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depth information for social robots:
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Abstract
Robots are starting to be applied in areas which involve sharing space with humans. In particular, social robots and people
will coexist closely because the former are intended to interact with the latter. In this context, it is crucial that robots are
aware of the presence of people around them. Traditionally, people detection has been performed using a flow of two-
dimensional images. However, in nature, animals’ sight perceives their surroundings using color and depth information. In
this work, we present new people detectors that make use of the data provided by depth sensors and red-green-blue
images to deal with the characteristics of human–robot interaction scenarios. These people detectors are based on
previous works using two-dimensional images and existing people detectors from different areas. The disparity of the
input and output data used by these types of algorithms usually complicates their integration into robot control archi-
tectures. We propose a common interface that can be used by any people detector, resulting in numerous advantages.
Several people detectors using depth information and the common interface have been implemented and evaluated. The
results show a great diversity among the different algorithms. Each one has a particular domain of use, which is reflected in
the results. A clever combination of several algorithms appears as a promising solution to achieve a flexible, reliable people
detector.
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Introduction

Nowadays more and more robotic applications are moving

from isolated environments and laboratories to areas where

robots and people coexist. Under this condition, robots

need to be aware of the presence of humans around them.

In social robotics (SRs), this condition is even more impor-

tant since these robots are intended to interact with people

that live together with them. Consequently, people detec-

tion is a fundamental feature in SRs.

People detection refers to the capacity of a robot to

perceive the presence of a person. In this work, we aim at

giving this skill to social robots, which consists of detecting

the users (We apply the term user to refer to those people

who can be engaged in human–robot interaction (HRI).

Two relevant concepts are usually mixed up: people detec-

tor and user detector. Both refer to algorithms that will do
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the same thing, which is finding human shapes in the sen-

sors input. However, a user detector is more specifically

used when a positive interaction between the system and

the human person is possible. This can be the case in

robotics, in multimedia kiosks, and so on. In this article,

we both terms use indistinctly.) close to the robot, thanks to

its sensors. Here we focus on people detection considering

how HRI usually happens, that is, mostly within short dis-

tances and in daily, unstructured environments.

Detecting human shapes in an image stream is a problem

that is related to many more fields than just SRs: for exam-

ple, home security1,2 playing video games,3 or monitoring

the activity of sick people.4 Even in robotics, the applica-

tions are multiple: they include gesture recognition,5 follow

the leader behaviors,6,7 turning the robot into a gaming

companion,8 and many more.

The important amount of research that has been done

results in a wide range of methods and algorithms that have

been proven to give satisfactory results for people detection

using visual data. Traditionally, these people detection

methods used two-dimensional (2-D) color information

(red-green-blue (RGB) images). However, if we look at

nature, animals use both color and depth information to

perceive their environment. In this sense, with the uptake

of depth sensors in robotics (mainly the kinect device), new

algorithms have been developed using depth information.

In this article, we present new algorithms using depth

images (i.e. 3-D data) inspired on the most frequent algo-

rithms using conventional 2-D images. Besides, algorithms

from other fields have been transformed to deal with the

characteristics of the scenarios where humans and robots

interact.

Researchers have shown that the gap between subjects

engaged in interpersonal relations is a key aspect to be

socially accepted and effective when interacting,9 so is in

human–robot relations.10 Thus, it is important that social

robots are able to both detect potential users and estimate

the distance to them. One important advantage of using 3-D

data to detect humans is that, once a person is identified,

obtaining the distance to that person is straightforward. The

3-D-based people detectors presented in this work will pro-

vide, not just the presence or absence of a person, but the

location in relation to the robot.

Due to their low cost and performance, depth sensors

have become a mainstream device available in most of the

social robots operating in the world. These devices will

provide the data needed by the people detectors implemen-

ted in this work. Considering that social robots will operate

in different, unstructured, and daily environments, it is cru-

cial that they are equipped with the required devices for

their normal operation. Thus, the people detection algo-

rithms presented here can be run in any robot equipped

with depth (RGB-D) sensors.

The diversity of different people detection algorithms

has lead to create ad hoc solutions to integrate them into

robotic control architectures. Moreover, the different

nature of the data provided by each of these algorithms

makes it difficult to compare their performance. Here we

propose a common interface that can be applied to any

people detection method.

The rest of the article is structured as follows. First, in

the section on related works, the most relevant algorithms

for user detection existing in the different above-mentioned

fields will be reviewed. Second, using the ROS framework,

we present a common interface for people detectors and

justify its benefits (section on defining a common interface

for people detectors). All the methods developed in this

work make use of this interface. Then, our contributions

to user detection will be detailed in the section on people

detectors using depth information. These contributions

include, on the one hand, the development of new algo-

rithms using 3-D data built on existing conventional, color

image–based algorithms; on the other hand, several people

detection algorithms developed to be applied in other fields

(such as gaming, or pedestrian detection) have been

adapted to HRI scenarios. After, the performance of the

different implemented methods is compared in the section

on benchmarking people detectors. In the discussion sec-

tion, we explain the results, the strengths, and the weak-

nesses of each method. Finally, we summarize the work

presented in this article (conclusion section).

Related works

As said before, the detection of human shapes in a stream of

images is a problem that has been tackled by researchers

several times in the past. Many articles propose ad hoc

solutions, that is, the user detection requires a nonnatural

modification of the environment or of the interaction flow

(e.g. a specific color of clothing11 or visual markers12).

Considering that social robots operate in daily environ-

ments, we discard this category and focus on generic (non-

ad hoc) detection algorithms using visual information (2-D

and 3-D). That is, algorithms that do not imply a modifica-

tion of the environment or the people to be detected and

that use the information provided by a camera (e.g. RGB or

RGB-D). Among the many existing algorithms, a limited

number of them will be reviewed. These are the ones that

are, at the same time, the most accurate and the most rel-

evant to the needs of SRs.

