 − x̂0)(x0 − x̂0)T],
(2.9)

where E[·] is the expected value operator (Simon, 2006, p. 128).
The Kalman filter is provided by the following equations, which are

computed iteratively for each time step k = 1,2, . . . (Simon, 2006, pp. 128–
129). The first set of equations performs the prediction phase,

x̂−
k =Fk−1x̂k−1 +Gk−1uk−1 (2.10)

P−
k =Fk−1Pk−1FT

k−1 +Qk−1, (2.11)

where the estimated mean and covariance are predicted with the linear
models Fk and Gk. The minus sign as a superscript (·−) indicates the
predicted estimate. For the measurement update, the so-called Kalman
gain must be defined (Simon, 2006, p. 128):

Kk =P−
k HT

k
(
HkP−

k HT
k +Rk

)−1
. (2.12)

The a posteriori belief is then computed by incorporating the measure-
ment yk and the Kalman gain Kk with the measurement model Hk and
measurement covariance Rk:

x̂k = x̂−
k +Kk

(
yk −Hkx̂−

k
)

(2.13)

Pk = (I−KkHk)P−
k (I−KkHk)T+KkRkKT

k , (2.14)

where (2.14) is the so-called Joseph stabilized version of the covariance up-
date equation (Simon, 2006, p. 129). It was formulated by Peter Joseph in
the 1960s, and it guarantees that Pk will always be symmetric positive defi-
nite, as long as P−

k is symmetric positive definite. There also exists a compu-
tationally simpler version for updating the covariance, Pk = (I−KkHk)P−

k ,
but it does not guarantee symmetry or positive definiteness for Pk (Simon,
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2006, p. 129). If, for any reason (e.g., inaccuracies in the floating-point com-
putation) the covariance becomes asymmetric or indefinite, the Kalman
filter estimate might diverge quickly.

Kalman filter is attractive to use, since if the assumptions are met, it is
the one estimator that results in the smallest possible standard deviation
of the estimation error (Simon, 2006, p. 336). Therefore, it is called an
optimal linear state estimator.

Most state estimation methods have been developed for linear dynamic
systems (Kalman filter, Information filter, H∞ filter, etc.), from which
many are restricted to normally distributed belief distributions (Simon,
2006). Unfortunately, the world is rarely linear, and many distributions are
non-Gaussian. Therefore, nonlinear methods are often required in many
practical cases, such as when estimating the attitude (e.g., in Publication II)
or a pose of a robot or its manipulator (e.g., in publications I and III).

Nonlinear Filtering

Nonlinear filtering is significantly more complex and difficult than linear
filtering (Simon, 2006, p. 396). However, we are frequently required to use
nonlinear techniques in cases where linear or Gaussian assumptions can
not be made. Thus, some nonlinear estimation methods have become more
widespread. These techniques include nonlinear extensions of the Kalman
filter, unscented filtering, and particle filtering, from which nonlinear
Kalman filtering is the most widespread approach to state estimation for
nonlinear systems (Simon, 2006, p. 425).

The extended Kalman filter (EKF) is the most widely used nonlinear
state estimation technique (Simon, 2006, p. 396). In the EKF, a nonlinear
system is simply linearized around the Kalman filter estimate using a
first-order Taylor series expansion12 (Simon, 2006, p. 400). When the
estimate changes, the nonlinear system is linearized around the updated
estimate.

In a discrete-time EKF, the system model and the measurement model
are nonlinear functions fk(·) and hk(·), respectively (Simon, 2006, p. 409):

xk = fk−1 (xk−1,uk−1,νννk−1)

yk = hk (xk,υυυk) ,
(2.15)

where xk is the state, uk is the control input, yk is the measurement, and νννk

and υυυk are the noises at time index k, similar to Equation (2.8). The filter is
initialized in a similar manner to the linear version in Equation (2.9), but
the prediction step in Equation (2.10) differs. In the EKF, the nonlinear
model fk−1 is linearized around the previous estimate x̂k−1 (Simon, 2006,

12The idea was originally proposed by a NASA engineer, Dr. Stanley Schmidt, to
allow the KF to be applied to nonlinear navigation problems in space (Schmidt,
1962, 1966).
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p. 409):

Fk−1 =
∂ fk−1

∂x

⏐⏐⏐⏐
x̂k−1

Lk−1 =
∂ fk−1

∂ννν

⏐⏐⏐⏐
x̂k−1

, (2.16)

where Fk is the linearized model equivalent to the one in Equation (2.10),
but Lk is a new term which models the linearization of the process noise at
time index k.

The nonlinear model is used for state prediction without noise, and the
linearized models are used for covariance prediction (Simon, 2006, p. 409):

x̂−
k = fk−1 (x̂k−1,uk−1,0) (2.17)

P−
k =Fk−1Pk−1FT

k−1 +Lk−1Qk−1LT
k−1, (2.18)

In many cases the noise is assumed to be linear, and then Lk becomes
an identity matrix and can be omitted from the equations. Thus, the
covariance update may be simplified to the original equation in (2.11).

Similar to the prediction, the measurement update with the nonlinear
measurement model hk(·) must also be linearized. Linearization is per-
formed around the predicted estimate (Simon, 2006, p. 409):

Hk =
∂hk

∂x

⏐⏐⏐⏐
x̂−

k

Mk =
∂hk

∂υυυ

⏐⏐⏐⏐
x̂−

k

. (2.19)

With the linearized models Hk and Mk, the measurement update is per-
formed in a similar manner to the linear Kalman filter in equations (2.12)
and (2.13). However, instead of using the measurement covariance, the
noise linearization with Mk is taken into account in a similar manner to
Equation (2.17) with Lk. Furthermore, if the measurement noise is also
assumed to be linear, Mk can be assumed to be an identity matrix. Then
the required addition of MkRkMT

k to the covariance update may be omitted
and the original Rk used instead, as in equations (2.12) and (2.14).

The EKF enables the KF to be used for nonlinear systems, but it is still
restricted by linearization and the assumptions of additive, independent,
and Gaussian initial state and noises (Bar-Shalom et al., 2001, p. 394). The
equations (2.16) to (2.19), previously shown above, assume that a linearized
transformation of means and covariances is approximately equal to the
true nonlinear transformation (Simon, 2006, p. 441). Therefore, the EKF
may be used for slightly nonlinear problems if the initial error and noises
are sufficiently small (Bar-Shalom et al., 2001, p. 387). However, when
nonlinearity or errors increase, other means should be used instead.

There are many modifications of the EKF that aim to handle nonlinearity
more accurately. One of these is a second order EKF, which also uses
the second order term of Taylor series in its approximation of nonlinear
distributions (see, e.g., Simon, 2006, pp. 419–420). Alternatively, in an
iterated EKF, the measurement equation is iterated several times to obtain
a more accurate point of linearization (see, e.g., Bar-Shalom et al., 2001,

54



Machine Perception in Forest

pp. 404–406). Compared with attempting to linearize the whole distribu-
tion at once with a Taylor approximation, a single point is far easier to
put through a nonlinear transformation, as performed in an unscented
Kalman filter (UKF). Furthermore, it is straightforward to select a set of
single points such that these points sample the same distribution. In an
UKF, 2N sigma points are selected around the mean to sample the mean
and distribution, where the N is the length of the state vector (see more
details, e.g., in Simon, 2006, pp. 433–459).

When the problem is significantly nonlinear or distributions are sig-
nificantly non-Gaussian (e.g., a distribution with two or more modes),
KF-based filters should no longer be used. Then we must seek other means
of using the Bayes filter introduced above (see equations (2.5) to (2.7)),
which can handle nonlinearities and any form of noise.

An implicit solution to approximate the Bayes filter is to decompose the
state space into a finite number of regions and represent the cumulative
posterior for each region with a single probability value. For discrete
state spaces, this is called a discrete Bayes filter and, for continuous state
spaces, a histogram filter (Thrun et al., 2005, p. 68). In histogram filters,
continuous space is discretized into finite regions, usually called histogram
bins, and then the same equations as in the discrete Bayes filter may be
applied. However, a histogram filter becomes computationally infeasible
when the problem dimensions increase, since its computational complexity
increases to O (N2

c ), where Nc stands for the number of cells in the filter
(Blanco Claraco & Fernández-Madrigal, 2012, p. 238). This implies that
if each dimension is split to Nb bins, in a three-dimensional problem, the
computational cost already increases to O (N6

b). This limits the use of the
histogram filter to be used only in low-dimensional problems.

One solution to avoid this exponential rise in computational cost is to
approximate the belief distribution only around selected interest points.
This may be achieved, for example, with a particle filter (PF), which is the
method applied in Publication I to estimate crane posture. In a PF, the
posterior belief is approximated with a set of random state samples called
particles, which are drawn randomly from the belief posterior (Thrun et
al., 2005, p. 77). Similar to previously explained filters, a PF estimates the
states of a hidden Markov model in a sequential fashion (Arulampalam,
Maskell, Gordon, & Clapp, 2002; Candy, 2007). After each observation, the
(hidden) state of the system is sequentially estimated from the posterior
density of the state variables.

In a PF, the state can be denoted as a set X(k) at time index k, which
contains Np particles, xi(k), where i ∈ {1, ..., Np}. All of these particles have
an associated weight wi(k), which measures how well each particle fits
to the estimated posterior PDF, i.e., their importance. In the original
Sequential Importance Sampling (SIS) type particle filter, the weights
are selected such that, together, the locations of the particles xi and their
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associated weights wi best estimate the belief posterior of the current state
and all previous measurements (Arulampalam et al., 2002; Candy, 2007).

Similar to the histogram filter, the PF is a statistical, brute-force ap-
proach that often works well for problems that are too difficult for the
conventional Kalman filter (i.e., systems that are highly nonlinear or that
contain multimodal distributions) (Simon, 2006, p. 461). They differ in
the way these parameters are generated and the way they populate the
state space. However, in cases where the PDF is concentrated on a small
subset of the whole state space, even a small number of particles may suffi-
ciently approximate the true PDF. However, in spite of being a brute-force
approach, computing a small number of particles is significantly faster
than computing the values in all histogram cells.

One of the simplest versions of the PF is a Sampling Importance Resam-
pling (SIR) type filter13, an approach first proposed by Gordon et al. (1993).
In the SIR filter, a transition prior is used as the importance density in
the weight update stage (Gordon et al., 1993; Arulampalam et al., 2002;
Candy, 2007). This leads to a major simplification of the PF, as only the
likelihood of the last measurement y(k), L (y(k)|xi(k)), is used to update
weights wi(k) ∈R for each particle xi(k) (i = 1, . . . , Np):

wi(k)= wi(k−1) L (y(k)|xi(k)) . (2.20)

To use the SIR algorithm, all Np particles must be initialized by drawing
them from a known initial distribution p(x0) (Simon, 2006, p. 468). Then,
for each time index, k = 1,2, ..., four steps are iterated sequentially:

a) A-priori particles are predicted using the known process equation fk

in (2.4), and the known PDF of the process noise νννk,

b) Weight wi is updated for each particle xi using Equation (2.20) with
the measurement model hk and the measurement noise υυυk from the
state space model in Equation (2.4),

c) weights are normalized so that
∑Np

i=1 wi(k)= 1, and

d) if needed, the particles are resampled by generating a set of new
particles with probabilities according to their normalized weights.

The benefit of the SIR method is that the importance weights are simple
to evaluate, and the importance density can be easily sampled (Arulampalam
et al., 2002). The disadvantage of the SIR method is that since neither
earlier nor current round measurements are taken into account at the
prediction phase, the particles are depleted much faster than in the orig-
inal Sequential Importance Sampling (SIS) algorithm (Arulampalam et
al., 2002). This means that a few particles will eventually account for a

13This PF type is also called a Bootstrap Particle Filter (BPF) (Gordon, Salmond,
& Smith, 1993; Candy, 2007), as the key update stage of the algorithm (Bayes
rule) is implemented as a weighted bootstrap (Smith & Gelfand, 1992).
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significantly large share of the total weight. This is called a degeneracy
problem. To avoid it, a high concentration of probability mass at a few
particles should be avoided by, for instance, resampling (Gustafsson et al.,
2002; Arulampalam et al., 2002).

Although resampling effectively deals with the degeneracy problem, it
introduces a new problem, called the sample impoverishment problem.
The diversity of the particles will tend to decrease after each resampling
step because particles with large weights are likely to be drawn several
times during resampling, while particles with minor weights are unlikely
to be drawn at all. This means that the resampling process will select only
a few (or even one) distinct a priori particles to become posteriori particles
(Simon, 2006, p. 470). This problem is severe in the case of low process
noise, as probability mass is drawn into a single point (Arulampalam et
al., 2002). However, roughening, i.e., adding artificial process noise to the
prediction step, tends to spread the PDF, which mitigates the effect (Simon,
2006, p. 470). In Publication I, the process noise is large, and therefore
this simpler SIR type filter can be effectively used.

In summary, in a nonlinear system, (nonlinear versions of) the Kalman
filter can be used for state estimation, but the larger computational effort
required by the particle filter may provide better results. On the other
hand, in a linear system that contains non-Gaussian noise, the Kalman
filter is the optimal linear filter, but again the particle filter may per-
form better (Simon, 2006, p. 480). The unscented Kalman filter balances
between the low computational effort of the Kalman filter and the high
performance of the particle filter. As depicted in Figure 2.1, going from
an (E)KF through a UKF to a PF increases the computational effort of
state estimation. However, this only increases the accuracy for nonlinear
or non-Gaussian systems (Figure 2.1A). For linear and Gaussian systems,
the KF is the optimal choice (Figure 2.1B).

Figure 2.1. State estimation trade-offs (adapted from Simon, 2006, Fig. 15.7).
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Parameter Estimation

In addition to estimating dynamic state variables, more static or slowly
changing parameters may also be estimated online from the data using
the estimation methods previously explained in this thesis (Simon, 2006,
p. 422). The model of the dynamic system (i.e., functions fk and hk in
Equation (2.4)) usually contains parameters which must be tuned such
that the model represents the true world. If this is performed prior to
the estimation, the process is called calibration. However, it is possible to
estimate these parameters online, and then the process is called parameter
estimation.

In order for the parameter vector p to be estimated, it must be observable,
which means that there should be sufficient independent measurements
to estimate all states and parameters. Then the state vector may be
augmented with the parameter to obtain an augmented state vector x′

(Simon, 2006, p. 423):

x′
k =

[
xk

pk

]
(2.21)

If the parameter vector pk is assumed to be constant over time indices
k, then a small amount of artificial process noise νννp,k is required for the
augmented system model to enable the filter to slowly tune the parame-
ters. The larger the covariance of the noise is set in the filter, the faster
the parameter is allowed to change in the filter. The dependency to the
parameter vector and its noise is then added to the original system model
in Equation (2.4) as follows:

x′
k = fk−1

(
xk−1,pk−1,uk−1,νννk−1,νννp,k−1

)
x′

k = fk−1
(
x′

k−1,uk−1,ννν′k−1
)

,
(2.22)

where x′
k is the augmented state, which includes the parameter vector pk,

and ννν′k is the augmented process noise, which includes the artificial noise
parameter νννp,k. If measurement model hk is also dependent on the param-
eters, the measurement part of the state space model in Equation (2.4)
must also be augmented:

yk = hk (xk,pk,υυυk)= hk
(
x′

k,υυυk
)

. (2.23)

After augmentation, the parameter is modeled as a static state variable,
and it can be estimated along with other state variables with any of the
state estimation methods previously explained. For example, parameters
are estimated in this manner in Publication II, where gyroscope biases are
estimated along the attitude as an augmented state. Naturally, other-than-
constant parameters may also be estimated if the dynamic model of the
parameter is set accordingly in fk in Equation (2.22).
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Sensor Fusion

Usually, a single sensor is unable to gather sufficient relevant information
from the robot and its environment. For example, the attitude of the robot
is difficult to measure with any single sensor. Accelerometers or tilt sensors,
which are commonly used for the task, do not measure linear accelerations
alone but rather external specific force (i.e., proper acceleration, which
is the acceleration relative to free-fall). Specific force is a combination of
linear acceleration and the Earth’s gravitational field (Hol, 2011, p. 25).
Therefore, accelerometers and tilt sensors may be used in a static case
to measure the direction of the Earth’s gravitational field, but, when in
motion, all other accelerations caused by the robot’s own movement are
summed to the sensor readings, causing an erroneous attitude estimate.

The obvious solution to the previous problem is to add more sensors. For
example, gyroscopes are usually added to estimate changes in attitude
while the accelerometer is measuring. This allows the estimator to average
over noisy acceleration signals when fast rotations can be measured by the
gyroscopes and compensated for in the sensor fusion algorithm. However,
this raises new challenges for combining the data from these multiple
sensors. These challenges relate to the time synchronization of the sensors,
nonidealities in sensors, such as unknown or drifting calibration param-
eters, and balancing with real-time requirements, computational effort,
and assumptions built into different algorithms. These challenges are
studied under the name of sensor fusion. Sensor fusion is defined as the
combination of sensory data, or data derived from sensory data, such that
the resulting information is in some sense better than would be possible
when these sources are used individually (Elmenreich, 2002, p. 8).

There exist multiple methods and architectures to fuse sensor measure-
ments (see, e.g., Elmenreich, 2002, Ch. 3). However, the main principle is
the same for all of them. In sensor fusion, measurements from multiple
sensors are combined to produce a more accurate or enhanced estimate
of reality than that offered by a single sensor. The main principle is vi-
sualized as a block diagram in Figure 2.2, where the environment and
the robot’s own state are measured with N sensors (s1 . . .sN), and the mea-
surements are combined in the sensor fusion block to recursively build a
representation of the environment (e.g., a map) and the robot’s own state
in it. Together, this process is called machine perception (or alternatively
robot perception), which usually aims to achieve some task (in Figure 2.2,
the robot control block demonstrates a general task).

The same signal processing methods which were introduced in the previ-
ous few sections for state and parameter estimation can also be used for
sensor fusion. Furthermore, most current sensor fusion methods are proba-
bilistic, for example, Kalman filtering and Bayesian reasoning (Elmenreich,
2002).

59



Machine Perception in Forest

Figure 2.2. Block diagram of sensor fusion of sensors si , i ∈ [1,N] to state x and map M

For sensor fusion to succeed, sensor data must be correctly associated and
time synchronized, which means that measurements should be fused in
the right order and the time differences between the data sources must be
known and taken into account in the algorithm (Kaempchen & Dietmayer,
2003; Ding, Wang, Li, Mumford, & Rizos, 2008). This is because even
a small time offset between the signals may result in a significant error
(Hol, 2011, p. 78). Unfortunately, synchronization of different sensors is
difficult, since most sensors exhibit nondeterministic measurement laten-
cies, i.e., delays before the measurement arrives at the acquisition system
(Huck, Westenberger, Fritzsche, Schwarz, & Dietmayer, 2011). Several
factors contribute to this latency, including measurement acquisition time,
pre-processing time, communication transfer, buffering, and computer
scheduling, all of which occur before the measurement is received and time
stamped in the software. These factors are usually subject to fluctuations
and jitter, and they often cannot be directly measured (Huck et al., 2011).

In addition to timing, sensor models containing knowledge about the
pose of the sensor and sensor inaccuracies or noise are important for fusing
the signals. For example, in Publication VI, data from a camera and a lidar
are fused together. If the mutual rotation and translation between the
lidar and the camera are defined incorrectly, the area segmented based on
the lidar sensor might not correspond to the area selected from the camera.
This would lead to completely incorrect estimates, as the sensor fusion
assumptions are not fulfilled. The parameters that relate to the pose of the
sensor are usually called extrinsic (geometric) calibration parameters (e.g.,
Hanning, 2011, p. 14).

Furthermore, many sensors, such as lidars or cameras, feature complex
measurement models which define how the sensor signals relate to the
physical world. These models are often defined as a function of some pa-
rameters. In the computer vision literature, these parameters are usually
referred to as intrinsic calibration parameters (e.g., Hanning, 2011, p. 14).
Machine vision cameras usually also involve the use of parameters that
model how the image is distorted. In addition, the intensity-related pa-
rameters of the imaging sensor may also be calibrated, which is known as
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photometric calibration (e.g., Szeliski, 2010, Section 10.1).
Sensor calibration is required to identify the values for the defined cali-

bration parameters. This is usually accomplished through an error mini-
mization process which formulates the calibration error, measures some
known object or shape in the environment, and tunes the parameters to
minimize the error function (e.g., Hanning, 2011, Ch. 3). For example,
in Publication I, a minimization procedure is formulated to tune lidar
extrinsics, i.e., the position and orientation parameters of the scanner,
and, in publications IV, V, and VI, a Matlab toolbox (Bouguet, 2004) is
used for calibrating camera parameters. In addition, non-optical sensors
usually contain calibration parameters. For example, the IMUs used
in publications II–IV are calibrated using the methodology proposed in
Publication II.

Sensor fusion may be categorized as low level, intermediate level, or
high level depending on the amount of computation performed for the
sensor readings before fusion (Elmenreich, 2002, p. 14). In high-level
fusion, the sensors are usually loosely coupled. This form of fusion refers
to a solution where the measurements from several individual sensors are
pre-processed before they are used to compute the final result (Hol, 2011,
p. 18). By contrast, lower-level fusion can be more tightly coupled, where
the aim is to utilize all available information to improve the sensing. In a
tightly coupled approach, all measurements are directly used to compute
the final result (Hol, 2011, p. 18).

For example, Publication I uses deep integration of accelerometer and
gyroscope measurements to enable gyroscope bias estimation alongside the
main task of attitude estimation. In comparison, Publication IV proposes
loosely coupled sensor fusion for integrating the attitude estimate from a
head-mounted IMU and a camera to build a more reactive and robust head
pose estimate than would be achieved with a head-mounted camera alone.
In this high-level fusion, it is not possible to use the camera information
to tune the IMU parameters or vice versa. However, higher-level fusion is
simpler to implement.

In addition to fusion level, sensor fusion can be categorized into comple-
mentary, competitive, or cooperative fusion (Elmenreich, 2002, pp. 15–17):

a) Complementary fusion creates a spatially or temporally extended
view (e.g., the back-to-back usage of two similar tilted laser scanners
in Publication VII to double the scanning speed and data acquisition
rate).

b) Competitive fusion provides robustness to a system by combining
redundant information (e.g., IMU and camera fusion in Publication IV
for estimating the orientation of the driver’s head).

c) Cooperative fusion provides an emerging view of the environment
by combining non-redundant information (e.g., the emergence of a
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3D worldview by using a rotation sensor and a vertically mounted
laser scanner in Publication I, and gyroscope bias estimation by
combining the information from triaxial accelerometer and gyroscope
measurements in Publication II).

In conclusion, sensor fusion can be and usually is accomplished with
the same probabilistic tools that are used for state and parameter estima-
tion. The potential advantages of sensor fusion are increased confidence,
reduced ambiguity and uncertainty, robustness against interference and
faults, extended spatial and temporal coverage, and improved resolution
(Elmenreich, 2002). In addition, cooperative sensor fusion is able to pro-
duce novel capabilities that are not possible through the use of any one
sensor alone.

2.2 Attitude Determination and Positioning

Attitude is usually measured with inclinometers and a compass or esti-
mated with the help of digital sensors, such as magnetometers and inertial
measurement units (IMUs). An IMU is an instrument that is built from
triaxial accelerometers and gyroscopes that sense accelerating forces (in-
cluding gravity) and rotation rates in three orthogonal axes relative to
an inertial reference frame (Petovello, 2003). Traditionally, these sen-
sors have been highly expensive mechanical or optical devices (Tazartes,
2014), but low-cost solutions have recently emerged in the form of micro-
electro-mechanical systems (MEMS), which are integrated chips containing
miniature mechanical constructions packaged together on a silicon chip
with measurement and sampling electronics (Aggarwal, 2010).

