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A use case of an adaptive cognitive
architecture for the operation of
humanoid robots in real environments
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Abstract
Future trends in robotics call for robots that can work, interact and collaborate with humans. Developing these kind of
robots requires the development of intelligent behaviours. As a minimum standard for behaviours to be considered as
intelligent, it is required at least to present the ability to learn skills, represent skill’s knowledge and adapt and generate
new skills. In this work, a cognitive framework is proposed for learning and adapting models of robot skills knowledge. The
proposed framework is meant to allow for an operator to teach and demonstrate the robot the motion of a task skill it
must reproduce; to build a knowledge base of the learned skills knowledge allowing for its storage, classification and
retrieval; to adapt and generate new models of a skill for compliance with the current task constraints. This framework has
been implemented in the humanoid robot HOAP-3 and experimental results show the applicability of the approach.
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Introduction

This work is centred on the major idea of future robotic

systems, more specifically humanoid robots, with the cog-

nitive capabilities that allow them to interact with humans

in their homes, workplaces and communities, providing

support in several areas, and to collaborate with humans

in the same unstructured working environments. Our focus

is on topics concerning the learning, representation, gener-

ation and adaptation, and reproduction of robot skills

knowledge. In this work, a framework is proposed for the

learning, generation and adaptation of robot skill models

for complying with task constraints.

The innovation of this work is in the real implementation

and test of the proposed architecture. The efforts have been

devoted to (1) the study of the state of the art on existing

methods to achieve the functionality of every part of the

architecture proposed; (2) the improvement of the corre-

sponding methods in order to adapt them to the requirements

of our particular architecture or framework; (3) the imple-

mentation of the complete architecture in a real humanoid

robot for the performing and testing of the approach.

The rest of the article is organized as follows. A discussion

on the state of the art is given in section ‘Review of cognitive

systems approaches for intelligent robots’. Our proposed

framework is introduced in section ‘Cognitive framework

for generation and adaptation of humanoid robots skills’.

Section ‘Learning robot skills models’ addresses the learning

of the skill models. Section ‘Representation of robot skills
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knowledge’ discusses the representation and organization of

knowledge. Section ‘Adaptation of robot skills’ discusses the

adaptation of the robot skills. Section ‘Reproduction of robot

skills’ deals with the reproduction of the robot skills. The

experimental validation is described in section ‘Experimental

evaluation’. Finally, section ‘Conclusions and future works’

presents the main conclusions from this article.

Review of cognitive systems approaches
for intelligent robots

The development of robots exhibiting human-like cogni-

tive abilities is within our reach.1 These robots are expected

to be capable of working autonomously and serving

humans and are required to have advanced motor control

skills, comprehensive perceptual systems and suitable

intelligence. The challenge of developing cognitive archi-

tectures and systems for intelligent robots is one of the most

important topics for the future development of humanoid

robots. The function of a cognitive architecture is to pro-

vide a comprehensive initial framework for the modelling

and understanding of cognitive phenomena, in a variety of

task domains.2 Research in cognitive architectures consti-

tute a solid basis for building intelligent systems centred on

the configuration and interaction of cognitive modules

dealing with the various mechanisms and abilities that con-

stitute the various processes of human intelligence.

Vernon et al.3 discerns among two major classes of cog-

nitive systems along their different stances on the nature of

cognition, what a cognitive system does and how a cogni-

tive system should be analysed and synthesized. So we can

group approaches as whether they are cognitive

approaches, emergent systems approaches and also efforts

to combine the two in hybrid systems. For cognitive sys-

tems, cognition is representational; it involves computa-

tions of explicit symbolic representations about the

world, abstracted by perception, to facilitate appropriate,

adaptive, anticipatory and effective interaction to plan and

act in the world.3 For most cognitive approaches concerned

with the creation of artificial cognitive systems, the sym-

bolic representations are the descriptive product of a human

designer. For emergent approaches, cognition is the process

whereby an autonomous system becomes viable and effec-

tive in its environment; it involves a process of self-

organization through which the system continually recon-

stitutes itself.3 The emergent approaches assert that the

primary model for cognitive learning is anticipative skill

construction rather than knowledge acquisition; in emer-

gent approaches, embodiment and the physical instantia-

tion plays a pivotal role in cognition. Considerable effort

has also gone into developing approaches that combine

aspects of both systems. For hybrid approaches, percep-

tion–action behaviours, rather than the perceptual abstrac-

tion of representations, become the focus. The ability to

interpret objects and the external world is dependent on its

ability to flexibly interact with it. Hybrid systems are in

many ways consistent with emergent systems, while still

exploiting programmer-centred representations.3

In the field of artificial intelligence and cognitive sys-

tems, there are various works on the development of cog-

nitive architectures to model cognitive processes and

functionality of humans. We will summarize some of the

better known architectures.