Lately, convolutional neural networks (CNN), or deep

learning, have become a very popular technique for many

computer vision problems, such as people detection.13

They present a very good accuracy, but, however, it is

known that CNN are very slow at inference time.14–16

Unfortunately, the real-time constraint is mandatory in HRI

scenarios. and robots have limited onboard resources.

Furthermore, deep learning algorithms require a substantial

amount of training data, while data sets offering both color

and depth data and with such an amount of people images

involved in HRI scenarios do not exist. For these reasons,

these methods are not considered in this work.
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Face detection

Face detection consists of determining if human faces are

visible in a video stream and, if it is so, what are their position

in the image. This is one of the classical challenges in vision.

Nowadays, some fairly standard techniques are avail-

able for face detection and give a very good accuracy rate.

The technique presented by Viola–Jones17 is one of the

most used in robotics and its lightweight computational

cost allows a high-frequency analysis of the video stream.

The Viola–Jones object detection framework can actually

be trained to detect any object,18 but it is especially popular

for face detection.

The method of Viola and Jones is an example of super-

vised learning. The learning is based on the appearance of

the training images. The process consists of seizing the

content of each image by computing the so-called charac-

teristics in rectangular zones of the image that overlap each

other. These characteristics are a synthetic and descriptive

representation of the values of the pixels and are more

efficient to be dealt with.

The second key element in Viola and Jones is the use of

a boosting method in order to select the best characteristics.

Boosting is a technique that enables the building of a strong

classifier with a linear combination of weak classifiers. In

this method, characteristics are seen as weak classifiers.

Hence, the learning process of the weak classifier only

consists of learning the threshold value of the characteristic

so as to split better positive samples from negatives. The

original detector uses three different characteristics, while

the modified Lienhart and Maydt detector19 adds two oth-

ers, and includes two diagonal orientations.

Another very widespread face detection algorithm is the

detector based on neural networks20. It only works well

with frontal, upright faces. Thanks to its accuracy, after its

release in 1998, this algorithm became the most widespread

and is used in numerous works of the following years (see

for instance21) till the publication of the previously pre-

sented Viola-–Jones detector. The latter being more accu-

rate and about 15 times faster,17 therefore, becoming the

weapon of choice.

Human body detectors: Histogram
of oriented gradients

A histogram of oriented gradients (HOG) is a feature used

in computer vision for object detection. It has turned out to

be a very efficient technique for the detection of human

shapes. It was presented first by Dalal and Triggs.22 It is a

2-D algorithm using an RGB image as input and returns as

output the rectangular estimations of the people, and so it

does not need, neither uses, a depth image. It makes use of

histograms of image gradients.

The HOG algorithm is based on the computation of local

histograms of the gradient orientation called HOG descrip-

tors. The concept of the HOG descriptor is that the

distribution of the gradient intensity or the direction of the

edges can describe the appearance and the shape of a phys-

ical object in an image.

To compute the HOG descriptors of an image, first,

the image is divided into a continuous grid of small

areas called cells. In each cell, for each pixel of the cell,

the directions of the gradients is computed. A histogram

of all these directions is then built. The HOG descriptor

is then made of a set of these local histograms (one

histogram per cell).

The HOG algorithm then needs data for supervised

learning. For this purpose, a data set of images is created.

For each image, the presence of a person in it is manually

labeled. The HOG descriptors are computed on each image,

and a simple binary SVM classifier23 is trained with them

for classification. Note that the SVM classifier is a nonso-

phisticated classifying algorithm on purpose, so as to

demonstrate the efficient description of the objects by the

HOG descriptors.

The original HOG detector has been reused and

improved by several authors. Two speedups in the compu-

tation, but without considerable accuracy improvement,

can be mentioned: first, researchers of Mitsubishi have

coupled the same descriptors with cascade classifiers, sim-

ilar to the ones used by Viola and seen previously in the

subsection on face detection, leading to an up to 70 times

speedup, but their improvement is protected by a patent24;

and second, subcell interpolation computes efficiently the

HOG descriptors per block, and the reuse of the features

between overlapping blocks leads to a further 5 times

speedup.25

Kinect API: NiTE

The patented PrimeSense NiTE middleware allows detect-

ing and tracking human shapes from depth maps. It is the

piece of software that powers the detection and tracking of

the users for the Microsoft Kinect device developed for the

XBox 360.26

Although the technique employed and the source code

are not available, it is likely that motion analysis and clus-

tering techniques are at the core. Indeed, detection of a

human player is activated by her motion. In other words,

a still user is not detected, and a moving object will be

detected as a human user if it has similar dimensions.

The NiTE middleware supplies three data for higher-

level applications: the RGB image, the depth image, and

the multimask. The multimask is a one-channel byte image.

This image, synchronized with the RGB and the depth

ones, indicates where the users are: if a pixel p of the users

mutimask has a value of 0, it means there is no user in p,

while if it has a value of 1, p corresponds to a pixel of the

user 1, and so on. For a given user, a user mask is the

multimask image where all pixels that do not belong to this

user are set to 0 (i.e. “erasing” the other users).
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Polar-Perspective Map

Another approach for people detection, thanks to depth

images presented by Howard and Matthie,27 where it is part

of a complete pedestrian detection system only based on

stereovision.

The authors use a 2-D occupancy map with a polar

resolution called polar-perspective map and abbreviated

as PPM. The so-called PPM is an occupancy map based

on the polar coordinate system: It uses a regular grid based

on the bearing of the points and their inverse distance to the

device. As such, the resolution of closer points is higher

than of far points: Unlike the Cartesian map, it can be tuned

to match exactly the resolution of the device.