Magnetometers, which sense the direction and magnitude of the mag-
netic field, are added to the setup to allow heading estimation by assuming
that the magnetic field they measure is mostly caused by the Earth’s mag-
netic field. IMUs and magnetometers can be used together to construct an
attitude and heading reference system (AHRS). Such systems are some-
times called magnetic angular rate and gravity (MARG) sensor arrays
(Madgwick et al., 2011). In many cases, the Earth’s magnetic field is a reli-
able indicator of the direction of magnetic north. However, forest machines
are usually built from ferromagnetic steel, and they contain moving parts
and changing electric current flows. They can also operate under power
lines, which may induce magnetic disturbances. Magnetometer measure-
ments are highly susceptible to magnetic disturbances, and, in particular,
the magnetic field generated by ambient ferromagnetic materials can be
more prominent than the geomagnetic field (Majumder & Deen, 2020).
Thus, these sensors are unreliable and seldom used in forest machinery.

For static cases, a triaxial accelerometer can be used to measure the
inclination of the sensor in the Earth’s gravitational field and thus compute
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the attitude of the sensor (except the heading) (e.g., Luczak, Oleksiuk,
& Bodnicki, 2006). However, MEMS accelerometers are often noisy14.
Therefore, several accelerometer measurements must be averaged together
to estimate the attitude reliably. This leads to problems in dynamic cases,
where the sensor may be rotating while measuring. Therefore, the rotation
of the sensor between the measurements should be known in order to
combine accelerometer measurements taken at different times.

Gyroscopes, which measure the rotation rates of a rigid body, have been
added to the setup to overcome the previous problem and to enable dynamic
measurements. However, as found in the previous sensor-fusion section,
adding more sensors might not simplify the solution. Low-cost MEMS
sensors are noisy, their measurements include errors, and the calibration
parameters might change, which makes attitude estimation a complex
task. These parameters consist of an unknown zero level, i.e., a bias, and
an unknown scale factor, i.e., a gain (Lou, Xu, Cao, Chen, & Xu, 2011). In
addition, the gain and the bias tend to drift over time and are typically
temperature dependent (Hol, 2011, p. 25). For these reasons, sensor
calibration is one of the most challenging issues in inertial navigation
(Sahawneh & Jarrah, 2008).

Furthermore, if the sensor is moving or accelerating in addition to ro-
tating, the accelerometers measure all linear accelerations caused by the
motion and they are summed to the gravity measurement. As mentioned
earlier, an accelerometer measures the external specific force (combined
accelerations and gravity) (Hol, 2011, p. 25). As gravity and linear acceler-
ations are indistinguishable in the measurements, the attitude estimation
process becomes significantly more difficult in unrestricted dynamic cases.

Attitude estimation is a classic problem in the field of sensor fusion, and
there are plenty of different algorithms available (see, e.g., the survey by
Crassidis, Markley, & Cheng, 2007). Many of the existing algorithms have
traditionally relied on data obtained from military grade IMUs, which
usually involve export restrictions and high cost, which limits commer-
cial applications (Baldwin, Mahony, Trumpf, Hamel, & Cheviron, 2007).
Newer methods have mostly been developed for lower-cost MEMS devices.
However, these cheaper commercial-grade IMUs commonly experience
high levels of non-Gaussian noise in their gyroscope and accelerometer
measurements, which often leads to the instability of classical Kalman and
extended Kalman filter algorithms (Baldwin et al., 2007; Crassidis et al.,
2007).

IMU and AHRS sensor fusion algorithms are usually Kalman filter
solutions (e.g., Bistrov, 2012; Ercan et al., 2011; Lou et al., 2011; Phuong,
Kang, Suh, & Ro, 2009; Jurman, Jankovec, Kamnik, & Topič, 2007) or
extended Kalman filters (e.g., Luinge & Veltink, 2004; Barshan & Durrant-

14E.g., the low-cost MEMS IMU sensor MPU-9250 manufactured by InvenSense
produces root mean square (RMS) noise of about 0.08 m/s2 (InvenSense, 2016)
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Whyte, 1995; Foxlin, 1996; Edwan, Zhang, Zhou, & Loffeld, 2011; Gebre-
Egziabher, Hayward, & Powell, 2004), but there exist some non-Kalman
filter solutions as well. These are complementary filters (e.g., Euston,
Coote, Mahony, Kim, & Hamel, 2008), a gradient descent minimization
for an error function by Madgwick et al. (2011), algorithmic heuristics
which balance between calibration and a combination of different attitude
sources (e.g., Zhou, Li, & Shen, 2014), or filters derived in Lie algebra for
special Euclidean (e.g., Baldwin et al., 2007) or orthogonal groups (e.g.,
Mahony et al., 2008).

Since low-cost MEMS contain errors that develop with respect to time
(e.g., drifting gyroscope biases), attitude estimation algorithms should
include an online bias estimator for gyroscope biases. Unfortunately, only
a minority of previously published algorithms include such an estimator. In
many of these, other measurements are required in addition to gyroscopes
and accelerometers to estimate gyroscope biases. The most commonly
used sensor is a triaxial magnetometer, which is utilized in (Lou et al.,
2011; Foxlin, 1996; Edwan et al., 2011; Gebre-Egziabher et al., 2004;
Madgwick et al., 2011). In addition, satellite navigation (Lou et al., 2011;
Gebre-Egziabher et al., 2004) or tilt sensors (Barshan & Durrant-Whyte,
1995) are used for bias estimation. Other innovative solutions also exist,
such as the combination of two IMUs in a controlled inclination offset
(Ruizenaar, van der Hall, & Weiss, 2013) and the mathematical decoupling
of magnetometer measurements to prevent them from affecting attitude or
bias estimation (Hua, Ducard, Hamel, Mahony, & Rudin, 2013).

In addition to Publication II, only a small number of algorithms (Hamel
& Mahony, 2006; Mahony et al., 2008; Wu, Sun, Zhang, & Chen, 2014)
have been proposed to estimate gyroscope biases without any extra sensors
in addition to the triaxial accelerometer and gyroscope. To the best of the
author’s knowledge, Publication II is the only such method that provides
opensource code (Hyyti, 2015).

Position is usually measured either locally using dead reckoning or odom-
etry methods to acquire a relative local position (Mohamed et al., 2019)
or globally using a global satellite navigation system (GNSS), e.g., the
U.S.-owned Global Positioning System (GPS), the Russian GLONASS,
or the European Galileo system (Hofmann-Wellenhof, Lichtenegger, &
Wasle, 2007). These satellite navigation systems provide geolocation and
time information to a receiver anywhere on Earth as long as there is an
unobstructed line of sight to four or more satellites of the same system
(Campbell et al., 2018).

According to Mohamed et al. (2019), relative local position can be mea-
sured with five different odometry methods: wheel, inertial, radar, visual,
and laser odometries (also called lidar odometry). Odometry traditionally
refers to the use of measurements from actuators (wheels, treads, etc.) to
estimate vehicle motion (Siciliano & Khatib, 2016, p. 737). Since there
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are also other means to perform positioning from the measurements, this
simplest and oldest15 form of self-contained localization is referred to as
wheel odometry (Mohamed et al., 2019). In wheel odometry, the rotation
and steering angle of wheels is usually measured with encoders, and this
motion is integrated into a dynamic model to determine the vehicle’s cur-
rent position relative to the starting point (Mohamed et al., 2019; Dudek
& Jenkin, 2010, pp. 44–46).

In addition, inertial navigation systems (INS) are used for positioning
(sometimes referred to as inertial odometry (e.g., Mohamed et al., 2019)).
INS systems usually contain more precise inertial sensors than the IMUs
used and referred to in this work. An INS integrates rotation rates to
obtain orientation changes and doubly integrates gravity-reduced accelera-
tions to obtain velocity and position increments (Jekeli, 2000; Petovello,
2003). Unfortunately, the double integration of accelerations is prone to
errors, since accelerometer and gyroscope measurements contain noise and
nonidealities, such as a temperature dependent non-zero offset (i.e., bias)
in the measurements.

Remote sensors such as radars, lidars, and optical cameras are also used
to estimate vehicle motion. All of the related odometry methods (radar,
lidar, and visual odometry) share the same main concept (Mohamed et al.,
2019). If the surrounding environment can be assumed to be static, all
the changes in the observations are caused by the observer’s own motion.
In radar odometry, radio signals are emitted and received to measure the
velocity and range of objects around the vehicle (Mohamed et al., 2019).
Then, suitable features are extracted and tracked in the measurements
over time. In radar odometry, the Doppler shift can also be utilized to
estimate the velocity of the vehicle (e.g., Vivet, Checchin, & Chapuis, 2013;
Kellner, Barjenbruch, Klappstein, Dickmann, & Dietmayer, 2014).

In lidar odometry, two adjacent scans (i.e., observed point clouds in two
consecutive lidar sweeps) are compared to each other using a method
which computes a transformation between two point clouds (Mohamed
et al., 2019). Commonly, iterative closest point (ICP) variants have been
used, which minimize distances between the nearest points between the
point clouds. The ICP uses an initial guess for the point cloud’s relative
rigid-body transform, and it iteratively refines the transform by repeatedly
generating pairs of corresponding points by minimizing the error metric
(Rusinkiewicz & Levoy, 2001). In addition, point-to-plane (Low, 2004),
point-to-line (Censi, 2008), and generalized (Segal, Haehnel, & Thrun,
2009) error metrics have been used. Instead of comparing random points
between point clouds, other proposed methods have used computed features
from the point clouds, such as normal distributions (Biber & Straßer,
2003; Magnusson, 2009; Stoyanov, 2012) or, more recently, line and corner

15The basic concepts that underly odometry have been studied for more than two
millennia (Siciliano & Khatib, 2016, p. 737).
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features (J. Zhang & Singh, 2014, 2017).
In visual odometry, the position and orientation of a platform is estimated

by analyzing the variations induced by the motion of a camera (or two or
more cameras together) on a sequence of images (Mohamed et al., 2019).
Existing visual odometry algorithms differ according to whether they have
been designed for a monocular camera (e.g., Forster, Pizzoli, & Scaramuzza,
2014) or a stereo camera pair (e.g., Howard, 2008). Furthermore, methods
for depth cameras (e.g., Whelan, Johannsson, Kaess, Leonard, & McDonald,
2013) and omnidirectional (e.g., Scaramuzza & Siegwart, 2008) and fisheye
(e.g., P. Hansen, Alismail, Rander, & Browning, 2013) cameras use different
methods that are specially designed for the different camera type. In
addition, methods also differ according to the key information upon which
odometry is performed. This can be raw pixel values that are matched
together, for instance, using a template matching algorithm (e.g., Nourani-
Vatani & Borges, 2011). More sophisticated features (e.g., SIFT by Lowe,
2004) can also be sought from the images to track ego-motion over time
(Chien, Chuang, Chen, & Klette, 2016).

Positioning sensors and techniques may also be integrated to gain a more
reliable and accurate result. High-accuracy tight-integrated GNSS/INS
systems can provide accurate location and orientation information even
if satellites are not always visible (see Petovello, 2003, ch. 9). In the
forest, the accuracy of satellite navigation under forest foliage is a limiting
factor for positioning, as there rarely is an unobstructed line of sight to
the satellites. However, Kaartinen et al. (2015) have shown that a high-
end, tightly-integrated inertial navigation and GNSS receiver system can
achieve 0.7-meter accuracy under forest canopies by using post-processing
methods. These methods utilize a reference base station at a known
location and generally result in a more accurate, comprehensive solution
than is possible in real-time (Novatel, 2015). These reference stations are
used to model satellite-specific biases, such as clock bias and orbital errors,
and signal propagation-medium-related biases caused by, for example,
ionospheric and tropospheric refraction (Hofmann-Wellenhof et al., 2007,
p. 109). Furthermore, the reference station commonly calculates correction
data, which can also be transmitted to the remote receiver in real time to
improve positioning accuracy (Hofmann-Wellenhof et al., 2007, p. 169).

Similar to GNSS sensors, radars, lidars, and cameras can also be inte-
grated with inertial sensors to improve accuracy and robustness (Mohamed
et al., 2019). These sensor fusion methods are called radar-inertial odome-
try (RIO) (e.g., Doer & Trommer, 2020), lidar-inertial odometry (LIO) (e.g.,
Ye, Chen, & Liu, 2019; T. Shan et al., 2020), and visual-inertial odometry
(VIO) (e.g., M. Li & Mourikis, 2013). In addition, many modern positioning
methods utilize or build a map to improve positioning accuracy. These
methods are studied in the field of simultaneous localization and mapping
(SLAM) (e.g., Spero & Jarvis, 2007; Lu et al., 2009; Khairuddin et al.,
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2015; Karam, Lehtola, & Vosselman, 2020; Taheri & Xia, 2021). As an
example, positioning accuracy in a forest can be improved to a few cen-
timeters by using SLAM-based methods in combination with a high-end,
tightly-integrated inertial navigation and GNSS receiver system, as shown
by Kukko et al. (2017).

In SLAM, the robot builds a map of the environment consisting of land-
marks and possibly other features, such as obstacles or topography, and the
same map is also used for defining the robot’s location in the world (Spero
& Jarvis, 2007). In the beginning, if the robot lacks a priori knowledge, it is
at an unknown location in an a priori unknown environment. It then uses
its sensors to observe the nearby environment to detect suitable landmarks.
It also measures its own pose with respect to the detected landmark loca-
tions. As the robot moves through the environment, its changing viewpoint
enables incremental map building from these landmarks. The generated
map is continuously utilized to track the robot’s current pose relative to its
original pose where the mapping began (Spero & Jarvis, 2007).

If the robot already possesses a map but the initial location on the map is
unknown, the problem is called a global positioning problem (also known as
a wake-up robot problem) (Fox, Burgard, & Thrun, 1999). Such a problem is
more difficult than the position-tracking problem normally solved in SLAM
(Thrun et al., 2005, p. 159). When solving the global positioning problem,
the robot must be able to deal with multiple possible hypotheses about
its pose, since a similar set of landmarks might be situated in multiple
locations and orientations around the map.

Nonlinear filtering methods such as particle filters (introduced in the lat-
ter part of Section 2.1) are better at dealing with the multiple hypotheses
required in the global positioning problem. Particle-filter-based localization
methods can also be injected with random initial guesses to compensate
for an erroneous global position estimate (see, e.g., Thrun et al., 2005,
Sec. 8.3.3, pp. 204–209). Instead of injecting the particle filter with random
particles, measurements from another system can also be added into a par-
ticle filter. Then, position measurements from another positioning system
are induced as particles in the particle filter instead of randomly assigned
particles. In such a case, the estimate in the particle filter is slightly biased
towards the measurements acquired from the other positioning system.
This kind of augmentation is used in Publication I to recover from errors.

2.3 Crane and Tool Pose Measurement

In robotics, the pose of the end effector is traditionally measured from
inside the robot using an angular position sensor (e.g., a potentiometer,
optical encoder, or tachometer) for each joint angle (Mihelj et al., 2019,
p. 86). For hydraulic manipulators, such as forest machines, joint angles
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can also be measured using a linear position sensor attached to each
hydraulic cylinder, and telescopic extensions (i.e., prismatic joints) common
in forest machines can be measured with a length-measuring device built
within the joint (Kalmari et al., 2013; Lindroos et al., 2015).

When the cylinder lengths are known, joint angles can be calculated using
kinematic equations, and the end effector position can then be calculated
using a forward kinematic chain of rigid links (Waldron & Schmiedeler,
2008). This assumes that the crane parts are rigid structures that do not
bend under stress. Instead of using the stiff structures more familiar in
industrial robotics, hydraulic forestry cranes are usually built to be flexible
to optimize material usage and keep their weight low (Pedersen, Andersen,
& Nielsen, 2015). This results in significant bending, which should be
taken into account when the crane posture and end effector position are
estimated.

Methods to estimate the bending of the manipulator (e.g., De Luca &
Panzieri, 1994) could be used to cope with the problem. However, bending-
estimation methods must use the right model parameters and predefined
weights to avoid end-effector displacement errors. In addition, these
weights are bound to change as the crane is used to lift unknown loads,
for instance, when handling various size logs, felling trees, or exerting
unknown forces when uprooting vegetation. Therefore, there is a need
for alternative methods to maintain a sufficient level of accuracy for es-
timating the end-effector position or the crane posture. Such alternative
methods include observing the pose by using optical sensors, such as cam-
eras and laser scanners, or, alternatively, by using inertial measurement
units (IMUs).

Camera-based solutions have previously been demonstrated mostly for
excavators (e.g., Mulligan, Mackworth, & Lawrence, 1989; Mielikäinen,
Koskinen, Handroos, Toivanen, & Kälviäinen, 2001; Feng, Dong, Lundeen,
Xiao, & Kamat, 2015), for large tower cranes (e.g., Yang, Vela, Teizer, & Shi,
2012), for large rope-operated shovels (e.g., Corke, Roberts, & Winstanley,
1998; Lin, Lawrence, & Hall, 2010), and for underground mining machinery
(e.g., Corke et al., 1998). In addition, lidar-based solutions have focused on
estimating the pose of large mining machinery, such as large rope-operated
shovels (e.g., Dunbabin & Corke, 2006; Kashani, Owen, Himmelman,
Lawrence, & Hall, 2010; Phillips, Green, & McAree, 2016). Only Kashani,
Owen, Lawrence, and Hall (2007) have tested a laser scanner with a
normal-sized excavator. To the author’s knowledge, the method proposed
in Publication I is the only forest-machine crane-posture measurement
solution using machine vision or laser scanning.

Inertial measurement-based solutions usually employ one or more IMUs
to estimate the orientation of the sensor with respect to the Earth frame
(i.e., attitude). Then the attitude of each IMU is used to measure the
orientation of the crane part on which the sensor is mounted. In research
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by Vihonen et al., (2013a, 2013b, 2014; 2016) the pose of a forestry crane
is estimated with a group of low-cost MEMS IMUs. Their latest work
includes an integrated kinematic model for the crane using three IMUs,
one attached to each boom segment (Vihonen et al., 2016). The setup can
reach up to 1 degree accuracy for lift and transfer (referred to as tilt in their
work) angles. In addition to the many studies by Vihonen et al. (2013a,
2013b, 2014, 2016), the DCM IMU algorithm (Hyyti, 2015) (proposed in
Publication II) was also successfully employed with a kinematic crane
model (see Publication I) to estimate the posture of a forestry crane in the
master’s thesis of Toiviainen (2017).

Inertial measurements can be accurate for attitude estimation (as shown
in Publication II). However, the length of a telescopic extension is signif-
icantly more difficult to measure or estimate with IMUs alone. In their
study, Vihonen et al. (2014) could achieve centimeter-level accuracy when
the telescopic link was contracted, but, while the crane was extended at
its maximum reach, the average error increased to 0.26 meters. This is
significantly more than the average error present in Publication I. For this
reason, extra range measuring instruments are preferred for measuring
the length of the prismatic joint. For example, P. Cheng, Oelmann, and
Linnarsson (2011) extend IMU instrumentation with a sonar sensor to
measure the length of the extension link.

In addition to estimating the pose of the crane, IMUs have also proven
useful for estimating the pose of a freely swaying tool attached to the boom
tip, as shown in Publication III. The three-axis rotation of the tool relative
to the crane or boom tip pose is difficult to measure using traditional
sensors (e.g., encoders and position sensors), since the tool is suspended
with a rotator link and a rotator (see Figure 2.3). This means that the
tool freely hangs from the tip of the boom with a rotator link that allows
free swaying in two opposing directions. The tool can be rotated with a
hydraulic motor called a rotator, which is mounted after the link.

Installing sensors on each of these joints is challenging due to the me-
chanical structure of the rotator link. In addition, the tool is often in
contact with obstacles in the forest, and thus the sensors should be well
protected or built inside the mechanism. To the best of the author’s knowl-
edge, no studies have proposed methods for the measurement of the freely
hanging rotator link and the rotator motor except Publication III. The
method proposed in Publication III is able to estimate the 3D angular
position and angular velocities of the freely hanging tool with an accuracy
of a few degrees.

In addition to optical and inertial measurements, ultra wide-band ra-
dio frequency identification (UWB RFID) tags (C. Zhang, Hammad, &
Rodriguez, 2011) and global navigation satellite system (GNSS) receivers
(Kim & Langley, 2003) have also been used to measure crane pose. C. Zhang
et al. (2011) studied the UWB positioning of a construction crane for safety
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Figure 2.3. A blue cleaning tool is mounted on the forestry crane using a rotator link and
a rotator with three rotation axes (red arrows), from which the top two on the
rotator link swing freely, and the lowest one is rotated by a hydraulic motor
called a rotator.

purposes on an open construction site, obtaining a position accuracy of
approximately 25 cm with active RFID tags. In their work, transceivers
were installed in the environment to guarantee good visibility between
them and the tags. UWB techniques have since been shown to yield sub-
centimeter accuracies in an indoor-positioning competition (see Table 2
in Lymberopoulos & Liu, 2017). Therefore, UWB technologies could also
possess potential for crane posture estimation in the future.

2.4 Measuring the Surrounding Forest

In autonomous vehicles, exteroceptive senses are usually built using sen-
sors such as machine vision cameras, radars, sonars (including ultrasonic
sensors), and lidars (Campbell et al., 2018). To be usable in a forest environ-
ment, these sensors must tolerate outdoor conditions, for instance natural
light, shadows, fog, dust, rain, wind, snow, and normal boreal seasonal
temperatures ranging from hot summers to freezing winters (Vestlund &
Hellström, 2006).

70



Machine Perception in Forest

Camera

Machine vision is a low-cost, fast, and powerful sensing method to collect a
large amount of high-resolution data (Hague, Marchant, & Tillett, 2000).
The main advantage of machine vision cameras over other remote sensing
equipment is their ability to see colors and textures (Campbell et al., 2018).
For example, machine vision cameras have been used inside the forest for
log length measurement in a harvester head (Kalmari et al., 2011), annual
ring width measurement (Marjanen, Ojala, & Ihalainen, 2008), forest
structure estimation (Kulovesi, 2009), tree stem detection (Hellström &
Ostovar, 2014), stem damage detection (Palander et al., 2019), tree species
identification (Carpentier, Giguere, & Gaudreault, 2018), forest machine
orientation estimation (Matej, 2014) and navigation (Schulze, 2012), to
name but a few applications.

A color camera measures the intensity of light illuminated on individual
pixels of the sensor array. The sensor array features a different spectral
response function in its different color sensors, from which the most com-
mon is trichromatic red, green, and blue (RGB) (Szeliski, 2010, pp. 75–76).
Color cameras are often produced by using a color filter array (e.g., a Bayer
filter by Bayer, 1976) attached on top of a single photosensitive image
sensor such that each pixel has its own dedicated filter (Sonka, Hlavac, &
Boyle, 2014, p. 44). This means that each pixel measures only one color,
and the neighboring pixel values must be used to interpolate values for
the other colors using a demosaicing algorithm (X. Li, Gunturk, & Zhang,
2008). In addition, different configurations exist which employ a prism to
split the incoming light into multiple different image sensors that are made
sensitive to different wavelengths; alternatively, a filter can be changed
between consecutive images on the same image sensor (Sonka et al., 2014,
p. 44). In addition, tunable filters such as Fabry-Perot interferometers
have been used for hyper-spectral imaging (e.g., Rissanen et al., 2017).