State operator and result (Soar)4 cognitive architecture

has been under continuous development since the early

1980s. The architecture is based on the theoretical frame-

work of knowledge-based systems seen as an approxima-

tion to physical symbol systems.5 Soar stores its knowledge

in the form of production rules, which are in turn organized

in terms of operators that act in the problem space.

Adaptive control of thought-rational (ACT-R)6 architec-

ture is primarily concerned with modelling human beha-

viour. The aim is to build systems that perform the whole

space of humans’ cognitive tasks and describe mechanisms

underlying perception, thinking and action.5 The ACT-R

architecture is organized into a set of modules, including

sensory modules for visual processing, motor modules for

action, an intentional module for goals and a declarative

module for long-term declarative knowledge.

Executive process interactive control7 aims at capturing

human perceptual, cognitive and motor activities through

several interconnected processors working in parallel, to

build models of human–computer interaction for practical

purposes.5 The architecture encodes long-term knowledge

as production rules and a set of perceptual (visual, auditory,

tactile) and motor processors.

Real-time control system (RCS)8 is a cognitive architec-

ture, originally designed for the sensory-interactive goal-

directed control of laboratory manipulators. It has evolved

over three decades into real-time control architecture for

intelligent machine tools, factory automation systems and

intelligent autonomous vehicles.8 The RCS architecture

consists of a multilayered hierarchy of computational mod-

ules, operating in parallel, containing elements of sensory

processing (SP), examining the current state, world model-

ling (WM), predicting future states, value judgement (VJ),

selecting among alternatives, behaviour generation (BG),

carrying out tasks and a knowledge database (KD).

Global workspace cognitive architecture9 is a brain-

inspired cognitive architecture that incorporates approxi-

mations to the concepts of consciousness, imagination and

emotion. Cognitive functions are realized through internal

simulation of interaction with the environment and action

selection is mediated by affect.

Cog: Theory of Mind10 focuses on social interaction as a

key aspect of cognitive function. Cog is an upper-torso

humanoid robot platform for research on developmental

robotics. Cog has a pair of six degree-of-freedom arms, a

three degree-of-freedom torso and a seven degree-of-

freedom head and neck. The Theory of Mind focus is on the

creation of the precursor perceptual and motor skills upon

which more complex theory of mind capabilities can be built.
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The different attempts at developing cognitive architec-

tures differ in the assumptions they make and the design

decisions they take about how to manage these aspects;

however, every effort in cognitive architectures has pro-

duced important advances in cognition, reasoning and con-

ceptual aspects of human thinking. Vernon et al.3 offer a

very complete survey of artificial cognitive systems and

their implications for the development of computational

agents, while Levesque and Lakemeyer11 offer an overview

of the challenges and efforts taken in the subject of cogni-

tive robotics. A cognitive architecture can support several

capabilities and can differ variedly in its set of abilities. The

architecture design must specify the overall structures,

essential divisions of modules and their interrelationships,

basic representations, essential algorithms and a variety of

other aspects.

Cognitive framework for generation and
adaptation of humanoid robots skills

A cognitive framework for humanoid robots needs to pro-

vide a minimum degree of intelligent behaviour, that is, the

ability to sense the environment, learn and adapt its actions

to perform successfully under a set of circumstances. The

reference model architecture8 identifies five elemental sys-

tems contained in each layer, such as SP, WM, BG, VJ and

knowledge, interconnected in a way that enables the differ-

ent system elements to interact and communicate with each

other in intimate and sophisticated ways. Research efforts

must focus on building the necessary modules of cognition

that would form the layers in this hierarchy and allow the

assembly of the intelligence levels.

Figure 1 illustrates our proposed framework. The main

purpose of the framework is to provide the humanoid robot

with a basic level of intelligence, namely the ability to sense

the environment, learn and adapt its actions to perform

successfully under a set of circumstances. In the developed

framework, a knowledge base of skills is built with the

models of the skills learned through demonstrations. Dur-

ing execution, the constraints of a requested task are

extracted from the perception of the working environment,

and the models of an appropriate skill are retrieved from the

skills knowledge base. With all available information, a

new adapted task model is generated for reproduction.

The proposed framework is formed by four modules:

1. Module for the learning of robot skills.

2. Module for the management and representation of

robot skill knowledge.

