
Received: 13 January 2017 Revised: 23 March 2017 Accepted: 21 April 2017

DOI: 10.1002/cpe.4175

S P E C I A L I S S U E PAP ER

A generic parallel pattern interface for stream and data
processing

David del Rio Astorga Manuel F. Dolz Javier Fernández J. Daniel García

Computer Science and Engineering

Department, University Carlos III ofMadrid,

28911–Leganés, Spain

Correspondence

David del Rio Astorga, Computer Science and

Engineering Department, University Carlos III

ofMadrid, 28911–Leganés, Spain.

Email: david.rio@uc3m.es

Funding information

EU project, ICT 644235 “REPHRASE:

REfactoring Parallel Heterogeneous

Resource-Aware Applications” and Spanish

“Ministerio de Economía y Competitividad”,

Grant/Award Number: TIN2016-79673-P;

“Towards Unification of HPC and Big Data

Paradigms”

Summary

Current parallel programming frameworks aid developers to a great extent in implementing

applications that exploit parallel hardware resources. Nevertheless, developers require addi-

tional expertise to properly use and tune them to operate efficiently on specific parallel plat-

forms. On the other hand, porting applications between different parallel programming models

and platforms is not straightforward and demands considerable efforts and specific knowledge.

Apart from that, the lack of high-level parallel pattern abstractions, in those frameworks, further

increases the complexity in developing parallel applications. To pave theway in this direction, this

paper proposesGRPPI, a generic and reusable parallel pattern interface for both streamprocess-

ing and data-intensive C++ applications. GRPPI accommodates a layer between developers and

existing parallel programming frameworks targeting multi-core processors, such as C++ threads,

OpenMP and Intel TBB, and accelerators, as CUDA Thrust. Furthermore, thanks to its high-level

C++ application programming interface and pattern composability features, GRPPI allows users

toeasily exposeparallelismvia standalonepatternsorpatterns compositionsmatching in sequen-

tial applications.We evaluate this interface using an image processing use case and demonstrate

its benefits from the usability, flexibility, and performance points of view. Furthermore, we ana-

lyze the impactofusing streamanddatapatterncompositionsonCPUs,GPUsandheterogeneous

configurations.

KEYWORDS

high-level API, parallel pattern, parallel programming framework, stream processing

1 INTRODUCTION

Compared with sequential programming, designing and implement-

ing parallel applications for operating on modern hardware poses a

number of new challenges to developers.1 Communication overheads,

load imbalance, poor data locality, improper data layouts, contention in

parallel I/O, deadlocks, starvation, or the appearance of data races in

threaded environments are just examples of those challenges. Besides,

maintaining andmigrating such applications to other parallel platforms

demands considerable efforts. Thus, it becomes clear that program-

mers require additional expertise and endeavor to implement paral-

lel applications, apart from the knowledge needed in the application

domain.

An approach to relieve developers from this burden is the use

of pattern-based parallel programming frameworks, such as SkePU,2

FastFlow3, or Intel TBB.4 In this sense, design patterns provide a way

to encapsulate (using a building blocks approach) algorithmic aspects,

allowing users to implement more robust, readable, and portable solu-

tions with such a high-level of abstraction. Basically, these patterns

instantiate parallelism while hide away the complexity of concurrency

mechanisms, eg, thread management, synchronizations, or data shar-

ing. Examples of applications coming frommultiple domains (eg, finan-

cial, medical, and mathematical) and improving their performance

through parallel programming design patterns, can be widely found in

the literature.5-7 Nevertheless, although all these skeletons aim to sim-

plify the development of parallel applications, there is not a unified

standard.8 Therefore, users require understanding different frame-

works, not only to decide which fits best for their purposes, but also to

properly use them.Not tomention themigration efforts of applications

among frameworks, which becomes as well an arduous task.

In order to mitigate this situation, this paper presents GRPPI, a

genericandreusablehigh-levelC++parallelpattern interface thatcom-

prises both stream and data-parallel patterns. In general, the goal of

GRPPI is to accommodate a layer between developers and existing
. .

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.

© 2017 The Authors. Concurrency and Computation: Practice and Experience Published by JohnWiley & Sons, Ltd

Concurrency Computat: Pract Exper. 2017;29:e4175. wileyonlinelibrary.com/journal/cpe 1 of 12
https://doi.org/10.1002/cpe.4175

https://doi.org/10.1002/cpe.4175
http://orcid.org/0000-0001-9466-3398
http://creativecommons.org/licenses/by/4.0/

2 of 12 DEL RIOASTORGA ET AL.

parallel programming frameworks targeted to multi-core and het-

erogeneous platforms. Basically, GRPPI allows users to implement

parallel applications without having a deep understanding of existing

parallel programming frameworks or third-party interfaces and, thus,

relieves the development and maintainability efforts. In contrast to

other object-oriented implementations in the literature, we use C++

template meta-programming techniques in order to provide generic

interfaces of the patternswithout incurring in significant runtimeover-

heads. Specifically, we contribute in this paper with the following:

• We present a generic, reusable set of parallel pattern for the C++

language that interface with different parallel programming frame-

works targeted to multi-core processors, such as C++ threads,

OpenMP and Intel TBB, and accelerators, such as CUDA Thrust.

• We provide support for stream processing (Pipeline, Farm, Filter

and Accumulator) and data (Map,Reduce, Stencil,MapReduce and

Divide&Conquer) parallel patterns.

• We show the flexibility and the composability of GRPPI for both

stream and data patterns, and their combination through diverse

simple examples.

• We evaluate the overheads introduced by the interface using

a real-world image processing application with regard to other

pattern-based parallel frameworks and runtime environments.

• We analyze the impact of using different stream and data pattern

compositions on CPU, GPUs and heterogeneous configurations on

the aforementioned use case.

In general, this paper extends the results presented in9 with i) the

inclusion of data parallel patterns in GRPPI, ii) the support for acceler-

ators, and iii) the pattern composition analysis alongwith its evaluation

on bothmulti-core and heterogeneous platforms.

The remainder of this paper is organized as follows. Section 2 gives

a brief overview of related works in the area. Section 3 states the for-

mal definition of the stream and data parallel patterns supported by

the interface. Section 4 describes the generic parallel pattern inter-

face presented in this contribution. Section 5 evaluates overheads of

the interface on several parallel programming frameworks and ana-

lyzes the pattern composition benefits on different platform config-

urations. Section 6 provides a few concluding remarks and outlines

future works.