In RGB, an image is represented as a vector of the three primary colors
(red, green, and blue) for each pixel. There also exist various different
color models, i.e., digital representations of colors (Ibraheem, Hasan, Khan,
& Mishra, 2012). Some are highly device-dependent, like RGB, which
contains the intensities measured at these three spectral channels. RGB
is a poor choice for color image processing, since it is highly correlated
among channels, it mixes chrominance (i.e., the color information) and
luminance (i.e., intensity information), and it is nonlinear to perceptual
visual observation (Saravanan, Yamuna, & Nandhini, 2016). Instead, other
color models that are less correlated, such as hue-saturation-lightness
value / intensity / luminance (HSV/HSI/HSL) color spaces could be used
instead. These are nonlinear conversions of the RGB color space that aim
to separate the luminance part from the chrominance data, which makes
it beneficial for image processing (Saravanan et al., 2016). The same
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color transformation has also proven usable for visualizing point clouds
(e.g., Publication I). However, one of the disadvantages of this nonlinear
transformation is that the hue contains a non-removable singularity near
the axis of the color cylinder (H.-D. Cheng, Jiang, Sun, & Wang, 2001).

There also exist linear color model transformations from RGB, which
can be extremely effective alternatives to nonlinear conversions that avoid
singularities but still reduce the correlation between color channels. The
best color features for natural image segmentation have been found by
using a 3D projection on an RGB color space using a linear transformation
to excessive green (EG), redness-blueness (RB), and intensity (I) channels
(Ohta, Kanade, & Sakai, 1980; Steward & Tian, 1999):⎡⎢⎢⎣
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Ohta et al. (1980) compared multiple different color transformations for
segmentation purposes and found that the fixed linear transformation
defined in Equation (2.24) was the best approximation at each important
step in segmenting natural images. Furthermore, as it separates image
intensity (I channel), it is easy to reduce the effect of shadows by normaliz-
ing intensity in images by dividing each EG and RB channel pixel-wise by
the intensity channel, as in Publication V.

In addition to color, machine vision is usually used to detect objects based
on their texture, which refers to properties that represent the surface
or structure of an object (Sonka et al., 2014, p. 747). Although texture
is widely used and mostly intuitively understood, it nonetheless lacks a
precise definition (Sonka et al., 2014, p. 777). In images, texture generally
refers to the repetition of basic texture elements, i.e., texture primites
called texels (Patel & Tandel, 2016; Sonka et al., 2014, p. 777). These
texels contain several pixels, whose placement can be periodic or random.
In natural environments, such as forests, textures are generally random,
whereas artificial textures are often deterministic or periodic (Patel &
Tandel, 2016). As an example of an artificial texture, an ArUco marker is a
specially crafted black and white marker that includes a code for the com-
puter vision to detect it, measure its orientation, and distinguish individual
codes (Garrido-Jurado, Muñoz-Salinas, Madrid-Cuevas, & Marín-Jiménez,
2014). In forest-related machine vision research, texture is mostly used for
object segmentation and detection (e.g., Ali, Georgsson, & Hellstrom, 2008;
Hellström & Ostovar, 2014).

There are abundant texture feature extraction methods in the literature.
Commonly, spatial frequencies are measured in the image (Sonka et al.,
2014, p. 750). In addition, edges can be detected or gradients computed
prior to texture feature extraction (Sonka et al., 2014, p. 754). A review by
Humeau-Heurtier (2019) categorizes texture feature extraction methods

72



Machine Perception in Forest

into seven classes: statistical, structural, transform-based, model-based,
graph-based, learning-based, and entropy-based approaches. From these,
the first four are already well established; however, structural approaches
are unsuitable for the highly random textures present in natural imagery
(Humeau-Heurtier, 2019).

In statistical approaches, data on the spatial distribution of gray levels
are used as texture descriptors. Many different methods have been devel-
oped for this task. Such methods include a gray-level co-occurrence matrix
(GLCM), which computes how often pairs of pixels with a specific value
and offset occur in the image, a local binary pattern (LBP), which codes
each pixel as an 8-bit sequence based on its neighboring pixels’ intensities,
an autocorrelation function (ACF), which defines the similarity of an image
patch to a shifted version of itself, and histogram based methods (Humeau-
Heurtier, 2019; Ramola, Shakya, & Van Pham, 2020). According to Ramola
et al. (2020), GLCM is the best approach for analyzing surface texture and
landcover classification for satellite data processing, while LBP is widely
used to analyze individual facial features, and autocorrelation is employed
to identify the regularity of the textured surface. Humeau-Heurtier (2019)
note that a histogram of gradient magnitudes often outperforms LBP-
based methods because a histogram can be built to be rotation invariant,
and the method has low computational complexity.

The main limitation of using texture as a measure of surface structure is
related to how a camera measures the target. The structure of an object is
not directly observed by the camera. Instead, in the camera image, texture
is expressed by the spatial arrangement of color or intensity of adjacent
pixels. For example, the differences between neighboring pixels provide us
with information about local differences in the image, which are related to
the actual differences on the observed surface. It is important to note that
camera resolution and distance from the object change how the camera
measures texture. The same surface may appear completely different at
close range than when observed from a distance. This means that texture
description is scale dependent (Sonka et al., 2014, p. 747).

To reduce the sensitivity to scale, a texture may be described in multiple
resolutions and an appropriate scale chosen to achieve maximal discrim-
ination in the classification task (Sonka et al., 2014, p. 764). Usually,
some kind of transformation is also applied to the image before the texture
detection or classification process. Consequently, Humeau-Heurtier (2019)
terms these methods transform-based approaches, which represent an
image in a space (e.g., the frequency or the scale space), whose coordinate
system is better suited to analyzing the characteristics of texture. One
commonly used transformation is the Fourier transformation16, which
brings spatial frequency information into focus. Alternatively, a bank

16This transformation is named after Joseph Fourier (1822), who demonstrated
that some functions could be written as an infinite sum of harmonics.

73



Machine Perception in Forest

of filters, such as various wavelet transformations, have also been used.
Wavelet-based texture-description methods are often utilized, since they
are typically more efficient than other statistical methods (Sonka et al.,
2014, p. 778). Wavelets are short wave-like oscillations with an amplitude
that begins at zero, increases, and then decreases back to zero, and with a
zero average (Mallat, 1999, p. 72).

Similar to the Fourier transformation, which decomposes the signal into
a family of complex sinusoids, the wavelet transform decomposes a signal
into a family of wavelets. Contrary to the symmetric, smooth, and regular
sinusoids in a Fourier transformation, wavelet-based methods define a
sparse representation of piecewise regular signals, which may include
transients and singularities (Mallat, 1999, p. 2). In images, large wavelet
coefficients are usually located in the neighborhood of edges and irregular
textures.

The discrete wavelet transform (DWT) is analogous to altering the input
signal with a bank of bandpass filters, whose impulse responses are all
approximately given by scaled versions of a "mother" wavelet (Kingsbury
& Magarey, 1998). The scaling factor between adjacent filters is usually
2:1, which leads to octave bandwidths between outputs. Discrete wavelet
frames can be designed to be invariant to translation (i.e., invariance to
any circular shift in the input image), and as the input images are also
discrete, they can be efficiently implemented using precomputed filter
banks (Sonka et al., 2014, p. 778).

The selection of suitable wavelets is difficult, and usually some ready-
made dictionary of wavelets is used. The simplest and earliest solution
was the Haar wavelet by Alfred Haar (1910). He found that an arbitrary
signal may be considered a linear combination of appropriately selected
rectangular pulses. These pulses may be positive or negative and of suit-
able widths and heights (Sundararajan, 2015, p. 97). This odd rectangular
pulse pair is the simplest possible wavelet (Stanković & Falkowski, 2003).

Gabor wavelets are a common, more complex set of wavelets invented by
Dennis Gabor using complex functions constructed to serve as the basis for
Fourier transforms (Gabor, 1946). Gabor found that Gaussian-modulated
complex exponentials provide the best trade-off between time and fre-
quency resolution (Lee, 1996). Gabor wavelets are also an interesting set
for natural image processing tasks because the primary visual cortex in
primates has been found to decode visual information similarly (Daugman,
1980; J. P. Jones & Palmer, 1987). According to Kamarainen (2012), such
wavelets are also among the top performers in many technical applications,
such as face detection and recognition, iris recognition, and fingerprint
matching.

The transformation approach can also offer other advantages if the
transformed space contains assumptions that benefit the detection of the
target signal. For example, if the target has a known symmetry, this can
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be taken into account by transforming into a suitable space. Trees, for
instance, are usually rotation symmetric when viewed from above. This
might considerably simplify detection, as there is no need to take account
of image rotation if a rotation-invariant method can be used.

One possible solution for achieving rotation invariance is to perform a
Radon transform prior to a translation-invariant wavelet transformation
(Jafari-Khouzani & Soltanian-Zadeh, 2005). The Radon transform17 takes
a line integral over a line projected on 2D data. It is analogous to the
Hough transform18, which was originally used to detect lines on an image
(van Ginkel, Hendriks, & van Vliet, 2004). These transformations project
2D image data into a space where translation on the x axis is related to
an angle of the projected line and translation on the y axis relates to the
distance of the projected line from the origin. Therefore, translation invari-
ance introduced by the wavelet transformation can be changed to rotation
invariance using a Radon transformation as proposed by Jafari-Khouzani
and Soltanian-Zadeh (2005) and also as attempted in Publication V.

Alternatively, the output of a 2D wavelet transformation (i.e., separate
output blocks in vertical and horizontal directions) may be combined as a
single output such that the output is forced to be invariant for rotations.
This kind of solution is proposed by Porter and Canagarajah (1997a) and
is tested, among other features, in Publication VI.

These texture and color features are usually used as input data for clas-
sifying either the whole image or parts of the image. The latter is usually
referred to as segmentation, where the image is split into multiple separate
segments. These classifiers are usually defined as either parametric or
nonparametric, although semiparametric solutions also exist (Lampinen,
Laaksonen, & Oja, 1998, p. 22). A classical parametric approach is to model
the class-conditional densities as multivariate Gaussians (Lampinen et al.,
1998, p. 23).

One classical nonparametric method is a k-nearest neighborhood (k-NN)
classifier19, in which each class is represented by a set of prototype vectors.
A new sample is assigned to the class most commonly represented in
the collection of its k nearest neighbors (Lampinen et al., 1998, p. 31).
In classical pattern recognition, this nonparametric k-NN classification
method has been popular for many decades. According to Lampinen et
al. (1998, p. 31), it can even be regarded as a sort of a baseline classifier
against which other classifiers should be compared. The k-NN classifier
is used to classify spruce among other vegetation using texture and color
features in Publication V.
17The transform was introduced in 1917 by Johann Radon (1986).
18Invented by Paul V. C. Hough (1959) for detecting line segments in bubble
chamber pictures.
19Fix and Hodges introduced a non-parametric method for pattern classification in
1951 that has since become known as the k-nearest neighbor rule (later published
in Fix & Hodges, 1989).
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A naive Bayes classifier (Rish, 2001) computes the probability density
function of a class label L given the feature vector f = [F1,F2, ...,Fn]. The
naivety comes from the assumption that features are independent of each
other, i.e., p(Fi)= p(F),∀i. This simplifies the Bayesian posterior model to

p(L | f)= p(L)
p(F)

n∏
i=1

p(Fi | L), (2.25)

where n is the number of features, p(L) describes the prior knowledge
about the prevalence of each class L, and p(F) is a normalizing term. A
two-class naive Bayes classifier is used in Publication VI to classify spruce
and birch tree segments on images.

Machine vision has drawbacks, especially outdoors, where it must oper-
ate in natural lighting conditions such as direct sunlight, shadows, and
nighttime low-light intensity (Vestlund & Hellström, 2006). Furthermore,
all sensors that use light on the visible spectrum may be impeded by ad-
verse weather conditions, such as snow, fog, or heavy rain (e.g., Yoneda,
Suganuma, Yanase, & Aldibaja, 2019).

Another disadvantage of machine vision is that the camera does not
natively measure the range to the target, and therefore images are only 2D
projections of the scene. However, there exist methods to circumvent this
limitation. In a calibrated camera, coordinates of one image point define a
ray in space uniquely. If two calibrated cameras observe the same point
at the same time, its 3D coordinates can be computed as the intersection
of two such rays (Sonka et al., 2014, p. 609). This is the basic principle of
stereo vision. If only one camera can be used, then camera motion can be
utilized to build a virtual stereo over a time interval. If the two poses of
the same camera are known, the distance to the same static object can be
triangulated (Sonka et al., 2014, p. 603). If the poses are not known, the
problem becomes considerably more difficult, since the camera poses must
also be estimated. This kind of multiple view geometry problem is usually
solved using a non-linear least squares minimization method, known from
photogrammetry as bundle adjustment (Sonka et al., 2014, p. 607).

Range cameras or color and range measuring RGB-D cameras have also
been designed to overcome this limitation and to measure the range to the
targets. However, most of these sensors are designed solely for indoor use
and possess limited utility in outdoor lighting conditions, such as incident
sunlight (Halmetschlager-Funek, Suchi, Kampel, & Vincze, 2018; Fu et al.,
2020).

Because of range measurement limitations and challenges in difficult
weather and lighting conditions, maximum potential can be achieved by
fusing the data they provide with the data from radar or lidar systems
(Campbell et al., 2018).
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Radar

Radars are mostly used for remote sensing from air or space (see, e.g.,
Sinha, Jeganathan, Sharma, & Nathawat, 2015; J. Hyyppä et al., 2016).
However, vehicle-mounted radar technology has been developed for au-
tonomous driving purposes (see, e.g., Patole, Torlak, Wang, & Ali, 2017).
Proposed applications for radar as an environmental sensor began with
predictive crash sensing, obstacle detection, and braking, and continued to
more complex functions, such as autonomous driving. The advantages of
radar include its ability to measure range and velocity directly and sense
long distances ahead, and its robustness to bad weather and poor lighting
conditions (Hakobyan & Yang, 2019). An extra benefit of radar technology
in a forest environment is its ability to sense through foliage (Hyyti, 2012;
Duarte et al., 2022). Inside forests, radars have been used for obstacle
detection (Hellström et al., 2009) and measurement of cutting height for
standing trees (Rouveure, Faure, Marionneau, Rameau, & Moiroux-Arvis,
2014) and soil (Sucre, Tuttle, & Fox, 2011) and tree-root depth (Hruska,
Čermák, & Šustek, 1999), to name but a few examples.

Unfortunately, the angular resolution of radars is usually much lower
than that of optical sensors because the wavelength of the electromagnetic
spectrum used in radars is longer. The most commonly used frequency
bands for automotive radar are 24 and 77 GHz, of which most manufactur-
ers are shifting toward the higher 77 GHz frequency (Hakobyan & Yang,
2019). This frequency allows for better angular resolution with smaller
antenna, but is still limited to a few degrees. For example, Hasch et al.
(2012) has shown that a 50×50 mm antenna aperture results in an angular
separability of 17.5° at 24 GHz and 5.4° at 77 GHz.

It is also possible to attempt to combine the radar image formation
problem with position estimation using SLAM methods, as shown by
Rouveure, Monod, and Faure (2008) and Vivet et al. (2013). However, radar
data are extremely noisy, and ground surface reflections cause undesired
background signals (i.e., ground clutter), which are difficult to estimate
from the data alone (Vivet et al., 2013). Therefore, in SLAM, both landmark
extraction and data association can be false, causing the method to be
unreliable. For example, the speckle effect, which is a randomness in the
intensity caused by the mutual interference of a set of coherent wavefronts
(Argenti, Lapini, Bianchi, & Alparone, 2013), can lead to false detections
or false disappearances due to the different possible combinations of the
radar signals measured (Vivet et al., 2013).

Sonar

In addition to radio waves, sound waves can also penetrate leaves and
needles in the forest (Hyyti, 2012). When sound waves are used for echolo-
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cation, sonars sensors can be utilized in a roughly similar manner to radars
with radio waves. In robotics, low-cost ultrasonic rangefinders have been
used to measure the distance to a nearby object by emitting a sound wave
at an ultrasonic frequency and listening for that sound wave to bounce
back (Mihelj et al., 2019, p. 102). Similar to other time-of-flight sensors, the
elapsed time between the sound wave being generated and the sound wave
bouncing back is used to calculate the distance between the sensor and the
object. Sound possesses a rather slow velocity in air (approximately 343
m/s), so echo location based on sound is itself slow, and the method is only
applicable for short distances. In addition, ultrasonic signals attenuate sig-
nificantly in air, which makes accurate long-range (> 10 m) sensing difficult
with sonar sensors (Kerstens, Laurijssen, & Steckel, 2019). Sonars are pri-
marily used for underwater surveying, where sound travels faster (see, e.g.,
Hayes & Gough, 2009; R. E. Hansen, 2013). Only a few researchers have
attempted to use synthetic-aperture sonar (SAS) in air (e.g., Saruwatari
& Komura, 1999; Kerstens et al., 2019). In this work, ultrasonic sensors
are found usable only at very short distances. Specifically, an ultrasonic
rangefinder has been used in a safety mechanism for a camera lift in a
point-cleaning tool (see Section 4.2).

Lidar

Lidars are among the most promising remote sensing equipment for the
forest environment, as they can provide dense and accurate 3D measure-
ments. A lidar measures distances on the principle of time of flight (ToF)
by emitting a laser light and measuring the time it takes for the signal to
reflect back (Campbell et al., 2018). According to Behroozpour, Sandborn,
Wu, and Boser (2017) and Royo and Ballesta-Garcia (2019), there are three
common approaches to achieve this. The first and most straightforward
way is to emit a short laser pulse towards the target and compute the
distance from the roundtrip time of the pulse’s echo. The second approach,
which is also commonly used, is based on amplitude modulation of a contin-
uous wave, in which the phase shift between the emitted and backscattered
waves is measured to compute the distance to the target. The third method
is a frequency-modulated continuous-wave technique that is more com-
monly used in radar and sonar sensors. In this technique, the frequency of
the laser light is modulated, and an interferometric detection scheme is
used in the receivers (Uttam & Culshaw, 1985).

From the previous three methods, pulsed lidar can provide centimeter-
level resolution for each pulse from short to long ranges, as nanosecond-
long pulses often provide high instantaneous peak power (Royo & Ballesta-
Garcia, 2019). The continuous wave method, on the other hand, uses longer
amplitude modulated pulses, which limits the range separability of multi-
ple successive reflections. This can be a problem in forests with abundant

78



Machine Perception in Forest

underbrush and foliage which occlude the ground surface, tree stems, and
branches. The last method is technologically the most complex to use, but
it presents two outstanding benefits over the other techniques: firstly, it
achieves better resolutions (down to 150 µm) even at long distances, and,
secondly, it is able to obtain direct velocity measurements simultaneously
for range data using the Doppler effect (Behroozpour et al., 2017; Royo &
Ballesta-Garcia, 2019).

Most low-cost lidar sensors are pulsed sensors that can achieve a range
accuracy of a few centimeters (e.g., ±3 cm for Velodyne Lidar, 2019b; Hesai,
2020; Ouster, 2021). This is a benefit, especially in a forest environment,
since the pulse-type technique offers good range separability of multiple
successive reflections if sufficiently short pulses are used. These are cur-
rently the most promising sensors for forest machine use. However, the
lidar technology develops nowadays with huge steps since global investors
have invested significantly to support the development of self-driving vehi-
cles (Yeong et al., 2021). A comprehensive review by Holzhüter, Bödewadt,
Bayesteh, Aschinger, and Blume (2023) lists various modern technologies
for automotive lidar sensors which might be usable in forest machinery in
the near future.

Lidar measurements can be used to generate 3D representations of the
surrounding environment by registering multiple measurements in a point
cloud when the position and the orientation of the laser emitter/receiver is
known. Modern lidar sensors are capable of measuring distances at rates
greater than one megahertz over longer ranges of over 100 meters (e.g.,
Velodyne Lidar, 2019a; Campos et al., 2020). Compared to the alternative
range-measuring techniques previously introduced in this chapter, such as
radars and sonars, lidars possess superior angular resolution. The beam
divergence, which relates to angular separability, can be a fraction of a
milliradian in state-of-the-art lidar sensors (Campos et al., 2020) and a
few milliradians in low-cost sensors (e.g., 3×1.5 mrad for Velodyne Lidar,
2018). Lidar-based mapping is also more reliable and accurate than radar-
based mapping (see, e.g., Hillier, Ryde, & Widzyk-Capehart, 2015) because
multiple reflections or the speckle effect do not exert such a large effect on
optical frequencies (Vivet et al., 2013).

As mentioned in the background section, lidars have often been uti-
lized for the remote sensing of forests. They are commonly used from
airplanes, in which context the process is called airborne laser scanning
(ALS). In ALS, tightly integrated GNSS and inertial navigation sensors
are used to estimate the position and attitude of the aircraft when a flight-
management system helps the pilot fly a predefined path (Vosselman &
Maas, 2010, pp. 22–23). Flying altitude is usually between 200 m and 4000
m, and the measurement density at ground level is usually from less than
1 to about 30 measurements per square meter (Vosselman & Maas, 2010,
pp. 35–37).
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In ALS lidar sensors, beam divergences are typically between 0.1 mrad
and 1 mrad (Vosselman & Maas, 2010, p. 26). For example, if the diver-
gence is 0.2 mrad, the footprint of the laser pulse will be 0.2 m from a
survey height of 1000 m. For elevation data collection, the standard accu-
racy (in the local coordinate system) is 0.05–0.20 m for height and 0.2–1.0
m for position (Vosselman & Maas, 2010, p. 35). In ALS, lidar sensors are
usually pulse-type ToF instruments (Vosselman & Maas, 2010, p. 37).

When a laser scanner is used in a stationary setting on the ground, the
approach is known as terrestrial laser scanning (TLS). In contrast to ALS,
which requires only one scanning direction (the other being accomplished
by the moving aircraft), a TLS sensor must scan both horizontally and
vertically (Vosselman & Maas, 2010, p. 37). In TLS, the sensor is usually
used in a fixed position (e.g., on a tripod) and accurately positioned with
the traversing and resection methods used as standard practice by land
surveyors (C. K. Toth & Petrie, 2018). In addition, a total station and a
GNSS receiver can be used to measure the sensor location. In a typical TLS
instrument, the scanner measures the surrounding environment stepwise
using rapid vertical mirror rotation and slower horizontal rotation to cover
a full 360° field of view (FoV) (X. Liang et al., 2016). Multiple 3D point
clouds are collected around the same forest plot and then registered to each
other using either fixed-point locations, for example, special markers or
reflectors added to the environment before scanning (Vosselman & Maas,
2010, p. 111), or a data-based registration procedure (e.g., Dold & Brenner,
2006; Barnea & Filin, 2008).

TLS is able to provide the best quality terrestrial point clouds for tree
attribute estimation (X. Liang et al., 2018). From this data, forest inven-
tory information (i.e., stand attributes) can be extracted with acceptable
accuracies (e.g., tree diameter at breast height (DBH) and stem curve can
be measured with root mean square errors (RMSE) of 1–2 cm) (X. Liang et
al., 2016, 2018; J. Hyyppä et al., 2018). In addition, may other attributes,
including forest density, volume, upper stem diameters, height of crown
base, basal area, and biomass, can be estimated (Watt & Donoghue, 2005;
J. Hyyppä et al., 2018). However, tree height estimation is one of the most
difficult parameters to estimate using TLS (X. Liang et al., 2018). Forest
inventory can be collected either using an area-based method, where aver-
age values for each plot are calculated, or at the single-tree level, where
each tree is measured and mapped separately (Kankare et al., 2017).

