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Álvaro Castro-González2, Irene Pérez2 and Miguel A Salichs2

Abstract
User detection, recognition, and tracking is at the heart of human–robot interaction, and yet, to date, no universal robust
method exists for being aware of the people in a robot’s surroundings. The present article imports into existing social
robotic platforms different techniques, some of them classical, and other novel, for detecting, recognizing, and tracking
human users. The outputs from the parallel execution of these algorithms are then merged, creating a modular,
expandable, and fast architecture. This results in a local user mapping through fusion of multiple user recognition tech-
niques. The different people detectors comply with a common interface called PeoplePoseList Publisher, while the people
recognition algorithms meet an interface called PeoplePoseList Matcher. The fusion of all these different modules is based
on the Unscented Kalman Filtering technique. Extensive benchmarks of the subcomponents and of the whole architecture
demonstrate the validity and interest of all levels of the architecture. In addition, all the software and data sets generated in
this work are freely available.
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Introduction

Social robotics aims at making daily companion robots that

interact with human users, helping and entertaining them in

their everyday life. Consequently, they must follow social

behavior and rules, spanning a wide range of applications

and types of users. Examples include helping children with

their homework, taking care of elderly people, giving infor-

mation and advice to people in public places, and so on.1,2

The relation between the human user and the robot can be

short term, such as a robot giving directions at a shopping

mall,3 or long term, for instance, a robot delivering mail

and food to employees in a lab on a daily basis over a

period of several months.4 The relation between human

users and robots, called human–robot interaction (HRI),

is at the core of social robotics: A social robot aims

at helping users and, as such, it needs to attain a user

awareness. This consists in the robot’s having knowledge

about how many users are around it, where they are, and

who they are. The goal of the research presented in this

article is to endow social robots with these abilities,

something which is still a challenging problem for the

robotics community.

There are works pointing out that humans attain their

user awareness following a divide and conquer strategy,5

1Ecole Polytechnique, Paris, France
2Universidad Carlos III de Madrid, Robotics Lab, Madrid, Spain

Corresponding author:

Marı́a Malfaz, Universidad Carlos III de Madrid, Robotics Lab, Madrid,

28911, Spain.

Email: mmalfaz@ing.uc3m.es

International Journal of Advanced
Robotic Systems

November-December 2017: 1–15
ª The Author(s) 2017

DOI: 10.1177/1729881417736950
journals.sagepub.com/home/arx

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License

(http://www.creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/

open-access-at-sage).

mailto:mmalfaz@ing.uc3m.es
https://doi.org/10.1177/1729881417736950
http://journals.sagepub.com/home/arx


that is, splitting this difficult task into independent subtasks

of lesser complexity that are easier to achieve. Some

patients who have suffered different types of accidents,

such as seizures or head trauma, have had some very spe-

cific parts of their brain damaged, leaving the rest intact.

This helps to understand the way our brain works, and

especially where the different functions are located and

how the whole system is articulated. For instance, patients

of the so-called prosopagnosia, also called face blindness,

cannot recognize the identity of known faces although the

rest of the brain’s functionality is intact, such as object

recognition or even face detection.6 The way people aware-

ness is achieved in the brain can be divided into three

modules: (i) people detection, which consists in locating

people around us from the instantaneous data stream of our

sensory system; (ii) people recognition, dealing with know-

ing who they are; and (iii) people tracking and mapping,

which is a higher level understanding of people’s motion

to maintain spatial and temporal coherency. Therefore,

considering this idea as an inspiration, the local mapping

of users for a social robot can be split into three subtasks:

user detection, user recognition, and user tracking and

mapping (by using data fusion). This decomposition con-

stitutes one of the main novelties of this article, which is

the fusion of algorithms for user mapping instead of just

fusing sensor information.

The structure of this article is as follows: in “Related

work” section, we will review how user awareness is achieved

in other social robots. In “Problem statement” section, we

design our strategy to achieve a generic user awareness archi-

tecture as well as hardware and software constraints. In

“Approach” section, we present the approach and structure

designed to obtain user awareness given the defined strategy

and constraints. The experimental results obtained following

this approach are presented in “Experimental results” section.

Finally, in “Conclusions” section, some conclusions are

drawn and future research is outlined.

Related work

Giving user awareness to social robots is a challenging

problem that has been tackled already by numerous authors

and with a wide range of sensors and techniques. In this

section, we will review the current trends in user awareness

for social robots. Some of them are barely aware of their

environment, similarly to mechanical puppets, while others

perceive and recognize their users. This leads to a classifi-

cation with different levels of user awareness.

There are proposals with no long-term memory about

the users interacting with the robot. For example, the robot

Aibo7 was equipped with a variety of sensors and buttons

on its body. When one of these buttons was pressed, the

robot knew that there was a user nearby and started behav-

ing accordingly. RHINO8 is an interactive robot guide for

museums. To interact with the robot, the users have to

press buttons on the onboard interface, which will make

the robot deliver information about the museum in a uni-

directional fashion.

Additionally, there are robots that detect users automat-

ically without needing them to take any explicit action.

This is the case with the social robot Kismet,9 which can

perform a closed-loop active vision by using face and eye

detection. Roboceptionist helps users to find their way in

offices.10 The interaction is short term, as users usually ask

a few questions of the robot and then leave for their desti-

nation. Geiger et al.11 presented the social robot ALIAS as a

gaming platform for elderly people. The user is detected by

using voice detection and a face detection algorithm, but no

recognition whatsoever is performed. The HRI is made

through the use of the tablet computer. The STRAND12

project includes short-term user awareness using Red

Green Blue (RGB)-D and laser information for detection

with a Kalman filter that provides the tracks of the users in

the space. In a similar line, the project CompanionAble,13

focus on the use of social robots for elderly people, presents

a perception approach that uses multiple cues based on

histogram of oriented gradient (HOG) and shape models

for people tracking through a Bayesian filter. The MOn-

arCH14 project proposes another approach for a mobile

platform for edutainment activities in a pediatric hospital.

In this case, the user awareness of the robot is provided

using an RGB-D camera placed on the robot and omnidir-

ectional cameras placed in the environment.

