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A dissertation submitted in partial fulfilment of the requirements for
the degree of Doctor of Philosophy in

Mathematical Engineering

Universidad Carlos III Madrid

Advisor:
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Summary

This thesis investigates the emerging interdisciplinary field of social physics, which applies
concepts and methods from physics, mathematics and anthropology to understand human
behaviour in social systems. Our research seeks to elucidate how humans organise their
social relationships and how they evolve over time by examining the universal principles
underpinning these phenomena. The basis of our investigation is the concept of “social atom”,
which serves as a foundation for studying ego-networks at the micro-level and exploring the
collective behaviour of social systems at the macro-level.

We embark on two complementary research approaches to address this complex problem.
Our first approach involves conducting field research by surveying high school students about
their friendships and enmities over two academic years. This empirical data enables us to
analyse the organisation and evolution of social relationships, providing valuable insights that
can be shared with school principals to foster a more positive social atmosphere and prevent
important issues such as bullying.

Our second approach aligns with the conventional scientific method. It involves the
formulation of hypotheses, the development of network models and their testing. To do
that, we employ exponential random graph models and density functional theory, a technique
originating from statistical mechanics for analysing lattice gases. This approach demonstrates
that social networks can exhibit phenomena comparable to those observed in fluids or gases,
such as phase transitions. These findings contribute to a more profound understanding of
the behaviour exhibited by social systems.

Moreover, we expand the applicability of these models to include other species, such as
primates, demonstrating their relevance beyond human social relationships. We establish
a formalism that can be employed to address social physics problems more effectively by
synthesising the insights derived from both research approaches. This integrative method
advances our understanding of the discipline and paves the way for more accurate and effective
solutions.

Through the combination of field research, network modelling and the extension of these
models to other species, this thesis makes a substantial contribution to the field of social
physics. Our research provides a solid foundation for future studies and applications aimed
at improving the understanding and management of complex social systems by uncovering
the fundamental mechanisms governing human social behaviour.

vii





Contents

Agradecimientos iii

Published and submitted content v

Summary vii

1 Introduction 1
1.1 The Social Brain Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Dunbar’s number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.2 The hierarchical structure: Dunbar’s circles . . . . . . . . . . . . . . . 7
1.1.3 The “social atom” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.4 Personal effects and homophily in social networks . . . . . . . . . . . . 11

1.2 Exponential random graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.1 A brief historical introduction . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.2 Traditional statistics approach . . . . . . . . . . . . . . . . . . . . . . 14
1.2.3 Statistical physics approach . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Summary and objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

I Data-driven perspective 19

2 Understanding the dynamics of the social world 21
2.1 Data description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.1 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.1.2 Data curation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 The evolution of social relationships . . . . . . . . . . . . . . . . . . . . . . . 24
2.3 The importance of reciprocity . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 The role of negative relationships in social structure 31
3.1 Data description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.1 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1.2 Data curation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 The formation of communities . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Exploring social balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 A tool to monitor the social climate of a school 43
4.1 The application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

ix



CONTENTS

4.2 Feedback received . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

II Model-driven perspective 51

5 Modelling social structure and collective behaviour 53
5.1 Pairwise approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2 Formulation of the pairwise model . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3 Linear model with reciprocity . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.4 Validation of the pairwise approximation . . . . . . . . . . . . . . . . . . . . . 61
5.5 Mapping into a Hamiltonian without levels . . . . . . . . . . . . . . . . . . . 64
5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6 A comprehensive analysis of Strauss’s model 67
6.1 Strauss’s model and its lattice-gas interpretation . . . . . . . . . . . . . . . . 68
6.2 Fundamental-measure approximation . . . . . . . . . . . . . . . . . . . . . . . 70
6.3 Homogeneous networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.3.1 Free energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.3.2 Thermodynamic limit . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.3.3 Finite networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.3.4 Comparison with Park and Newman’s mean-field calculations . . . . . 76

6.4 Non-homogeneous networks: Homophily . . . . . . . . . . . . . . . . . . . . . 78
6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7 Re-evaluating the models of social organisation 83
7.1 Re-estimating the parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.1.1 Pairwise model with clustering . . . . . . . . . . . . . . . . . . . . . . 84
7.1.2 Linear model with reciprocity and clustering . . . . . . . . . . . . . . 88

7.2 Bayesian Monte Carlo estimation of the parameters . . . . . . . . . . . . . . . 91
7.3 The “social fluid” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.3.1 Analysing the distribution of the parameters . . . . . . . . . . . . . . 93
7.3.2 An alternative representation to networks . . . . . . . . . . . . . . . . 95

7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

III Beyond humans: application to primates 99

8 The complexities of social interactions in chimpanzees 101
8.1 Data description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

8.1.1 Environment description . . . . . . . . . . . . . . . . . . . . . . . . . . 102
8.1.2 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
8.1.3 Data curation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

8.2 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
8.2.1 Theoretical background . . . . . . . . . . . . . . . . . . . . . . . . . . 104

x



CONTENTS

8.2.2 Parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
8.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
8.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

IV Final remarks 113

9 Conclusions and future work 115
9.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

9.1.1 Data-driven perspective . . . . . . . . . . . . . . . . . . . . . . . . . . 116
9.1.2 Model-driven perspective . . . . . . . . . . . . . . . . . . . . . . . . . 117
9.1.3 Beyond humans: application to primates . . . . . . . . . . . . . . . . . 119

9.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
9.2.1 Data collection and software development . . . . . . . . . . . . . . . . 119
9.2.2 More insights into social structure and dynamics . . . . . . . . . . . . 121
9.2.3 Refining statistical mechanics models . . . . . . . . . . . . . . . . . . . 122
9.2.4 Comparison with other species of non-human primates . . . . . . . . . 123

Appendices 125

References 193

xi





1

Introduction

Physics is a science that has been exploring the mysteries of nature for centuries. It is
one of the oldest and most fundamental sciences, with a history that dates back to ancient
civilisations. Scientists from diverse historical periods and backgrounds (such as Archimedes,
Galileo, Newton or Einstein) have been trying to uncover the laws that govern the universe.

The diversity of problems physics addresses is particularly noteworthy, as it studies the
behaviour of matter and energy from the level of atoms and molecules to the entire universe
through the development of complex models and mathematical theories. However, it has only
been recently that physics has focused on handling a question that has been present from
the beginning of time: how humans organise their social relationships and interact with each
other in society.

The first documented reference to this school of thought might be traced back to the
18th century, when the British philosopher Hume (1739) suggested creating a new science to
study human behaviours rooted in the principles of mathematics and physics. In spite of this
dissertation, he presented these ideas from a much more philosophical than purely numerical
perspective.

It was not until a few decades later, during the 19th century, that the development of two
new physical theories altered this framework. Firstly, thermodynamics changed perspectives
by introducing the abstract concept of “system”, which was previously unexplored. Secondly,
electromagnetism revealed how two distinct phenomena might be explained from a unified
perspective. These changes led to a new viewpoint that promotes the idea that human
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1. INTRODUCTION

behaviour may be governed by universal laws akin to those in physics. The French philosopher
Comte and the Belgian statistician Quetelet were the two main representatives of this school
of thought. The first proposed ideas that constituted a revolution in understanding society
as a system governed by general rules, while the second was a pioneer in applying probability
theory to human data. More specifically, Quetelet (1835) published his “Essays in Social
Physics”,1 where he used a Gaussian distribution to derive statistical laws that describe the
average human behaviour. Quetelet named the statistical approach he had developed “social
physics”, creating a new discipline which is still a subject of study nowadays.

The early 20th century experienced a boom in scientific production: two major theories,
relativity and quantum mechanics, completely revolutionised the perception of nature. This
caused researchers to focus solely on traditional physics, while interdisciplinary studies were
poorly received and regarded as of little importance by the scientific community. Therefore,
the investigation that merged physics and the analysis of social systems was minimal during
this period. One such example can be found in the article “Concerning ‘social physics’”2

written by Stewart (1948). In this article, the author formulated the existence of an invisible
force, similar to gravity, that organised the population of the US in rural and urban regions.
Stewart conducted this analysis using telephone call data, becoming a pioneer in one of the
foundations of the discipline today: the use of experimental data to model the system.

The discussion around social physics was not reopened until the second half of the 20th
century, since applying physics to social sciences was considered demeaning physics. Bernard
and Killworth (1979) published an essay titled “Why are there no social physics?”, where
they discuss the two reasons they observe for the failure to formulate a complete theory
for this topic. The authors refer to the first reason as the “forests and trees” dilemma,
which consists on involving an excessive focus on individual details to the detriment of the
overall perspective. They argue that this is precisely what happens with field work, where
only specific information can be observed, not average behaviours, making it challenging
to formulate the underlying principles. The authors’ second point is that social processes
continually evolve, not enduring in a static state, and it is hard to infer a dynamic process
from a mere observation of it. Despite this, Bernard and Killworth strongly promoted the
creation of a social physics theory that employs quantitative models to make predictions and
assess their accuracy through empirical evidence. That is, developing a model and comparing
its predictions with data rather than attempting to interpret the data directly.

It seems that the aspirations of these two authors are becoming a reality, as the discipline
of social physics has experienced significant growth in the late 20th and early 21st century,
primarily motivated by two reasons. On the one hand, experts and specialists from various
fields have joined forces to investigate complex systems, including social ones, creating an
interdisciplinary process of collaboration that transcends traditional science. Incorporating
ideas and methods from statistical physics yields insights into previously unexplored problems

1The foundation of these essays lies in notebooks written in French that are actually located in the Royal
Academy of Sciences, Letters and Arts of Belgium, in Brussels. These notebooks are unpublished, but their
contents have been transcribed and translated into English by Aubin (2014).

2In the article, the author states that the use of quotation marks in the title indicates that social physics
is not an accepted science, although it could become one in the future. This highlights the limited recognition
of interdisciplinary work within the scientific community at that time.

2



from this viewpoint (Albert & Barabási, 2002; Ball, 2003; Castellano et al., 2009; Desmarais
& Cranmer, 2012; Dorogovtsev et al., 2008; Strogatz, 2001). On the other hand, computers
have experienced remarkable development in the last years, leading to a rise in computational
power and causing a revolution in the field. In the past, computers were used mainly for data
storage and processing, but now they can perform a wide range of tasks. This, combined
with the growing popularity of Big Data, has motivated the emergence of new exploration
techniques, increased access to more plentiful data and led to significant progress in data-
driven approaches to social phenomena (Borgatti et al., 2009; Galam, 2014; Lazer et al., 2009;
Pentland, 2014; Sawyer, 2005). Although some authors, such as Schweitzer (2018), claim
that this recent direction in the field is more related to computational social sciences than to
the foundations of social physics established by Quetelet in the 19th century, the discipline
is clearly thriving. The increasing attention it is receiving from the scientific community
suggests a promising short and long-term future.

This is the framework to which this thesis belongs. Our objective is to shed light on how
humans organise their social relationships and how these relationships evolve over time. We
rely on well-established anthropological theories, outlined in detail in the next section, to
understand the mechanisms underlying these phenomena. Our starting point is the concept
of “social atom”, introduced by Tamarit (2019) in his PhD thesis. Tamarit combines these
anthropological theories with statistical physics techniques to explain the structure of ego-
networks3 (micro-level) in humans. We focus on explaining the rules governing the interaction
between the constituents to clarify the collective behaviour of social systems (macro-level),
considered as ensembles of “social atoms” interacting with one another.

We tackle this problem from two different but complementary perspectives. Firstly, we
conducted field research by surveying high school students on their friendships and enmities
over time. By analysing the data, we hope to gain insight into the organisation of social
relationships and their evolution. Furthermore, we use this data to provide feedback to the
school directors in order to help them to improve the social atmosphere in the school and
prevent serious issues such as bullying. The second approach is closer to the conventional
scientific method (hypothesise, model, test). We build models from first principles using a
family of network models, the exponential random graphs, and some techniques developed in
traditional physics to analyse lattice gases, the density functional theory. We show that social
networks can exhibit phenomena similar to those observed in gases, such as phase transitions.
The use of these techniques enables us to tackle the problems and gain an understanding of
the system’s behaviour. Finally, we extend these models to other species, such as primates,
to show that they can be applied more generally and are not limited to human relationships.

Our motivation is to better understand social physics problems by combining the results
obtained through these two different perspectives and creating a formalism that can be used
to address them. We believe this comprehensive approach can advance our understanding of
the discipline and result in more accurate and effective solutions in the future.

3The definition of the term ego-network could be ambiguous or unclear to the reader as there is no uniform
definition across different disciplines. To avoid confusion, the concept of ego-network used in this work refers
uniquely to the connections between a single individual (the ego) and others, excluding relationships between
others. This definition will be consistently used throughout the whole text whenever the term ego-network is
mentioned.
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1. INTRODUCTION

1.1 The Social Brain Hypothesis

Primates stand out among other animal species for having larger brains, considering their
body size (Jerison, 1973). Moreover, it has always been widely accepted that there is a strong
correlation between this characteristic and their more extraordinary cognitive abilities. This
has caused natural scientists to be interested in understanding the connection between brain
size and social behaviour in primates. The appearance in the 19th century of Darwin’s theory
of evolution by natural selection highly augmented this interest.

The debate reached its peak in the second half of the 20th century. In this period, three
predominant theories emerged to explain how primates had evolved large brains. The first
theory emphasised the evolution of cognitive abilities from an ecological viewpoint (Clutton-
Brock & Harvey, 1980; Gibson, 1986). This theory exposed that primates reside in many
diverse habitats, and these cognitive abilities have been developed to enhance their adaptation
to different environments, giving them an advantage over other species to survive. The second
theory approached this issue from a social perspective (Humphrey, 1976; Kummer, 1982).
These authors underlined that primates’ social lives are highly complex; consequently, they
had been required to develop exceptional abilities to handle them. Finally, the third theory
was a purely biological explanation (Martin, 1981). It argued that maternal nutrition is
crucial in explaining the larger brain size of primates. However, the first two were the most
widely accepted theories within the scientific community, as some research that questioned
the latter’s validity had also been published (Harvey & Pagel, 1991; Pagel & Harvey, 1988).
These authors reasoned that the cost of maintaining a large brain is enormous and that it is
inherently impossible for brains to evolve in size simply due to these biological reasons.

Under all these premises, Whiten and Byrne (1988) presented their book Machiavellian
Intelligence Hypothesis, so named in honour of the Italian political and philosopher of the
Renaissance Niccolò Machiavelli, author of the famous and most influential book The Prince,
which consists on some pieces of advice to rulers that are as valid nowadays as they were in the
15th century. This hypothesis suggested that some species have developed specific cognitive
adaptations for mastering the complexities of their social interactions and the environment.
The authors referred to these adaptations as “Machiavellian intelligence”. Whiten and Byrne
defended that these abilities had provided evolutionary advantages to primates and could be
used to explain the development of their intelligence.

A few years later, in the early 1990s, Dunbar (1991) published his initial research on
understanding the reason behind primate grooming behaviour. This article challenged the
traditional view about grooming, which held that it was exclusively carried out for hygiene and
health purposes. Dunbar argued that these two are not the only purposes of grooming, but it
also serves a social and pleasure-related function.4 Furthermore, he studied the relationship
between grooming time, body size and group size for various primates species and found that
grooming time correlated much better with group size than with body size. This result was
surprising and provided strong support for his hypothesis.

4To emphasise this argument, Dunbar (1991) points out that some primates allocate approximately 20%
of their entire day to both giving and receiving grooming. For comparison, other animals of similar body sizes
do not devote even 2% of their time to this activity.
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1.1 The Social Brain Hypothesis

With this in mind, Dunbar (1992a) decided to participate in the ongoing debate between
ecological and social theories. In his paper “Neocortex size as a constraint on group size
in primates”, he questioned the validity of the “Machiavellian intelligence” as a factor in
explaining the development of cognitive skills in primates due to the fact that this concept is
somewhat vague and difficult to quantify. As an alternative, Dunbar investigated whether a
correlation existed between the average group size of different primate species (N) and their
neocortex ratio (CR).

5 He found that the following log-log relationship (R2 = 0.764) holds:

log10(N) = 0.093 + 3.389 log10(CR). (1.1)

Dunbar (1992a) also investigated any relationship between the average group size and different
variables related to the ecological theory, such as the percentage of fruit consumed in the diet,
range area size and total length of the day’s journey. However, he didn’t find any significant
results. These findings suggested that group size may be determined by neocortical volume,
and the brain capacity limits the organism’s ability to process information. Furthermore,
primates that live in large groups have more potential friendships than those in small groups,
so they need larger brains to manage them. Therefore, when a group size surpasses its limit,
it becomes unstable and breaks into smaller subgroups. All these findings together provided
clear evidence supporting the social theory and against the ecological one. The foundations
of a new social theory, the Social Brain Hypothesis, had just been established.

1.1.1 Dunbar’s number

Shortly after discovering the relationship between average group size and neocortex size
of different primate species, Dunbar (1993) asked himself the obvious question: does this
relationship have any implications on the natural size of human groups? To answer it, Dunbar
directly applied Equation 1.1 to the case of humans using the data of their neocortex ratio,
whose value is CR = 4.1.6 The prediction, when the human neocortex size is plugged into the
equation, is 147.8. The results are presented in Figure 1.1. However, this value is frequently
rounded to 150 and is widely referred to as Dunbar’s number.7

This prediction was revolutionary, as 150 appears to be a surprisingly small number for
the average natural size of human groups. For this reason, Dunbar decided to include in the
same study the analysis of experimental data that supported his results. He used a dataset
of 21 hunter-gatherer societies worldwide. Each of these societies is formed by communities
that consist of a group of people who live in a common territory and hunt together. Dunbar
reported that the sizes of these communities ranged from 100 to 200 individuals, with an
average of 148.4, which closely matches the theoretical prediction of 147.8.

5The neocortex is the region of the brain with the greatest cognitive capacity. The neocortex ratio refers to
the ratio of neocortex volume to the volume of the rest of the brain. Dunbar (1992a) studies the relationship
between the average group size of different primate species and many other variables, such as neocortex total
volume or neocortex ratio (vs. hindbrain). Finally, he uses the neocortex ratio (vs. the rest of the brain) as a
predictor because it presents the highest correlation with the average group size. Considering the success his
theory has achieved, it seems he made the right decision.

6Dunbar (1993) points out that this value is roughly 30% larger than the highest value for any other
species, which could explain the superior development exhibited in comparison to other primates.

7Dunbar (2021) confesses in his book Friends: Understanding the power of our most important relationships
that Gonçalves et al. (2011) were the first people that referred to this concept as Dunbar’s number in a scientific
publication.
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1. INTRODUCTION

Figure 1.1: The Social Brain Hypothesis - The figure represents the mean group size of
different primate species against their neocortex ratio. The black dots are the experimental
data observed for 33 primate species, while the red dot shows the prediction for humans. The
dotted line corresponds with the log-linear fit governed by the Equation 1.1. This figure is a
replica of Figure 1 in Dunbar (1992a), using the data published in the article. For an alternative
representation8, see Figure 1 (page 51) in Dunbar (2021), where the primates species are divided
based on four different grades in the social brain relationship. Additionally, an independent fit is
included for each of these groups.

In the following years, various studies were published challenging the validity of Dunbar’s
number, and its robustness has been nothing short of amazing. It has been observed that this
pattern holds in many different situations: postal mail exchanges (Killworth et al., 1984),
face-to-face interactions (Roberts et al., 2009), mobile phone calls (MacCarron et al., 2016),
the online world (Dunbar et al., 2015; Gonçalves et al., 2011; Haerter et al., 2012) and even
in the number of people to whom you would send a Christmas card (Hill & Dunbar, 2003).

Furthermore, in recent times the development of technology has led to the emergence of
more detailed studies to determine the size of the human brain accurately (Kanai et al., 2012;
Kwak et al., 2018; Lewis et al., 2011; Noonan et al., 2018). The results of these studies have
been compared with the ego-network size of the participants, and all have confirmed the same
hypothesis: individuals with smaller brain sizes can handle fewer relationships simultaneously.
These findings have emphasised the dominance of social factors over ecological ones and have
led to the popularity of the Social Brain Hypothesis and Dunbar’s number.

8I would like to take this opportunity to thank Robin Dunbar for allowing me to use the figures from his
book Friends: Understanding the power of our most important relationships in this text. However, I finally
decided not to include them and create alternative representations to ensure no copyright issues.
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1.1 The Social Brain Hypothesis

1.1.2 The hierarchical structure: Dunbar’s circles

When Dunbar (1993) examined the data of hunter-gatherer societies worldwide, he quickly
realised that all of them exhibited a common pattern in terms of their social structure.
Moreover, the complexity of this structure was beyond what he could have expected. Each
society was formed by different communities scattered across the same territory. In turn,
each of these communities was divided into three or four camp groups. Dunbar observed that
bigger formations were also created, so several communities were grouped into mega-bands
and several mega-bands were combined to form a tribe. This was the first evidence of societies
being divided into layers representing a characteristic set of relationships.

Dunbar (1998b) decided to expand this investigation from a more quantitative perspective.
He noticed that hunter-gatherer societies were organised into structural groups clustered
around a series of characteristic values: 5, 12, 35, 150, 500 and 2000. Dunbar also argued that
these values might represent points of stability in the familiarity of all types of relationships,
from the closest ones to the more distant ones. In other words, not all relationships are
equal; instead, they differ in closeness or level of intimacy. These factors are responsible
for the division into groups, with the more intimate relationships corresponding to smaller
groups.

A few years later, Hill and Dunbar (2003) continued examining the hierarchical structure
of social relationships. Hence, they designed an experiment where they asked a group of
white British people9 about who they would send a Christmas card to (i.e. individuals whose
relationship they value). The participants were also requested to supply some information
about the person(s) they would contact, such as distance, type of relationship, social status,
last contact or emotional closeness (on a scale from 0 to 10). The analysis of the responses
provided some revealing results. The average size of the participants’ networks was 153.5,
very close to the prediction of 150 obtained for humans. Moreover, the authors identified
hierarchical grouping levels in the data very similar to those observed in hunter-gatherer
societies. As a result, Hill and Dunbar suggested that varying levels of emotional closeness
could determine this hierarchical structure.

The existence of these highly similar patterns in both studies caught the attention of Zhou
et al. (2005), who decided to reanalyse10 the data using more sophisticated mathematical
techniques. More specifically, the authors utilised techniques used for fractal analysis and
identified a uniform trend in all these societies: relationships are organised into layers (or
circles) with characteristic sizes that follow a geometric progression with a scaling ratio around
3.11 These layers are sequentially inclusive of one another so that the innermost layers, which
correspond to the most intense relationships, are also included in the outermost ones. The
estimated sizes of each layer are approximately 5, 15, 50, 150, 500 and 1500. This result is
illustrated in Figure 1.2 and represents the hierarchical structure observed in human societies,
also known as Dunbar’s circles.

9Hill and Dunbar (2003) state that the reason for choosing only white British respondents was to minimise
cultural influences.

10To be more precise, in this study, the authors reviewed the data from the hunter-gatherer societies and
the Christmas card sending experiment, but also analysed other datasets from the social network literature
(Adams et al., 2002; Kef, 1997; Marsden, 2003).

11Zhou et al. (2005) reported an approximate scaling ratio of 3.2 with a confidence level of 0.993.
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Figure 1.2: The hierarchical structure: Dunbar’s circles - The figure represents the char-
acteristic layered structure that forms society. The numbers represent each layer’s approximate
size, including the layers within it. These sizes follow a geometric progression with a scaling ratio
of approximately 3. The red line shows the limit to the number of simultaneous relationships an
individual can maintain, the so-called Dunbar’s number. This figure is a replica of Figure 3 (page
71) in Dunbar (2021).

Dunbar (2021) provides some insight into the connection between these layers and the
emotional closeness of their associated relationships in a more familiar way. The 5-layer
(or support clique) corresponds to close friends, the 15-layer (or sympathy group12) to best
friends, the 50-layer to good friends and the 150-layer to just friends. These 150 relationships
constitute each individual’s ego-network. Dunbar also points out that the meaning of the
two remaining layers is less clear. The 500-layer may correspond to individuals with whom
someone is familiar, such as coworkers, and the 1500-layer to the number of people someone
can name, even if they have never been met in person.

Recent studies suggest the existence of two additional layers. On the one hand, researches
into online social networks (Arnaboldi et al., 2017; Arnaboldi et al., 2015; Gonçalves et al.,
2011) and telephone calls (MacCarron et al., 2016) uncover a layer with a size of around 1.5.
This layer would correspond to people with whom the relationship is at its maximum, such

12This term was first introduced by Buys and Larson (1979), who were the first authors that suggested the
idea that there is a limit to the number of people for whom one can feel sympathy.
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1.1 The Social Brain Hypothesis

as a romantic partner or a very close relative. On the other hand, another layer with an
approximate size of 5000 has also been predicted. These findings are supported by research
conducted by Jenkins et al. (2018) in the area of facial recognition. Their results indicate
that an individual’s ability to recognise faces, even without knowing their names, is estimated
to be around this value. It’s important to emphasise again that, even including these two
new layers, the scaling ratio between successive ones continues to be approximately 3.