TLS is an accurate but slow and expensive method for remote sensing,
since it requires the static position of the sensor to be known when measur-
ing. Therefore, it is not directly usable for forest machine automation. A
faster but more difficult way to produce a similar 3D point cloud is to move
the sensor while collecting measurements and continuously measure the
location and orientation of the sensor (Kukko et al., 2007). This is called
mobile laser scanning (MLS) (Pu, Rutzinger, Vosselman, & Elberink, 2011;

80



Machine Perception in Forest

Kukko, Kaartinen, Hyyppä, & Chen, 2012), but the terms personal laser
scanning (PLS) (X. Liang et al., 2014) and kinematic laser scanning (KLS)
(Kukko, Kaartinen, & Hyyppä, 2020) have also been used. The difficulty of
this method stems from the sufficiently accurate estimation of the position
and orientation of the sensor during data collection. In open air, accurate
dynamic positioning is simpler, and it is already used in, for example, ALS
(Vosselman & Maas, 2010, p. 22). However, as already noted in Section 2.2,
position estimation under forest foliage is more difficult, and therefore
SLAM-based approaches have also been extensively used in mobile and
personal forest mapping in addition to GNSS and IMU solutions (Kukko
et al., 2017; J. Hyyppä et al., 2018).

In addition to high precision individual tree-level measurements using
TLS scanners (e.g., X. Liang et al., 2016), lidars have been used inside
the forest for wheel rut measurements (Salmivaara et al., 2018), forest
navigation (e.g., Ringdahl, 2007; Wooden et al., 2010), tree detection around
the harvester (Sihvo et al., 2018), tree diameter measurement at breast
height (Jutila, Kannas, & Visala, 2007; Zheng et al., 2012; Ringdahl,
Hohnloser, Hellström, Holmgren, & Lindroos, 2013), stem mapping with a
horizontal 2D laser scanner (Miettinen et al., 2007; Öhman et al., 2008;
Rossmann et al., 2009; J. Tang et al., 2015), and increasingly also for
the 3D mapping of forests (Kukko et al., 2017; Pierzchała et al., 2018;
S. W. Chen et al., 2020). As a comparison, early attempts at mapping
forests and measuring tree stems in 3D using a rotating laser scanner
were already made by the author more than a decade ago (Hyyti, 2009)
and also later in Publication VII.
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3. Proprioceptive perception

Proprioceptive perception enables the robot to perceive its own state in
the world. This chapter presents the developed proprioceptive perception
methods and their sensor setups. The sensor setups include minimal
instrumentation for crane posture estimation used in Publication I and
dual-IMU instrumentation of a forest machine tool used in Publication III.
Here, contrary to the scientific articles published by the author, the practi-
cal hardware innovations and industrial applicability of the sensor setups
are elaborated. After the sensor setups, the proprioceptive perception
methods are proposed. These include a particle filter for crane posture
estimation in Publication I, and three extended Kalman filters, one for
robust and adaptive attitude estimation using an IMU in Publication II, an-
other for tool swaying angle estimation in Publication III, and the third for
operator’s head pose estimation in a forest machine cabin in Publication IV.

3.1 Minimal Instrumentation for Crane Posture Estimation

Publication I proposes novel instrumentation using a 2D laser scanner
mounted vertically on the side of a forestry crane and a rotation encoder
for the first joint angle (Slew in Figure 3.1). The setup enables direct
observation of the crane tip position, from which the bending of the flexible
crane can be estimated. Traditional robotic instrumentation using, for
instance, electric motors and angular position sensors determines the
tip position with an assumption of rigid links and measured joint angles
between them. With a flexible crane, this causes large position offsets in
the estimated tip position, as previously noted in Section 2.3. Additionally,
the proposed instrumentation enables 3D scanning of the surrounding
environment as the crane is turned from side to side.

Crane posture estimation is achieved with minimal occlusion to the
environment by using two small round metal tubes as targets on the
side of the forestry crane boom, as shown in Figure 3.1. The targets are
magnetically attached onto the ends of steel pivot pins that work as joint
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axles between the boom parts. The magnetically attached targets are
designed to be easily installed and to drop off in case of direct contact with
trees or other obstacles that would otherwise damage the targets or the
pivot pins.

(a) 2D laser scanner (b) Target 1 (c) Target 2
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Figure 3.1. Overview of the system setup: A) 2D laser scanner, B) Target 1, C) Target 2.
The names of joint angles and their positive directions are also shown.

A single target mounted on the side of the boom tip location (C in Fig-
ure 3.1) would reveal the boom tip location (e.g., the distance and angle
to the lidar), but it is insufficient for defining the full posture of the crane
boom with two rotating and one translating joints (Lift, Transfer, and
Extension in Figure 3.1, respectively). Therefore, another target is added
to the middle of the crane (B in Figure 3.1). Together, these two targets
have the smallest possible occlusion to the surrounding environment, but,
at the same time, they are able to reveal the full configuration of the crane
joints in a single laser scan profile, as later shown in Figure 4.1. A third,
redundant, target could be added to the side of the crane to increase the
robustness of crane tracking to, for instance, the presence of occlusions.
However, this would introduce ambiguity in defining each target, espe-
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cially if some of the targets were occluded. Moreover, this would add an
unnecessary obstacle to measuring the environment beyond the crane.

The targets and the environment beyond them are measured with a
2D laser scanner (LMS221 by SICK AG, 2006) (A in Figure 3.1). To
provide free FoV towards the environment, the scanner is located at the
highest point on the crane at which collisions with trees or obstacles remain
unlikely. For example, an alternative position nearer the boom tip would
allow closer and higher observation of the targets and environment, but
there the scanner would be vulnerable to impacts with branches during
forest use. The laser scanner is configured in interpolated four scan mode
to combine four adjacent scans at 1/4° intervals to provide a maximum
angular resolution of 721 range measurements per its 180° FoV (SICK AG,
2006). Any similar laser scanner could be used instead, if it provides at
least the same angular resolution of 0.25° on at least the same FoV, an
equivalent range measuring accuracy, and if it tolerates the environmental
and vibration conditions on the forest machine.

The diameter of the two similar painted-metal tubes working as targets
1 and 2 (B and C in Figure 3.1) is 60 mm. The tube design is a compromise
suited for the selected sensor. On one hand, it is as small as possible, to oc-
clude minimally, but, on the other hand, it is sufficiently large to be clearly
detected and measured from the longest crane reach of approximately 8
meters from the scanner. The paintwork of the targets is designed to avoid
overly bright reflection that could dazzle the scanner (i.e., a Lambertian
surface is preferred over retroreflective material). This also minimizes any
effect on the range measurements from the environment behind, nearby,
or partly occluded by the targets. Both targets are defined similar in shape
and paintwork to simplify the detection and measurement of the targets in
the method explained later in Section 3.2. This choice enables the method
to use the same measurement process for both targets simultaneously, but
the drawback is that different colors, sizes, nor shapes cannot be used to
distinguish between the targets. The target positioning accuracy of the
laser scanner is also checked in Publication I for these targets to verify
that the target does not cause any bias to the position estimates. Although
the target measuring method does not need any calibration, the position
and orientation of the scanner need to be known precisely or calibrated
using, for example, the data-driven method explained in Publication I.

The proposed sensor setup may also be applicable in any equivalent
crane which has the boom in one line allowing a free optical path next to
the crane in all crane postures. Depending on the applied crane, the target
positions as well as the model parameters would need to be redefined in
the kinematic model used in the crane posture estimation method defined
later in Section 3.2.
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3.2 Particle Filter for Crane Posture Estimation

To robustly estimate the posture of a flexible hydraulic crane (see Sec-
tion 3.1), an SIR-type particle filter (see Nonlinear Filtering under Sec-
tion 2.1 for details) was developed in Publication I with custom measure-
ment and system equations. A SIR-type particle filter is used since it is
simple to implement and it can handle the multi-modal non-Gaussian
probability estimates present in the system as found earlier in Section 2.1.
The proposed algorithm is called a Crane Posture Particle Filter (CPPF).

The state x estimated in CPPF is

x= [θ2 θ3 d4]T , (3.1)

where θ2 and θ3 are the two joint angles in the crane boom and d4 is the
extension length. In the setup, the first joint angle of the crane (θ1) is
measured directly using an angle position sensor (see Section 3.1).

The control input u for the CPPF equals a joint velocity vector,

u= v̂ joint =
[
θ̇2 θ̇3 ḋ4

]T , (3.2)

where θ̇2 and θ̇3 are angular velocities of the joint angles and ḋ4 is a
linear velocity of the extension joint. The joint velocities (v̂ joint) are not
directly measured but instead estimated using control signals sent to
the hydraulic valves and a nonlinear model to transform those control
signals into predicted cylinder velocities, which are then transformed
into joint velocities using an inverse kinematic model of the crane (see
Publication I for the specific models of the crane used). Alternatively, these
joint velocities could also be estimated with inertial measurements, as in
Publication III.

The measurement of the CPPF is

y= [
r1, r2, ..., rNl

]T , (3.3)

where r l, l ∈ {1,2, ..., Nl}, are the Nl range measurements provided by the
laser scanner from its FoV during one scan (see Section 3.1).

After initialization, the CPPF algorithm consists of four repeated phases:
prediction, update, normalization, and resampling:
0) Initialization sets particles uniformly distributed around the state

space. All the weights wi are set to an equal weight of 1/Np, where Np is
the number of particles in the filter. In addition, one particle is changed
to match each of the crane posture hypotheses calculated from target
candidates found with a separate, deterministic target detector method
to boost the initialization phase such that one particle is placed around
each posture hypothesis. The deterministic target detector fits known
size circles to the lidar scan and uses kinematic constraints of the crane
to find a suitable crane posture (see Publication I for details).
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1) Prediction is performed using a dynamic model of the crane and the
control signals of the hydraulic valve to predict crane posture change
from a previous time to the present moment. Since prediction is prone
to error, noise is added to the system for each i = 1, . . . , Np by drawing
predicted particles x−

i (k) from a normal distribution,

x−
i (k)∼N

(
xi(k−1)+1iv̂ joint(k)∆t(k), ΣΣΣ

)
, (3.4a)

where
1i =diag

(
I i,1, I i,2, I i,3

)
,

I i, j =
{

1, U < 0.9, U ∼U (0,1)

0, otherwise
∀ j ∈ {1,2,3}.

(3.4b)

In Equation (3.4a), xi(k) is the ith particle in a three-dimensional state
space S defined in Equation (3.1) at time step k. In the equation, the
mean of the normal distribution is located at the previous state xi(k−1),
which is updated by adding the movement predicted with the joint
velocity v̂ joint(k) during a sample period ∆t(k) (a period between two
adjacent indices k−1 and k).

In Equation (3.4), 1 is a random indicator function to reduce the velocity
measurement to zero for 10% of randomly selected particles for each
state independently (indicated with an index j). 1 is implemented in
Equation (3.4b) by sampling a standard uniform distribution (U (0,1))
for each i and j separately. This modifies the distribution such that
there are two independent modes for each state: the first (90% of the
probability mass) at the predicted position, and the other (10%) at the
previous position with the same standard deviation. The ratio of 10%
was found to function best in practice in the tested system. This modi-
fication is required to handle occasions when control signals indicate
a movement, but the crane does not move accordingly. These kinds of
events may be caused, for example, by joint limits or by obstacles that
restrict the movement of the crane.

As, for simplicity, the states are assumed to be independent of each
other, the covariance matrix,

ΣΣΣ= (
∆t(k)

)2diag
(
σ2
θ̇2

,σ2
θ̇3

,σ2
ḋ4

)
, (3.5)

is defined to contain variances on the main diagonal and zeros else-
where. These variances are constructed from the sample period ∆t(k)
and standard deviations of velocity errors for each state: σθ̇2

, σθ̇3
, σḋ4

.
These variances were estimated from data in Publication I.

At the end of each prediction step, invalid state configurations are de-
tected, and their corresponding weights are set to zero. For this purpose,
a subset of feasible states Sf ⊂ S is defined, where θ2 ∈ [θ2,min,θ2,max],
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θ3 ∈ [θ3,min,θ3,max], and d4 ∈ [d4,min,d4,max] (see Publication I for the val-
ues used). Then a predicted weight w−

i (k) is used to zero the effect of
infeasibly located particles using the following equation:

w−
i (k)=

{
wi(k−1), x−

i (k) ∈Sf

0, otherwise.
(3.6)

2) The update step uses measurements y(k) ∈ RNl conditioned on the
predicted states x−

i (k) ∈ R3 to compute weights wi(k) ∈ R. These are
obtained from measurement likelihoods as

wi(k)= w−
i (k)L

(
y(k)|x−

i (k)
)

. (3.7)

The measurement likelihood L
(
y|x−

i
)

is derived in Publication I to be
proportional to an inverse measurement model P

(
x−

i |y
)
, which can be

approximated in the proposed case of two targets as

P
(
x−

i |y
)≈ ∏

∀ j∈T

Nl∑
l=1

δl,i, jL
(
r i, j|r l

)
, (3.8a)

where

δl,i, j =
{

1, when |φl −φi, j| <∆β/2

0, otherwise.
(3.8b)

In Equation (3.8), δl,i, j is defined as equal to 1 only when the angles
of a laser range observation (φl) and an expected target (φi, j) match
within the laser scanner resolution (∆β). For a laser scan, this occurs
for a single configuration of indexes l and i, for both targets j if the
targets are in the field of view of the scanner. Thus, only one matching
range measurement is compared with each target j ∈ T using a one-
dimensional fitness function L

(
r i, j|r l

)
, which is an approximation of

the likelihood of a range of an expected target r i, j given the matched
laser range observation r l (including the precomputed measures Nl and
Cl defined later). It is defined as

L
(
r i, j|r l

)={
r i, j lmiss, di, j,l > ϵd

lstep + (
1− lstep

)
L target

(
r i, j, r l , Nl ,Cl

)
, di, j,l ≤ ϵd

,

(3.9a)
where

di, j,l = r l +a− r i, j. (3.9b)

In Equation (3.9), r l is the laser range measurement, r i, j is the range
of the expected target, and di, j,l is the distance between the expected
target and the target indicated by the range measurement (r l +a). The
fitness function is constructed from a step function which increases the
likelihood of an expected target to lstep after the target can be fitted
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behind the range measurement (with a safe margin ϵd). If the target
is seen through (i.e., the range indicated by the measurement is larger
than the expected range), the likelihood is defined to linearly increase
as a function of the expected range with a constant likelihood of missing
the target lmiss. In Publication I, lstep value of 0.5 and lmiss value of
0.01 were used.

In Equation (3.9a), L target is a target-likeness measure, which is a func-
tion of the expected range r i, j, the observed range r l , the precomputed
cluster-size measure Nl , and the precomputed count-to-the-middle mea-
sure Cl . It is constructed as a product of three exponential functions:

L target
(
r i, j, r l , Nl ,Cl

)= Ldist
(
di, j,l

)
Lsize

(
Nl , r i, j

)
Lmid

(
Cl , r i, j

)
, (3.10a)

where

Ldist
(
di, j,l

)= exp
(−d2

i, j,l
/
σ2

dist
)

, (3.10b)

Lsize
(
Nl , r i, j

)= exp
(
−(

Nl∆βr i, j
)2/

σ2
size

)
, (3.10c)

Lmid
(
Cl , r i, j

)= exp
(
−(

Cl∆βr i, j
)2/

σ2
mid

)
. (3.10d)

In Equation (3.10), di, j,l is the difference defined in Equation (3.9b), r i, j

is the range of the expected target, ∆β is the angular resolution of the
laser scanner, Nl is the precomputed cluster-size measure, in detail,
the amount of middle points associated with a cluster in a separate,
deterministic target detector method (see Publication I for details), and
Cl is the precomputed count-to-the-middle measure. It is computed as
a count from the current index l to the center of the current cluster of
middle points.

The first exponential function (Ldist) in Equation (3.10b) weights the
right distance behind the range measurement to fit a target. Its param-
eter σdist should be near the radius of the expected target (50 mm in
Publication I). The second function (Lsize) in Equation (3.10c) weights
small clusters and discards overly large clusters. Its parameter σsize

should be tuned to be sufficiently large to avoid filtering target-size
clusters (400 mm in Publication I). The last exponential function (Lmid)
in Equation (3.10d) then weights the locations at the centers of clusters.
Its parameter σmid should also be near the radius of the target (30 mm
in Publication I). This last function is a heuristic which is added to keep
the area of the likely locations of targets similar in small and large
clusters of range observations. It is based on the assumption that, in
target sized clusters, the target is most likely to be located at the center.
When all these exponential functions have their maximal value, the
fitness function L

(
r i, j|r l

)
in Equation (3.9) produces the best fit. Note

that each of these exponential functions can have values between 0 and
1.
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3) Normalization divides unnormalized weights wi(k) by the sum of all
updated weights to obtain the normalized weights for each i:

Wi(k)= wi(k)∑Np
i=1 wi(k)

. (3.11)

4) Resampling generates a new set of particles xi(k) by drawing them
among the predicted particles x−

i (k) according to the normalized weights
Wi(k). This can be efficiently achieved using an inverse transform
sampling method (Arulampalam et al., 2002). After resampling, all
weights wi(k) are set to an equal value of 1/Np.

After the fourth phase, the first phase is re-entered for the next time step.
The best crane posture estimate is computed from the set of all particles
after the normalization phase using a kernel density estimate with Gaus-
sian kernels (Musso, Oudjane, & Le Gland, 2001). More specifically, the
kernel density estimate D i(k) is computed for each particle at time step k
using an equation

D i(k)=
Np∑
j=1

Wj(k)exp
(−∥xi(k)−x j(k)∥2

σ2
kde

)
, (3.12)

where Wi(k) is a normalized weight and xi(k) is the corresponding ith
particle. In the equation, σ2

kde is the variance of the kernels in the density
estimate. The σkde value used was 0.03, which is about 1.7° for the first two
angular states and 3 cm for the extension. For simplicity, the same kernel
size parameter was used for each of the three states, as the probability
distributions were roughly similar in each dimension. Finally, a maximum
a posteriori (MAP) estimate is used to select the particle with the largest
kernel density estimate, D i(k) in Equation (3.12). The state represented
by this particle is taken to be the best crane posture estimate.

The value of the MAP estimate,

D̂(k)= max
i=1...Np

(D i(k)), (3.13)

is limited between zero and one, and it approaches one when all particles
are at the same place. Conversely, when all particles are dispersed, the
value approaches zero. The benefit of the MAP estimate value is two-fold.
In a relative sense, the largest value gives the particle closest to the center
of the cluster yielding the best estimate for the target position. In an
absolute sense, it acts as a quality self-measure to distinguish between
unreliable (D̂ ∼ 0) and reliable (D̂ ∼ 1) detections. If this value drops below
the threshold Creinit = 0.35, a re-initialization is performed. The parameter
value of 0.35 was tuned manually on the tested setup to handle all faults
but not to cause unnecessary re-initialization. This reinitialization is simi-
lar to the Initialization step, except that the particles are not redistributed
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uniformly. The previous low-quality estimate is simply enhanced with the
crane posture hypotheses calculated using target candidates found with a
separate target detector method (see Publication I for details).

3.3 Robust and Adaptive Attitude Estimation for an IMU

In the DCM IMU algorithm proposed in Publication II, the rotation from
the body-fixed frame to the navigation frame is represented as a direction
cosine matrix (DCM) of Euler angles according to the Tait-Bryan ZYX
convention,

n
bC=

⎡⎢⎢⎣
θcψc −φcψs +φsθsψc φsψs +φcθsψc

θcψs φcψc +φsθsψs −φsψc +φcθsψs

−θs φsθc φcθc

⎤⎥⎥⎦ , (3.14)

where subscript s denotes the sin(·) function and c denotes the cos(·) func-
tion. The angles on which the functions operate are roll φ, pitch θ, and
yaw ψ, and they are defined as angles around the x, y, and z axes in the
body-fixed frame, respectively. This rotation formalism is selected because
the lowest row of n

bC indicates the direction of gravity in the body-fixed
frame, as the navigation frame is defined to lie such that z is pointing
upwards.

In the proposed EKF, the direction of gravity (as the lowest row of n
bC)

and gyroscope biases (i.e., angular velocity offsets) bx, by, and bz (around
x, y, and z axes in the body-fixed frame, respectively) are included in the
state vector

x= [n
bC31

n
bC32

n
bC33 bx by bz

]T . (3.15)

For an IMU in a body-fixed frame, six measurements are available,
namely accelerations ax, ay, and az in x, y, and z directions, respectively,
and angular velocities ωx, ωy, and ωz around the same axes. To minimize
the length of the state vector to enable efficient computation, gyroscope-
measured angular velocities are fed to the EKF as a control input vector,

u= [
ωx ωy ωz

]T , (3.16)

and the accelerometer measurements are used as a measurement vector

y= [
ax ay az

]T . (3.17)

In the prediction step of the proposed EKF, the following nonlinear
system model (see the nonlinear filtering part of Section 2.1 for details) is
used to predict the state from the previous time step to the current one:

fk(xk,uk)=
[

I3 −[n
bC3×]k∆t

03×3 I3

]
xk +

[
[n
bC3×]k∆t

03×3

]
uk, (3.18)
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where ∆t is the sampling interval and [n
bC3×]k is a skew-symmetric matrix

generated from the first three state variables at time index k:

[n
bC3×]k =

⎡⎢⎢⎣
0 −n

bC33
n
bC32

n
bC33 0 −n

bC31

−n
bC32

n
bC31 0

⎤⎥⎥⎦
k

. (3.19)

Since the state is designed to indicate the direction of gravity, and since
the largest share of the acceleration measurement is assumed to be caused
by the Earth’s gravity, the measurement model of the proposed EKF is
simple, and it can be represented with a linear model using a matrix (see
Kalman Filtering in Section 2.1 for details):

H=
[

gI3 03×3

]
, (3.20)

which is employed to predict the triaxial accelerometer measurement in
Equation (3.17) using the predicted state. In Equation (3.20), g is the
magnitude of the Earth’s gravity.

As the measurement model of the proposed EKF is only valid at rest
(with no other forces than gravity present), the algorithm produces biased
estimates when non-gravitational acceleration is present in the accelerom-
eter measurements. As the method is designed to be used in motion,
in Publication II, the limitation is relaxed by estimating the share of
non-gravitational acceleration and adapting the measurement covariance
matrix Rk to take account of the credibility of the measurement. In the
proposed EKF, the covariance matrix is adapted with

Rk =
(∥ak∥σ2

a +σ2
f
)
I3, (3.21)

where ∥ak∥ is the magnitude of the estimated non-gravitational accelera-
tion, σ2

a is a variance added to account for non-gravitational acceleration,
and σ2

f is the variance of the accelerometer measurement (see Publica-
tion II for parameter values). Non-gravitational acceleration is estimated
as the difference between the current measurement (yk) and the estimate
of the predicted measurement (ŷ−

k =Hx̂−
k ) using

ak = yk −Hx̂−
k , (3.22)

where x̂−
k is the predicted state before measurement update (see Kalman

Filtering in Section 2.1 for details).
The state x includes the lowest row of the rotation matrix in Equa-

tion (3.14), which is defined as a unit vector. Since the EKF does not, by
default, take this constraint into account, it must be added to the sys-
tem. In Publication II, this is achieved by normalizing the length of the
first three state variables and projecting this into the state covariance
matrix. This process with all the required equations is demonstrated in
the Appendix of Publication II.
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Finally, the attitude in Euler angles can be computed from the state
variables for roll φ and pitch θ using

φk = atan2
(n

bC32,k, n
bC33,k

)
θk = arcsin(−n

bC31,k),
(3.23)

where atan2 is an inverse tangent function with two arguments to distin-
guish angles in all four quadrants (R. S. Jones, 1991).