2 RELATED WORK

Multiple works proposing patterns for developing applications

targeted to run on modern architectures can be found in the

state-of-the-art. Indeed, pattern programming has become one of

the best codifying practices in software engineering.10 The reason

is clear: they simplify the application structure while achieve a good

balance between maintainability and portability. In this sense, one of

the most common ways to express parallelism are parallel skeletons or

patterns.11 These patterns can be classified in 2 main categories: data

parallel, eg,Map,Reduce orMapReduce; and stream parallel patterns,

eg,Pipeline, Farm or Filter.12

Most of the existing pattern-based frameworks in the literature

are data-parallel computing oriented. Focusing on implementations

targeted to run on multi-core processors, we find solutions such as

ArBB13 and Kanga.14 ArBB defines a collection of basic data classes

and member functions to define data-parallel skeletons, which can be

used with alternative front-ends. The Kanga framework also supports

task-parallel skeletons; nevertheless, it lacks of stream-processing pat-

terns. We can also find frameworks that implement data-parallel pat-

terns tailored for accelerators. For example, open-source approaches,

like SkePU,2 allow deploying applications to run on both multi-core

CPUs and multi-GPU environments. Commercial solutions are also

present in themarket, eg, Thrust15 and SYCL16 for CUDA andOpenCL

devices, respectively. In both cases, these frameworks use a C++

library similar to the Standard Template Library to ease the paral-

lelization task. Simultaneously, standardized interfaces are being pro-

gressively developed. This is the case of the Technical Specification

for C++ Extensions for parallelism,17 which is expected to be avail-

able as part of the forthcoming C++17 standard. Similar implemen-

tations to the parallel Standard Template Library algorithms, such as

HPX,18 can also be found as third-party libraries. As observed, all these

frameworksprovidehigh-level interfaces, enablingparallelismandeas-

ing the portability among platforms. However, although they support

a well-established collection of data-parallel patterns, they still lack

stream processing-oriented patterns.

Focusing on libraries that support stream-processing patterns, we

find a set of well-known frameworks, such as Intel Threading Building

Blocks (TBB), FastFlow, and RaftLib. TBB4 is a C++ parallel framework

based on the queue-based parallelism approach. However, it runs best

on Intel-based architectures and has no support for GPUs. FastFlow3

is a skeleton programming framework that uses lock-free communi-

cation mechanisms to implement internally its parallel patterns. This

approach has support for CUDA and OpenCL. Finally, RaftLib19 is a

C++ template library that aims to fully exploit the stream processing

paradigm, supporting dynamic queue optimization, automatic paral-

lelization, and real-time performance monitoring. However, all these

parallel frameworks are not yet usable nor generic enough to be easily

adopted by users when developing parallel applications. The contri-

butions presented in this paper leverages novel C++ templates and

metaprogramming techniques for implementing both stream parallel

and data parallel paradigms in a single and high-level interface that fills

the gap from current approaches.

3 PARALLEL PATTERNS

Patterns can be loosely defined as commonly recurring strategies for

dealing with particular problems. This methodology has been widely

used in multiple areas, such as architecture, object-oriented program-

ming, andsoftwarearchitecture.20 Inour case,we leveragepatterns for

parallel software design, as it has been recognized to be one of the best

codifying practices.10 This is mainly because patterns provide a mech-

anism to encapsulate algorithmic features, making them more robust,

portable and reusable, while if tuned, they can achieve better parallel

scalability and data locality. In general, parallel patterns can be cate-

gorized in 2 groups: stream parallel patterns, eg, Pipeline, Farm and

Filter; and data parallel, eg,Map,Reduce andMapReduce.12 Following

this classification, we describe formally the patterns supported by our

interface in the next 2 sections.

DEL RIOASTORGA ET AL. 3 of 12

3.1 Stream patterns

In this section, we describe formally the stream parallel patterns

Pipeline, Farm, Filter, andAccumulator included in GRPPI.

Pipeline This pattern processes the items appearing on the input

stream in several parallel stages (see Figure 1A). Each stage of

this patternprocessesdataproducedby theprevious stage in the

pipe and delivers results to the next one. Provided that the i-th

stage in a n-staged Pipeline computes the function fi ∶ 𝛼 → 𝛽 ,

thePipelinedelivers the item xi to theoutput streamapplying the

function fn(fn−1(… f1(xi) …)). The main requirement of this pat-

tern is that the functions related to the stages should be pure, ie,

they can be computed in parallel without side effects.

Farm This pattern computes in parallel the function f ∶ 𝛼 → 𝛽 over

all the items appearing in the input stream (see Figure 1B). Thus,

for each item xi on the input stream theFarm pattern delivers an

item to the output stream as f(xi). In this pattern, the computa-

tions performed by f for the items in the input stream should be

completely independent to each other, otherwise they cannot be

processed in parallel.

Filter This pattern computes in parallel a filter over the items appear-

ing on the input stream, passing only to the output stream those

items satisfying the boolean “filter” function (or predicate)  ∶
𝛼 → {true, false} (see Figure 1C). Basically, the pattern receives

a sequence of input items … , xi+1, xi,xi−1, … and produces a

sequenceof output itemsof the same typebutwithdifferent car-

dinality. The evaluation of the filtering function on an input item

should be independent to any other, ie, the predicate should be a

pure function.

Accumulator This pattern collapses items appearing on the input

stream and delivers these results to the output stream (see

Figure 1D). The function used to collapse item values ⊕ should

be a pure binary function of type⊕ ∶ 𝛼 × 𝛼 → 𝛼, being usually

associative and commutative. Basically, the pattern com-

putes the function ⊕ over a finite sequence of input items

… , xi+1, xi, xi−1, … to produce a collapsed item on the output

stream. The number of elements to be accumulated depends on

the window size set as parameter.

3.2 Data patterns

In this section, we describe formally the data parallel patterns

Map, Reduce, Stencil, MapReduce and Divide&Conquer provided by

GRPPI.

Map This data parallel pattern computes the function f ∶ 𝛼 → 𝛽 over

the elements of the input data collection, where the input and

output elements are 𝛼 and 𝛽 types, respectively (see Figure 2A).

The output result is the collection of elements y1, y2, … , yN,

where yi = f(xi) for each i = 1,2, … ,N and xi is the i-th element

of the input collection. The only requirement of theMap pattern

is that the function f should be pure.