In recent years, evidence has also been published showing that this characteristic pattern is
not exclusive to humans. Other species with complex social systems exhibit similar groupings.
Hill et al. (2008) analysed data for some species of mammals and found the same pattern13

and scaling ratio as the observed for humans. Dunbar et al. (2018) revealed similar trends
in their analysis of average group sizes among various primate species. These results suggest
the hypothesis that the social world is organised into a series of characteristic layers, and this
structure is highly consistent across individuals, societies, cultures and even species.

Additionally, the robust nature of these results has drawn the attention of the scientific
community for years. As a result, a large number of researchers have tried to find the reasons
behind this characteristic hierarchical structure. The most widely accepted hypothesis is
that the intensity of a relationship depends on the time invested in it. As time is a limited
resource, each person allocates it to others based on how highly they value each relationship.

The first result in this direction was proposed by Max Burton, who showed the expectation
of mutual help is directly proportional to the amount of time invested in a relationship.
Sutcliffe et al. (2012) put numbers to the question. By analysing the contact frequencies of
each person among the different circles of their social network, they showed that 40% of the
time was devoted to the closest layer, the support clique, an additional 20% to the rest of the
people in the sympathy group and only the remaining 40% to all other relationships, devoting
less time to those more distant. Miritello et al. (2013) demonstrated that these patterns are
not limited to face-to-face interactions. They analysed a database of phone calls and found
that individuals who called more people did not spend more time on the phone, but instead
spent less time calling each of their contacts. Moreover, the optimal number of contacts is
150.

In light of all these results, it can be concluded that time is limited and constrains how
social relationships are organised. There exists a trade-off between the time invested in the
different relationships and the benefit gained from them, leading to the emergence of the
hierarchical layered structure of social networks.

1.1.3 The “social atom”

Making predictions in social sciences is challenging due to human behaviour’s complex and
unpredictable nature. In general, these predictions are rather obvious or too simplistic. This
makes the robustness of the results proposed by Dunbar even more remarkable. However,
the problem remained partially unsolved because some questions still needed to be answered:
Why is the scaling ratio between the different layers constant? And more importantly, why

13Hill et al. (2008) found the same pattern up to the layer of 50 individuals, as the mammal groups they
studied did not go beyond this value.
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is the value of this scaling ratio approximately 3?14

Once again, these questions attracted the attention of the scientific community. Sutcliffe
et al. (2016) were the first who tried to answer them. These authors designed an agent-
based model to tackle the problem, reproducing the observed layered structure using a set of
behavioural rules and specific parameter values. They found that this structure only arises
when there are substantial benefits for individuals and extensive levels of social interaction,
which might mirror what happens in the natural world. However, this model was difficult to
understand and computationally expensive, making it difficult to gain more insights from it.

Thanks to interdisciplinary collaboration in science, Tamarit et al. (2018) provided a new
and very different perspective on the problem. These authors interpreted the organisation
of social networks as a resource allocation problem and used a technique from statistical
physics, the maximum entropy principle, to explain the layered structure. They assumed two
basic and easy-to-accept constraints: the number of relationships that can be maintained
simultaneously is limited, and the cost of maintaining each varies based on its emotional
intensity.15 From them, the authors showed that a hierarchical structure emerges, which is
governed by a single parameter µ. Depending on the value of this parameter, two different
regimes can arise: the standard one (µ > 0) and the inverse one (µ < 0).

On the one hand, the standard regime corresponds to the traditional layered structure
observed, where the number of individuals increases in successive circles. Tamarit et al.
(2018) highlight that this is the regime observed when studying a community with a large
population, where individuals have more opportunities to select their social relationships.
On the other hand, the model predicted the inverse regime, which had never been noticed
before. This would be the expected regime in small communities, where the individual has
fewer opportunities to create weak relationships, so unused time is employed to create more
close relationships. The authors confirmed this hypothesis by using data from four immigrant
communities, where the options for choosing friends are limited to a small number of members.
In consequence, the relationships that emerge are more intense.

The most remarkable point here is that the model predicted an unexpected and surprising
regime, which prompted the authors to search for data to verify it. This approach is contrary
to the traditional way of proceeding in the social sciences, where, first, data is analysed,
and later, a model is developed to explain it. In other words, the traditional process moves
from data to the model instead of from the model to the data, as Tamarit et al. (2018) did.
This perfectly exemplifies the need for interdisciplinary science, where techniques from very
different fields are combined to obtain astonishing results.

Moreover, Tamarit et al. (2018) provide an explanation for the layered structure of social
networks: the maximum entropy principle dictates it is the most probable organisation of
these relationships, considering the constraints. This leads to the concept of “social atom”
(Tamarit, 2019), as it replicates a system similar to that observed in physical particles, and
represents how each individual (the “atom”) manages their social relationships.

14Zhou et al. (2005) claim that the fundamental question is to determine the origin of the hierarchical
layered structure, and there is no clear explanation for why the scaling ratio must be approximately 3.

15As explained in detail in the previous subsection, this emotional intensity highly correlates with the time
invested or the benefit gained from each of these relationships.
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Tamarit et al. (2022) extended this discussion. The traditional structure of ego-networks
had always been considered a discrete set of layers with characteristic sizes, so, in their
first model, they assumed a discrete set of categories to allocate resources. However, they
proposed an expanded version of the model in which the layers were omitted and the social
relationships were classified on a continuous scale. The authors also observed the two regimes
identified in the discrete version of the model in the continuous one. Furthermore, this new
model allowed them to study continuous16 data measuring the intensity of social relationships,
without having to categorise it. Consequently, Tamarit et al. (2022) introduced a universal
parameter η, that does not depend on an arbitrary choice of the number of layers and explains
how an individual’s social relationships are organised.

1.1.4 Personal effects and homophily in social networks

One of the most complex challenges humans face in their daily lives is dealing with the social
world. Individuals react to this situation in many different ways depending on their abilities.
For this reason, all patterns observed in human social behaviour are averages that can vary
significantly from one person to another. Of course, not everyone has 150 friends; some people
have more, and others have fewer. This is a manifestation of the natural variability present
in the real world. Determining the factors contributing to this variability has been a subject
of study in the last few years.

Stiller and Dunbar (2007) laid the foundations in this direction, arguing that differences
in the number of relationships an individual maintains might be related to specific mental
abilities, such as memory. Pollet et al. (2011) proceeded in this direction by demonstrating
that personality also has a significant influence. The authors proposed the existence of a
“social capital” that extroverts distribute along more people. Thus, their ego-networks are
larger than those of introverts. A scientifically-backed answer to this question has also been
proposed. Advancements in neuroimaging techniques have allowed for a high level of precision
in determining the size of the different brain regions. Several studies have confirmed that
the greater the number of friends an individual has, the larger the brain areas17 involved in
social skills (Kwak et al., 2018; Lewis et al., 2011; Noonan et al., 2018). Again, these findings
are not limited to face-to-face interactions but extend to online relationships (Kanai et al.,
2012). These results suggest differences in social networks based on an individual’s cognitive
abilities.

Moreover, other biological factors have been identified as necessary in accounting for
variations in network sizes. One such factor is age. Wrzus et al. (2013) found that networks
increase in size initially with age, reaching a peak around the thirties and then decreasing
as one becomes older. These authors also show that it is the friendship component of the
network that changes in size over time, while the family one remains relatively stable. Another
biological factor that has a significant influence is gender. Some studies have exposed that

16Tamarit et al. (2022) study three different datasets that measure the intensity of social relationships on
a continuous scale: duration of phone calls (Saramäki et al., 2014), face-to-face interaction time (Isella et al.,
2011) and number of likes in Facebook (Arnaboldi et al., 2012).

17The prefrontal cortex, the temporal lobe and the temporo-parietal junction (TPJ) are the brain regions
associated with social abilities.
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men and women have different18 approaches to social relationships (Barrett et al., 2000;
Dunbar, 2016). Men prioritise a sense of belonging to a group, while women place greater
importance on intimate dyadic relationships. A recent study by Kiesow et al. (2020) revealed
differences in brain structure between both sexes, which might contribute to the differences
observed in social behaviour.

Another key aspect in explaining the structure of social networks is homophily. People
tend to build friendships with those with similar characteristics, such as gender, age or
ethnicity. Dunbar (2021) incorporates a list of seven cultural factors into this classification,
based on the findings of various studies (Curry & Dunbar, 2013a, 2013b; Launay & Dunbar,
2015). He names these factors “The seven pillars of friendship”, which are the following:
language, growing location, educational and career experiences, hobbies, worldview, sense of
humour and musical tastes.

Hence, very diverse factors influence how an individual socially relates to others. These
factors are specific to each person, embody their personality and tend to remain stable over
time. Dunbar (2021) refers to them as the “social fingerprint”. He argues that this must be
considered when understanding the social structure, as it complicates making generalisations
about overall behaviour. Each person has a unique “social fingerprint” that sets them apart
from others. Therefore, the conclusions reached are usually averages that provide an overview
of the system, but may not apply to every individual case.

1.2 Exponential random graphs

After introducing the anthropological theory on which our research is based, the Social Brain
Hypothesis, we explore some techniques for modelling social systems. Over the years, different
methods have been developed to understand these systems, but networks have undoubtedly
been one of the most impactful tools, allowing the field to advance significantly. Networks
provide a powerful way to visualise and analyse the complex relationships that shape social
systems. For example, they can be used to identify influential individuals within a society,
understand the flow of information through it or predict how changes in its structure might
affect the formation of communities.

In recent decades, the interdisciplinary nature of science has become increasingly evident
due to the significant effort invested by the scientific community in developing realistic models
of social networks. As a result of this interdisciplinary approach, a variety of methods have
been employed to study these networks, including mathematical modelling, statistical analysis
and computational simulations. Researchers from different disciplines, including economics
(Jackson et al., 2012), computer science (Wellman, 2001), biology (Alm & Arkin, 2003;
Mason & Verwoerd, 2007) or statistics (Snijders, 2011), have devoted considerable effort to
formulating them. The field of statistical physics has also significantly contributed to the
study of social networks (Albert & Barabási, 2002; Girvan & Newman, 2002; Newman, 2018;
Toivonen et al., 2009). Even, some of the most popular techniques used today for studying
social systems, ensemble models of networks, are closely related to this discipline.

18The authors emphasise that it is essential to remember that all of these conclusions refer to average
behaviours.
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Ensemble models of networks (or random graph models) are an important theoretical
tool used to investigate properties that emerge from random processes, providing insights
into the fundamental mechanisms of network formation. Among them, exponential random
graphs (ERGs) have proven to be helpful in analysing social networks. These models allow
us to create graphs that exhibit similar characteristics to networks observed in the real world,
offering a valuable understanding of their structure and dynamics.

1.2.1 A brief historical introduction

Moreno and Jennings (1938) conducted a study that is considered the foundational work in
the analysis of social networks. These authors were pioneers in using statistical methods to
compare the social interactions among the participants in their research with those expected
by a null model. While the statistical methods used were relatively simple, they suggested
that the relationships that appeared could not be purely random, but instead, there had to
exist underlying structural effects that introduced some bias.

A few years later, Erdös and Rényi (1959) presented the first work in the field of random
graph theory, the well-known Erdös-Rényi model of random graphs. In this model, a graph
with n vertices is constructed by including each possible edge with probability p, independent
of all the other links. This revolutionary idea profoundly impacted the study of network
models at that time.

Holland and Leinhardt (1981) developed a statistical model based on dyadic independence.
They named it the “p1 model”, and it was the first attempt to go beyond simple random graph
distributions. This model provides a characterisation of a graph by counting the number of
edges that connect vertices in it. Furthermore, its probability distribution can be used to
estimate the likelihood of a specific graph within the ensemble. Even though the authors
only conducted dyad analysis, this work laid the foundation for exponential random graph
models (ERGMs), so-called because the logarithm of their probability distribution is linear.

Another key idea in the development of this family of models was proposed by Frank and
Strauss (1986). They concluded that adopting an approach that accounted for dependence
was essential, rather than looking for new methods based on network independence. For this
reason, they introduced Markov random graph models intending to adapt spatial statistical
techniques to network analysis.

The article published by Wasserman and Pattison (1996) marked the turning point that
led to the overall adoption of ERGs and their surge in popularity. They emphasised the form
of the log-linear probability distribution that defines this family of models, accentuating their
simplicity and utility. Wasserman and Pattison also highlighted the estimation of newly
proposed parameters, which allowed the model to be adapted to various social networks.
Furthermore, the authors proved that conditional independence assumptions could be used
to derive this family of models, subject to the conditions dictated by the Hammersley-Clifford
theorem.

Since then, the ERGs have become one of the most widely used tools by the social network
community (Robins et al., 2001; Snijders, 2002, 2011). Moreover, the increase in computing
power and the ease of fitting real data have allowed researchers to analyse larger and more
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complex networks leading to new insights into their structure, including the discovery of new
patterns and properties that were previously unknown (Fronczak, 2014; Koskinen et al., 2013;
Lusher et al., 2013; Robins et al., 2007; Snijders et al., 2010; Stivala et al., 2016).

1.2.2 Traditional statistics approach

In the field of complex systems, network modelling analysis has become an essential tool
for understanding the relationships and interactions between different components (Snijders,
2011). When formulating a model for network analysis, the objective is to create a mechanism
that reproduces the characteristics of real networks.

Ensemble models of networks address this problem using purely probabilistic methods; the
observed networks emerge as a result of applying a stochastic process over a set of them that
share some features (at least, the same number of nodes). Usually, the stochastic process that
generated the observed networks is unknown, so the objective is to formulate a reasonable
and theoretically justified hypothesis for it (Robins et al., 2007). This process is governed by
a probability distribution P (G), which determines the likelihood of a network appearing in
the ensemble so that networks that are more similar to those observed are more likely to be
present. Therefore, an ensemble model is entirely determined by two elements: the set G of
all possible realisations of the network and its probability distribution P (G).

To determine the probability distribution P (G), the starting point is a set of graphs
with data available on a total of p distinct properties. In other words, the values of {xi}
where i = {1, ..., p}, have been obtained through empirical observations of the networks.
Furthermore, it is possible to estimate its average value ⟨xi⟩.19 In consequence, the probability
distribution satisfies

⟨xi⟩ =
∑
G∈G

P (G)xi(G), (1.2)

where xi(G) is the value of the observable xi on the graph G.

The observables xi are called sufficient statistics because they comprise all the information
in the data. In the probability distribution P (G), each has an associated parameter θi. The
value of these parameters determines the probability of a specific graph G appearing within
the complete distribution.

Wasserman and Pattison (1996) generalised the probability distribution of the exponential
random graphs (ERGs) family. This probability distribution provides a direct and elegant
way to link each observable to its respective parameter, thanks to its log-linear form. It is
defined by

P (G) =
exp (−θ · x(G))∑

G′∈G
exp (−θ · x(G′))

=
exp (−θ · x(G))

K(θ)
, (1.3)

where x(G) = (x1(G), x2(G), ..., xp(G)) and θ = (θ1, θ2, ..., θp) are two vectors formed by
the observables of the network and their associated parameters, respectively. K(θ) is a
normalisation constant to ensure that the probabilities sum 1.

19In practice, it is common to have only a single network realisation available. In such cases, the value of
each observable is treated as its average value.
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The probability distribution determined by Equation 1.3 can represent any configuration
on the graph space that assigns a positive probability to each possible graph. This issue
can be accomplished by computing the maximum likelihood values of the parameters θi
for specific values of the observables xi. However, calculating the normalisation constant
becomes intractable analytically when these observables involve more complex structures,
such as triangles. In these cases, it becomes necessary to appeal to Monte Carlo techniques,
which are computationally expensive.

1.2.3 Statistical physics approach

Park and Newman (2004b) tackled this problem from a different perspective, leveraging the
interdisciplinary nature of science. These authors realised that the probability distribution
given by Equation 1.3 arises from applying the maximum entropy principle subject to the
constraints outlined in Equation 1.2. With this in mind, they integrated ERGs into the
language of statistical physics and related them to other types of models commonly used in
this discipline (fluids, ferromagnetic materials, gases...). Well-established techniques to deal
with these problems allowed for obtaining approximate analytical results without requiring
simulations (Grandy Jr, 2012; Newman, 2018). Thanks to this approach, these techniques
can be extended to network analysis.

The derivation proposed by Park and Newman maximises the Gibbs entropy

S = −
∑
G∈G

P (G) logP (G), (1.4)

subject to the constraints outlined in Equation 1.2 and the normalisation condition∑
G∈G

P (G) = 1. (1.5)

By utilising the Lagrange multipliers α and βi, the probability distribution P (G) must
satisfy the equation

∂

∂P (G)

[
S + α

(
1−

∑
G′

P (G′)

)
−
∑
i

βi

(
⟨xi⟩ −

∑
G′

P (G′) xi(G
′)

)]
= 0. (1.6)

This expression is equivalent to

logP (G) + 1 + α−
∑
i

βixi(G) = 0, (1.7)

from where it is deduced that the probability distribution P (G) takes the form

P (G) =
e−H(G)

Ξ
. (1.8)

Therefore, the Hamiltonian20 of the network is

−H(G) =
∑
i

βixi(G). (1.9)

20Notice that the sign conventions used here are different than those in Park and Newman (2004b), to
agree with those commonly adopted in statistical mechanics of lattice gases. This is the convention we will
use throughout all this work.
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The grand partition function associated with the Hamiltonian is obtained as

Ξ = eα+1 =
∑
G∈G

e−H(G). (1.10)

One can observe that the functional form of Equation 1.8 is identical to the probability
distribution in Equation 1.3. Thus, this derivation justifies the choice of the exponential form
which defines the ERGs: it is the least biased distribution compatible with the constraints in
Equation 1.2. From the Bayesian point of view, this is the optimal choice since P (G) includes
exclusively the information provided by the constraints and nothing else. Any additional
detail about the distribution would require modifying its form.

Consequently, an ERG is entirely defined by its probability distribution, Hamiltonian
and grand partition function. In statistical physics, P (G) is known as the Boltzmann-Gibbs
distribution over all the possible microstates of the system, which in this case are all the
graphs G that belong to the ensemble G .

The expected value of any property of the graph can be obtained as

⟨xi⟩ =
∑
G∈G

P (G) xi(G) =
1

Ξ

∑
G∈G

e−H(G) xi(G). (1.11)

However, this average can be computed more easily by just defining the grand potential21 of
the system

Ω = − log Ξ. (1.12)

Then, the mean values of the observables xi are obtained throughout

⟨xi⟩ = − ∂Ω

∂βi
, (1.13)

where βi is the Lagrange multiplier associated with the observable xi in the Hamiltonian of
the graph.

1.3 Summary and objectives

In the preceding sections, we introduced the theoretical foundations of our research as a
starting point for understanding it. Our work falls under the discipline of social physics,
an interdisciplinary and emerging field that applies concepts and methods from physics and
mathematics to study social phenomena. The ultimate goal of social physics is to uncover
universal principles that underlie human behaviour in social systems.

Our research is based on the Social Brain Hypothesis, a theory proposed by the British
anthropologist Dunbar (1998b). This theory posits that the number of social relationships
an individual can maintain simultaneously is limited to around 150, which is often referred

21Park and Newman (2004b) refer to this term as free energy because it is the nomenclature adopted in the
physics of spin models. However, we are adopting the nomenclature commonly used in statistical mechanics
of lattice gases. We will use it throughout all this work.
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to as Dunbar’s number. This limit is believed to be a result of the cognitive capacity of the
human brain. According to the Social Brain Hypothesis, the evolution of the large human
brain was driven by the demands of living in complex social groups. Therefore, the size of
the neocortex, the part of the brain responsible for complex cognitive processes, is related to
the size of an individual’s ego-network. Moreover, all these relationships are organised in a
characteristic layered structure known as Dunbar’s circles. The size of each inclusive layer (5,
15, 50 and 150) is inversely proportional to the intensity of its associated links and follows
approximately a geometric progression with a scale parameter of 3.

For a long time, there has been no explanation for this characteristic structure of the
ego-networks. However, Tamarit et al. (2018) have recently proposed a model that interprets
their organisation as a resource allocation problem. The model justifies this structure using
the maximum entropy principle and shows that a maximum likelihood analysis, subject to
only two basic constraints, yields a one-parameter probability distribution that describes the
likelihood of a given relationship occupying a specific layer. This has led to the development
of the concept of “social atoms”, which explains the micro-level social structure of humans.

Our research aims to apply this formalism to the macro-level, where social systems can be
understood as ensembles of interacting “social atoms”, with the objective of comprehending
the phenomena that emerge from the interactions. To achieve this, we use exponential random
graphs (ERGs), a family of network models whose probability distribution can be derived
using the maximum entropy principle. These models play a similar role in network analysis
as the Boltzmann-Gibbs distribution does in statistical physics by providing the maximum
likelihood prediction of parameters that considers the constraints imposed by observations.

Therefore, our motivation for this work is to gain a deeper understanding of the social
structure. We hope to uncover some universal principles by applying the formalism of social
physics to the study of complete social networks, which are macro-level systems. We believe
that this approach has the potential to revolutionise our understanding of human behaviour
and provide new perspectives on the fundamental mechanisms that govern social interactions
by bringing together concepts and methods from physics and other related disciplines.

With these objectives in mind, we have divided this thesis into four parts. The first part
utilises a data-driven approach to tackle the problem. We conducted multiple surveys on
high school students, gathering data on their friendships and enmities throughout different
academic years. We will explore this data to identify universal patterns in human social
behaviour and highlight the significance of previously unexplored factors that play a key role
in determining the structure and dynamics of social relationships, such as reciprocity or the
impact of negative relationships. Additionally, we will introduce an online application that
we have developed to enable school directors to leverage our findings and improve the social
atmosphere in their schools.

In the second part, we will build models from first principles using exponential random
graph models that allow us to explain the structure of social relationships. In particular, we
will demonstrate that, for certain parameter values, these models exhibit a phase transition
similar to that observed by Park and Newman (2005). We will apply density functional theory
to obtain an energy functional that allows us to detail this phase transition. Lastly, we will
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use the data on the relationships between high school students to validate these models. We
will estimate the parameters that govern the formation of social relationships among the
students by fitting the models to the data. These parameters will provide us insights into
the underlying mechanisms that shape the social structure of the school and the emergence
of social phenomena.

In the third part, we will demonstrate that all these models can be applied more generally
than solely to human relationships. We will use grooming data from four different groups of
chimpanzees living in the Chimfunshi Orphanage in Zambia to show that they exhibit the
same behaviour patterns as those observed in humans by Tamarit et al. (2022). Our results
will not only provide further evidence of the universality of these models but also shed light
on the similarities between human and chimpanzee social behaviour.

Finally, in the fourth part, we will present our conclusions and discuss the implications of
our findings. We will highlight the contributions of our study and propose potential avenues
for future research.
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Part I

Data-driven perspective
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2

Understanding the dynamics of
the social world

Social structure and dynamics constitute the foundations of human social life, shaping the
interactions, behaviours and experiences of individuals within the social world. Therefore,
analysing them is essential to understanding the functioning and evolution of societies, as
well as the ways in which humans navigate and interact within them.

In this chapter, we explore the temporal evolution of social relationships among high
school students over two consecutive academic years. Our study is based on survey data
collected at five different points in time (waves), providing a comprehensive picture of the
social landscape. This constitutes a unique opportunity to investigate the resilience of social
structures and their evolution, which may prove particularly useful for understanding the
social environment in high schools.

Our results show a very high degree of consistency among the survey waves, despite the
complex and sometimes difficult-to-decipher dynamics of teenage social relationships. This
consistency suggests a high degree of persistence of social structures in high schools. We
investigate the role of various factors, such as being in the same class, gender homophily
or reciprocity. Furthermore, we also examine enmities, which are reported to a much lesser
extent and are highly volatile. Our findings contribute to the growing body of evidence
supporting the layered structure of human social networks and offer valuable insights into
the social dynamics of high school students.
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2. UNDERSTANDING THE DYNAMICS OF THE SOCIAL WORLD

2.1 Data description

2.1.1 Data collection

We conducted a study on a group of students from IES Blas de Otero, a public high school
in Madrid, Spain. The study was carried out during two complete academic years, 2020-2021
and 2021-2022, and consisted of 5 data collection sessions in which we surveyed the students
about their social relationships and their skills. Two of these sessions were carried out during
the academic year 2020-2021, in December 2020 (wave 1) and May 2021 (wave 2), and the
remaining three during the academic year 2021-2022, in October 2021 (wave 3), February
2022 (wave 4) and May 2022 (wave 5). Academic years in Spanish middle schools begin
around mid-September and end around mid-June. The participants in our study were in 1st,
2nd and 3rd year of middle school (in Spanish, Enseñanza Secundaria Obligatoria, i.e. ESO)
during the academic year 2020-2021 and were between 12 and 16 years old.

The study was approved by the Ethics Committee of Carlos III University of Madrid
and carried out in accordance with the approved guidelines. Consent was obtained from the
school, which adopted this as a research project of its own and, in turn, got informed consent
from the parents of the participants. Students always participated voluntarily and signed
informed consent prior to beginning the study.