The 3-D point cloud of the environment is projected into

the PPM: for every point of the cloud, the corresponding

cell in the map increases by one. The clusters of the map

with a high accumulation factor are produced by vertical

objects in the original point cloud. They correspond to

regions of interest: they are segmented from the original

image. Then a simple Bayes classifier determines if the 2-D

shape of each cluster is similar to a human shape. The

system is compatible with classical image processing tech-

niques, such as appearance-based algorithms.

Stereovision is, according to authors, a very liable solu-

tion for navigation and pedestrian detection. However, their

system is designed for stereo cameras mounted on outdoors

vehicles, with ranges between 5 and 50 m. This makes

difficult to use it for indoor robotics platforms.

Defining a common interface for
people detectors

Usually it is desirable to be able to run the same software

modules in different robotic platforms. In our case, we

would like to be able to use several people detectors in our

social robots (Figure 1).

To ease this process, a common practice in computer

science consists of standardizing the communication layer

and the data that are exchanged by the different modules,

better than the proper structure of these modules. For this

reason, we designed a common data structure that contains

the data of a detected user and will be filled by any user

detector that we want to use in our robots.

We called this data structure PeoplePose (PP). It corre-

sponds to a single user detection and contains all the infor-

mation worth being shared, such as the 3-D position and

orientation of the user or the confidence of the detection.

Considering that the robot operating system (ROS)

framework has become the de facto standard in robotics,

the PP data structure is implemented as a ROS msg.28 The

msg formalism is in fact a simple message description lan-

guage for describing data structure exchanged by ROS

nodes. The details of the PP message are in code listing 1.

Code listing 1: “The PP message. Note the ‘:’ characters

describe the inner fields of a field”

The PP data type starts with a header that provides a

time stamp. Then, the 3-D position and orientation of the

user is considered by the pose field whose type is geome-

try_msgs/Pose. This type of data is commonly used as the

output of many detectors but, here, we extend it with addi-

tional information relevant in HRI. The confidence field

represents the certainty of the information provided by the

detector. In case of using multiple detectors, the standard

deviation resulting from the fusion process fills the std_dev

field, and three user images are considered in this message:

the RGB, the depth, and the binary masks of the user.

The PP message considers the possibility of containing

several user’s attributes (see attributes_name and attribu-

tes_values fields), such as her height, age, or mood. These

attributes are not mandatory and should be provided by the

people detector.

Moreover, some fields imply higher-level understanding

of the scene and, consequently, some fields will be filled by

advanced user detection algorithms. For instance, the per-

son_name field already implies some user recognition rou-

tine that most user detection algorithms do not have. For

Figure 1. Several social robots equipped with a depth sensor.
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this reason, in this work, this field is set at the default value

NO_RECOGNITION_MADE most of the time.

The PP message is intended to be usable by any kind of

user detector. However, all fields of the message will not be

filled by all methods: for instance, a user detector based on the

information of a 2-D range finder will not use the image fields.

With one given data input, a detector can detect several

users at once. For instance, a face detector can find several

users in the same RGB picture. In order to allow such

feature, the different PP generated by each detection are

then gathered into a single message: this collection of PPs

is then called a PeoplePoseList (PPL). In addition to the list

of PP, the PPL message also contains the name of the

algorithm used by the detector and a time stamp. The full

structure is visible in code listing 2.

Code listing 2: The PPL message

An algorithm capable of generating PPL messages is

called a PeoplePoseList Publisher (PPLP). All the people

detectors running in the robotic architecture that controls

our social robots will then exchange this common data

structure PPL.

People detectors using depth information

Usually, HRI happens when robots and people are close

enough to establish a dialog or when a person is in the

surroundings of the robot. In these situations, robots do not

use to get around but stand while communicating with

people. Besides, since social robots are intended to be

deployed in everyday environments, it is desirable to avoid

external sensors and endow the robots with all the required

devices for a normal operation.

In this section, we present five people detection algo-

rithms that take into account the above circumstances and

use depth and color information to locate users around the

robot. They are integrated in our robot control architecture

as PPLPs, which are detailed in the following subsections.

The next PPLPs are inspired in previous works described in

the section on related works.

Our interest in using 3-D data for people detection lies in

the fact that the computation of the user location is straight

once she has been detected. This simplifies the software,

making it lighter and easier to deploy.

Face detection-based PPLP with depth information

The classical 2-D Viola–Jones and neural network detec-

tors presented in the subsection on face detection only use

the color (RGB) image data and indicate the position of the

found faces in the image frame, by their bounding boxes, in

pixels. Here, we propose a new algorithm that, based on the

geometrical shape of a human head, detects faces that com-

ply with certain dimensions. The underlying idea is the

following: the 3-D points corresponding to a face complies

with certain geometric constraints, especially in the width

and height of their 3-D bounding box. Indeed, two points

belonging to one given face cannot be away from one of the

other of, say, more than 1 m.

As such, to determine if a zone of the image classified as

a face by the Viola–Jones detector is really a face, we will

sample a given number of 2-D points from this zone, that

we will reproject to 3-D using the depth (distance) image. If

the bounding box of these reprojected points does not com-

ply with generic given geometric constraints, this detection

is classified as a false positive and discarded. The pipeline

is illustrated in Figure 2.

The face detection PPLP was implemented in Cþþ,

using the Viola–Jones implementation supplied by
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OpenCV.29 The RGB and depth data are supplied by the

kinect drivers. The thresholds for the dimensions of an

acceptable face bounding box were determined experimen-

tally: the maximum bounding-box depth of the face points

is set to 30 cm and its height to 40 cm. Note these thresh-

olds are reconfigurable dynamically, thanks to the mechan-

ism of ROS parameters.

