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Abstract
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The permanent availability and relative obscurity of blockchains is the perfect ground for using them for malicious purposes.
However, the use of blockchains by malwares has not been characterized yet. This paper analyses the current state of the art
in this area. One of the lessons learned is that covert communications for malware have received little attention. To foster
further defence-oriented research, a novel mechanism (dubbed Smart-Zephyrus) is built leveraging smart contracts written in
Solidity. Our results show that it is possible to hide 4 Kb of secret in 41 s. While being expensive (around USD 1.82 per bit),

the provided stealthiness might be worth the price for attackers.
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1 Introduction

Blockchain is a well-known technology that allows the exe-
cution of transactions ensuring their integrity. It can be
described as “an open, distributed ledger that can record
transactions between two parties efficiently and in a verifiable
and permanent way” [1]. It has been a growing technology
since Satoshi Nakamoto proposed it in 2008 [2]. A plethora
of applications have been devised, starting by cryptocurren-
cies like Ethereum [3].

Due to their anonymity and availability, blockchains are
also used for malicious purposes [4]. For example, Bitcoin
is widely used in the darknet to pay for forbidden products
[5]. Similarly, malware developers and cybercriminals have
already used this technology as well [6-9].

As a massive phenomenon, the relationship between mal-
wares and blockchains is worth being studied. It must be
noted that malwares have infected at least one-third of the
computers worldwide [10] and their estimated global impact
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is $6 M per year [11]. Previous works have studied this
relationship. Kshetri and Voas [12] analysed the effect of
cryptocurrencies on ransomware. Similarly, Bock et al. [13]
provided a systematic analysis of blockchain-based botnets.
However, most of the previous studies focus on a single type
of malware (e.g. botnets or ransomware) or a single type of
blockchain technology (e.g. Ethereum or Bitcoin).

To overcome this limitation, this paper provides with an
in-depth study of how malwares are using blockchains. We
consider different perspectives such as the malware purpose,
the blockchain elements at stake or the cost for the attacker.
This study leads to the identification of research gaps, some
of which are also addressed in this paper through a mecha-
nism, called Smart-Zephyrus, for covert communications in
blockchains. As they are typically hard to detect, this could
be very useful for malwares. Thus, it should foster further
defence-based research in this direction.

Therefore, the contributions of this paper are as follows:

e Study and categorization of the different ways in which
blockchains have been used by malwares.

e Development of Smart-Zephyrus, a mechanism to carry
out cover channel communication leveraging Ethereum
smart contracts. Its development involves a large amount
of real-world smart contracts to ensure the stealthiness
of the secret. Besides, an open-source proof of concept
is publicly released.
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Paper organization Sect. 2 gives the background to under-
stand the proposal. Section 3 describes the research method-
ology. The analysis on how malwares have leveraged
blockchains is presented in Sect.4. The proposed covert
channel mechanism is introduced in Sect.5, and assessed
in Sect. 6. The related work is presented in Sect.7. Lastly,
Sect. 8 concludes the paper and points out future work direc-
tions.

2 Background

In this section, the main concepts of blockchains, covert
channels and malwares are introduced. In particular, the
foundations of blockchains are presented in Sect.2.1. The
definition of a covert channel is introduced in Sect.2.2.
Zephyrus, a steganographic tool for Ethereum, is described
in Sect. 2.3. Finally, different types of malware are explained
in Sect.2.4.

2.1 Blockchains

Blockchain technologies enable having a distributed ledger
in which data are appended [2]. One important matter is that
there is no need for a single, centralized trusted party—trust
is distributed among all nodes. Therefore, in order to add data
to the ledger, a consensus is usually reached among all (or a
qualified portion of) involved nodes [14].

Blockchains provide a set of properties by default.
Besides, a blockchain can be classified based on its underly-
ing technology, as well as the elements used. Each of these
issues is introduced below.

Properties

e Immutability. It is the ability of the ledger to remain
unchanged, unaltered and inedible [15]. This property
provides some benefits, like complete data integrity and
auditability. However, this characteristic has some limita-
tions, namely the 51% attack—an adversary takes control
of the majority of the nodes, allowing him to change the
transaction data [16].

e Decentralization. These networks aim to reduce the level
of trust among participants. Some benefits of decentral-
ization include trustless intermediation, reducing points
of weaknesses and optimizing resource distribution [17].

e Data availability. Data can be accessed and used when
needed [17].

e Pseudo-anonymity. Anonymity can be defined as the
situation in which someone’s identity is not given or
known [18]. Although some blockchain technologies are
anonymous (e.g. Monero), most of them are pseudo-
anonymous. The user has a public address that could be
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traced back to an exchange account or IP address via net-
work analysis. Thus, under certain circumstances, it is
possible to reveal the user’s real identity [19].

Technology

One common use of blockchains is cryptocurrencies. They
can be understood as systems in which tokens are used as a
general or limited-purpose medium of exchange.

Bitcoin was the first cryptocurrency. It was proposed by
Satoshi Nakamoto in 2008, and it allows two parties to send
transactions between each other without the necessity of a
third party. Its non-Turing-complete scripting language sup-
ports different advanced features, like the use of timelocks to
prevent the execution of a given action before the time runs
out.

On the other hand, Ethereum was released in 2015.
Beyond transactions, it allows the execution of smart con-
tracts. These are programs that are executed by Ethereum
nodes through their Ethereum virtual machine. They are
written in object-oriented programming languages like Solid-
ity or Serpent, compiled into bytecode [3] and stored on
chain. As most object-oriented languages, Solidity includes
functions, which have assorted input arguments [20, 21];
modifiers, that restrict the behaviour of certain functions;
variables; and events, that allow publishing information
about something in the chain. Smart contracts work as decen-
tralized applications. Example of applications built with
smart contracts include trading, investing, gaming or voting.
Indeed, there are smart contracts called tokens which rep-
resent a variety of transferable and countable goods such as
digital and physical assets, shares, votes, memberships or loy-
alty points. The most widely used token is, by far, Ethereum’s
ERC20 [22], followed by others like ERC721, or ERC165.
Such smart contracts can be found in websites like OpenZep-
pelin, which is an open-source platform for building secure
distributed applications [23].

Other technologies and cryptocurrencies have been devel-
oped. For example, Monero uses privacy-enhancing tech-
nologies (ring signatures and stealthy addresses) that obfus-
cate transactions to achieve anonymity. Dash is an alternative
currency that was forked from the Bitcoin protocol [24].
It includes other improvements such as InstantSend, which
allows instant transaction confirmations without a central-
ized authority [25]. Other cryptocurrencies, just to mention a
few, are BitcoinCash (Bitcoin fork), Emercoin and Litecoin.

Elements

Blockchains are a distributed database shared among nodes.
The data are usually recorded in the form of transactions.
When a transaction is recorded in the blockchain, details of
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the transaction are recorded, verified and distributed across
all nodes [26]. Recorded data can vary among technologies,
though some data are common in all of them. First, there is
the sender address which produces the transaction. Depend-
ing on the technology, there may be one or more receiver
addresses which are intended to receive the transaction. If
the technology is a cryptocurrency, a field that represents
the transferred amount or value is usually included. Some
technologies also allow the addition of arbitrary data in the
blockchain. This is the case of the data field in Ethereum [27],
OP_RETURN transaction type in Bitcoin [28] or payment id
in Monero [29].

Moreover, some technologies also allow the execution of
programs in the blockchain, for example scripts in Bitcoin or
smart contracts in Ethereum, as introduced before.