Data were obtained from surveys carried out in the computer lab of the high school or
on the own mobile phones of the participants, always under the supervision of a teacher.
These surveys were conducted using SAND, a software developed by our research group in
collaboration with other universities. This application has allowed us to obtain very diverse
information about the students, such as their friendship and enmity relationships and their
associated intensities, their social and cognitive abilities or the classmates with whom they
prefer to collaborate. Despite the richness of this data, we will focus only on studying the
structure and dynamics of their social relationships. However, the school principals have
access to all this information and are using it to improve the social atmosphere in the centre.

The first question of the survey related to social relationships was the following:

• Who are your friends within the school?

Then, a list with the names and surnames of all their schoolmates (from all courses) appeared
on the screen, and they could select all those whom they considered their friends without
having a minimum or maximum limit. After finishing answering the question and pressing
the accept button to move to the next screen, they were asked about their best friends:

• Of those previously selected, who are your best friends within the school?

Then, a list appeared on the screen that only showed the schoolmates they had selected in
the first question, allowing the user to choose their best friends from among them.

For negative relationships, an analogous process was followed. In this way, for each of
the participants, we were able to know their “best friends”, “friends”, “enemies” and “worst
enemies”. The information is gathered as a list of student IDs labelled as {+2,+1,−1,−2},
respectively. The combination of all these relationships forms the links of our high school
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2.1 Data description

networks. Note that each student provides one such list, so we are extracting a directed
network. This process is repeated independently in each of the five data collection sessions
conducted throughout the study.

As for the differences between waves, in the academic year 2020-2021, due to COVID
prevention measures, the structure of the school was different from the standard one. Students
who were in 1st and 2nd year of ESO during this course were divided into eight classes with
some 15 students each. In the same year, students in the 3rd year of ESO were divided
into five classes of some 25–30 students each, and within each class, they were split into two
subgroups which, because of COVID, attended school physically on alternate days. In the
academic year 2021-2022, these students advanced to the 2nd, 3rd and 4th year of ESO as
already stated, and the school returned to a pre-COVID structure, i.e. 5, 5 and 4 classes
with some 25 students in each year, respectively, attending school physically on a daily basis.
In addition, there are two teaching itineraries in this school, one that is taught mostly in
English, except Spanish and Mathematics, and another that is taught mostly in Spanish,
except Arts and Physical Education, which are taught in English. Approximately 40% of the
students take the English itinerary. For a complete description of the school’s demographics,
see subsection A.1.1.

Finally, it is also important to highlight that the older participants, i.e. those from the 3rd
year of ESO during the period 2020-2021, had already participated in a similar study1 that
we conducted previously in the same school during the academic year 2018-2019 (Escribano
et al., 2021). Unfortunately, we cannot establish a correlation between the results of both
studies as they were carried out using two different applications, and due to privacy concerns,
we can only identify each student through an ID which is different in both applications, and
we have no way to connect them. Despite this limitation, our current study provides sufficient
information to investigate the social dynamics of high school students.

2.1.2 Data curation

In this second study, we made an adaptation of our survey application as a consequence of
what we learned from the first study (see section 3.1 for a detailed discussion). This greatly
simplified the data curation process. In this case, we have only focused on ensuring that the
responses were consistent throughout the five waves, so we have filtered out participants who
did not meet some requirements.

The first requirement we have imposed is that the student had participated in all five
waves. Among them, outliers were removed according to the following criterion: those who
reported more than 100 relationships or more than a 200% change (upwards or downwards)
in the number of selected relationships from one wave to the next, were discarded from the
sample. From the 285 students that answered in all five waves, we discarded 64 outliers: 22
reported more than a hundred relationships, while 42 had too much variation between the
number of answers in consecutive samples. This leaves us with a final sample of answers from
221 students for the five waves.

1In spite of the chronological sequence, we have decided to present the results in a different order to give
more coherence to the discussions addressed in each chapter. However, the ideas presented in section 3.1 may
help to understand the development of the questionnaires and the reasons behind their current form.
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2. UNDERSTANDING THE DYNAMICS OF THE SOCIAL WORLD

2.2 The evolution of social relationships

To start our longitudinal study about the structure and dynamics of social relationships, we
decided to explore the friendship relationships reported by the participants. The number
of friendships and best friendships among students remained remarkably consistent across
the five waves, despite the vastly different situations in the two academic years under study,
as can be observed in Figure 2.1. This finding is consistent with the results presented by
Kucharski et al. (2018), who concluded that the reported number of relationships over time
showed great consistency. In our study, even with drastic changes in the composition of the
groups and the school situation in waves 3, 4 and 5, the results remained almost constant
across the five waves.

Furthermore, the results were consistent across all data subsets, including class, gender,
itinerary and whether the student was a “repetidor” (i.e., taking the course for the first or
second time, with the latter being referred to as “repetidor”). This finding applied to both
friendships and best friendships. When a regression line was plotted through the number of
friends in each of the five waves for each student, the median of the slope was exactly 0 (see
subsection A.1.4).

To further examine the structure of ego-networks, we utilised the parameter µ as a tool
for analysing the layered structure of an individual. This parameter was first introduced by
Tamarit et al. (2018) and discussed in detail in our previous study (Escribano et al., 2021).
To obtain its value for each individual, we fitted the following analytical expression:

µ = log

(
C2 − C1

C1

)
, (2.1)

where C1 represents the reported number of friendships in the innermost circle and C2 in the
circle associated with the sympathy group.

When µ is greater than 0, the circles exhibit a characteristic structure where the number
of friendships increases rapidly as we move away from circle 1, the innermost one. A value
of µ close to 0.7 is typically observed when the scaling ratio between the sizes of the circles
is around 3, which is often the case. Conversely, when µ is less than 0, most friendships are
concentrated in circle 1, and the rest of the circles have very few additional people. Negative
values of µ are observed in situations where the number of possible links is limited (e.g., sailors
on a boat, communities of migrants, etc.) or for introverted individuals. The distribution of
the µ parameters is relatively constant, and in fact, most individual values of µ change very
little across the five waves (see subsection A.1.3), despite the organisational changes and the
composition of the groups when they transition from the first to the second academic year.

To study the evolution of relationships, we compared the nature of links between pairs
of subjects in consecutive waves, wn and wn+1, using labels of +2 for “best friend”, +1 for
“friend”, 0 for “no link”, −1 for “enemy” and −2 for “worst enemy”, and computed the
corresponding conditional probabilities. Therefore, Figure 2.2(a) shows P (x,w5|+2, w4) and
Figure 2.2(b) P (x,w5|+1, w4), while Figure 2.2(c) shows P (x,w5|− 2, w4) and Figure 2.2(d)
P (x,w5| − 1, w4). All the other conditional probabilities are shown in subsection A.1.5.
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2.2 The evolution of social relationships

a) b)

Figure 2.1: The structure of friendships - The figure represents boxplots corresponding to:
a) the number of friendships and b) the number of best friendships reported by the students in
each of the five waves of the survey.

The first two circles related to friendships (best friends and just friends, respectively)
evolve in very different ways: best friends are quite stable, and when they stop being best
friends, they usually end up as just friends. In contrast, just friends are more dynamic and
may disappear from the radar or, in some cases, even become best friends.

We have also looked at the opposite evolution, namely where students that appear for the
first time as best friends were in previous waves, i.e. P (x,wn−1|+ 2, wn). We have observed
that best friends were often already best friends in the previous wave, and new ones come
primarily from being just friends. Therefore, the first two circles show apparent differences
in the stability of their relationships, arising from the different intensities in best-friend vs.
just-friend relationships.

Enmities are very few and highly volatile. The total number of negative relationships is an
order of magnitude smaller than that of positive ones. As can be observed in Figure 2.2, most
relationships marked as worst enemies or just enemies in one wave are not kept in the next
wave. Interestingly, worst enemies are retained with higher frequency than plain enemies.
These results point to friendships and enmities having a different nature, with friendships
being more long-lasting and enmities reflecting, in general, more the heat of a specific conflict.
However, very bad relationships may last longer. All this has to be taken with a grain of salt
though, because of the poor statistics of these relationships. More compelling data is needed
before any conclusion can be drawn reliably.

The results described so far, the stability of the number of relationships across waves
and the higher turnover of the outer friendship layer (+1) compared to the inner one (+2),
suggest picturing individuals as “social atoms”. In this metaphor, layers play the role of
atomic orbitals, whereas individuals act like electrons. Inner orbitals attract electrons more
strongly than outer ones, so there is less turnover. Also, electrons may leave their orbitals
for good, leaving a “hole” quickly replaced by a new electron. Likewise, friends who leave
the ego-network get replaced by new friends, so their average number remains constant.

On the other hand, we observe a larger degree of turnover than that reported by Roy
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a) b)

c) d)

Figure 2.2: The evolution of social relationships over time - The figure represents the
percentage of individuals that ended up in a given category in wave 5, when they were marked
in wave 4 as: a) best friend, conditional probability P (x,w5|+ 2, w4), b) just friend, conditional
probability P (x,w5|+1, w4), c) worst enemy, conditional probability P (x,w5| − 2, w4), or d) just
enemy, conditional probability P (x,w5| − 1, w4).

et al. (2022). This may be because the latter study deals with data obtained from phone
calls between adults. Interestingly, even in that study participants aged 17–21 showed a
larger turnover than those older than 21 years old. Nonetheless, even Roy et al. (2022)
reported differences between layers similar to what we find here. This points to the role of
developmental issues in the evolution of the structure of personal friendship networks. Care
has to be taken, though, because the phone data should capture the general structure of
people’s friendships, whether they are family, workmates, friends, etc., and familiar ties, for
instance, are particularly resilient.

In contrast, here we restrict the students to tell us only about their relationships within
the school. In this respect, we see that Dunbar’s circle structure reproduces itself in each
domain of relationships: a fraction of each student’s cognitive capabilities are devoted only to
school. Then, from that limited capability, the structure emerges as predicted by Tamarit et
al. (2018). The more rapid turnover could be related to the smaller cognitive capacity devoted
to the specific niche of school relationships and to the mean-less of these ties compared to
family or lifelong friendships.
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a) b)

Figure 2.3: The importance of the group for the existence of relationships - The figure
represents the following: a) percentage of relationships formed between individuals in the same
group (S) versus those in different groups (D) relative to the total number of relations that might
potentially form in each of the two cases and b) percentage of relationships between individuals
that are in the same group both academic years (S-S), in the same group the first year but
different the second (S-D), in a different group the first year and the same group the second
(D-S) and different group both years (D-D), referred in each case to the total number of possible
relationships.

One confound that may influence the evolution of relationships is the distribution of
students in the different classes. Generally speaking, approximately 70% of the relationships
among the students are with other students in their same year and, of those, a majority are
with students in their same class. In fact, among all potential relationships within the same
class, approximately 50% of them are actually reported, whereas less than 5% of all potential
relationships with students in different classes exist, as can be observed in Figure 2.3(a).

The fact that this is an important factor can also be observed in Figure 2.3(b), where
pairs of students are divided into groups according to whether they were in the same class in
the two academic years included in our data, 2020-2021 and 2021-2022 (hereafter referred to
as S-S), in different classes both years (hereafter D-D), in the same class in the first year and
in a different class in the second year (hereafter S-D) and vice versa (hereafter D-S). Then,
Figure 2.3(b) shows the percentage of relationships in each of these groups that were actually
reported in each wave. Importantly, the change in the academic year between wave 2 and
wave 3 students is associated with a reshuffling of the classes. This is reflected in a decrease of
relationships S-D, going from values close to 50% to 25%, (orange bars in Figure 2.3(b)), i.e.,
the separation led to the disappearance of half of the existing relationships. On the contrary,
the plot shows an increase in the percentage of relationships D-S (blue bars in Figure 2.3(b)).
In this case, the percentage rises from 15% to almost 45%, comparable to the starting point
of the other group. This observation should be compared to the almost constant percentages
of S-S and D-D relationships.

This clearly shows that being in the same class is a very relevant driver for relationships
to decay or start. It also speaks of a certain weakness of the ties formed in middle school,
compared to those arising in different contexts. Moreover, it is interesting to note that when
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Figure 2.4: The evolution of reciprocity over time - The figure represents boxplots that
correspond to the distributions of individual reciprocal relationships in each wave. It is surprising
to observe how the median value approximately remains constant, around 60% in the five waves,
since there are no external mechanisms that induce it.

students are separated, the number of relationships that still remain in the second year is
almost twice as large as relationships D-S in the first year, meaning that it takes longer for
relationships to disappear due to separation than to form upon becoming together.

2.3 The importance of reciprocity

Our longitudinal study enables us to examine the reciprocity of relationships, which is a
critical issue in social science research. As illustrated in Figure 2.4, we found that the overall
percentage of reciprocal relationships remained consistently high at around 60% across all
five waves of our study. While most individuals showed a similar degree of reciprocity in their
relationships, there were some participants for whom reciprocity was significantly lower.

Moreover, we have observed that these findings were consistent across different groups,
genders and itineraries of the participants. These results can be observed in subsection A.1.7.
The fact that reciprocity levels did not significantly differ across different groups, genders,
and itineraries indicates that this tendency is a fundamental aspect of human social behaviour
rather than specific to certain groups.

As reciprocity is also a property of relationships, it is worth considering their dependence
on the personal characteristics of both people involved. Figure 2.5(a) shows the percentage
of reciprocal links between individuals of the same gender and also the percentages of the
four types of temporal evolution discussed above. Regarding gender, the plot shows that
homophilic links are generally more reciprocal, while mixed-gender links are less reciprocal.
Interestingly, when mixed-gender links are not reciprocal, it is not due to a gender bias (see
subsection A.1.7).

We can also observe in Figure 2.5(b) that reciprocity is quite high in relationships between
students that remain together the two academic years (S-S), is lowest for students that
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a) b)

Figure 2.5: The importance of the group for the reciprocity of relationships - The figure
represents the following: a) percentage of reciprocal links according to the individual’s gender,
M-M (male-male), M-F (male-female), F-F (female-female), and b) percentage of reciprocal links
according to whether the pair of individuals are in the same or different class in consecutive years.

are always separate (D-D), while S-D and D-S links decrease or increase, respectively, in
reciprocity in later waves. Similar results arise when looking at relationships in the same
class or itinerary. Reciprocated friendships are also more stable, as are triangles formed
only by positive relationships. In both cases, they are much more stable than any other
combination.

Finally, our study suggests that the reciprocity of relationships is not only a fundamental
aspect of human social behaviour, but it also plays a critical role in forming and maintaining
social networks. As individuals tend to reciprocate social interactions, a lack of reciprocity or
the appearance of a negative link in a relationship may indicate an imbalance of power on it.
We will explore these phenomena and their consequences in detail in the following chapter.

2.4 Discussion

In this chapter, we have studied the temporal evolution of relationships among 12-16 years
old students that attend the same high school. The study consisted of five waves of surveys
during two consecutive academic years and included positive and negative relationships and
their intensities. The number of students answering all five waves of the survey was 224.

In spite of what one could expect, we do not observe any signs of fatigue among the
students and their responses are remarkably similar in every wave, thus confirming the con-
sistency of the data collection reported by Kucharski et al. (2018). Furthermore, the number
of reported friends and best friends is quite constant in the five waves, irrespective of groups
and ages, genders, itineraries or being a “repetidor”. Therefore, we have a very rich longitu-
dinal dataset that can be used to address several important issues.

The survey results show that friendships in the innermost circle (best friends) are more
stable than the rest of the friendships in the second circle (just friends). This observation
provides further evidence of the key role of Dunbar’s circles in the organisation of relationships
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but also supports the idea that the intensity of a relationship in the first circle is higher than
in the second one, apparently making them more stable. On the contrary, enmities are few,
much less frequent than friendships and highly volatile, with many simply disappearing from
one survey wave to the next. Note, however, that this does not mean that learning about
enmities is irrelevant, as we will explore in the following chapter. This fact is, therefore,
important for the daily dynamics of the class and, as such, it is highly valuable information
for the school principals.

Our study also points to the importance of being in the same class for forming and
stabilising friendships. As discussed above, the strongest friendships arise among students
in the same class during the two academic years we have studied. The change from being
in the same class one year and in a different one the following year leads to the loss of
a sizable fraction of friendships, which are then refocused on new classmates. Friendships
among students that never shared class are much rarer in comparison. These observations
suggest that we tend to have our relationship structure occupied at all times, as the friends
lost because of the separation are replaced with new classmates. In addition, it also highlights
the importance of frequent interaction in keeping or weakening relationships.

Another interesting observation concerns the topic of reciprocal friendships, an important
issue given its connection to performance (Candia et al., 2022) or to the success of behavioural
interventions (Almaatouq et al., 2016). We have observed that reciprocity is remarkably
constant. For most individuals, a percentage between 50% and 70% of their relationships are
reciprocal. In general, gender homophilic relationships are slightly more reciprocal, and vice-
versa, male-female relationships tend to be less reciprocal, with both genders being equally
responsible for this effect. The reciprocity of a relationship also shows the effect of group
reshuffling and evolves in a manner similar to the friendships themselves. Furthermore, there
are a few individuals whose reciprocity is very low, which could be an indicator of possible
socialisation problems for those particular subjects, providing yet another valuable hint for
the school principals.

We want to end this discussion by summarising the big picture that can be inferred
from this study. As already mentioned, everybody seems to have a predefined structure of
their relationships, despite their frequent turnover. The structure is akin to that of an atom
with its electrons, with less turnover in the inner layers than in the outer ones, hence the
“social atom” metaphor. This suggests the possibility of studying the formation of social
networks as a statistical-mechanical system in equilibrium with every relationship having an
associated “binding energy”, which is the cost to remove the link. Consequently, the question
to investigate is if one could map this system into one of the models available in the statistical
mechanics of networks. For example, those models that are based on exponential random
graphs (Escribano & Cuesta, 2022; Park & Newman, 2004b; Strauss, 1986).

From a philosophical point of view, one such mapping would imply that the “total energy”,
or the Hamiltonian in the statistical-mechanical jargon, describes a social system better than a
graph. Graphs are volatile and constantly changing, whereas the energy uniquely determines
a network ensemble, of which any observed social network would be but a specific instance.
This perspective would open a big avenue to re-think social systems from a new viewpoint
and will be discussed in detail in the second part of this thesis.
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3

The role of negative
relationships in social structure

In the realm of human social relationships, it is often the positive relationships that take
centre stage. Friendships are commonly celebrated for their potential to enrich our lives, foster
personal growth and enhance the social fabric. In chapter 2, we examined the structure and
dynamics of positive relationships, which helped us develop the “social atom” concept further.
We also explored negative relationships, which are characterised by conflict or rivalry. Our
findings demonstrate that these relationships exhibit a different structure than positive ones,
as they are less common and less enduring over time. However, the impact of these negative
relationships should not be underestimated because they play a critical role in shaping social
structures and community dynamics.

In this chapter, we explore the complex and multifaceted world of negative relationships
in the context of high school social environments. Here, we explore how these challenging
relationships influence community structure. Our focus on understanding the relationships
among high school students provides valuable insights into the interplay between negative
relationships, social cohesion and community dynamics. Therefore, this chapter lays the
groundwork for understanding the complexities of enmities and their impact on communities.
Furthermore, our analysis also considers the role of social balance, a fundamental concept
in social network theory that suggests individuals are more likely to form and maintain
relationships that minimise tension and conflict within the network.
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3. THE ROLE OF NEGATIVE RELATIONSHIPS IN SOCIAL STRUCTURE

3.1 Data description

3.1.1 Data collection

We conducted a study on a group of students from IES Blas de Otero, a public high school in
Madrid, Spain. The students were in their first year of secondary school, and their ages ranged
from 12 to 13 years old. Most students were new to the high school, having completed their
primary education elsewhere in the preceding year. However, a few students were repeating
the first year after failing the previous academic year. Therefore, most of the participants did
not know each other or had a minimal relationship before the start of the academic course,
except for those who came from the same primary school.

Our research involved two data collection sessions held in December 2018 (wave 1) and
May 2019 (wave 2), respectively. A total of 151 students, consisting of 73 boys and 78 girls
(for more detailed information, refer to subsection B.1.1), along with their families, agreed
to participate in the study. The participation rate was very high, with 97% of the students
answering the surveys in the first wave and 90% in the second wave.

The students surveyed for this study were born in 2006 (75%), 2005 (23%), and 2004
(2%). They were organised into five groups (classes) and were all enrolled in the first year of
ESO, a mandatory secondary education program similar to middle school. The groups were
labelled with letters, ranging from A to E. Groups A and B received most of their instruction
in English, with the exception of Maths, Spanish, and the optional course in either Religion
or Ethical Values. On the other hand, groups C through E were taught primarily in Spanish,
except for Arts and Physical Education classes, which were conducted in English.

The main goal of this study was to understand the structure of the social relationships
among the students in terms of both their friendships and enmities. For this reason, all
the respondents were given a list containing all their schoolmates’ names and were asked to
indicate their relationships with them by marking their choices. More specifically, they had
to respond to the following questions (in Spanish in the original survey):

• Questions regarding positive relationships (friendships):

1. Who are your friends inside the school?

2. Considering your friends: Who do you have the closest relationship with?

3. Finally, among your closest friends: who would you say are your best friends? (We
are referring to those people with whom you are “flesh and bone”).

• Questions regarding negative relationships (enmities):

1. Which partners do you not like at all or do not have a good relationship with?

2. Considering the people you don’t like at all: who do you dislike or have problems
with?

3. Finally, considering the people you dislike: are there any people with whom you
have a particularly bad or troublesome relationship?
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3.1 Data description

The study was approved by the Ethics Committee of Universidad Carlos III de Madrid,
the institution responsible for funding the project and conducted following its guidelines. The
privacy and confidentiality of the participants have been protected at all times, and all data
was kept securely and confidentially.

3.1.2 Data curation

At this point, it is essential to highlight that, despite the logical order we have chosen to show
the results in this thesis, this study was conducted before the one presented in chapter 2.
The software used in our first study was more rudimentary, and many things we learned from
analysing this data helped us improve the new software. Even though some students overlap
between the respondents of both studies, we can only identify them by their unique IDs (not
by their names) due to data protection issues. Therefore, we can not compare the results
between the two studies for those students who participated in both because the software
programs are different and the IDs are unrelated.

As mentioned in the previous section, a total of 151 students participated in our study.
Each participant was presented with a list of the remaining 150 schoolmates, and they were
asked to select their relationships as either friendship or enmity using three different levels
of intensity. While we were supervising the study, we started to suspect that, for different
reasons, especially their young age, the participants could not correctly discern between the
three different intensity levels of each possible relationship. We confirmed this intuition when
we analysed the data and noticed the high variability in the two most intense categories in
the responses of different students. For this reason, we decided to merge the two levels of
higher intensity, for both friendships and enmities, into a single one.1 Therefore, positive
and negative relationships are now classified into two different intensity levels, which we will
henceforth refer to as “friend” and “best friend” for positive relationships and “enemy” and
“worst enemy” for negative ones.

After transforming the data, we found that the average number of “best friends” selected
by each student in the first wave was 14.48, and the average number of “friends” was 27.01,
while in the second wave, the average number of “best friends” was 11.27 and the average
number of “friends” was 28.47. These values are slightly higher in both waves than those
presented in section 2.1, where the average values also remain approximately constant across
the five waves. The reason for this difference is the filtering of outliers we made in chapter 2
to eliminate students who decided to “troll” the survey. However, we believe that these
differences do not influence the results presented in this chapter, which aim to understand
the importance of negative relationships.

As for reported negative relationships, their absolute number is much smaller than that
of positive ones, with average values of 4.82 for “enemies” and 2.07 for “worst enemies” in
wave 1, while 7.83 and 2.11, respectively, in wave 2. Even if there are a few negative links,
we will show their importance in explaining the social structure in the following sections.

1Here, we should point out that the students not distinguishing correctly between the three categories is
one of the issues we learned from the data analysis, which we have corrected in the new survey software. We
have reduced the number of categories in the intensity of the relationships, both positive and negative, to two
instead of the three we had in our first study before the merge (see section 2.1 for details).
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3. THE ROLE OF NEGATIVE RELATIONSHIPS IN SOCIAL STRUCTURE

3.2 The formation of communities

One of the most extensively researched areas in the field of complex systems is the problem of
identifying communities in networks since it has relevance in many disciplines such as biology,
physics, computer science or social network analysis (Newman, 2018). This problem amounts
to identifying groups of nodes in a network that have a high degree of interconnectivity
among them and are relatively more loosely connected to the rest of the network. Therefore,
communities can be seen as clusters of nodes with similar structural properties or functional
roles, and they can provide insights into the organisation, dynamics and functionality of
complex systems.

Historically, the problem of finding communities in networks has been approached from
very diverse perspectives (Albert & Barabási, 2002; Girvan & Newman, 2002). However, the
introduction of the concept of “modularity” by Newman and Girvan (2004) revolutionised the
field. This concept quantifies the degree to which a network can be partitioned into densely
connected groups of nodes that are only sparsely connected to each other and can be regarded
as a measure of the quality of a particular community partitioning of a network: the higher
the modularity value, the better the partitioning. In other words, modularity quantifies how
far is the studied network structure from a random distribution of links.