FIGURE 1 Stream parallel patterns

FIGURE 2 Stream parallel patterns

4 of 12 DEL RIOASTORGA ET AL.

Reduce This data parallel pattern aggregates the elements of the

input data collection of type 𝛼 using the binary function⊕ ∶ 𝛼 ×
𝛼 → 𝛼, that is usually associative and commutative. Finally, the

result of the pattern is summarized in a single element y of type

𝛼 that is obtained performing the operation y = x1 ⊕ x2 ⊕ … xN,

where xi is the i-th data item of the input data collection (see

Figure 2B). The main constraint of this pattern is that the binary

function should be pure.

Stencil This pattern is a generalization of theMap pattern in which an

elemental function can access, not only to a single element in an

inputcollection,butalso toasetofneighbors (seeFigure2C).The

function f ∶ 𝛼 ∗→ 𝛼 usedby theStencilpattern receives the input

item and a set of neighbors (𝛼∗) and produces an output element

of the same type. Themain requirementof this pattern is that the

function f should be pure.

MapReduce This pattern computes, in a first stageaMap-likepattern,

a key-value function over all the elements of an input collection,

and delivers, in a second stage a Reduce-like pattern, a set of

unique key value pairs where the value associated to the key is

the “sum” of the values output for the same key (see Figure 2D).

To do so, theMapReduce pattern computes in theMap function

f ∶ 𝛼 → {𝛼,Key} the elements in the input collection; afterwards,

it uses theReduce binary function⊕ ∶ 𝛽 × 𝛽 → 𝛽 to sum up the

partial resultswith thesamekey.Theresultof thispattern is acol-

lection of data elements of type 𝛽 , one per key. The requirements

of theMapReduce pattern is that bothMap andReduce-related

functions should be pure.

Divide&Conquer Thispatterncomputesaproblembymeansofbreak-

ing it down into 2 or more subproblems of the same kind until

thebasecase is reachedandsolveddirectly.Afterwards, the solu-

tions of the subproblems are merged to provide a solution to

the original problem (see Figure 2E). In other words, this pattern

applies the function f ∶ 𝛼 ∗→ 𝛽 ∗ on a collection of elements

of type 𝛼 and produces a collection of elements of type 𝛽 . A

divide function  is used first to split the collection into dis-

tinct partitions up to the size of the base problem, which can

be solved directly applying f. Finally, the partial results of the

base problems are combined according to amerge function in

order tobuild the finaloutput collection.Therequirementsof the

Divide&Conquer pattern is that the functions f,  and should

be pure.

4 A GENERIC AND REUSABLE PARALLEL
PATTERN INTERFACE

In this section, we introduce our generic and reusable parallel pattern

interface (GRPPI) for C++ applications. GRPPI takes full advantage of

modern C++ features, metaprogramming concepts, and generic pro-

gramming to act as switch between the parallel programming models

OpenMP, C++ threads, Intel TBB and CUDA Thrust. Its design allows

users to leverage the aforementioned execution frameworks just in

a single and compact interface, hiding away the complexity behind

the use of concurrency mechanisms. Furthermore, the modularity of

GRPPI permits to easily integrate new patterns, while combining them

to arrange more complex ones. Thanks to this property, GRPPI can

be used to implement a wide range of existing stream-processing and

data-intensiveapplicationswith relative small efforts, havingasa result

portable codes that can be executed onmultiple frameworks.

Next, we describe in detail the interfaces of the parallel patterns

offered byGRPPI and demonstrate its composability through different

simple examples.

4.1 Description of the interfaces

GRPPI offers both stream patterns and data patterns with a single

interface carefully designed toallowcomposability and to supportmul-

tiple implementation back-ends.

4.1.1 Stream patterns

The GRPPI stream parallel patterns includes the Pipeline, Farm, Filter,

andAccumulator patterns.

Pipeline The GRPPI interface designed for the Pipeline pattern

receives the executionmodel and the functions (in andstages)

related to its stages. As can be seen in Listing 1, its C++ inter-

face uses templates, making it more flexible and reusable for any

data type. Note as well the use of variadic templates, allowing

a Pipeline to have an arbitrary number of stages by receiving a

collection of callable objects passed as arguments. In GRPPI, the

parallel implementation of this pattern is performed using a set

of concurrent entities, each of them taking care of a single stage.

This is controlled via the executionmodel parameter, that can be

set to operate in sequential or in parallel, through the different

supported frameworks; eg, touseOpenMP, theparameter should

be set to parallel_execution_omp.

Farm In a similar way, the Farm pattern interface, shown in List-

ing 2, receives the execution model and 3 functions (in, farm

and out) that are in charge of (i) consuming the items from the

input stream, (ii) processing them individually, and (iii) delivering

the results to the output stream. Note that the farm function

will be executed in parallel by the different concurrent entities.

In this case, the execution model can optionally receive, as an

argument, the number of entities to be used for the parallel exe-

cution, eg, parallel_execution_omp{6} uses 6 OpenMP

DEL RIOASTORGA ET AL. 5 of 12

worker threads. If this argument is not given, the interface

takes by default the number of threads set by the underlying

platform.

Filter The interface for the Filter pattern, described in Listing 3,

receives the execution model argument, followed by a stream

consumer (in), filter (filter) and producer (out) functions.

Specifically, the in function reads items from the input stream

and forwards them to the filter function, which is responsible

to determine whether an item should be accepted or not. After-

wards, those items that satisfy the filtering routine, are received

by theout function inorder todeliver themto theoutput stream.

Note that it is mandatory that the filter function to return a

boolean expression. The parallel implementation of this pattern

applies the filter function using a set of concurrent entities, that

can be configured in the executionmodel parameter.

Accumulator The Accumulator pattern aims at reducing, using a spe-

cific reduction (redop) function, the items appearing on the

input stream. Similar to the other interfaces, the Accumulator

interface, as shown in Listing4, receives the executionmodel; the

stream consumer (in) function; the window size, ie, the number

of items that will be part of each reduction operation; the offset,

determining the number of overlapping items among windows;

the reduction operator; and a producer (out) function, responsi-

ble for delivering the items to the output stream. In this case, the

concurrent entities in the parallel implementation are respon-

sible for processing individually the accumulation of the input

streamwindows.