3. Module for the generation and adaptation of robot

skills.

4. Module for the reproduction of robot skills.

The robot skill learning module collects the learning

processes and algorithms used for learning and encoding

the models of the skills. The robot skill knowledge module

controls the developed knowledge base for the storing and

retrieval of the learned models of the skills. The robot skill

generation and adaptation module governs the process by

which the learned model of a skill can be operated to repro-

duce a new task. The robot skill reproduction module pro-

duces the adequate control signals to the robot for the

reproduction of those skills. Additionally, a perception and

interaction module is in charge of processing the outside

information of the robot’s working environment to be used

by the other modules. First interactions of this framework

have been presented in the research by Hernández et al.,12

but further steps towards the real integration and validation

of the whole architecture are presented in this article.

Learning robot skills models

The robot skills models are learned by employing an auton-

omous dynamical systems (DS) approach. DS has been

proposed representing movements as mixtures of non-

linear differential equations with well-defined attractor

dynamics.13 Common approaches in learning from demon-

stration create a model of the skill based on sets of demon-

strations performed in slightly different conditions

generalizing over the inherent variability to extract the

essential components of the skill.14 Employing statistical

learning techniques is a popular trend for dealing with the

high variability inherent to the demonstrations.15

Learning motion dynamics as multivariate Gaussian mixtures.
The DS framework provides an effective mean to encode

trajectories through time-independent functions that define

the temporal evolution of the motions. A probabilistic

framework is employed to build an estimate f̂ , of the

non-linear state transition map f , based on the set of

demonstrations. Gaussian mixture models (GMM) are used

to directly embed the multivariate dynamics through the

encoding of the demonstrated data. GMM define a joint
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of task 
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of task 
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Figure 1. Proposed cognitive framework for the learning and
adaptation of robot skills to task constraints. A knowledge base
(2) is built with the models of the robot skills, which are learned
through demonstrations (1). The constraints of a requested task
are extracted from the perception of the world state. With the
current task constraints and the models of a skill retrieved from
the knowledge base, an adapted task model (3) is generated for
reproduction (4).
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probability distribution pð�i; _�
iÞ of the demonstrations as a

mixture of the K Gaussian multivariate distributions N k
,

with �k , �k and �k , respectively, the prior, mean and cov-

ariance matrix, parameters of the Gaussian component k.

The joint probability distribution, pð�; _�Þ, for the GMM is

given by

pð�; _�; �Þ ¼ 1
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To recover the expected output variable _̂�, given the

observed input in ��, one then can sample from the prob-

ability distribution function pð�; _�Þ in equation (1). This

process is called Gaussian mixture regression (GMR), and

more details can be found in the work done by Calinon.14

The GMR can be expressed as a non-linear sum of linear

DS
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Khansari-Zadeh and Billard16 proposed a learning

method, called stable estimator of dynamical systems

(SEDS), to learn the parameters of the DS ensuring asymp-

totically stable trajectories for all motions that closely fol-

low the demonstrations dynamics.

It is desirable to validate the performance of the method;

for this, the performance is evaluated over two error mea-

surements: an accuracy error measurement �e defined in

equation (4), which measures the error in the estimation

of _� magnitude and direction, and a ‘swept area error’

measurement E defined in equation (5), which measures

the cumulative error over the reproduction of trajectories

�e ¼ 1

D
XD
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where r and q are positive scalars that weight the relative

influence of each factor, and � is a very small positive

scalar. An estimate of the dynamics is considered accurate

if �e � e max, with e max a given maximal acceptable error

E ¼ 1

D
XD
i¼1

XT i

t¼0

A
�
�iðtÞ; �iðt þ 1Þ; �t;i; �tþ1;i

�
(5)

A corresponds to the area of the tetragon generated by

the points
�
�iðtÞ; �iðt þ 1Þ; �t;i; �tþ1;i

�
, where �t; �tþ1 are

given by the demonstration datapoints at t and t þ 1, and

�ðtÞ; �ðt þ 1Þ, computed by �ðtÞ ¼ _�ðtÞ � dt, are an estimate

of the demonstrated trajectories starting from the same ini-

tial points.

Representation of robot skills knowledge

An important challenge for robots acting on unstructured

dynamic environments is dealing with internal representa-

tion and understanding of the world. The interrelation

between objects and actions representation is fundamental

when executing tasks upon the world. Thus, focussing only

on objects and actions would not be enough for the knowl-

edge representation needed by the humanoid robots. Repre-

sentational attributes need to also take into account the state

of the world, grounding the representations to the environ-

ment, the task at hand and present events.