2.2 Covert channels

A covert channel is “any communication channel that can be
exploited by a process to transfer information in a manner that
violates the system security policy” [30]. A covert channel
has different properties:

e Stealthiness: the capacity of avoiding detection. Thus,
data sent or received through a covert channel cannot be
easily discovered by an undesired party.

e Efficiency: the amount of useful information that can be
sent using the covert channel in relation to the cost or
total amount of data sent through the channel.

e Secret integrity/resilience: the capacity of hidden infor-
mation to resist against changes.

Inmost cases, the goal is to maximize the amount of shared
information (efficiency). Though it may impact stealthiness,
a balance between both issues should be considered. On the
other hand, in the case of the blockchain, as its content on
chain is immutable, resilience is provided by default.

A typical technique to implement covert communications
is steganography [31]. It consists of concealing a message or
object within another that is used as a container for the covert
channel. Its main strength is that the message or object goes
unnoticed. The steganographic message can be coded inside
of a transport layer, like an image, document, program or
protocol.

2.3 Zephyrus

Zephyrus is a steganographic tool for Ethereum [32]. While
most tools and previous examples of steganography on
blockchain were based on Bitcoin, this technology explores
Ethereum as a way to embed secret messages. It considers
three uses cases: the panic button one, when a threatened
individual is willing to release information in an emergencys;

the sabotage case when an attacker wants to exfiltrate data;
and the censorship case when an individual wants to share
information in a censored environment. It allows inserting
secret messages in 8 different fields of Ethereum, like the
receiver address or the value field. Regarding contracts, it
hides information in the swarm hash or bytecode, as well as
in the function arguments and constructor. The message can
be split and encrypted before insertion. However, it is not
able to use the high level language (i.e. Solidity) in which
contracts are written.

2.4 Blockchain-related malware types

Malware can be defined as any software designed to cause
intentional damage to a computer, server, client or network
[33]. They can be classified in different types, depending
on the goal of the attacker and the way it acts. Despite the
amount of malware types, this section introduces those which
are known to be related with blockchains.

In recent times, one of the most popular types of malware
is ransomware. It prevents users from accessing their system
or files and demands a payment as ransom in order to regain
access [34].

On the other hand, botnets leverage the decentralization
provided by blockchains. A botnet is a network of infected
computers that can be remotely controlled and forced to per-
form different actions or attacks without the consent of the
device owners [35]. Orders are given by a command and
control (C&C) server, that is a computer controlled by an
attacker to send commands to compromised systems, called
bots, and receive stolen data from them. Bots can carry out
assorted tasks such as hacking, spying or interrupting a ser-
vice [36]. A botmaster is a person who operates the C&C
server for remote process execution [37]. Note that a botnet
is not considered a malware by itself but as they can be used
for malware propagation and because of their use for mali-
cious purposes, herein we considered botnets within malware
types, in line with [38, 39].

On the other hand, a computer worm is a computer
program that replicates itself to spread to other computers
afterwards. It often relies on security failures on the target
device to access it [40].

3 Research methodology

To study how different malwares use the blockchain and
identify research gaps, the applied methodology starts by
searching for relevant research papers (both journal and con-
ference/workshop papers) in Google Scholar, as well as in
relevant web articles or projects.

The following query has been developed to filter out rel-
evant contributions based on their title:
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(blockchain AND malware) OR (blockchain AND botnet)
OR (blockchain AND ransomware)

The query above ensures that the main terms are consid-
ered, even in different forms. After this step, a total of 168
proposals were retrieved. Then, a manual review was carried
out. This ensures that those papers that are not relevant for
the sample (e.g. other literature surveys) or that do not con-
tain any use of blockchain in malware (e.g. cryptominers)
are filtered out. After this analysis, the sample is definitely
formed by 104 proposals.

The identified proposals are studied in detail, classifying
them according to different features. In the case that a cer-
tain proposal fits into more than one category per feature,
(e.g. possibility of use different technologies), it is counted
in each of them. The following features are analysed in each
proposal.

e Type of malware. The analysis of the malware type
related to blockchains may provide information to defend-
ers for a better understanding of how to react against such
malicious programs.

e Blockchain technology. As each one exhibits different
features (recall Sect.2.1), it may help defenders to iden-
tify which ones are present (e.g. real anonymity if Monero
is at stake) to counter a threat.

e Desired properties. As mentioned in Sect. 2.1, blockchains
provide some properties by default. Knowing which ones
are relevant for malwares may be helpful for defending
against them.

e Used blockchain elements. The analysis of the used
blockchain elements (recall Sect.2.1) provides a deeper
understanding of how the malware operates, which might
enable an early detection.

e Seed address. If a malware is using a blockchain, an
address is needed for such interaction. How this address
is delivered to the malware could help defenders prevent
this communication taking place.

e Data protection. Blockchain data can be protected to pro-
vide confidentiality, or even secrecy with covert channels.
In this way, the malware communication stealthiness is
studied in order to provide a better understanding and
early detection of possible hidden communications.

e Goal of using blockchains. Studying the use of blockchain
for malicious purposes helps defenders understand what
they can expect or search.

e Cost for the attacker. Whether there is a cost for the
attacker and how much an attack would cost are impor-
tant matters in terms of proposals’ feasibility. If the cost
of using a given approach is too high, its feasibility can
be negatively affected.
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These features, depicted in Fig. 1, are used as the basis
of the following analysis. Numbers in brackets represent the
amount of proposals in each category.

4 Malware and blockchain analysis

How malwares are being used leveraging blockchain is stud-
ied herein (recall Sect. 3). For the sake of clarity, the analysis
is structured following the dimensions shown in Fig. 1.

In particular, Sect. 4.1 discusses the blockchain properties
relevant for malware. Section4.2 discusses the communica-
tion features. The set of blockchain elements at stake and
the data protection issues are described in Sects. 4.3 and 4.4,
respectively. The purpose, malware type, blockchain tech-
nology and cost to the attacker are presented in Sects.4.5,
4.6, 4.7 and 4.8. The summary of the analysis is addressed
in Sect.4.9.

4.1 Desired properties

Properties provided by blockchain in malware proposals are
studied in the following:

e Availability. Blockchain information is always available,
although accessibility is limited by the nature of the
blockchain (private and public). In our study, 25 works of
the sample aims to exploit this characteristic. For exam-
ple [6, 41, 42], intend to provide availability.

e Immutability. Content, once mined, is very difficult to
change as an attacker needs to be in control of 51% of the
nodes of the network (recall Sect.2.1). Only 5 proposals
use this feature (e.g. [41-43]).

e Decentralization. As a distributed ledger, blockchain is
decentralized by design and some level of decentraliza-
tion is provided in all works.

e Anonymity. Authors use the blockchain with the inten-
tion of providing pseudo-anonymity in 99 works (e.g. [6,
7, 44]) and real anonymity in 2 of them [45, 46].

According to this study, blockchains are mainly used
to provide some level of decentralization, thus making
more difficult to locate and take a malware down, and
anonymity/pseudoanonymity, to hide data origin. Immutabil-
ity of the content is the least used property. As an example,
[42] exploits this feature—a semi-autonomous ransomware
is developed, and its code in the smart contract cannot be
changed.
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Fig.1 Proposals analysis

4.2 Communication features

In this section, the analysis on how the seed address is known
by the malware, as well as the transaction flux between the
malware and the blockchain, are discussed.

4.2.1 Seed address

The seed address can be the one receiving payments [7, 44,
47]. It can also be used to manage the malware, for example,
by using smart contracts [42]. There is only one case in which
there is no seed address, as the system checks the validity
of every OP_RETURN transaction posted in the blockchain
[48].

