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A B S T R A C T

Advanced technologies like network function virtualization (NFV) and multi-access edge computing (MEC)
have been used to build flexible, highly programmable, and autonomously manageable infrastructures close to
the end-users, at the edge of the network. In this vein, the use of single-board computers (SBCs) in commodity
clusters has gained attention to deploy virtual network functions (VNFs) due to their low cost, low energy
consumption, and easy programmability. This paper deals with the problem of deploying VNFs in a multi-
cluster system formed by this kind of node which is characterized by limited computational and battery
capacities. Additionally, existing platforms to orchestrate and manage VNFs do not consider energy levels
during their placement decisions, and therefore, they are not optimized for energy-constrained environments.
In this regard, this study proposes an intelligent controller as a global allocation mechanism based on deep
reinforcement learning (DRL), specifically on deep Q-network (DQN). The conceived mechanism optimizes
energy consumption in SBCs by selecting the most suitable nodes across several clusters to deploy event
requests in terms of nodes’ resources and events’ demands. A comparison with available allocation algorithms
revealed that our solution required 28% fewer resource costs and reduced 35% the energy consumption in the
clusters’ computing nodes while maintaining high levels of acceptance ratio.
1. Introduction

5G and beyond networks are envisioned to be a game-changer due
to their unprecedented capabilities in terms of latency, reliability, and
the number of connected devices (Mahmood et al., 2021). These char-
acteristics will support a new era of services and applications, such as
the Internet of things (IoT), cooperative sensing, autonomous vehicles,
and smart factories. To accommodate the latency requirements of these
services, the convergence between the network function virtualization
(NFV) and multi-access edge computing (MEC) is crucial for the next-
generation networks to place the processing for the requested services
near the end-users (Bonomi et al., 2012). Regarding the scalability and
availability demands, the used edge nodes can interoperate in com-
modity clusters to enable failure recovery and accumulate processing
capacity.

A device required by edge nodes is the single-board computer (SBC),
which has become a mainstream option for IoT environments (Álvarez
et al., 2021), although its use has been extended to other sectors. This
use-cases extension is mainly due to hardware improvements in the last
years (Upton and Halfacree, 2016; Anon, 2022b), being used either as
standalone devices or in a cluster. One of the primary characteristics of
an SBC is its small size, which enables a higher density of devices and
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lowers cost when covering huge areas (Upton and Halfacree, 2016),
namely, on-boarding autonomous vehicles to provide communication
services during natural disasters (Tipantuña et al., 2019; Nogales et al.,
2020) and delivering green edge computing at the edge of the net-
work (Bourhnane et al., 2021). However, the computational resource
constraints of these devices must always be considered when deploying
services.

An increasingly common strategy for efficiently managing deployed
clusters is coupling network paradigms like NFV and MEC with con-
tainerization technologies (Slamnik-Kriještorac et al., 2020). This de-
ployment allows lightweight virtualization by packaging only required
code dependencies for the service execution, accelerating and simpli-
fying the service instantiation (Abu-Lebdeh et al., 2017). However,
deploying and managing constituent virtual network functions (VNFs)
of services in a commodity cluster can be a laborious and error-prone
task. Therefore, a platform capable of controlling the lifecycle of con-
tainers associated with service requests is necessary. In this vein, Ku-
bernetes (Anon, 2022a) has become the most prominent framework to
perform these functions. However, existing schedulers in this platform
and others do not consider energy measurements of the participant
nodes in the allocation decisions, which represents a crucial metric
vailable online 23 July 2023
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when deploying services in battery-powered SBCs. This scenario can
result in under-utilizing the available energy resources or attempting
deployments destined to fail due to insufficient resources. Therefore,
the necessity for a mechanism to provide energy measurements to the
scheduling process.

Additionally, when considering multiple clusters’ nodes to deploy
service requests across them, local scheduling mechanisms may be
insufficient since they need to cooperate among them (e.g., exchange
nodes’ information during the allocation process) to deploy incoming
requests that require nodes from different clusters. This scenario im-
plies communication challenges and extra load to the clusters’ nodes in
charge of performing the scheduling decisions.

This article tackles the problem of deploying constituent VNFs
of service requests in an energy-constrained environment formed by
several clusters while guaranteeing cost-effective resource utilization.
Different from our previous work in Llorens-Carrodeguas et al. (2021),
his paper proposes an intelligent controller as a global allocation
echanism to deploy service requests across existing nodes in the
ulti-cluster scenario. Meanwhile, local incoming requests are man-
ged by the local scheduling process running in the master node of
ach cluster. In addition, a communication mechanism and a machine
earning algorithm are introduced in the proposed solution to guarantee
he exchange of network information and the selection of the most
uitable nodes, respectively. The major contributions of this paper can
e summarized as follows:

• An intelligent controller as a global allocation strategy is pre-
sented to deploy events across multiple domains of SBC clusters.
The controller relies on a data distribution service (DDS) mech-
anism to exchange nodes’ status, service requests, and allocation
decisions.

• A deep reinforcement learning (DRL) algorithm is used to select
the most suitable nodes where constituent VNFs of services can
be deployed by considering resource utilization, battery consump-
tion, and service requirements. This algorithm is based on the
deep Q-network (DQN) method.

• A real-world testbed to evaluate the proposed approach is built
using several energy-constrained SBCs in a multi-cluster edge
system deployment.

The remainder of this paper is structured as follows. Section 2
describes the motivation for this work and related works. In Section 3,
we present the problem statement and modeling, as well as the notation
and system model used in the proposed approach. We introduce the
proposed intelligent controller and explain the functions of its blocks
in Section 4. Finally, we discuss the obtained results in Section 5.

2. Related work

This section provides a literature review of existing research works
related to event allocation in edge/cloud environments. We have fo-
cused our attention on papers that consider energy requirements in
their solutions. Additionally, we also analyze existing studies that use
multi-cluster edge/cloud deployments.

2.1. Energy efficient allocation mechanisms

Gazori et al. (2020) propose a DRL approach to address the task
scheduling problem in fog-based IoT applications. As the primary func-
tion, its scheduler decides whether to process the task in a fog node
or send it to the cloud data center. The authors include an energy
consumption model in the scheduler’s proposal, thus guaranteeing the
selection of the most appropriate virtual machine (VM) in terms of
power consumption. Likewise, the researchers of Ding et al. (2020a)
propose a Q-learning algorithm to schedule tasks energy efficiently.
Their approach aims to minimize the task response time and maxi-
2

mize the CPU utilization of a node. The authors reduce the energy o
consumption of the whole cloud system by improving its resource
utilization.

In Varasteh et al. (2021), propose a framework to solve the prob-
lem of the power-aware and delay-constrained joint VNFs’ placement
and routing (PD-VPR). In the first phase of the proposed solution, a
centrality-based ranking method maps the VNFs to physical nodes.
Meanwhile, the delay budget between consecutive VNFs is split in a
second stage. Then, the shortest path through the selected nodes is
found through the Lagrange relaxation-based aggregated cost (LARAC)
algorithm (Litvinchev and Ozuna, 2013).

Jayanetti et al. (2022) present a reinforcement learning (RL) model
for energy and time-optimized scheduling of tasks in edge-cloud en-
vironments. Its design integrates energy and deadline in the reward
model to train the agent. Thus, it can establish a trade-off between
conflicting objectives, such as energy optimization and time minimiza-
tion in workload executions. The authors also introduce a hybrid DRL
model comprising multiple actor networks and one critic network.
The researchers used the Cloudsim simulation toolkit for evaluation
purposes to test their approach. The evaluated dataset represents a
synthetic workflow structure created through the Pegasus workflow
framework (Pegasus, 2022).

The authors of Wahab et al. (2019) address the VNF readjustment
and consolidation problem by modeling it as an integer linear program-
ming (ILP) problem that considers a trade-off between the minimization
of latency, hardware utilization, service level objective (SLO) violation
cost, and VNF readjustment cost. To boost the feasibility of its model
in large-scale networks, Wahab et al. propose an optimized k-medoids
clustering approach that proactively divides the substrate network into
several disjoint clusters. Then, each cluster aims to optimize parameters
such as CPU, energy, and delay. Simulation results show that the pro-
posed solution reduces the readjustment time while decreasing resource
utilization compared to baseline solutions (e.g., K-means).