The previous references presented robots that are able to

detect and interact with users on a short-term basis, that is,

if the same user happened to come back later, the robot

would not remember their former interaction. Nonetheless,

it is because we are able to identify individuals that we can

develop a unique relationship with each of them. Valerie is

one of the first robot receptionists, used at Carnegie Mellon

university.15 Valerie was involved in long-term interac-

tions, and as it stood for several months in a booth at the

entrance to offices. User recognition was made possible by

using the use of a magnetic card reader: The users were

unambiguously identified by swiping their ID card. In

Kanda et al.,16 the authors study the evolution of the

relationship over time in an 18-day field trial between

119 first- and sixth-grade students and a humanoid robot.

They chose to perform user recognition using wireless radio

frequency identification (RFID) tags and sensors. Jibo (Jibo

homepage: https://www.jibo.com) is a robot that

recognizes the users around it by using its vision system

(face detection and recognition) and microphones (speech

recognition). Jibo gathers information about the users by

using the applications and media they consume, so that the

interaction is personalized. Portugal et al. presented Social-

Robot,17 a service mobile robot for social interaction with

elderly people. An RGB-D camera provides information for

people detection and face recognition in three dimension

(3-D). With this information, the robot can safely approach
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people and, what is more, this system makes use of a colla-

borative network that manages user profiling and care.

Problem statement

The goal of this research is to endow robots with user

awareness by detecting the users in the vicinity of the robot,

recognizing them, and building a consistent representation

of this knowledge on a map. The number of users, their

positions, and who they are is a set of unknown variables

that we regard as the state of the system. For each user

around the robot, the system must create and maintain a

set of data that we call a track: The user’s identity, position,

and trajectory.

We use an approach based on divide and conquer, as

presented in the “Introduction” section, and split the user

awareness into three modules: people detection, people

recognition, and people tracking and mapping. These three

tasks are executed simultaneously when the robot interacts

with users. To make things clearer, let us consider the fic-

tional case of Figure 1(a). The robot here, drawn as the dark

blue and white shape in the middle, is surrounded by three

users. Figure 1(b) illustrates the process of creating user

awareness. User detection consists in detecting, in the sen-

sor data stream, the users around the robot, and knowing

where they are. Each of them can then be identified by a

temporary ID. Those detections are shown in Figure 1(b) as

pink crosses. The fields of view of the different sensors are

drawn as angular ranges.

For each user, its track contains the user’s identity, pre-

vious positions, and so on. Note that the user highlighted in

blue is out of the sensors’ field of view; therefore, the robot

is not yet aware of that user’s presence. In Figure 1(b), an

ellipse shows the position of each track, associated with the

uncertainty of its position, and a dashed line shows its

previous positions. The additional knowledge in each track

is depicted next to the track ellipse in the colored frame box

with a solid border.

User recognition aims at obtaining a long-term coher-

ency with the way it detects the users, in other words,

matching the temporary IDs to a permanent identity. User

recognition is used to match detections and tracks: The

higher the similarity, the more probable the detection cor-

responds to the track. The similarity between each user

detection (a pink cross) and the set of tracks, obtained by

user recognition, is in the pink rectangle with a dashed

border next to this cross.

After the user recognition is performed, through Kalman

filtering and multimodal data fusion algorithms, each track

can be updated with the matching user detection, by using

the similarities computed by the user recognition. The set

of tracks constitutes the user mapping.

This work has been carried out using Robot Operating

System (ROS),18 a software architecture specifically devel-

oped for use with robots. To sum-up the ROS landscape and

glossary, processes are called nodes. They are independent

and run in parallel. They can exchange data via messages

sent on topics, data channels uniquely identified by their

name. A function of a given node can be called from other

nodes using a service, uniquely defined by a string name and

a pair of strictly typed messages: One for the request and one

for the response. ROS topics are many-to-many communi-

cation mechanisms, while ROS services are many-to-one.

Approach

The proposed approach is made of several steps, described in

the following sections: First, in “A common data structure”

section, we define a common ROS data structure, called

PeoplePoseList (PPL), that implements the concept

of track. In “User detection” section, we present how the

user detection algorithms are shaped to publish PPLs. The

user recognition algorithms are then used as matching tools

of a PPLs produced by a detection algorithm against a PPL-

containing tracks, which is presented in “User recognition”

section. A one-to-one assignment between the tracks and

each PPLs produced by a detection algorithm is computed

by using the hints given by each user recognition algorithm.

These assignments are used to create or update tracks

through data fusion algorithms. The updated set of tracks

is an up-to-date mapping of the users. This process is pre-

sented in “User mapping, using the data fusion based on

Kalman filtering” section. Finally, in “Configuration of mul-

tiple PPLPs and PPLMs” section, we present how the devel-

oped architecture can be adapted to different social robots,

with different sensors. All the source code developed in this

research is freely available online under an open source

license (https://github.com/UC3MSocialRobots).

A common data structure

Common practice in computer science consists in standardiz-

ing the communication layer and the data that are exchanged

by the different modules, more so than the particular

(a)

"Bob"
Last seen 0.1s

1.80m
Red shirt
Face: <...>

"Alice"
Last seen 0.1s

1.72m
Green shirt
Face: <...>

Alice:12%
Bob:82%

Cindy:22%
New: 7%

Alice:63%
Bob:22%

Cindy:25%
New: 17%

Hokuyo field of view
Kinect field of view

Track

User detection
Similarity user detection - track

Information embedded in track

(b)

Figure 1. (a) A fictional situation of user awareness around a
robot. (b) Knowledge representation of the user awareness in this
situation.
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structures of these modules. For this reason, we designed a

common data structure that describes the information associ-

ated to a user detection and this will be the output of any user

detector that we want to integrate: the PeoplePose (PP).

To ensure the modularity of our user awareness architecture,

we exploited ROS messages and services mechanisms.

The PP data structure corresponds to a single user detec-

tion and contains all the information worth being shared,

such as the 3-D pose of the user, the confidence of the

detection, RGB and depth images of the user if they are

available (for vision-based algorithms), and so on. The PP
data structure is implemented as an ROS msg, a simple

message description language for describing a data struc-

ture exchanged by ROS nodes. The details of the PP mes-

sage are in Code listing 1.