The way the seed address is delivered can be classified as
follows:

e Hardcoded. The address is written in the malware itself,
for example in a file or in the code. Most of the seed
addresses are hardcoded (76 proposals) such as in [7, 44]
or [8].

e Webpage. The address is delivered via web when the
client or victim accesses a website [47, 49, 50]. Delivery
via website is adopted in 17 works, being the second most
common method.

e Mail. The address is delivered via email, e.g. [51, 52]
or [53]. This is the third most common category with 7
cases.

e Blockchain. The address is extracted from the blockchain
itself. This happens with all addresses except for the first
one in [40].

e C&C server. The address is delivered via a C&C server.
Each time an address has been used, a component in
charge of monitoring the health of the C&C server, sends
the new address to this server. It then sends the address
to bots [54]. 1 work uses this method.

e Downloaded. The file which contains the address is
downloaded after infection, being [55] the only one in
this category.

e Unknown. How the address is delivered to the malware
is unknown. Delgado-Mohatar et al. [42] and Hurtuk et
al. [45] are the ones that fall in this category.

4.2.2 Transaction flux

This section focuses on the communication patterns between
the malware and the blockchain. In particular, this com-
munication will take place by means of sent or received
transactions.

Transactions can be sent from one or multiple sources (e.g.
unique attacker address or different attackers) to one or var-
ious victims (e.g. smart contract). Most transactions are sent
from one to one (12 works), as in [56] where the attacker only
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interacts with the smart contract address. The same happens
in [43] where a unique attacker address per victim is created.
After that, the second most common flux is from one (the
attacker) to various (victims) with 8 proposals of this kind.
For example [57, 58]. Moreover, there are 4 works [43, 46,
54, 59] in which there are either various attackers or various
addresses used by the attackers to communicate with a set of
victims. For instance, in [60] the author of the ransomware,
or an individual renting its services, communicates with the
smart contract handling the ransomware, thus being a com-
munication following the ‘various-to-one’ pattern.

Regarding received transactions, most of them are from
various to one (49 works). They are mostly ransomwares in
which various victims pay the ransom to a unique attacker
address (e.g. [7, 61]). This category includes those works
whose attacker address is static for a long time, but it is
changed at some point. For example, FakeGlobe [62] changes
its address per malware campaign. The second largest group
are those in which different clients communicate with a
range of attacker addresses (31 proposals). For example, ran-
somware ZCrypt [55] applies a personalized unique address
per victim, and in Locky [62] a wide range of attackers’
addresses are found. However, one collector address which
sends money back to the attacker address (from one to one)
is used in [58]. On the other hand, the number of attacker
addresses is not identified in 8 samples. For example, blind
addresses are distributed by mail in [51]. Princess Locker
[63] is another example in which it is unknown whether it
uses a single address.

4.3 Used blockchain elements

This section studies what elements of the blockchain are used
in the analysed proposals:

e Transactions common fields. In every blockchain system,
there are fields that are usually common. Transactions
usually need a sender address, a receiver address (in some
of them can be null) and a value to exchange (this one is
specially common in cryptocurrencies, recall Sect.2.1).
These fields are applied in 86 proposals, such as in [7,
44, 47].

e Data. Field or type of transaction in which arbitrary data
can be included (Sect.2.1). This has been considered
apart from transaction common fields because some tech-
nologies (e.g. Bitcoin) only include this field in specific
transaction types. This is the case of 12 proposals [41,
43, 48].

e Program code. A program hosted in the blockchain (e.g.
smart contracts in Ethereum) is used in 6 works. They
are often used to send commands to the bots of a botnet.
For example [42, 56, 64].
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e Nonce for digital signatures. Blockchain usually uses
elliptic curves to generate signatures linked to transac-
tions. In this process, a secure nonce is generated per
message for later use in the computation of the curve.
This value is modified in a pair of proposals [65, 66]. As
it happens with the program code, the nonce is usually
used as a way to send commands to bots.

e Services on top of blockchain. EmerDNS is used to
provide a DNS service over EmerCoin and [9] uses
it. Whisper is a message protocol on top of Ethereum,
applied in [67]. Only a couple of works use these ser-
vices.

4.4 Data protection

This section studies how information is protected by analysing
whether it is confidential or if covert channels are used to
conceal the data exchanged.

Some proposals need to exchange data in order for the
malware to work properly. This data can be transmitted via
normal channels or covert channels (recall Sect. 2.2). To eval-
uate covert channel stealthiness, we adopt the attacker model
defined in [32], composed of three different types of attacker.
A pair of them are considered passive, inspecting blockchain
contents using a block explorer (e.g. Etherscan [68]). While
one of them is an eavesdropper (Basic Eavesdropper, BE) and
another one might carry out syntactic checks on each transac-
tion (Advanced Eavesdropper, AE), the third one (Interactive
Attacker, TA) is active, being able to make transactions. We
will also consider a special case of BE, BE* (Basic Eaves-
dropper with a simple hiding technique) when there is no
hiding technique in place, so the message will be easily spot-
ted by anyone.

Data posted in the blockchain can be either in clear or
hidden in some way, e.g. encrypted. For example, Curran
and Geist [54] and Yin et al. [69] both use RC4 to encrypt
data transmitted to the blockchain. It can also be obscured
by sharing only hashes of the data [56].

Table 1 shows the maximum capacity (in bytes) of each
proposal in which data are exchanged in the blockchain;
which element is used to exchange the information; and
the attacker model applied in terms of stealthiness in case
they use a covert channel. There is some kind of information
exchange in the blockchain in 24 works, while the remaining
ones do not use this technology for that end.

According to the table, OP_RETURN in Bitcoin, the data
field in Ethereum and Payment id in Monero are actually
used to insert data in the blockchain. Because of that, very
low stealthiness is considered as it is a field which usually
contains messages (e.g. [43, 46, 69]).

On the other hand, some works use function arguments
(e.g. [42, 64, 70, 71]). They do not hide the information in
any way—data are exchanged using the corresponding argu-
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ment type. For example, normal text is shared by using string
arguments, hashes and keys by using bytes32, etc. Because
of this, their stealthiness is considered low (BE*). Further-
more, their capacity usually depends on how many arguments
each function has and which type they are (recall Sect.2.1),
categorized as Argument-related limit (ArL).

Hiding information as a receiver address is a common way
todisguiseit(e.g.[72,73]) as, in general, no transformation is
applied to the data, so reading information from the address
is trivial. For these reasons, although they do use a covert
channel, their stealthiness is considered low.

Formatting the data as the value field in the transaction (e.g
amount of transferred Ethers or Bitcoins) has also been used
in [74]. This is less common and often some transformation is
applied previously to convert information to a suitable value.
Their stealthiness is considered medium as the message is
not easily readable, but usually a simple transformation from
integer to hexadecimal allows to retrieve the message.

Whisper messages [67] are encrypted and private. How-
ever, all the members know there is a message being
exchanged even though they cannot decrypt it. Finally,
embedding the message in the nonce of the signature is first
proposed by Frkatet al. [66], and data are difficult to be distin-
guished from normal transactions. Furthermore, information
is also obscured, so even if it is retrieved, it is difficult to
extract the message. Therefore, its stealthiness is considered
high.