4.1.2 Data patterns

This section describes in detail the interfaces for the data parallel

patternsMap,Reduce, Stencil,MapReduce andDivide&Conquer sup-

ported by GRPPI.

Map The GRPPI interface for the Map pattern, shown in Listing 5,

receives the following input parameters: the execution model,

references to the first and last elements of the input data collec-

tions and the kernel (map) function. After the computation, the

result of theMap pattern is left in the corresponding position of

the output data set. Given that each element in the input data

collection is independent to each other, the parallel execution of

theMap pattern can be performed in the followingway. First, the

input collection is divided equally among the available concur-

rent entities. Afterwards, these entities execute in parallel the

kernel map function and write the results in the corresponding

segments of the output data collection.

Reduce The interface for the Reduce pattern, as described in List-

ing 6, takes the execution model, a reference to the first and last

elements of the input data collection and the reduce operator.

The result of the reduction is written in the output parameter

passed by reference. According to the properties of the reduce

operator, the reduce computation can be performed in parallel.

Thus, the input data collection is partitioned in N chunks and

computed in parallel byN different concurrent entities that pro-

duce a set of partial results. Finally, the result of the Reduce

pattern is calculated in series by one of these entities.

Stencil The GRPPI interface for theStencil pattern, presented in List-

ing 7, is quite similar to that for theMap pattern, with the excep-

tion that it additionally receives the neighborhood (nh) function.

This function is responsible for accessing theneighbors in a given

coordinate of the input data set. The parallel implementation

of the Stencil pattern is analogous to that for the Map pattern.

However, accessing the neighbors in the boundaries of a parti-

tioned data set might require additional comparisons between

the positions of the elements.

6 of 12 DEL RIOASTORGA ET AL.

MapReduce The interface for the MapReduce pattern combines

internally calls to theMap andReduceGRPPI pattern interfaces.

As for input parameters, it receives the execution model, refer-

ences to the first and last elements of the input data collections,

the kernel (map) function and the reduction operator for the

Reducepattern. The result is finally left in a reference to the first

element of the output collection. The parallel implementation of

this pattern in GRPPI exploits the parallelism offered internally

by theMap and Reduce parallel patterns. The result of theMap

operation is then shuffled and reduced in parallel, one for all ele-

ments with the same key. The global result for each key is finally

reduced in series by one of the concurrent entities.

Divide&Conquer The interface designed for theDivide&Conquer pat-

tern consists of the following elements: the execution model,

a reference of the input data collection and the divide,

base_case and merge functions. The result of this pattern is

written to the output data collection passed by reference. The

parallel implementation of this pattern in the GRPPI interface

leverages first the divide kernel to steadily split the problem

into smaller ones. This operation is performed by the avail-

able concurrent entities until the minimal problem dimension is

reached and where the base-case solution kernel is applied. Tak-

ing thepartial solutionsgenerated, theconcurrententitiesmerge

the results in a tree-based structure until the global solution

is obtained. Note that because the tree width can grow above

the maximum number of concurrent entities specified, a pool of

tasks is used instead in order to implement a dynamic scheduling

approach.

4.2 Pattern composability

As mentioned in the introduction, the patterns offered by GRPPI

can be composed among them to produce more complex structures

and to match specific constructions present in both stream and data

parallel applications. To demonstrate this feature, we describe 3 exam-

plesofpatterncomposability tacklingeachof the feasiblecombinations

of computational paradigms (stream and data) supported by GRPPI

interface: stream-stream, data-data, and stream-data compositions.

For the stream-stream pattern composability, the code in Listing 10

implements a Pipeline in which the second stage is a Farm pattern.

The Pipeline stages, passed as lambda functions, perform the follow-

ing tasks: (i) read the lines of an input file with blank-separated val-

ues and pack them into a vector structure; (ii) compute the maximum

value from incoming vectors using the Farm pattern; and (iii) print

the maximum values of the vectors onto an output stream. Given that

the Pipeline receives the OpenMP parallel execution model (line 1),

the stages are computed in parallel by the 3 worker threads. Simi-

larly, the nested Farm pattern is executed by 6 OpenMP threads. Note

as well that std::optional variables, from the c++ Library Funda-

mentals Extensions (ISO/IEC 19568:2015), are used to mark the end

of the streams with an empty value. We denote this Pipeline-Farm

composition as (p |f |p), being p and f, respectively, sequential and

Farm-based stages. As can be seen, thanks to the use of metaprogram-

ming techniques, templates, and lambda expressions, it is possible to

easily compose GRPPI parallel patterns in order to build more com-

plex ones.

Regarding the data-data pattern composability, Listing 11 shows a

construction where a Map pattern is composed with a Reduce oper-

ation. In this case, the input matrix in the Map pattern is divided into

equal partitions among theworker threads. Next, for each row in a par-

tition, the nested Reduce pattern sums up its values and stores the

result in the corresponding position of the output vector, passed as

an argument in theMap function call. Note that the parallel execution

model for the Map pattern is OpenMP while the nested Reduce pat-

ternusesC++ threads, eachof themusing6worker threads.Wedenote

this composition as m(r), being m and r theMap andReduce patterns,

respectively.

DEL RIOASTORGA ET AL. 7 of 12

Asmentioned, we can also compose streamwith data patterns. This

is a feasible composition, given that the itemscoming fromastreamcan

be processed themselves using a data parallel pattern. The opposite is

however not feasible because the results generated in a data pattern

cannot be transformed into streams and, therefore, processed using a

stream processing approach. To illustrate a stream-data pattern com-

position, Listing 12 shows an example where a Farm stream parallel

pattern is composed with a Divide&Conquer data one. In this partic-

ular case, the Farm pattern steadily reads values stored in a file and

computes, for each of them, their corresponding i-th Fibonacci num-

ber using the Divide&Conquer pattern. Finally, the Fibonacci numbers

are printed to the end user. As shown, the parallelization of the Farm is

performedusing6OpenMPthreads,while thenestedDivide&Conquer

pattern uses 6 C++ threads. Because each of the Farm-related threads

create 6 C++ nested ones, the total number of threads computing this

composition is 36. This composition is denoted as f(d), being f and d,

Farm andDivide&Conquer patterns, respectively.

In general, Table 1 summarizes pattern compositions grouped by

the 3 possible combinations of computational paradigms supported by

GRPPI interface: stream-stream, data-data, and stream-data compo-

sitions. Note that rows and columns in the tables represent the outer

and inner patterns involved in a given composition, respectively. We

classify each specific pattern composition with one of the following 4

categories, from less tomore restrictive:

Infeasible This category represents a composition that is not sup-

ported by GRPPI.