Representations thus perform as functional abstractions

of the perceived environment, encoding an agent’s knowl-

edge about its world, objects, actions, events, into manage-

able internal structures. Here, we will organize our

knowledge into manageable structures using object-

oriented groups of procedures, which are called frames.

Representations of events concentrate on two frames, one

of the system tasks knowledge and the other representing

the state of the world knowledge. Task and world frames

would hold knowledge for the requested execution of a task

and the agent’s environment.

Knowledge base structure. The knowledge base needs to hold

all necessary information for reproduction of the skills in

the environment. Knowledge of the task would be distrib-

uted among the representation of objects, actions and

events of the goal and the state of the world. From a given

scene, the system instantiates frames, generally governed

by the precedence of visual evidence. From the perceived

given input, the first step for extracting task constraints is

the matching of the world to an instance of the world event

frame and the instantiation of the task event. From infor-

mation collected in the world and task event frames, which

in turn are made up of object and action frames, the system

would have information about its current goals and situa-

tion of the environment, yet this is not enough to ground the

representation in order to effectively use them for support-

ing its performance. For an agent working in an
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unstructured environment, the focus of its perception must

be directed towards its executing action. Knowledge of its

environment and task would be collected into their appro-

priate frames, and a focused active view frame would be

built taken from their global knowledge and breaking it

down into a simpler framework from which computations

and knowledge take place. Figure 2 presents the control

data flow for the process of using the representations in the

knowledge base, and Figure 3 presents the organization of

the knowledge base.

Figure 4 shows the representation of the skills in the

KD in a three-dimensional space defined by the hObject,

Goal, World State i triple, selecting from their intersec-

tion an adequate model of the skill for the reproduction of

the task.

Further development of the knowledge base representa-

tion and structure can be found in the research by Hernán-

dez Garcı́a et al.17 Different approaches on related topics

focusing on the management of knowledge by robotic sys-

tem exist, such as KnowRob18 or RoboEarth.19 However,

these systems lie at a higher more abstract level of the

cognitive hierarchy, while our framework lies at a lower

level of action execution. Further research requires study

and comparison of other systems, in particular, the ones

that may be used to complement the framework developed

in this work.

Adaptation of robot skills

The robot skills learned with the methodology described

in section ‘Learning robot skills models’ would present

stable trajectories that accurately reproduce the demon-

strated motion dynamics. The robot skills models were

learned by employing a DS approach. These learned mod-

els would form a set of primitives of action from which a

knowledge base of skills was built as given in section

‘Representation of robot skills knowledge’. Evidences

exist from human and animal experiments supporting the

belief that sets of motor primitives are used to build a

basis for voluntary motor control.20 To generate complex

motions from a learned set of basic primitive skills and be

able to reproduce various complex task behaviours, meth-

ods for operating and manipulating upon the primitives

are needed.

Ideally, robots would have a vast repertoire of learned

skills or would be able to learn, in real time, any skill set

they may be missing with minimal help from human

agents, making them capable of performing in every

needed task and for every foreseen situation. However,

following this approach would be impractical because of

the time and resources required for it. Robot skills learning

approaches to develop humanoid robotic systems would

have greater impact if the models of the skills can be oper-

ated upon to generate new behaviours of higher levels of

complexity. We adopt this idea in our work and present

simple modalities for the adaptation and generation of new

skill models by taking advantage of useful properties of the

SEDS16 formulation chosen to learn the skills, which

allows us to adapt, merge and combine the learned skill

models without the need to use more complex algorithms

like GMM, expectation-maximization (EM), SEDS and so

on to relearn the complete set of parameters of a skill from

the very beginning of the demonstrations.

The work done by Hernández et al.21 contains more

detailed information about generation and adaptation of

robot skills models, and a short review is given next.

Update of robot skills. When an update is required with new

given data, a process of GMR is performed over the learned

model to stochastically generate a data set from the model.

Therefore, a new data set is created composed of this
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Figure 2. Knowledge base control flow. World event frame and
task event frame are instantiated, and an active view event frame is
built from them. From object and action frames, the models of the
skill are taken for building the task model.

Figure 3. Knowledge base structure and organization of the
knowledge representations. World event frame and task event
frame represent the knowledge of the state of the environment,
with object and action frames representing the available objects
and actions. From the knowledge of these frames, an active view
event frame is built of the focused knowledge required to drive
the agent execution.
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generated demonstration and the new observed data set.

The parameters of the updated model are then retrained.

For this purpose, a learning rate � is defined.