4.5 Purpose

Different proposals use the blockchain with different goals
in mind. The following categories are distinguished:

e Payments. Works use the blockchain as a way to send
payments, generally to the attacker. There are 84 propos-
als with this purpose, such as [7, 44] or [47].

e C&C. The blockchain is used to control bots and send
instructions to them. Platdrag [56], Frkat et al. [66] and
Yin et al. [69] use the blockchain as a C&C server. This
happens in 16 proposals.

e Address discovery. The blockchain is used to provide
the malware with new sources of information/commands,
generally to new C&C servers after a takedown [48, 54].
Five works use the blockchain to provide some kind of
data source.

e Key distribution. The blockchain is used to distribute
keys. For example, keys to decrypt data encrypted by
aransomware, i.e. [42, 43]. Three proposals are included
within this category.

e DNS. The blockchain is used as a DNS service in [9].

e Malware storage. Malicious software is stored in the
blockchain in one proposal, namely [41].

4.6 Malware type, blockchain properties and
elements

Malware type, together with the purpose, blockchain prop-
erties and elements are studied herein. Table 2 summarizes
this data.

Different kinds of malware use the blockchain (recall
Sect.2.4). Most proposals study ransomwares (84 works),
e.g. [6, 7, 44], followed by botnets (20 proposals), e.g. [57,
66, 69]. Worms [40] and any type of malware [41] are barely
relevant, with 1 work each.

Concerning purpose, results show that when the malware
is a ransomware, the blockchain is mostly used as a way to
obtain payments (84 proposals). This happens, for example,
in [6, 7, 44]. Key distribution (3 works) is the second purpose
most used for this kind of malware [42, 43, 64]. C&C and
Address discovery is the goal in 1 work, [6, 64], respectively.
Regarding botnets, the main purpose of the blockchain is
working as a C&C server (15 proposals), i.e. [56, 66] or
[69], followed by distributing addresses (4 works), i.e. [48,
54, 75] or [71]. Besides, DNS is the purpose for 1 proposal
[9]. In [41], any type of malware uses the blockchain to store
itself. On the other hand, in the work concerning worms, the
blockchain is used as a C&C server [40].

In terms of blockchain properties, ransomware mostly
takes advantage of the blockchain’s decentralization (84
works) and pseudo-anonymity (83 works, such as [7, 44]
or [6]), and the same happens with worms and botnets but
this latter to a lesser extent (decentralization in 20 works and
pseudo-anonymity in 18 proposals). Moreover, in botnets,
blockchains are sometimes applied due to their availability
(10 works such as [56, 57] or [8]), in contrast to traditional
systems, where servers can be easily taken down. By con-
trast, the paper that is suitable for any kind of malware
uses blockchains to provide decentralization, availability and
immutability in complete and equal manner. As anything
posted in the blockchain cannot be altered without a huge
effort (recall Sect.2.1), it ensures that different parts of the
malware remain available and unalterable.

Regarding the blockchain elements used per type of mal-
ware, ransomwares mostly use transaction common fields
(82 works). They also use program code in 2 proposals and
data fields in 1. Botnets, on the other hand, use data fields in
10 of them. Program code are used in 4, transaction common
fields in 3, the nonce of the signatures as well as services on
top of the blockchain in 2. Worms use transaction common
fields and the proposal that can use any malware uses the data
one.

4.7 Blockchain technology

Most proposals use Bitcoin (93 works) such as [44] or [6].
Ethereum is the second most used one, with 8 works, i.e.
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Table 2 Malware-type

summary Ransomware Botnet Worm Any
Purpose
Payments 84 0 0 0
Key distribution 3 0 0 0
Address discovery 1 4 0 0
C&C 1 15 1 0
DNS 0 1 0 0
Malware storage 0 0 0 1
Blockchain properties
Decentralization 84 20 1 1
Pseudo-anonymity 83 18 1 0
Availability 4 10 0 1
Immutability 3 1 0 1
Blockchain elements
Transaction common fields 82 3 1 0
Data fields 1 10 0 1
Nonce of signature 0 2 0 0
Program code 2 0 0
Services on top of blockchain 0 0 0
Total 84 20 1 1

[64] or [56]. Dash [47, 69] and Monero [45, 46] are used
in 2 works each of them, while BitcoinCash, Emercoin and
Litecoin are applied in a single proposal [69]. On the other
hand, in [66] any type of blockchain technology can be used.

Blockchain technologies in relation to malware purposes,
type and blockchain properties and elements are analysed.
Table 3 shows a summary.

In Bitcoin, the blockchain is mostly used for payment pur-
poses (80 proposals), such as in [7,44]. Moreover, blockchain
is also used as a C&C server in 8 proposals (e.g. [40, 69]),
to provide addresses to the system in 5 works (e.g. [48] or
[75]) and just in one proposal Bitcoin is used for key distribu-
tion [43] and malware storage [41]. In contrast, Ethereum is
applied for payment purposes and key distribution in 2 pro-
posals [42, 64], while it is significantly used as a C&C server
(7 works), probably because of the possibility of using smart
contracts (recall Sect.2.1), e.g. [56] or [70]. Besides, Dash
and Monero are equally used as a mean to pay (1 proposal)
[45] and to establish a C&C server (1 work) [46]. Emer-
coin is used to provide a DNS service by using EmerDNS
[9]. Litecoin and BitcoinCash [79], as well as [66] in which
any technology can be used, are exclusively applied as C&C
server.

Regarding desired properties, those works which use
Bitcoin look for the provision of decentralization and pseudo-
anonymity (93 and 91 works, respectively). However, avail-
ability is demanded in 9 proposals and immutability in 2
of them. Similarly, Ethereum main purposes are to provide
decentralization (8 works), as well as pseudo-anonymity

(6 works), availability (5 proposals) and immutability (3
works), although this latter to a lesser extent. In the case
of Monero, real anonymity is provided in a couple of works,
as well as decentralization and availability just in one. Dash,
EmerCoin, Litecoin and Bitcoin cash just focus on decen-
tralization and pseudo-anonymity provision.

Used blockchain elements and technology are also jointly
studied. In Bitcoin, common transaction fields are used in the
majority of proposals (83 of them), while the data field is used
in 11 and the nonce of the signature just in 1. In Ethereum,
however, most of the works use program code (6 proposals)
and data field and services on top of blockchain are used just
in 1 each. Dash and Monero both use the data and transaction
common fields equally (1 work). Emercoin uses services on
top of blockchain and Litecoin and BitcoinCash both use data
fields.

By type of malware, Bitcoin is mostly used by ran-
somwares (80 proposals), followed by botnets (12 works).
Ethereum, on the other hand, is mostly used for botnets (6
works) and ransomware (2 works) cases. Dash and Monero
are the least relevant as they are applied in only one proposal
for ransomware and botnet. The rest of technologies are used
for botnets.

4.8 Cost for the attacker

The attacker usually has to assume some cost, specially in
those cases in which transactions are sent to the blockchain
because they contain some kind of information.
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Table 3 Blockchain technologies summary

Bitcoin Ethereum Dash Monero BitcoinCash Emercoin Litecoin Any
Total 93 8 2 2 1 1 1 1
Purpose
Payments 80 2 1 1 0 0 0 0
Key distribution 1 2 0 0 0 0 0 0
Address discovery 5 0 0 0 0 0 0 0
C&C 8 7 1 1 1 0 1 1
DNS 0 0 0 0 0 1 0 0
Malware storage 1 0 0 1 0 0 0 0
Blockchain properties
Decentralization 93 8 2 2 1 1 1 1
Pseudo-anonymity/Anonymity 91 6 2 2 1 1 1 1
Availability 5 0 1 0 0 0 0
Immutability 3 0 0 0 0 0 0
Blockchain elements
Transaction common fields 83 0 1 1 0 0 0 0
Data field 11 6 1 1 1 0 1 0
Nonce of signature 0 0 0 0 0 0 1
Program code 0 6 0 0 0 0 0 0
Services on top of blockchain 0 1 0 0 0 1 0 0
Malware types
Ransomware 80 2 1 1 0 0 0 0
Botnet 12 6 1 1 1 1 1 1
Any 1 0 0 0 0 0 0 0
Worm 1 0 0 0 0 0 0 0

Table 1 shows the different costs incurred in each case. In
order to compute the cost, the mean (average) of the value
of each coin from the last three months (from December
10, 2022 to March 10, 2023) has been considered: 1 ether
is $1,466.03 [80], 1 xmr (Monero) is $157.907 [81] and 1
btc is $20,578.9 [82]. For those which use OP_RETURN
method and do not indicate the cost, the cost of the minimum
transaction value is considered [83].