Feasible This categorydenotesacomposition that canbe implemented

in GRPPI.

Irreducible This category is a feasible composition providing a use-

ful parallel pattern that cannot be simplified any further. Note

that pattern compositions falling in this category are natively

supported by GRPPI.

Useful-Reducible This category is a feasible composition implement-

ing a pattern composition that can be simplified further but that,

in some cases, provides a clearer and a more readable code than

its simpler equivalent.

As shown in Table 1a, the stream-stream pattern compositions

involving a Pipeline and other pattern are classified as Irreducible

(except those with an outer Accumulator pattern), given that it is not

possible to obtain the sameparallel construction using any simpler pat-

tern. These types of compositions are natively supported in GRPPI, as

shown in Listing 10. Any other composition is considered as Feasible

because they can be simplified using the outer or inner patternwith an

increasedparallelismdegree.However, these constructionsdonot pro-

vide any major advantage compared to the simpler construction. On

the other hand, compositions containing an outerAccumulator pattern

are Infeasible, as this pattern does not receive any user function to be

executed in parallel.

Focusing on data-data compositions, as shown in Table 1b, construc-

tionswhoseouterpattern isMap-like (MapandStencil) are categorized

as Useful-Reducible. This is because there exists a simpler equivalent

using only the outerMap-like pattern. Regarding the Reduce pattern,

8 of 12 DEL RIOASTORGA ET AL.

TABLE 1 Parallel patterns compositions in GRPPI

Inner pattern

Pipeline Farm Filter Accumulator

(a) Stream-stream compositions.

Outer pattern Pipeline ✓ (Feasible) ✓ (Irreducible) ✓ (Irreducible) ✓ (Irreducible)

Farm ✓ (Irreducible) ✓ (Feasible) ✓ (Feasible) ✓ (Feasible)

Filter ✓ (Irreducible) ✓ (Feasible) ✓ (Feasible) ✓ (Feasible)

Accumulator ✗ (Infeasible) ✗ (Infeasible) ✗ (Infeasible) ✗ (Infeasible)

Inner pattern

Map Reduce Stencil MapReduce Divide&Conquer

(b) Data-data compositions.

Outer pattern Map ✓ (Useful-Reducible) ✓ (Useful-Reducible) ✓ (Useful-Reducible) ✓ (Useful-Reducible) ✓ (Useful-Reducible)

Reduce ✗ (Infeasible) ✗ (Infeasible) ✗ (Infeasible) ✗ (Infeasible) ✗ (Infeasible)

Stencil ✓ (Useful-Reducible) ✓ (Useful-Reducible) ✓ (Useful-Reducible) ✓ (Useful-Reducible) ✓ (Useful-Reducible)

MapReduce ✓ (Feasible) ✓ (Feasible) ✓ (Feasible) ✓ (Feasible) ✓ (Feasible)

Divide&Conquer ✓ (Feasible) ✓ (Feasible) ✓ (Feasible) ✓ (Feasible) ✓ (Feasible)

(c) Stream-data compositions.

Outer pattern Pipeline ✓ (Irreducible) ✓ (Irreducible) ✓ (Irreducible) ✓ (Irreducible) ✓ (Irreducible)

Farm ✓ (Irreducible) ✓ (Irreducible) ✓ (Irreducible) ✓ (Irreducible) ✓ (Irreducible)

Filter ✓ (Feasible) ✓ (Feasible) ✓ (Feasible) ✓ (Feasible) ✓ (Feasible)

Accumulator ✗ (Infeasible) ✗ (Infeasible) ✗ (Infeasible) ✗ (Infeasible) ✗ (Infeasible)

it cannot be combined with any other inner one. The reasons are the

same as those for the Accumulator pattern in stream-stream com-

positions. Other compositions whose outer pattern is MapReduce or

Divide&Conquer are classified asFeasible, as they canbe implemented

in GRPPI although do not bring anymajor advantage.

Finally, stream-data compositions are summarized in Table 1c. Com-

positions whose outer pattern is Pipeline or Farm are denoted as Irre-

ducible. The combination of 2 distinct parallel paradigms (stream-data)

makes these compositions unique and precludes them to be simpli-

fied any further. As for compositions with an outer Filter pattern, the

output cardinality of its inner pattern dictates whether the compo-

sition is Feasible or Useful-Reducible. This is because the output of

the Filter function is a boolean. For instance, in a Filter-Map compo-

sition, the output cardinality of the Map pattern is equal to the input

cardinality. So that, although the predicate of the Filter pattern can

be implemented by transforming the output data set into a boolean,

this case does not reflect a common practice. Therefore, we classify

these compositions only as Feasible. On the other hand, the output

cardinality of the Reduce pattern in a Filter-Reduce composition is a

sole element. Thus, the Filter predicate can be easily implemented by

transforming such element into a boolean. For this reason, we cate-

gorize this construct as a special case of Feasible composition. The

Filter-Divide&Conquer combination is also a special case of Feasible

composition, because the output cardinality of the Divide&Conquer

pattern depends on the algorithm. Finally, the Accumulator pattern is

not composable and, hence, classified as Infeasible.

5 EVALUATION

In this section, we perform an experimental evaluation of GRPPI

in order to analyze its usability, in terms of lines of code, and its

performance, in comparison with the different parallel execution

environments currently supported. To do so,weuse the following hard-

ware and software components:

• Target platform. The evaluation has been carried out on a server plat-

formequippedwith2× Intel Xeon IvyBridgeE5-2630v3with a total
of 16 cores running at 2.40GHz, 20MB of L3 cache and 256GB of

DDR3 RAM. This platform also incorporates a NVIDIA Tesla K40c

with 12GB and GeForce GTX680 GPUs with 2GB of DDR5 RAM.

These GPUs are denoted as GPU0 and GPU1, respectively. The OS is

a Linux Ubuntu 14.04.5 LTSwith kernel 3.13.0-85.

• Software. To develop the parallel versions and to implement the pro-

posed interfaces, we leveraged the execution environments C++11

threads andOpenMP, Intel TBBandCUDAThrust for theGPUs. The

C++ compiler used to assemble GRPPI is GNUGCC v5.0 and CUDA

compiler is NVIDIANVCC 8.0.