More specifically, to incorporate all the information gathered from the student surveys
in our analysis, we utilise the most general definition of modularity Q proposed by Granell
et al. (2011). This definition considers the presence of directed, weighted and signed links in
the network, that is

Q =
w+

w+ + |w−|
Q+ − |w−|

w+ + |w−|
Q−, (3.1)

where w+ and w− represent the total strength (sum of weights with signs) of positive and
negative relationships, respectively. The construction of Q using both the positive (Q+)
and negative (Q−) modularities implicitly involve the possibility of establishing signed links
independently. Therefore, total modularity provides a balance between the inclination of
positive relationships to build communities and the tendency of negative ones to break them
up. For our case of study, links in the network can only take values {−2,−1, 0, 1, 2} depending
on the relationship sign (enmity or friendship) and intensity.

The positive modularity Q+ is defined as

Q+ =
1

2w+

∑
i

∑
j

(
w+
ij −

w+,out
i w+,in

j

2w+

)
δ (Ci, Cj) , (3.2)

where w+
ij is the (i, j) element of the positive weighted adjacency matrix and w+,out

i and w+,in
j

are the total strength of the positive links getting out of node i and of those coming into
node j, respectively. In other words, w+,out

i =
∑

k w
+
ik and w+,in

j =
∑

k w
+
kj . Ci represents the

community to which individual i belongs, so the Kronecker delta δ(Ci, Cj) takes the value 1 if
both nodes share community and 0 otherwise. The negative modularity Q− is defined by an
analogous expression to Equation 3.2 but using the absolute values of the negative weights.

The optimisation of modularity is a computationally challenging problem that belongs to
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3.2 The formation of communities

a)

b)

Figure 3.1: Distribution of social relationships and communities in the complete
school - The figure represents the network characterising the social relationships and communities
in the complete school divided by different time stamps: a) wave 1 and b) wave 2. Nodes belonging
to each community are marked by colour as indicated in the figure. Friendship relationships are
drawn in green, whereas enmity relationships are drawn in red.

the family NP-hard, as the number of possible combinations grows exponentially with the
size of the network. Therefore, we need to employ a combination of heuristic algorithms to
find the best partition (or a close one) of the network into communities (i.e., the one that
maximises Q as defined in Equation 3.1). These algorithms aim to find a suitable solution
within a reasonable amount of time, rather than guaranteeing the optimal solution.

In our study, we start by discussing the corresponding results and exploring the school at
a global level, which includes all the students and their associated relationships in a single
network. Figure 3.1 represents the global network obtained from the two waves, with the
nodes separated into communities. We used the plotting algorithm ForceAtlas2 (Jacomy et
al., 2014), which by itself yields a community analysis. The high correlation between colours
and positions in the plot is an outcome of this algorithm and has not been externally imposed.
This, in turn, indicates that the communities found are quite robust.

The data summarised in Table B.2 shows that in the network of wave 1, community C1 is
formed by the students in the two English-speaking groups, whereas community C3 contains
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3. THE ROLE OF NEGATIVE RELATIONSHIPS IN SOCIAL STRUCTURE

groups C and D, and community C4 mainly contains group E. Community C2 is formed by
a minority of students from almost every group, but mainly from group D. The separation
observed in the plot between community C1 and the rest indicates a profound separation
between the two English-speaking groups and the three Spanish-speaking ones. This division
most likely originates from students who just entered high school two months before wave 1
and still rely more on colleagues from the same primary school. Unfortunately, we do not
have data on their school of origin, which could help us understand this phenomenon.

It is worth noting that the network plot in wave 2 appears more spatially extended than
that of wave 1. This is due to almost doubling the number of negative relationships mentioned
earlier, while the number of positive links remains more or less constant. However, at the
whole group level, negative links do not appear to influence the community structure strongly.

As shown in the figures in section B.2, if the community analysis is conducted without
the negative links, the only change is in wave 1, where the community arising from group E is
merged with community C2, which is formed by an assortment of students from all Spanish-
speaking groups. In wave 2, there is no significant change in the number or composition of
the clusters. Therefore, we conclude that identity factors (i.e., English- vs. Spanish-speaking)
are the most relevant at this level, and negative links lead to minor changes if any.

In wave 2, Figure 3.1 shows that the separation between groups that speak different
languages still persists despite a whole academic course passing. However, the increase in the
number of friends is noticeable in the fact that the two communities are now somewhat closer.
Interestingly, our algorithm detects one fewer community because all Spanish-speaking groups
are now part of a single community, C3. C1 remains the English-speaking part of the students,
now including all but one of them, while C2 is a smaller community formed by people from
groups C and D. It is worth noting that group D remains split into two communities in the
two waves, making it the only separated group. Something is likely acting as a dichotomising
criterion here, such as the school or country of origin, but unfortunately, we do not have
the data to assess the mechanism behind this splitting. In the new survey software, we have
included some questions related to the school of origin of the students that may provide us
with some insight into this topic. However, other information, such as the country of origin,
has been impossible to obtain due to student privacy issues.

The table of the number of people that change between the communities in section B.1
confirms that the movements of individuals between communities took place, as discussed
earlier. Additionally, the numerical data shows that, while communities C1 and C3 inherit
the gender distribution from their constituent groups, with a 2:1 girl-to-boy ratio in C1 and
an almost 1:1 ratio in C3, C2 is practically a male-only community, with 19 boys and 2 girls.

After discussing the network as a whole, we will now turn our attention to each group
separately. For this analysis, we only consider the links within the five groups and discard
the reported friendships with students in other groups. At this level, the primary variable
observed is a strong division by gender. For example, let’s consider group C (see Figure 3.2
and section B.1). The group consists of 15 boys and 15 girls, and in wave 1, our community
algorithm returns two communities, one with 12 boys and 5 girls, and the other with 10 girls
and 3 boys. This division persists in wave 2, with only two students exchanging communities.
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3.2 The formation of communities

Figure 3.2: Distribution of social relationships and communities within each group
- The figure represents the network characterising all the social relationships and communities
within each group in wave 1 (left) and wave 2 (centre) along with the community structure of the
network. The networks on the right also correspond to wave 2 (centre) but, in order to facilitate
comparison, nodes are laid out in the same position as in wave 1, whereas links and colour codes
for communities correspond to wave 2. The shape of each node represents its gender: triangles
for females and squares for males.
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However, the situation becomes a bit more complicated when the groups are less gender
balanced. Let’s observe one of the English-speaking groups, e.g., group A, with 20 girls
and 9 boys. In wave 1, we find a community of 11 girls and only 2 boys, whereas the
other communities are better (or exactly) gender-balanced. In wave 2, we again find three
communities, but now all of them are gender dominated: 12 girls and 0 boys, 3 girls and 8
boys, and 5 girls and 1 boy.

Figure 3.2 shows that the evolution of the communities has been quite complex in the
period between the two waves, with many students exchanging communities. For instance,
if we look at community C1 in group A and in wave 1, only 5 of its 13 original members
remain, with two groups of 4 students moving to the other two communities. This reinforces
our interpretation of an evolution strongly dominated by gender homophily. However, it
also suggests that the limits imposed by Dunbar’s circles are destabilising the process of
forming a unique, large cluster composed only of same-gender children, making it difficult to
accommodate. The same is observed in the other groups, except for group D, which turns
out to be remarkably stable in comparison. Its 10 boy-1 girl, 9 boy-1 girl, and 9 girls-only
clusters almost do not change between waves (again, with the exception of 3 students who
exchange communities).

We want to point out that our algorithm is agnostic regarding the number of communities
it should produce, finding simply the best partition in terms of modularity. Therefore, the
fact that we never observe a cluster with more than 13 persons of the same gender, despite
the gender homophily bias and the intense dynamics of the communities, supports the idea
that other mechanisms, such as those behind the formation of Dunbar’s circles, are at work
here.

At this point, it is important to note that Dunbar’s circles refer to ego-networks, which
are the set of relationships of one person. In contrast, communities pertain to the realm of
social networks, which are the set of all relationships among a group of people. Nonetheless,
we believe that the connection we have suggested makes sense given that, as mentioned in
chapter 2, these networks are highly reciprocal, turning the clusters into something closer to
cliques. Each ego-network would contain everybody else within the limit of a perfect clique,
and, with the high percentage of reciprocity, ego-networks in a cluster still include most of
the rest of the group. Thus, Dunbar’s limits could have a say in their evolution.

Therefore, our analysis of the school’s social network reveals several interesting patterns.
At the global level, we observe a strong division between English- and Spanish-speaking
groups, with the latter dividing into two communities in wave 2. At the group level, the
gender plays a significant role in community formation, with larger groups tending to split
into multiple communities. Moreover, the intense dynamics of the communities and the
limitations imposed by Dunbar’s circles suggest that other mechanisms are at work beyond
gender homophily in the formation and evolution of these communities.

Our analysis also reveals the key role played by the negative relationships, despite their
relatively small number, at the scale of the group. As shown in Figure 3.3, the network’s
community structure corresponding to group B in wave 1 differs significantly with and without
the negative links. We can see that communities C1 and C2 would merge almost perfectly if
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3.3 Exploring social balance

a) b)

Figure 3.3: Analysis of Group B communities in wave 1 - The figure represents the
analysis of Group B communities in wave 1 considering the following: a) both positive and
negative links and b) only positive links. Nodes belonging to each community are marked by
colour, as indicated in the figure. Friendship links are drawn in green, whereas enmity links are
drawn in red. The shape of each node represents its gender: triangles correspond to females and
squares to males. The distinction between communities C1 and C2 is clearly due to the presence
of negative links.

the negative links did not exist. Given that the resulting community would contain 26 nodes
compared to the 15 and 12 of the actual communities, one wonders if negative relationships
are tied to the natural size of the sympathy group, making it more likely for them to appear
when the community exceeds its typical size. It’s worth noting that, contrary to what happens
at the level of the whole network, by looking at relationships within single groups, the results
cannot be understood in terms of “us vs. them”, in-group vs. out-group or any other identity
label, leading to a more relevant role for the negative links.

Thus, it is interesting to observe that the negative links, despite their small number, play
a crucial role in determining the community structure at the scale of the group. This finding
sheds light on the importance of negative relationships in social dynamics and highlights the
limitations of relying solely on positive links in understanding social networks. Furthermore,
our analysis suggests that negative links may have a more significant impact in smaller groups
where the size of the sympathy network is limited. In such situations, the negative links may
act as a mechanism to prevent the formation of a large, unwieldy community and help to
maintain the typically observed size of the group’s sympathy network.

3.3 Exploring social balance

A natural question about a network with positive and negative links is whether it satisfies
social balance. The social balance theory was proposed by Heider (1946), who explored
the connection between the structure of a network and the formation and stability of social
relationships. According to social balance theory, people tend to associate with others who
share similar attitudes, values and beliefs, forming cohesive groups and social networks. These
patterns of association can lead to a phenomenon known as triadic closure, captured by the
aphorism “my friend’s friend is my friend”, which means that two people who share a mutual
friend are more likely to form a friendship with each other.

Moreover, social balance theory also suggests that individuals in a network strive for
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a) b)

c) d)

Figure 3.4: Comparison between the observed number of balanced and unbalanced
triangles and our simulations - The figure represents the comparison between the observed
number of balanced and unbalanced triangles and the results obtained in our simulations. Each
panel shows a different wave/method: a) Wave 1 - option a, b) wave 2 - option a, c) wave 1 -
option b and d) wave 2 - option b. In option a, a link is considered negative only if the interaction
between a pair of nodes is negative in both directions. In contrast, in option b, a link is considered
negative even when there is a single negative relationship between a pair of nodes. The red point
in the plots corresponds with the observed number of triangles in the network and the violin
distribution with the results of the simulations.

balance and avoid imbalanced relationships, where one person is friends with two people who
dislike each other. In such cases, the network can become unstable and lead to the dissolution
of relationships or the formation of new social groups. Consequently, triangles with an odd
number of negative links create a cognitive dissonance sin some (or all) of its members that
makes them unstable and prone to be resolved into a more balanced configuration by changing
the sign or removing one link.

Cartwright and Harary (1956) generalised the theory mathematically. They proved that
a perfectly balanced network could be decomposed into two positive subnetworks joined
by purely negative links. This result is known as the Cartwright-Harary theorem and has
important implications for understanding the structure of balanced social networks. Under
this strict definition of balance, no real network with positive and negative links is ever
balanced. For example, ours contain many unbalanced triangles. However, one can relax
this condition by introducing a null model against which to test whether the number of
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3.4 Discussion

unbalanced triangles can be considered relevant.

The usual null model to test social balance in real networks is obtained by randomly
permuting the links belonging to some triangle without changing their signs. However, this
test has been criticised because positive and negative networks have very different properties
(Feng et al., 2022). Negative networks are essentially random, whereas positive ones present
very characteristic structures. Therefore, permuting both kinds of links can alter the nature
of the network and overestimate imbalance. Feng et al. (2022) propose that a less biased null
model can be obtained if links are classified according to their embedding (i.e., the number
of triangles to which they belong), and only links with the same embedding are permuted.

The networks obtained in our study contain links of two intensities, which calls for an
extension of the social balance theory. However, negative links are too few to maintain
such a distinction and still have statistical significance. Accordingly, we have ignored the
intensity of links to test social balance. Furthermore, our links are directional and not always
reciprocated. With this in mind, we have adopted two criteria to project our network onto
a bidirectional network: a) consider a negative link only if the interaction between a pair
of nodes is negative in both directions, or b) assume that the presence of a single negative
interaction between a pair of nodes is already evidence of a conflict and also consider those
cases as negative links.

The number of triangles with 0 through 3 negative links is very different in both cases
(see section B.1), but regardless of this, embedding-preserving permutations never produce
configurations with fewer unbalanced triangles than the empirical network. As a matter
of fact, Figure 3.4 shows that this number is actually more significant except for very few
cases. We then conclude that, even though negative links create many unbalanced triangles,
the configuration in which they appear is compatible with an extreme bias toward balance.
The presence of negative links in social networks can indeed contribute to the formation of
unbalanced triangles, but they are not the sole reason for the observed prevalence of social
balance in real-world networks. Therefore, our results force us to conclude that there seems
to be a strong tendency to reduce unbalance in middle school classrooms.

3.4 Discussion

Social networks consist of both positive (friendships) and negative (enmities) relationships.
These two types of relationships have vastly different structures, with positive ones being
more numerous and enduring over time. Nonetheless, negative relationships have a profound
influence on the overall structure of the network. Consequently, understanding their role in
social networks is crucial for gaining a insight on how these networks are structured and their
evolution over time.

With this in mind, we have looked at the community structure of social networks both
at the level of the five groups considered together and at the group level. The communities
found from the analysis of the first wave are somewhat mixed, made up of both boys and
girls, but they evolve so that in the second wave they appear to be largely segregated by
gender. At the group level, the size of each community was stabilised around 12 people,
which agrees with the size of the Dunbar’s second circle, known as the sympathy group in
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social psychology. Consequently, in classes with around 20 students of the same gender, their
group split into two separate communities of about 10 each to stay below the size of the
sympathy group. Interestingly, we have also observed that for this separation to arise in
the community analysis it is necessary to consider the importance of negative relationships.
Otherwise, the analysis yields a unique community formed by almost all students of the
same gender. Another relevant finding is that, when the community structure is more stable,
relationships with best friends intensify, and there is an evolution opposite to the general one
of cliques relaxing to circles: more stable communities result in an intensification of the focus
on best friends.

The existence of negative links also puts the question of balance into play. The social
balance theory predicts that triangles with an odd number of negative links create a cognitive
dissonance that renders them unstable and prone to disappear over time. Ideally, social
networks should be free of unbalanced triangles. However, negative links are constantly being
formed, so the question is not so much whether the network is free from those triangles as to
whether they appear in a number that is significantly below what a null model would yield
for that particular number of negative ties. We have run a recently proposed test whose null
model takes into account the different nature of the positive and negative subnetworks, and
have found that in one million realisations of the null model a network with fewer unbalanced
triangles than the original network never shows up. This result forces us to conclude that
there seems to be a strong tendency to reduce unbalance in school classrooms.

Aside from their relevance towards understanding the role of negative relationships, which
is particularly important in such a crucial age in development as early adolescence, we believe
our results have practical implications for the school social network and atmosphere. Thus,
we have observed that the co-existence of two working languages in the same high school
leads to the splitting of the social network of the school into two groups with very little
communication or very few positive connections. To avoid this, it would be important for
the school directors to design joint activities so that the students of both groups would get
to know each other.

Another very relevant finding is the instability associated with gender imbalance in the
groups. In such a situation, the gender homophily typical of this age leads to tensions between
all students of the majority gender wanting to be in the same community and the fact that
there are limits to the number of friendships of a given intensity. In this case, we have seen
that negative relationships appear that split the majority gender community in two, which
could lead to the increased polarisation of the group atmosphere. Our results suggest that
this is a problem that can be easily avoided by making gender balance a priority or else by
reducing the group size. Another related measure would be to consider this when forming
groups in subsequent academic years by separating students from such gender-segregated
communities into different classes to avoid perpetuating intra-group divisions.

All these insights point to the fact that, beyond its appealing interest from the scientific
viewpoint, this kind of social network analysis is an efficient and easy-to-implement tool
that can be used to foster a friendlier school environment which could also have connections
with the performance of the students. With both objectives in mind, we have developed the
application that we have used in our study and is presented in the next chapter.
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4

A tool to monitor the social
climate of a school

Scientific research can provide valuable insights and solutions to a wide range of issues that
affect our daily lives. It is true that its main objective is to advance the understanding of the
natural world and its fundamental principles, but it can nonetheless have significant practical
applications and its contribution to solving real-world problems cannot be underestimated.
One of the most significant problems currently faced within schools is bullying. To eradicate
it, it is essential to create an inclusive atmosphere that promotes the adaptation of students.

For this reason, in this chapter, we move away from the scientific perspective and show
an application that we have developed during this thesis to improve the social environment
of educational institutions. Initially, the purpose of the application was to analyse data more
quickly for research purposes, but we realised that it could have a significant impact on the
information managed by those responsible for improving coexistence in schools. In this way,
instead of providing static reports, they can have access to an interactive application that
allows them to filter the information they need or the students they want to analyse based
on the problem, resulting in a more well-founded response to the situations they face daily.

We provide a trial username and password to test the application and explore its various
functionalities. Additionally, we briefly review some of these features and their usefulness in
addressing the problem of bullying. Finally, we present a summary of the feedback received
and its contribution to promoting a positive learning environment.
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4. A TOOL TO MONITOR THE SOCIAL CLIMATE OF A SCHOOL

4.1 The application

The application consists of an interactive dashboard developed using the Shiny package for
R software. It was initially designed for research purposes to enable faster data analysis on
questions that might arise during the development of the project. However, once developed,
we realised that its functionalities could extend far beyond this and be useful to the school
principals for detecting or analysing conflictive situations among the students. Moreover, the
application is hosted on a server, which is owned by our research group, and is accessible online
at the URL https://harpo.uc3m.es/ies blas otero uc3m/. In order to provide an interactive
view of the dashboard, we have created a demo user with the following credentials:

• User: uc3m thesis user

• Password: RjAzbgP8psANmBP9

Once you access the application, a menu appears on the left side, allowing you to select
the panel to be displayed in the central part of the screen. This menu consists of a total of
10 interactive options, which are the following:

• Summary table.

• Networks.

• Ego-networks.

• Personal networks.

• Friendship vs. enmity dispersion.

• In-out friendship dispersion.

• Reciprocity dispersion.

• Relationship count boxplot.

• µ parameter boxplot.

• Relationship count histogram.

By default, the panel that appears selected is the summary table. This table compiles the
personal information associated with each student, such as their group, gender or itinerary.
It also includes quantitative information about their personal relationships, both friendships
and enmities. We can observe the number of “best friends”, “just friends”, “just enemies”
and “worst enemies” that each user has selected and how many have selected them. All of
this is visible at a single glance on the screen. As it is an interactive table, we can quickly
search for any user we want or sort the users based on the number of relationships simply by
clicking the associated column. The other panels offer different ways to visualise and analyse
the relationships among students. Next, we will provide a brief analysis of some of the most
prominent and useful panels, based on the feedback received. To view and understand all the
remaining ones, we recommend accessing the website with the provided user credentials and
exploring them all.
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4.1 The application

Figure 4.1: Panel for the interactive network - The figure represents a screenshot of the app
that captures the structure of the complete high school in wave 1. The green arrows represent
friendships and the red ones enmities. The width of each arrow indicates the intensity of the
associated relationship. The filter at the top of the panel allows to change the colour of the nodes
based on the selected attribute. The attribute “course” is selected in the figure’s screenshot.
The distribution of the nodes in the network is determined using an algorithm that positions
those with an existing relationship closer to each other than those without one. Moreover, it
also considers the intensity of the relationships. In this way, it captures information related to
the community structure of the school. The figure clearly shows clusters corresponding to the
different classrooms.

We begin by introducing the interactive networks panel. In Figure 4.1, we present a
screenshot of a panel that shows the structure of the complete high school in wave 1. Green
arrows represent friendships and red arrows represent enmities. Additionally, the width of the
arrows characterises the intensity of the associated relationship. All the relationships related
to the survey responses appear in the application without performing any prior statistical
treatment to filter outliers. The filter appearing at the top of the panel allows changing the
colour of the nodes based on the selected attribute. One can zoom in on the image and click
particular nodes to highlight its features. Nodes can also be dragged and put anywhere on
the screen.

The key point to understanding the structure is the distribution of the nodes in the
network. This distribution is achieved through an algorithm that positions individuals who
maintain a relationship closer together and those who do not further apart, taking into
account the weights of the links. Therefore, it captures information related to the community
structure. In this way, this panel can help identify isolated students by finding those nodes
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Figure 4.2: Panel for the interactive ego-network - The figure represents a screenshot
of the app that captures the structure of the ego-network corresponding to ID 191 in wave 1.
This network captures exclusively the relationships this individual maintains with each of the
remaining students. The green arrows represent friendships and the red ones enmities. The
width of each arrow indicates the intensity of the associated relationship. The left filter allows
changing the selected ID, the central one lets us choose between the relationships displayed in
the image (all, only those marked by the individual or only those in which the individual has
been marked), and the right filter colours the nodes according to the selected attribute. In the
screenshot of the figure, the attribute “sex” is selected.

which appear distant in the network. This would indicate a low density of relationships and
serve as an alert for the school principals. Furthermore, individuals who have many enmity
relationships may also require monitoring to investigate the reasons behind it.

In the second panel (interactive ego-networks), an individual can be selected to visualise
all the relationships in which he or she is involved (in and out arrows). Furthermore, the
colour of each node in the figure represents a characteristic attribute. All these variables can
be controlled using the filters appearing at the top of the panel. The filter on the left allows
selecting the ID of the focal individual, the central one determines which relationships to
consider (all, only those marked by the individual or only those in which the individual has
been marked) and the right filter sets the attribute that determines the colour of the nodes.

In Figure 4.2, we present an example of these ego-networks, the one of ID 191 in wave 1.
This kind of visualisation is particularly useful for spotting potential problems. When there
is a suspicion of bullying or related issues concerning a student, the school principals can
access this panel of the application and quickly identify the individuals with whom the
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Figure 4.3: Panel for the interactive friendship vs. enmity dispersion - The figure
represents a screenshot of the app that captures the friendship vs. enmity dispersion in the
complete high school in wave 1. The x-axis represents the number of times the individual has
been marked as a friend (the origin is on the left) and the y-axis represents the number of times
they have been marked as an enemy (the origin is at the top). The background colours indicate
each of the zones: green represents being marked as a friend many times and as an enemy only
a few times, yellow represents being marked as a friend and as an enemy only a few times each,
orange represents being marked as a friend many times and as an enemy many times and red
represents being marked as a friend only a few times and as an enemy many times. This chart
can provide information about a student’s situation at the high school. The left filter allows
for changing the colour of the points based on the selected attribute. The attribute “course” is
selected in the figure’s screenshot. The central one allows the user to move the position of the
background colour panels based on the percentile of the total number of relationships marked for
the division. Finally, the right filter allows the user to select and highlight a specific ID within
the figure.

student has friendship or enmity relationships. With this information, interventions can be
much more effective in improving coexistence and fostering a positive school environment.

The last panel we discuss is the interactive friendship vs. enmity dispersion. This panel
consists of a scatter plot in which the x-axis represents the number of times the individual
has been selected as a friend by other students and the (inverted) y-axis represents the same
variable for enmities. In Figure 4.3, we show the results obtained for the complete high school
in wave 1. We divide the students into four groups based on the number of friendships and
enmities they have been marked: many friends and few enemies (green zone), many friends
and many enemies (orange zone), few friends and few enemies (yellow zone) and few friends
and many enemies (red zone). The percentile determines the limits of these zones. The
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default value is 0.85, but it can be adjusted by ganging the central filter. Additionally, the
filter on the left allows changing the colour of the points according to the selected attribute
and the filter on the right allows highlighting a specific student.