Even considering previous costs, most proposals are rel-
atively cheap, with the exception of [6] which spends 0.10
btc ($2,057.89 currently) and [64] which spends 0.069062
eth ($101.25). There are some of them, which are actually
free, such as [43], where a fee to the victim is asked first
and the transaction the attacker sends reuses this money, so
there is no extra cost for the attacker. Moreover, Baden et
al. [67] applied a service on top of the Ethereum blockchain,
named Whisper. This service does not send traditional trans-
actions and exchanging messages is always free. On the other
hand, Franzoni et al. [79] uses the Bitcoin testnet, which,
among other things, is cost free as Bitcoin can be obtained
from public faucets (an app or a website that distributes small
amounts of cryptocurrencies as a reward for completing easy
tasks) [84].

@ Springer

As aresult, the benefits of using blockchain are higher than
the cost for attackers. For example, Cerber [6] ransomware
generated $2.3 million in annual revenue. Profit when using
botnets is also high, for example Methbot was making $3-5
million a day on its peak [85]. Indeed, given that traditional
attacks may also involve some cost [86], e.g. for using or
maintaining servers (an hour-long DDoS attack using a cloud
server will cost criminals $7 [87]), the use of blockchain
seems to be affordable.

4.9 Summary of the analysis
This section presents the main findings of the analy-

sis (Sect.4.9.1) and the identified open research issues
(Sect.4.9.2).

4.9.1 Lessons learned

According to the data study, the main findings are:

e Bitcoin is the most used technology. It is followed by
Ethereum as the second most common technology.
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e Malware proposals do not use the full potential of the
blockchain. Some level of decentralization is always pro-
vided but some characteristics which are intrinsic to the
blockchain like immutability, availability or anonymity
are not used at full in most cases.

e Most seed addresses are hardcoded. If the address is
flagged or the private key is lost or stolen, the malware
becomes useless.

e Blockchain transactions are preferred as the way for mal-
wares and blockchains to interact. Very few use smart
contracts or other services on top of the chain.

e There is not much exchange of information on the chain.
The blockchain is barely used to share data and when
applied, data is almost never hidden or covert. When
used, it is typically for sharing command information
to a botnet.

e Blockchain primary use is for payments. In relation to
the previous point, blockchain is mostly used as a mean
to provide payments to the attacker by a high majority of
proposals.

e The most common type of malware is ransomware. This
is related to the previous point, as it is used to pay ran-
soms.

e Itis cheap to use the blockchain. The cost for the attacker
is usually cheaper using the blockchain compared to
traditional attacks, which also involve some costs. For
example, a DDoS attack using botnets is estimated to
cost from $50 to several thousand dollars in the case of
a 24-h operation [88].

4.9.2 Research gaps

Based on the previous analysis, the following research gaps
have been identified:

e Covert channels are barely used. This entails that com-
munications between attackers and victims are relatively
easy to identify. Although their contents are not always
understandable due to encryption, the existence of the
communication can be discovered.

e Smart contracts have been applied in malware, but not
used for sophisticated covert channel purposes. Informa-
tion is usually formatted as the corresponding arguments
types in functions in the contracts, allowing trivial data
retrieval. Furthermore, high level languages like Solidity
have not been used to insert information.

e Blockchains have not been used in well-known malware
like Trojans, spyware or keyloggers. These are malware
types that can take advantage of the blockchain suit-
ability to transfer information and its availability and
immutability.

5 Smart-Zephyrus

At the light of the identified research gaps, a new stegano-
graphic mechanism for Ethereum that uses a smart contract
programming language (Solidity) as a covert channel is pro-
posed. It is called Smart-Zephyrus. Remarkably, contracts
with hidden content can be used as normal ones, so there
is no need for them to be dedicated only to the purpose of
exchanging information.

The motivation of building a covert channel leveraging
blockchains is of direct interest for attackers. If communi-
cations are hidden (e.g. to share a key, to send a command
or to receive exfiltrated data), it reduces the chance of being
intercepted.

This section starts by introducing an overview (Sect.5.1).
The preliminary analysis on existing smart contracts is
addressed in Sect.5.2. Lastly, the mechanism design is pre-
sented in Sect.5.3.

5.1 Overview

Smart-Zephyrus works over Zephyrus (recall Sect.2.3).
However, instead of only using EVM/bytecode elements
of the smart contracts, a high level programming lan-
guage to embed information is used. Figure2 shows a
comparison between Zephyrus and our current proposal,
Smart-Zephyrus. While Zephyrus embeds information on
blockchain raw data, Smart-Zephyrus allows embedding
information in a high-level programming language (Solid-
ity). This language is then compiled and transformed to
contract bytecode to be sent to the blockchain. In order to
retrieve the Solidity code, the contract code needs to be veri-
fied in a blockchain explorer, which checks that the Solidity
code and the bytecode deployed on chain match.

To embed information in smart contracts without raising
suspicions, a study is initially carried out (Sect. 5.2). We have
retrieved a sample of contracts to mimic them. Once their
features are analysed, the selection and design of contracts
to embed information is performed. As explained later, con-
tracts will be built by altering different issues of a pre-existing
one, such as the amount of contracts to inherit (called par-
ent contracts) or the types of libraries they use, to name a
few. Two different versions of the mechanism are developed,
one more statistically similar to the studied sample, and, thus,
stealthier, and another one that allows more capacity, but less
similar to the studied data.

After that, a practical experiment has been carried out to
validate the similarity of the smart contracts produced by
our mechanism to the studied sample. Furthermore, the time
and cost of sending and retrieving different sizes of hidden
messages is also analysed.

@ Springer



1456

M. Gimenez-Aguilar et al.

Embeds

Embeds
Smart-Zephyrus

Ethereum raw data
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Fig.2 Zephyrus versus Smart-Zephyrus

5.2 Preliminary smart contract study

A study of Ethereum smart contracts is firstly carried out to
generate stealthy smart contracts afterwards. These contracts
were downloaded from the Ethereum blockchain. A total of
103,106 contract files are analysed (available on Gitlabl).
Within those files, it is possible to find numerous contracts,
interfaces and libraries, which have relations and dependen-
cies among them.

Contracts in Solidity are similar to classes in object-
oriented languages. Interfaces are one kind of contracts that
do not contain any logic, just definitions. Libraries, on the
other hand, contain logic that can be later referenced.

After processing the smart contracts, the following find-
ings are highlighted. As shown in Table4, most contracts
belong to OpenZeppelin. Ownable is intended to allow the
transfer or withdrawal of a contract ownership, so it has little
real-world application by its own. On the contrary, ERC20
is a well-known token—a blockchain-based asset that can
be traded. Therefore, Smart-Zephyrus will leverage ERC20
token contracts.