For our method, the new updated demonstration data set

f�; _�g updated is grouped into K clusters according to the

number of Gaussian functions determined for the original

robot skill model. Parameter � is defined as �k 2 ½0; 1�;
k ¼ 1 . . . K, and it determines a measure of the relative

importance of the area in cluster k the updated demonstra-

tion should have for refining the model over the stochastic

demonstrations generated from the learned model.

To illustrate this method, Figure 5 shows the result of

updating a learned model of a skill.

Merger of robot skills models. Intuitively, one could consider

an approach the fact of merging two or more models of

a skill simply by adding and averaging together their

learned parameters � ¼ ð�; �;�Þ in order to obtain a

new skill model. While this approach may work for

some cases, it is important to note that the direct super-

position of the skills does not allow the system to con-

trol the manner in which the new model is generated and

its stability.

In order to generate a new skill based on the merger of

several robot skills previously learned, we first review a

couple of useful mathematical properties from the SEDS16

formulation chosen to learn the skills

−100 −80 −60 −40 −20 0
−80

−60
−40

−20
0

20
40

−50

0

50

100

x
y

z

C
up Plate

Spoon 
Fork 

GraspC

GraspP

Pick

PlaceS

PlaceC

Goal

Object

Ws1

Ws2

World 

State

Skill Model

Skill Model

Object 

Representation

World Event 

Representation

Task Event

Representation

Grasp Cup: available

Grasp Plate: queue

Pick Spoon: completed

Place Spoon: available

Place Cup: na

Figure 4. Representation of the skills in the knowledge base. The intersection of the triple hObject, Goal, World State i allows the
selection of the adequate model of the skill for reproduction.

−0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

ξ1

ξ 2

−0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

ξ1

ξ 2

Figure 5. Update process of a robot skill. Model of the learned skill with new demonstrations (left). Updated model of the skill (right).
The parameter �k is defined to govern the influence of new data on the update process. Appropriate selection of �k allows the updated
model to reproduce the curve at the top of the trajectory.

6 International Journal of Advanced Robotic Systems



if f ð�Þ is SEDS ; and � > 0 2 R

_� ¼ �f ð�Þ is SEDS

consider M SEDS models f ið�Þ; i 2 1 . . . M

_� ¼
XM
i¼1

�if ið�Þ;�i > 0 is SEDS

(6)

The merger of the robot skills can be carried out with a

model combination approach expressed as mixtures of

expert models

pðtjxÞ ¼
XK

k¼1

�kðxÞpkðtjxÞ (7)

The SEDS models encoded into a GMM are already a

form of model combination approach. Here, recalling the

expression of the non-linear weighting function hkð�Þ, as

in equation (3), it can be found that it shares a similar for-

mulation with the expression of the weights for the gating

function as from equation (7). The process for the merging of

robot skills would first join the GMM of the robot skills into

a single model. Then, a new weighting function ~hð�Þ for the

single model must be built out of the original weighting

terms hkð�Þ from the merged models, ensuring that the Gaus-

sian with the biggest weight in every region of the trajectory

provides the largest influence over the new GMM model in

that region and that the new weighting function ~hð�Þ still

meets the constraints 0 < hkð�Þ < 1 and
P

hkð�Þ ¼ 1.

Figure 6 illustrates the results of merging two robot

skills to generate a new skill model.

Combination of robot skills models. In order to generate a new

skill made of the combination of several robot skills models

previously learned, we have developed a method for skills

combination. Two different SEDS models, �M1

RS ;
�M2

RS , can

be combined just by concatenating their parameters, so that

the parameters of the new model can be defined as

� ¼ ½�1;�2�
ð�1þ�2Þ, � ¼ ½�

1�2� and � ¼ ½�1�2�. Then, an area

of influence for the DS attractor is defined based on the

non-linear weighting function hkð�Þ of the SEDS models

expressed as a non-linear sum of linear DS as in equation

(3). A new weighting function ~hð�Þ ¼ �kð�; hÞhkð�Þ for the

single model must be built out of the original weighting

terms hkð�Þ, as in the merging of the models. However, in

this case, the influence of the hkð�Þ terms over the trajec-

tory must come at any time from only one model; therefore,

the �kð�; hÞ function must have a completely different form

from that of the merging of robot skill models.

Figure 7 illustrates the results of combining three robot

skills to generate a new skill model.

Reproduction of robot skills

In this section, the development and operation of the robot

skill reproduction module will be presented. The robot

reproduction module is assigned with the task of providing

suitable controllers that convert kinematic variables into

appropriate motor commands. In order to test the proposed

architecture, the HOAP-3 humanoid robot was used as a

test platform. The HOAP-3 was designed to resemble the

human shape, on a small scale, with a complete humanoid

configuration with two legs and arms, a head with vision

and sound capacities, and gripable hands.