This panel is particularly useful for detecting students at potential risk of some sort. In
general, those individuals who are in the red zone of the figure need to be taken care of.
Understanding the reasons behind this being in the red zone allows for targeted interventions
to address their specific needs and challenges. Moreover, those who are in the orange zone
should also be carefully examined, as it is unusual to be marked both as friend and enemy
simultaneously by many other students. Usually, these students tend to be popular but
controversial, so they generate strong positive and negative reactions. In these cases, it is
also important to detect such situations and respond to them with tailored interventions.
Although these interventions may differ from those used for students in the red zone, the
final goal is the same. Finally, it may also be interesting to identify individuals in the green
zone, those who have a favourable social standing within the high school. These students
tend to have many friends and few enemies, reflecting their positive relationships and effective
social skills. They can serve as role models or mentors for other students to create a positive
school culture or to learn from their experiences and strategies. Therefore, regularly updating
and analysing the data from this panel can help track the progress and effectiveness of the
interventions, allowing for adjustments and improvements as needed. Ultimately, the goal is
to move students out of the dangerous zones and foster a positive and safe environment.

Once we have discussed the most relevant panels and their potential applications, we
now move on to introducing the most interesting part of the application: the filters. A filter
panel unfolds by clicking on the icon in the top right corner, allowing the user to analyse
a personalised situation. The filter is divided into three sections: relationship type, source
nodes info and target nodes info. In the relationship type section, the user can select the
scholar year and the wave, filter by friendships or enmities or determine the intensity of the
relationships. In the other two sections, we can set the characteristic attributes of the source
and target nodes for which the relationships are considered. We can filter by all available
attributes, such as course, group, sex or itinerary. These filters provide users with a powerful
tool to examine specific aspects of the social network, allowing for more in-depth analysis
and understanding of the structure and dynamics within the high school. We encourage the
reader to access the application with the provided credentials, test the filters and experience
the full potential it has to offer.

4.2 Feedback received

One of the aspects that fills us with pride in our research is the widespread acceptance that
our application is receiving among the school principals, the guidance team and the teaching
staff of the high school we are collaborating with. Although this was not the main goal when
we started our study, this acceptance encourages us to continue developing the project and
identify areas where we can further improve and refine it. In this section, we present the
feedback received from the guidance team responsible, Silvia Ibáñez Morcillo. Its content
consists of two emails, whose original text (in Spanish) can be found in subsection C.1.1.
These emails allow us to understand first-hand the potential of our application, and hearing
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directly from those who are using the application in their daily work provides valuable insights
that will help us shape the future direction of the project.

The first email is dated October 12th, 2021, just a few days after we granted them access
to the application for the first time. This email highlights the ability of the application
to offer insights into student interactions within and across different groups. The guidance
team responsible found the tool particularly helpful as she does not teach classes and relies on
such information to support the students better. Moreover, she exposes that the application
has been instrumental in monitoring students requiring special attention. Thanks to the
application, she has been able to identify potential motivators for absentee students and
confirm the social acceptance of others she had doubts about. Therefore, our tool has enabled
her to recognise students with severe emotional issues who have more support than initially
thought, facilitating the process of finding accompanying peers for them.

The second email is more recent, dated January 29th, 2023. It shows how Silvia has
become more familiar with the tool after over a year of use. For this reason, she focuses
more on analysing individual cases and emphasises the value of the application in identifying
specific students of concern and tailoring intervention efforts accordingly. She even mentions
that she spent more than two hours analysing two cases that concerned her, creating a table
for each one based on the insights provided by our application. The insights gleaned allowed
her to confirm the level of concern for each student and to identify key relationships that
could be reinforced. The engagement and dedication to using the application demonstrate
the positive impact it has had on the school guidance team to address the unique needs of
each student.

Both emails underscore the usefulness of the application in subtly strengthening student
relationships without explicitly revealing survey data. The teachers can use the insights to
make informed decisions about group projects or seating arrangements in classes. This fosters
a more inclusive and supportive learning environment, as it encourages positive connections
among students who may not have realised their shared appreciation. Furthermore, the
feedback received from the two emails emphasises the considerable utility of the application
in an educational context. Its ability to provide valuable insights into student relationships
and dynamics has proven to be an essential resource for the school guidance team. Using
the application they can try to prevent bullying, more effectively support their students and
create an environment conducive to personal growth and success.

4.3 Discussion

In this chapter, we have moved away from scientific research and into the transference of our
research to society by introducing an online application that we have developed during the
course of this thesis. The initial purpose of this application was to streamline data analysis
within our research, but once it was developed, we realised its potential as an educational
tool. We noticed that it could be of great value for the school staff to anticipate problems
within the school, respond to them and improve the social atmosphere. For this reason, we
stopped generating static reports based on the collected data, created specific user accounts
and granted them full access. Furthermore, to allow readers to become more familiar with the
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functionalities of the application, we have created a demo user account that has full access to
all the details. This demo account provides an opportunity to explore our software, observe
how it can be effectively utilised in an educational setting and gain insight into the potential
benefits it offers.

Regarding the application, it consists of a total of 10 panels, each of which provides
different information that can be useful for understanding the structure and dynamics of
social relationships in high school students. Throughout the chapter, we have discussed
in detail the three panels that have received the most positive feedback in terms of use
found by the guidance team (interactive networks, interactive ego-networks and interactive
friendship vs. enmity dispersion). These three panels have proven to be valuable tools for
identifying potential issues and designing targeted interventions. The interactive networks
panel allows users to visualise the overall structure of social connections among students,
revealing patterns and potential areas of concern. The interactive ego-networks panel offers a
closer look at individual students’ social circles, providing insights into their relationships
and helping to identify those who may need additional support. Lastly, the interactive
friendship vs. enmity dispersion panel enables users to distinguish between positive and
negative relationships, highlighting potential sources of conflict or tension within the student
population. In addition to these three key panels, the application offers a range of other
features designed to support a comprehensive understanding of the social landscape within
the school. Again, we encourage the reader to use the provided demo credentials and explore
the diverse array of tools and visualisations available.

Finally, we have presented the feedback received from the guidance team responsible,
Silvia Ibáñez Morcillo. Silvia’s feedback has been invaluable in demonstrating the practical
benefits and real-world impact of our application on the educational environment. In this
way, her positive responses and engagement with the tool show that it has been effective
in addressing the unique needs of the students and providing targeted support. Moreover,
her insights have also allowed us to identify areas for further improvement and refinement
of the software. As a result, we have focused on adapting the application to serve their
needs better, incorporating their feedback to make it more user-friendly and effective. This
collaborative effort has allowed us to create a tool that not only assists in our research but
also empowers informed decisions and proactive measures to address social issues within the
school community.
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Model-driven perspective
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5

Modelling social structure and
collective behaviour

In the first part of this thesis, we analysed the structure and dynamics of social relationships
from a data-driven perspective. This approach has enabled us to discover that, despite
frequent changes, it seems that everyone possesses a predetermined structure for their social
relationships. Moreover, this structure exhibits similarities with the behaviour of an atom
and its electrons and remains relatively stable over time. Therefore, this evidence suggests the
possibility of examining the formation of social networks as a statistical-mechanical system.
In consequence, this chapter aims to formulate a mathematical model for understanding the
collective behaviour of individuals within a community. We strive to develop a theory that
allows us to comprehend the relationships formed between the members of a system as they
interact, similar to those we use to describe physical systems of particles.

Our starting point is the concept of “social atom”. From this, we aim to establish the
foundations of the model and seek to understand its interactions to explain the structure of the
whole system. Exponential random graphs provide an appropriate tool to address this issue.
All we need is to obtain a Hamiltonian and compute the grand partition function associated
with its probability distribution. The explicit calculation of this probability distribution over
the states of the system allows us to identify the maximum likelihood values for the parameters
with those obtained from a specific dataset. These parameters enable us to understand the
equilibrium behaviour, calculate the expected values of macroscopic variables and investigate
the response to external perturbations.
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5.1 Pairwise approximation

With this in mind, we construct a hypothetical society consisting of N individuals, each
possessing r layers (or levels of emotional intensity) for allocating their social relationships.
The relationships associated with each layer entail different cognitive costs and equilibrium
within the system is achieved when all constituents have their layers filled. Once this happens,
all changes in the system are due to “thermal” fluctuations, just as the ensemble of atoms in
a gas lose and recover their electrons as a consequence of thermal agitation.

In our hypothetical society, each member can have a relationship with their neighbours at
each level i, where i ∈ {0, 1, 2, ..., r}. If i = 0, there is no relationship, and the other person
does not occupy any space in the layers. All the information regarding the relationships and
their intensities in the system can be represented using a matrix σ. This matrix is of size
N×N , asymmetric, and its entries satisfy σab = i if b is in layer i of a. The diagonal elements
of the matrix are zero because self-relationships are meaningless in this model.

We begin by assuming pairwise interactions between individuals, as this approximation
offers a straightforward approach to modelling the system. Specifically, we consider each pair
of connections independently and assume that the overall behaviour of the entire network can
be fully explained by combining all these pairs. The composition of each pair is determined
solely by the two levels (i, j), regardless of the order. In other words, (i, j) = (j, i) applies.

The essential ingredients of the model are the parameters associated to each pair. These
parameters depend only on the levels that define the pair and not on the specific individuals
forming it. In order to introduce them, hence to define the Hamiltonian, we are going to
make a mapping of our system to a classical system of statistical mechanics. We will assume
that individuals are the nodes of a complete graph and that each link can be either empty
(no link between the individuals occupying the end nodes) or filled with one “particle” (and
only one) out of a set of different “species”. Species of particles are labelled according to
the two possible relationships existing between the two connected individuals. Thus, the link
connecting nodes a and b will be of type (i, j) if σab = i and σba = j. This maps our model
to Potts’s model. In the pairwise approximation, we are assuming that different links do not
interact (otherwise, interactions would involve more than two nodes), so the model is ideal.
The only parameters of an ideal Potts’s model are the chemical potentials of each type of
particle Eij .

1 Despite this interpretation, in this context, we will refer to these parameters
as “efficacies”, and we need to keep in mind that the higher the efficacy the higher the
probability that the corresponding link is formed.

5.2 Formulation of the pairwise model

As we have just mentioned, the simplest model for studying social relationships is the pairwise
model. In it, each potential pair of individuals has a corresponding efficacy Eij , which solely
depends on the levels (i, j) that define the pair. These parameters govern the stability of

1The notation Eij is reminiscent of the initial formulation of the model, where these parameters were
interpreted as “energies” and had a sign convention opposite to the one we are using in this thesis. We adopt
the interpretation as chemical potentials for consistency with further chapters but keep the original notation.
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Figure 5.1: The pairwise approximation - The figure represents an schema of the pairwise
approximation. In this approximation, the levels (i, j) completely define the pair. Additionally,
the symmetry property is satisfied so that the direction of the links is irrelevant.

social relationships, as the lower their value, the harder it becomes to find a pair of this
nature in the system.

The symmetry we are imposing on the pairs of the system forces us to assume Eij = Eji.
The meaning of this symmetry is the identity of the individuals does not matter, only how
they relate to each other. Furthermore, when there is no link in either direction of the pair
E00 = 0. This fixes an arbitrary reference level for the efficacies. Consequently, the total
number of parameters required to characterise the model fully is

Npar =
(r + 1) (r + 2)

2
− 1 =

r (r + 3)

2
. (5.1)

The Hamiltonian H(G), where G denotes the configuration of links, is then defined as

−H(G) =
N∑

a=1

N∑
b>a

Eσab σba
=

r∑
i=0

i∑
j=0

Eij Rij , (5.2)

where Rij denotes the total number of pairs in the system with associated levels (i, j). Both
forms of the model are equivalent and can be used interchangeably. In the first expression,
there is no need to incorporate the sums across the r layers of each individual, as this
information is in the σ matrix. Conversely, the second expression implicitly includes sums
over the N members of the system when calculating the Rij values.

With this Hamiltonian, the probability distribution over G is given by

P (G) =
1

Ξ
e−H(G), (5.3)

where Ξ, the grand partition function of the system or the normalization constant of the
probability distribution, is calculated by summing over all possible configurations as follows:

Ξ =
∑
G

e−H(G) =
∑
{σab}

e−H(G). (5.4)

Considering the Hamiltonian defined by Equation 5.2, the grand partition function is obtained
as

Ξ =
N∏

a=1

N∏
b>a

 r∑
σab=0

r∑
σba=0

eEσab σba

 =
N∏

a=1

N∏
b>a

Ξ1, (5.5)
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where Ξ1 is the grand partition function for a single pair,

Ξ1 =

r∑
i=0

r∑
j=0

eEij . (5.6)

The result shown in Equation 5.5 holds considerable importance because it reveals that
we can treat each potential pair in the network as identical and independent systems. As a
consequence, the grand partition function Ξ can be obtained as

Ξ = Ξ
(N2 )
1 , (5.7)

with
(
N
2

)
corresponding to the total number of pairs in the system.

Considering the symmetry Eij = Eji, the overall sum of terms in Equation 5.6 results in

Ξ1 =

r∑
i=0

i∑
j=0

(2− δi,j) e
Eij , (5.8)

where δi,j is the Kronecker delta (= 1 if i = j and = 0 otherwise).

Finally, the grand potential of the system Ω is obtained as

Ω = − log Ξ = −
(
N

2

)
log Ξ1. (5.9)

Calculating the mean values ⟨Rij⟩ is straightforward. This expression can be obtained as
partial derivatives of the grand potential Ω with respect to the different efficacies. Thus,

⟨Rij⟩ = − ∂Ω

∂Eij
= (2− δi,j)

(
N

2

)
eEij

Ξ1
. (5.10)

In particular, considering that E00 = 0,

⟨R00⟩ =
(
N

2

)
1

Ξ1
, (5.11)

so we can rewrite Equation 5.10 as

⟨Rij⟩ = (2− δi,j) ⟨R00⟩ eEij . (5.12)

Up to this point, we have derived the formulas for the average values of each pair of
relationships, depending on the model parameters. Given a specific dataset, the empirical
values for the efficacies Eij can be calculated using Equation 5.12, so

Eij = log

(
⟨Rij⟩

(2− δi,j) ⟨R00⟩

)
. (5.13)
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Estimating the errors associated with these parameters is feasible as well. This can be
accomplished using a Gaussian approximation by constructing the likelihood ℓ(G), which is
defined as

ℓ (G) = − logP (G) = −H (G) + Ω(G), (5.14)

and expanding up to the second order around the values determined by Equation 5.13. We
compute the second derivatives of ℓ(G) with respect to the parameters explicitly and evaluate
them at the efficacy values to construct the Hessian matrix H(G):

H(G) =

(
∂2ℓ(G)

∂Eij ∂Ekl

∣∣∣∣
E=Em

)
. (5.15)

A detailed calculation of these derivatives can be found in subsection D.1.1. Moreover, the
variance-covariance matrix V (G) associated with these parameters is derived as the inverse
of the Hessian matrix,

V (G) = [−H(G)]−1 . (5.16)

The diagonal elements of this matrix represent the variances associated with each parameter
of the model and indicate their uncertainty level.

5.2.1 Results

Once we have formulated the pairwise model, we need to validate it using data obtained from
real-world networks. To achieve this, we will use the data collected in our longitudinal study
on the structure and dynamics of social relationships among high school students, presented
in detail chapter 2. Specifically, we will concentrate on conducting an independent analysis
of the structure for each class of the school, obtaining the parameters of the model for each
group independently and comparing the results. Furthermore, when we analysed this data
in chapter 2, we also observed that the structure of friendship and enmity relationships is
very different, with friendships being much more abundant and stable over time. Although
in chapter 3 we demonstrated that enmities play a significant role in explaining the structure
of these networks, we will focus on explaining the friendship networks to keep the model
(and future calculations) as simple as possible. Therefore, we have relationships with three
different levels of intensity: +2 (“best friends”), +1 (“just friends”) and 0 (“no relationship”
or “enmity”).

In such a case, we need to particularise the pairwise model for r = 2 layers, so the number
of parameters that define this model is 5. These parameters are the efficacies associated with
all possible pairs of levels (i, j), with i, j = {0,+1,+2}, that can exist in the system. The
Hamiltonian defined by Equation 5.2 is reduced to

−H(G) = R10E10 +R11E11 +R20E20 +R21E21 +R22E22, (5.17)

where the different Eij are the parameters of the model and the Rij are the total number of
pairs of links of each type.

The grand partition function can be factorized according to Equation 5.7, where Ξ1 is

Ξ1 = 1 + 2 eE10 + eE11 + 2 eE20 + 2 eE21 + eE22 . (5.18)
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Figure 5.2: Parameters for the pairwise model - The figure represents the values and
95% confidence intervals for the maximum likelihood parameters in the pairwise model for the
following groups in wave 1: a) 1 ESO A and b) 1 ESO G. These two groups have been selected
because they exhibit different densities of relationships: 1 ESO A has a higher density, while 1
ESO G has a lower density. This is evidenced by the values of efficacies Eij , which are larger in
the former case. This indicates that these relationships are more likely to appear. The figures
representing the values of the parameters for each of the remaining groups in wave 1 can be found
in subsection D.3.1.

From these results, obtaining the model parameters for our dataset is immediate. The efficacy
values are given by Equation 5.13. Their values and 95% confidence intervals are shown in
Figure 5.2 for two groups in wave 1, 1 ESO A and 1 ESO G. The results for all the remaining
groups in this wave are presented in subsection D.3.1.

The reason why only these two groups have been selected to be included in the main
text is they exhibit different densities of relationships, i.e. the proportion of the number of
observed relationships to the total possible number. 1 ESO A exhibits a higher density of
relationships, resulting in higher values for the associated parameters, as these values are
directly proportional to the probability of their respective relationships appearing in the
system.

Moreover, the structure of these two groups also varies. In 1 ESO A, the reciprocal
relationships are the most prevalent, whereas, in 1 ESO G, those with a weak intensity
link in a single direction are more common. The likelihood of observing the remaining
relationships in this latter group is similar because the values of their associated efficacies
are practically equal. If we compare these results with the figures for the remaining groups
in subsection D.3.1, the values of the parameters are more similar to those associated with 1
ESO A. Based on this, we can conclude that reciprocal and equal relationships are the most
probable, and pairs of links in which a strong emotional relationship is not reciprocal are the
least common. Finally, it should be noted that the structure observed in Figure 5.2(a) is
the most common among the groups studied, while the organisation in Figure 5.2(b) is only
observed in three of them, which have a low density of relationships. Therefore, we consider
the first as the “typical” structure, while the second may be interpreted as “anomalies”.
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5.3 Linear model with reciprocity

The pairwise model presented in section 5.2 provides a simple approach to investigating
the structure of human social relationships. The parameters of the model Eij characterise
the behaviour of each pair of links and, consequently, the overall behaviour of the system.
However, this model does not offer any insight into the factors that these parameters rely
on, something that is essential for identifying the elements influencing the structure of social
relationships.

The foundations of our study are the evidence derived from the Social Brain Hypothesis
and the concept of “social atom”, so it is natural to inquire whether the factors explaining the
individual behaviour also account for the macroscopic structure of the system. Consequently,
we start by considering two factors to explain the form of the parameters Eij . First, the
number of personal relationships an individual can maintain simultaneously is limited, and
second, the cost of maintaining each relationship increases as its emotional intensity grows.

Denoting li as the total number of relationships a person has within a layer i and si as the
cost of each relationship, we can mathematically write the conditions that the entire system
satisfies on average:

⟨L⟩ = N
r∑

i=1

⟨li ⟩ , ⟨S ⟩ = N
r∑

i=1

si ⟨li ⟩ , (5.19)

where N is the number of nodes in the system, L is the total number of relationships, and S
is their associated cost.

In my Master’s thesis (Escribano, 2019), we attempted to fit the parameters Eij using
only these two factors but ultimately concluded that it did not work. However, looking at
figures like Figure 5.2(a), which is typical, we realised that reciprocity plays a role because
the more reciprocal a relationship, the higher its efficacy. Thus, we concluded that it was also
necessary to include a term associated with the reciprocity of the relationships. The simplest
way to consider both the conditions imposed by Equation 5.19 and reciprocity is to express
the efficacies as

Eij = λ (2− δi,0 − δj,0) + µ (i+ j) + β (1− δi,0) (1− δj,0) , (5.20)

where λ and µ are the parameters associated with the total number of relationships in the
system and the total cost of these relationships, respectively, and a positive β enhances
reciprocal links. Notice that this term ignores the intensities of the reciprocal pair because
this is already accounted for by the other two terms.

The Hamiltonian of the system, defined by Equation 5.2, can be rewritten as

−H(G) = λL + µS + βR, (5.21)

where L is the total number of links, S is the cost of all links, and R is the number of pairs
of reciprocal relationships in the system.

It is important to note that this model can be applied to an arbitrary number r of layers.
However, since the data we are working with is the one presented in chapter 2 and corresponds
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to a case with r = 2 layers, we will focus on the results for this specific scenario. Therefore,
the grand partition function for a single pair is

Ξ1 = 1 + 2e(λ+µ) + e(2λ+2µ+β) + 2e(λ+2µ) + 2e(2λ+3µ+β) + e(2λ+4µ+β). (5.22)

From this, we can derive the grand potential Ω and the averages of the different variables,

⟨L⟩ = − ∂Ω

∂λ
= 2

(
N

2

)
(e−µ + 1)

(
e−(λ+2µ+β) + e−µ + 1

)
(1 + e−µ)2 + e−(λ+2µ+β)

(
2 + 2e−µ + e−(λ+2µ)

) , (5.23)

⟨S⟩ = − ∂Ω

∂µ
= 2

(
N

2

)
(e−µ + 2)

(
e−(λ+2µ+β) + e−µ + 1

)
(1 + e−µ)2 + e−(λ+2µ+β)

(
2 + 2e−µ + e−(λ+2µ)

) , (5.24)

⟨R⟩ = − ∂Ω

∂β
=

(
N

2

)
(e−µ + 1)

2

(1 + e−µ)2 + e−(λ+2µ+β)
(
2 + 2e−µ + e−(λ+2µ)

) . (5.25)

By dividing Equation 5.23 by Equation 5.24, we can express the parameter µ as

µ = log

(
⟨S⟩ − ⟨L⟩
2 ⟨L⟩ − ⟨S⟩

)
. (5.26)

Furthermore, dividing Equation 5.23 by Equation 5.25 yields

λ+ β = log

(
2 ⟨R⟩ (2 ⟨L⟩ − ⟨S⟩)2

⟨L⟩ (⟨S⟩ − ⟨L⟩) (⟨L⟩ − 2 ⟨R⟩)

)
. (5.27)

By substituting the last two expressions into Equation 5.25, we obtain the expression for β
as

β = log

(
2 ⟨R⟩ [N(N − 1)− 2 ⟨L⟩+ 2 ⟨R⟩]

(⟨L⟩ − 2 ⟨R⟩)2

)
. (5.28)

Finally, by using this expression in Equation 5.27, we can determine the parameter λ:

λ = log

(
(2 ⟨L⟩ − ⟨S⟩)2 (⟨L⟩ − 2 ⟨R⟩)

⟨L⟩ (⟨S⟩ − ⟨L⟩) [N(N − 1)− 2 ⟨L⟩+ 2 ⟨R⟩]

)
. (5.29)

Therefore, the values of these three parameters fully characterise the model. Additionally,
as we did with the pairwise model, we can analytically calculate confidence intervals for the
values of these parameters. All of these calculations are detailed in subsection D.1.1.

5.3.1 Results

To verify the performance of the linear model with reciprocity, we must compare its results
with those obtained using the pairwise model. In Figure 5.3, we observe that the parameters
obtained using these two models closely approximate each other for both groups studied: 1
ESO A and 1 ESO G, even despite the difference in the density of relationships between
groups. The same happens when we study all the remaining classes in wave 1. The figures
associated with each of them can be found in subsection D.3.2.
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Figure 5.3: Parameters for the linear model with reciprocity - The figure represents
the values and 95% confidence intervals for the maximum likelihood parameters in the linear
model with reciprocity and its comparison with the ones obtained in the pairwise model for the
following groups in wave 1: a) 1 ESO A and b) 1 ESO G. The figures representing the values of
the parameters for each of the remaining groups in wave 1 can be found in subsection D.3.2.

The reasonably good alignment of the values obtained for the parameters using the linear
model with reciprocity with those of the former model implies that the three factors considered
largely explain the shapes of the parameters when utilising the pairwise approximation and,
consequently, describe the probability distribution P (G) that governs the ensemble. If this
finding holds true, it may be possible to characterise the macroscopic structure of social
relationships using only three individual properties of the constituents of the system and
their interactions, as there is a strong correlation between the results obtained using the linear
model with reciprocity and the ones with the pairwise model. However, before doing so, we
need to validate the pairwise approximation to determine if it can reproduce macroscopic
properties that characterise real-world social networks.

5.4 Validation of the pairwise approximation

The main objective of formulating and developing a model for network analysis is to generate
a realistic and comprehensive structure that can reproduce the observed characteristics found
in real-world systems. In particular, social networks exhibit two differential features that are
present in most systems within this category. Firstly, the number of reciprocal relationships is
substantially higher compared to a null model in which the links were randomly distributed.
Secondly, the observed transitivity is quite large, implying that the probability of a pair of
individuals having a relationship increases if they have mutual friends within the network.
Thus, we need to verify if these two features are present when employing the proposed pairwise
approximation in order to validate its ability to replicate real-world systems.