The yaw angle is more difficult to estimate, since the initial heading of
the IMU is unknown (initialized as zero in the EKF) and as gravity pro-
vides no information about the heading direction. As found in Section 2.2,
many alternative attitude estimation algorithms use other sensors, such as
magnetometers, to enable heading estimation. However, in forest machin-
ery, which is commonly built from ferromagnetic metal, contains moving
parts and changing electric current flows, and can operate under power
lines, dependence on magnetometers is not a plausible solution. Therefore,
here, the yaw angle is integrated from bias-corrected angular velocities.
This integration can be achieved, for example, also by keeping the first row
of the rotation matrix in memory and using the cross product to generate
the missing middle row, as exemplified later in Section 3.6.

After the full rotation matrix n
bCk is generated, the yaw angle ψ can be

calculated using
ψk = atan2

(n
bC21,k, n

bC11,k
)

. (3.24)

Note that this yaw angle is relative to the initial position and will most
likely contain drift caused by the residual errors in the gyroscope measure-
ments. However, as shown later in Section 3.6, other measurements can
be combined with the estimate to overcome this limitation.

3.4 Dual IMU Instrumentation of a Forest Machine Tool

The attitude of an IMU can be estimated quite robustly with only one
IMU, as shown in Publication II. However, as explained in Section 2.2,
heading and also the bias around the gravity vector remain unobservable
and thus unknown in an IMU, where only accelerometer measurements
are used to align the sensor in the Earth’s gravitational field. Since the
tool freely hanging from the tip of the forestry crane can rotate in all three
directions (swaying back and forth (α), side to side (β), and rotating around
its upward-pointing axis (γ)), the pose of the tool is not fully observable
using a single IMU attached to the tool (see Figure 3.2).

As also noted in Section 2.2, a magnetometer is commonly utilized in
AHRS sensors to simplify gyroscope bias estimation and enable heading
measurement by using the Earth’s magnetic field. However, it cannot be
used in this case. The forestry crane and the rotator link are constructed
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A

B

C

α

β

γ

Figure 3.2. The forest machine with the cutting tool and the dual IMU instrumentation (A
and C) to estimate the dynamic pose of the tool on the freely swaying rotator
link (B). The rotation angles α, β, and γ are also marked in the figure.

from steel, which distorts magnetic fields, and high-current electronic
signals are occasionally present in nearby cabling, which renders the mag-
netometer unreliable. Furthermore, installing traditional position sensors
on each of these joints is challenging due to the mechanical structure of
the rotator link. In addition, the tool is often in contact with obstacles in
the forest, and thus the sensors should be well protected or built inside
the mechanism. Similarly to Kesla 305T in Figure 3.2, which is a typical
forestry crane designed for loading tree trunks, most other forest machines
have similar boom with an extension and a rotator link.

As a solution to this problem, Publication III proposes combined instru-
mentation with two similar low-cost IMU sensors for estimating the tool
orientation. This is achieved by using the dynamics of the tool as a sway-
ing pendulum to estimate all three free rotation parameters reliably. The
two IMUs must be placed at both ends of the joint chain to enable the
estimation of the three unknown joint angles in between. In the proposed
solution, identical IMUs built using ADXL345 three-axis digital accelerom-
eter (Analog Devices, 2012) and ITG-3200 three-axis digital gyroscope
(InvenSense, 2010) chips were connected through a fast mode I2C interface
to a microcontroller synchronizing the data from both sensors. The first
IMU is mounted on the tip of the crane boom (A in Figure 3.2), and the
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other is mounted on the tool (C in Figure 3.2) after the rotator link and the
rotator (B in Figure 3.2), allowing rotation in three directions.

Two similar low-cost IMUs are used, since they provide data with similar
noises and measuring frequencies, and their measurements can be syn-
chronized. The two IMUs, which both measure triaxial accelerations and
angular velocities, provide all the required measurements for estimating
the three unknown joint angles in between them. Adding more sensors
would only complicate the system and increase its cost. The used sensors
were low-cost cellphone-grade sensors of their time. Newer low-cost single
chip IMU sensors such as MPU-9250 (InvenSense, 2016) or other more
capable sensors should also work.

The dimensions of the links between joints and the length of the pendu-
lum to the center of mass of the tool are required to derive the dynamic
equations of the system. These are used in the proposed EKF (see Sec-
tion 3.5) in Publication III to estimate the joint angles of the tool. The
estimate is computed at 100 Hz frequency in an embedded computer lo-
cated in the same box with the first IMU (A in Figure 3.2). The estimated
joint angles and their velocities are transmitted to the forest machine via a
CAN bus built in the crane according to ISO 11783 standards (also referred
to as ISOBUS). See more details on our ISO 11783 compatible forestry
crane from Kalmari et al. (2013).

3.5 Kalman Filter for Tool Swaying Angle Estimation

The joint angles of a freely hanging point cleaning tool (see Section 3.4 are
estimated with an EKF (see nonlinear filtering in Section 2.1 for details)
that takes triaxial accelerometer and gyroscope measurements from two
time-synchronized IMUs. To enable implementation on an embedded com-
puter, filter computation is optimized by using some of the measurements
as control inputs in the filter instead of increasing the state vector size.
The state

x= [
α β γ α̇ β̇

]T , (3.25)

is kept minimal, consisting of only the swaying angles of the rotator link α

and β, the angle of rotator motor γ, and the angular velocities of the first
two angles α̇ and β̇ (see Figure 3.3 for details).

The control input vector u for the EKF is

u= [
ẍm ÿm z̈m ψ̇ ψ̈  

IMU1

γ̇
IMU2

]T, (3.26)

where ẍm, ÿm, and z̈m are the accelerations, ψ̇ is the angular velocity
(around the zm axis), and ψ̈ is the equivalent angular acceleration. In
addition, the angular velocity of the rotator motor γ̇ is chosen as a control
input for the EKF. The required (non-gravitational) accelerations (ẍm, ÿm,
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and z̈m) and angular velocity ψ̇ can be extracted from the boom tip IMU
(IMU1 in Figure 3.3) measurements using an attitude estimation algorithm
(see Section 3.3 and Publication II). The angular acceleration ψ̈ can then
be numerically differentiated from the angular velocity estimate ψ̇. The
angular velocity of the rotator motor γ̇ can be directly measured with the
tool IMU (IMU2 in Figure 3.3) as angular velocity around the z axis, ωz.

In Publication III, the system model is derived using a dynamic model
of the swaying tool. A viscous friction model is used, where the torque is
set proportional to the angular velocity. This model does not accurately
represent real friction, but is simple to use and requires identification of
only one friction parameter per joint. As the mass of the tool is assumed to
be constant, it is separated from the friction parameters bα and bβ. The

yIMU1

xIMU1

zIMU1

xm ym

zm

l1

l2

γ

ψ

yIMU2xIMU2

zIMU2

ωx ωy

ωz

Figure 3.3. Extended Kalman filter with a two-IMU setup. Relevant dimensions, axes,
and angles are included in the figure.
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derived nonlinear system model is

x−1 = x1+∆tx4

x−2 = x2+∆tx5

x−3 = x3+∆t
(
u6 −sin(x2)x4 −cos(x1)cos(x2)u4

)
x−4 = x4+∆t

(
−bα/l2

3x4 +sin(x1)cos(x1)u2
4 +

(−cos(x1)u2

−sin(x1)(u3 + g)+2l2 sin(x2)x4x5 + l2 cos(x1)sin(x2)u5

+2l2 cos(x1)cos(x2)x5u4
)/

l3

)
x−5 = x5+∆t

(
−bβ/l2

2x5 +
(

cos(x2)u1 +sin(x1)sin(x2)u2 − l3 sin(x2)x2
4

−cos(x1)sin(x2)(u3 + g)−sin(x1)
(
l1 cos(x2)+ l2

)
u5

−sin(x2)
(
l1 − l3 cos(x1)2)u2

4 −2l3 cos(x1)cos(x2)x4u4

)/
l2

)
,

(3.27)

where x1, . . . , x5 are the five scalar components of the state vector x in
Equation (3.25), and u1, . . . ,u6 are the six scalar components of the control
input vector u in Equation (3.26). The minus sign as a superscript (·−)
indicates the predicted estimate. Note that time step indices are omitted
from the equations to make them simpler. In Equation (3.27), l1 and l2 are
lengths in the tool (see Figure 3.3), and the third length l3 = l1 + l2 cos(x2).
Moreover, g is the magnitude of gravity, and bα and bβ are the friction
parameters for the angles α and β, respectively (see Publication III for the
parameter values used).

The measurement model is derived using a slightly modified EKF model
(compare with Equation (2.15)), where the control input u is also included
in the measurement model h,

yk = hk (xk,uk,υυυk) , (3.28)

where xk is the state and υυυk is the measurement noise at time index k
similar to Equation (2.15). This modification is necessary, since the angular
velocity of the boom tip in u4 affects measurement in the dynamic model
used here. The EKF measurements are the two angular velocities of the
tool IMU (y = [ωx ωy]T). They are modeled with the following nonlinear
measurement model (y−1 is a prediction for ωx and y−2 for ωy):

y−1 = (
x−5 +sin(x−1 )u4

)
sin(x−3 )+(

cos(x−2 )x−4 −cos(x−1 )sin(x−2 )u4
)

cos(x−3 )

y−2 = (
x−5 +sin(x−1 )u4

)
cos(x−3 )−(

cos(x−2 )x−4 −cos(x−1 )sin(x−2 )u4
)

sin(x−3 ).
(3.29)
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3.6 Head Pose Estimation for AR in a Forest Machine Cabin

In Publication IV, an IMU and a machine vision camera are used together
to estimate the head pose of the forest machine operator in the forest ma-
chine cabin. The head pose must be measured accurately and quickly in an
augmented reality user interface where visual information is augmented
in the operator’s visual field using a head mounted display. The delay and
mismatch that such augmentation causes between visual and vestibular
cues to motion represent one of the most difficult challenges in virtual
environment system designs (Badcock, Palmisano, & May, 2015, p. 73).

A DFK 41AU02 color camera (Imaging Source, 2007)20 was integrated
with an MPU-6050 IMU sensor (InvenSense, 2013) on the operator’s helmet
to measure the position and orientation of the helmet in real time. If the
helmet would also include an augmented reality display, it could show
the augmented-reality visualization correctly with respect to the cabin’s
pose in the forest. A software was built for a linux PC to collect time-
synchronized raw-data from the camera and IMU sensors to estimate the
head pose and to draw the augmented reality image in real time.

For head pose estimation, an EKF was designed which uses a state vector

x= [n
bC11

n
bC12

n
bC13

n
bC31

n
bC32

n
bC33

]T , (3.30)

where the last three state variables are similar to the first three state
variables of the DCM IMU algorithm (see Section 3.3), but the other three
state variables include the first row of the DCM matrix in Equation (3.14)
instead of the bias states. Since this EKF is used in cascade with the
DCM IMU, the gyroscope bias states need not be estimated again. Instead,
biases estimated by DCM IMU (bx, by, bz) can be subtracted from the
gyroscope measurements while generating the control input vector

u= [
ωx −bx ωy −by ωz −bz

]T . (3.31)

In the prediction step of the proposed EKF, the following nonlinear
system model (compare with Equation (3.18)) is used to predict state from
the previous time step to the current one:

fk(xk,uk)= xk +
[
∆t[n

bC1×]k

∆t[n
bC3×]k

]
uk, (3.32)

where ∆t is the sampling interval and [n
bC1×]k is a skew-symmetric matrix

generated from the first three state variables at time index k,

[n
bC1×]k =

⎡⎢⎢⎣
0 −n

bC13
n
bC12

n
bC13 0 −n

bC11

−n
bC12

n
bC11 0

⎤⎥⎥⎦
k

, (3.33)

20The DFK 41AU02 color camera used in this thesis, manufactured by Imaging
Source, is explained in detail in Section 4.2 and also used in Section 4.3.
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and [n
bC3×]k is already defined in Equation (3.19).

This filter contains two measurement equations, the first is the same
measurement as in DCM IMU (see Equation (3.20)), which is run at each
filter iteration, since the frequency of IMU measurements is one magnitude
higher than the camera image capture rate. The second measurement
equation is run whenever there is a new image captured by the camera, in
which the ArUco library marker detection and pose estimation (Garrido-
Jurado et al., 2014; Muñoz-Salinas & Garrido-Jurado, 2016) succeed in
obtaining a pose estimate. This measurement model is also linear and
simple, since the rotation measurement is fed into the EKF as a DCM
matrix n

bCm computed from the ArUco pose estimate. The measurement
vector is thus

y= [n
bCm,11

n
bCm,12

n
bCm,13

n
bCm,31

n
bCm,32

n
bCm,33

]T , (3.34)

and a simple measurement model H = I6 can be used to predict state to
the measurement space. Note that n

bCm represents a rotation from the
body-fixed frame to the navigation frame, so the rotation from the camera
frame (where the pose estimation of ArUco occurs) to the body-fixed frame
must be calibrated and taken into account in the computation.

Covariance matrices for state prediction and measurement are tuned
manually to static values on the main diagonal (no correlation between
states) as explained in Publication IV.

Finally, similar to the DCM IMU in Section 3.3, the results of this filter
must also be normalized at the end of each iteration. This normalization
could be achieved in a similar way to the DCM IMU for both DCM rows
separately, but, in addition, the first and last row vectors must also remain
orthogonal. Therefore, a renormalization method (Premerlani & Bizard,
2009) is used. In this method, the first and the last row vectors of DCM,
n
bC1 and n

bC3, respectively, should be perpendicular, which means that they
have a zero dot product. According to Premerlani and Bizard (2009), the
value from the dot product is the amount of error which is reduced by
cross-coupling using

n
bC′

1 = n
bC1 −

n
bC1 • n

bC3

2
n
bC3

n
bC′

3 = n
bC3 −

n
bC1 • n

bC3

2
n
bC1,

(3.35)

where n
bC′

1 and n
bC′

3 are the perpendicular versions of n
bC1 and n

bC3, respec-
tively. Finally, the perpendicular versions must be normalized to guarantee
that they remain unit vectors. Whenever the full DCM matrix is required,
the second-row matrix can be computed from the last and first rows using
a cross product. The effect of normalization must also be projected on
the covariance matrix in a similar manner to the DCM IMU algorithm in
Section 3.3. This is explained in detail in the Appendix of Publication II.
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4. Exteroceptive Perception

Exteroceptive perception enables the robot to perceive the world around it-
self. This chapter surveys the developed exteroceptive perception methods
and their sensor setups. First, the three actuated laser scanner configu-
rations presented in Publications I, VI, and VII are explained in detail.
After that, the machine vision instrumentation developed in Publication V
for a point cleaning tool to detect young spruce trees is presented. In the
sensor setups, the practical hardware innovations and industrial applica-
bility are elaborated. After the sensor setups, the exteroceptive perception
methods are proposed. These include real-time machine vision for young
spruce detection in Publication V, young tree detection and species classifi-
cation in Publication VI, and tree stem and ground model estimation in
Publication VII.

4.1 Actuated 2D Laser Scanners for 3D Mapping

Actuating a laser scanner offers an affordable means of increasing the
FoV of the sensor. In case of a low-cost single-beam 2D laser scanner, the
actuation can provide measurements from the third dimension allowing a
3D view of the environment instead of using more expensive 3D lidars. In
their comprehensive review Raj, Hanim Hashim, Baseri Huddin, Ibrahim,
and Hussain (2020) report mechanical, MEMS, and solid state scanning
mechanisms for building a 3D lidar, that exist in previous research and
commercially available sensors. In this work, I focus on the mechanical
solutions since neither MEMS nor solid-state devices were yet available
during the research for this work. Mechanical solutions include mostly
actuated 2D scanners and more complex scanning patters, such as the
Risley scanner, which uses a pair of revolving prisms to actuate the laser
beam in Lissajous curves (Vuthea & Toshiyoshi, 2018). The 2D scanners
have been actuated in various different configurations either in continuous
rotations or periodic oscillations. These patterns are well covered in the
work by Wulf and Wagner (2003) and this work builds on top of their
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results.
In this work, three different methods to actuate 2D laser scanner were

tested in a forest environment. These methods are 1) a crane-boom-
mounted vertical 2D scanner (used in publications I and IV), 2) a swiveling
2D scanner (used in Publication VI), and 3) rotating tilted 2D scanners
(used in Publication VII). Each of these methods is able to build an accurate
3D point cloud from the working environment. They all offer advantages
and disadvantages, and they are best suited to certain tasks.

Crane Boom Mounted Vertical 2D Scanner

One of the simplest and most straightforward methods to actuate 2D
scanner to measure a 3D point cloud is to yaw it perpendicular to the
scanning plane (Wulf & Wagner, 2003). In Publication I, the scanner is
mounted vertically on the side of the forestry crane to observe the two
targets also attached to the side of the crane. As noted earlier, most of the
light pulses are then free to travel further into the environment, providing
range measurements from it on the vertical plane aligned towards the
crane boom. As the crane is repeatedly moved from side to side when it is
normally used in many different tasks, the environment can be measured
simultaneously. Here, the evident benefit is that the same sensor can
be used to measure both the posture of the flexible forestry crane (see
Section 3.1) and also the environment, thus offering an extremely low-cost
solution for environmental data collection.

The largest disadvantage of this instrumentation is the limitation of the
data to one vertical line in the direction of the crane. Thus, only data from
this single cut plane of the environment are obtained at a time. However,
this could easily be avoided by using a modern, low-cost multi-beam lidar,
for instance, a 16 beam Velodyne Puck Lite (Velodyne Lidar, 2019b), a 32
beam Ouster OS1 (Ouster, 2021), or a 40 beam Hesai Pandar40P (Hesai,
2020), instead of the currently used SICK LMS221 2D scanner (SICK AG,
2006).

The other significant drawback is that a large share of the data is lost
towards the ground and the sky, since, in the yawing scan, the point cloud
is the densest near the z axis pointing upwards (Wulf & Wagner, 2003).
On the other hand, in this yawing scan configuration, the point cloud
is uniform, and its density is almost equal near horizontal plane if the
yawing speed is constant. This is beneficial in this forest machine case,
since targets such as trees are commonly nearer the horizontal plane than
the z axis. Furthermore, an excessively dense point cloud at the top and
bottom can be decimated by discarding unnecessary points.

An example of a 3D point cloud collected in Publication I is shown in
Figure 4.1. The example point cloud has been decimated to provide equal
density of points per solid angle. This configuration is best for measuring
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Figure 4.1. A point cloud accumulated over 125 seconds when the crane was rotated from
right to left towards a spruce tree. The crane is drawn as a gray line, the
laser scanner is located at the green cross, and the targets are the two blue
dots. Range measurements associated with Targets 1 and 2 are removed from
the point cloud, and the cloud is colorized in HSL color space such that hue
indicates the height of a point, lightness the range of a point from the scanner,
and saturation is set to one.

crane posture, but it can also provide some valuable information from the
surrounding forest at the same time. The 3D model updates slowly, so the
method is not viable as the only 3D sensor for a forest robot. However,
the crane tip position is directly drawn in the same coordinates as the 3D
point cloud, so it would be straightforward to combine the crane position
with the point cloud. This would be beneficial for combining existing forest
machine data with point cloud data. Therefore, this instrumentation could
be usable for collecting individual tree-level information from the forest
plot under operation.

Swiveling 2D Scanner

To improve point cloud density from the previous example involving a
simple rotation around one principal axis, some more complex rotations
have been considered. For example, Nagatani, Tokunaga, Okada, and
Yoshida (2008) propose a 30-degree-downward-tilted horizontal 2D scanner
which is yawed horizontally. They claim two advantages for this 30° tilted
configuration. The first is that it provides better distribution of the scan
points and avoids the dense areas near the rotation axis, as found in the
previous section. The second benefit is that it increases the scanning speed
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or scanning density, since rotation can be performed faster to achieve a
similar density with a tilted scanner.

To enhance the possibility of adjusting the inclination of the 2D laser
scanner, some authors have proposed that the scanner should be mounted
on a servo-controlled gimbal unit or a pan-tilt unit allowing rotation on two
or more axes (e.g., Ocando, Certad, Alvarado, & Terrones, 2017; Khurana
& Nagla, 2020). These setups allow more complex continuous Lissajous-
like scanning patterns (Anderson & Clayton, 2014), which enable high
resolution scanning in less time than other scanning types.

Usually, these complex motions require the measurement of multiple
motors and multiple joint angles. However, Yoshida, Irie, Koyanagi, and
Tomono (2011) have shown that a swiveling type gimbal motion for a
horizontal 2D laser scanner can be achieved with only one motor. They
also propose a secondary motor to modify the density of the point cloud on
the regions of interest.

In our laboratory21, the design by Yoshida et al. (2011) has been sim-
plified, and a swiveling mechanism with only one motor has been built
featuring a 30° wedge rotated by a motor built inside a metal box under-
neath (see Figure 4.2a). A SICK LMS111 2D scanner (SICK AG, 2009) has
been mounted upside down on a gimbal structure with bearings on the
bottom and back, which allows it to rotate on the gimbal when the wedge
is rotated. The angular position of the motor is measured with an angular
position sensor on the motor axis inside the bottom box in Figure 4.2a. The
arm at the back of the scanner keeps the heading of the scanner fixed. The
resulting motion is a similar swiveling motion to that proposed by Yoshida
et al. (2011) and later named swiveling motion by Oberländer, Pfotzer,
Roennau, and Dillmann (2015).

There are some benefits to the swiveling motion. Firstly, a large FoV of
nearly 60°×270° is achieved, with the SICK scanner measuring 270° FoV
on a plane. Secondly, the full FoV can be scanned in a short period of time,
providing quite uniform point density. For example, a rotation velocity of
30 revolutions per minute (RPM) was used in Figure 4.2b. Thirdly, there is
no need to feed the scanner cabling through a continuously rotating joint
(using, e.g., a slip ring), as required in other continuously rotating setups,
since the heading of the scanner is fixed.

One of the disadvantages of the current swiveling 2D scanner prototype
is that the vertical FoV is limited to ±30°, which is slightly too little in the
forest case, as can be observed in the example projections of range and
intensity data in figures 4.3a and 4.3b, where some of the tree tops and
bottoms are cropped out of the image. The sensor also possesses limited
FoV in the horizontal direction, as it can not see anything to the rear.
Therefore, the sensor is not viable as a single sensor for a robot moving

21The sensor was designed and built by Matti Öhman and Tapio Leppänen.
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(a) Swiveling scanner prototype (b) Simulated point cloud

Figure 4.2. Swiveling 2D scanner and a simulated point cloud (range set to 1) to show the
distribution of points when the swiveling mechanism is rotated at 30 RPM.
The scanner is placed at origin, and axis directions are drawn on the figure
with red (x, forward), green (y) and blue (z) lines.