For each face detection, an output PP message is built:

the RGB, depth, and user masks are obtained via a propa-

gation from seed. In this method, the seed is the 2-D center

of the face detection. The 3-D reprojection of this same

seed is used as the output user position.

The propagation from seed generates a full user mask

given two inputs: the depth image and a so-called seed

pixel, which is in fact a pixel position that we know for

sure that it belongs to a user.

The idea is to run a propagation algorithm in the depth

image, starting from the seed, and stopping at the depth

edges, which are pixels where there is an edge discontinu-

ity. This discontinuity can be found at the edge of a user:

the background floor is several meters behind the user,

which generates a gap in the depth value.

The edges can be obtained in the depth image applying a

Canny edge detection algorithm30 on it: The filter is then

called a Depth Canny. A flood fill propagation from the

seed in the Depth Canny edge image will then include all

points of the user.

The HOG-based PPLP with depth information

The2-D HOG detector (subsection on human body detectors:

histogram of oriented gradients ) is made for finding people

in an RGB image and supplies a rough rectangular estimate

of their position in that image. In our case, we are interested

in their 3-D position, and we make use of the depth image.

The people detector presented in this section initially

uses the 2-D HOG detector, in particular the OpenCV HOG

Cþþ implementation.29 The search is performed with a

scaling factor of 1.05 (increases the detection window size

by 1.05 for each search scale). These human locations are

in fact rectangles that give a rough bounding box of the

user. This information is 2-D: The rectangles indicate

where the user is in pixel coordinates.

Based on this information, we have to pick a seed pixel

that will determine the user position and its location after

running a propagation algorithm, just as the one mentioned

in the subsection on face detection-based PPLP with depth

information. Using the geometric center of the 2-D rectan-

gles is not a reliable method. The rectangles returned by the

2-D HOG detector are only rough estimations of the users: It

is possible that their center pixel do not belong to the user’s

mask, which is a prerequisite for the success of this method.

Another approach is to consider that the user represents

most of the content of the rectangle. As such, for a given

detection r of the HOG detector, if r is a positive detection,

that is, there is a user in r, then this user corresponds to the

main 3-D cluster inside of r. In other words, the user corre-

sponds to the main 3-D cluster in the point cloud generated

by reprojecting each point of r. The processing pipeline is

made of several stages. The details are given algorithm 1.

Algorithm 1: The processing pipeline for the HOG PPL

generator.

The key step of the algorithm is the clustering of the 3-D

point cloud cr generated by reprojecting in 3-D the pixels in

a HOG detection r. This is done, thanks to the point cloud

library (PCL) (http://www.pointclouds.org/. The clustering

makes use of a compact and fast representation of the

cloud, thanks to a Kd-tree, and fast access to the neighbor

points of a query, thanks to an octree. Very briefly, the

algorithm goes as follows: for the first point of the cloud,

creating a queue with its Euclidean neighbors. Then for

each point of the queue that was not seen already, recur-

sively add the neighbors of this point to the queue.). We

used an Euclidean neighbor distance threshold of 10 cm.

The biggest cluster of the 3-D point cloud cr should then

correspond to the user shape. Constraints on the dimensions

of the 3-D bounding box of this biggest cluster filter out from

others the cluster corresponding to a person. These con-

straints are actually permissive ranges on the values in

meters of the height, width, and depth of this 3-D bounding

box. If one of its values is outside the thresholds for human

dimensions, then the detection r is discarded. Otherwise, a

PP message is built. The final 3-D position of the user cor-

responds to the 3-D centroid of the main cluster.

NiTE-base2-D PPLP

In this section, we present a PPLP that uses a people detec-

tor natively processing 3-D information: the NiTE

6 International Journal of Advanced Robotic Systems
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middleware for the Microsoft Kinect device seen in the

subsection on kinetic API: NiTE. This section describes

how it has been integrated in the robotic control architec-

ture as a PPLP. This people detector is well-known in

robotics, and it has been included in this work for compara-

tive purposes.

The NiTE middleware supplies a data structure that is

straightforward in converting into a PPL: the users multi-

mask. We have seen that the unique values of the users

multimask, which are strictly positive integers, can be seen

as the users’ IDs. The NiTE middleware already includes

tracking capabilities: the same physical user, whether she is

visible in successive frames, is identified by the same ID in

the resulting successive multimasks.

The number of users visible by the camera is equal to the

number of unique nonzero values (IDs) in the users multi-

mask. For each ID of the users multimask, we define the

user mask as the set of pixels in the users multimask that

have a value equal to this ID. This is equivalent to setting

all other IDs in the multimask to 0. Then, the 3-D position

of the user with this ID is the Center of Mass (COM) of the

reprojection in 3-D of this user blob. The user RGB image

corresponds to the part of RGB image where the user mask

is nonnull. Similarly, the depth image of the user is the

intersection of the depth image and the user mask.

These properties are used for the conversion between the

users multimask and the PPL message. First, we determine

all the unique values (IDs) of the multimask, then for each

ID, we compute the COM of its user mask. This COM is

reprojected to 3-D and stored in the PPL message.

The NiTE-based PPLP is structured as a Cþþ ROS

node that subscribes to the three image streams published

by the NiTE middleware node: RGB, depth, and multi-

mask. The full processing pipeline is visible in Figure 3.

A sample of user detection and PPL building, thanks to the

NiTE middleware, is visible in Figure 4.