The robot skill reproduction module works as follows.

Once a command has been received, the robot distinguishes

if it is a command for the walking generation or for the

arms movement. The walking patterns of the robot have

been designed based on the theory of the 3-D linear

inverted pendulum mode presented in the work done by

Kajita et al.22 If the received command requires a move-

ment of the arms, as in the case of a grasping task, the

selection of the suitable arm is first considered. Finally, the

trajectory of the arm is evaluated online through the algo-

rithm of kinematic inversion,23 once the command provides

the distance and the orientation from the object. The orien-

tation reference for the object is calculated with the support

of the unit quaternion.

The HOAP-3 control system is in charge of computing

the appropriate command to control the execution in real

time. The physical implementation of the robot control

system is made on three PCs: an on-board PC implements

the robot control systems; an auxiliary PC implements the

knowledge and learning systems; and a laptop computer

implements the Human-Robot Interaction (HRI) and per-

ception systems. A Yet Another Robot Platform (YARP)

layer was implemented for the communications between

processes.

Experimental evaluation

This section reports and discusses the results obtained dur-

ing the evaluation of the proposed framework, both in a

quantitative and a qualitative way. Several experiments

were conducted to prove the validity of the system and to

test the operation of the developed framework.

Knowledge base scenario

A first experiment involves an agent and a humanoid robot

(here a HOAP-3 robot) interacting to complete a simple

task. The task in this case requires the robot to pick up a

cup and a spoon in each hand and then to put the spoon

inside the cup; finally, it will put down the cup in front of it.

The agent will provide the robot with the cup and spoon

objects so it can pick them up; also, the agent will indicate

the robot where to put the cup down.

The execution of the demonstration could vary depend-

ing on the actions of both the human agent and the HOAP-3

robot. At the start of the demonstration, the robot is given

the task event frame knowledge for the desired behaviour

containing the knowledge of the four action skills needed to

Garcia et al. 7
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complete the action: pick spoon, pick cup, place spoon in

cup and place cup down. Extracting the adequate action

will depend on the agent interaction and the content of the

rest of the knowledge base. The purpose of this demonstra-

tion is to validate the performance of the developed knowl-

edge base in a dynamic interaction with an agent.

Depending on the agent interactions with the robot, there

would exist two possible main paths for the demonstration:

(1) action SpoonA, where the robot holds both the spoon

and the cup to complete the task and (2) action SpoonB,

where it is the user who holds the cup while the robot

completes the operation of putting the spoon inside the cup.

Figure 8 presents a storyboard of the performance of the

system during the execution of the two different paths that

the demonstrator experiments can take, with snapshots

taken at various stages.

The operation of the knowledge base system during the

execution of the demonstrator experiments can be seen in

Figure 9. The knowledge base presents information for the

environment and the task execution. The task frame holds

knowledge of the actions to carry out by the robot for the

execution of the task. Actions highlighted in blue reflect the

current invocation of that action’s knowledge for the robot

reproduction of the skill. Actions that have been completed

are deactivated and highlighted in grey. The selection and

activation of which skill motion to carry out next is com-

pletely determined by the skill initial conditions being

matched to the state of the environment. Therefore, the

sequence of execution of the task is controlled by the

human agent as it interacts with the robot and the environ-

ment and facilitates the objects and conditions needed for

the robot to fulfil the task. Table 1 shows the average

duration of the tasks during various runs and the rate of

successful completions of the task. Success is defined as

correct operation of the knowledge base system in selecting

the expected skill during completion of the task. In total, 16

repetitions were conducted, 8 for each of the 2 possible

main paths. When the agent’s interactions lead the comple-

tion of the task towards the path involving skill action

SpoonA, it takes longer for the robot to complete the task,

since the robot is in charge of holding both the cup and the

spoon and the operation is more time-consuming in com-

parison with action SpoonB, as expected. However, the

success ratio in this operation is higher than that with action

SpoonB. Table 2 shows a matrix of matches between the

action taken by the robot and the expected interaction from

the agent. NA indicates that the robot failed to take any

action from the presented agent interaction. The recogni-

tion of the right task to perform is quite high, thanks to the

nature of the knowledge base and to the fact that actions

that are not ready to be taken or have already been executed

are deactivated and cannot be selected.