(a) Range data (brighter is further away) projected on a sphere

(b) Reflection intensity data projected on a sphere

Figure 4.3. The swiveling scanner achieves a 270° horizontal and 60° vertical FoV. The
data are projected on spherical coordinates around the forward pointing axis
such that the x coordinate represents longitude from -135° to 135° and the
y coordinate represents latitude from -30° to 30° with respect to the center
of the images. The data were collected for Publication VI in a young mixed
species forest.

around in a forest.
Moreover, a challenging drawback of the setup is the swiveling motion

itself, which produces accelerations that cause low frequency vibrations
in the system. The swiveling motion produces periodic accelerating and
decelerating sideways motions as the gimbal oscillates. These vibrations
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are difficult to avoid in such swiveling types of motion, since the scanner
always has at least some mass. To observe the trees from above in Pub-
lication VI, the swiveling scanner was mounted on top of a pole, which
amplified the vibrations, causing considerable motion blur and inaccuracies
in the 3D point cloud.

The swiveling scanner is best for quickly scanning a limited area of 3D
space to the front and side of the robot (see Figure 4.2b). The data can
be easily combined with a color camera, as shown in Publication VI, to
perform sensor fusion between the lidar and the camera. This sensor
configuration is beneficial when the limited FoV is sufficiently large for the
task. However, as the sensor wobbles as the gimbal oscillates, the sensor
should be mounted tightly next to the main body of the robot. The use case
in Publication VI, where the sensor is located on top of a high pole, is a
good example of how a wobbling sensor should not be mounted.

Rotating Tilted 2D Scanners

Through an iterative process of trial and error in the research for this
thesis, it became clear that a vertical FoV of at least 90° is required to
see tree tops and the ground surface underneath the trees in the forest
environment. To build a configuration from an actuated 2D scanner which
simultaneously optimizes the uniformity of the resulting point cloud, allows
usage of all measurements, provides a sufficiently large FoV, and avoids
the noted drawbacks of the swiveling motion, a rotating 45° sideways-tilted
scanning configuration was found to be the best alternative. The idea is
similar to that already proposed by Nagatani et al. (2008), but the tilting
is sideways instead of downwards nodding.

With a 45° sideways tilted scanning plane, a 90°× 360° FoV can be
achieved with highly uniform point cloud density allowing the use of all
range measurements (see Figure 4.4b). If another similar scanner is also
mounted such that the scanners face backwards on the same pole (see
Figure 4.4a), the center of mass of the rotating part can be tuned to be the
exact center of the rotating axis. This removes most of the forces causing
vibrations found with the swiveling scanner. Naturally, this also doubles
the data rate.

Two SICK LMS200 2D scanners (SICK AG, 2006) were used in this
configuration. They can measure 75 scans per second with 180° FoV on
a plane at a 1° angular resolution. The first prototype of the rotation
mechanism for this structure was used in Publication VII. It utilized a
wireless data transfer device by Moxa to transfer data from scanners
mounted on the rotating part. However, random and unknown delays
were introduced in the wireless data link. In addition, some packet loss
was encountered. To correct these issues, a second prototype, shown in
Figure 4.4a, was built with the same scanner configuration. It features
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(a) Rotating scanner prototype (b) Simulated point cloud

Figure 4.4. The rotating tilted 2D scanner and a simulated point cloud (range set to 1) to
show the distribution of points when the scanner is rotated at 30 RPM. The
rotating shaft between the scanners is placed at origin, and axis directions
are drawn on the figure with red (x), green (y), and blue (z) lines. Only the
points of the first scanner are drawn to keep the image clearer. Scanners can
be timed such that the other scanner aims between the lines scanned by the
first sensor, doubling the effective resolution.

a slipring for data and power connections between the bottom and the
rotating parts. The new version also contains a more accurate encoder
(ASM Posimag incremental encoder and a magnetic ring with a reset pulse
once per revolution) for measuring the angular position with a resolution
of 0.02°.

One laser scanner provides 150 scans distributed evenly on the full
horizontal 360 degree FoV in 2 seconds when the motor is rotated at
30 RPM. Using both of the laser scanners mounted back to back (as in
Figure 4.4a), the data rate can be doubled and the full FoV measured in
a second. Example scans using a) only one, or b) both lidars are shown
in Figure 4.5. Figure 4.5c on the other hand accumulates 5 consecutive
rotations during a 10 second interval to show that longer time period can
be used to accumulate a higher resolution point cloud assuming that the
sensor position and orientation are known.

This rotating scanner can measure in all relevant directions for a forest
machine, and the resulting evenly distributed 3D point cloud is updated
once every second (assuming that both scanners are measuring and they
are rotated at 30 RPM). A similar point distribution is also available in
RobotEye RE08 3D lidar by Ocular Robotics, but only in 70° vertical FoV
(Wood & Bishop, 2012). In addition to providing a large vertical FoV, the
selected 45° tilt angle is beneficial for later data processing. For example,
in Publication VII, the horizontal ground surface and vertical tree stems
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(a) One scanner, 360° rotation in 2 seconds at 30 RPM

(b) Two scanners, 360° rotation in 2 seconds at 30 RPM

(c) Two scanners, 5 full rounds in 10 seconds at 30 RPM

Figure 4.5. Examples of rotating 3D laser scanner data in a forest when the scanner is
mounted on an ATV as shown in Figure 1.1 earlier. The data is visualized as
a panorama image centered on the middle of the scanners and colored in HSL
color space similarly as the point cloud in Figure 4.1.

can be detected from individual 2D scan lines. This can be achieved by
assuming that the rotating axis primarily points upwards, such that the
45° tilted scan lines mostly see both edges of the tree stems and end up
with ground-surface-associated measurements at the bottom. This rotating
tilted-2D-scanner configuration is feasible as a forest robot’s main sensor
for tree detection, mapping, navigation, and surround monitoring purposes.
However, it is not viable for measuring a focused high resolution point
cloud on a narrow FoV.
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4.2 Cleaning Tool Mounted Camera for Young Spruce Detection

In Publication V, an automated point-cleaning robot with a machine vision
camera is used to detect young spruces. To provide the remote operator
and the robot with an unobstructed view under the cleaning tool, the
camera must be placed near the bottom of the central hole of the tool (see
Figure 4.6a). However, the camera should not be directly mounted onto the
bottom of the cleaning tool, since the tool is operated by lowering it through
the vegetation to remove foliage around the target tree. If the camera were
not moved away, it would become dirty, optics would be scratched, and it
could even break if it were in direct contact with the ground, trees, and
other obstacles. To solve the problem, a camera-lift system is proposed (see
figures 4.6 and 4.7) which removes the camera from danger by enclosing it
in a metal box during the point cleaning operation.

In addition to computer control, a human operator can also use the
camera to aim the cleaning tool at the target tree whose surroundings
are being cleaned. The operator might forget to close the camera before
lowering the cleaning tool on top of a tree, thus causing the camera to
collide with the tree. Therefore, the camera lift also requires a safety
mechanism that quickly hides the camera before it collides with an object.
For this task, an ultrasonic range finder (A in Figure 4.7a) has been added
to the same box next to the camera lens (B in Figure 4.7a) to automatically
close the box when any object is detected too near the camera lens.

The low-cost ultrasonic range finder used in the study is a Devantech
SRF08 (Coe, 2001). It has a wide beam width of about 55°, and it measures
up to 16 sequential ranges from 3 cm to 6 m during the recommended
65 ms measuring time (Koval, Vaňuš, & Bilík, 2016). In this case, only

(a) The cleaning tool with the camera lift (b) The camera is enclosed and safe

Figure 4.6. The cleaning tool features a hole at its center to allow it to clean around
the target tree. The camera-lift mechanism can be closed when the cleaning
operation is performed to allow the target tree to stand freely in the center.
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A

B
C

(a) The camera lift system (b) An example view of the camera

Figure 4.7. An ultrasonic sensor (A) and a machine vision camera (B) are mounted inside
a camera lift mechanism, which retracts the sensors inside the box using a
motor-actuated lever (C) when the ultrasonic sensor detects an obstacle in
front of the camera. The camera lift can be opened and closed by a human
operator or the automated system controlling the crane. The camera has a
wide FoV under the cleaning tool to observe nearby young spruce trees.

the shortest range to any object is considered, and the measuring time is
shortened to 25 ms (equivalent to about 4 m maximum range) to reduce
the dead time. The decision limit to react to any object has been set to 35
cm. To avoid false actions, two sequential detections of short ultrasonic
range measurements are required. Thus, the system has a dead time of
less than 50 ms before it reacts to any object nearer than 35 cm. After
detection, the motor-actuated lever pulls the camera back and encloses it
in the box within a second. This should be fast enough because the tool is
lowered slower than it takes for the camera lift to close.

The camera (B in Figure 4.7a) is a DFK 41AU02 low-cost color camera
with a sensitive 1⁄2 inch Sony CCD ICX205AK sensor (Imaging Source,
2007). Data are collected in a raw format at 15 frames per second (FPS)
using a resolution of 1280×960 pixels. The raw data are read by the boom
tip computer and broadcast in real time over a wired Ethernet network
installed on the crane. It is necessary to observe simultaneously a wide
area below the tool to detect nearby spruce trees effectively, so a lens with
a focal length of 6.5 mm was used, providing approximately 90° FoV for
the shorter image axis. An example image is presented in Figure 4.7b.

Since the camera lift closes the camera inside the metal box, the amount
of light entering the sensor changes rapidly from bright sunlight to pitch
black. This renders most of the built-in integrated automatic exposure
and gain controllers normally present in machine vision cameras unusable.
The gain controller in the camera used in the study was far too slow to
adapt to bright sunlight after the camera had been kept in the box for a
prolonged period. However, fixed values for the parameters could not be
used either, since the amount of sunlight can change drastically during
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normal operation (e.g., a shift from direct sunlight to shade).
To solve the problem, the built-in automatic gain and exposure controller

of the machine vision camera was first disabled. Second, a custom external
gain and exposure controller was implemented to the software reading
the camera data. Instead of implementing accurate but computationally
expensive state-of-the-art gain and exposure controller (see, e.g., L. Zhang
et al., 2020; Bégin & Hunter, 2022), a simple and computationally efficient
solution was searched. The implemented controller is a simplified and
modified version of the method used by Fowler (2005) and many others
cited in his work. The implemented controller reads the intensity values
from the captured image data and sets the fixed camera’s exposure and
gain values through its control interface for each frame. The controller is
designed as a simple P-controller which stabilizes the count of maximum
intensity valued pixels

∑
i∈Npixels

(I i ≥ 254) against a reference count of
overexposed pixels, Noverexposed, thus decreasing the exposure and gain in
the presence of too many overexposed pixels, and vice versa.

In the developed controller, exposure and gain are controlled together
such that the exposure time remained under a fixed upper bound threshold
value (< 1/15 s) to maintain the frame rate at a constant maximum of 15
Hz. When it is necessary for the controller to reduce the brightness of the
image, gain is first reduced to zero. After that, physical exposure time is
shortened to reduce brightness. On the other hand, when the controller
increases the brightness, the exposure time is first increased to the upper
bound limit, and then gain is increased if more brightness is required.

The controller also uses the information about the camera lift position,
and thus the exposure and gain control can be enabled only when the
camera observes the environment outside the box. The gain and exposure
values can then be locked when the camera lift is moving or when the cam-
era is enclosed inside the box. The image data is later used (as explained
in Section 4.3) to detect young spruce trees under the point cleaning tool
and thus aim the crane over the trees automatically.

This kind of controller to limit the amount of overexposed pixels while
using minimally gain and maximally exposure time can be practically
implemented to any machine vision solution in which the camera allows
manual setting of exposure and gain parameters before capturing each
frame. Counting the amount of overexposed pixels is fast and can be done
from raw images directly without decoding (e.g., demosaicing) data. The
implemented method was not optimal, but it was sufficient for the task at
hand.

111



Exteroceptive Perception

4.3 Real-Time Machine Vision for Young Spruce Detection

In Publication V, a color camera22 is used to search for young spruce trees
among other vegetation in real time. The real-time operation was required
for visual servoing the forestry crane in the point cleaning task. The
camera lift system explained in Section 4.2 is utilized to move the camera
out of the way and to enclose it in a box when the point cleaning tool is
cleaning the surroundings of a target spruce tree.

The spruce search utilizes rotation-invariant texture features which are
combined with color features. These rotation-invariant texture features are
computed from an intensity image. In the process, the image is first divided
into smaller blocks that are processed and classified individually. Block
sizes of 32x32, 64x64, and 128x128 pixels were compared in Publication V.
The blocks always overlap each other by half the block size; i.e., when
using blocks with 32x32 pixels, they overlap their neighboring blocks by
16 pixels each. This results in a texture analysis for a grid with nodes 16
pixels apart.

The analysis of each block is based on a rotation invariant texture anal-
ysis method by Jafari-Khouzani and Soltanian-Zadeh (2005) that uses
Radon and Wavelet transforms. Rotation invariant features are used in
this task, since the viewpoint is from above and young spruce trees are
roughly radially symmetric. A circular windowing function is used to
shape the image block to be radially symmetric. An example block of 64x64
pixels is shown in Figure 4.8a. The selected block is transformed using
a standard Radon transform (see Figure 4.8b), which is further wavelet
transformed (see Figure 4.8c).

Jafari-Khouzani and Soltanian-Zadeh (2005) proposed that instead of
using a normal 2D-wavelet transform, a translation invariant wavelet
transform (J. Liang & Parks, 1996) should be used in the x-axis and normal
wavelet transform in the y-axis. For wavelet transformation a simple Haar
wavelet was used with three wavelet levels causing nine sub-bands and a
residual. In the results (see Figure 4.8c), the high frequency bands are at
the bottom, the lower frequency bands above them, and the residual at the
top. Finally, the texture features are calculated using the mean of square
roots of absolute values for each sub-band in the wavelet transform. These
features were used because Jafari-Khouzani and Soltanian-Zadeh (2005)
showed that they provide better results compared to traditional energy
and uniformity measures.

In addition to texture, color features were also combined to aid the
detection of spruce among other vegetation. As found earlier in Section 2.4,
in order to provide a suitable color space for use with natural images, the
fixed linear transformation defined in Equation (2.24) was employed to

22The DFK 41AU02 color camera used in this thesis, manufactured by Imaging
Source, is explained in detail in Section 4.2 and also used in Section 3.6.
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(a) Image block (b) Radon transformation (c) Wavelet transformation

Figure 4.8. The proposed texture feature computation procedure has three steps: a) an
intensity image block of size 64x64 pixels with a windowing function, b) a
Radon transform computed from (a), and c) a wavelet transform computed
from (b)

transform an RGB image to excessive green (EG), redness-blueness (RB),
and intensity (I) channels (see Figure 4.9). Furthermore, as it separates
image intensity (I channel), it is easy to reduce the effect of shadows
by normalizing intensity in other channels by dividing each EG and RB
channel pixel-wise by the intensity channel I. These new color features
EG′ = EG/I and RB′ = RB/I were averaged around the same image blocks
used in the texture analysis.

A k nearest neighborhood (k-NN) classifier with Euclidean distance was
implemented to classify each image block into a spruce or non-spruce class
based on a set of texture and color features associated with the block. The
selected classifier is simple to implement and often regarded as a sort
of a baseline classifier as found in Section 2.4. Since nearly any modern
classifier could be utilized for this task, the simplest solution was selected

(a) Excessive green (EG) (b) Redness-blueness (RB) (c) Intensity (I)

Figure 4.9. Example color channels of a frame in EG-RB-I color space defined in Equa-
tion (2.24)
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(a) Detection result (b) Input image for comparison

Figure 4.10. Spruce detection result with the identified tree location and fitting neighbor-
hood drawn over the input image (b)

to demonstrate the real-time spruce detection in a forest. In the original k-
NN algorithm, an unknown sample is assigned to the class most commonly
represented in the collection of its neighborhood in the training data (see,
e.g., Lampinen et al., 1998, p. 31). Instead of this sharp classification result,
the neighborhood of size k = 7 was used to calculate only the number of
votes V ∈ {0,1, ...,7} for the two classes (spruce or non-spruce).

Then in the developed method, the most spruce-like area is sought from
the figure using the spruce vote information around the image. The initial
location is guessed by taking a median separately in the x and y directions
of the image block coordinates in which there are more than a set threshold
(Vspruce > 3) of spruce votes.

In the method, the actual spruce location is refined using a spruce-vote
weighted average of x and y coordinates in the local neighborhood around
the initial location. The circle size defining the local neighborhood is tuned
to correspond to an average target tree in the image. Furthermore, the
quality of the tree detection is estimated by counting the sum of spruce
votes inside a circle centered to the estimated location and dividing it by
all spruce votes in the image. A predefined quality threshold (qspruce > 0.2)
is required to accept the spruce detection.

The detection result was drawn on the image using orange dots (see
Figure 4.10). The radius of dots corresponds to the number of spruce
votes on each image block. In Publication V, the feature extraction and
k-NN search were implemented using CUDA GPU computation to enable
real-time capable operation.

4.4 Young Tree Detection and Species Classification

In Publication VI, the lidar and camera were used together to detect and
classify young spruce and birch trees in the forest environment. The 3D li-
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dar (the swiveling 2D scanner proposed in Section 4.1) and a color machine
vision camera23 were first calibrated to operate as a single sensor providing
a depth estimate for each pixel on the common FoV of both sensors. To
enable the use of existing camera calibration tools (e.g., Bouguet, 2004),
the lidar point cloud was rendered as pairs of range and intensity images
using the kinematic structure and angular position of the platform (see
the swiveling 2D scanner in Section 4.1).

In the developed method, to detect young trees and classify their species,
the range images are first segmented to detect tree regions. Since young
trees grow close to each other, it is really challenging to segment trees from
images. No suitable methods using image data only were found during
the research. Not many methods existed for segmenting young trees from
point cloud data either. However, a method by Jokelainen (2010), which
started tree segmentation from detected tree tops, was available and was
selected for the task. Segmentation is based on a flood-fill-type algorithm
that operates in the following way. Starting from a seed point (assumed
to belong to a tree), the method segments neighboring pixels into the
same tree segment if the range difference between the current and the
neighboring pixel is within the defined threshold (see Publication VI for
the values used). The seed points can be selected in each tree using the
highest local points on the 3D point cloud as an indicator of a possible tree
(see, e.g., Jokelainen, 2010; Vihlman, 2012).

Removal of segments from the ground and smaller vegetation around the
trees is performed using the assumption that a tree grows upwards. The
Cartesian coordinates of the segment (computed from the depth image)
are fed into principal component analysis (PCA) to find three coordinate
axes in the order of diminishing variance. The axis nearest the z axis
(upwards) is decided to estimate the direction of growth (i.e., the height
axis), the other two form the horizontal plane. To reduce the effect of
ground points, PCA axes are formed iteratively by removing the lowest
points of the segment at each iteration. Finally, the distribution of the
remaining higher points in the horizontal PCA plane defines a threshold
window for removing surrounding points from the original segment, thus
reducing the effect of ground points being associated with tree segments.

PCA is also useful for detecting segments containing only ground points
(instead of a tree surrounded by ground). A segment is considered a
ground-only segment,

a) if it spans a longer distance along both horizontal axes compared to
the distance along the height axis, or

b) if its span is at least 60% longer along the longer horizontal axis than

23The NET GmbH Foculus FO442C is a color camera with a 2/3” progressive scan
CCD image sensor that offers a resolution of 1392×1040 pixels and measures 12
bit raw images at 20 Hz frequency (Aegis Electronic Group, 2006).
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it is along the height axis.

These rules were formed experimentally within the training samples. Since
the tree segmenting had good enough success in the young forest under
investigation, further improvement of segmentation was left for the future
work. The developed method requires tops of the trees to be visible in the
data and to be local maxima of the point cloud, so the method should be
applicable in a different young forest as well as long as the trees are the
highest objects on the scene.

After segmentation, tree regions were then projected onto the camera
image using the transformation obtained using external stereo camera
calibration between the lidar intensity image and the machine vision
camera. The tree segments on the color camera images were then divided
into rectangular image blocks (varying size of about 40×40 pixels). To
survey which of the commonly used image features are most suitable for
a young forest, various texture features from the following eight groups
were computed for each image block24:

a) 20 descriptors of the Gray Level Co-occurrence Matrix (GLCM)
(Haralick, Shanmugam, & Dinstein, 1973): contrast, correlation,
energy, homogeneity and entropy in four directions.

b) 44 descriptors of the Gray Level Run Length matrix (GLRL) (X. Tang,
1998): 11 features in four directions.

c) 2 descriptors of edge frequency: the number of edge pixels per unit
area using the Roberts operator (first used by Roberts, 1963) and the
zero crossing Laplacian of Gaussian, also called the Marr–Hildreth
algorithm (Marr & Hildreth, 1980).

d) 4 fractal dimension descriptors (B. Chaudhuri, Sarkar, & Kundu,
1993).

e) 16 statistical geometrical features (Y. Q. Chen, Nixon, & Thomas,
1995).

f) 2 descriptors of Local Binary Patterns (LBP) (Ojala, Pietikainen,
& Maenpaa, 2002): mean and standard deviation of the rotation
invariant LBP histogram.

g) 7 descriptors of the three-level wavelet decomposition using Daube-
chies db1 wavelets: three measures of energy in the wavelet approxi-
mation and detail images, and the four rotation invariant features
(Porter & Canagarajah, 1997b).

h) 4 rotation invariant Gabor filter descriptors (Porter & Canagarajah,
1997b).

These features were used to classify the tree species using a two-class

24For GLCM and GLRL, the image was first scaled to have eight numerical levels.
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Naive Bayes classifier (see the Camera subsection in Section 2.4 for details).
The classification procedure contains two steps. In the first step, each
image block belonging to a tree is classified individually. In the second
step, each image block is given a value ±1 depending on which of the two
classes has a higher density. The whole segment is then classified based
on the density-weighted sum of block classes.

Since real-time computing of all the surveyed features would be infeasible
in an autonomous forest machine, it was important to find a minimal set of
suitable features providing the best classification results. In the extensive
comparison of the features in Publication VI, a selection of eight features
from the co-occurence matrix, local binary patterns, statistical geometrical
features, and Gabor filter were found to produce the best classification
result. In Publication VI, the classification results were similar for spruce
and birch. The overall correct detection rate was 79% and the overall
correct classification rate was 74%. The study demonstrates that it is
plausible to combine lidar and camera measurements to detect young trees
and classify their species.

4.5 Tree Stem and Ground Model Estimation

Two rotating tilted 2D scanners25 in the configuration proposed in Sec-
tion 4.1 were used to measure and model the main stems (i.e., trunks) of
trees in a forest Publication VII. To measure the main stems and model
individual trees with models related to the local ground surface, both the
ground surface and tree measurements must be located from the 3D point
cloud. For this task, a method utilizing the 45° tilted 2D laser scanners was
developed. The method assumes that tree trunks primarily grow vertically
and the ground surface usually lies horizontally underneath the trees, and
thus the laser profile strikes both the ground surface and tree stems at
approximately a 45° angle.

Because of the 45° tilted scanning plane, ground and tree points can
be segmented from individual scan lines directly without the need of
combining multiple scan lines of the rotating 2D lidar (see Figure 4.11).
In this scanning configuration, the ground is usually seen as a linearly
arranged set of points in the left side of the laser scan , at least when the
ground surface or the measuring vehicle are far less than 45° inclined.
In addition to the rotating laser scanners, the setup in Publication VII
also included an IMU sensor, to allow the vehicle attitude to be taken into
account if the platform is over-tilted (e.g., using the method proposed in
Section 3.3).