To ensure the representativeness of the considered ERC20
contracts, 7143 of them were retrieved from [89]. To the best
of authors’ knowledge, it is the biggest dataset in this regard.
Those whose Solidity code was available (6632 contracts)
were analysed according to the ERC20 standard peculiari-
ties. It must be noted that their code is used for embedding
purposes. The results of the analysis are shown in the left
column of Table 6. Thus, the number of contracts, libraries
and interfaces per file are characterized. Moreover, the preva-
lence of the order of functions and contracts, as compared to
the original ones (i.e. the version released by its creator), is
measured. Lastly, different ERC20-related issues such as its
token name and symbol are characterized. For example, a
large variety of names have been found. The most common

! https://gitlab.com/MarGA2503/retrieved-contracts.
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Table4 Top 10 smart contracts

Name Appearences
Ownable 28,292
ERC20 21,227
Context 19,426
StandardToken 11,835
ERC20Basic 9748
BasicToken 7350
Token 5341
Pausable 5109
Owned 5070
ERC20Interface 4972

word in the name was “Token” in 6.83% of the cases, and
13,197 pairs of words have been found.

5.3 Mechanism design

In this section, the design of Smart-Zephyrus is described.
For this purpose, the design choices are introduced in
Sect.5.3.1, whereas its different operation modes are pre-
sented in Sect.5.3.2.

5.3.1 Design decisions

Based on the findings explained in the previous section, some
design decisions for the construction of steganographic smart
contracts have been taken.

On the one hand, the base contract will be ERC20 due
to its popularity (recall Sect.5.2). On top of this choice, it
will inherit or use a number of contracts, will utilize a set
of libraries and will provide with some interfaces. All these
decisions will be inspired by our preliminary study. Thus,
the number of chosen contracts (besides ERC20) the token
contract will either use or inherit from will be 2, and the
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Fig.3 Smart-Zephyrus main steps

amount of libraries and interfaces will be adapted to the actual
choice of contracts.

In what comes to the selection of contracts, libraries
and interfaces must be compatible among them. They must
also be valid for the current Solidity compiler (Pragma
0.8) and should not produce inheritance loops. Thus, the
set of contracts to choose from are Ownable, Pausable,
ERC20Burnable, ERC20Capped, ERC165, Reentrancy
Guard, ERC20Permit, TokenTimelock and ERC20Snapshot.
All of them belong to OpenZeppelin [23], in line with our
analysis, to promote stealthiness.

5.3.2 Data insertion mechanism: operation modes

In this proposal, two modes of operation will be defined con-
sidering different levels of capacity and stealthiness:

e Stealthy. Mechanism with lower capacity but more accu-
rate and similar to the studied values extracted from
original contracts.

e Capacity. Allows more capacity, but it sacrifices stealth-
iness making the steganographic contract more different
from legitimate ones.

Figure 3 shows the main steps of Smart-Zephyrus. The
message is symmetrically encrypted in first place. Thus,
confidentiality is provided making difficult any statistical
analysis and the possibility of an entity to spot the mali-
cious communication. Control information, required in the
revealing process, is also included and encrypted, but with a
stream cipher to reduce length at a minimum. Finally, data are

4>{ Stealthy method '—

Chosen contract

Pragma version

Stego contract(s)

—»{ Capacity method '—

Token name

Token symbol length

Chosen contract

Pragma version

Order in inheritance

Stego contract(s)

Token name

Token symbol length

Token symbol

[

embedded according to proposed operation modes, produc-
ing one or more smart contracts with portions of the secret.

There are different ways in which information is
embedded:

e Chosen contract encoding. Each contract (except from
ERC20 which will always be present) will be assigned
a value (3 bits). For example: Contract0=0, Contract7=
7. Once ContractO is chosen, it is removed from the list,
and Contract8 is added and values are assigned again.
Contracts are ordered by appearance in the studied (i.e.
real-world) sample, meaning that the most common con-
tracts have a bigger chance of being chosen.

e Order of the contract in inheritance. A contract can
inherit from different contracts. The order in which these
contracts appear in the token child contract inheritance
definition can be used to insert information. For example
if a contract inherits from Ownable and Pausable, they
can be ordered in two ways. Each combination is then
assigned a value to insert information. As a majority of
contracts preserve that same order (recall Sect.5.2), this
will only be used in the Capacity mode.

e Pragma version. It goes from 0.8.0 to 0.8.17 (by now) so
log, 18 = 4 bits can be used for embedding.

e Token name. In order to embed as much information
as possible, a dictionary has been used to give a num-
ber for each word. The Word Game Dictionary? was
adopted. In particular, log, 266,336 = 18 bits were used
per word in the Capacity mode. For the Stealthy mode,

2 https://www.wordgamedictionary.com/sowpods/download/

sowpods.txt.
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all words shorter than 4 were removed (as they were
infrequent in token names, only 13.64% of them). This
leads to log, 11,202 = 13, bits per word. In any case 2
words appear in token names in line with our observations
(recall Sect.5.2).

e Token symbol length. 3 and 4 characters are chosen,
allowing 1 bit for embedding information.

e Token symbol characters. This is only used in the Capac-
ity version. Considering the target length, a substring of
that size is produced based on all character combinations
from the selected token name. Embedding is thus done
by assigning a value to each combination.

Let nph be the number of permutations of parent contracts
and ncl the combinations without repetition of the token name
characters. Table 5 shows a summary of the different methods
used to embed information and their capacity.

6 Assessment

The proposed approach is assessed by creating a list of smart
contracts and confronting them against real-world ones. Fur-
thermore, the cost and time for the attacker are also measured.

The experimental settings are described in Sect. 6.1. After-
wards, the statistical comparison against existing contracts is
shown in Sect. 6.2. Lastly, the measurements on cost and time
are presented in Sect. 6.3.

6.1 Experimental settings

Experiments have been run in an Intel Core i7-1165G7 pro-
cessor equipped with Debian WSL for Windows 10 with 16
Gb. of RAM. A proof-of-concept implementation of Smart-
Zephyrus is publicly released to foster further research.’
Note that the mining process is not part of our system, and
Smart-Zephyrus works in any computer with similar charac-
teristics and once installed Python 3.8 (or higher) and used
libraries. Concerning the blockchain, Sepolia has been used
to carry out the experiments because it is the one recom-
mended by Ethereum.org as the default testnet for application
development [90] and the rest of the testnets are currently
deprecated. Addresses have been provided with enough funds
to carry out all transactions and Infura nodes have been used
to connect to the blockchain. To ensure the validity of our
results, each embedding and revealing operation related to
network usage in Sect. 6.3 has been carried out 5 times, while
for program computation times (embedding/retrieving of the
message and ciphering) it has been repeated 250 times, thus
ensuring the soundness of results. Note that network time has
been limited to 5 repetitions for being a time consuming task.

3 https://gitlab.com/MarGA2503/smart-zephyrus.
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Afterwards, the arithmetic mean and the standard deviation
have been computed.

6.2 Comparison of studied versus generated smart
contracts

First, in order to ensure the mechanism compliance with the
studied sample, a comparison among studied contracts and
the ones generated is depicted in Table 6. The embedded
secret message consists of lorem ipsum text encrypted with
AES, each time with a different key. The same quantity of
smart contracts as in the sample is selected to make a fair
comparison.

The number of smart contracts, libraries and interfaces in
the generated contract files is really similar to those studied.
The highest differences are in the number of contracts, as the
mean of the generated samples is 6.05 in both versions versus
5.23 of the existing ones, and in the number of interfaces,
with 1.12 of average in the generated contracts as compared
to 2.67 in the existing ones.

In what comes to the order and names of functions, the
mean of files that include OpenZeppelin contracts as they
are (same order and function names) is 95.94% for the same
compiler version as our generated contracts. This has been
replicated in the output of Smart-Zephyrus—OpenZeppelin
contracts will always be present as they can be retrieved from
the creator.