A potential problem is determining which action has

precedence when many of them can satisfy their conditions

at the same time. The tasks considered in the demonstrator

do not deal with this issue, since the robot’s limited work-

space prevents the conditions for picking up the cup and

placing the spoon to be satisfied at the same time. This

Figure 8. Knowledge base scenario experiment: different snapshots during the execution of the demonstration. The top row
represents the path corresponding to action SpoonA and the bottom row represents the path corresponding to action SpoonB.
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issue has not been fully explored so far, and as a first

simplification, the precedence is determined by the order

of the actions in the task frame as determined by the pro-

grammer of the task; although not satisfactory for every

scenario, this solution is probable enough for many com-

mon tasks. The use of some form of long time planner

could be effective to solve this issue by assigning prece-

dence by determining how the decision of performing one

action over another could affect the execution of the task.

A knowledge base approach for robots working in

unstructured environments, where the execution of the task

cannot be scripted beforehand, is fundamental if they are to

be able to work successfully. Without such a system, the

robot would be unfit to respond to any unforeseen deviation

from the plan, and largely ineffective to perform in all but

the most ideal of situations. The knowledge base system

allows the robot to keep track of the environment and the

execution state of the task, which provides the system with

flexibility to deal with different states at a particular point

without losing focus on the global task objective.

A video of the performance of the system in this sce-

nario is available at www.youtube.com/watch?v¼3l7-

KrMa84o.

Robot skill reproduction scenario

As a final experiment, we will visit a kitchen or dinner table

scenario and expand the demonstrator presented in the pre-

vious section. In this scenario, the HOAP-3 robot is

required to complete the task of setting up a dinner service

in conjunction with a human agent. The purpose of the

demonstrator is to test the overall operation of the devel-

oped framework, as well as to validate the performance of

every individual module and interaction between them-

selves, involving the perception of objects and interaction

with the agent, the learning of various robot skills, the

representation of knowledge in the knowledge base, the

generation and adaptation of the skill models and the ade-

quate reproduction of the robot skills.

During the operation, the user will provide objects to the

robot by placing them in its action field, both of vision and

manipulation. The perception system will handle the inter-

action with the user and the detection of objects in the

environment. The knowledge base system will receive this

information from the perception system and will instantiate

the frames and build the knowledge representation of the

scene in the knowledge base. Through this interaction with

the user and the environment, the knowledge base system

will select the corresponding skills to activate. Once the

necessary robot skills are selected, the generation and adap-

tation system will be in charge of building the appropriate

task model satisfying the desired command and constraints

of the environment for reproducing the appropriate skill

action. Finally, the HOAP-3 robot controller will execute

the robot commands required for skill reproduction.

This demonstrator scenario is meant to provide proof of

concept of how the knowledge base operates to instantiate

frames from the perception of the environment, and how

the knowledge base maintains and upkeeps its knowledge

representation over time in a changing environment, as well

as how action execution is invoked by the state of the

representation frames present in the knowledge base. Addi-

tionally, the demonstrator scenario provides validation for

the generation and adaptation system and how it operates

over learned robot skills for increasing the scope of avail-

able skills for the performance of the HOAP humanoid

robot.

Figure 10 depicts a storyboard of the performance of the

second demonstrator showing several snapshots captured

from the execution experiment. The demonstrator scenario

will develop as follows: first, the robot is given the task of

setting up the dinner service at the table in front of it, and

all necessary robot skill actions and task event frames are

stored in the knowledge base. The task begins with the

robot standing in front of the empty table. The final set-

up of the table requires a plate to be placed at the centre, a

cup placed on top of the plate, a spoon placed inside the cup

and a fork and knife flanking the plate at its left and right

sides, respectively. Completing the task requires the per-

formance of several different skills. The sequence of exe-

cution of the task is governed by the human agent as it is

him who chooses the order in which to provide the robot

with the needed objects. Certain items, however, have pre-

cedence over others, that is, the plate must be placed on the

table before the cup, since the cup goes on top of it.

Table 2. Knowledge base scenario experiment.

Skill action Pick spoon Pick cup Place spoonA Place spoonB Place cup NA

Pick spoon 80 05 00 00 00 15
Pick cup 00 80 00 10 00 10
Place spoonA 00 00 95 00 00 05
Place spoonB 00 15 00 75 00 10
Place cup 00 00 00 00 90 10

aSkill action match matrix.

Table 1. Knowledge base scenario experiment.