Not all the fields of the message are necessarily filled by

all the methods: For instance, a people detector based on

the information of a two-dimensional (2-D) laser range

finder will not use the image fields. A detector can detect

several users at once with a single data input. For instance,

a face detector can find several users in the same RGB

image. The different PPs generated by each detection are

then gathered into a single message: This collection of PPs

is then called PPL and is also based on a ROS msg. An

example of a PPL is provided in “Architecture output:

Sample data based on multimodal fusion” section.

User detection

An algorithm capable of generating PPL messages is called

a PeoplePoseList Publisher (PPLP). The integration

into the robotic architecture is straightforward as long as

each new detector publishes a PPL data structure. An

example of a processing flow with several PPLPs is visible

in Figure 2. Let us suppose that our robot is equipped with a

microphone, a laser range finder, and an RGB webcam.

The different input streams can be seamlessly shared

between different PPLPs. In this example, PPLP3 and

PPLP4 share the color stream of the camera, and as PPLP4

is computationally costly, it is chosen to run on a remote

computer. The topics are relayed between the robot and the

remote computer using a ROS communication layer.

The integration of the user detection algorithms. The architec-

ture integrates a series of user detection algorithms that

make use of the most common sensor technologies in

social robots, such as RGB images, 3-D depth, and 2-D

lidar information.

Improved Viola–Jones face detection–based PPLPs. The

depth data are useful to discard false positive detectionsz

given by the classical RGB Viola–Jones classifier for face

detection.19 To ease the integration, this detector is

wrapped as a PPLP. The improvement consists in repro-

jecting a given number of 2-D points in 3-D and examines

the resulting 3-D bounding box. If it does not comply with

some generic given geometric constraints, this detection is

classified as a false positive and discarded. We used a

maximum face width of 30 cm and height of 40 cm, which

are fairly permissive.

Improved HOGs PPLPs. A HOG is a feature used in com-

puter vision for object detection.20 It has turned out to be a

very efficient technique for the detection of human shapes.

The basic idea underlying this concept is that objects within

an image can be described through the distribution of edge

directions or intensity gradients. In a way similar to the face

detector presented before, the original algorithm needs an

RGB image as input and returns as output the rectangular

estimates of the people. Unlike the face detector, the rec-

tangle returned by the 2-D detector is usually bigger than

the person and not centered on her. For this reason, we

compute the biggest 3-D cluster of the 3-D cloud, then

threshold the bounding box of this biggest 3-D cluster. The

resulting HOG detector, along with the false positive

removal, was wrapped as a PPLP.

NiTE-based PPLPs. The patented PrimeSense NiTE mid-

dleware,21 freely distributed under Apache License, ver-

sion 2.0, allows detecting and tracking human shapes

from depth maps. The NiTE middleware supplies a data

structure that a system module converts into a PPL, the

users multi-mask, and publishes it using the ROS messa-

ging system. This structure indicates where the users are: if

a pixel p of the user’s multi-mask has the value 0, this

means there is no user in p, whereas if it has the value 1,

p corresponds to a pixel of the user 1, and so on. For a given

user, a user mask is the multi-mask image where all the

Code listing 1. The People Pose message.
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pixels that do not belong to this user are set to 0 (i.e.

“erasing” the other users). The NiTE middleware already

includes tracking capabilities. The same physical user,

whether or not visible in successive frames, is identified

by the same ID in the resulting successive multi-masks.

Polar-Perspective Map-based PPLP. This people detector,

introduced for a pedestrian detection system by,22 uses the

idea that a person appears as a set of points tightly close

one to another in the 3-D point cloud given by the range

imaging device. When projecting these 3-D points on the

ground plane, these clusters will be projected onto the

same area, thus generating a sort of high-density blob on

the ground plane. Standing persons can then easily be

characterized by the size of the blob. The so-called

Polar-Perspective Map (PPM) is an occupancy map based

on the polar coordinate system: It uses a regular grid based

on the bearing of the points and their inverse distance to

the device.

Tabletop PPLP. The tabletop PPLP is based on the idea

that people standing on the floor generate a point cloud that

is similar to objects standing on a tabletop and detecting

objects on a planar surface such as a tabletop is a problem

that has already been tackled by other authors (e.g. object

grasping22). The tabletop PPLP combines some of these

techniques in an innovative and straightforward way to find

the users in front of the robot. It is based on detecting the

ground plane by using the statistical RANSAC method,23

separating aligned blobs by using a Canny filter applied to

the depth image,24 and then retrieving the pixel blobs of the

objects that are on top of the ground plane.

Leg pattern–based PPLP. With the information that has

been structured and associated to a metric dimension pro-

vided by the 2-D laser range finders, we obtain a direct

understanding of the scene in front of the robot in the laser

plane. Since laser range finders are typically mounted at the

level of the legs of the users, that is, about 40 cm high, user

detection is made through the detection of their legs. Many

leg pattern–based detection algorithms exist. We chose the

one described in Bellotto and Hu25 for its simplicity and the

overall good performance claimed by its authors. It was

integrated as a PPLP: It subscribes to the laser scans

acquired from the laser range finder and performs the leg

pattern–based detection described in the original article.

User recognition

In our architecture, each user detector seen in “User

detection” section publishes independently the instanta-

neous positions of the detected users, shaped as PPLs. As

such, two detectors often produce detections at different

rates. The user recognition algorithms described in this

section tackle this problem, providing matching capabil-

ities between detections and tracks.

Throughout this section and the following ones, we

denote by T the set of tracks (representing the tracked

users) and P a PPL created by a user detection algorithm.