The PPM-based PPLP

This people detector uses the fact that a person appears

as a 3-D cluster, that is, a set of points tightly close to one

to another, in the 3-D point cloud given by the range-

imaging device. When projecting this 3-D cloud on the

ground plane, these clusters will be projected onto the

same area, thus generating a sort of high-density blob on

the ground plane. Standing persons can then easily be

characterized by the size of the blob: their height will

most likely belong to a span of characteristic human

sizes, while their width corresponds to the footprint of

a human user.

In the case of the original PPM, the person detection was

conducted running a Bayesian classifier on the high-density

blobs of the ground plane. Here, those blobs are projected

back to the 3-D coordinate space and filtered out according

to the size of a standing human.

We implemented the PPM-based people detector using

the geometric transform from the Cartesian system of coor-

dinates to the PPM indicated by27 and having the following

definition:
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Besides, two resolutions are chosen to determine the

size of the cells: a spatial one (corresponding to steps

in r) and an angular one (steps in y).
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Figure 3. The NiTE-based user detector pipeline. The caption is
identical to Figure 2.

Figure 4. Sample images of the NiTE-based PeoplePoseList
Publisher. (a), (b), and (c) The data supplied by the NiTE middle-
ware, respectively, the red-green-blue (RGB) image, the depth
image remapped to gray scale and the users multimask. (d) the
center of mass of each user (white circle).
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The full processing pipeline is visible in Figure 5, and

some samples are shown in Figure 6.

Each pixel of the point cloud is transformed into the PPM

coordinates and the corresponding cell of the PPM is aggre-

gated. We maintain at the same time a reverse map that

stores the list of 3-D points that were projected onto a given

cell of the PPM. A sample is visible in Figure 6(c). Then the

PPM is thresholded: all the cells that have a minimum of

pixels are marked as 1, the others as 0, thus generating a

binary mask, as visible in Figure 6(d).

The objects in the scene correspond to the connected

components in the image. We use a lightweight, fast algo-

rithm for fetching the different components of the PPM,31

as visible in Figure 6(e). The 3-D bounding box of each

connected component is obtained by considering the cluster

made by all the 3-D points that belong to that component,

which is done using the previously mentioned reverse map.

Then, we focus on detecting standing humans: some

empirical thresholds on the bounding boxes will discard

most of the connected components, enabling to keep only

the ones that are shaped as a standing person. In our imple-

mentation, the width must be between 0.3 and 1 m, the

height between 1.2 and 2.1 m (thus also including most

children aged over 6), and the depth between 0 and 1 m.

These values were chosen so that they include all human

configurations, while discarding a reasonable amount of

nonhuman clusters. Bounding boxes with dimensions out

of these ranges are discarded. In other words, we aim at

having a false negative rate of 0, while having a low false

positive rate. As can be seen in the sample in Figure 6(f),

we indeed have some false negatives from time to time. All

the objects in the scene that have dimensions in these spans

will indeed be labeled as users.

Finally, the 3-D clusters that passed all tests are likely to

be users. We then shape a PPL message for each cluster.

The user mask corresponds to the 2-D reprojection of the

cluster in the camera frame. In this PPL are also stored

the corresponding parts of the RGB and depth images and

the 3-D COM of the centroid.

Tabletop PPLP

The detector presented in this section also handles depth

information, and the erroneous recognition of remote objects

Figure 5. The polar-perspective map (PPM)-based user detector
pipeline.

Figure 6. User detection, thanks to polar-perspective maps
(PPMs). (a) The input red-green-blue (RGB) image given by the
range-imaging device (kinect). (b) The depth map, as supplied by
the kinect, and remapped to visible colors (Hue scale). (c): The
PPM, remapped to visible colors (Hue scale). Empty bins are
shown as black pixels, red colors correspond to almost empty
bins, while green bins correspond to fuller bins and blue the
fullest. (d) The previous PPM, maintained at a threshold and thus
transformed into a binary map. (e) The connected components
labeled by color of the PPM set at a threshold. (f) The remaining
connected components after eliminating the ones that do not pass
the tests on the bounding boxes. On the top image, the person is a
true positive. Note that the cupboard in the bottom image is
incorrectly identified as a person.
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is limited using a so-called depth clamping: the depth values

greater than a given threshold are not taken into account.

People standing on the floor generate a point cloud that

is similar to objects standing on a tabletop. Detecting

objects on a planar surface such as a tabletop is a problem

that has already been tackled by other authors, most notably

for object grasping.32,33 We here chose to combine some of

these techniques in an innovative way to find the users in

front of the robot.

We implemented a PPLP that detects the ground plane,

thanks to a statistical method, and then retrieves the pixel

blobs of the objects being on top of that plane. We here

make the strong hypothesis than all the blobs visible in a

given range of distances are only users. For instance, no

furniture, box, or any object should enter in this range of

distances. This is a very restrictive hypothesis, but it can

be met in some cases: an uncluttered environment, such

as a wide living room or a lab, can fulfill this condition.

The pipeline is illustrated in Figure 7, and a sample is

visible in Figure 8.

We suppose the users need to be detected only in a

limited and static range of distances. This makes sense in

a configuration where the camera is in a given position, say

a fixed camera on a robot with limited motion capabilities

(e.g. the second robot from the right in Figure 1). We name

dmin; dmax 2 R the minimum and maximum distances

where the user can appear. Parameter dmin would typically

be around half a meter, and dmax slightly smaller than the

closest wall. Then we clamp our depth map: we mark all

pixels with a value smaller than dmin or greater than dmax as

not valid. All pixels in ½dmin; dmax� belong either to users or

Figure 8. User detection, thanks to the tabletop PeoplePoseList Publisher. (a) The input red-green-blue (RGB) image given by the
range-imaging device (kinect). (b) The depth map, as supplied by the kinect, and remapped to visible colors (Hue scale). (c) The valid
measures of the depth map, belonging to the chosen range of depth [1,4] (meters). (d) The mask of the pixels belonging to the
computed ground plane. (e) The mask of all visible objects. (f) The person blobs. In this example, there is only one person, so one
color blob.
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to the ground. See how such a filter affects the depth map in

Figure 8(c) .