Pei et al. (2019) focus their attention on the VNF placement problem
in software-defined networking (SDN) and NFV environments. The
authors model this problem as binary integer programming (BIP). They
propose a double deep Q network-based VNF placement algorithm
(DDQN-VNPA) to solve it by considering the VNF placement cost, the
instances running cost, and service rejection penalties. Their approach
determines the optimal solution from a prohibitively large solution
space in the first stage. Then, the VNFs are placed or released according
to a threshold-based policy. The researchers evaluate its proposal with
trace-driven simulations on real network topology. Despite achiev-
ing good results in comparison with baseline algorithms in terms of
service rejection ratio, end-to-end delay, and VNF running time, Pei
et al. do not analyze the energy consumption since this parameter was
encapsulated in the instance running cost.

In Mu et al. (2021), propose a method that considers energy con-
umption and performance interference when allocating VNFs. The au-
hors formulate the problem as a bin-packing one that is NP-complete.
hus, they implement two solutions according to the homogeneity of
he servers. If all the servers are of the same type, the researchers
ropose a first-fit heuristic (FFH) algorithm to solve the problem with
lower bound. For a more general case, Mu et al. introduce the deep
eterministic automatic placement (DDAP), which is based on DRL.
he results show that DDAP achieves lower energy consumption and
unning time cost with respect to state-of-the-art methods such as FFH
nd ant colony system (ACS).
The authors of Qi et al. (2019a) introduce the accessible scope

oncept as a constraint to narrow the searching space by dividing
nto small groups those servers that can be used to allocate a specific
equest. Thus, the solution space is reduced, and the time efficiency
f the VNF allocation is improved while minimizing the server energy
onsumption. After considering the accessible scope, Qi et al. apply
he multi-stage graph algorithm (Bari et al., 2016) and greedy algo-
ithm (Cohen et al., 2015) to verify the influence of the accessible scope

n the acceptance ratio, energy consumption, and bandwidth usage.
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The obtained results reveal how the proposed approach significantly
reduces the runtime in large-scale network scenarios concerning those
in which the accessible scope is not used. However, the results do not
analyze the energy consumption metric despite the fact that minimizing
this value is one of the primary objectives.

Santos et al. (2021), formulate a system model for dynamic ser-
ice function chaining (SFC) placement regarding computing resources,
vailability levels, and energy consumption. The authors propose two
olicy-based RL algorithms to solve the SFC problem: proximal policy
ptimization (PPO) and advantage actor–critic (A2C). These algorithms
im to minimize energy consumption while taking into account avail-
bility levels. The simulations validate that the proposed algorithms
an be used for SFC deployments while guaranteeing better results
han a greedy approach in terms of energy consumption and accep-
ance rate. Following similar objectives, the authors of Solozabal et al.
(2019) utilize an RL method to implement a VNF placement policy
to address the VNF forward graph embedding (VNF-FGE) problem.
Solozabal et al. seek to optimize the VNF-FGE by applying neural
combinatorial optimization (NCO) (Bello et al., 2016) with defined
constraints such as latency, bandwidth, resource utilization, and power
consumption. For validating purposes, the researchers compare the
feasibility of the proposed approach by comparing its solutions with the
Gecode solver (Schulte et al., 2022) and the FFH algorithm. Similar to
previous works, we miss an analysis related to energy consumption in
the obtained results.

Khemili et al. (2022), propose a placement algorithm that aims to
maximize the exploitation of MEC’s resources in a balanced manner.
To this end, they apply formal concept analysis (FCA) (Fkih and Omri,
2016) in the first stage to place VNFs by considering their sequencing
order in the service request. In the second phase, the researchers use
Fuzzy-FCA to consolidate VNF groups into the least number of virtual
machines. To evaluate the proposed algorithm, this study compares
its performance with the MultiSwarm algorithm (Xia et al., 2018) in
terms of packaging efficiency, server and network energy consumption,
latency, and resource cost. The implementation and evaluation of the
algorithms use the Edge-CloudSim tool, and the results show that the
proposed mechanisms minimize the number of active virtual machines
used in the VNF allocation, thus reducing energy consumption with
regard to the baseline strategy.

Table 1 summarizes the revised literature concerning energy-efficien
allocation mechanisms.

2.2. Multi-cluster edge/cloud deployments

The authors of Zhanikeev (2015) propose an architecture called
cloud visitation platform (CVP) to enable federation between cloud and
fog nodes. In this architecture, the participant providers must register
in the federated manager to indicate the nodes’ information belonging
to the federated system. The proposed solution includes modules to
provide hardware awareness for VMs and container-based applications,
thus allowing to VMs to sense their local environment and adapt
accordingly. Additionally, the CVP provides interfaces to perform load
balancing and queuing in several requests. However, Zhanikeev et al.
do not perform any evaluation regarding the feasibility of the proposal
in a real scenario.

In Smith et al. (2022), propose a solution called FaaS functions
and data orchestrator (FaDO) to enable data-aware functions schedul-
ing across multi-serverless compute clusters, which are geographically
distributed. FaDO performs its functions by distributing the invocation
of the function to the most suitable compute clusters according to
the storage configurations. To this end, it uses header-based HTTP
reverse proxy with three load-balancing algorithms. Thereby, cluster
inter-operation is limited since user requests are sent to a selected
cluster node without the possibility of being distributed across all the
participant clusters.
3

The authors of Bruschi et al. (2019) develop a multi-cluster overlay
(MCO) network paradigm based on a tunnel-less SDN solution to guar-
antee scalability in virtual tenant networks across the 5G distributed in-
frastructure. Its proposal supports software instance migrations among
geo-distributed computing resources. The proposed mechanism is eval-
uated through simulation and emulation environments by using the
Matlab software and the OpenVolcano platform (Bruschi et al., 2016),
respectively.

Javed et al. (2020), present a new IoT edge-cloud federation (IoTEF)
architecture for multi-cluster IoT applications by modifying its previous
work (Javed et al., 2018). The proposal introduces a modular design
composed of four layers that simplify the deployment and monitoring
of IoT applications. In addition, it offers a federated management
interface to orchestrate several clusters, an exactly-once data delivery
mechanism, and fault tolerance at edge and cloud levels. The authors
address the fault-tolerance problem through the Apache Kafka pub-
lish/subscribe mechanism as a data replication solution and Kubernetes
as a management orchestrator. The proposed solution is evaluated by
analyzing its performance in a smart building use case. The results
show that the IoTEF architecture minimizes latency, saves network
bandwidth, and tolerates hardware and network connectivity failures
in a proper manner. Nevertheless, this solution has some limitations re-
garding the communication mechanism since the Kafka implementation
used does not support transactions among multiple clusters. Despite the
authors proposing a workaround to solve this issue, it implies several
hops between other clusters before reaching the final destination.

2.3. Motivation

Despite the plethora of works addressing energy-efficient scheduling
algorithms, most use classic energy models in which maximum and
idle values are considered, with the objective of minimizing total con-
sumption by reducing resource utilization. Additionally, these works
lack the flexibility to be adapted to 5G and beyond networks’ use cases
since energy values used in their evaluations are arbitrarily selected.
Furthermore, the revised literature neglects the evaluation of energy-
efficient algorithms in resource-constrained devices such as SBCs, thus
limiting their applicability in real use cases. Regarding multi-cluster
deployments, existing researches present limitations according to the
communication mechanism used in the cluster federations since the
proposed strategies require several hops among nodes to communicate
distant endpoints. In addition, they do not consider inter-cluster op-
erations to process or allocate requests across existing nodes in the
multi-cluster scenario.

To fill the identified gaps in the literature, this paper proposes
an intelligent controller as a global allocation mechanism to deploy
VNFs across multiple domains of SBC clusters. It considers resource
utilization and battery levels of the nodes to select suitable nodes
that accommodate the service requirements. The communication be-
tween the participant clusters and the intelligent controller is achieved
through a DDS mechanism that is integrated with the mentioned el-
ements. In contrast to most of the papers, the proposed solution is
evaluated in a real testbed that uses leading technologies.

3. Problem statement and system model

In this section, we formally present the problems we address as well
as the notation and system model of use.