We denote by nT the number of tracks and nP the number

of PPs

T ¼ fT i; 0 � i � nT g where 8i 2 ½1; nT �; T i is a PP

P ¼ fPj; 0 � j � nPg where 8j 2 ½1; nP�; Pj is a PP

Audio drivers Camera driver

PPL

PPLP2

Laser driver

PPL

Sound stream Color streamLaser scans

PPLP1 PPLP3 PPLP4

Microphone CameraLaser
range finder

Robot
Remote

computer

PPL PPL

Caption

Processing block
(ROS node)

Exchanged data
(ROS message)

ROS Service

X
Node publishing
messages of type X

X
Node subscribing to
messages of type X

Device

Request

Response
Exchanged data
(ROS service)

Figure 2. An example of distributed people detection by using several PPLPs. The legend is identical for Figures 2, 3, and 4. As Figures
2, 3 and 4 illustrate different parts of the system, they do not necessarily display all symbols contained in this legend. PPLP: Peo-

plePoseList Publisher.
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The idea for integrating the different user recognition

algorithms is the following: A user matching algorithm M

is defined as a normalized distance that takes a track and a

detection PP as inputs and returns their similarity as output

M :
T � P 7! ½0; 1�
ðT i; PjÞ ! jjT iPjjj

�

Given tracks T and detections P, this algorithm M can

then compute a cost matrix CM of size nT � nP between T
and P. That way, for all i; j 2 ½1; nT � � ½1; nP�, the more the

track PP T i from T matches the detection PP Pj from P
according to this algorithm, the smaller the corresponding

element in the cost matrix CM ½i; j� is set. As such, the algo-

rithm suggests a match between the track T i and the

detected PP Pj in a “soft way”: There is not always a

suggested matching for all detections. If the detection PPL
does not contain faces, a cost matrix based on face recog-

nition will be full of ones and then it will not have any

weight in the final assignment.

We call a PeoplePoseList Matcher (PPLM) an inte-

grated user recognition algorithm using this formalism that

given both detection and track PPLs computes this cost

matrix. Each PPLM is shaped as a ROS service providing

high modularity: Several PPLMs can run in parallel seam-

lessly, and the distributed nature of ROS even allows these

nodes to run on different computers. A new algorithm is

thus easily integrated: It just has to comply with this inter-

face, and the different nodes can be distributed among

different machines, thanks to the ROS communication

layer. Finally, adding a new PPLM is quick and easy: The

new node needs to supply its own MatchPPL service.

Integration of user recognition algorithms. From the informa-

tion provided by the different user detection algorithms,

several recognition techniques have been shaped as PPLMs

to achieve a higher level of abstraction. Thus, the archi-

tecture is able to perform long-term recognition of the

user, improving user awareness. Although some recogni-

zers, such as Euclidean distance or NiTE multimap, only

provide short- and mid-term recognition, others, such as

face recognition, are able to identify users over a longer

time span, even if days have passed since their last iden-

tification. Therefore, it is the fusion of all these algorithms

that is considered long term rather than the separate meth-

ods themselves.

Euclidean distance PPLM. The simplest method to esti-

mate the likelihood of a track against a detected PP is to

compare their 3-D positions. In other words, the closer are a

track and a detection, the more likely it will be that they

correspond to the same person. We have the explicit for-

mula, for i; j 2 ½1; nT � � ½1; nP�

C Euclidean½i; j� ¼ min 1;
jjT i;PjjjL2

D

� �

The constant D is a distance threshold, in meters, and is

introduced for normalization. This likelihood estimation

needs to choose a distance function. We used the Euclidean

L2 norm, as it corresponds more accurately to the standard

definition of the distance between 3-D positions.

Face recognition–based PPLM. The visual appearance of

the face is key information that humans use extensively to

discriminate between people. For this reason, we use the

Fisherfaces algorithm,26 a face recognition method that

uses dimensionality reduction.

There are other methods, such as Eigenfaces27 and Local

Binary Pattern Histogram,28 but based on other publica-

tions that compare their performance, Ahmed and Amin29

and Belhumeur et al.26 decided to use the Fisherfaces algo-

rithm. The face recognition–based PPLM reuses the results

of the face detection PPLP presented in “The integration of

the user detection algorithms” section.

As said before, the more similar are two PPs, the smaller

their cost should be. If the j th user face in the detection PPL
is set, the face recognizer determines the most similar ref-

erence PP, and the corresponding cell in the cost matrix is

set to zero. We have the explicit formula, for

i; j 2 ½1; nT � � ½1; nP�

C face½i; j� ¼
0 if i ¼ faceðPjÞ
1 otherwise

�

Height-based PPLM. The height of the users is a good

metric not only because it helps recognize one from another

but also since the height of unknown users may help to

determine their gender, as men tend to be taller than

women. We used a novel method for estimating the height

of the user,30 which deals with poses beyond standing

straight, such as being slighty stooped or lifting an arm for

greeting. Provided the depth image and user mask image,

the height is obtained by computing the length of a line that

goes from the head of the user to the feet, going through the

middle of the body shape, and as such, this method requires

that the user be entirely visible in the image stream. The

vertical field of view (FOV) of the device being 50�, the

method requires the user to be further than approximately 2

m. This strong assumption can be checked thanks to the

distance of the user in the depth image.

It first performs a morphological thinning on the user

mask image,31 which generates the skeleton of the image.

Then, the length of the skeleton from head to feet is com-

puted. This gives us a pixel height of the user, that is con-

verted into a metric one by using the depth information.

User matching is then performed by evaluating the user

height on both tracks T and people detections P and setting

the matching cost to the absolute height difference. The

constant H is a height threshold, in meters, and is intro-

duced for normalization. We have the explicit formula, for

i; j 2 ½1; nT � � ½1; nP�
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C height½i; j� ¼ min 1;
j heightðT iÞ � heightðPjÞj

H

� �

NiTE multimap–based PPLM. The raw output of the NiTE

algorithm, presented in “The integration of the user detec-

tion algorithms” section, is shaped as a user multimap. The

cost of matching a given detected PP with the set of tracks

is defined as follows: This cost is equal to zero if two NiTE

user identifiers are equal, and equal to one otherwise. In

other words, the cost matrix of this PPLP is mostly set to

one, with some zero values where NiTE names correspond:

We have the explicit formula, for i; j 2 ½1; nT � � ½1; nP�

CNiTE½i; j� ¼
0 if NiTE idi ¼ NiTE idj

1 otherwise

�

PersonHistogramSet-based PPLM. Color histograms have

been used extensively for user recognition.32,33 However,

they often do not take into account the fact that this color

data in a person is naturally structured: A possible segmen-

tation relies on three parts, the head, the upper body (torso

and arms, covered by a shirt or another item of clothing),

and the lower body (trousers, skirt, etc.).