Ground surface segmentation is performed for a single laser scan by
iteratively fitting a line to the 3D points at the lower part of the data (on

25The system integrates two SICK LMS200 2D scanners (SICK AG, 2006).
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Figure 4.11. A sample scan from the rotating lidar is shown in 3D (a) and in the scanning
plane (b). The ground points are visualized with orange dots, and the ground
line is shown with a red dashed line. Brown dots visualize the common field
of view between (a) and (b), and the other measurements are shown as black
dots in (a).

the left side in Figure 4.11b). Laser range measurements that are near the
fitted line or to the left of the line are associated as ground returns. The
position of the fitted line is initially selected to be parallel to the y axis in
the scanning plane and to go through the leftmost returns in the selected
search window shown in Figure 4.11b.

To build the ground model, ground-associated measurements during a
full revolution of the rotating lidar (see rotating tilted 2D scanners in
Section 4.1) were collected in a single scanner-centered point cloud. In
the ground modeling process, the point cloud is first randomly thinned to
equalize the density of points in it. Then, the point cloud is split into 1×1
m x-y grid cells, after which the median height (z) is computed for each
grid cell to represent the ground surface around that cell. A 1 m grid was
chosen because, in practice, it proved sufficiently accurate for use in the
remaining tree modeling phase to estimate the ground surface level under
each tree. Furthermore, the selected resolution allowed sufficient points
to be accumulated in each grid cell for the median to be robust against
possible random errors in the segmentation of laser range measurements.
For empty grid cells in the middle of the ground model, the height was
interpolated using neighboring cells, from which the median could be
computed.

Tree stem segmentation is also based on the separate segmentation of
each laser scan. Publication VII proposed a method for detecting tree
stem edges and tree stem returns in between the edges. Because of the
lidar tilt angle, primarily vertically growing tree stems were measured at
approximately 45° in relation to the tree growing direction. Thus, it can be
assumed that, in the laser scan, the points are measured and organized
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in an angular order from left to right. Therefore, the left edge logically
appears first, after which the stem points and then the right edge of the
same tree are encountered in the laser-scan vector. Similar detectors are
used in many 2D mapping cases to detect trees from a laser scan (see, e.g.,
Bailey & Nebot, 2001; Jutila et al., 2007).

Relying solely on a single scan segmentation to the left and right edges
and stem points would produce a high number of outliers caused by range
measurements from obstacles such as rocks, thicker branches, or under-
growth. To improve the segmentation, a second step is performed in the
tree stem search. First, a full revolution of the rotating lidar data initially
classified as tree points (edges or stem points) is collected in a scanner-
centered point cloud. Then tree trunks are searched for from the point
cloud by computing a x-y histogram using a bin width of 0.2 m in both x
and y directions. The trunks are assumed to be nearly vertical, so they
should be seen as local maximums in the 2D histogram.

The number of points inside one histogram bin is highly biased by the
measuring range. To separate non-tree objects from real trees, a range-
dependent threshold value was used to classify histogram bins into trees
or non-trees. This threshold value is modeled as a function of range with
the help of a geometrical model of a solid angle (Ω) of a tree in the FoV of
the rotating lidar:

Ω(r)= 2arctan
(

d
2r

(
sinα(r)+sinβ(r)

))
,

α(r)=min
(π

4
,arctan

( zmax − z0

r

))
,

β(r)=min
(π

4
,arctan

( z0

r

))
,

(4.1)

where d is the diameter and r is the range of the model tree trunk, zmax is
the maximum height of trees where the tree trunk is visible in the forest
(10 meters used in Publication VII), and z0 is the scanner height from the
ground surface.

Since the rotating lidar (see rotating tilted 2D scanners in Section 4.1)
produces rather equal point density over its FoV, the detection threshold
can be assumed to be proportional to the solid angle of a model tree in
Equation (4.1). The constant parameter defining the scaling between the
solid angle model and the threshold is tuned based on the data. The
histogram of points and the threshold are shown in Figure 4.12.

The approximate tree locations are then searched for from the x-y his-
togram around the accepted bins. To avoid finding the same tree more than
once (e.g., if the same trunk is split into two neighboring cells), histogram
bins closer than 1 m to each other are assumed to belong to the same tree.
Thus, only the local maximum around every candidate (red dots) which
exceeded the modeled threshold function (black curve) in Figure 4.12 is
determined as a tree (green circles). This allows only the largest histogram
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Figure 4.12. A histogram of tree-associated points in a x-y bin as a function of measuring
range. The black curve visualizes the threshold function. The final accepted
trees are highlighted with a green circle.

bin around the 1 m neighborhood to be used as a seed in the next tree
trunk modeling phase.

In tree trunk modeling, all laser range measurements except the ground
associated points around a one-meter range from each accepted tree loca-
tion in the x and y histogram grid are selected. Next, outliers are filtered
by iteratively fitting a line to the points, discarding the farthest points out
as outliers (magenta points in Figure 4.13a). This filtering is based on the
assumption that the main stem is nearly linear, and branches point nearly
perpendicularly outwards from the main stem. Thus, the distribution of
laser scanned points around the main stem are reduced significantly after

(a) line fitting (b) circle fitting (c) a tree model

Figure 4.13. A tree modeling process in three steps, where the outliers are filtered out
and the line is fitted in (a), overlapping circles are fitted into the remaining
point cloud in (b), and the final tree model is visualized in (c).
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some distance. This is searched for using a histogram of distances of points
from the fitted line. The first distance, where the histogram value falls
below a set threshold is decided as the distance limit from the fitted line to
filter out branches and foliage around the tree stem. When this is iterated
a few times, most branches are removed from the tree stem point cloud.

The remaining filtered point cloud is then rotated such that the fitted line
is aligned towards the z axis for further steps (see Figure 4.13b). The tree
trunk is then modeled by fitting circles to the points at 1-meter intervals
starting from 1 and ending at 10 meters above the estimated ground
surface. The point cloud is split into overlapping segments symmetrically
around every height. The data regions are set to overlap by half a meter
in both directions, as the circle fitting phase requires as much data as
possible.

Circles are then iteratively fitted into each of the height segments where
there are sufficient data points to fit a circle. The closed form circle fitting
procedure presented by Coope (1993) is used to fit the circle to the measure-
ments. It is used iteratively to minimize the effect of outliers by removing
the farthest measurements. This iteration is repeated three times. One
standard deviation of distance from inside and outside the fitted circle
to the circle is used as the limit to detect outliers from the circle fitting
process. The resulting circle fit is visualized in Figure 4.13b. The final tree
model is then visualized with a wire frame model where the circle center
points are connected to each other in Figure 4.13c.

121





5. Discussion

A forest is an uncontrolled, unstructured environment where sensor read-
ings are uncertain and difficult to interpret. As explained earlier in Sec-
tion 1.1, the boreal forest floor consists of rocky, shallow-soiled uplands,
wetlands, and poorly drained organic soils. Most forests are, at least to
some extent, managed, and they consist primarily of conifers (such as
spruces or pines), although some broad-leaved species (such as birches)
are also common. Because the environment is complex to interpret even
in the most managed forests, any autonomous operation requires a robust
perception system. As explained earlier in this work, an autonomous (or
semi-autonomous) forest machine must, at minimum, be able to measure
1) its own position in the forest, 2) its own inclination to avoid falling, 3)
the pose of its crane and tool, 4) trees and their species and other relevant
quality-related parameters, and 5) the ground surface around the machine
to enable safe navigation.

Moreover, the perception system must cope with adverse weather condi-
tions and imperfect data. The task is challenging, since forest machines
operate in a diverse environment in which tree species, size, and appear-
ance, as well as the amount of undergrowth, change drastically over time
and space. Furthermore, commonly used GNSS-based navigation sensors
lack sufficient positioning accuracy in dense forests, which increases the
challenges of locating the robot and combining multiple measurements
around the same forest. Moreover, forestry industry budgets are tight.
Thus, to allow commercial forest machine manufacturers to add the tech-
nology to their products and thus increase the productivity of forest work,
neither the sensors nor the technology can be prohibitively expensive.

5.1 Scientific Contribution

The main scientific contribution of the thesis is the proposal of perception
systems for autonomous and semi-autonomous forest machinery. These
perception systems can be divided into two main parts: a proprioceptive
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part for sensing the robot’s own state and an exteroceptive part for sensing
the forest around the robot.

Proprioceptive Perception

The proprioceptive aspects of the system enable it to reliably estimate the
crane posture, attitude of the vehicle, and orientation of the freely swaying
tool. In addition, in a semi-autonomous system, perception of the human
operator is classified as perception of the robot’s self.

The minimal instrumentation of a flexible forestry crane using a laser
scanner in Publication I proved capable of reliably estimating the posture of
the crane and the position of the boom tip. The tip position was successfully
estimated in spite of obstacles and foliage that occasionally obstructed the
line of sight to the crane boom and boom tip mounted targets. In contrast
to traditional joint-angle-based measurement systems, the main benefit of
the laser-scanner-based crane-posture measurement system is that crane
bending can also be observed, since the boom tip position is measured
directly instead of computing it through a kinematic chain of joint angles
and links that are assumed to be rigid.

In Publication I, crane posture was measured with respect to the ma-
chine’s main body with RMSEs of 0.14° and 0.40° for the lift and the
transfer joint angles, respectively, and 4.0 and 4.3 cm for the extension
length and the tip position, respectively. Moreover, in a noise tolerance
test (see Figure 5.1), the proposed method (described in Section 3.2) per-
formed well even when visibility was artificially reduced to 0.1 random
obstructions per meter for each laser range measurement. This simulates
very dense fog or a snowstorm that would obstruct (i.e., reflect back) every
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Figure 5.1. In Publication I, the proposed crane posture estimation method (CPPF) was
compared to a deterministic target detector method (SD) for tolerance against
random obstructions. The left side plot shows the percentage of successful
measurements for both methods. The right side plot is a RMSE of the boom
tip position. Both measures are drawn as a function of probability of an
obstruction (i.e., simulated noise) on the line of sight between the scanner
and the actual range measurement. Each noise level was tested 10 times and
the area between minimum and maximum values is shaded under each mean
curve. Method SD gave zero measurements under the largest amount of noise,
and thus those values are missing from the right side plot.
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10th laser range measurement during the first meter. Thus, to answer
Q1, the work in Publication I advanced the state of the art of estimating
the posture of a forestry crane and the position of the boom tip by pro-
viding the first viable laser-scanning-based forest-machine-crane-posture
measurement solution for a forest environment.

The attitude estimation method in Publication II showed that it is pos-
sible to accurately estimate the attitude and drifts of gyroscopes without
relying on other than inertial measurements (e.g., without commonly uti-
lized magnetometer measurements, which are difficult to use in forest
machinery). Although MEMS IMU sensors must be calibrated in order
to be accurate, as shown in Publication II, in which the calibration was
performed as a function of sensor temperature, the sensor drifts develop
over time as explained in Section 2.2. Thus, the only option is to calibrate
the sensor during use. Then, as explained in the parameter estimation
part of Section 2.1, this gyroscope drift can be defined as a parameter and
estimated online with attitude in the same filter, as shown in Section 3.3,
to provide an estimate of the gyroscope biases combined with the direction
of gravity.

In addition to drifting gyroscope biases, the sensor fusion algorithm in
Section 3.3 was implemented so as to withstand the random transient
non-gravitational acceleration and noisy measurements normally present
in any moving vehicle, such as a forest machine. In Publication II, the
proposed algorithm was compared to two state-of-the-art open-source algo-
rithms in multiple tests with two different low-cost IMUs and an accurate
reference pose. The proposed method transpired to be the most accurate
algorithm in a rotation test (RMSEs of 1.57°, 0.56°, and 0.61°, for yaw,
pitch, and roll Euler angles, respectively) and also proved highly accurate
in a test to measure tolerance against rapid linear accelerations (RMSEs
of 1.19°, 0.42°, 0.17° for yaw, pitch, and roll Euler angles, respectively).
Furthermore, as shown in Figure 5.2, only the proposed method tolerated
large induced biases in gyroscope measurements that could be caused,
for instance, by poor calibration or temperature changes in the sensor
chip. These properties allowed the low-cost IMU to reliably measure the
attitude of a forest machine in the presence of noise and non-gravitational
accelerations (Q2).

In Publication III, the orientation of a freely swaying tool, such as a grap-
ple or a point cleaning tool, was acquired by using two similar IMUs and a
sensor fusion algorithm to estimate the orientation of a forest machine tool.
The tool was mounted on the boom tip of a forestry crane using a rotator
link and a rotator motor to enable free swaying and controlled rotation of
the tool. As found in Section 3.4, installing traditional positioning sensors
on each of these joints is challenging due to the mechanical structure of
the rotator link. Therefore, the EKF for the dual IMU system presented in
Section 3.5 offers a practical and affordable way to measure the orientation
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Figure 5.2. In Publication II, the proposed DCM based attitude estimation method was
compared to two open-source attitude estimation methods by Madgwick et
al. (2011) and Mahony et al. (2008). In a test for tolerance against induced
gyroscope bias, the proposed method was the only method capable to estimate
the attitude with small RMSE in all tested scenarios.

of the forestry crane tool. To the best of the author’s knowledge, no other
works than Publication III have proposed a method for measuring the
angles of a freely hanging rotator link and the rotator motor. This method
is able to estimate the 3D angular position and angular velocities of the
freely hanging tool with an accuracy of a few degrees (errors of -5° to 3° for
the rotator angle and 1° to 2° for the freely swaying angles). This accuracy
is adequate for most practical use cases where tool orientation is required
(e.g., picking up logs or cleaning young stands). Thus, to answer Q3, the
work in Publication III enabled the instrumentation of a rotator-link mech-
anism by estimating the three-dimensional orientation of the tool of the
forest machine.

In a semi-autonomous system, a human operator still sits inside the robo-
tized forest machine. When the human operator and the semi-autonomous
forest machine work together, it is essential that real-time information is
provided to the operator in a way that allows intuitive understanding of
what is occurring around the robot. Previous research has hypothesized
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that this could be achieved using an augmented reality user interface, but
such a solution requires the operator’s head pose to be measured with suffi-
cient accuracy and minimal delay. Publication IV demonstrated the robot’s
ability to perceive the operator’s head pose inside the forest machine cabin
using a head mounted camera and IMU sensor. As described in Section 3.6,
an EKF was used to combine camera and IMU measurements to estimate
operator head pose in a forest machine cabin. This provided a real-time
estimate of the head pose in order to augment the operator’s view with the
measurements around the machine. In sum, Publication IV demonstrated
that an augmented reality system can be set up in the forest machine cabin
to show the forest machine operator laser scanned data around the forest
machine in real time (Q4).

Exteroceptive Perception

In turn, the exteroceptive parts of the system allow it to perceive the
3D structure of the surrounding environment, including tree trunks and
the ground surface underneath, to classify species of detected trees and
perform real-time visual servoing of the forestry crane to facilitate an
automated task such as automatic point cleaning.

As found in Section 2.4, lidars are the best sensors for measuring accurate
3D information from the surrounding forest. From the three different 3D
lidars built from lower cost 2D laser scanners (Publications I, VI, and VII),
the rotating 45° tilted scanning plane transpired to be the best compromise
for point density and FoV. Point density was rather equal for the whole
FoV, as shown in Figure 4.4b of Section 4.1. The FoV of the rotating
tilted scanner is 360°×90°, leaving only 45° upward and downward cones
uncovered. However, if mounted on top of a forest machine cabin, the cabin
roof blocks the downward pointing cone. Moreover, the upward pointing
cone covers the sky above, from which the measurements are of mostly no
interest. As a result, most measurements in this scanning configuration
are taken rather equally from the most interesting areas around the forest
machine (Q9).

Although the other scanning configurations were less suitable as the
main sensor of an autonomous forest machine, they also exhibited some
benefits. The vertical lidar mounted on the side of the forestry crane in
Publication I allowed simultaneous measurement of the posture of the
crane and the measurement of the working environment. This is a major
cost saving, since the same single 2D lidar could be used to measure the
crane posture and environment around the vehicle. In turn, the swiveling
scanning configuration in Publication VI enabled the collection of a denser
point cloud in a narrower FoV, which was beneficial when fusing the lidar
and camera data together. This is especially advantageous when the reso-
lution of the equal-density-but-sparse rotating tilted lidar is insufficient
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for a tree detection or classification task (Q9).
Tree trunk and ground modeling was demonstrated in Publication VII

by using a lidar built from a rotating tilted 2D laser scanner. The 45°
tilted scanning plane enabled the segmentation of ground- and tree-trunk-
associated points from individual scan lines. Because of the tilted scanning
plane, the primarily horizontal ground surface and vertically growing trees
could be detected from individual laser scan profiles. A combination of
measurements from the full rotation of the 3D lidar enabled reliable de-
tection of pillar-like tree trunks from the data and the construction of a
local grid-type ground model underneath the trees (see Figure 5.3). To
answer Q7, Publication VII introduced a plausible method for a forest-
machine-mounted laser scanner to measure the surrounding forest and
segment trees and ground surface from the measurements. In Publica-
tion VII, tree trunks nearer than 8 meters to the lidar were measured with
nearly normally distributed errors less than ±20 mm for the radius. Thus,
averaging multiple measurements should significantly increase diameter
measurement accuracy.

Figure 5.3. In Publication VII, two 45° tilted 2D scanners were rotated to measure and
model the ground and tree trunks. In the figure, an example of point cloud
collected during 2 seconds (one rotation of the motor in the origin) is modeled
as ground using 1 m grid and tree trunks using red cylinders. The small black
dots visualize the measured point cloud.

Since a lidar sensor only provides information from one wavelength, and
the resolution of the measurements is usually quite low, sensor fusion with
a machine vision camera can help significantly in tree species classification.
The improvement by adding a camera is twofold. Firstly, the increased
resolution enables texture-based recognition, and, secondly, the color chan-
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nels of the camera enable the usage of intensity information on multiple
wavelengths. In Publication VI, tree species were classified in a young
mixed-species forest by using combined lidar and machine vision sensors
and a sensor fusion approach to detect, segment, and classify young trees
growing next to each other (see Figure 5.4). The work demonstrated that
by using a calibrated 3D lidar and a machine vision camera together, it is
possible to segment trees based on the range data and then use the color
and texture features of the segments to determine tree species (Q6). The
classification result in Publication VI was not perfect, but it should be suf-
ficient to enable the use of automated decision making in an autonomous
or semi-autonomous forest machine.

Figure 5.4. In Publication VI, young mixed-species forest was segmented for individual
trees and the tree species were classified using a sensor fused 3D lidar and a
camera. This figure shows an example segmentation and classification results
between spruces (green) and birches (yellow). Note that because of the lidar
based segmentation, undergrowth is not segmented nor detected as a tree.

A similar machine vision solution using color and texture information was
also used in a demonstration of an autonomous forest machine prototype
in Publication V. In the demonstration, a machine vision system was used
to detect and classify young spruce trees and help the autonomous forest
machine visually servo the point cleaning tool mounted on an autonomous
forestry machine to automatically clean vegetation around young spruce
trees. The demonstration was performed in the Neosilvix project (Aalto
University, 2013) to show that it is possible to use a fully autonomous
forest machine in a repetitive but challenging silvicultural task. In the
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(b) Detection error against a manually labeled reference spruce positions in the image

Figure 5.5. In Publication V, detection of young spruces was demonstrated in real time.
The gray color visualizes the region in which, based on the estimated quality
value in (a), the system decided that the detection should not be used. The
positioning error in (b) was measured against a manually labeled spruce
center points from the recorded images.

demonstration26, all the young spruce trees were found, and the surround-
ing competing vegetation was successfully cleaned autonomously (Q5).
Publication V demonstrated the ability of the machine vision algorithm to
detect and track a young spruce tree in real-time with an average error
of less than 50 pixels for the pose of the tree in a high-resolution camera
image of 1280x960 pixels (see Figure 5.5). This accuracy was sufficient for
an automated crane controller (Kalmari, 2015) to perform visual servoing
using real-time video-based detection as an input.

26A video of the demonstration is available at https://youtu.be/n3xeEsscunA
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5.2 Limitations of the Proposed Solutions

All the solutions proposed in this thesis are compromises caused by com-
putational limitations, requirements for low-cost solutions, and difficult
weather conditions, to name but a few limiting factors. This section de-
scribes the most important limitations of the methods and sensor solutions.

The crane posture estimation method proposed in Publication I and
explained in Section 3.2 is an optical method that is limited in its ability to
detect the two targets explained in Section 3.1. In the tests, it was shown to
withstand a high amount of noise and occlusions, but if the optical path is,
for some reason, obstructed for an extended length of time, the method will
evidently fail. For these reasons, traditional joint angle position sensors
are more reliable; however, they are more costly than the proposed laser
scanner solution, and they are unable to measure the bending of the crane
under load.

The laser scanner was also used simultaneously to collect measurements
from the environment, as shown in the crane-boom-mounted vertical 2D
scanner presented in Section 4.1. However, this instrumentation can
only measure distances on one vertical line in the direction of the crane.
Nonetheless, this limitation could be easily avoided by using a modern,
low-cost, multi-beam lidar, for example, a 16 beam Velodyne Puck Lite
(Velodyne Lidar, 2019b), a 32 beam Ouster OS1 (Ouster, 2021), or a 40
beam Hesai Pandar40P (Hesai, 2020), instead of the currently used SICK
LMS221 2D scanner (SICK AG, 2006). The other significant drawback
is that, in this scanning configuration, a large share of the data is lost
towards the ground and sky. However, this could be easily avoided by
using a low-cost sensor which provides a narrower FoV such as Neuvition
Titan P1 (Neuvition, 2023), which provides one scan line in 135° FoV. This
solution may be a cost-effective alternative for a forest robot in cases where
a minimal number of sensors are used to simultaneously measure the
crane posture and the working environment around the crane in the same
coordinate frame.

The attitude estimation method proposed in Publication II and explained
in Section 3.3 is robust against transient non-gravitational accelerations,
but it contains some limitations. Firstly, it cannot function well in the
presence of constant non-gravitational acceleration, which is the case, for
example, if the sensor is mounted on a continuously rotating or fast moving
object. However, the proposed algorithm is a good choice when carried by a
drone, human, or slowly moving vehicle, such as a forest machine.

Secondly, the algorithm cannot estimate the absolute heading angle;
rather, it is only capable of calculating the relative and slowly drifting
heading change from the initial orientation. The method is designed
to work without any sensors other than the triaxial accelerometer and
gyroscope, and thus other sensors, such as a compass or magnetometers,
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would be required to allow the robot to distinguish the absolute heading
angle. However, as forest machinery is mostly built from ferromagnetic
metals, uses electric currents to control and power its equipment, and
may work in magnetically challenging conditions, such as under power
lines, the attitude estimation algorithm is intentionally separated from
any dependence on commonly used magnetic sensors. In future research,
other methods, such as GNSS or map-based navigation methods, should
be integrated with the proposed attitude estimation method to overcome
this limitation.

As found in the previous section, the method for estimating IMU-based
forest-machine-tool orientation proposed in Publication III and explained
in Sections 3.4 and 3.5 enables the practical measurement of the angles of
a freely swaying forest machine tool, such as a grapple or a point cleaning
tool. The limitation of this method is its accuracy, since it contains errors
as large as 5°. The method could most likely be improved in future work
by using a more sophisticated model to take account of the accelerations
measured in the lower IMU. In the proposed solution, these were omitted
to simplify the model to allow for its easy implementation in an embedded
system providing real-time estimates.