Reciprocity is already taken care of in the Hamiltonian, so it only remains to analyse if
the transitivity produced by our model reproduces that of the real network. To do it, we
compare the total number of triangles of each type in the system with those predicted by the
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Figure 5.4: Set of triangles that can be formed in the system - The figure represents
the total set of triangles that can be formed in the system, ignoring symmetries, grouped by the
number of reciprocal links. The number of unique triangles of each type, including all symmetries,
is shown in parentheses.

model. Due to the limited size of the groups, there is not enough data to estimate the average
number of triangles of all possible types. To circumvent this problem, we ignore the direction
of links as well as emotional intensity. We only consider whether links are reciprocal or not.
The different types of triangles resulting from this simplification, ignoring symmetries, are
listed in Figure 5.4.

To estimate the number of expected triangles in the system, the following considerations
are made:

• The probability pij for the existence of a pair of type (i, j) is equal to the fraction of the
number of pairs of that type over the total number of possible pairs:

pij =
Rij(
N
2

) =
2 Rij

N(N − 1)
. (5.30)

• As the model is ideal, the probability of forming a triangle, where each edge has associated
a pair of links of type (i, j), is the product of the probabilities for the three individual pairs:

pij−kl−mn = pij pkl pmn =
8 Rij Rkl Rmn

(N(N − 1))3
. (5.31)

• The total number of triangles predicted by the model is calculated by multiplying the
probability of a specific type of triangle by the total number of possible triangles in the
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system:

Tij−kl−mn = pij−kl−mn

(
N

3

)
=

4 Rij Rkl Rmn(N − 2)

3 (N(N − 1))2
. (5.32)

• When the link pairs forming the edges of the triangle are heterogeneous, that is two equal
and one different, the number of triangles Tij−kl−mn predicted by the model is multiplied by
3. The reason is that there are three possible positions for the different pair, then:

Tij−kl−mn = 3 pij−kl−mn

(
N

3

)
=

4 Rij Rkl Rmn(N − 2)

(N(N − 1))2
. (5.33)

We can also obtain confidence intervals for the number of different types of triangles. These
calculations are detailed in subsection D.1.2.

The comparison between the observed number of triangles and the expected one, together
with the 95% confidence intervals, is shown for each group in wave 1 in Table D.1. For all
groups, the observed values for triangles with zero, one, and two reciprocal links are within
the bounds of the confidence interval. However, the expected values for triangles with three
reciprocal links are much lower than the observed ones in the majority of the groups and, in
most cases, the real value is not even within the confidence interval.

This finding indicates that our models are unable to characterise the transitivity of the
system because if we were to simulate a network by randomly distributing pairs of links, the
number of triangles that would appear would be lower than the actual number. Therefore,
if we want to simulate real-world networks, we need to consider a mechanism that incentives
the appearance of triangles with all three reciprocal links. The most natural way to address
this issue is to include a term in the Hamiltonian of these models associated with this type
of triangle.

With this in mind, we have expanded the Hamiltonian of the pairwise model, defined by
Equation 5.2, to incorporate an additional term2 that addresses this issue:

−H(G) =
∑
⟨ab⟩

Eσabσba
+

γ

N

∑
⟨abc⟩

Tabc, (5.34)

where σab ∈ {0, 1, ..., r}, ⟨ab⟩ denotes pairs of links and ⟨abc⟩ refers to triangles. Furthermore,
we introduce the variable Tabc, which takes value Tabc = 1 if there is a reciprocal triangle
spanning the three nodes a, b and c of the triangle and Tabc = 0 otherwise. In other words,

Tabc ≡ (1− δσab,0)(1− δσba,0)(1− δσac,0)(1− δσca,0)(1− δσbc,0)(1− δσcb,0). (5.35)

The problem we face when working with the Hamiltonian defined by Equation 5.34 is
that it has terms that involve more than two nodes, so we cannot perform the factorisation

2The reason why the parameter associated with this term is written as γ/n will be discussed more in-depth
in chapter 6. The idea behind it is to consider that there are O(N3) triangles in the network as opposed to
O(N2) links. By incorporating this factor, both terms become comparable for large N if the constants are of
the order of O(1).
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of the grand partition function as in Equation 5.7. This makes it impossible to obtain exact
analytical expressions for the parameters since the calculation of the normalisation constant
becomes intractable for large values of N .

5.5 Mapping into a Hamiltonian without levels

In section 5.4, we have shown that the previous models do not provide a complete description
of the system because they are not capable of capturing transitivity, a characteristic feature
of social networks. The number of triangles with all three reciprocal links that appear when
randomly distributing pairs of links is lower than what is observed in real networks.

For this reason, we have added a term to the Hamiltonian defined by Equation 5.34
that enhances the presence of reciprocal triangles. However, this new Hamiltonian includes
terms that involve more than two nodes, making it impossible to factorise the grand partition
function and obtain exact analytical expressions for the parameters. Additionally, the graph
we are working on is directed and weighted, with a total of r different possible weights. In
this section, we will try to simplify the Hamiltonian so that we can compare it with classical
models of the literature and gain insight into the system.

To start, we define the following variables on every pair ab:

τab ≡ (1− δσab,0)(1− δσba,0). (5.36)

These variables can only take two values, τab = 0 and τab = 1, depending on whether
σabσba = 0 or σabσba ̸= 0. Then, we consider the sum over the pair ab in the grand partition
function defined by Equation 5.5,

Sab(τ ) ≡
r∑

σab=0

r∑
σba=0

exp
[
Eσabσba

+ τabJab(τ )
]
, (5.37)

where, for simplicity, we have introduced the short-hand notation

Jab(τ ) ≡
γ

N

∑
c ̸=a,b

τacτbc. (5.38)

We can split this sum as

Sab(τ ) =


∑

σab,σba : τab=0

exp(Eσabσba
), if τab = 0,∑

σab,σba : τab=1

exp
[
Eσabσba

+ Jab(τ )
]
, if τab = 1,

(5.39)

which becomes

Sab(τ ) =


1 + 2

r∑
i=1

eEi0 , if τab = 0,

eJab(τ )
r∑

i=1

i∑
j=1

(2− δi,j)e
Eij , if τab = 1,

(5.40)
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Thus, if we introduce the variable

ϕ = log

 r∑
i=1

i∑
j=1

(2− δi,j)e
Eij

− log

(
1 + 2

r∑
i=1

eEi0

)
, (5.41)

we can rewrite

Sab(τ ) =

(
1 + 2

r∑
i=1

eEi0

) ∑
τab=0,1

exp
{
τab
[
ϕ+ Jab(τ )

]}
. (5.42)

Therefore, we have an alternative expression for the grand partition function:

Ξ =

(
1 + 2

r∑
i=1

eEi0

)(N2 )∑
τ

e−H̃(G), (5.43)

where
−H̃(G) ≡ ϕ

∑
⟨ab⟩

τab +
γ

N

∑
⟨abc⟩

τabτacτbc = ϕL(G) +
γ

N
T (G). (5.44)

In this expression, L(G) is the number of reciprocal links in the graph, regardless of the level,
and T (G) is the number of reciprocal triangles.

Through this process, we have simplified the Hamiltonian defined by Equation 5.34 to
reduce the complexity of the model so that the new one corresponds to an undirected and
unweighted graph. Obviously, this is not exclusive to the pairwise model. For the linear
model with reciprocity, we can use an analogous derivation (detailed in subsection D.1.3)
using a transformation defined by

ϕ = β + 2λ+ 2µ− log

(
1 + 2eλ+µ 1− erµ

1− eµ

)
+ 2 log

(
1− erµ

1− eµ

)
. (5.45)

The Hamiltonian defined by Equation 5.44 corresponds to Strauss’s model of transitive
networks (Strauss, 1986), which has been analysed using mean-field techniques by Park and
Newman (2005). These authors showed that this model exhibits a first-order phase transition
when the interaction is strong enough, from a low-density to a high-density phase. For this
reason, Strauss’s model has been deemed unsuitable for producing networks with intermediate
fractions of links, raising certain doubts about its usefulness. To solve this issue, in the
following chapter, we study this phase transition using the language of lattice gases and
characterise it in detail.

5.6 Discussion

In this chapter, we have constructed a model to explain the structure of social networks based
on analysing the interactions between their members. The starting point is the concept of
“social atom”, introduced by Tamarit (2019) in his PhD thesis and supported by the results
obtained in the first part of this thesis through an analysis of the data on social relationships
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among high school students. The mathematical tools we have used are exponential random
graphs, as their formulation in terms of statistical physics allows us to characterise the graph
ensemble only using the Hamiltonian of the system and its associated grand partition function.
We have explored a pairwise approximation, in which we assume that each pair of links is
entirely defined by the intensity levels of their associated relationships, regardless of the
identity of the nodes (hence with symmetric interactions).

The first model we have studied is the pairwise model. The parameters of this model,
referred to as efficacies, characterise the stability of links and define the probability of their
appearance in the system. To prove this, we compared the results of two groups with different
densities of links, one high and one low, and observed that a higher value of the parameter
indicates a greater likelihood of the associated relationship appearing when the system is
simulated using the model. By analysing the values of the parameters for all the groups, we
have found that reciprocal relationships in which the two intensity levels within the pair are
equal are the most likely ones, while non-reciprocal relationships in which the present link
has maximum intensity are the least probable ones.

The main drawback of the pairwise model is that it does not provide any information
about the factors shaping the form of the parameters. For this reason, we introduced the
linear model with reciprocity, in which we considered that the number of relationships that an
individual can maintain simultaneously is limited, and their cognitive cost varies depending
on the intensity of their associated links, in agreement with the Social Brain Hypothesis. We
also added a term that enhances the reciprocity of the links. By doing so, we were able to fit
the maximum likelihood values obtained through the pairwise model. These results suggest
that we can explain the structure of social networks only considering these three variables.

The next step was validating the pairwise approximation by checking if it satisfies some
of the characteristic macroscopic features observed in real-world social networks, especially
reciprocity and transitivity. The latter is related to the number of triangles in the system,
and we have demonstrated that the total number of triangles with three pairs of reciprocal
links is larger than that which emerges when randomly distributing the pairs of relationships.
To solve this issue, we introduced a term in the Hamiltonian that enhances the presence of
this kind of triangles. However, this adds terms to the Hamiltonian that involve more than
two nodes simultaneously, causing the grand partition function not to be factorisable. As a
consequence, for systems with a large number of individuals, it becomes intractable.

This highlights the need for alternative methods to obtain results. Therefore, we have
developed a transformation of the parameters that maps the Hamiltonian to that of Strauss’s
model of transitive networks, a model for undirected and unweighted graphs. This model
has been previously explored by many researchers and exhibits a phase transition, suggesting
that the model would be unsuitable for producing networks with intermediate fractions of
links. Furthermore, small changes in the control parameter associated with the number of
triangles cause very abrupt changes in the system. For this reason, the validity of this model,
in particular, and exponential random graphs, in general, to describe real systems has been
questioned. In the following chapter, we use the language of lattice gases to deal with this
issue.
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6

A comprehensive analysis of
Strauss’s model

Strauss’s model of transitive networks is an exponential random graph model that enhances
clustering by introducing in the Hamiltonian of the system an interaction term associated
with the number of triangles. This model exhibits a first-order phase transition from a low-
density to a high-density phase when the interaction is strong enough, which suggests that
there are values of some observables that no graph in the ensemble can attain for a certain
set of parameters. Furthermore, in this regime, the typical graphs of the ensemble abruptly
change from sparse to dense upon a slight variation of the control parameter. These facts
have cast serious doubts in the past on the usefulness of the model.

In this chapter, we will introduce the language of lattice gases to show that there is
no qualitative difference between the phase transition exhibited by Strauss’s model and the
condensation transition of an Ising lattice gas. In this way, thermodynamics will provide
a description of the sort of networks that we must expect for those “forbidden” values of
the observables in Strauss’s model. Moreover, we will address this problem using a density-
functional formalism especially tailored for lattice gases. This formalism provides a method
to construct a mean-field-like free energy of the system, from which everything else can be
derived. It also has the advantage that the non-homogeneous counterpart of Strauss’s model
can be solved with no extra effort. Networks in which nodes of different types interact in
different ways are of this kind, and using them we can study, for example, the effect of
homophily in social networks.
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6.1 Strauss’s model and its lattice-gas interpretation

Strauss’s model is an ERG ensemble of undirected graphs with N nodes defined by the
Hamiltonian

−H(G) = ϕL(G) +
γ

N
T (G), (6.1)

where L(G) is the number of links (edges) in the graph and T (G) is the number of triangles
(clustering). In this model, a positive parameter ϕ enhances the creation of links and a
positive parameter γ enhances the formation of triangles. The factor N−1 in front of T (G)
accounts for the fact that there are O(N3) triangles in the network compared to O(N2) links.
With this factor, both terms are comparable for large N if the constants are O(1). The model
was introduced by Strauss (1986) to describe graphs with a clustering higher than that of a
typical Erdös-Rényi graph.

In this chapter, we will deal with a non-homogeneous version of this model. To write down
the Hamiltonian, we need to introduce some notation. Let N denote the set of all nodes
of an undirected graph G, N2 the set of all subsets of 2 elements of N , hence the potential
links, which will be denoted by their indexes {i1, i2}, and N3 the set of all subsets of 3
elements of N , hence the potential triangles, which will be denoted {i1, i2, i3}. If |N | = N ,
then |N2| =

(
N
2

)
, |N3| =

(
N
3

)
. We also denote {τij} the adjacency matrix of the graph G,

where τij = 1 if the link {i, j} exists in G and τij = 0 otherwise. Then, in terms of this
variables a triangle {i, j, k} exists if and only if τijτjkτki = 1. Thus, the Hamiltonian of the
non-homogeneous version of Strauss’s model can be written as

−H(G) =
∑

{ij}∈N2

ϕijτij +
∑

{ijk}∈N3

γijk
N

τijτjkτki. (6.2)

The parameters ϕij and γijk are local versions of the ones associated with the Hamiltonian
defined by Equation 6.1. Therefore, a positive parameter ϕij enhances the creation of the
link {i, j} and, similarly, a positive parameter γijk enhances the formation of the triangle
{i, j, k}.

The variables τij play the role of “particles” sitting on the links of the complete graph
over the set of nodes N . If τij = 1, it means that the link {ij} is occupied by a particle,
whereas if τij = 0, the link is empty. Thus, G can also be interpreted as the configuration of(
N
2

)
such particles in the complete graph. Under this interpretation, ϕij can be regarded as a

(local) chemical potential, and the grand partition function of the system can be defined as

Ξ =
∑
G∈G

e−H(G), (6.3)

where G is the set of all possible realisations of the graphs (Lafuente & Cuesta, 2004, 2005;
Lavis & Bell, 1999).

As particles occupy the links, rather than the nodes, of a complete graph, the “space”
where these particles live is weird. As a matter of fact, in this dual network, every two
particles are either neighbours or second neighbours to each other. The reason is that if links
{ij} and {kl} are not neighbours, i.e. have no common nodes, then they are both neighbours
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Figure 6.1: Dual networks for the complete graphs - The figure represents the dual
networks for the complete graphs of four (up) and five nodes (down). In dual networks, links are
represented as nodes, and two nodes are neighbours if they share a node in the original graph.
Furthermore, in these dual networks, every two nodes are either neighbours or second neighbours
to each other. For an alternative representation, see Figure 1 in Palla et al. (2004).

to a common link (e.g. {ik}). Figure 6.1 illustrates these dual networks for the complete
graphs of 4 and 5 nodes. Each link is neighbour to 2(N−2) other links, and second neighbour
to the remaining

(
N−2
2

)
.

The grand potential of this system Ω = − log Ξ is a function of all conjugate fields
ϕ = {ϕij} and γ = {γijk}, from which the probability that link {ij} is occupied, henceforth
“density”, can be obtained as

− ∂Ω

∂ϕij
= ⟨τij⟩ = ρij . (6.4)

A Legendre transform on the grand potential yields the free energy

F (ρ,γ) =
∑
{ij}

ϕij(ρ)ρij +Ω(ϕ,γ), (6.5)

where ϕij(ρ) is obtained by solving Equation 6.4 for fixed ρ. Differentiating the free energy
F with respect to the densities,

∂F

∂ρij
= ϕij +

∑
{kl}

∂ϕkl

∂ρij
ρkl +

∑
{kl}

∂Ω

∂ϕkl

∂ϕkl

∂ρij
, (6.6)

so, if we take Equation 6.4 into account, we finally find that

∂F

∂ρij
= ϕij , (6.7)

which is the usual equation for the chemical potential.
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It can be proven that, given the free-energy density functional F (ρ) of a system, its
equilibrium density is the unique density profile that minimises the functional defined by
Ω(ρ) ≡ F (ρ) − ϕ · ρ (Hansen & McDonald, 2013, Appendix B). Alternatively, it minimises
F (ρ) at constant mean density. Thus, Equation 6.7, which is dual to Equation 6.4, is the
expression of this variational principle. Consequently, its solution provides the values of the
densities for a given set of chemical potentials ϕ.

6.2 Fundamental-measure approximation

The technique we will use to find an approximation to the free energy of Strauss’s model
is known in the field of lattice gases as fundamental-measure theory (Lafuente & Cuesta,
2004, 2005). It is a reformulation of the well-known cluster variation method (Lavis & Bell,
1999). The idea behind this technique is to decompose the system in overlapping clusters
and express the free energy as a sum of the free energies of those clusters, controlling for
overcounting.

In the case of Strauss’s model, the geometry of the Hamiltonian suggests that the simplest
possible clusters are triangles. Thus, as a first approximation, the free energy is obtained as
the sum of the contributions to the free energy of all the triangles within the complete graph.
However, in doing so, every link participates in N −2 triangles, so we need to subtract N −3
times the contribution to the free energy of all links. In other words, the fundamental-measure
approximation to the free energy will be

F (ρ,γ) =
∑
{ijk}

Φ3(ρij , ρjk, ρki, γijk)− (N − 3)
∑
{ij}

Φ2(ρij), (6.8)

where Φ2 and Φ3 are the free energies of a single link and a single triangle, respectively.

The expression for Φ2 is easy to obtain. Denoting Ξij ≡ eϕij , the grand partition function
for a single link {ij} is simply Ξ2 = 1 + zij . Thus,

ρij = zij
∂

∂zij
log Ξ2 =

zij
1 + zij

,

from which

zij =
ρij

1− ρij
, Ξ2 =

1

1− ρij
.

Substituting these expressions in the Legendre transform Φ2 = ρij log zij − log Ξ2, we end up
with

Φ2(ρij) = ρij log ρij + (1− ρij) log(1− ρij), (6.9)

which is simply the free energy of an ideal lattice gas.

The calculation of Φ3 is rather more involved (see subsection E.1.1). Introducing the
shorthand

ζijk ≡ exp(γijk/N)− 1 =
γijk
N

+O

(
1

N2

)
, (6.10)
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its expression turns out to be

Φ3 =Φ2(ρij) + Φ2(ρjk) + Φ2(ρki) + ρij log

(
1−

ρijk
ρij

)
+ ρjk log

(
1−

ρijk
ρjk

)
+ ρki log

(
1−

ρijk
ρki

)
− 2 log(1− ρijk),

(6.11)

where ρijk is one of the real solutions of the cubic equation

ζijk(ρij − ρijk)(ρjk − ρijk)(ρki − ρijk) = ρijk (1− ρijk)
2 . (6.12)

This “triangle density” ρijk is related to Tijk = ⟨τijτjkτki⟩, the probability that the nodes
i, j, k form a triangle, as (see subsection E.1.2 for full detailed calculations)

Tijk =
1 + ζijk
ζijk

ρijk =
1

1− e−γijk/N
ρijk. (6.13)

If we now substitute Equation 6.9 and Equation 6.11 into Equation 6.8, and take into
account that ∑

{ijk}

(Aij +Ajk +Aki) = (N − 2)
∑
{ij}

Aij (6.14)

for any link-dependent magnitude Aij , we finally conclude that the free energy F satisfies

F =
∑
{ij}

[
ρij log ρij + (1− ρij) log(1− ρij)

]
+
∑
{ijk}

[
ρij log

(
1−

ρijk
ρij

)
+ ρjk log

(
1−

ρijk
ρjk

)

+ ρki log

(
1−

ρijk
ρki

)
− 2 log(1− ρijk)

]
.

(6.15)

6.3 Homogeneous networks

6.3.1 Free energy

We can recover Strauss’s original model by assuming ρij = ρ for every link {ij} and γijk = γ

for every triangle {ijk}. Then, the free energy per link f(ρ, γ) =
(
N
2

)−1
F (ρ,γ) will be

f = ρ log ρ+ (1− ρ) log(1− ρ) + (N − 2)

[
ρ log

(
1− ρT

ρ

)
− 2

3
log(1− ρT)

]
, (6.16)

where ρT is the only real root of

ζ(ρ− ρT)
3 = ρT(1− ρT)

2. (6.17)

With the change of variable

t =
ρ− ρT
1− ρT

, ρT =
ρ− t

1− t
, (6.18)
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Figure 6.2: Thermodynamic free energy - The figure represents the thermodynamic free
energy of the model for different values of γ below and above the critical value γc (γ increases
from top to bottom). The curves illustrate the onset of the concavity as γ grows past γc = 27/8,
represented by the purple dashed line.

Equation 6.17 can be rewritten as

t3 +
t

ζ(1− ρ)
− ρ

ζ(1− ρ)
= 0. (6.19)

This equation has only one real root, which is given by the formula (Birkhoff & Mac Lane,
1997, pp. 102–103)

t =
2√

3ζ(1− ρ)
sinh

[
1

3
sinh−1

(
3

2
ρ
√
3ζ(1− ρ)

)]
. (6.20)

6.3.2 Thermodynamic limit

In the thermodynamic limit N → ∞ one can see, either from Equation 6.17 or directly from
Equation 6.20, that the thermodynamic free energy becomes simply

fth = ρ log ρ+ (1− ρ) log(1− ρ)− γρ3

3
. (6.21)

This free energy is convex as long as

∂2fth
∂ρ2

=
1

ρ(1− ρ)
− 2γρ > 0, (6.22)

which is equivalent to 2γρ2(1− ρ) < 1. As the maximum value of ρ2(1− ρ) is 4/27, reached
at ρc = 2/3, the condition above implies γ < 27/8. So, the values γc = 27/8 and ρc = 2/3
mark a critical point above which the system exhibits a first-order phase transition.

72



6.3 Homogeneous networks

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

Figure 6.3: Coexistence curve, spinodal curve and critical point - In the upper region
delimited by the solid curve, the system is not homogeneous but separated into two coexisting
phases whose respective densities are given by the values of the curve at the corresponding γ.
The dashed line represents the spinodal (defined by Equation 6.24), i.e. the curve at which the
compressibility vanishes. Hence, the thermodynamic free energy changes from convex to concave.
The circle, where both curves meet, marks the critical point. Within the shaded region, the
system may be trapped in a metastable, homogeneous state.

Figure 6.2 illustrates the concavity that fth develops as γ increases past γc. It is the
fingerprint of a condensation transition in lattice gases (Lavis & Bell, 1999) because concave
free energy implies thermodynamic instability; that is, the compressibility is negative. The
homogeneous “fluid” separates into two phases, each of a different density, in thermodynamic
equilibrium. The fraction occupied by each phase must be such that the overall density
matches the prescribed one.

The thermodynamic equilibrium is determined by “chemical” equilibrium (equality of
chemical potentials) and “mechanical” equilibrium (equality of pressures). In this way,
the first condition implies fρ(ρ1, γ) = fρ(ρ2, γ), and the second ρ1fρ(ρ1, γ) − f(ρ1, γ) =
ρ2fρ(ρ2, γ)− f(ρ2, γ). Both conditions are summarised in the equation

fρ(ρ1, γ) = fρ(ρ2, γ) =
f(ρ2, γ)− f(ρ1, γ)

ρ2 − ρ1
, (6.23)

which represent Maxwell’s double tangent construction (Huang, 1987). For fth, the solution
of these equations is represented in Figure 6.3. Given any ρ1 < ρ < ρ2, there will be a fraction
x of the graph of density ρ1 and a fraction 1− x of density ρ2 such that ρ = xρ1 + (1− x)ρ2.

On the other hand, the condition fρρ(ρ, γ) = 0 marks the points where the compressibility
vanishes, that is, the point where the system is no longer mechanically stable. This curve is
known as the spinodal, represented in Figure 6.3. According to Equation 6.22, this curve is
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Figure 6.4: Monte Carlo simulations using Kawasaki dynamics - The figure represents
nine panels that depict the average fraction of links belonging to a given number of triangles,
as obtained from Monte Carlo simulations, using Kawasaki dynamics, of a Strauss network with
N = 50 nodes, for three values of the interaction parameter γ (below, just above, and well above
the critical point) and three different densities.
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defined by

γ =
1

2ρ2(1− ρ)
. (6.24)

Within the region between the coexistence curve and the spinodal, which corresponds to the
shaded area of Figure 6.3, the system can still be prepared in a homogeneous but metastable
state. This explains the origin of the hysteresis observed in first-order phase transitions. This
particular one is presented in Park and Newman (2005).