3.1. NFV system description

To capture the environment characteristics mentioned above and
formally define the problems we investigate, we consider the reference
architecture depicted in Fig. 1. Under this architecture, a global SDN
controller is deployed to manage a region compounded by several
cluster nodes. In this way, a centralized approach is considered to
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Table 1
Revised energy-efficient allocation mechanisms.
Ref. Problem Algorithm Objectives Evaluation Shortcomings

Gazori et al. (2020) Task scheduling DQN Minimize cost and SimPy It is not clear how the energy consumption
time model is integrated into the proposed

solution
Ding et al. (2020a) Task scheduling Q-learning Minimize response CloudSim A linear CPU-power consumption model is

time and maximize used. The energy consumption is reduced by
CPU utilization improving resource utilization

Varasteh et al. (2021) VNF placement LARAC Minimize used hosts, Gurobi solver There is a strong dependency between two
and routing network devices and defined subproblems. A classic energy model

energy is used where maximum and idle values are
defined

Jayanetti et al. (2022) Task scheduling DRL Minimize time and CloudSim and Trade-off between energy optimization and
energy Pegasus time minimization is achieved by integrating

energy and deadline in the reward function
Wahab et al. (2019) VNF placement K-medoids Minimize latency, SLO MatLab The solution requires the elimination of cost

and ILP violation cost, resource functions to boots its feasibility in large-scale
utilization, and VNF networks
readjustment cost

Pei et al. (2019) VNF placement DQN Minimize VNF placement Tensorflow The energy consumption is not analyzed since
and running cost, and it was encapsulated in the instance running
rejected SFC requests cost
penalties

Mu et al. (2021) VNF placement FFH and Minimize energy Python-based The energy consumption is reduced by
DQN simulations minimizing the resource consumption since

they are linearly related according to the used
model

Qi et al. (2019a) VNF placement Accessible Minimize VNF time C-based The energy consumption is not analyzed despite
scope allocation and energy simulations being one of the primary paper objectives

Santos et al. (2021) SFC placement PPO and Minimize energy OpenAI The proposed algorithms obtain better results
A2C than a greedy approach in terms of energy

consumption and acceptance rate
Solozabal et al. (2019) VNF-FGE NCO Minimize energy Python-based An analysis related to energy consumption in

simulations the obtained results is missed
Khemili et al. (2022) VNF placement Fuzzy-FCA Maximize used MEC’s Edge-CloudSim The energy consumption is reduced since the

resources number of active VMs in the allocation process
is minimized. In this regard, we missed a study
of the acceptance service rate
consolidate the system information (e.g., nodes’ status and resources)
in just one entity (i.e., the intelligent controller), thus having a global
view of the whole system and reducing the number of messages that
a distributed architecture could generate. Thus, we denote 𝐾 as a set
of clusters (𝑘 ∈ 𝐾). Each cluster 𝑘 is formed by a set of physical
nodes (𝑁) where virtual network functions (𝑓 ) can be scheduled. The
cluster nodes are considered energy-constrained devices, representing
edge nodes with a fixed amount of computational resources.

The virtual functions (𝑓 ) are placed in a set of deployable units
within computing nodes (𝑃 ). Each virtual node 𝑝 ∈ 𝑃 is identified with
an ID. We include a global parameter 𝑝𝑘𝑛𝑖 to indicate that virtual node
𝑝𝑖 has been placed in physical node 𝑛 of cluster 𝑘, where 𝑛 ∈ 𝑁 and
∈ 𝐾.
Each physical node (𝑛) in cluster 𝑘 has resource and power capacity.

he former contains the computing resources (e.g., CPU and memory).
he latter implies the power source that maintains the device work-
ng. Thus, we denote the resource capacity of each node by 𝐶𝑘𝑛 =
𝐶𝐶𝑃𝑈
𝑘𝑛

, 𝐶𝑀𝑒𝑚
𝑘𝑛

) representing the available resources in terms of CPU
nd memory. Moreover, we indicate the available energy capacity of
ach node as 𝐸𝑘𝑛 , which is expressed as the state of charge (SOC).
dditionally, each node has a total output bandwidth represented as
𝑘𝑛 .
Similar to our previous work (Llorens-Carrodeguas et al., 2021),

he system can process two types of events: tasks and services. The
ormer is a set of instructions that require a predefined and fixed value
f execution time, such as log rotation associated with a particular
unning service and backing up a service database before its deletion.
lthough, we will focus on the latter because it represents the most
omplex case since several virtual functions form the services. More
pecifically, this kind of event is comprised of a sequence of VNFs,
= {𝑓 , 𝑓 ,… , 𝑓 }.
4

1 2 |𝐹 |
In this regard, each service instance 𝑓 ∈ 𝐹 has a resource demand
in terms of CPU and memory denoted by 𝐷𝑓 = (𝐷𝐶𝑃𝑈

𝑓 , 𝐷𝑀𝑒𝑚
𝑓 ).

We denote 𝑆𝑅 as a set of service requests arriving at the controller
node. In this vein, each request 𝑠𝑟 ∈ 𝑆𝑅 must be directed through the
VNFs compounding the request by considering its requirements. The
service-related 𝑠𝑟 is denoted as follows:

𝑠𝑟 = {𝑓1, 𝑓2,… , 𝑓
|𝑠𝑟|}, 𝑓𝑖 ∈ 𝐹 , 𝑖 = 1, 2,… , |𝑠𝑟|.

Each service request 𝑠𝑟 has specific QoS demands, such as the
bandwidth requirement 𝑊𝑟 and deadline 𝑑𝑟 for processing the given
request. Additionally, each VNF 𝑓 in the request has a running time
parameter (𝑡𝑟) to denote the time that must pass before considering
it complete. When 𝑡𝑟 > 0, the event runs during the specified time.
Otherwise, the event will be executed during the system’s lifetime when
this parameter is zero or not specified.

Finally, for each request 𝑠𝑟 ∈ 𝑆𝑅, we use a binary variable 𝑥𝑖𝑠𝑟 ,𝑘𝑛
to indicate the placement decision of each VNF 𝑓𝑖 belonging to the
requested service. More specifically, 𝑥𝑖𝑠𝑟 ,𝑘𝑛 = 1 when VNF 𝑓𝑖 is
successfully placed on node 𝑛 ∈ 𝑁 of cluster 𝑘 ∈ 𝐾; otherwise,
𝑥𝑖𝑠𝑟 ,𝑘𝑛 = 0. Table 2 provides a list of notations related to the system
model.

3.2. Problem modeling

To face real-time network variations due to receiving requests with
an unknown arrival time, we use the concept of time slot 𝜏. The
controller verifies the nodes’ status at each time slot 𝜏. Additionally,
it can receive service requests, make deployment decisions and update
the network’s states. In this regard, we define 𝐶𝑛,𝜏 as the available
capacity of node 𝑛 at time slot 𝜏. Likewise,𝑊𝑛,𝜏 represents the available
bandwidth of node 𝑛 at time slot 𝜏.
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Fig. 1. Reference NFV system formed by several clusters of edge nodes which an intelligent controller manages.
Additionally, we define 𝑆𝑅,𝜏 ⊂ 𝑆𝑅 to cope with the possibility of
receiving several requests at time slot 𝜏. Thus, simultaneous service
requests will be treated as they arrive by considering the event’s
ranking in the priority queue. The event’s ranking is calculated based on
two factors: 𝑑𝑒𝑙𝑎𝑦(𝑓 ) and 𝑤𝑎𝑖𝑡𝑞𝑢𝑒𝑢𝑒(𝑓 ). The former represents the time
that the virtual function’s execution 𝑓 can be delayed without missing
its deadline (see (1)). The latter represents the waiting time of the VNF
𝑓 in the queue (see (2)). In this equation, 𝑡𝑎 denotes the arrival time of
the service request.

𝑑𝑒𝑙𝑎𝑦(𝑓 ) = 𝑓𝑑𝑟 − 𝑡𝑛𝑜𝑤 − 𝑓𝑡𝑟 (1)

𝑤𝑎𝑖𝑡𝑞𝑢𝑒𝑢𝑒(𝑓 ) = 𝑡𝑛𝑜𝑤 − 𝑓𝑡𝑎 (2)

Considering the previous definitions, we calculate the ranking score
for the virtual function (𝑓𝑟𝑎𝑛𝑘) as follows:

𝑓𝑟𝑎𝑛𝑘 = 𝛽1 ⋅ 𝑑𝑒𝑙𝑎𝑦(𝑓 ) − (1 − 𝛽1) ⋅𝑤𝑎𝑖𝑡𝑞𝑢𝑒𝑢𝑒(𝑓 ) (3)

where 𝛽1 is an adjustable positive weight with values between 0 and 1.
To represent whether request 𝑠𝑟 ∈ 𝑆𝑅 is still in service at time slot

𝜏, we use the binary variable 𝑎𝑠𝑟 ,𝜏 as follows:

𝑎𝑠𝑟 ,𝜏 =

{

1 , 𝑡𝑠 ≤ 𝜏 < (𝑡𝑠 + 𝑡𝑟)

0 , otherwise
(4)

where 𝑡𝑠 represents the starting time when the selected nodes start
processing the service request.