Some articles represent the user’s color distribution as a

set of histograms, but with a constant height step,32 there-

fore the slices do not correspond to physical body parts

(head, torso, limbs, etc.). We developed a novel method

for user recognition based on color histograms,30 by gen-

erating a set of three Hue histograms structured so as to

represent the previously mentioned natural segmentation of

the human body. Once the PersonHistogramSets (PHSs)

are computed for both a track and a PP, their matching cost

is obtained by summing the intersection distances between

corresponding histograms in both PHSs. We have the expli-

cit formula, for i; j 2 ½1; nT � � ½1; nP�
C PHS½i; j� ¼ d PHSðT i;PjÞ

User mapping, using the data fusion based on
Kalman filtering

We have defined a common structure for matching algo-

rithms for PPLMs that provide cost matrices. For a given

detection PPL, the cost matrix describes how each detected

PP is similar to the different reference tracks (also struc-

tured as PPs). In this section, we focus on the algorithm that

uses these PPLMs to create the tracks, that is, user mapping.

The state of each tracked user is a nonlinear system and

forces us to choose a nonlinear data fusion algorithm. To

predict and update each track, we chose an extension of

Kalman filtering for highly nonlinear problems: Unscented

Kalman Filters (UKFs).34 Therefore, the UKF fuses infor-

mation from the recognition techniques described in

“Integration of user recognition algorithms” section.

From now on, the processing block in charge of retriev-

ing all cost matrices and performing the multimodal fusion,

structured as a ROS node, will be referred to as the fusion

node. The fusion node has the set of tracks corresponding to

the tracked users in memory T . Each of these tracks is

structured as a PPs. This node subscribes to a range of

topics emitted by PPLPs. As said before, each of these

PPLP publishes independently and asynchronously the

instantaneous positions of the detected users, shaped as

PPLs. Upon reception of each PPL published by each PPLP,

two successive processes called gating and matching take

place in the fusion node.

First, in the gating process,35 user detections that cannot

correspond to tracks are kept away, being stored in the so-

called gating buffer. This is determined by computing the

Euclidean distance between each track and the detection

and comparing it with the maximum distance that a human

person running could go in the time elapsed since the last

update of the track. Because of gating, in each received

PPL, not all PPs are necessarily used for the matching by

the fusion node, avoiding incorrect matchings.

Once the gating is done, in this matching phase, for the

remaining PPs, the fusion node needs to determine which

track corresponds to which detected PP. We denote by C,

the global cost matrix used for the update of the Kalman

filter of each user. For each PPLMs M , the fusion node

requests the cost matrix CM . As different user matching

algorithms run in parallel, each of these provides its own

cost matrix. The global cost matrix C is set to the weighted

average of all these cost matrices, where the weights, wM ,

are chosen by design to reflect the a priori confidence in

each matching algorithm

C ¼
X

M2 set of PPLM

wM CM

Similarly to each cost matrix, the more a detection PP
from P matches a track PP from T , the smaller the corre-

sponding element in C should be. This is where the differ-

ent PPLMs are useful: Because of the global cost matrix C,

the more similar are a given track PP and a detection PP,

the smaller the corresponding element of the cost matrix.

The fusion node computes the linear assignment corre-

sponding to this cost matrix with the Jonker–Volgenant

algorithm.36 This assignment determines an optimal

track-to-detection assignment (an injective function)

X :
½1; nT � 7! ½1; nP�

i ! j

�

that minimizes: minX

P
i2nT

C½i;X ðiÞ�. In other words, X

tells us which detected PP Pj corresponds to each track T i.

For each track T i; i 2 ½1; nT �, the inner UKF embedded is

updated with the matching detected PP, PX ðiÞ.
34 That way,

the 3-D position of the tracked user is updated with the

latest corresponding data.
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Finally, the updated set of tracks, which is also shaped as

a PPL, is emitted by the fusion node. If there are more

detected PPs than tracks, after the fusion, each PP that is

not used to update any track is put in this gating buffer.

When a critical number of unassociated measures accumu-

lates at a given spatial position in a window of time in the

buffer, a new track is created.

“User recognition” section presented how each PPLM
provides a ROS service of the same type, which we denote

by MatchPPL, but with different names. The fusion node

calls only the specific services that it wants to use. That

way, the architecture benefits from the advantages of the

structure of PPLPs and PPLMs, as pointed out in “User

detection” and “User recognition” sections. The data flow

is illustrated in Figure 3.

Configuration of multiple PPLPs and PPLMs

The user awareness described in this article can be

adapted to different sensors, hardware configurations,

and computing capabilities. A set of PPLPs and PPLMs,

along with the data fusion node, is called a configuration.

A configuration needs at least one PPLP, for user detec-

tion, and one PPLM, for user recognition. In that case,

there is no multimodal fusion: the detections come from

a single source. At the other end of the scale, a config-

uration using all the PPLPs and PPLMs implemented to

date is presented in Figure 4. Note that using all the

algorithms at the same time corresponds to obtaining the

best trade-off between the performance of the tracking

and the burden of the computations needed, the set of

PPLPs and PPLMs must be chosen according to the char-

acteristics of the robot. For instance, if it has no laser

range finder, the leg PPLP can be removed. If the users

will not come close, the face recognition PPLM is not

needed. To help design a configuration relevant for a

given robot setup, the robot Mini, we will assess the

performance of each component of the architecture in the

next section.

Experimental results

In this section, we present the robotic platform employed in

the experiments in “Robotic platform” section and the acqui-

sition of a realistic data set in “RoboticsLab People Dataset

(RLPD): A realistic HRI-based people data set” section. The

data are used to test the performance of the presented algo-

rithms for user detection (see “Benchmarking of user detec-

tion algorithms with RLPD” section) and user recognition

(see “Benchmarking of user recognition algorithms with

RLPD” section). “Architecture output: Sample data based

on multimodal fusion” section presents a sample output of

the architecture and, finally, the performance of the overall

user awareness architecture is evaluated in “Benchmarking

of multimodal fusion configurations with RLPD” section.

Robotic platform

Our tests have been run using the Kinect camera integrated

in the social robot Mini developed at our lab (see Figure 5

for more details about its sensors and actuators).