Once the depth map is clamp, the first step is the detec-

tion of the ground plane. In other words, we want to detect

the points in the image that belong to the ground and that

belong to objects on top of it. We used the RANSAC algo-

rithm to compute the plane equation34 implemented in the

PCL.35 This method consists of estimating the equation of

the ground plane and then obtain a binary mask of all the

points of the depth image that belong to the ground. The

depth image is reprojected to 3-D, giving us a 3-D point

cloud of the ground. If the ground is visible in the depth

image, then statistically, a great amount of the 3-D points

belong to that ground. However, some 3-D points do not

belong to the ground, such as object pixels. Statistically

speaking, most 3-D points are inliers for the ground plane

equation, while some are outliers. The ground plane equa-

tion can thus be restored with a statistical algorithm oper-

ating on the point cloud and capable of discarding outliers

while optimizing the equation for the inliers.

Once we obtain the equation of the ground, we can eval-

uate which pixels of the depth map belong to it. For each

pixel, we evaluate the absolute distance between its 3-D

reprojection and the plane. If the distance is greater than a

given threshold, the point is evaluated as belonging to an

object. Otherwise, it belongs to the ground. This enables the

generation of a ground plane mask, as seen in Figure 8(d).

The user mask is obtained by combining the binary inverse

of this first mask (thus removing all ground points) with

the depth mask of the points in ½dmin; dmax� described

before. In order to separate aligned users, we combine this

user mask with a Canny filter on the depth map that will mark

the edges (depth disparities) as described previously. This

generates a binary map where objects are indicated by a pos-

itive value, the rest being 0. A sample is visible in Figure 8(e).

In order to quickly retrieve the connected components in

the binary map, we apply the same method used by the

PPM-based PPLP (subsection on the PPM-based PPLP ).

We suppose that all objects in ½dmin; dmax� can only be

users. Consequently, all connected components obtained

from the binary map correspond to users. A sample is visi-

ble in Figure 8(f). These components are then passed to a

PPLP that shares this message with the rest of the system.

Benchmarking people detectors

In order to evaluate the performance of the implemented

people detectors, we developed a benchmark application,

that takes advantage of the PPL message, the common mes-

sage type published by all PPLPs introduced in the section

on defining a common interface for people detectors.

The benchmark application uses files containing both

the input data (RGB and depth images) and the manually

labeled user position (user mask). The input data are passed

to the different PPLPs and the output is compared with the

provided user masks.

We evaluated the performance of the PPLPs with two

data sets that provide the input data: the public academic

DGait database and RoboticsLab People Dataset (RLPD).

The input data contain synchronized, labeled, visual, and

depth information.

These data sets present conditions comparable to the

HRI scenarios where our robots are applied, that is, daily

environments such as homes, schools, or day care centers.

These are indoor spaces where natural and artificial light-

ings can be combined.

The public academic DGait database36 contains video

sequences of 55 users, both female and male, walking on a

stage with varying light conditions. Some samples of this

data set are visible in Figure 9.

The RLPD is a new homemade data set containing real

data acquired from one of our social robots in the labora-

tory.37 The actors used to collect data for this data set were

engaged in a realistic HRI scenario in which one or several

users interact naturally with the robot: addressing the robot,

using gestures, respecting the proxemics distance, and so

on. The ground truth user positions have been manually

labeled in each of the 600þ frames. Some samples are

visible in Figure 10.

This data set is licensed under the terms of the GNU

General Public License version 2 as published by the Free

Software Foundation, and freely available to download on

the author’s website, along with images and videos (https://

sites.google.com/site/rameyarnaud/research/phd/robotics-

lab-people-database).

Benchmarking

The benchmark of a PPLP is then made by running it on

each frame of all video sequences of the databases and

comparing its results with the ground truth.

Figure 9. Some samples of the DGait data set. (a) Sample image
from the videos of a user. Depth image has been remapped to
visible colors. (b) Example of the diversity of users in the data set.
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Considering the metrics defined by Olson and Delen,38 we

computed the true positive, true negative, false positive, and

false negative rates. Positive means that a person is detected in

the current input, while negative indicates that no person is

detected. True and false describes if this result is correct or not.

With all these values, we calculated the accuracy and

the hit rate of each algorithm. Accuracy refers to the per-

centage of correctly evaluated frames:

Accuracy ¼ true positiveþ true negative

total number of frames
� 100

In the case of the hit rate, it measures the number of

people successfully detected, considering the frames that

certainly contain al least one person:

Hit rate ¼ true positive

total number of frames with people
� 100

Results

The performance of the different 3-D people detectors was

measured, thanks to the benchmark based on the already

mentioned DGait database and RLPD. The results of the

former are included in the subsection on benchmarking and

subsection on results with the RLPD5.2.2 presents the

results of the latter.

Results with the DGait database. The results obtained when

using the DGait database are gathered in Table 1. In the

case of the face-based PPLP (first column), the false

positive rate is very low. This is due to the use of the

depth information to discard false positives, it limits the

detection of nonexisting faces. However, the hit rate is

under 25%, that is, less than one-fourth of the users

were detected.

If we focus on the HOG-based PPLP, we observe that

the accuracy of this algorithm is roughly 70%. If we con-

sider the fact that the detections are made using only the

color information, the depth being used only for false pos-

itive removals, this is a fairly reliable algorithm for the

conditions of the DGait data set: more than two-thirds of

the users will be detected.