The head pose estimation method proposed in Publication IV and ex-
plained in Section 3.6, which enabled the use of an augmented reality
user interface in a forest machine cabin, was able to measure reliably the
slow and fast motion of the operator’s head in the cabin. However, the
cabin also moved, since, in the forest machine used by the study, the cabin
was suspended with springs to improve the operator’s working ergonomics.
The proposed method was unable to measure this cabin motion separately.
Since the head pose was measured inside the cabin, cabin motion remained
a residual error in the real-time data collected by the forest machine that
was augmented on the operator’s view. In future work, this could be cor-
rected by also estimating the motion of the spring suspended cabin, for
example, by using a separate cabin fixed IMU and the attitude estimation
method proposed in Publication II.

The color-and-texture-feature-based algorithm for detecting young spruce
proposed in Publication V and explained in Section 4.3 with the hardware-
related details shown in Section 4.2 was built with real-time considerations
in mind. This meant that real-time-capable operation was the key require-
ment, and the quality of the detection was subordinate. Similarly, the
tests in Publication V were also designed with real-time operation in mind,
and young tree detection quality was not the main focus. However, the
detection quality was still good enough for detecting all trees reliably. Al-
though the method proved capable of detecting all young spruce in all test
cases in the real-time demonstration, currently available state-of-the-art
deep learning methods would most likely outperform the spruce detection
method in both speed and accuracy (see, e.g., Wäldchen, Rzanny, Seeland,
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& Mäder, 2018; Kattenborn, Eichel, & Fassnacht, 2019). However, this
part of the work was already published in 2013, when neither deep learn-
ing methodology nor the tools to use it in real time had yet matured (see
the substantial growth after 2013 in Q. Li et al., 2021). In future work,
modern methods to enable real-time detection of young spruces would need
to be implemented for the same purpose of visual servoing the crane if
similar tasks are attempted.

After learning from the previously noted tree classification challenges
in Publication V, a wider search for suitable tree segmentation and clas-
sification methods was performed while classifying the trees with the
methods surveyed in Publication VI and explained in Section 4.4. The
work found many better alternatives for tree species classification, but
classification accuracy nevertheless remains the key limitation here. Today,
more modern, deep-learning-based solutions would probably outperform
the proposed feature-based methods, in which the best classification was a
search using the engineered selection of features (see, e.g., Wäldchen et al.,
2018; Kattenborn et al., 2019). In the future work, deep-learning solutions
should be attempted for segmenting and classifying tree species in a young
forest.

The swiveling 2D scanner configuration which was used in Publication V
and explained in Section 4.1 was employed to acquire a 3D point cloud
around the camera data to perform sensor fusion between the sensors. One
of the disadvantages of the swiveling 2D scanner prototype was that the
vertical FoV was limited to ±30°. This was slightly too great a limitation
in the forest environment, where some of the tops and bottoms of the trees
were cropped out. The sensor also suffers from limited FoV in the horizontal
direction, as it cannot see anything at the rear of the sensor. The swiveling
motion was also a notable limitation, since the system geometry and motion
caused periodic accelerating and decelerating sideways movements. This
induced many low frequency vibrations in the system, which decreased the
accuracy of the point cloud.

Of the scanning configurations tested in this thesis, the rotating tilted
scanning configuration proposed in Publication VII and explained in Sec-
tion 4.1 proved the best compromise. It provides rather equal distribution
of the point cloud around the whole space surrounding the vehicle; however,
it cannot see anything directly upwards or downwards, which might be a
limitation in some tasks. Nonetheless, in forest machinery, if the sensor
is mounted vertically, for example on top of a forest machine cabin, the
measurements cover the whole environment around the machine rather
well. The rotating configuration also possesses limited resolution, and thus
it is unsuitable for taking denser, more focused measurements from an
area of interest. For this task, the swiveling motion used in Publication VI
is more apt.

The proposed tree trunk and ground surface detection methods explained
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in Section 4.5 and demonstrated in Publication VII were able to detect tree
stems and the ground surface underneath them in a mature pine forest.
The method was neither developed nor tested for younger mixed species or
spruce forest, in which the tree stems are less visible. For these tasks, a
better sensor and more modern algorithms (e.g., E. Hyyppä, Kukko, et al.,
2020; E. Hyyppä, Hyyppä, et al., 2020) should be used in future work.

5.3 Discussion on the Selected Sensors and Methods

In this thesis, no single sensor alone is able to provide perception capa-
bilities. Instead, this work proposes that the perception capabilities of an
autonomous forest machine are built as a sensor fusion solution. As found
in the sensor fusion part of Section 2.1, the calibration of sensors and their
mutual configuration is important. In addition, time synchronization of
sensors and estimation of the delays in their data streams are vital in order
for the same event to be combined between data coming from different
sensors. For example, in Publication VI, it was necessary to calibrate
the lidar and the camera individually to provide their measurements in
a known coordinate frame. Secondly, it was necessary to calibrate their
mutual configuration in order to project lidar data in the camera frame.
Thirdly, when these sensors are used in motion, their mutual delay in
measurements must be known as well as their motion.

The Importance of Inertial Measurements

Since forest machines move relatively slowly on the forest floor, most
changes in the lidar and camera data are caused by the rotation of the
vehicle and the sensors mounted on it. The attitude information provided
by an IMU can be used in many ways. Firstly, it helps balance the robot
and prevent it from falling over when traversing uneven terrain and steep
slopes. Secondly, when combined with remote sensing sensors, the IMU
can reveal the orientation of the vehicle and sensors mounted on it. This
simplifies sensor data processing and sensor fusion, since the location
where the sensor points is already known.

The attitude estimation algorithm in Publication II was successfully used
as the basis for the method in Publication IV, and it provides the important
attitude estimate required in Publication III as a part of the boom tip IMU
estimate. The inertial sensors in publications V, VI, and VII can be used as
a background tool to orientate the optical sensors to make sense of the data
if the platform operates in sloped or variable terrain. A robust attitude
estimate (as proposed, e.g., in Publication II) is an essential part of any
perception system in a forest environment (Q10). The method employed in
Publication II has been open sourced in GitHub (Hyyti, 2015) and already
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used by some other authors in their research (e.g., Ylikorpi, Halme, &
Forsman, 2017; Sandru, Hyyti, Visala, & Kujala, 2020).

As mentioned in Section 3.3, in addition to Publication II, only a small
number of algorithms (Hamel & Mahony, 2006; Mahony et al., 2008; Wu
et al., 2014) have been proposed to estimate gyroscope biases without
any extra sensors in addition to the triaxial accelerometer and gyroscope.
The low number of proposed solutions may relate to the difficulty of the
challenge. With standard orientation representations, there are at least
three unknown parameters representing the rotation in addition to three
unknown gyroscope drift parameters. By contrast, there are only five
independent measurements, three angular velocities from the gyroscopes,
and one vector measurement from the accelerometers, giving two indepen-
dent measurements and the magnitude of the Earth’s gravity. This means
that the system is underdetermined, since there are fewer measurements
than unknowns. Many other authors have added some extra sensors, such
as magnetometers, to the setup to overcome this problem (e.g., Gebre-
Egziabher et al., 2004; Lou et al., 2011; Edwan et al., 2011; Madgwick et
al., 2011). However, in Publication II the heading angle is decoupled from
the attitude estimate by using the direction of gravity instead of the full
attitude in the filter, and thus there are only five independent variables
estimated in the proposed filter. Therefore, the system is balanced, and it
is able estimate the attitude and the gyroscope biases together.

The Role of Optical Measurements

As found in Section 2.4, a color camera is an important tool for measuring
texture and color information in a forest. Cameras can be of great benefit
for tree and tree species recognition, as shown in publications V and VI. The
resolution of commonly used, relatively low-cost machine vision cameras
is already high enough to detect and classify the texture of the tree trunk
and leaves and separate them from undergrowth, ground, rocks, and other
common objects in a forest. In addition, color information is essential
in a forest to distinguish between species, as shown in the publications.
Hyperspectral sensors could also be great tools for species recognition (e.g.,
Näsi et al., 2016), but they are somewhat more expensive and thus not
considered in this work.

Section 2.4 also shows that a lidar, especially a pulsed-type ToF lidar,
is better suited for measuring the 3D structure of the surrounding envi-
ronment than a radar or sonar, since the angular resolution of lower cost
radars is a limiting factor. Sonars, on the other hand, work best at short
distances, since the speed of sound in air is a limiting factor when working
with distances of more than a few meters. However, radars, especially at
shorter millimeter wavelengths, could provide the extra benefit of mea-
suring through forest foliage, revealing the ground surface and tree stems
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(Hyyti, 2012). Millimeter-wave radars were previously highly expensive
and were thus excluded from this work. Future work should study the ca-
pabilities of current low-cost sensors (e.g., Almalioglu, Turan, Lu, Trigoni,
& Markham, 2020) in the forest environment. Similar to state-of-the-art
radars, commercial 3D lidars were too expensive to be mounted on forest
machinery. Thus, various constructions to acquire 3D data using lower
cost 2D scanners were attempted in this work. The rotating tilted laser
scanner, which proved the best compromise in this research, is still the
focus of my current work with rotating multi-beam lidars.

Handling Uncertainty of the Environment

Autonomous forest machines should be able to cope with random errors
or faults. As explained in the machine perception part of Section 1.1,
probabilistic methods are able to assess the validity of the measurement
through the probabilities associated with the estimate. This can be used
to detect a bad estimate and trigger a safe process to reinitialize the
system. For example, the crane posture estimation method in Section 3.2
was built to fail in a controlled manner. In Publication I, a quality value
was computed from the probability mass of the given estimate to indicate
the ratio of the probability mass around the estimate. Thus, the quality
value was high when most of the particles lay around the current estimate.
Conversely, the quality was low when there were multiple hypotheses or
when the estimated probability mass had scattered around the available
state space, indicating that the system was unaware of the location of
the crane. With this single value indicating the system’s trust in its own
estimate, it was simple to use a hard-coded minimum quality limit to
trigger reinitialization.

Similarly, in Publication V, the quality of tree detection was estimated
by counting a quality value as the sum of spruce votes given by the k-NN
classifier inside a tree-sized circle centered on the estimated location and
dividing it by all the spruce votes in the image. The quality value helped
the system to determine whether there were any spruce trees at all in the
image (see Figure 5.5a). This kind of self-aware estimation of robot states
is particularly important in autonomous systems, where the robot must
know when it is not measuring something reliably. This single value to
indicate trust in the crane posture measurement easily allows the robot to
be programmed to stop safely if the quality remains too low for an excessive
period of time.

Real-Time Capability

All algorithms intended for autonomous-forest-machine use must work
efficiently, and it is also necessary for them to be real-time capable. Real-
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time capable computation is essential in perception methods to allow the
data to be used as a part of a feedback loop in an autonomous or semi-
autonomous forest machine. In Publication I, the computational efficiency
of the particle filter algorithm was increased significantly by using an
approximate inverse measurement model instead of the conventional (for-
ward) model. The computational benefit is derived from there being just
two small identical targets in the environment but 721 laser range obser-
vations in each scan. Through inversion, the ray-casting of all laser range
observations to a surface defined by the two targets is avoided for each
particle. Instead, only the fit of the target needs to be tested in every laser
scan measurement, which is efficient and fast (Q8).

To increase computational efficiency, in publications II, III and IV, the
sensor fusion algorithm was implemented in an extended Kalman filter
(EKF), which is an efficient probabilistic estimation method requiring
significantly less computational resources than, for instance, an unscented
Kalman filter (UKF) or particle filter (PF), as found in the nonlinear
filtering part of Section 2.1 and visualized in Figure 2.1. All methods
in publications II, III, and IV are real-time capable and implemented in
C/C++ (Q8).

Image processing is usually computationally intensive. To expedite this
process, in Publication V, the young spruce detection method was imple-
mented with graphics-card-accelerated computing using NVidia CUDA
(i.e., Compute Unified Device Architecture) C code (Nvidia, 2012). Since
it was necessary for feature extraction and feature classification to work
in real time to enable the autonomous forest machine to control the crane
based on the camera image stream, it was necessary to optimize multiple
aspects of the algorithm to gain more computational efficiency. To enable
fast computation, texture feature extraction and classification algorithms
needed to be simple enough to be implemented in CUDA code and to be
run on a laptop computer with a Core i7-3820QM processor and NVIDIA
Quadro K2000M27. Since algorithm implementation on the GPU requires
significantly more effort than on a CPU, it unreasonable to use the GPU
for every algorithm Instead, only the most expensive algorithms were
implemented on the GPU (Q8). These were the Radon transform, the
wavelet transform, the feature extraction, and the k-NN classification (see
Section 4.3 for algorithm details).

Since the main objective of this thesis is increase the productivity of
forest work, good solutions should also be cost effective enough for use in
commercial forest machinery. To meet these requirements, the cost of the
sensors proposed here is low. For example, the IMUs used in publications
II, III, and IV were sensor chips made for cellphone use costing only a few
euros per piece. The machine vision cameras and laser scanners, on the

27This was a high-end laptop computer at the beginning of the 2010s, when the
method was used for Publication V.
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other hand, cost a few thousand euros each, and the software was run
on normal laptop computers using open-source software. Only algorithm
development was performed in the Matlab environment, and all algorithms
were implemented in C/C++ code to run them efficiently.
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6. Conclusion

In order for an autonomous or a semi-autonomous forest machine to work
effectively in a forest, it requires sensors and algorithms that enable it
to perceive itself and the surrounding environment. This thesis proposed
perception systems to increase the ability of forest machinery to perform
some of the work in the forest more autonomously and to increase the
productivity of that work. As stated earlier, these perception systems can
be divided into two parts: a proprioceptive part for perceiving the robot’s
own state and an exteroceptive part for perceiving the forest around the
machine.

The proprioceptive part includes 1) a crane posture measurement system
(Publication I), 2) an attitude estimation algorithm (Publication II), 3)
a tool orientation estimation method (Publication III), and 4) methods
to perceive the operator in the cabin and to enable intuitive cooperation
between the robot and the human operator in semi-autonomous operations.
The methods proposed in Publication IV enable the use of an augmented-
reality user interface in a forest machine cabin.

The exteroceptive part includes 1) a 3D lidar capable of measuring a full
360° FoV around the machine to reveal the 3D structure of the surrounding
environment (Publication VII), 2) the sensor fusion of the lidar and a
machine vision camera to allow tree species detection and classification
(Publication VI), and 3) a real-time-capable machine vision system to allow
visual servoing of the forestry crane in an autonomous point cleaning
operation (Publication V).

The publications included in this thesis show that the level of forest
machine automation can be increased by advancing the perception capabil-
ities of the machine. As demonstrated with the prototype implementations
and tests in a boreal forest environment, the proposed perception systems
enable the forest machine to 1) measure the posture of its crane and the
boom tip position within a few centimeters, even under severe disturbances
(Publication I), 2) estimate the attitude of the machine within a few de-
grees, even when the sensor is mounted on the forest machine, causing
vibrations and transient non-gravitational accelerations (Publication II), 3)
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provide a practical means of measuring the angles of an freely swaying for-
est machine tool (Publication III), 4) enable augmented reality in a forest
machine cabin (Publication IV), 5) perform autonomous point cleaning of
young stands by using color-camera-based real-time control (Publication V),
6) detect and classify tree species by using sensor fusion between a camera
and lidar (Publication VI), and 7) measure and model tree trunks and the
ground surface around the vehicle using a rotating lidar (Publication VII).

To facilitate the adaptation of the proposed methods for industrial pur-
poses, the focus of this thesis was 1) low-cost sensors that could 2) function
in a forest environment and 3) withstand harsh weather conditions, such
as rain, snow, ice, and direct sunshine as well as a wide temperature range.
Moreover, 4) the methods were implemented in a prototype forest machine,
and 5) the proposed solutions were tested with a real machine operating
in a forest. This approach made the work significantly more challenging,
but it ultimately led to the development of several practical innovations,
such as lidar-based crane posture measurement (Publication I), IMU-based
orientation estimation of a freely swaying forest machine tool (Publica-
tion III), and a rotating 45° tilted laser scanning configuration for use in a
forest machine (Publication VII).

This thesis answered to ten research questions: Q1) It demonstrated
that a laser scanner mounted on the forestry crane can be reliably used
to estimate the posture of the crane and the position of the boom tip; Q2)
it showed that a low-cost IMU can reliably measure the attitude of a for-
est machine in the presence of noise and non-gravitational accelerations;
Q3) it presented a novel IMU-based instrumentation for a rotator-link
mechanism to measure the three-dimensional orientation of the tool of the
forest machine; Q4) it showed that it is plausible to present sensory infor-
mation in real-time from the perception system to the machine operator
using augmented reality in the forest machine cabin; Q5) it demonstrated
autonomous point-cleaning in a young spruce forest; Q6) it showed tree
detection and species classification in a young mixed-species forest; Q7)
it showed how a forest-machine-mounted laser scanner can be used to
measure and model tree trunks and ground surface; Q8) it explained the
trade-offs that were implemented to make the proposed methods real-time
capable; Q9) it showed the benefits and limitations of three different actu-
ated laser scanning configurations; and Q10) it explained the importance
of inertial measurements in machine perception for forest machinery.

One of the key findings of the thesis is the importance of IMU-based
measurements in forest machinery. IMUs are beneficial for 1) revealing the
attitude of the machine, 2) estimating the tool orientation, 3) tracking the
operator’s head pose, and 4) defining the orientation of the other sensors
mounted on the machine. In addition, IMU with a sensor fusion algorithm
(Publication II) provides an estimate of the non-gravitational acceleration
of the part which the sensor is mounted on. The second important finding
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is the best scanning configuration for collecting a nearly equally dense 3D
point cloud around the forest machine in all relevant directions. This was
achieved using the rotating 45° tilted scanning plane in Publication VII.
Furthermore, the configuration enabled the detection of ground and tree
trunks from individual laser profiles, since trees generally grow vertically
and the ground underneath usually lies horizontally.

The third important finding is the usability of color and texture informa-
tion in forest machinery. Since a lidar sensor only provides information
from one wavelength and the resolution of lidar measurements is usually
low, sensor fusion with a machine vision camera can help significantly in
tree species classification. The improvement by adding a camera is twofold.
Firstly, the increased resolution enables texture-based recognition, and,
secondly, the color channels of the camera enable the usage of intensity
information on multiple wavelengths. As shown in Publication V, a color
camera can be used to detect young spruce trees among other competing
vegetation in a point cleaning operation. Moreover, as shown in Publi-
cation VI, combining the camera with a 3D lidar may enable the forest
machine both to detect and segment young trees growing next to each
other and to define their species.

This thesis demonstrates the potential of the sensors it proposes to assist
the operator, provide accurate forest inventory data, and thus increase
the efficiency of forest operations. Section 1.1 showed that better forest
data could increase the profitability of the forestry sector by more than 250
million euros a year in Finland alone (Kangas et al., 2019). As there are
about 5400 forest machines in Finland (Metsätrans, 2017, 2019; Johnsen,
2019), and if all the reported benefits of better forest data could be gained
through forest-machine-mounted sensors and purposely developed proba-
bilistic machine perception methods, each forest machine could potentially
produce savings of about 45,000e a year. Furthermore, all other potential
benefits of the added sensors and automation, such as increased productiv-
ity and the easier use of machines, should be added to those savings. This
will hopefully provide sufficient motivation for the broader use of these
methods in the future.
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Stanković, R. S., & Falkowski, B. J. (2003). The Haar wavelet transform:
its status and achievements. Computers & Electrical Engineering,
29(1), 25–44.

Steward, B. L., & Tian, L. F. (1999). Real-time weed detection in outdoor
field conditions. In Precision agriculture and biological quality (Vol.
3543, pp. 266–278).

Stoyanov, T. D. (2012). Reliable autonomous navigation in semi-structured
environments using the three-dimensional normal distributions trans-
form (3D-NDT) (doctoral dissertation). Örebro University.

Strandström, M. (2016). Mechanized young stand management in Finland.
In T. Saksa (Ed.), Proceedings of the OSCAR workshop: Mechanized

165

http://sicktoolbox.sourceforge.net/docs/sick-lms-technical-description.pdf
http://sicktoolbox.sourceforge.net/docs/sick-lms-technical-description.pdf
http://lars.mec.ua.pt/public/Tutorials/SickLMS151/OI_LMS100.pdf
http://lars.mec.ua.pt/public/Tutorials/SickLMS151/OI_LMS100.pdf


References

and efficient silviculture, November 25–26, 2015 Natural Resources
Institute Finland, Suonenjoki research unit, Finland (Vol. 8, pp. 7–9).

Sucre, E. B., Tuttle, J. W., & Fox, T. R. (2011). The use of ground-
penetrating radar to accurately estimate soil depth in rocky forest
soils. Forest Science, 57(1), 59–66.

Suger, B., Steder, B., & Burgard, W. (2015). Traversability analysis for
mobile robots in outdoor environments: A semi-supervised learning
approach based on 3D-lidar data. In IEEE international conference
on robotics and automation (ICRA) (pp. 3941–3946).

Sundararajan, D. (2015). Discrete wavelet transform: A signal processing
approach. Wiley.

Szeliski, R. (2010). Computer vision: algorithms and applications. Springer
Science & Business Media.

Taheri, H., & Xia, Z. C. (2021). SLAM; definition and evolution. Engineer-
ing Applications of Artificial Intelligence, 97, 104032.

Tang, J., Chen, Y., Kukko, A., Kaartinen, H., Jaakkola, A., Khoramshahi,
E., . . . Hyyppä, H. (2015). SLAM-aided stem mapping for forest
inventory with small-footprint mobile LiDAR. Forests, 6(12), 4588–
4606.

Tang, X. (1998). Texture information in run-length matrices. IEEE
transactions on image processing, 7(11), 1602–1609.

Tapio. (2014). Metsänhoidon suositukset (O. Äijälä, A. Koistinen, J. Sved,
K. Vanhatalo, & P. Väisänen, Eds.). Metsätalouden kehittämiskeskus
Tapio. (in Finnish)

Tazartes, D. (2014). An historical perspective on inertial navigation
systems. In International symposium on inertial sensors and systems
(ISISS) (pp. 1–5).

Thrun, S. (1998). Learning metric-topological maps for indoor mobile robot
navigation. Artificial Intelligence, 99(1), 21–71.

Thrun, S. (2000). Probabilistic algorithms in robotics. Ai Magazine, 21(4),
93.

Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic robotics (R. C. Arkin,
Ed.). MIT Press.

Toiviainen, V. (2017). Inertial measurement unit based instrumentation
for pose estimation and contact detection in a forestry crane (Master’s
thesis, Aalto University, School of Electrical Engineering). Retrieved
from http://urn.fi/URN:NBN:fi:aalto-201705114675

Tomaštík, J., Chudá, J., Tunák, D., Chudỳ, F., & Kardoš, M. (2021). Ad-
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Errata

Publication III

In Table 1, the units of axle frictions should be Nm
kg rad/s , not 1

s .

Publication IV

The control input vector u containing angular velocities was accidentally
omitted from the system model in Equation (6) in Publication IV. See
Section 3.6 and Equation (3.32) for correction.

Publication VI

The machine vision camera is a NET GmbH Foculus FO442C (Aegis Elec-
tronic Group, 2006), not FO422C as stated in Publication VI.
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