It is difficult to guess the nature of the phase transition that this system undergoes above
the critical point. Recall that no more than one intermediate neighbour separates any two
links. The very notion of “space” breaks down in such a system, so the picture of the
usual condensation transition, where gas and liquid occupy different portions of the volume,
has no reasonable counterpart in a complete graph. Nonetheless, the transition may be
illustrated by computing a histogram of the number of links belonging to a given number of
triangles (Tamm et al., 2014). As a way of illustration, we have obtained such histograms by
performing Monte Carlo simulations using the dynamics of Kawasaki (1972), which preserves
the number of links, and hence the density ρ. In this dynamics, a Monte Carlo step amounts
to first removing a link at random and then creating a link also at random. The results,
obtained for three different values of the interaction γ (below, just above, and well above
the critical point) and three different densities, are depicted in Figure 6.4. In each of these
simulations, we perform 5 × 105 Monte Carlo steps. When γ < γc, the histograms show a
single peak that shifts to the right and shrinks as the density increases, whereas if γ > γc, the
distribution exhibits two very neat peaks, one at high values and the other one at lower values
of the number of triangles. Obviously, the links forming each of the two peaks belong to each
of the low and high-density phases. Figure 6.4 reveals that networks within the coexisting
region do exist, but they have different structural properties than those outside this region.

6.3.3 Finite networks

We can use an asymptotic expansion in N to obtain ρT from Equation 6.20. The first two
terms are

ρT =
γρ3

N

[
1 +

γ(1− 6ρ2 + 4ρ3)

2N
+O

(
1

N2

)]
, (6.25)

and, consequently, the free energy can be expanded as

f = ρ log ρ+ (1− ρ) log(1− ρ)− γρ3

3

[
1− 2

N
+

γ(1− 3ρ2 + 2ρ3)

2N
+O

(
1

N2

)]
. (6.26)

The critical point will then be a solution of the equations fρρ = fρρρ = 0, which yields

γc(N) =
27

8

[
1 +

45

16N
+O

(
1

N2

)]
,

ρc(N) =
2

3
+O

(
1

N2

)
.

(6.27)

The numerical solution for γc(N) is depicted in Figure 6.5 along with the asymptotic
expansion above. As for ρc(N), within the numerical resolution, we find that its value is
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Figure 6.5: Critical value in finite networks - The figure represents the difference between
the critical value γc(N) for a network with N nodes and its limit for N → ∞, as a function of
N . The solid line is obtained by numerically solving the equations for the critical point and the
dashed line arises from the asymptotic expression derived in Equation 6.27.

always 2/3. It is noteworthy that the curve of γc(N) diverges somewhere between N = 4 and
N = 3.

In spite that the uniform free energy defined by Equation 6.26 predicts a critical point
and a first-order phase transition for arbitrary N (as low as N = 4, see Figure 6.5), we know
that this is not possible. In other words, this phase transition is not real. The free energy
exhibits a concavity for some values of ρ when γ > γc(N) because the equilibrium solution is
not truly uniform for any density value, even though for some densities it is indistinguishable
from a uniform one. The transition from the regions where the solution is almost uniform
to those in which the structure is like those shown in Figure 6.4 (third row) is continuous,
albeit probably abrupt. Thus, the approximation we are using here shows up as a phase
transition (i.e., the convex envelope of the free energy as a function of ρ represents a good
approximation of the true free energy of the system). To illustrate this point, we compare our
approximate free energy for N = 4 with the exact one (see subsection E.1.3) in Figure 6.6.

6.3.4 Comparison with Park and Newman’s mean-field calculations

A fair question is how the present theory compares with the mean-field calculations of Park
and Newman (2005). In spirit, this theory is also mean-field-like, but clearly, its construction
follows a very different approach. Because of the high dimensionality of this system, one
expects that in the thermodynamic limit, it becomes exact (Park & Newman, 2005), so
it would be desirable that, if not for all N , at least in this limit, both theories coincide.
Figure 3(b) of Park and Newman (2005) shows the expected number of triangles T (among
other things) as a function of the interaction parameter γ/N , for ϕ = −0.53 and N = 500.
We can obtain T and ϕ as a function of ρ and γ through Equation 6.7 and Equation 6.13,
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Figure 6.6: An approximation to the real free energy - In the figure, the dashed lines
represent the difference between the approximate free energy (fapp), defined by Equation 6.26, and
the exact free energy (fex), defined by Equation E.15, for the complete graph with N = 4 nodes
and three values of the interaction parameter γ (below, just above, and well above the pseudo-
critical point). As the free energy has an unphysical concave region above the critical point, we
also represent in solid lines the difference between the convex envelope of the approximate free
energy and the exact one since this convex envelope is a better approximation to the real free
energy.

respectively. From these two calculations, we can obtain parametrically the curve T (γ) for
fixed ϕ and different values of N . The discrepancy between our results and those of Park
and Newman is shown in Figure 6.7. Figure 6.7(a) illustrates that the difference between
the predictions of both theories decreases with system size—so that both coincide in the
thermodynamic limit. However, for very small networks, their predictions differ significantly
(e.g., for N = 10, the discrepancy may be as high as ∼ 20%). Figure 6.7(b) compares the
predictions of both theories for N = 10 along with Monte Carlo simulations performed using
a Metropolis-Hastings algorithm (Snijders, 2002). Observable magnitudes are averaged over
106 configurations of the Markov chain. This figure highlights the higher accuracy of the
current theory in calculating results for small networks.

Given that most real networks are large, the discussion of this section may seem like
an academic issue of little practical relevance. Nevertheless, small networks of about 20-30
nodes are common, for example, in social science, anthropology, or biology. Thus, one can
find instances of these small networks in studies of different social organisations (Escribano
et al., 2021; Everett & Borgatti, 2014; Huitsing & Veenstra, 2012; Stadtfeld et al., 2020), in
bands of hunter-gatherers (Migliano et al., 2020; Page et al., 2017), or in groups of social
animals (Escribano et al., 2022; Ilany et al., 2013; Kasper & Voelkl, 2009). For these studies,
the improved accuracy provided by the current approach might not be negligible. As a result,
researchers working with smaller networks may find it beneficial to employ the models and
techniques discussed in this section.
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Figure 6.7: Comparison with Park and Newman’s mean-field calculations - Each of
the panels in the figure represents the following: a) Difference between the expected number of
triangles T as obtained from Park and Newman’s mean-field calculations and from the current
theory. b) Expected number of triangles for N = 10 according to both theories, along with Monte
Carlo simulations. Error bars represent the standard deviation of the number of triangles along
the simulations. In both panels ϕ = −0.53.

6.4 Non-homogeneous networks: Homophily

Having an expression for the free energy of the non-homogeneous Strauss’s model allows us
to tackle other interesting cases. Particularly important is the case where there are different
types of nodes in the network with different interaction parameters. This case can model, e.g.,
homophily in a social network, where similar nodes are more prone to form links or triangles
than different nodes are (McPherson et al., 2001). A particular version of this model has
already been used to study segregation on Strauss networks where triangles are both favoured
or disfavoured (Avetisov et al., 2018).

Suppose we have two types of nodes in the network, A and B. Since the underlying graph
is complete, the actual location of these nodes is irrelevant; only how many of each type there
are matters. So let us assume that there are NA of type A and NB = N − NA of type B.
Accordingly,

(
NA
2

)
links are homophilic of type AA,

(
NB
2

)
of type BB, and NANB are of mixed

type. Likewise, there will be
(
NA
3

)
homophilic triangles of type AAA,

(
NB
3

)
of type BBB,(

NA
2

)
NB mixed triangles of type AAB, and

(
NB
2

)
NA of type ABB. Hence, the free energy of

the system can be obtained as

F =
∑

X=A,B

(
NX

2

)[
ρXX log ρXX + (1− ρXX) log(1− ρXX)

]
+NANB

[
ρAB log ρAB + (1− ρAB) log(1− ρAB)

]
+
∑

X=A,B

(
NX

3

)[
3ρXX log

(
1− ρXXX

ρXX

)
− 2 log(1− ρXXX)

]

+
∑

X=A,B

∑
Y̸=X

(
NX

2

)
NY

[
ρXX log

(
1− ρXXY

ρXX

)
+ 2ρXY log

(
1− ρXXY

ρXY

)
− 2 log(1− ρXXY)

]
,

where ρXY = ρYX is the density of links of type XY, and the densities associated with the
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Figure 6.8: Critical curves for the interaction parameters - The figure represents the
critical curves γ− vs. γ+ for different values of 0 ≤ u ≤ 1/2. The free energy of the non-
homogeneous model is convex only for the points on the left of the curve. The curves reach their
rightmost values of γ+ (marked with circles and vertical dashed lines) for γ+ = 27/8(1 − u),
γ− = 0. The oblique dashed line is γ+ = γ−. It meets all critical curves at one point (marked
with a circle): γ+ = γ− = 27/8, the critical point of the homogeneous system.

triangles are the solutions of

ζXXY(ρXX − ρXXY)(ρXY − ρXXY)
2 = ρXXY(1− ρXXY)

2, (6.28)

To reduce the number of parameters of the model, we will henceforth assume that it
is only homophily, and not the nature of the nodes, that determines interactions. This
means that there are only two values of the interaction parameter instead of four, namely
γAAA = γBBB ≡ γ+, γAAB = γBBA ≡ γ−. Furthermore, in the thermodynamic limit, the
solution to Equation 6.28 is

ρXXY = ρXXρ
2
XY

γ±
N

+O

(
1

N2

)
, (6.29)

where the subindex of γ± depends on whether X=Y (+) or X̸=Y (−). In this same limit,

and setting NA = uN , NB = (1− u)N , the free energy per link f ≡
(
N
2

)−1
F turns out to be

f =u2
[
ρAA log ρAA + (1− ρAA) log(1− ρAA)

]
+ (1− u)2

[
ρBB log ρBB + (1− ρBB) log(1− ρBB)

]
+ 2u(1− u)

[
ρAB log ρAB + (1− ρAB) log(1− ρAB)

]
− γ+

3

[
u3ρ3AA + (1− u)3ρ3BB

]
− γ−u(1− u)ρ2AB

[
uρAA + (1− u)ρBB

]
.

(6.30)

The convexity of this function is linked to the positive definiteness of its Hessian matrix,
where entries are ordered as AA, BB, and AB. This matrix is defined by
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H=



u2

ρAA(1− ρAA)
− 2γ+u

3ρAA 0 −2γ−u
2(1− u)ρAB

0
(1− u)2

ρBB(1− ρBB)
− 2γ+(1− u)3ρBB −2γ−u(1− u)2ρAB

−2γ−u
2(1− u)ρAB −2γ−u(1− u)2ρAB

2u(1− u)

ρAB(1− ρAB)
− 2γ−u(1− u)ρ̄(u)


,

where we have introduced the shorthand notation ρ̄(u) ≡ uρAA+(1−u)ρBB. This translates
into the positiveness of the first two diagonal elements plus detH > 0. In other words,

χAA ≡ 1

ρAA(1− ρAA)
− 2γ+uρAA > 0,

χBB ≡ 1

ρBB(1− ρBB)
− 2γ+(1− u)ρBB > 0,

(6.31)

and removing trivial positive factors reduces to

χAAχBBχAB − 2u(1− u)γ2−ρ
2
AB(χAA + χBB) > 0, (6.32)

with

χAB ≡ 1

ρAB(1− ρAB)
− γ−ρ̄(u). (6.33)

Without loss of generality, we may assume 0 ≤ u ≤ 1/2. With this assumption, inequalities
defined by Equation 6.31 hold for any set of densities provided, so that

γ+ <
27

8(1− u)
. (6.34)

For any γ+ satisfying this constraint, the critical value of γ− is obtained as the smallest
value for which inequality defined by Equation 6.32 breaks down for some set of densities.
This curve is represented in Figure 6.8 for several values of u.

To validate the expression of the free energy defined by Equation 6.30, we have performed
Monte Carlo simulations, using the same method as before, to calculate the fractions of the
different kinds of triangles, as functions of γ+, for a system with N = 50 nodes, for two
values of u = NA/N (1/2 and 2/5), and fixed values of the other parameters (γ−/N = 0.04
and ϕAA = ϕBB = ϕAB = −0.25). Analytic expressions for those fractions of triangles are
obtained from Equation 6.13. As in the case of uniform nodes, the agreement between theory
and simulations, presented in Figure 6.9, suggests that the free energy expression might be
exact in the thermodynamic limit.

6.5 Discussion

In this chapter, we have solved approximately Strauss’s model of transitive networks using
a technique specific to the statistical physics of lattice gases, the density-functional theory.
The solution we found is more accurate than a standard mean-field approximation for small
systems but coincides with it (and probably with the exact solution) in the thermodynamic
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a) b)

Figure 6.9: Estimation of triangles in a system with homophily - The figure represents
the fractions of the different kinds of triangles vs. γ+/N for a system with N = 50 nodes of two
different types, A and B. The fraction of A nodes is a) u = 1/2 and b) u = 2/5. Solid lines are
the curves obtained from Equation 6.13, and bullet points are the Monte Carlo results. Error
bars represent the standard deviation of the number of triangles along the simulations. In both
panels γ−/N = 0.04 and ϕAA = ϕBB = ϕAB = −0.25.

limit of infinitely many nodes. The model exhibits a first-order phase transition for triangle
interactions above a critical threshold γc. For γ > γc, when the probability of link creation is
increased, the system crosses a region where two solutions are possible; one with a low and
one with a high fraction of links (density). Because of this fact, this model had been deemed
unsuitable for producing networks with intermediate fractions of links.

The density-functional formalism we have employed reveals that the canonical ensemble
(constant density and “temperature”, i.e., triangle interaction) is the natural description for
this system if we want to access these “forbidden” intermediate states. In this ensemble, the
system behaves as a fluid undergoing a condensation transition. The two (low-density and
high-density) phases are akin to a gas and a liquid, and at those intermediate densities, both
phases coexist in chemical and mechanical equilibrium. A histogram of links belonging to
a given number of triangles shows that links in the graph form two separate groups, each
associated with one of these two phases. Hence, graphs within this coexisting region have a
different structure than those outside it.

Under this interpretation, the problem of generating graphs in the studied “inaccessible”
coexisting region with this model amounts to performing Monte Carlo simulations using
Kawasaki dynamics, which keeps the number of links constant. The idea of accessing these
intermediate states by controlling an extensive parameter had already been suggested (Miller,
2009; Newman, 2009), although the preferred control variable has always been the number
of triangles.

Whether the graphs produced by Strauss’s model are a suitable model for some real
networks is still an open question that we will try to answer in the following chapter. It is
true that the peculiar structure of these graphs has never been observed so far, but it is also
true that the existence of the phase transition in Strauss’s model (and its extensions) is an
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unavoidable consequence of the specific interaction among its links.

The density-functional formalism we have developed can further be applied to systems
where the interaction constants are link- or triangle-dependent. This way, we can study
systems in which nodes have different types and interactions depending on the type of nodes
involved. Homophily is one of the situations that can be so described. The analysis of
the simplest example of homophilic interactions shows that homophily favours the stability
of uniform networks (networks with uniform density) by increasing the value of the critical
point. The predictions for this case have been validated with Monte Carlo simulations, which,
as in the case of uniform networks, suggest that the free energy obtained here is exact in the
thermodynamic limit. Further studies are needed to fully characterise the complex phase
behaviour of a system like this.

The main contribution of this chapter is to provide a formalism that can be extended to
tackle other ERG models. Its advantage with respect to more standard mean-field approaches
is that it provides a systematic procedure to deal with them. Our method can be extended
to other complex systems beyond network science and can provide a novel perspective and
potentially useful tools for the study of many other systems. Therefore, our work provides a
new way of studying network models and sheds light on their rich and complex behaviour.
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Re-evaluating the models of
social organisation

In the previous chapter, we approximately solved Strauss’s model of transitive networks
using the density-functional formalism of lattice gases, characterised the phase transition it
exhibits, and determined how to simulate graphs in the “inaccessible” region by performing
Monte Carlo simulations using Kawasaki dynamics. This is particularly interesting for our
work because Strauss’s model is at the heart of the models introduced in chapter 5 to analyse
the social structure of school classrooms. We can relate the Hamiltonian that defines these
models to that of Strauss’s model using a transformation of the parameters (see section 5.5).
This allows us to describe our systems entirely.

In this chapter, we re-evaluate these models considering the inclusion of the clustering
term. This motivates the appearance of higher-order interactions in the Hamiltonian, which
precludes the pairwise factorisation of the grand partition function, as in the pairwise models,
and complicates obtaining analytical results. For this reason, we determine the maximum
likelihood values of the parameters using numerical methods. Moreover, we compare these
results with those obtained through Monte Carlo simulations of the system and find very
similar results. This confirms the validity of our method and highlights it as an effective
alternative to Monte Carlo simulations, as it is much more computationally efficient. Finally,
we study the distributions of the parameters obtained for the different groups. Their form
resembles a physical system in equilibrium, so we discuss the “social fluid” concept as an
alternative to a network description of social systems.
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7.1 Re-estimating the parameters

7.1.1 Pairwise model with clustering

In chapter 5, we introduced the pairwise model with clustering. This model allows us to fix
the transitivity of the system, a property underestimated by the pairwise approximation, by
fixing the number of triangles in the network with the three reciprocal links. Its Hamiltonian
is defined by

−H(G) =
∑
⟨ab⟩

Eσabσba
+

γ

N

∑
⟨abc⟩

Tabc, (7.1)

where Tabc is a term whose value is 1 if the three nodes a, b and c form a reciprocal triangle
and 0 otherwise.

Furthermore, in section 5.5, we derived a transformation of the parameters that enables
us to obtain a simplified expression for the grand partition function

Ξ =

(
1 + 2

r∑
i=1

eEi0

)(N2 )∑
τ

e−H̃(G), (7.2)

where H̃(G) corresponds to the Hamiltonian of Strauss’s model.

Consequently, the grand potential Ω is determined by

Ω = − log Ξ = −
(
N

2

)
log

(
1 + 2

r∑
i=1

eEi0

)
+ΩS , (7.3)

with ΩS being the grand potential associated to Strauss’s model.

From Equation 7.3, we can derive the mean values of the different observables

⟨Ri0⟩ = − ∂Ω

∂Ei0
=

[(
N

2

)
+

∂ΩS

∂ϕ

]
2eEi0

1 + 2
r∑

k=1

eEk0

, (7.4)

and

⟨Rij⟩ = − ∂Ω

∂Eij
= −∂ΩS

∂ϕ

(2− δi,j)e
Eij

r∑
k=1

k∑
l=1

(2− δk,l)eEkl

. (7.5)

In particular, we can observe that

r∑
i=1

i∑
j=1

⟨Rij⟩ = −∂ΩS

∂ϕ
. (7.6)

It is noteworthy that the sum on the left-hand side is the total number of reciprocal links.
So, combining this result with Equation 7.4, we obtain

r∑
i=1

⟨Ri0⟩ =

(N
2

)
−

r∑
i=1

i∑
j=1

⟨Rij⟩

 2
r∑

k=1

eEk0

1 + 2
r∑

k=1

eEk0

, (7.7)
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which yields

1 + 2
r∑

k=1

eEk0 =

(
N
2

)
−

r∑
i=1

i∑
j=1

⟨Rij⟩

(
N
2

)
−

r∑
i=1

i∑
j=0

⟨Rij⟩
. (7.8)

Notice that the total number of pairs with no links can be rewritten as(
N

2

)
−

r∑
i=1

i∑
j=0

⟨Rij⟩ = ⟨R00⟩. (7.9)

Thus, substituting back in Equation 7.4, we find that

eEi0 =
⟨Ri0⟩
2⟨R00⟩

, (7.10)

an expression that immediately yields the parameters Ei0 from empirical data as

Ei0 = log

(
⟨Ri0⟩
2⟨R00⟩

)
. (7.11)

Finally, using Equation 7.5 and by performing a similar derivation, we obtain

eEij−ϕ =
⟨Rij⟩

(2− δi,j)⟨R00⟩


⟨R00⟩+

r∑
k=1

⟨Rk0⟩

r∑
l=1

l∑
m=1

⟨Rlm⟩

 , (7.12)

which allows us to determine the parameters Eij as

Eij = log

(
⟨Rij⟩

(2− δi,j)⟨R00⟩

)
+ log


⟨R00⟩+

r∑
k=1

⟨Rk0⟩

r∑
l=1

l∑
m=1

⟨Rlm⟩

+ ϕ. (7.13)

Therefore, to find the values of the efficacies Eij , we first need to use Equation 7.6 to
determine the parameter ϕ. However, the value of ϕ also depends on the value of γ, which is
the parameter associated with the clustering term. The issue we have is that the value of γ
cannot be obtained either analytically or numerically from the expressions we have derived
previously because all empirical networks are in the region of phase coexistence. Therefore,
we need to find an empirical procedure to determine its value.1 This procedure is exemplified
in Figure 7.1 for the group 1 ESO A. Firstly, we need to study the observed network and
find the total number of reciprocal triangles in the system and the distribution of the total

1In fact, in the simulations, what is analysed is the value of the complete clustering parameter γ/N .
However, as the value of N is fixed and known for each of the groups, we can easily determine the value of γ.
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Figure 7.1: Procedure for estimating the value of the γ parameter - The figure represents
the procedure for estimating the value of the γ parameter for the group 1 ESO A. Since we have
neither an analytical nor a numerical procedure to estimate this parameter, we have to do it
empirically. To do so, we compare the observed distribution of the number of reciprocal triangles
in which each link is involved (panel a) with those obtained through Montecarlo simulations
using Kawasaki dynamics. The selected value for the parameter corresponds to the one where
the simulated system agrees with the observed one (panel b) both in the total number of triangles
and their distribution related to the pairs of links. We can observe that the distributions vary for
lower values (panel c) or higher values (panel d) of the parameter γ.

number of triangles in which each link is involved, as illustrated in Figure 7.1(a). After that,
we iterate over the parameter γ and carry out Monte Carlo simulations of the system using
Kawasaki dynamics (i.e. at a constant density of links ρ) until the distribution associated
with the simulated system resembles the observed one, as in Figure 7.1(b). Thus, we select
this value for the parameter γ. In the remaining two panels of Figure 7.1, we can check how
the distributions of the total number of triangles in which each link is involved for slightly
lower and higher values of the parameter γ (respectively) are different and, in consequence,
so are the systems. We repeat this procedure to determine the clustering parameter γ for
each of the groups in our study.
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This method may seem inefficient due to the cost of iterating over different values of γ and
the need to empirically check the relationship between the observed and the simulated system.
But we have no other way we have of determining γ because we do not have an analytical
expression relating it with the triangle distribution of Figure 7.1. Notwithstanding, the results
we present in section 7.2 confirm the validity of the method. Once the value of γ is fixed, we
can determine the parameters Eij through Equation 7.11 and Equation 7.13.

The first analysis of the obtained efficacies Eij is to compare them with those obtained
using the pairwise approximation in chapter 5. The parameters associated with non-reciprocal
pairs of links coincide in both models. As for those associated with reciprocal pairs of links,
the first term on the right-hand side of Equation 7.13 is the result obtained for the pairwise
model, and the other two terms add a correction to it.

The fact that corrections only affect the parameters associated with reciprocal pairs of
links was expected since the term we have added to the Hamiltonian of the system only
involves these pairs. Additionally, as we have not differentiated between the different types
of reciprocal pairs of links in the calculation of the number of triangles, the correction term
is the same for all of them and does not depend on the levels (i, j) that define the pair.
Whether this is a sufficient correction of the model or not remains to be determined. With
the statistics we have so far, we cannot decide on this use, so Occam’s razor suggests keeping
the model as simple as possible.

In Figure 7.2, we compare the results for the pairwise model and for the pairwise model
with clustering for two groups in wave 1: 1 ESO A and 1 ESO G. These two groups have
already been explored in chapter 5 and have been selected because they exhibit different
densities of relationships (1 ESO A has a higher density than 1 ESO G). This is reflected
in the values of the parameters, as they increase with the probability that the associated
pair of links appears in the system. In the results for both groups, we can observe what we
mentioned in the previous paragraph: the parameters associated with non-reciprocal pairs of
links do not vary between the two models. Regarding the relevance of the density of links
in the parameters of the pairwise model with clustering compared to the original model, we
can see that the corrections are smaller the lower the density of links, in agreement with
the fact that a lower number of links induces fewer triangles. The figures representing the
comparison of the parameters for each of the remaining groups in wave 1 can be found in
subsection F.1.1.

Moreover, the values of the parameters for the pairwise model with clustering associated
with reciprocal pairs of links are lower for both groups. The reason behind this phenomenon is
that the term associated with triangles with the three reciprocal links enhances the presence
of these links to satisfy transitivity. Thus, smaller values of these parameters are enough to
induce the same number of reciprocal links.