Concerning token names, for the stealthy insertion method,
the number of unique words is a little less with 48.75% and
“Token” appears 2.67% of the times. This is slightly lower
than the original sample. Note that the appearance of the word
“Token” follows a random distribution which tries to imitate
the original one and then, the difference between the gener-
ated samples and the original ones may change depending on
the status of the applied random generator. On the contrary,
the difference is noticeable in the capacity method, in which
the number of unique words increases to 94.68%.

Regarding the number of words used in the name, the
results between the studied and generated sample are really
similar, being the mean of the former 1.76 with a standard
deviation of 1.01 and 2.05 and 2.06 with a standard devia-
tion of 0.22 and 0.23 for the stealthy and capacity method,
respectively.

The percentage of unique symbols in the studied contracts
is 85.62%, while in the generated contracts this percentage
is a bit smaller, 77.97% for the capacity version but more
similar (86.65%) for the stealthy version.

Something similar happens with the mean and standard
deviation of the number of letters of symbols. In the studied
sample, the mean is 4.02 letters per symbol, with a standard
deviation of 2.04. In the generated contracts, the meanis 3.51
characters per symbol for the stealthy method and 3.50 in the
capacity one with standard deviations of 0.49.
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Table 5 Steganographic capacity per method

Method

Possible values

Quantity of bits

Type of mechanism

Chosen contract encoding 6 3%2 Both
Order of the contracts in the nph log, nph Capacity
token inheritance
Pragma version 18 4 Both
Token name 11,202(Stealthy)/ 266,336 (Capacity) 2%13/2*%18 (Capacity) Both
Token symbol length 2 1 Both
Token symbol letters ncl log, ncl Capacity
Table 6 Original contracts versus Smart-Zephyrus generated contracts
Feature Measurement Original ERC20 Generated Generated contracts
contracts contracts (capacity mode)
(stealthy mode)
Number of contracts Mean (std) in file 6.05 (16.87) 5.23(0.42) 5.23(0.42)
Number of interfaces in file Mean (std) 1.12 (2.96) 2.67 (0.59) 2.67 (0.59)
Number of libraries in file Mean (std) 1.39 (3.54) 1.56 (1.58) 1.53 (1.59)
Contracts and functions in % Mean (std) 70.31 (32.07) 100 (0) 100 (0)
the same order as standard
(all)
Contracts and functions in 9% Mean (std) 95.94 (5.79) 100 (0) 100 (0)
the same order as standard
(pragma 8)
Token names % of unique 55.65 48.75 94.68
words
Token name lengths Mean 1.76 (1.01) 2.05(0.22) 2.06 (0.23)
Token names % of appear- 6 2.67 293
ance of the word
“Token”
Token symbols % of unique sym- 85.62 86.65 7797
bols
Token symbols lengths Mean (std) 4.02 (2.04) 3.51(0.49) 3.50 (0.49)
Token symbols lengths % of all letters in 81.80 81.51 100
token name
Token herency contracts Mean (std) 1.49 (1.04) 2.07 (0.54) 2.06 (0.54)
number
Token herency contracts % of different 10.44 5.48 49.24

order

With respect to the order in inheritance, for the studied

sample, only 10.44% of contracts differs in order. For the

generated contracts, in the stealthy method this percentage
is 5.49%, while for the capacity is 49.24%. This is because
the stealthy mode is randomly generated according to the
reference value, while in the capacity mode the goal is to

embed a significant amount of data.

According to these results, the mechanism generates con-

6.3 Experimental results

Experiments are carried out to measure the gas cost, accord-
ing to the capacity of generated steganographic smart con-
tracts, and the time of the embedding and revealing process.
The length of embedded messages is: 256, 1024 and 4096

bits. They are based on common key lengths as a possible

tracts that are fairly similar to the legitimate contracts already

deployed on the chain.

way to exchange keys for any kind of malicious purposes.

@ Springer
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Fig.4 Gas cost per method 250000000
I
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150000000
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-
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. =
Capacity 256 Capacity 1024 Capacity 4096 Stealthy 256 Stealthy 1024 Stealthy 4096
bits bits bits bits bits
Table'7 Steganographic Method Gas cost (mean) Cost in ether Cost in USD
capacity per method
Capacity 256 bits 9,574,380 0.2606 382.07
Capacity 1024 bits 38,184,016 1.0393 1523.74
Capacity 4096 bits 144,001,955 3.9197 5746.45
Stealthy 256 bits 15,447,935 0.4204 616.46
Stealthy 1024 bits 58,412,600 1.5899 2330.97
Stealthy 4096 bits 223,530,292 6.0844 8920.05

6.3.1 Cost assessment

Concerning the actual costs incurred by Smart-Zephyrus,
Fig.4 shows the gas cost per method depending on the mes-
sage size. As expected, as it allows less capacity per contract
and thus it needs more contracts for the same size, the stealthy
method is more expensive than the capacity one. The cost
also increases with the secret size. For the maximum secret
size (4096 bits), the mean gas cost for the capacity method
is 144,001,954.7 gas versus 223,530,291.9 for the stealthy
one. Table 7 shows the cost on Ether and USD of each mech-
anism and secret. In order to calculate the cost on Ether, the
average gas price for the last three months (December 10,
2022 to March 10, 2023) [91] has been considered, being
27.22 gwei. On the other hand, 1 ether is $1466.03 (recall
Sect.4.8).

These costs seem expensive, but there are a couple of
issues to take into account. First, traditional attack meth-
ods also incur a cost for the attacker [86]. For example, an
hour-long DDoS attack using a cloud server costs criminals
$7 [87] and such server could be still taken down if dis-
covered. In this regard, in botnets like Zeus or Mirai, the
malware package costs from $700 up to < $10K and < $30,
respectively [92]. Besides, while the cost of maintenance in

@ Springer

Mirai is unknown, in Zeus is of $62k [92]. Furthermore, rev-
enue from ransomware is usually higher than these costs. For
example, Wannacry has three known Bitcoin addresses with
payments of 54.43 BTC [93]. In today’s value that is around
USD 1,120,109.53 so a cost of USD 8920.05 (our highest)
is not much in comparison.

On the other hand, our mechanism provides something
previous proposals do not—a high level of stealthiness.
According to studied works (recall Sect. 4.4), most of the time
the communication is in clear and not hidden, thus traceable
and blockable. Furthermore, among those proposals which
actually use covert channels to hide information [6, 8, 59,
65, 66], the only proposal that effectively hides information
surpassing all models of attackers is Chainchannels [66], but
its cost is unknown. Furthermore, it does not use contracts
to hide information. Our proposal, on the other hand, imi-
tates fully usable smart-contracts and hides information in
a way that makes them indistinguishable from the normal
ones. Moreover, information can be encrypted, thus achiev-
ing equal stealthiness (ALL—attacker model) to [66] and
also providing an estimated cost.
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Table 8 Malware in blockchain study

Proposal  Study Blockchain technologies  Types of malware
Elements used Desired properties Data exchange Cost for the attacker
[12] X X X X Bitcoin Ransomware
[94] X X J X Bitcoin Ransomware
[62] X X X X Bitcoin Ransomware
[97] J X J X Bitcoin Ransomware
[95] X X X X Bitcoin Ransomware
[96] X X X X Bitcoin Ransomware
[13] J J J Vv All Botnet
Ours J J J Vv All Botnet, Ransomware, Worm

6.3.2 Time assessment

The time taken by Smart-Zephyrus is divided in computa-
tion and network time. The former refers to the time required
for secret preparation, retrieval and encryption, while the
latter refers to sending the transaction to the blockchain,
its retrieval, mining time and contract verification time on
Etherscan. Although network time is out of the scope of
Smart-Zephyrus because it depends on external factors, the
real-world suitability analysis of the mechanism requires
such time.