Since we consider multiple instance deployment of VNFs in the same
node, we must know the number of VNFs 𝑓 ∈ 𝐹 placed on node 𝑛 ∈ 𝑁
of cluster 𝑘 ∈ 𝐾 at time slot 𝜏. Thus, we utilize the variable 𝜂𝑓𝑘𝑛 ,𝜏 to
reflect this value and it is calculated as follows:

𝜂𝑓𝑘𝑛 ,𝜏 =
∑

∀𝑠𝑟∈𝑆𝑅

𝑓
∑

1≤𝑖≤|𝑠𝑟|
𝑥𝑖𝑠𝑟 ,𝑘𝑛 ⋅ 𝑎𝑠𝑟 ,𝜏 (5)

Similarly, we indicate when any VNF instance is placed, at time slot
5

𝜏, on node 𝑛 ∈ 𝑁 of cluster 𝑘 ∈ 𝐾 through the binary variable 𝜈𝑘𝑛 ,𝜏 as
follows:

𝜈𝑘𝑛 ,𝜏 =

⎧

⎪

⎨

⎪

⎩

1 ,
∑

∀𝑓∈𝐹
𝜂𝑓𝑘𝑛 ,𝜏 > 0

0 ,
∑

∀𝑓∈𝐹
𝜂𝑓𝑘𝑛 ,𝜏 = 0

(6)

After the previous specifications, we formally present our model
defined as ⟨ ,,, 𝛾⟩, where  represents the set of discrete states,
 is the set of discrete actions,  is the reward function, and 𝛾 ∈ [0, 1]
is a discount factor for future rewards. Thus, the core elements used in
the presented model are defined as follows.

State definition: the state 𝑠 ∈  at time t (𝑠𝑡) is represented as
a vector consisting of the remaining resources and bandwidth of each
node across all the clusters, and the requirements of the current VNF
to be placed. Thus, state 𝑠𝑡 is defined as follows:

𝑠𝑡 = (𝐶 𝑡, 𝐸𝑡,𝑊 𝑡, 𝑅𝑡),

where 𝐶 𝑡 defines the remaining resources of each node per cluster,
therefore 𝐶 𝑡 = (𝐶 𝑡

11
,… , 𝐶 𝑡

1
|𝑛|
,… , 𝐶 𝑡

|𝑘|
|𝑛|
). In addition, the remaining

SOC of each node per cluster is described as 𝐸𝑡 = (𝐸𝑡
11
,… , 𝐸𝑡

1
|𝑛|
,… ,

𝐸𝑡
|𝑘|

|𝑛|
). The remaining bandwidth of each node per cluster is repre-

sented by 𝑊 𝑡 = (𝑊 𝑡
11
,… ,𝑊 𝑡

1
|𝑛|
,… ,𝑊 𝑡

|𝑘|
|𝑛|
). Finally, the requirements

of the VNF to be scheduled are defined as 𝑅𝑡 = (𝐷𝑖,𝑊𝑟𝑖 , 𝑡𝑟𝑖 , 𝑑𝑟𝑖 , 𝑃𝐹𝑟𝑖 ),
where 𝐷𝑖 is the resource demand on a node by the VNF, 𝑊𝑟𝑖 represents
the bandwidth demand, the running time of the service request is
established by 𝑡𝑟𝑖 , 𝑑𝑟𝑖 defines the deadline for processing the given
request, and 𝑃𝐹𝑟𝑖 is the amount of VNFs in 𝑠𝑟 ∈ 𝑆𝑅 waiting to be
deployed.

Action definition: we denote action 𝑎 ∈  as a binary vector. More
specifically, each position in the vector corresponds to a possible action.
When the first position is 1, it indicates that no node will be selected
(i.e., 𝑎𝑡 = (1, 0, 0, 0,… , 0) do nothing). The value of 1 in one of the

𝑡 ,… , 0)).
remaining positions infers the selected node (i.e., 𝑎 = (0, 0, 1, 0
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Table 2
System model notation.
Notation Description

𝐾 Set of clusters
𝑁 Set of physical nodes where events can be placed
𝑃 Set of deployable units in the computing nodes
𝑆𝑅 Set of network service requests arriving at controller
𝐹 Sequence of VNFs compounding a network service request
𝑘 Each cluster formed by a set of physical nodes (𝑁)
𝑛 Each physical node where virtual nodes are created
𝑝 Each virtual node created on the physical node to run the

events
𝑝𝑘𝑛𝑖 Indicates the virtual node 𝑝𝑖 is placed in node 𝑛 of cluster

𝑘
𝑠𝑟 Each network service request formed by a sequence of

VNFs
𝑓𝑖 Each VNF compounding a network service
𝐶𝑘𝑛 Available resource capacity of node 𝑛 ∈ 𝑁 of cluster 𝑘 ∈ 𝐾

in terms of CPU and memory
𝐸𝑘𝑛 Available energy capacity of node 𝑛 ∈ 𝑁 of cluster 𝑘 ∈ 𝐾

in terms of SOC
𝐷𝑓 Resource demand of service instance 𝑓 ∈ 𝐹 in terms of

CPU and memory
𝑊𝑘𝑛 Total output bandwidth of node 𝑛 ∈ 𝑁 of cluster 𝑘 ∈ 𝐾
𝑊𝑟 Bandwidth requirement of service request 𝑠𝑟 ∈ 𝑆𝑅
𝑑𝑟 Deadline for processing a given request
𝑡𝑟 Running time of a given request before considering it

complete
𝑡𝑎 Arrival time of a given request to controller
𝑡𝑠 Starting time when the selected nodes process a given

request
𝑥𝑖𝑠𝑟 ,𝑘𝑛

1 if the VNF 𝑓𝑖 is successfully deployed on node 𝑛 ∈ 𝑁 of
cluster 𝑘 ∈ 𝐾, 0 otherwise

𝑎𝑠𝑟,𝜏 1 if service request 𝑠𝑟 ∈ 𝑆𝑅 is active in time slot
[𝑡𝑠 , 𝑡𝑠 + 𝑡𝑟], 0 otherwise

𝜂𝑓𝑘𝑛,𝜏
Number of VNF instances 𝑓 ∈ 𝐹 that are placed on node
𝑛 ∈ 𝑁 of cluster 𝑘 ∈ 𝐾 in time slot [𝑡𝑠 , 𝑡𝑠 + 𝑡𝑟]

𝜈𝑘𝑛,𝜏 1 if any VNF instance is placed on node 𝑛 ∈ 𝑁 of cluster
𝑘 ∈ 𝐾 in time slot [𝑡𝑠 , 𝑡𝑠 + 𝑡𝑟], 0 otherwise

𝑧𝑠𝑟𝑘𝑛,𝜏
1 if any VNF of request 𝑠𝑟 ∈ 𝑆𝑅 is placed on node 𝑛 ∈ 𝑁
of cluster 𝑘 ∈ 𝐾 in time slot [𝑡𝑠 , 𝑡𝑠 + 𝑡𝑟], 0 otherwise

𝑦𝑠𝑟 1 if request 𝑠𝑟 ∈ 𝑆𝑅 is deployed, 0 otherwise

Reward function: we define the reward function as a weighted sum
f objectives that we want to achieve them jointly. The mathematical
epresentation of this function is explained in the following subsection.
State transition: the state transition is defined as (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1),

where 𝑠𝑡 is the current network state, 𝑎𝑡 is the action taken (i.e., do
nothing or place VNF) and 𝑠𝑡+1 is the new network state after receiving
the reward 𝑟𝑡.

3.3. Problem formulation

This section presents the mathematical formulation of the service
deployment problem considering multiple clusters of nodes where vir-
tual functions can be deployed.