Although the computational needs of the architecture

would allow performing the whole operation entirely on

the robot, we traditionally use a distributed architecture that

prevents overloading the robot, which could affect its reac-

tivity. In the evaluation described in this article, two com-

puters are used: the embedded computer of the robot

(acting as a master) and a remote desktop computer for

computation. The former is an Intel i5 quadcore CPU @

3.30 GHz and embeds the driver for the sensors and a depth

imaging device. The latter is an AMD Athlon 64 Dual Core

@ 2.7 GHz and contains the user awareness architectures:

PPLPs, PPLMs, and the fusion node. Both are on the same

Ethernet network, which alleviates the issues due to net-

work performance. During the development and testing

phases, the architecture proposed in the article and the

network were fast enough to process the data at the rate

of the data set, which is roughly 5 Hz.

RoboticsLab People Dataset (RLPD): A realistic
HRI-based people data set

There are academic data sets adapted for the evaluation of

people detection, recognition, and tracking, such as

DGait37 and Kinect Tracking Precision (KTP).38 They

allow a faithful measurement of the performance of the

user awareness system, make the comparison with other

similar systems easier, and ensure that the measurements

can be repeated in the same context.
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Figure 3. Diagram of the dataflow between the fusion node and
the different PPLMs. The legend is the same as that of Figure 2.

PPLM: PeoplePoseList Matcher.
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However, even though our system was designed in a

fashion as generic as possible, it has been tested in a social

robot. For this reason, we decided to acquire real data from

the robot Mini, and with users that fit best the target audi-

ence: people from Spain, with a variety of genders and

shapes. In addition, the actors do not wander randomly

on the stage, as they do in the KTP data set: We designed

scenarios that mimic a realistic HRI situation in which one

or several users interact naturally with the robot: addressing

the robot, using gestures, respecting the proxemics dis-

tance, and so on.

Data set summary. The data set represents three users

interacting with a robot that integrates a Kinect camera.

They move on the stage according to a script that was pre-

viously defined and is made of three scenarios of increasing

difficulty. Their motion is challenging: They get in and out

of the room, there are occlusions and partial views.

The data set is meaningful if and only if the real posi-

tions of the users are known. We first thought of using

markers, such as ARToolkit markers.39 However, the

imperfect detections could not guarantee an accurate

ground truth concerning the users’ positions in each frame.

For this reason, in each of the 600þ frames, the ground

truth user positions have been manually labeled.

This data set is licensed under the terms of the GNU

General Public License version 2 as published by the Free

Software Foundation and freely available for downloading

along with images and videos (https://sites.google.com/

site/rameyarnaud/research/phd/roboticslab-people-

dataset).
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Figure 4. Multimodal fusion using all implemented PPLPs and PPLMs. The legend is the same as that of Figure 2. The NiTE driver
provides three kinds of information: depth, color, and the user mask. The latter contains an initial user detection based on their depth
with respect to the camera as seen in Figure 6. PPLP: PeoplePoseList Publisher; PPLM: PeoplePoseList Matcher.

Figure 5. Main components of the social robot Mini.
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Input frames. Each frame is labeled with a time stamp.

The time stamp is expressed in milliseconds elapsed after

the beginning of the recording, using six digits with leading

zeros. For instance, frame 065514 was recorded 1 min and

5 s after the beginning of the recording. In total, we have

647 frames for 133 s (2 min 15 s roughly), which is, on

average, 5 frames per second.

Acquired data. For each frame, we have four images and

one data file: (i) The RGB image (“XXXXX_rgb.png”, lossy

JPG compression, quality: 85); (ii) The depth image

(“XXXXX_depth.png” and “XXXXX_depth_params.

yaml”, lossy affine depth-as-PNG compression); (iii) The

user mask obtained as output of the Kinect API, called NiTE.

This image stream is synchronized with the RGB and depth

streams of the Kinect and indicates, for each pixel of each

frame, whether this pixel belongs to a detected user using the

NiTE algorithm presented in “The integration of the user

detection algorithms” section (“XXXXX_user_mask_

illus.png”, lossless PNG compression); and (iv) the hand-

labeled ground truth user mask. This image stream has the

same purpose as the NiTE user masks, but it has been manu-

ally annotated, so that it contains the exact ground truth

concerning the position of each user in each depth image

(“XXXXX_ground_truth_user.png”, lossless PNG

compression).

The data set also supplies the camera info of the depth

imaging device. It is made up of the camera’s intrinsic

parameters and allows converting 2-D pixels into 3-D

points. The calibrations for both the RGB and depth (infra-

red) cameras are available.

Data set annotation. The ground truth user positions have

been labeled manually in each frame, using both RGB and

depth contents to create a “perfect” user mask. We devel-

oped a Graphical User Interface shaped as a raster graphics

editor that allows the manual labeling of each pixel of a

depth image.

Like the data set, these tools are licensed under the terms

of the GNU General Public License version 2 as published

by the Free Software Foundation, and freely available for

downloading at the same URL.

Data set analysis. The data set was recorded on July 2014.

It is made of about 650 frame acquisitions, each of them

consisting of four images, that is, about 2600 images. The

data set is roughly 65 megabytes. These images can be

easily imported into any programming language, such as

Cþþ or Matlab. The complete data set takes 133 s and the

total number of frames is 647, and 548 of them have several

PPs. Some samples are visible in Figure 6.

Benchmarking of user detection algorithms with RLPD

We benchmarked the different user detection algorithms on

this new data set. These algorithms were all wrapped with a

common interface, PPLP. The performance of the different

PPLPs on the RLPD is presented in Table 1.

We calculated the accuracy and the hit rate of each

algorithm. Accuracy refers to the percentage of correctly

evaluated frames (see equation (1)). The hit rate measures

the number of people successfully detected considering the

frames that certainly contain at least one person (see equa-

tion (2))

Accuracy ¼ true positiveþ true negative

total number of frames
� 100 (1)

Hit rate ¼ true positive

total number of frames with people
� 100

(2)

We can see first that no detector has a very good per-

formance by itself. As explained before, the RLPD has a

high level of complexity: The occlusions are frequent, the

users are sometimes partially shown in the images, and in

general, they are somewhat far away from the camera. This

underlines the fact the we cannot only use one PPLP and

hope it will work in all situations.