We can be surprised by the great results obtained by the

NiTE-based PPLP. However, seeing that the user mask

supplied by the data set was actually obtained by its

authors using the NiTE middleware, we can easily under-

stand this results. In other words, the ground truth used to

evaluate our PPLP was created with same middleware we

used in the NiTE-based PPLP. For this reason, its accu-

racy and precision are roughly equal to 1. In fact, this

PPLP measures the accuracy of our wrapper, that is, the

common interface presented in the section on defining a

common interface for people detectors, that converts the

three image topics (RGB, depth, and user multimask) to

PPL. Note that this does not mean that the NiTE-based

PPLP never fails, it means that it fails as often as the

labeling of the data set: the labeling made by NiTE is

faithfully converted by our wrapper, and so the failure

in the labeling, triggered by NiTE failures.

The PPM-based PPLP has an accuracy of 65.8%. It is

designed to work specifically with standing humans, which

is no limitation for this benchmark, as all users are standing

or walking in this data set. Note that because the PPM has

no maximum distance, all the remote objects (walls, cup-

boards, etc.) are used for its building and are erroneously

recognized as users from time to time. This explains the

numerical difference between the hit rate and accuracy for

this detector.

The tabletop-based PPLP has an accuracy very close to

1. This means that the detector is almost always true in its

predictions. We have to remember the strong assumption

we made before though: we consider an uncluttered envi-

ronment, with users in a range of distances. The database is

made of users walking on a stage, which corresponds

exactly to these settings. This justifies the good results.

This accuracy would be much lower if there was an alien

object on stage, such as a cupboard for instance.

Results with the RLPD. The RLPD offers a high level of

complexity: the occlusions are frequent, the users are some-

times partially shown in the images, and in general, they are

somewhat far away from the camera. The results obtained

with this data set are summarized in Table 2.

The NiTE PPLP has a high accuracy and hit rate (both

above 90%), which confirm the good performance of the

Figure 10. Some samples of the RoboticsLab People Dataset
(RLPD). From left to right: column 1: the red-green-blue (RGB)
image, column 2: the depth image; column 3: the manually labeled
user map. The data set gathers some challenging features: partial
(second row) or complete occlusions (third row), user not fully
visible (fourth row). Note how the manual color indexing of the
users is consistent (third column): the same user always corre-
sponds to the same color.
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algorithm that was already seen with the DGait database

(both metrics above 99%).

The tabletop PPLP had a very good performance on the

DGait data set, as it had over 99%. However, on this bench-

mark, its performance is lower: it has a detection rate of

around 40%. Indeed, as it can be seen in the sample images

(Figure 10), the ground is hardly visible in the images

acquired by the camera, which generates a poor estimation

of the ground plane. We can then conclude that the tabletop

PPLP is not appropriate for the robot spatial configuration

used in the RLPD.

In a way similar to the tabletop PPLP, the PPM PPLP

performs much worse on our homemade data set than on

the DGait data set: its accuracy lowers from 66% to 16%.

The reasons are very similar: the limited visibility of the

ground provokes a poor estimation of the transform

between the camera space and the perspective map, which

creates an incorrect projection into the latter.

On the other hand, the face detection PPLP has low

accuracy and hit rate, but similar to DGait (around 25%):

like the other database, the users are most of the time several

meters away from the robot and often turn their back to the

camera, which are challenging conditions for face detection.

Finally, the HOG detector is the most curious: its detec-

tion and hit rates, which were above 70%, fall drastically to

under 10%. As it can be seen in the sample images, the

users are never fully seen, and especially their legs are most

of the time out of the picture frame: the HOG detector

being trained for detecting fully visible pedestrians, it per-

forms very poorly on the RLPD.

The comparative performance of the different PPLPs

with both data sets is clearly presented in Figure 11.

Discussion

The previous section has presented the results of five

different PPLPs, that is five people detection algorithms

using a common data structure, employing RGB-D data.

These results were obtained using all the frames of two

databases of videos where standing people walk around.

Consequently, the performance of these PPLPs in other

conditions (e.g. people sit or lying in a bed) is not clear.

Some PPLPs, such as the PPM, detect standing humans

and rely on general features of standing people, for

instance, the height. These people detectors will not

work properly under different situations. However, other

PPLPs with lower accuracy and hit rate will perform

better in more heterogeneous conditions. For example,

the face detection PPLP obtained the worst results. This

poor performance is due to the fact that the users visible

in the video stand several meters away from the camera

and are often turning her back to it. These condition

does not correspond to the domain of use of face detec-

tion, thought for interaction at short distance. If a user is

sitting at a table few meters in front of the robot, its

performance will certainly increase. We already com-

mented that the face detection-based PPLP only works

well with frontal faces. The data set is made of users

walking on a stage, which means that, unless they look

in direction of the camera, their face is not visible.

Furthermore, this detector only detects well faces that

are reasonably large in the input image (the minimum

size can be of course lowered, but this triggers an

important increase of false positives). Both these reasons

account for the low hit rate.

Table 1. Benchmark results for the PPLPs with the DGait database.

PPLPs Face detection HOG based NiTE based PPM based Tabletop based

True positives 3655 11,415 16,076 12,719 16,020
True negatives 1606 1422 1608 1161 1586
False positives 36 846 9 3857 11
False negatives 12,457 4713 1 3353 45
Accuracy (%) 29.6 69.8 99.9 65.8 99.7
Hit rate (%) 22.7 70.8 100.0 79.1 99.7

HOG: histogram of oriented gradients; PPLP: PeoplePoseList Publishers.

Table 2. Benchmark results for the PPLPs with the RLPD.