In this regard, we consider that multiple VNFs belonging to different
service requests can be placed at the same node in time slot 𝜏 while it
has available resources. Such consideration is known as VNF consoli-
dation (Panda et al., 2016; Qi et al., 2019b; Zhang et al., 2021), and it
s represented as follow:
∑

∀𝑓∈𝐹
𝜂𝑓𝑘𝑛 ,𝜏 ⋅𝐷𝑓 ≤ 𝐶𝑘𝑛 (7)

Additionally, we use 𝑧𝑠𝑟𝑘𝑛 ,𝜏 to indicate that any VNFs of request
𝑟 ∈ 𝑆𝑅 are placed in node 𝑛 ∈ 𝑁 of cluster 𝑘 ∈ 𝐾 at time slot 𝜏.
hen:

𝑠𝑟
𝑘𝑛 ,𝜏

=

⎧

⎪

⎪

⎨

⎪

⎪

1 ,
|𝑠𝑟|
∑

𝑖=1
𝑥𝑖𝑠𝑟 ,𝑘𝑛 ⋅ 𝑎𝑠𝑟 ,𝜏 > 0

0 ,
|𝑠𝑟|
∑

𝑥𝑖𝑠𝑟 ,𝑘𝑛 ⋅ 𝑎𝑠𝑟 ,𝜏 = 0

(8)
6

⎩ 𝑖=1
c

Thus, we establish that the bandwidth demand of all requests pass-
ng through node 𝑛 ∈ 𝑁 of cluster 𝑘 ∈ 𝐾 cannot exceed its total output
andwidth, represented as follows:
∑

∀𝑠𝑟∈𝑆𝑅

𝑊𝑟 ⋅ 𝑧
𝑠𝑟
𝑘𝑛 ,𝜏

≤ 𝑊𝑘𝑛 (9)

Similar to our previous work (Llorens-Carrodeguas et al., 2021),
e consider that surpassing the deadline of the service request would
ot lead to a service rejection since maintaining a required QoS is a
esirable metric but not mandatory (Gazori et al., 2020). In this vein,
e use a binary variable 𝑦𝑠𝑟 to indicate whether 𝑠𝑟 is deployed or not.
hen:

𝑠𝑟 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 ,
|𝑠𝑟|
∑

𝑖=1

∑

𝑛∈𝑁
𝑥𝑖𝑠𝑟 ,𝑘𝑛 = |𝑠𝑟|

0 ,
|𝑠𝑟|
∑

𝑖=1

∑

𝑛∈𝑁
𝑥𝑖𝑠𝑟 ,𝑘𝑛 < |𝑠𝑟|

(10)

According to the previous considerations, we want to achieve sev-
ral objectives. First, we want to minimize the resource cost of used
odes (RC), which can be expressed as follows:

C =
∑

𝑘∈𝐾

∑

𝑛∈𝑁
𝜈𝑘𝑛 ,𝜏 ⋅ (𝛽𝐶𝐶𝑘𝑛 + 𝛽𝑊 𝑊𝑘𝑛 ), (11)

.t. (4), (5), (6), (7),

here 𝛽𝐶 and 𝛽𝑊 are the node resource and bandwidth unit costs,
espectively.
Our second objective is to maximize the system’s lifetime (LT) by

electing nodes with appropriate levels of SOC to save as much energy
s possible. This value can be obtained as follows,

T =
∑

𝑘∈𝐾

∑

𝑛∈𝑁
𝐸𝑘𝑛 , (12)

.t. (1), (2), (4), (5), (6), (7), (8), (9).

Likewise, the third objective of the proposed model is to maxi-
ize the number of deployed services (DS) to benefit the customer’s
equests, which can be expressed as follows:

S =
∑

𝑠𝑟∈𝑆𝑅

𝑦𝑠𝑟 , (13)

.t. (1), (2), (4), (5), (6), (7), (8), (9).

After expressing the model’s objectives, we define the reward func-
ion as a weighted sum of the resource costs, the lifetime of the
ystem, and the number of deployed service requests as expressed in
xpression (14).

𝑡(𝑠𝑡, 𝑎𝑡) =

{

𝜁 ⋅ LT + 𝜉 ⋅ DS − 𝜙 ⋅ RC , 𝑠𝑟𝑖 or 𝑓𝑖 is deployed
0 , 𝑠𝑟𝑖 or 𝑓𝑖 is rejected

(14)

The adjustable positive weights 𝜁, 𝜉, 𝜙 ∈ [0, 1] allow a trade-off
etween the different deployment decisions. Please notice that the
erms to be maximized (i.e., LT and DS) are expressed as positive terms,
hile the one to be minimized (i.e., RC) is negative. In a nutshell, the
eward function aims to increase the lifetime of the system and the
umber of deployed service requests while reducing the resource cost
f used nodes.

. DQN-based intelligent controller solution

In this section, we propose our deep Q-network (DQN)-based in-
elligent controller (DQNIC) to deploy virtual functions of a service
equest among several clusters. After receiving a multi-deployed ser-
ice request from one of the assigned clusters, the proposed solution
elects the best nodes among all the clusters by considering remaining
attery estimations and CPU usage. Please notice that in Fig. 2, each
luster has a scheduler in charge of deploying local service requests
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Fig. 2. Intelligent controller solution design and the relationships among its constituent modules.
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by using the SOC and capacity-based scheduler (SOCCS) presented
in Llorens-Carrodeguas et al. (2021).

Since the proposed solution needs the local schedulers’ available
nformation (e.g., CPU, memory, and SOC) to deploy services by con-
idering a multi-cluster placement, we incorporate a mechanism in the
ocal schedulers to guarantee their communication with the intelligent
ontroller. Likewise, this mechanism is also proposed for the intelligent
ontroller, and it is based on DDS.
Thus, our proposal is formed by five main elements: the global

cheduler, the global monitor, the data writer, the data reader, and the
DS monitor. These modules have been grouped into two categories
ccording to their functions: DQN-based scheduler and global DDS.
Fig. 2 depicts the relationships among the constituent modules of

he proposed solution. More specifically, the orange line represents the
DS communication between global and local entities as well as their
elation with the schedulers’ blocks. Additionally, the blue line reflects
he connection between the schedulers’ elements and how the local
chedulers communicate with the orchestrator. Finally, the green line
hows the interaction between the orchestrator and the cluster nodes.
he functions of DQNIC’s blocks and local DDS are explained in the
ollowing subsections.

.1. Local DDS

The local DDS implementation is composed of two blocks: data
eader and data writer. The former reads the information sent by the
QNIC regarding the selected computing node where the controller
ust deploy the current VNF. The controller node of a cluster will place
VNF in its domain when it detects its name in the identifier field
f the ‘‘Status’’ topic. This topic represents a data stream composed
f seven fields where the identifier one is used to announce the kind
f information that the local data writer will send. Thus, this element
s responsible for publishing data regarding the nodes and service
tatus. More specifically, it sends information about service requests,
ervice and VNF deployments, and service rejections. Additionally, the
ocal data writer periodically shares the remaining battery and CPU
7

tilization of the cluster’s nodes. b
.2. Global DDS

In contrast to the local DDS, the global implementation is formed
y three blocks: DDS monitor, data writer, and data reader. The mon-
tor automatically discovers compatible controller nodes according to
he configured security profiles. Thus, we guarantee that the DQNIC
nly receives information from registered entities during the discovery
hase (Llorens-Carrodeguas et al., 2019). Moreover, the DDS moni-
or tracks the status of the controller node in each cluster by either
etecting a new participant or a failure one.
In the case of the global data writer, it is triggered by the global

cheduler to send, through the ‘‘Status’’ topic, the selected node where
he analyzed VNF must be placed. By indicating the controller node
hat manages the selected compute in the identifier field, it guarantees
he reception of its decision only by the required master.
In correspondence with the information sent by the local data writer,

he global data reader collects the nodes’ status in terms of CPU and
emory usage and SOC estimation. Additionally, it receives multi-
eployment service requests and several placement states. Apart from
athering the mentioned information, the global data reader is respon-
ible for storing it on the corresponding global monitor’s buffer for
urther use during the DQN training.

.3. Global monitor

This block represents a collection of storing data structures used
y the different constituent elements of DQNIC. More specifically,
he global data reader stores the received information related to the
odes’ status and service requests in this element. Additionally, the
lobal scheduler reads the stored data from the global monitor to create
he input data forwarded through the DQN. Moreover, this block is
sed to save the state transitions (i.e., 𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1), which are utilized
fterward to train the DQN.