The NiTE PPLP has a high accuracy and hit rate (both

above 90%). This benchmark confirms that the NiTE-based

PPLP is a useful method for detecting users in a social

robot, even in challenging conditions. The tabletop PPLP
has an average performance: It has a detection rate

around 40%. Indeed, as can be seen in the sample images,

the ground is hardly visible in the images acquired by the

camera, which generates a poor estimation of the ground

Figure 6. Some samples of the RLPD. From left to right: column
1: the RGB image; column 2: the depth image; column 3: the
manually labeled user map; and column 4: the NiTE (Kinect API)
user map. The data set has some challenging features: partial
(second row) or complete occlusions (third row), user not fully
visible (fourth row). Note how the manual color indexing of the
users is consistent (third column): the same user always corre-
sponds to the same color. On the other hand, the NiTE algorithm
performs swaps and creates new users, or even merges users
(fourth column).
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plane. We can then conclude that the tabletop PPLP is not

appropriate for the robot spatial configuration used in the

RLPD. In a way similar to the tabletop PPLP, the PPM

PPLP has limited performance. The reasons are very sim-

ilar: The limited visibility of the ground provokes a poor

estimate of the transform between the camera space and

the perspective map, which creates an incorrect projec-

tion into the latter. On the other hand, the face detection

PPLP has low accuracy and recall. Indeed, the users are

most of the time several meters away from the robot and

often turn their back to the camera, which are challenging

conditions for face detection. Finally, the behavior of the

HOG detector is maybe the most surprising. Its detection

and recall rates, which are very high in the original

paper,20 fall drastically to under 10%. As can be seen in

the sample images, the users are never fully seen, and

especially their legs are most of the time out of the

picture frame. Since the HOG detector is trained for

detecting fully visible pedestrians, it performed very

poorly on the RLPD.

In conclusion, concerning the PPLP benchmarking, it

turns out that each of the different PPLPs has both strengths

and limitations, but no PPLP taken alone is reliable enough

for robust people detection. We need to combine them

using multimodal fusion, and the experimental setting will

help to choose one configuration or another.

Benchmarking of user recognition algorithms
with RLPD

In this section, we assess the performance of each user

recognition algorithm, structured as a PPLM, as presented

in “User recognition” section. To do so, for each PPLM M ,

for each frame n, we supply to M a pair of ground truth set

of users: the current Pn and the previous one Pn�1. Of

course, in both, ground truth identities have been stripped

(field person_name). PPLM M responses with the cost

matrix CM . The set-to-set assignment X is computed using

the Jonker–Volgenant algorithm as presented in “User

mapping, using the data fusion based on Kalman filtering”

section. This assignment X is compared with the ground

truth identities, which allows determining the precision of

PPLM M . The results for all PPLMs are in Table 2.

We see that the Euclidean distance PPLM offers a very

good compromise between computational needs and preci-

sion: It makes only 12 incorrect labelings, which is the best

performance, while being very straightforward.

The face recognition–based PPLM obtains a poor perfor-

mance: close to 300 incorrect labelings out of 1267,

roughly 1 out of 4. Indeed, users’ faces are often not detect-

able by the algorithm (users turning their back or too far

away for instance), and then a single face mismatch can be

propagated from frame to frame over a long period of time,

until the user’s face is visible again.

The height-based PPLM is the most error prone. In the

roughly two and a half minutes of the video, 346 incorrect

labelings are made. This can be explained by users 1 and 3

having very similar heights, and for this reason, their IDs

are frequently swapped, as can be seen in the confusion

matrices. This result underlines that the use of height infor-

mation alone, without any spatial or visual additional infor-

mation, is a clue but is not enough for accurate matching.

The performance of the NiTE PPLM, powered by the

NiTE algorithm, is very good considering the overall accu-

racy, 95:8%. We could expect a good tracking of the users

by the NiTE software: Being the algorithm powering the

user tracking for the XBox games using the Kinect device,

there has been a lot of development and testing to ensure its

accuracy. Furthermore, the experimental conditions are

close to the optimal use of the Kinect recommended by

Microsoft: static device, indoor environment, and limited

crowd. This experimentally validates the robustness of the

NiTE algorithm for user recognition in these conditions.

Finally, the PHS PPLM that matches users from one

frame to another uniquely using the color of their clothes

obtains a number of incorrect labelings similar to the Eucli-

dean distance–based matching, while it does not use any

spatial information about the users. Their sole color appear-

ance proves to give some meaningful hints about who is

who from one frame to another. Furthermore, the use of the

Hue color component shall make this method robust to

changing lighting conditions, even though this data set does

Table 1. Benchmark results for the PPLPs with the RLPD.

PPLPs Face detection HOG based NiTE based PPM based Tabletop based

Accuracy (%) 22.2 8.89 90.8 15.7 40
Hit rate (%) 18.6 4.76 90.6 12 41.9

PPLP: PeoplePoseList Publisher; RLPD: RoboticsLab People Dataset.

Table 2. Benchmark results of each PPLMs on the RLPD.

PPLM
Total

labeling
Incorrect
labeling

Overall
accuracy

Euclidean distance 1267 12 0.997632
Face recognition 1267 284 0.775848
Height 1267 346 0.723421
NiTE 1267 39 0.958333
PHS 1267 14 0.988791

PPLM: PeoplePoseList Matcher; RLPD: RoboticsLab People Dataset; PHS:
PersonHistogramSet.
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not offer such challenges. This confirms the usefulness of

the use of color information for user matching.

Architecture output: Sample data based on
multimodal fusion

A sample PPL message obtained by the multimodal fusion

based on both the Euclidean distance PPLM and the face

recognition–based PPLM is shown in Code listing 2. It con-

tains three users, labeled 1¼“irene”, 2¼“jc”, and

3¼“david”. Sample images of the data supplied by some

PPLM configurations are shown in Figure 7.

Note on user labeling. Depending on the PPLMs used in a

configuration, this will either perform user recognition

against known users or not. Figure 7 illustrates both cases

with two different configurations, at two different

moments of time, illustrated by the RGB frames shown

in Figure 7(a) and (c). Figure 7(b) and (d) presents the

different user tracks (colored lines), along with their user

mask and names. As user recognition between frames is

performed by the PPLM configuration, we can know

where the user has been and so display the trail. On the

one hand, in Figure 7(b), the configuration uses both

PHS-based and distance-based matching. The temporary

inter-frame user names are “1”, “2”, and “3”. These

names are coherent, so that a given user has the same

temporary name between frames. On the other hand, in

Figure 7(d), the configuration uses the face recognition

matcher combined with the distance-based matcher. The

face recognition PPLM, when it is fed with couples of

annotated faces and meaningful names (such as “david”,

“irene” or “jc”), can set absolute names to the tracks.