Path Task duration (mean) in min Task success (%)

SpoonA path 2:17 75
SpoonB path 1:56 62.5

aSummary of results.
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In total, 10 repetitions were conducted, 8 of which were

conducted successfully, with an average task duration of

4 min and 38 s. Table 3 summarizes the results of the eight

learned skill actions models required for the task comple-

tion. They are evaluated according to the accuracy error �e
and the swept area error E defined in section ‘Learning

robot skills models’ by equations (4) and (5), respectively.

Table 4 shows a matrix of matches between the action

taken by the robot and the expected interaction from the

agent. The recognition of the right task to perform is quite

high; for instance, plate drop and cup drop action skills are

performed correctly every time, since at the moment they

can be executed, there is only one action to be taken. Again,

good results are obtained thanks to the mechanism that

avoids the selection of not ready or already taken actions

from the knowledge base. Actions involving the cutlery

objects (fork, spoon and knife) present the biggest number

of wrong selections since their shapes and colours were

more difficult to identify by our vision system.

A video of the performance of the system in this scenario

is available at www.youtube.com/watch?v¼BKXaZGV8

xvM.

Conclusions and future works

This work is centred on the aspiration of building humanoid

robots capable of interacting with humans in their homes,

workplaces and communities, providing support in several

areas and collaborating with humans in the same unstruc-

tured working environments. The aspiration is to have

humanoid robots acting as robot companions and co-

workers sharing the same space, tools and activities.

The main contribution of this work is the proposition

and real implementation of a framework for the generation

Figure 10. Robot skill reproduction scenario experiment: different snapshots from the execution of the task in the demonstrator.

Table 3. Results of the eight learned skill actions models.

Skill action
Accuracy error
�e (equation (4))

Swept area error
E (equation (5))

Number of
parameters

Plate grab 0.708 1178 80
Plate drop 0.945 5627 60
Cutlery grab 0.688 1021 60
Cutlery drop 0.675 789 50
Cutlery switch

hand
0.639 1112 50

Cutlery cup 0.887 889 120
Cup grab 0.752 1741 40
Cup drop 0.584 1767 50

Table 4. Robot skill reproduction scenario experiment.

Skill action Plate grab Plate drop Cutlery grab Cutlery drop Cutlery switch hand Cutlery cup Cup grab Cup drop

Plate grab 90 00 00 00 00 00 05 00
Plate drop 00 100 00 00 00 00 00 00
Cutlery grab 05 00 70 00 00 00 10 00
Cutlery drop 00 00 00 70 25 05 00 00
Cutlery switch hand 00 00 00 20 80 00 00 00
Cutlery cup 00 00 00 30 00 70 00 00
Cup grab 05 00 05 00 00 00 85 00
Cup drop 00 00 00 00 00 00 00 100

aSkill action match matrix.
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and management of adaptive skill models for complying

with task constraints. The framework developed in this

work was proposed as a cognitive model intended to pro-

vide the robot with an essential cognitive ability for learn-

ing and adaptation of skills. The goal of the developed

framework is to provide a minimum degree of intelligence

for the humanoid robot. We consider as a minimal desirable

level of intelligence for our humanoid robots the ability to

sense the environment, learn and adapt their actions to

perform successfully under a set of circumstances.

The framework is formed by modules for the learning of

robot skills, the perception and interaction with the envi-

ronment, the representation and management of the skill

knowledge, the generation and adaptation of skill models

and the reproduction of robot skills. To learn the skills

motion, a time-independent model of the motion dynamics

was estimated through a set of first-order non-linear multi-

variate DS. A knowledge base of skills has been developed

and implemented. The knowledge base holds all the nec-

essary information for reproduction of the skills in the

environment. The knowledge of the task is distributed

among the representation of objects, actions and events

of the task and the state of the world. A structure built on

frames has been adopted in this work. The knowledge of

the environment and goals is represented in terms of the

world event frame and task event frames, with object and

action frames representing the knowledge about available

objects and actions, respectively. From the knowledge of

these frames, an active view event frame is built of the

focused knowledge required to drive the agent execution.

The proposed framework was demonstrated with a com-

mercial humanoid robot HOAP-3, endowing it with the

capacity to learn skill models from teacher demonstrations,

to store them in a knowledge base and to adapt the learned

models in order to reproduce the required skills in different

contexts. Different evaluation scenarios were developed to

test the performance of the modules implemented in our

framework. Demonstrations were organized over two major

scenarios to provide separate validation for the knowledge

base system and the complete developed framework.

Our framework has been devised as a bottom-level module

that could be part of a more complex system, with the goal of

providing a minimum functional degree of intelligence which

would be continuously increased as the system develops fur-

ther. Future work will focus on augmenting the framework

capacities to generate more intelligent behaviours.
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