.4. Global scheduler

This element represents the most crucial component in DQNIC. It
etermines the best node where a particular VNF can be placed ac-
ording to predictions that consider the system’s current state. Through
hese predictions, the global scheduler chooses what it considers the

est action. This element improves its decisions by considering past
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Fig. 3. Neural network design to estimate the Q-value function.

experiences and obtaining rewards from the system after each action.
This behavior is due to the reinforcement learning algorithm running
on this element.

A well-known reinforcement learning solution is Q-learning which
selects actions according to the Q-values stored in its dimensional
Q-table. This solution’s main weakness is its lack of generality and
scalability despite its powerful and straightforward capabilities (Zeng
et al., 2019). Therefore, this solution is inapplicable in large-scale
networks.

To overcome this limitation, the DQN introduces a neural network
to estimate the Q-value function. The architecture of this network is
formed by an input layer, an output layer, and several hidden layers,
as is shown in Fig. 3. The input layer represents the state vector, and
the output layer is the actions’ probability distribution.

By considering a DQN model to estimate the possible actions that
DQNIC can take, we implement the primary process of global scheduler
as shown in Algorithm 1.

This algorithm runs simultaneously with the communication process
managed by the global DDS. Thus, we avoid delays in the algorithm’s
execution due to the performance of other modules. The main function
of Algorithm 1 is to select the best node to place a VNF request by
considering an input state. To this aim, we create a DQN network
according to the number of inputs (e.g., node’s status and VNF re-
quest) and outputs (e.g., set of clusters’ nodes in the system) in the
system’s model (line 1). Additionally, this step includes the possibility
of loading a pre-trained model if existing. Later on, we initialize the
DQN model’s parameters with random weights (lines 2 and 3). Please
otice that we use two DQN networks to make our training more stable
ince the values of 𝑄𝑡(𝑠𝑡, 𝑎𝑡) and 𝑄𝑡(𝑠𝑡+1, 𝑎𝑡) provided by the Bellman
quation (Ding et al., 2020b) have only one step between them. Thus, it
s difficult for a neural network to distinguish between them, which can
lter the estimation values of nearby states after updating the network’s
arameters. Therefore, we introduce the so-called target Q-network to
ack-propagate its predicted Q-values and train the main Q-network
ith fixed weights to stabilize the computation of 𝑚𝑎𝑥𝑄(𝑠𝑡+1, 𝑎) term in
he Bellman equation. Following the algorithm’s execution, we define
he set of possible actions to take, which includes the existing nodes of
he system plus the possibility of doing nothing (line 4). Moreover, this
tep comprises the initialization of the RL agent and the replay buffer
here the system’s transitions will be stored.
In line 5, we define the running condition of this algorithm by

ndicating the number of training steps we want to consider. During
his process, the algorithm creates the input state for each interaction
ith the environment by considering the stored information in global
onitor (line 6). To make the DQN network easier to train, we use the
nput data normalization method to format the input data into a small
ange (i.e., [0, 1]). For the computing resource inputs (e.g., CPU and
OC) in state 𝑠𝑡, we divide the remaining capacities of each node by a
aximum 𝐶 = 𝑚𝑎𝑥(𝐶 ), 𝐸 = 𝑚𝑎𝑥(𝐸 ), ∀𝑘 ∈ 𝐾, 𝑛 ∈ 𝑁 .
8

𝑚𝑎𝑥 𝑘𝑛 𝑚𝑎𝑥 𝑘𝑛 t
Algorithm 1: DQNIC training process.
Input: Nodes’ status and VNF request (see expression (15))
Output: Selected node to deploy the VNF request

1 Create DQN model according to the number of inputs and outputs or
load a pre-trained model

2 Initialize action-value function 𝑄 with random weights 𝛩
3 Initialize target action-value function 𝑄̂ with weights 𝛩− = 𝛩
4 Initialize action space (|𝐾||𝑁| + 1), RL-agent and replay buffer (𝐷)

with a determined size
5 while 𝑡𝑟𝑎𝑖𝑛𝑆𝑡𝑒𝑝𝑠 < 𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑆𝑡𝑒𝑝𝑠 do
6 Create input state (nodes’ status and VNF request) using the

stored information in global monitor
7 if RL-agent’s strategy is exploration then
8 RL-agent selects a random action 𝑎𝑡 from action space with

probability 𝜖
9 else
10 RL-agent selects action 𝑎𝑡 = 𝑚𝑎𝑥𝑎𝑄(𝑠𝑡, 𝑎;𝛩)

11 Trigger global data writer to indicate VNF’s deployment to the
selected node in action 𝑎𝑡

12 Wait for acknowledgment of VNF’s deployment from selected
node

13 Calculate reward 𝑟𝑡 using expression (14)
14 Get next state (𝑠𝑡+1) and store transition (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) in 𝐷
15 if 𝑒𝑛𝑣𝑆𝑡𝑒𝑝𝑠 > 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑆𝑡𝑒𝑝𝑠 then
16 Sample random mini-batch of transitions (𝑠𝑗 , 𝑎𝑗 , 𝑟𝑗 , 𝑠𝑗+1) from

𝐷
17 forall Transitions in mini-batch do
18 if Episode terminates at step 𝑗 + 1 then
19 Set 𝑦𝑗 = 𝑟𝑗

20 else
21 Set 𝑦𝑗 = 𝑟𝑗 + 𝛾 ∗ 𝑚𝑎𝑥𝑎′ 𝑄̂(𝑠𝑗+1, 𝑎′;𝛩−)

22 Perform gradient decent step on (𝑦𝑗 −𝑄(𝑠𝑗 , 𝑎𝑗 ;𝛩))2 with
respect to the network parameters 𝛩

23 Every X steps reset 𝑄̂ = 𝑄

Similarly, we compress the bandwidth-related inputs and the rest of
VNF’s requirements. Thus, the normalized input state is:

(
𝐶 𝑡
11

𝐶𝑚𝑎𝑥
,… ,

𝐶 𝑡
1
|𝑛|

𝐶𝑚𝑎𝑥
,… ,

𝐶 𝑡
|𝑘|

|𝑛|

𝐶𝑚𝑎𝑥
,

𝐸𝑡
11

𝐸𝑚𝑎𝑥
,… ,

𝐸𝑡
1
|𝑛|

𝐸𝑚𝑎𝑥
,… ,

𝐸𝑡
|𝑘|

|𝑛|

𝐸𝑚𝑎𝑥
,

𝑊 𝑡
11

𝑊𝑚𝑎𝑥
,… ,

𝑊 𝑡
1
|𝑛|

𝑊𝑚𝑎𝑥
,… ,

𝑊 𝑡
|𝑘|

|𝑛|

𝑊𝑚𝑎𝑥
,

𝐷𝑖
𝐶𝑚𝑎𝑥

,
𝑊𝑟𝑖
𝑊𝑚𝑎𝑥

,
𝑡𝑟𝑖
𝑡𝑟𝑚𝑎𝑥

,
𝑑𝑟𝑖
𝑑𝑟𝑚𝑎𝑥

,
𝑃𝐹𝑟𝑖
𝑃𝐹𝑟𝑚𝑎𝑥

)

(15)

After creating the input state, the RL agent selects an action ac-
cording to its strategy. In line 7, we verify whether the agent is in
exploration mode. If it is the case, it selects a random action with
probability 𝜖 from the action space (line 8). Otherwise, the agent
forwards the input state through the main neural network to obtain
the Q-values for all possible actions and choose the best one (line 10).
At this point, the algorithm triggers the global data writer to notify the
deployment of the current VNF in the selected node (line 11). Then, the
global scheduler waits for the acknowledgment of the VNF’s deployment
from the selected node (line 12). In line 13, we calculate the reward for
the action taken using expression (14). Thus, we evaluate how good the
algorithm’s decision was. By obtaining the next state 𝑠𝑡+1, we complete
the current state transition (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) and store it in the replay
buffer (line 14). In line 15, the algorithm verifies if there are enough
xperiences in the replay buffer to perform a training step.
When sufficient state transitions exist, Algorithm 1 executes the
raining phase. This stage starts by sampling a random mini-batch of
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transitions from the replay buffer (line 16). Then, for each element in
the mini-batch (line 17), the algorithm checks whether the transition
corresponds to the last step in the episode (line 18). If it is the case, the
target state–action value for that step is similar to the step’s obtained
reward since there is no next state from which to gather the reward
(line 19). For the other transitions (line 20), the next state–action
value is calculated by using the target neural network and applying
the discount factor 𝛾 for future rewards (line 21). The next step in the
training process is to calculate the mean squared error loss between
the next state–action value and the obtained Q-value using the main
network (line 22). Additionally, this step includes updating the main
neural network parameters by applying a gradient descent algorithm to
minimize the loss. Finally, for every determined number of steps, the
algorithm updates the target DQN network’s weights with the ones in
the main network to include previously learned experiences (line 23).