PPLPs Face detection HOG based NiTE based PPM based Tabletop based

True positives 259 66 1255 166 581
True negatives 63 63 63 62 0
False positives 0 0 3 4 63
False negatives 1131 1322 130 1222 807
Accuracy (%) 22.2 8.89 90.8 15.7 40
Hit rate (%) 18.6 4.76 90.6 12 41.9

HOG: histogram of oriented gradients; PPLP: PeoplePoseList Publishers; RLPD: RoboticsLab People Dataset.
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The PPM PPLP presents a quite good accuracy (two-

thirds) with the DGait database. This algorithm does not

use a depth range to detect people, resulting in detecting

remote objects (walls, cupboards, etc.) as people. The depth

clamping of the tabletop detector prevents this confusion

and this is one of the reasons of its great performance. This

technique, which apparently is very restricted, improves the

results substantially. However, as shown in the results

obtained with the RLPD, when the ground is hardly visible,

the performance of these two PPLPs decreases dramati-

cally. Consequently, they can be successfully applied to

SRs whenever the ground where the users stand is visible.

The uncluttered environment is a key explanation for the

outstanding performance of segmentation-based detectors

(the NiTE and the HOG PPLPs) in the DGait database. The

introduction of any object shaped like a human user, say a

coat rack, would generate false positives and thus alter the

accuracy rate of these. The algorithms based on the color

analysis (HOG and face detection) would not be affected by

this new object. The use of a more challenging data set

(RLPD) reveals the weakness of these people detectors when

the users are not fully visible and occlusions exist. Under this

situation their performance is reduced, in particular the HOG

detector becomes inapplicable on the RLPD.

For this reason and considering that it performs well

when the user is fully visible (even with people who are

not facing the robot), the HOG algorithm can be applied to

social robots in limited situations.

The results obtained by the NiTE-based PPLP are

remarkable. The two benchmarks confirm that the NiTE-

based PPLP is a useful method for detecting users in a

social robot, even in challenging conditions. As said before,

the users need to move to start their detection and tracking.

The NiTE middleware is aimed at playing video games on

the Microsoft XBox 360, and as human players are bound

to move their body to play, the need for motion is not a

problem in this context. For HRI though, detecting a still,

motionless audience becomes challenging. This becomes

an issue of paramount importance if the user stands still in

front of the robot while speaking with it. Furthermore, if the

sensor is mounted on a mobile robot, people detection will

be performed while having the roboot in motion. In such

cases, there is no longer any static background and the

segmentation performed by the NiTE-based PPLP is bound

to fail. Wrong segmentations also happens when the sensor

is still. For instance, in Figure 4(c), the leg of one user is

erroneously labeled as belonging to the other user, as it

must appear geometrically closer to the latter than to the

former. Similarly, when users stand close to walls, pieces of

wall are frequently added to their user mask.

All the PPLPs presented in this work consider depth

data. Using this kind of data, unlike other algorithms, our

PPLPs will not be fooled by everyday objects, such as

photos of people.

Thanks to the common interface presented in the section

on defining a common interface for people detectors, the

different people detectors can be applied to different robots

smoothly. However, depending on the robot configura-

tions, some people detectors are more suitable than others.

For instance, in the case of Moppy (the second robot from

the left in Figure 1), the tabletop detector will perform

better than the face detection-based PPLP. This is because

Moppy is a car-like robot with a depth sensor located close

to the ground and, thus, faces are very difficult to detect but

the floor is easily perceived.

Conclusions

In this article, we tackled the problem of detecting users

around a social robot in HRI scenarios. In these scenarios,

usually interaction is conducted at short distances and robot

displacements are limited to approximating a potential

user. Moreover, in order to achieve a natural HRI, it is

crucial to obtain the distance to the user using the sensors

Figure 11. Comparative performance of the different PeoplePoseList Publishers.
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on board the robot, so the environment does not have to be

altered. Depth images ease the development of people

detectors that fulfill these requirements.

In the same manner animals employ color and depth

information to perceive its surroundings, in this work, we

have presented four novel people detectors using color and

depth images. On the one hand, the face detection-based

and the HOG-based detectors use a seed pixel and run a

propagation algorithm using 3-D data to detect possible

human heads and bodies, respectively. Then, the candidates

are filtered based on geometrical constraints. On the other

hand, the PPM-based and the tabletop detectors have been

adapted to the domain of HRI. The first one is based on the

fact that a person appears as a set of points tightly close one

to another, forming a 3-D blob with particular dimensions.

The last one, the tabletop detector, considers people as

objects standing on a planar surface (the ground) within a

range of distances. Besides, NiTE-based people detector

works with the kinect official API. Its widespread use made

us to include it to show how to integrate a well-known

people detector and for testing purposes. The NiTE-based

PPLP supplies a fairly robust detection and tracking of the

users, but that is only appropriate for a static camera con-

figuration and requires the users to move to detect them.

All people detectors have been integrated in our robotic

control architecture, standardizing their output by means of

a common data structure called PPL. This results in numer-

ous advantages: programming language abstraction (thanks

to ROS msg mechanisms), workload redistribution

between several computers, agile integration of new algo-

rithms, debugging and benchmarking made easier, and use

of common visualization tools.

All algorithms were carefully tested and benchmarked.

Some algorithms turned out to perform notably better than

others and all of them have different domains of use;

consequently, each of the different PPLPs has both

strengths and limitations, and the experimental setting

will help choosing a configuration or another. A clever

fusion system would then take advantage of each detector

when it is the most relevant and discard its output when it

is out of its domain of use. This point will be developed in

future works.

To easy the verification, replication, and extension of

this work, all the source codes used in this work are avail-

able online under an open source license (https://github.

com/UC3MSocialRobots https://github.com/UC3

MSocialRobots).
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