• Benchmark. To evaluate the parallel patterns, we used a video

stream-processing application composed by 2 filters, the Gaussian

Blur and Sobel operators. These filters are applied to an input video

in order to detect edges appearing in the frames.* Specifically, this

application matches the parallel Pipeline pattern, in which the first

stage reads the frames from a video file passed as input; the second

and third stages apply the Gaussian Blur and Sobel filters, respec-

tively; and the last stage dumps the processed frames to an output

video file.Note that both filters use a kernel size of 3×3.Note aswell
that, while the Gaussian Blur filter only performs arithmetic opera-

tions, the Sobel operator also performs a square root operation for

each frame pixel processed.

To carry out the experimental evaluation, we first parallelize this

video application using the above-mentioned execution frameworks

and the proposed interface. Afterwards, we compare both perfor-

mance and thenumberof lines of code required to implement suchpar-

allel versions with respect to the sequential one. To further experiment

with our interface, we implemented different versions of the video

application using the execution frameworks forCPUs and distinct com-

*This benchmark has been inspired by an OpenCV edge detection example from http://docs.
opencv.org/3.1.0/d3/d63/edge_8cpp-example.html.

http://docs.opencv.org/3.1.0/d3/d63/edge_8cpp-example.html
http://docs.opencv.org/3.1.0/d3/d63/edge_8cpp-example.html

DEL RIOASTORGA ET AL. 9 of 12

(A) (B)

(C) (D)

FIGURE 3 Pipeline compositions of the video application

positions of patterns in itsmain pipeline. Specifically,weuse the follow-

ing Pipeline compositions: i) a non-composed Pipeline(p |p |p |p); ii)

a Pipeline composed of a Farm in its second stage (p |f |p |p); iii) a

Pipeline composed of a Farm in its third stage (p |p |f |p); and iv) a

Pipeline composed of 2 Farm patterns in the second and third stages

(p |f |f |p).

Next, we also evaluate and compare the performance when using

different stream-stream and stream-data Pipeline compositions and

heterogeneous configurations (CPU+GPU). In this case, we leverage

different Pipeline constructions composed of: (i) 2 Farm patterns

(p |f |f |p); (ii) a Farm and a Stencil in its second and third stages

(p |f |s |p); (iii) a Stencil and a Farm in its second and third stages

(p |s |f |p); and (iv)2Stencil patterns(p |s |s |p). Note thatwhen

using aPipeline-Farm composition, eachworker thread from the Farm

pattern processes individual video frames. However, when leveraging

a Pipeline-Stencil construction, each thread in the Stencil pattern is in

chargeof computingadistinct partitionof a single video frame. Figure3

illustrates some of the compositions used in these studies.

5.1 Analysis of the usability

In this section, we analyze the usability and flexibility of the developed

interface. To analyze these aspects, we compare the number of lines

required to implement the parallel version of the application leverag-

ing the interface, with respect to using directly the parallel execution

frameworks. Table 2 summarizes the percentage of additional lines

introduced into the sequential source code in order to implement such

parallel versions for theabove-mentionedpatterncompositions.Ascan

be seen, implementing more complex compositions via C++ threads or

OpenMP leads to larger source codes, while for Intel TBB the number

of required additional lines remains constant. Focusing on GRPPI, we

observe that the effort of parallelizing an application is almost negli-

gible: even the most complex composition increases nearly 4.4% the

number of lines of code. This behavior is contrary to the C++ threads

or OpenMP frameworks, which require roughly twice of lines of code.

Additionally, switching GRPPI to use a particular execution framework

just needs changing a single argument in the pattern function calls.

TABLE 2 Percentage of increase of lines of codew.r.t. the sequential
version

Pipeline %of increase of lines of code

composition C++ Threads OpenMP Intel TBB GrPPI

(p |p |p |p) +8.8% +13.0% +25.9% +1.8%

(p |f |p |p) +59.4% +62.6% +25.9% +3.1%

(p |p |f |p) +60.0% +63.9% +25.9% +3.1%

(p |f |f |p) +106.9% +109.4% +25.9% +4.4%

5.2 Performance analysis of pattern compositions

Next, we analyze the performance with and without GRPPI using

the different execution frameworks and Pipeline compositions for the

video application. Concretely, we employ the frames per second (FPS)

metric to analyze the behavior of the particular versions using a same

input video with diverse resolutions. Also, we set the Farm stage(s) in

all Pipeline compositions to be executed in parallel by 6 threads for

all the execution models. Figure 4 depicts the FPS obtained for the

different compositions in this experiment. A first observation is that

the Pipeline combined with 2 Farm patterns for the filtering stages,

in comparison with the non-composed Pipeline and compositions with

only one Farm, improves substantially the FPS for all parallel frame-

works. It is also remarkable that compositions using only one Farm do

not bring significant improvements, because they lead to imbalanced

Pipeline stages. Note that the stage running sequentially dictates the

Pipeline performance, as it is the slowest one. An additional inspec-

tion into the plots reveals that the best case of Pipeline composition,

which uses 2 Farm patterns, both C++11 and OpenMP deliver similar

performance figures, while TBB obtains better FPS for all video res-

olutions. This is due to the ordering algorithm of the output stream

is better optimized than those used by the other frameworks. Finally,

we observe that the usage of GRPPI does not lead to significant over-

heads: it is less than 2%, on average, for all the execution frameworks

and compositions.

10 of 12 DEL RIOASTORGA ET AL.

1

 4

 16

 64

480p 720p 1080p 1440p 2160p

Fr
am

es
 p

er
 se

co
nd

Pipeline (p|p|p|p)

 1

 4

 16

 64

480p 720p 1080p 1440p 2160p

Pipeline (p|f|p|p)

 1

 4

 16

 64

480p 720p 1080p 1440p 2160p

Fr
am

es
 p

er
 se

co
nd

Video resolution

Pipeline (p|p|f|p)

 1

 4

 16

 64

256

480p 720p 1080p 1440p 2160p

Video resolution

Pipeline (p|f|f|p)

C++11
GrPPI C++11

OpenMP
GrPPI OpenMP

TBB
GrPPI TBB

FIGURE 4 Frames per secondw/ andw/o using GRPPI along with the different frameworks andPipeline compositions