5. Evaluation and results

This section aims to evaluate the proposed solution by compar-
ing it with different approaches, thus demonstrating its feasibility for
deploying events in a multi-cluster environment.

5.1. Evaluation environment

To evaluate the performance of the proposed solution, we have
built a testbed formed by three clusters of four SBC nodes. One of the
clusters was deployed in the University Carlos III of Madrid (UC3M)
while the remaining clusters were placed at the Universitat Politècnica
de Catalunya (UPC). Fig. 4 depicts the described testbed. We have de-
ployed Kubernetes 20.04 as the management framework for virtualized
services. They run as Docker containers within pods and are placed into
the devices. Thus, the deployed events utilize their available capacity
according to predefined requirements. The intelligent controller was
implemented using Java 1.8.0. In addition, we used the Deep Java
Library 0.16.0 to implement the proposed DQN algorithm. As we
mentioned before, the local scheduler of each cluster runs the SOCCS
algorithm proposed in Llorens-Carrodeguas et al. (2021).

Testing equipment: the used SBC nodes were Raspberry Pi 4 Model
B (Anon, 2022b) with 8 GB of RAM and an ARM64 processor with 4
cores. These nodes have one Gigabit Ethernet port, therefore the total
output bandwidth (𝑊𝑘𝑛 ) is 1 Gbps. The intelligent controller was run
on an Ubuntu system (Intel i9-7900X CPU @ 3.30 GHz with 20 cores
and 64 GB of RAM). We used the UM24C module (Anon, 2022c) to
measure the power consumption of each node. It connects to Raspberry
Pi devices via Bluetooth. The energy sources for the Pi devices are
batteries with a capacity of 10,000 mAh.

Service requests: in our evaluation scenarios, the services to be
scheduled arrive one at a time following a Poisson distribution. We
explored different event arrival rates that range from 5 to 15 events
per time unit. The main parameters used for creating the services were
selected randomly from the list of values shown in Table 3 follow-
ing a uniform distribution. The evaluation parameters were defined
considering typical workloads derived from the literature.

Hyperparameters: the hyperparameters of the implemented DQNIC
solution have been tuned for efficiency and stability. The parameters of
the DQN model were initialized with the learning rate 𝛼 = 0.01 and the
reward discount factor 𝛾 = 0.9. The former controls how quickly the
weights of the neural network are updated in response to estimated
error, meanwhile the latter represents how important future rewards
are to the current state. The reward function’s positive weights 𝜁, 𝜉, 𝜙
were set to 0.2, 0.5, and 0.3, respectively. The parameters related to
the epsilon decay schedule (i.e., initial, decay, and final epsilon values)
were 0.5, 0.002, and 0.01. We used a replay buffer with a storage
capacity of 200 experiences and a batch size of 64 samples. The DQN
networks, namely the online and target networks, were synchronized
every 50 epochs. These networks were composed of three layers. The
9

Table 3
Evaluation parameter ranges based on testbed.
Parameter Values

Number of VNFs in a service 5–10
Processing capacity per node (MIPS) 500–3,000
CPU capacity per node (milli-CPU) 4,000
Memory capacity per node (Ki) 7,998,464
Required processing rate per event (MIPS) 100–500
Required CPU per event (milli-CPU) 150–250
Required memory per event (Ki) 200–500
Running time per event (S) 50–100
Deadline for processing an event (S) 50–100

input layer with 3|𝐾∥𝑁| + 5 neurons where |𝐾| and |𝑁| were the
umber of clusters and nodes, respectively. We used one hidden layer
ith a number of neurons equal to the mean of the input and output
ayers (Heaton, 2008) and ReLU as the activation function. Finally, the
utput layer corresponded to the number of actions (|𝐾∥𝑁| + 1). The
eights of the online network were updated after finishing every epoch.
Compared approaches: we compared the proposed solution with

wo algorithms, least loaded scheduler (LLS) and global SOC and
apacity-based scheduler (GSOCCS).

• LLS — This mechanism allocates the events to the node with the
highest available capacity. In this manner, the node with the least
CPU usage is chosen. In this manner, it guarantees a balanced use
of computational resources

• GSOCCS — This algorithm represents a global version of the so-
lution presented in Llorens-Carrodeguas et al. (2021). In specific,
it utilizes the information sent by the master of each cluster to
calculate the nodes’ score before selecting the best one to deploy
a determined request. This score allows the algorithm to choose
the node with the maximum SOC and minimum CPU usage

Please notice that we have not compared the proposed approach
ith other literature’s algorithms because either no available imple-
entation code was found or there was not enough data and details
f the algorithms to reproduce them. In this regard, it would not be a
air comparison since we could not guarantee the original performance
f these algorithms if we use them in our evaluation environment.

.2. Training phase results

Before utilizing the proposed algorithm to deploy event requests
n a multi-cluster environment, we must first train the agent using
lgorithm 1. To illustrate the training process, the training model’s loss
nd accuracy are depicted in Fig. 5.
The former represents the mean square error between the label

nd prediction values obtained by the target and online networks,
espectively. It can be observed that the loss between both networks
radually decreases and converges to 0 while increasing the number
f epochs, see Fig. 5(a). In contrast, Fig. 5(b) illustrates the behavior
f the model’s accuracy, which slowly increases with the number of
pochs. This metric indicates the number of correct predictions to the
otal number of predictions.
Another crucial indicator of the training model is the reward ob-

ained after taking every action since it represents how well the envi-
onment performed with the decision taken. Fig. 6 depicts the behavior
f this metric while training the model.
More specifically, Fig. 6(a) shows the average reward on each epoch

hich gradually increases with the number of training periods. This
erformance evidences the quality of the trained model since it guar-
ntees an increasing number of deployed events despite the depletion
f available resources in the clusters’ nodes.
The aforementioned description is better understood in Fig. 6(b).

t illustrates the values of the reward function terms during the ex-
eriment. The light blue line represents the lifetime of the systems,
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Fig. 4. Deployed testbed formed by three distributed SBC clusters and the DQN-based intelligent controller.
Fig. 5. Training metrics of the model.

hich decreases due to battery depletion. The inclusion of this term
n the reward function guarantees that the actions taken consider the
emaining battery’s node. Additionally, the dark blue line indicates the
ost of the used computational resources. This value slightly increases
ince the model aims to re-utilize nodes that have already deployed
vents while having available resources, thus minimizing the cost. The
rimary term of the reward function is represented by the orange
10

ine and indicates the proportion of the deployed events against the
Fig. 6. Reward function behavior during the training phase.

requested ones. Its increasing behavior indicates the high acceptance
ratio of the system while using the trained model.

During the training phase of the presented algorithm, we must
guarantee the exploration of the environment by applying random
actions with a determined probability. To this aim, we implemented
an Epsilon-greedy policy with our agent. Fig. 7 depicts the calculated
epsilon values during each environment step. The used epsilon’s hy-
perparameters were indicated in Section 5.1. The showed behavior

guaranteed random actions with higher probability at the beginning
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Fig. 7. Obtained values through the Epsilon-greedy policy.

Fig. 8. Number of requested, scheduled, and rejected services for all the scheduling
algorithms.

of the model training. Meanwhile, it was most likely to calculate the
𝑄𝑚𝑎𝑥 to make a decision in the rest of the experiment.

.3. Comparison among scheduling approaches

This section evaluates the proposed algorithm in comparison with
he approaches mentioned in Section 5.1. These algorithms were an-
alyzed through the following metrics: scheduled and rejected events,
acceptance ratio, resources cost, and battery consumption. We ran
several experiments for each generation rate to ensure the reliability of
the results. They show a confidence interval of 95% for all the analyzed
methods.