The embedding and revealing time for each method
depending on the secret’s size is presented in Fig. 5. Embed-
ding times includes encryption and preparation of the mes-
sage and its concealment in contracts. On the other hand,
revealing time includes extracting the secret and decrypt-
ing it afterwards. The time of encryption and decryption is
quite small regarding the total time, and very similar among
the same message sizes. It ranges from 0.001 to 0.0035s.
As expected, the size of the message directly affects the
time of embedding and revealing. As the capacity method
performs more operations and transformations to embed the
message, it takes longer on the revealing whereas the stealthy
needs more contracts to embed the same quantity of infor-
mation and then, it takes longer. It is specially noticeable on
the 4096 bits case, where it takes an average of 41s with
a standard deviation of 5.07 for the capacity method in the
embedding versus 62 s and 5.40 for the stealthy one. Regard-
ing the revealing times, it takes 2.56s to reveal a 4,096 bit
message for the capacity method with a standard deviation
of 5.07 s versus 0.47 s with a standard deviation of 0.20s for
the stealthy method. These times can be considered very low
as the applied scale has a maximum of 70s.

Figure 6 presents the time of embedding and revealing
messages for each method. It can be observed that the net-
work time, although it usually increases with the message
size is largely dependent on the state of the network. Most of
the time is consumed by the mining and verification process.

@ Springer

For example, for the capacity method with 4096 bits of infor-
mation the average mining time is 88 s, while the verification
time is 383 s. Nonetheless, it should be noticed that verifica-
tion times are similar to each other, with a standard deviation
of 4.28 s, while the mining time has a standard deviation of
27s.

7 Related work

In this section, we study the related works for each of the con-
tributions of this paper. For the sake of clarity, we address
them separately. Thus, Sect.7.1 describes previous works
on the use of blockchains by malwares. On the other hand,
Sect.7.2 focuses on works that have used blockchain and
smart contracts to embed steganographic information in the
blockchain.

7.1 Malware in blockchain

There are some works related to blockchain and mal-
ware. Financial issues are significantly considered, Kshetri
and Voas [12] studies the effect of cryptocurrencies on
ransomware and what could influence a victim to pay. Com-
plementary, Orman [94] explains how the blockchain is
used for payment and key delivering, also describing how
modern ransomware works and possible defenses. More-
over, Paquet-Clouston et al. [62] provides a comprehensive,
evidence-based picture on the global direct financial impact
of ransomware attacks. They empirically analyse Bitcoin
transactions related to 35 ransomware families. Also in the
economic field, Conti et al. [95] present a comprehensive
study on all recent ransomware and report their economic
impact from the Bitcoin payment perspective. Besides, in
Huang et al. [96] a measurement framework is developed for
performing a large-scale, two-year, end-to-end measurement
of ransomware payments, victims and operators.
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On the other hand, Faisal et al. [97] studied the ability
of Bitcoin to store metadata and showed basic approaches
to improve blockchain privacy. It identifies and classifies
blockchain transactions embedding metadata of major proto-
cols running on top of Bitcoin. It also exposes the possibility
of using stealthy addresses, as well as the use of smart con-
tracts to automate ransom payments.

In the field of botnets, Bock et al. [13] provide a compre-
hensive systematization of the state of the art of blockchain-
based botnets, along with an abstract model of such system.

Table 8 shows a comparison between previous works and
our study. None of existing proposals analyses in depth how
the blockchain is used. They do not study desired properties,
the different elements of the blockchain being used or how
the information is exchanged in the system. They usually
focus on one technology (namely Bitcoin) and ransomware.
By contrast, our study analyses, from a cybersecurity point
of view, different technologies and malwares, as well as other
issues like malware purposes and the cost for the attacker.

7.2 Embedding information in smart contracts

Some works already embed information in smart contracts.
Ken Shirriff [72] identified how to embed information in
the blockchain or Bitcoin scripts, which can be considered
analogous to smart contracts. In particular, the hash of the
public key script (P2PKH) is used to insert information.
Also with the focus on Bitcoin, Okupski [74] presents
different fields to hide messages without the use of encryp-
tion. In the case of Pay-to-Pubkey and Pay-to-PubKeyHash
scripts, the public key and the signature are used to embed
information. In multisignature scripts, keys located in the
public key script are used to transmit data. Besides, Sward
et al. [98] propose different insertion methods in Bitcoin.
Information is included in the public key in a Pay to Public
Key (P2PK) transaction, or in the hash of the public key in a
Pay to Script Hash (P2SH), being ScriptPubKey of a trans-
action used for this purpose. Information can be additionally
embedded in ScriptSig, which is the complementary part of
a complete and valid transaction. R. Recabarren at al. [99]
also propose the use of ScriptSig for inserting information.
They present Thitonious, an anti-censorship Bitcoin tool in
which scriptSig of a P2SH multisignature transaction is used
to embed a message on the 28 most significant bytes.
Zhang et al. [100] propose the use of Ethereum smart con-
tracts and Bitcoin for information exchanges. Two types of
smart contracts are defined: a voting contract which uses the
OP_RETURN to transmit a hash, and applies the order and
option of the voting addresses or the addresses themselves
for embedding purposes; and a bidding contract which also

@ Springer

uses the OP_RETURN to transmit a hash, and embeds data
in the bids.

By contrast, just Basuki et al. [101] applied Ethereum.
Their purpose is on hiding instructions for recovering secrets
within images in the smart contract’s timestamp, having 29
bits of capacity. Additionally, Gimenez-Aguilar et al. [32]
proposed the use of Ethereum smart contracts using the byte-
code, constructor arguments and the swarm hash to hide
information. The maximum capacity in bits per transaction
is 46, 160 and 256, respectively.

In sum, considering Table 9, Smart-Zephyrus is the only
one who actually uses a high-level language to insert infor-
mation in the blockchain providing also a high level of
stealthiness (ALL) against the attacker models defined by
Gimenez-Aguilar et al. [32], which is more powerful than
most proposals (except for [32, 74, 99, 100]). In Smart-
Zephyrus, the capacity is approximately 42 bits for the
capacity method and 32 for the stealthy one according to
experimental results. Although the maximum capacity is
lower than other works, it is still higher than in [74] for
the ScriptSig, in Basuki et al. [101] and in Zephyrus for
the Bytecode method [32]. Furthermore, contracts are com-
pletely verifiable on Etherscan making them seem legitimate
and increasing the level of trust in the ecosystem [102]. On
the other hand, the embedding procedure is compatible with
other methods, like Zephyrus’ Swarm hash method or con-
structor arguments one.

8 Conclusions

Blockchain provides certain characteristics that malware can
use to improve their attacks, i.e. permanent availability and
immutability. We have studied how this technology has been
used by different types of malware and presented a compre-
hensive analysis from different perspectives. Among other
open research issues, it has been found that the use of
covert communication channels has not been explored in this
area. To further motivate future research works, an open-
source tool (called Smart-Zephyrus) has been proposed. It
uses a high-level smart contract language (Solidity) to insert
information achieving a high level of stealthiness and thus
reducing the chance for an attacker to be detected. The time
and cost for the attacker have also been characterized.

As future research directions, the development of detec-
tion techniques against this type of communication is needed.
On the other hand, the use of other languages for smart
contracts (e.g. Vyper) would contribute to characterize the
generalization of this technique.
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