 1

 4

 16

 64

 256

480p 720p 1080p 1440p 2160p

Fr
am

es
 p

er
 se

co
nd

Video resolution

C++ Threads

 1

 4

 16

 64

 256

480p 720p 1080p 1440p 2160p

Video resolution

OpenMP

 1

 4

 16

 64

 256

480p 720p 1080p 1440p 2160p

Video resolution

Intel TBB

Pipeline (p|f|f|p)
Pipeline (p|s|s|p)

Pipeline (p|f|s|p)
Pipeline (p|s|f|p)

FIGURE 5 Frames per second for different frameworks andPipeline compositions with stream and data patterns

5.3 Performanceanalysis of streamvsdatapatterns

Our next analysis compares the performance among Pipeline compo-

sitions that combine stream and data parallel patterns. Figure 5 shows

the FPS obtained for different video resolutions and parallel frame-

works using GRPPI in different Pipeline compositions containing both

stream and data patterns, Farm and Stencil, respectively. As can be

seen, both C++ Threads and Intel TBB frameworks deliver similar per-

formance results for all compositions. A more detailed inspection of

these plots unveils an inflection point where the data-stream compo-

sitions start attaining better performance. This occurs from 1080p on

for C++ Threads and from 1440p on for TBB. Note as well the slight

difference using only a Stencil for computing the first or second filter.

The reasonbehind this behavior is the higher computational loadof the

Sobel with respect to the Gaussian Blur filter. Regarding the OpenMP

framework, it can be clearly seen that the stream-stream (p |f |f |p)

composition delivers better results than using stream-data construc-

tions. This is mainly because the worker threads in the GRPPI-Farm

pattern leverageOpenMP tasks that are active during the whole video

processing, while the Stencil implementation creates and destroys a

task each time a video frame is processed. We figured out that the

GCC-OpenMP implementation does not make use of a thread pool

and, therefore, the threads in each Stencil computation are recur-

rently createdanddestroyed.Consequently, stream-datacompositions

in OpenMP suffer from considerable performance degradations.

5.4 Performance analysis on heterogeneous

configurations

Our last experiment, analyzes the performance of a stream-data

Pipeline composition with different heterogeneous configurations

(CPU+GPU). Figure 6 illustrates the FPS delivered by thePipeline com-

posed of 2 Stencil stages that are mapped in different ways to the

devices available on the platform. As a first observation, the mapping

DEL RIOASTORGA ET AL. 11 of 12

 4

 16

 64

 256

480p 720p 1080p 1440p 2160p

Fr
am

es
 p

er
 se

co
nd

Video resolution

C++ Threads vs CUDA Thrust
GPU0 = NVIDIA Tesla K40c
GPU1 = NVIDIA GeForce GTX680

Pipeline (p|s(CPU)|s(CPU)|p)
Pipeline (p|s(CPU)|s(GPU0)|p)
Pipeline (p|s(CPU)|s(GPU1)|p)
Pipeline (p|s(GPU0)|s(CPU)|p)
Pipeline (p|s(GPU1)|s(CPU)|p)
Pipeline (p|s(GPU0)|s(GPU1)|p)
Pipeline (p|s(GPU1)|s(GPU0)|p)

FIGURE 6 Frames per second for thePipeline composed of 2Stencil patterns on different heterogeneous configurations

configuration that attains the best performance is when using indis-

tinguishably both GPUs for the Stencil stages of the Pipeline. This

performance difference is due to the higher computational capacity

of the GPUs, overtaking the CPUs in terms of number of cores and

Single instruction, multiple data (SIMD) capabilities. Note that, in this

specific use case, both arrangements of the GPU0 and GPU1 executing

the Gaussian Blur and Sobel filters attain comparable FPS. Our next

observation focuses on the configurations in which, at least, one Sten-

cil stage is mapped to the CPU cores. In these cases, when the slowest

Pipeline stage (ie, the Sobel operator) runs on a GPU, the totalPipeline

throughput improves, as it contributes to have more balanced stages.

Nevertheless, this advantage only applies for large frame resolutions

starting from 1080p, where the data transfers overheads (host-device)

compensate the amount of computation performed by the GPUs. On

the other hand, if the Gaussian Blur is mapped to one of the GPUs, the

throughput is limited by the Sobel operator that, executed on the CPU

cores, acts as a bottleneck. Also, in this specific case, host-device data

transfers donot payoff theperformance improvementswith respect to

mapping the Gaussian Blur filter on the CPU cores.

6 CONCLUSIONS

In this paper, we have presented a generic and reusable parallel pat-

tern interface, namely GRPPI, which leverages modern C++ features,

metaprogramming concepts, and template-based programming to act

as switch between parallel programming models. Its compact design

facilitates the development of parallel applications, hiding away the

complexity behind the use of concurrency mechanisms. In this version

of the interface, we target both stream and data parallel patterns and

demonstrate its flexibility composing them on a series of simple exam-

ples. We also support frameworks targeted to multi-core processors

(C++ threads,OpenMPand Intel TBB) and accelerators (CUDAThrust).

Therefore, given thatmanygeneralpurposesequential applicationscan

be decomposed in several design patterns, this interface can be easily

introduced in such applications to parallelize them and improve their

performance.

As observed throughout the evaluation with a parallel video appli-

cation, the performance attained by each combination of parallel pat-

tern using the supported frameworks directly with respect to using

GRPPI, is almost the same. We prove as well that our approach does

not lead to considerable overheads while permits to easily parallelize

applications by adding, on average, 4.4% of lines of code. We also

demonstrate that, depending on the application and devices available,

different stream-data compositions and frameworks may lead to bet-

ter performance figures. In a nutshell, GRPPI advocates for a usable,

simple, generic, and high-level parallel pattern interface, allowing

users to implement parallel applications without having a deep under-

standing of existing parallel programming frameworks or third-party

interfaces.

As future work, we plan to extend GRPPI for supporting more com-

plex parallel patterns, such as windowed and keyed stream farms,

stream iteration and the Stencil-Reduce21 patterns. Furthermore, we

intend to include other execution environments as for the offered par-

allel frameworks, eg, FastFlow, SkePU, and OpenCL SYCL. An ultimate

goal is to incorporate scheduling techniques able to map task threads

to CPU cores and GPUs and manage data transfers between host and

device.

ACKNOWLEDGMENTS

This work has been partially supported by the EU project ICT 644235

“REPHRASE: REfactoring Parallel Heterogeneous Resource-aware

Applications” and the Spanish “Ministerio de Economía y Competitivi-

dad” under the grant TIN2016-79673-P “Towards Unification of HPC

and Big Data Paradigms.”