5.3.1. Average number of scheduled and rejected events
Fig. 8 depicts the obtained results regarding requested, scheduled,

and rejected services. We can notice that the analyzed algorithms
achieved similar results for the explored generation rates. All the algo-
rithms deployed the requested services without rejection for the lowest
generation rate (i.e., 5 events per time unit). GSOCCS and LLS rejected
fewer services than the proposed solution for 10 events per time unit
(i.e., one and two services, respectively). For the remaining generation
rate, DQNIC increased by around one service the rejected events with
respect to the compared approaches. Overall, the results revealed that
the difference between the three algorithms was not significantly high.

Fig. 9 illustrates a deeper insight into the constituent network
functions. As we mentioned in Section 3.1, the generated services were
constituted by a set of VNFs. By analyzing the rejected VNFs, we
appreciate that this metric increased with the events generation rate for
11

all the analyzed algorithms. Expressly, none VNFs were rejected for the
Fig. 9. Number of requested, scheduled, rejected, and failed VNFs for all the scheduling
algorithms.

lowest generation rate. Meanwhile, this metric gradually increased for
the other rates. Similar to the rejected services, our proposal deployed
fewer VNFs than the compared approaches, but with a slight difference
(i.e., around eight VNFs).

This figure also includes the number of failed VNFs (red bar) as
a metric to indicate the number of wrong decisions each algorithm
takes. More specifically, it represents the non-deployed VNFs due to
insufficient resources in the selected node, thus leading to the rejection
of the service and its constituent VNFs. By considering this metric, we
indirectly evaluate the decision quality of the proposed algorithm since
the number of failed VNFs is low for the evaluated generation rates.

5.3.2. Average acceptance ratio
We define the acceptance ratio as a quality metric of the algorithms

that denotes the proportion between the number of scheduled and
requested events. Fig. 10 depicts the average value of this metric
or each generation rate. The results are in correspondence with the
nes obtained in the above subsections where the proposed algorithm,
.e., DQNIC, had a lower acceptance ratio (i.e., 77% and 74% for 10 and
5 events per time unit, respectively) than the compared algorithms
ue to reject a small number of services. More specifically, the proposed
olution decreased the acceptance ratio by around 3% and 5% with
egard to GSOCCS and LLS, respectively, for 10 and 15 events per time
nit. The three analyzed approaches have an acceptance ratio of 100%
hen deploying services with a generation rate of 5 events per time
nit.

.3.3. Average resource cost
The resource cost is a crucial criterion to be considered in cloud and

dge environments since it directly impacts the CAPEX and OPEX. We
efined it as the sum of the proportion between the used resources and
heir maximum values, multiplied by a unitary cost. Fig. 11 shows the
verage result of this metric for the analyzed allocation algorithms.
When analyzing the 5 events per time unit generation rate, the con-

eived proposal decreased by around 23% and 28% the used resources
ith respect to GSOCCS and LLS, respectively. Similarly, DQNIC out-
erformed the compared approaches with a reduction of 14% and
3% for a generation rate of 10 events per time unit. In the case of
he highest analyzed generation rate, the proposed algorithm reduced
he used resources by 8% and 22% in comparison with GSOCCS and
LS, respectively. These results evidenced that the proposed solution
akes cost-effective use of the node resources compared to the studied
lgorithms since it aims to re-utilize as much as possible the same nodes
o deploy new event requests.
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Fig. 10. Events acceptance ratio for each scheduling algorithm.

Fig. 11. Resource cost for each scheduling algorithm.

.3.4. Average battery consumption
The battery consumption was calculated by considering the differ-

nce between each experiment’s initial and final values of SOC. Fig. 12
llustrates the average battery consumption for each node in the three
BC clusters used when applying the studied allocation algorithms.
o improve the readability of the figure, we grouped the nodes by
onsidering their cluster’s function. Thus, the dark colors represent the
aster of each cluster, while the light ones describe the worker nodes.
A general observation indicates that the battery consumption is

igher while increasing the generation rates. This behavior was ex-
ected since the greater the event arrival rate, the higher the number of
equested events. Thus, the clusters’ operation time increases. By com-
aring the three schedulers, LLS had the highest battery consumption
or all the generation rates since its balanced use of resources did not
onsider the nodes’ SOC status, as it did GSOCCS. These algorithms
chieved less worker consumption imbalance than our proposal be-
ause they balanced the event requests among all the clusters’ workers.
evertheless, DQNIC guaranteed the lowest battery consumption in the
verall system since it aimed to reduce this metric by re-utilizing nodes
o deploy events instead of using a different one.
A deep analysis of this figure revealed a similar battery consumption

n the controller nodes of each cluster for the studied approaches.
12

hese nodes generally consumed less battery than the worker ones b
Fig. 12. Battery consumption for each cluster’s nodes while running different
algorithms.

Table 4
Numeric results of the evaluated metrics in the studied algorithms for the highest
event generation rate.
Evaluated features DQNIC GSOCCS LLS

Rejected services 17 16 16
Requested services 67 69 69
Scheduled services 50 53 53
Failed VNFs 28 26 25
Rejected VNFs 104 96 94
Requested VNFs 513 518 516
Scheduled VNFs 409 422 422
Acceptance ratio (%) 75 77 78
Resource cost 0.74 0.79 0.94

Table 5
Numeric results of nodes’ battery consumption in the studied algorithms for the
highest event generation rate.
Cluster node DQNIC GSOCCS LLS

C1-Master 39 45 49
C1-Worker 47 59 64
C2-Master 35 38 38
C2-Worker 42 55 64
C3-Master 35 37 37
C3-Worker 42 60 62

since they were only in charge of deploying the events according to
the intelligent controller’s decisions. Looking at the highest generation
rate, DQNIC saved up to 20% and 26% of the worker’s average con-
sumption in cluster 1 (light green bars) with regard to GSOCCS and LLS,
respectively. Similarly, the proposed approach reduced the worker’s
average consumption in cluster 2 (light blue bars) by around 24% and
34% when comparing the same algorithms. Regarding the cluster 3
worker’s average consumption (orange bars), the proposed allocation
mechanism diminished these values up to 30% and 32% with respect
to GSOCCS and LLS, respectively.

To summarize the performance of the studied algorithms, Table 4
nd 5 show the results of the evaluated metrics for the highest gener-
tion rate (i.e., 15 events per time unit). These results evidence that
ur proposed approach outperformed the others since it reduced the
esource cost and the battery consumption while achieving high values
f acceptance ratio.

. Conclusion

This paper proposed DQNIC as a global allocation mechanism capa-
le of deploying service requests in a multi-domain edge environment
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by considering clusters’ node status and service demands. The con-
ceived approach implemented a DDS communication mechanism to
exchange information with the clusters’ controller nodes. Additionally,
a DRL algorithm was integrated into the proposed solution to select
the most suitable node where an event request must be deployed.
The algorithm considered the nodes’ status (i.e., CPU and memory
utilization and battery consumption) and the event’s demands to make
its decisions.

To evaluate the feasibility of the presented approach, we built a
testbed formed by twelve SBC nodes which were grouped into three
clusters geographically distributed. In the first stage, we performed the
training process of the proposed DRL algorithm to select the best set of
hyperparameters that guarantee the expected behavior. Our proposal
was compared with two baseline algorithms in the second phase. The
results showcased a slight reduction in the number of deployed events
(i.e., services and VNFs) when running the suggested solution with
regard to the compared algorithms. Therefore, DQNIC had fewer values
of acceptance ratio than the other algorithms, although the differences
were insignificant.

In contrast, higher distinctions were noticed when analyzing the
resource cost and battery consumption. More specifically, the proposed
allocation mechanism reduced the resource cost by 23% and 28% with
regard to GSOCCS and LLS, respectively, for the lowest generation
rate. Similarly, it decreased this metric for the highest generation rate
with values up to 8% and 22% when comparing it with the same
approaches. In terms of battery consumption, the differences were even
more noticeable. Concretely, DQNIC reduced this metric in the clusters’
worker nodes up to values between 20% and 35% when comparing it
with GSOCCS and LLS for the highest generation rate, thus increasing
the lifetime of the overall system’s nodes and, therefore, their resilience.

In terms of future work, we intend to provide our solution with
a mechanism to migrate events and functionalities to other nodes.
This strategy would improve the fault tolerance of the clusters since
demanding events in critical nodes can be reassigned to available
ones in other clusters before going down due to battery depletion.
Additionally, an important parameter to consider in further research is
latency because the end-to-end delay of service requests is crucial for
future networks. In this sense, migration mechanisms must consider the
latency among nodes to select the best target node without violating the
service’s end-to-end delay.
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