Consequently, in the PPL output message, the PPLM associ-

ates each temporary name with a meaningful name. Unlike

the other configuration, the user labels are displayed along

with their names, obtained by using face recognition. Also

note that in this example frame, the three users are tracked,

even though one user is partially occluding the others.

Figure 7. Sample pictures of our user awareness architecture
with the RLPD. RLPD: RoboticsLab People Dataset.

Code listing 2. A sample PeoplePoseList message.
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Benchmarking of multimodal fusion configurations
with RLPD

The performance of the data fusion node according to its set

of PPLMs was also benchmarked on the RLPD. Over 10

different configurations were benchmarked. The five con-

figurations using a single PPLM for track-to-detection

matching (face detection, HOG, height detection, NiTE,

tabletop) were assessed. On top of these, other configura-

tions based on combinations of these five available PPLMs

were also used. The results of the benchmark are gathered

in Table 3.

First, the table confirms the conclusions of the bench-

marking of the PPLMs made in “Benchmarking of user

recognition algorithms with RLPD” section. Among the

configurations relying on a single PPLMs, some perform

better than others. Namely, the Euclidean distance–based,

the NiTE-based, and the face recognition–based PPLMs

perform less than 20 ID swaps during the whole

sequence. At the other end, the height-based PPLM taken

alone is more than twice as error prone. Overall, the

number of swaps is lower than the number of frame-to-

frame mismatches that were done by each PPLM: Kalman

filtering helps get rid of isolated mismatches. Further-

more, as the table shows, each PPLM configuration is able

to process almost all PPLs messages; in other words, no

message is skipped.

Second, the table also assesses the performance of the

configurations relying on several PPLMs. As presented in

“Approach” section, the fusion node used with such a

configuration calls sequentially each of its PPLMs to

obtain its corresponding cost matrix, then computes the

global cost matrix. Except one 2-PPLM configuration,

EN, all the others (EF, EH, EP) obtain less ID swaps (2,

12, and 8 ID swaps) than the best 1-PPLM configurations,

E and N. In other words, the tracking errors made by the

multimodal fusion are fewer than for any of the algorithms

taken separately. The performance of the EF configura-

tion can be underlined: Over the whole sequence and in

spite of the very challenging scenario, only two ID swaps

were committed, which is the best performance obtained

among all the tested configurations. We can explain this

improvement: the Euclidean distance tracker is efficient

for most situations and solves the ambiguities correctly.

However, in complicated situations, for instance, users

disappearing through the door then reappearing, more

sophisticated PPLMs, such as face recognition, help to

solve correctly the matching.

When we increase the number of PPLMs involved in the

multimodal fusion, the performance of the fusion is

affected. For instance, merging the two best 2-PPLM con-

figurations, EF and EP, into EFP (Euclidean distance þ
face recognition þ PHS) does not improve further the

performance.

Indeed, in the challenging parts of the data set, while

one of the trackers correctly matches the current users to

the tracks, the others get mixed up: The rate of incorrect

hints given to the fusion node increases, and the final

result is erroneous. Furthermore, an increased number of

PPLMs generates a computational overload. This trend is

confirmed when the number of PPLMs increases further:

When using simultaneously five PPLMs, the number of ID

swaps increases further, while the real-time capability is

also affected, as shown by the decrease in the number of

processed frames.

Conclusions

In this article, we tackled the challenge of giving user

awareness to social robots. To do so, the problem was split

into three subproblems: user detection, user recognition,

and user tracking and mapping. A common data structure

was designed, called PPL and shaped as a ROS message.

User detection algorithms are shaped as PPLPs and user

recognition algorithms as PPLMs. We integrated state-of-

the-art algorithms using this format, for instance, face

detection, pedestrian HOG and NiTE for user detection;

and face recognition, height computation or Histogram-

based matching for user recognition. User tracking and

mapping is based on UKF at the user level, and for multiple

users, linear assignments are used to determine which

detection updates each track. The resulting data mapping

is also encapsulated into a PPL. Therefore, the novelty of

this article is not related to the development of new detec-

tion/recognition algorithms or improving a Kalman filter: It

is focused on how different algorithms can be fused to

perform a reliable user mapping during HRI. In fact, the

results show that by using several parallel algorithms for

detecting and matching users, and then merging their out-

puts by multimodal fusion, our proposal obtains a more

reliable local user mapping. Additionally, the number of

possible configurations of PPLPs and PPLMs is very large,

Table 3. Benchmark results for different configurations of PPLM
on the RLPD.a

Configuration name ID swaps
Processed
frames (%)

Euclidean distance (E) 16 99
Face recognition (F) 20 98
Height (H) 37 98
NiTE (N) 16 97
PHS (P) 21 95
Euclidean þ face recognition (EF) 2 98
Euclidean þ height (EH) 12 99
Euclidean þ NiTE (EN) 18 98
Euclidean þ PHS (EP) 8 98
Euclidean þ face recognition þ PHS (EFP) 8 99
All (EFHNP) 22 83

PPLM: PeoplePoseList Matcher; RLPD: RoboticsLab People Dataset; PHS:
PersonHistogramSet.
aThe last column shows the rate of frames that could be processed by the
fusion node while respecting the real-time constraint.
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and some of them outperform others, most notably the

simultaneous use of several PPLMs can increase the preci-

sion of the user mapping compared with each of these

PPLMs taken alone, as seen in Table 3.

The strength of the proposed architecture lies in its mod-

ularity: It is easy to add or remove modules, and more

generally to design a configuration that fits both the robot’s

hardware and software requirements, as well as the prop-

erties of its environment. This modularity allows the use of

the architecture on a variety of platforms that differ in both

their hardware capabilities and the way in which they inter-

act with users.

A specific data set of images was created, called

RLPD, which corresponds to scenarios of user detection

and recognition in a realistic HRI context, acquired on a

real robotic platform. The performance of all modules was

assessed by using this data set. We also demonstrated that

the performance of the mapping is improved by using

several algorithms in parallel.
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