REFERENCES

1. Amarasinghe S, Hall M, Lethin R, et al. ASCR Programming Challenges
for Exascale Computing [Technical Report], U.S. DOEOffice of Science
(SC); 2011.

2. EnmyrenJ,KesslerCW.SkePU:amulti-backendskeletonprogramming
library for multi-GPU systems. In: Proceedings of the Fourth Interna-
tionalWorkshop onHigh-level Parallel Programming andApplications,
HLPP '10 ACM; 2010; New York, NY, USA:5-14. https://doi.org/10.
1145/1863482.1863487.

3. Aldinucci M, Danelutto M, Kilpatrick P, Torquati M. FastFlow:
high-level and efficient streaming on multi-core. In: Pllana S, ed. Pro-
gramming Multi-core and Many-core Computing Systems, Parallel and
Distributed Computing. Hoboken, New Jersey, USA: John Wiley &
Sons, Inc.; 2012:13.

4. Reinders J. Intel Threading Building Blocks - Outfitting C++ for Multi-Core
Processor Parallelism. Sebastopol, California: O'ReillyMedia; 2007.

5. Danelutto M, Matteis TD, Mencagli G, Torquati M. Parallelizing
high-frequency trading applications by using c++11 attributes. Pro-
ceedings of the 2015 IEEE Trustcom/BigDataSE/ISPA - Volume 03,
TRUSTCOM-BIGDATASE-ISPA '15. Washington, DC, USA: IEEE Com-
puter Society; 2015:140-147.

https://doi.org/10.1145/1863482.1863487
https://doi.org/10.1145/1863482.1863487

12 of 12 DEL RIOASTORGA ET AL.

6. Kegel P, Schellmann M, Gorlatch S. Comparing programming models
formedical imagingonmulti-coresystems.ConcurrencyComputat:Pract
Exper. 2011;23(10):1051-1065.

7. Michailidis PD, Margaritis KG. Scientific computations on multi-core
systems using different programming frameworks. Appl Numer Math.
2016;104:62-80.

8. González-Vélez H, Leyton M. A survey of algorithmic skeleton frame-
works: high-level structured parallel programming enablers. Softw
Pract Exper. Nov 2010;40(12):1135-1160.

9. del Rio Astorga D, Dolz MF, Sanchez LM, Blas JG, García JD. C++
generic parallel pattern interface for stream processing. In: Proceed-
ings of the 16th International Conference Algorithms and Archi-
tectures for Parallel Processing (ICA3PP 2016). Cham, Switzerland:
Springer International Publishing; 2016:74-87.

10. Gamma E, Helm R, Johnson R, Vlissides J. Design Patterns: Elements of
Reusable Object-Oriented Software. Boston, MA USA: Addison-wesley
Longman Publishing Co., Inc.; 1995.

11. Rabhi FA, Gorlatch S, eds. Patterns and Skeletons for Parallel and Dis-
tributed Computing. London, UK, UK: Springer-Verlag; 2003.

12. McCool M, Reinders J, Robison A. Structured Parallel Programming: Pat-
terns for Efficient Computation. 1st ed. San Francisco, CA USA: Morgan
Kaufmann Publishers Inc.; 2012.

13. Newburn CJ, So B, Liu Z, et al. Intel's array building blocks: A retar-
getable, dynamic compiler and embedded language. In: 2011 9th
Annual IEEE/ACM International Symposium on Code Generation and
Optimization (CGO). Chamonix, France; 2011:224-235.

14. Kist D, Pinto B, Bazo R, Bois ARD, Cavalheiro GGH. Kanga: a
skeleton-based generic interface for parallel programming. In: 2015
International Symposium on Computer Architecture and High Perfor-
mance ComputingWorkshop (SBAC-PADW). Florianópolis, SC, Brazil;
2015:68-72. https://doi.org/10.1109/SBAC-PADW.2015.16.

15. NVIDIA Corporation. Thrust. https://thrust.github.io/. Accessed
November 15, 2016.

16. Khronos OpenCL Working Group. SYCL: C++ Single-source Het-
erogeneous Programming For openCL. https://www.khronos.org/sycl.
AccessedMay 2015.

17. ISO/IEC. Programming languages – technical specification for c++
extensions for parallelism July 2015: ISO/IEC TS; 2015.

18. Kaiser H, Heller T, Adelstein-Lelbach B, Serio A, Fey D. Hpx: a task
based programming model in a global address space. In: Proceedings
of the 8th International Conference on Partitioned Global Address
Space Programming Models, PGAS '14 ACM; 2014; New York, NY,
USA:6:1-6:11.

19. Beard JC, Li P, Chamberlain RD. RaftLib: a C++ template library for
high performance stream parallel processing. In: Proceedings of the
Sixth International Workshop on Programming Models and Applica-
tions forMulticores andManycores, PMAM '15ACM;2015;NewYork,
NY, USA:96-105. https://doi.org/10.1145/2712386.2712400.

20. MattsonT, SandersB,MassingillB.Patterns forParallel Programming. 1st
ed. Reading, Massachusetts: Addison-Wesley Professional; 2004.

21. Aldinucci M, Pezzi GP, Drocco M, Spampinato C, Torquati M. Parallel
visual data restoration on multi-gpgpus using stencil-reduce pattern.
Int J High Perform Comput Appl. 2015;29(4):461-472.

How to cite this article: del Rio Astorga D, Dolz MF,

Fernández J, García JD. A generic parallel pattern interface for

stream and data processing. Concurrency Computat: Pract Exper.

2017;29:e4175. https://doi.org/10.1002/cpe.4175

https://thrust.github.io/
https://www.khronos.org/sycl
https://doi.org/10.1145/2712386.2712400
https://doi.org/10.1002/cpe.4175

	A generic parallel pattern interface for stream and data processing
	Abstract
	INTRODUCTION
	RELATED WORK
	PARALLEL PATTERNS
	Stream patterns
	Data patterns

	A GENERIC AND REUSABLE PARALLEL PATTERN INTERFACE
	Description of the interfaces
	Stream patterns
	Data patterns

	Pattern composability

	EVALUATION
	Analysis of the usability
	Performance analysis of pattern compositions
	Performance analysis of stream vs data patterns
	Performance analysis on heterogeneous configurations

	CONCLUSIONS
	References