Therefore, the pairwise model with clustering provides a more accurate representation of
the system, as it accounts for transitivity by taking into account the presence of triangles
with three reciprocal pairs of links. This model better captures the structural properties
of real-world networks. However, once more (as in the pairwise model), this model does
not account for the factors that shape the efficacies, only for the behaviour of the system.
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Figure 7.2: Comparison between the parameters for the pairwise model and the
pairwise model with clustering - The figure represents the comparison of the values for the
maximum likelihood parameters in the pairwise model and the pairwise model with clustering for
the following groups in wave 1: a) 1 ESO A and b) 1 ESO G. These two groups have been selected
because they exhibit different densities of relationships: 1 ESO A has a higher density, while 1
ESO G has a lower density. This is evidenced by the values of efficacies Eij , which are larger
in the former case. It can be observed in the figure that the values of the efficacies associated
with non-reciprocal pairs of links do not vary between both models, while those associated with
reciprocal pairs of links do change. This variation is directly proportional to the link density.
The figures representing the comparison of the parameters for each of the remaining groups in
wave 1 can be found in subsection F.1.1.

Therefore, we need to analyse the linear model with reciprocity and clustering to check if it
fits the parameters in a way that allows us to explain these factors, just as with the pairwise
model.

7.1.2 Linear model with reciprocity and clustering

We can perform an analogous derivation to estimate the parameters of the linear model with
reciprocity and clustering. This model is defined by the Hamiltonian

−H(G) =
∑
⟨ab⟩

[
λ(2− δσab,0 − δσba,0) + µ(σab + σba) + β(1− δσab,0)(1− δσba,0)

]
+

γ

N

∑
⟨abc⟩

Tabc.

In this expression, the first term corresponds to the Hamiltonian associated with the linear
model with reciprocity, and the second term enhances transitivity by fixing the average
number of triangles with the three reciprocal pairs of links.

In subsection D.1.3, we introduced a transformation of the parameters that allows us to
rewrite the grand partition function of the system as

Ξ =

(
1 + 2eλ+µ 1− erµ

1− eµ

)(N2 )∑
τ

e−H̃(G), (7.14)

where H̃(G) is the Hamiltonian of Strauss’s model.
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Therefore, the grand potential Ω is determined by

Ω = − log Ξ = −
(
N

2

)
logQ+ΩS , (7.15)

where ΩS is the grand potential of Strauss’s model, and we have introduced the short-hand
Q, which will be used throughout this section to refer to the term

Q ≡ 1 + 2eλ+µ 1− erµ

1− eµ
. (7.16)

From Equation 7.15, we can derive the average values of the different observables by
calculating the partial derivatives with respect to the parameters. First, we start with the
number of reciprocal pairs of links, so

⟨R⟩ = −∂Ω

∂β
=
∑
⟨ab⟩

⟨(1− δσab,0)(1− δσba,0)⟩ = −∂Ωs

∂ϕ
. (7.17)

Similarly, we can calculate the mean value associated with the total number of relationships
in the network. That is

⟨L⟩ = −∂Ω

∂λ
=
∑
⟨ab⟩

〈
2− δσab,0

− δσba,0

〉
=

(
N

2

)
∂ logQ

∂λ
− ∂Ωs

∂ϕ

∂ϕ

∂λ
, (7.18)

where
∂ logQ

∂λ
= 1− 1

Q
, (7.19)

and
∂ϕ

∂λ
= 1 +

1

Q
. (7.20)

Finally, we repeat the process for the term associated with the varying costs of relationships
depending on their emotional intensity:

⟨S⟩ = −∂Ω

∂µ
=
∑
⟨ab⟩

⟨σab + σba⟩ =
(
N

2

)
∂ logQ

∂µ
− ∂Ωs

∂ϕ

∂ϕ

∂µ
, (7.21)

where
∂ log(T )

∂µ
=

eµ
[
1 + (r − 1)erµ − re(r−1)µ

]
(1− eµ)3

(2eλ+µ) (1− eµ)

Q
, (7.22)

and
∂ϕ

∂µ
= 2− ∂ logQ

∂µ
− 2rerµ

1− erµ
+

2eµ

1− eµ
. (7.23)

From the expressions above, we can determine the parameter values for a specific dataset.
Although the equations are too complex to obtain analytical results, as in the previous cases,
we solve them numerically. In this way, we obtain the values of the three parameters that
define the efficacies and compare them with those of previous models. Again, to do so, we
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Figure 7.3: Comparison between the parameters associated with the linear model
with reciprocity and clustering and other previously studied models - The figure repre-
sents the values for the maximum likelihood parameters and the comparison between the linear
model with reciprocity and clustering and other previously studied models for the group 1 ESO
A in wave 1: a) Linear model with reciprocity and b) Pairwise model with clustering. The figures
representing the comparison of the parameters for each of the remaining groups in wave 1 can be
found in subsection F.1.2.

need to estimate first the value of the parameter γ using the empirical method introduced in
subsection 7.1.1.

In Figure 7.3(a), we compare the values of the parameters obtained by solving the previous
non-linear system of equations with the analytical values obtained in chapter 5 for the linear
model with reciprocity for the group 1 ESO A in wave 1. The values of the parameters λ,
associated with the total number of relationships, and the parameters µ, associated with the
variable cost of each of them, nearly coincide. These differences, being so slight, are likely
due more to numerical errors than to real differences in the models. However, the value of
the parameter β varies considerably. Moreover, if we compare the results for all groups (see
subsection F.1.2) we can observe that the higher the number of links, the more significant the
difference between the values of the parameters β associated with each of the models. This
makes sense because β is the parameter controlling for reciprocity, which, to a larger extent,
is already taken care of by the clustering parameter γ.

These results are consistent with those obtained for the pairwise model with clustering
in subsection 7.1.1 and agree with what we could expect before evaluating the model. The
reason behind this is that, when introducing the term related to triangles with the three pairs
of reciprocal links into the Hamiltonian of the system, the total number of relationships nor
their associated cost vary. Therefore, the values of their associated parameters do not change.
What does change is the way in which each pair of links is distributed within the system.
This is reflected in the value of the parameter β. As already explained, this parameter is
always lower in the model with clustering than in the former model because the clustering
term already accounts for reciprocal links. As a result, the number of reciprocal links is
similar in both models, but their structure is different, closer to that of networks observed in

90



7.2 Bayesian Monte Carlo estimation of the parameters

the real world.

Another interesting question concerns the comparison of parameters between the two
models with the clustering term included, to verify whether the form of the efficacies can
still be explained by the two parameters derived from the concept of “social atom” plus the
reciprocity term. The results presented in Figure 7.3(b) and Figure 5.3 for the group 1 ESO
A in wave 1 show that the fits are very similar. It can be observed in subsection F.1.2 that
the same holds for all the remaining groups analysed. In view of this, the conclusions drawn
in chapter 5 for the models without the clustering term are also valid when this term is
included. This suggests that including the clustering term does not significantly affect the
overall conclusions and relationships between the parameters. Adding the clustering term
helps capture more nuanced aspects of the system, allowing for a better understanding of
the underlying social structures and behaviours. However, the core relationships and findings
from chapter 5 remain valid and provide a solid foundation for analysing and modelling these
social networks.

7.2 Bayesian Monte Carlo estimation of the parameters

In the previous section, we discussed how the main drawback of models incorporating the
clustering term in the Hamiltonian of the system is that an exact analytical calculation of
the grand partition function becomes intractable as the size increases. This is because it
no longer factorises in pairs because the clustering term introduces higher-order interactions
in the system. Analytical calculations are thus more complex and challenging to perform.
For this reason, and unlike what happened in the models presented in chapter 5, we can
only derive (approximate) analytical expressions for the maximum likelihood values of the
parameters but not for their confidence intervals. Therefore, to get an idea of the validity of
our method to reproduce the empirical results, we make use of Bayesian methods in order
to estimate the posterior distribution of the parameters, given the empirical networks of
relationships.

In particular, we have implemented a Markov Chain Monte Carlo (MCMC) technique,
which applies the Metropolis-Hastings sampling method through the Python package PyMC.
This technique amounts to constructing a Markov chain in the set of parameters. The chain is
designed so that, after a sufficiently large number of iterations, the distribution of the variables
converges to the target posterior distribution. Once the chain has converged, samples from the
chain can be used as random samples of the posterior distribution of the model parameters.
This approach enables us to estimate the values of the parameters and their uncertainties.
In our simulations, we use a total of 5 × 105 Monte Carlo steps, each consisting of a small
random change of one of the parameters, also chosen randomly. To start the method, we
use the values of the parameters estimated from analytical expressions as explained in the
previous section and “burn-in” the first 3× 104 iterations to let the Markov chain reach the
stationary state. This initial condition accelerates the convergence of the method. We have
initiated the chain with a random set of parameters, and the results obtained are the same,
but the convergence time is longer.

In Figure 7.4, we show the comparison between the values of the parameters obtained
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Figure 7.4: Comparison between the parameter values and Monte Carlo simulations
for the models considering clustering - The figure represents the values for the maximum
likelihood parameters and its comparison with Monte Carlo simulations for the group 1 ESO A
in wave 1 for the following models: a) Pairwise model with clustering and b) Linear model with
reciprocity and clustering. The figures representing the comparison of the parameters for each
of the remaining groups in wave 1 can be found in subsection F.1.3 (for the pairwise model with
clustering) and subsection F.1.4 (for the linear model with reciprocity and clustering).

using our method for the pairwise model with clustering and the linear model with reciprocity
and clustering and Monte Carlo simulations of the system for the group 1 ESO A in wave
1. For the remaining groups in wave 1, the results can be found in subsection F.1.3 and
subsection F.1.4 for each of the models, respectively. We can observe that the values obtained
using our method and the MCMC simulations approach each other quite satisfactorily for all
parameters in both models. Both methods are capable of capturing important aspects of the
system, such as the difference between the various types of links, the variable costs of each
relationship based on its intensity, and the importance of reciprocity. Notice, in particular,
the good agreement of the parameter γ, which was obtained through an empirical procedure.

This convergence between the approximate analytical results and those obtained with
Monte Carlo simulations demonstrates the reliability and robustness of the models, which
confirms their ability to represent the underlying social structure effectively. The agreement
between the two methods reinforces the validity of the models and their parameters, providing
confidence in the insights derived from their analysis. This result has two main implications.
The first one is model validation because we can overcome the limitations posed by the
intractability of the analytical calculations by using MCMC techniques and obtain a more
comprehensive understanding of the performance of the model. The second is methodological
versatility, as it is important to note that MCMC sampling can be computationally expensive,
especially for complex models and large datasets. The fact that the analytical method and
the Monte Carlo simulations yield similar results confirms the versatility of the methodologies
employed in studying social networks. Therefore, in many cases, it may be beneficial to use
the analytical method proposed in this chapter, as it is much more computationally efficient
and returns similar results.
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7.3 The “social fluid”

7.3.1 Analysing the distribution of the parameters

The maximum likelihood values of the parameters associated with a system entirely define the
form of its Hamiltonian and, consequently, characterise the structure of the system. These
values indicate the probability of their associated relationships appearing among individuals.
By comparing their values, we can determine similarities and differences in the macroscopic
structure of the different groups. This comparison enables us to identify patterns or trends
across the groups, which may lead to insights into the general structure of social networks.

We begin the analysis by exploring each of the groups from the five waves in the study to
obtain the most complete and comprehensive statistics of the distribution of the parameters.
In this way, we obtain results for 80 different groups. All these groups have a similar size,
with values ranging from 20 to 30 people. Figure 7.5 shows the distribution of the parameters
associated with the pairwise model with clustering across all 80 groups. The distributions
associated with each of the parameters vary. They all have a form centred around a value,
which is different for each parameter. This indicates that some pairs of relationships are
more likely to be observed within the system while others appear less frequently - recall that
the probability that a link appears in the system increases with the value of its associated
parameter. Our results indicate that the most common relationships, in general, are the
reciprocal ones with a low level of intensity in both directions of the pair (parameter E11),
while the least likely are non-reciprocal relationships with a very intense link (parameter E20).
These results confirm the differences between the different levels of relationship intensity,
providing further evidence of the layered structure of social networks.

Figure 7.6 shows the distribution of the parameters associated with the linear model with
reciprocity and clustering. Similar to the distributions presented in Figure 7.5, the values
of the parameters in this model are distributed around a central value, with the standard
deviation in the distribution being even smaller in this case, except for γ. Furthermore,
the distribution of the parameter λ, associated with the constraint on the total number of
relationships that can be maintained simultaneously, shows a very pronounced peak. This
confirms that the limit on the number of relationships is similar across all groups. When
studying the cost associated with relationships of different intensities, we observe that the
parameter µ always has a negative value, indicating that the cost of maintaining a relationship
is larger when the emotional level of the relationship increases. Therefore, these results
obtained for the analysis of the system’s structure at the macroscopic level are in clear
agreement with those presented by Tamarit et al. (2018) when analysing each ego-network
individually, that is, at the microscopic level. Finally, the distribution of the parameter β,
associated with the reciprocity of the system, clearly correlates with the distribution of the
density of links ρ (see subsection F.1.5). The parameter associated with reciprocity is always
positive and grows with the density, so the probability of reciprocal link pairs appearing in
the system increases with ρ.
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Figure 7.5: Distribution of the parameters associated with the pairwise model with
clustering - The figure represents the distribution of the values associated with the pairwise
model with clustering for the maximum likelihood parameters for all the groups in the five waves.
Each panel corresponds to the distribution of a different parameter: a) E10, b) E11, c) E20, d)
E21, e) E22 and f) γ. All the parameters show a distribution with a peak around a different
value, which highlights the differences between the various types of pairs of links, their variable
intensities and the probability of finding the associated relationship within the system.

94



7.3 The “social fluid”

a) b)

c) d)

-1 -0.8 -0.6 -0.4 -0.2 0
0

0.1

0.2

0.3

0.4

0.5

0.6

fr
eq

ue
nc

y

Figure 7.6: Distribution of the parameters associated with the linear model with
reciprocity and clustering - The figure represents the distribution of the values associated
with the linear model with reciprocity and clustering for the maximum likelihood parameters
for all the groups in the five waves. Each panel corresponds to the distribution of a different
parameter: a) λ, b) µ, c) β and d) γ.

It is also important to note that both models show the same distribution of the parameter
γ associated with the clustering term, as it is obtained empirically by comparing the observed
and simulated distribution of triangles for each group, which does not vary between models.
The values of this parameter are all within a similar range. This parameter presents a positive
value in all the groups, which indicates that it appears more significant clustering than what
is obtained when randomly distributing all pairs of links in the system. Moreover, this value
is higher in those groups where the difference between the observed number of triangles and
the expected one is larger.

7.3.2 An alternative representation to networks

Networks have traditionally been the tools used to sketch social relationships because they
allow us to describe individuals (nodes) and relationships (edges) that appear between them.
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Furthermore, the fact that in networks links can be of different types, such as directed,
weighted or signed, enables us to represent all these relationships more accurately (if they are
reciprocal or non-reciprocal, friendships or enmities, with varying intensity...). In recent years,
techniques have even emerged that allow for studying networks with multiple layers and their
temporal evolution. These approaches provide a deeper understanding of the complexities and
dynamics of social relationships, as they account for changes over time and the multifaceted
nature of relationships between individuals. However, the techniques we have used in this
thesis to analyse social structures differ significantly from the traditional over widely used in
networks and are closer to those employed to analyse physical systems, such as fluids.

Tamarit (2019) does a preliminary discussion in this direction in his PhD thesis. He
argues that liquids or gases can also be studied using network theory. At a specific time
stamp, a snapshot of the system can be taken to determine the positions of the different
particles within it and identify the edges involving these particles based on the distances
between them. This snapshot provides a static view of the relationships and interactions
at that particular moment, offering insights into the structure, connectivity and relative
positioning of the particles in the system. We can gain insights into the system that help
us understand how the particles behave within it by repeating this process multiple times.
However, we know that these techniques will always limit our understanding of the system
and that statistical mechanics provides a much more comprehensive and practical theoretical
foundation for describing such systems. It allows us to analyse the overall behaviour and
properties of those systems by considering the collective dynamics of particles rather than
focusing on individual snapshots, and takes into account the probability distributions of
particle states and interactions, leading to a deeper understanding of the system’s behaviour,
its equilibrium properties or its response to external influences.

We believe that social systems could be treated as a similar case. Although networks may
be a valuable tool for understanding their structure, as evidence to date, they are insufficient
to capture the full complex and intricate nature of social systems. As an alternative, we
propose what we call the “social fluid”, which consists of ensembles of “social atoms” that
interact with each other, much like physical particles do in a fluid. The results discussed
in the subsection 7.3.1 clearly reinforce this idea. The fact that the distributions of the
parameters exhibit that characteristic form around a central value, with a small standard
deviation, suggests that all the networks whose data we have compiled are just realisations
of an interacting system at “thermal” equilibrium. Despite the differences and variations in
social relationships at the microscopic level among different constituents, the general structure
is maintained at the macroscopic level. Again, this is reminiscent of what we find when
studying the interaction of particles in a gas or a fluid.

This similarity suggests that the “social fluid” approach could be a powerful way to
analyse and understand social systems. This approach offers a novel perspective on social
relationships by leveraging concepts and methodologies from the domain of physics to gain
insights into the underlying structure and dynamics of social systems. In this way, we can
better capture the emergent properties and equilibrium states that arise from the complex
interplay of individual relationships. This perspective may open up new avenues for research
and provide a more comprehensive framework for studying social systems, their properties
and their dynamics.
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7.4 Discussion

In this chapter, we have re-evaluated models for the analysis of social structure when a term
associated with clustering is introduced into the Hamiltonian, allowing us to fix the number
of triangles with all reciprocal links that appear in the system. Higher-order interactions that
involve more than two individuals emerge when adding this term. This precludes the pairwise
factorisation of the grand partition function and complicates the calculation of analytical
expressions for the parameters and their confidence intervals.

First, we study the pairwise model with clustering, which better captures the structural
properties of real-world networks compared to the model without the clustering term. The
parameters associated with non-reciprocal pairs of links remain unaltered between the two
models, while a correction term appears for those associated with reciprocal pairs of links.
Regarding the differences between groups, the variations in values of the parameters are
related to the density of relationships. The groups with a lower density of relationships also
exhibit smaller changes in the parameters. Moreover, the values of the parameters for the
pairwise model with clustering associated with reciprocal pairs of links are found to be lower
for all the groups than in the former model. This is because the term associated with triangles
with three reciprocal links enhances the presence of these links to satisfy transitivity. In this
way, we manage to maintain the density and increase transitivity, making the probability
distribution of the system more accurately represent reality. However, once again, this model
does not provide us with any information about the factors that shape the parameters. For
this reason, we study the linear model with reciprocity and clustering, in order to fill this
gap.

The analysis of the parameters of the linear model with reciprocity and clustering provides
us with results in two directions. On the one hand, by comparing the values of the parameters
obtained with those associated with the model without the clustering term, we observe that
the values of the parameters λ, associated with the total number of relationships maintained,
and µ, associated with the variable cost based on intensity, barely change between both
models. The only parameter whose value differs is the parameter β, associated with the
reciprocity of relationships. The variation is correlated with the density of pairs of links in
the system. This result suggests that the addition of the clustering term helps to capture
more complete aspects of the system, leading to a more accurate representation of real-world
networks. This term encourages the presence of reciprocal pairs of links, so the value of the
parameter associated with the reciprocity must be lower in order to preserve the system’s
density. On the other hand, comparing the results with those of the pairwise model with
clustering, we observe that the adjustments appear to be very similar to the ones without the
clustering term, further supporting the idea that including this term does not significantly
affect the overall conclusions and relationships between the parameters. Therefore, we can
still explain the form of the parameters using only three factors: the two aspects derived from
the “social atom” concept and reciprocity.

Moreover, to confirm the validity of the insights from our models, we have conducted
Monte Carlo simulations to compare their results. We have used the Metropolis-Hastings
sampling method because it is a powerful technique for exploring complex parameter spaces
and estimating their posterior distributions when analytical solutions are not feasible. This
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technique helps us to validate the model, allowing for a more robust comparison of results and
a better understanding of the underlying social network structure. The agreement between
our method and the simulations reinforces the validity of the models and their associated
parameters, providing confidence in the insights derived from their analysis. This has two
primary implications. The first implication is model validation. Bayesian methods overcome
the limitations posed by the intractability of the analytical calculations and provide robust
parameter estimations and uncertainty quantification. The second implication corresponds
with methodological versatility, as the analytical method and the Monte Carlo simulations
yield similar results, while the former is computationally more efficient. Therefore, the use of
our method can be beneficial in studying social networks because it offers a balance between
computational efficiency and accuracy in capturing the complexities of the system.

Finally, we have questioned networks as the most appropriate method for schematising
and understanding social relationships. As an alternative, we propose the “social fluid”. This
approach, inspired by the concepts of statistical mechanics, allows for a more comprehensive
examination of the underlying structure of social systems. We can better understand the
emergent properties of social systems by considering them as ensembles of “social atoms”
interacting. This includes their collective behaviour, equilibrium states and responses to
external stimuli or changes. This perspective may provide deeper insights and help to develop
more effective models for studying social systems. Therefore, we firmly believe that the “social
fluid” approach offers a promising direction for future research in social network analysis by
borrowing concepts and methodologies from statistical mechanics.
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Beyond humans: application to
primates
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8

The complexities of social
interactions in chimpanzees

Human and non-human primates exhibit complex relational structures that govern their social
interactions. Understanding these structures is essential for comprehending the evolutionary
underpinnings of social behaviour and cognition in non-human primates. In this chapter,
we pretend to gain an understanding of this topic by extrapolating the continuous model
that explains the layered structure of the ego-networks in humans to chimpanzees. With this
in mind, we explore the world of chimpanzee social networks. Our objective is to uncover
the underlying organisational principles that guide the formation and maintenance of social
bonds in chimpanzees. We will analyse whether this structure is consistent with that of
humans, given the inherently limited resources of cognition and time might apply to both
species alike.

This research is based on meticulous observations of grooming behaviour among four
different groups of chimpanzees residing in the Chimfunshi Wildlife Orphanage in Zambia.
Grooming, a characteristic social activity for chimpanzees, serves as a reliable proxy for social
bonding and allows us to gain insight into their relationships. Through this analysis, we will
not only illuminate the remarkable similarities between the social organisation of chimpanzees
and humans but also deepen our understanding of the factors that have shaped the social
relationships among these primates.
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8.1 Data description

8.1.1 Environment description

The Chimfunshi Wildlife Orphanage provides a naturalistic habitat for chimpanzees with
large forested enclosures ranging from 20 to 77 hectares of grasslands and forests, which are
similar to the natural habitat of wild chimpanzees (Ron & McGrew, 1988). The enclosures
provide ample space for the chimpanzees to engage in species-typical behaviours, including
natural fission-fusion dynamics (van Leeuwen et al., 2019). The chimpanzees are divided
into four groups of different sizes and live in separate enclosures with no possibility even of
inter-group visual encounters, except for a small section between Groups 3 and 4. Although
they cannot see each other, the groups live within hearing distance of each other, covering
a distance of about 3km between environments. The four groups comprise wild-born and
Chimfunshi-born chimpanzees from various phylogenetic and geographic backgrounds, with
multiple subspecies. The chimpanzees engage in natural foraging behaviour, primarily on
fruiting trees, but also consume insects and small mammals present in their enclosures. They
also receive two daily feedings of fruits and vegetables to supplement their diet. Moreover,
they construct their own nests in the woodland enclosures, where they sleep at night (for
further details, see van Leeuwen et al. (2018) and van Leeuwen et al. (2022)).

Figure 8.1: Aerial view of the Chimfunshi Wildlife Orphanage - The figure represents
the aerial view of the Chimfunshi Wildlife Orphanage in Zambia. The habitat is divided into
four different groups with no possibility even of inter-group visual encounters, except for a small
section between Groups 3 and 4. The data presented in our study shows slight variations in the
number of chimpanzees living in each group (see subsection 8.1.3) compared to the information
provided in the figure, which is sourced from van Leeuwen et al. (2022).
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8.1.2 Data collection

The grooming data was collected as part of a larger and ongoing data-collection effort at
Chimfunshi to assess chimpanzee sociality over time (van Leeuwen et al., 2018). Trained
staff members conduct focal follow daily with an every-minute scan sampling technique in
the ZooMonitor application (Lincoln Park Zoo, 2020). This is a protocol implemented and
maintained by our collaborators Katherine Cronin, Daniel Haun and Edwin van Leeuwen
since 2015. The protocol comprises 10min focal follows in which ten scan points are scored.
On each scan, all instances of proximity (<1m), grooming, social play, and aggression by
the focal individual are scored, including the identities of the interaction partners. Data
were semi-randomly collected from the fence line, restricted by visibility. Our collaborators
work in a sanctuary where chimpanzees have ample space to retreat into the forest. As per
sanctuary stipulations, they do not enter their enclosures ever, which prevents them from
following the chimpanzees into the forest. Hence, the next best thing is to divide the fence
line into different sections and start the observations randomly from these different sections,
also randomising the direction (clockwise vs. counter-clockwise) in which the search for
chimpanzees commences (Cronin et al., 2014; van Leeuwen et al., 2012). Upon encountering
a chimpanzee within eye-sight, behavioural observations on the respective individual begin,
using established focal follow protocols. After finishing the respective focal follow, the nearest
chimpanzee is searched to start the subsequent focal follow. Overall, if the focal follow lasted 5
minutes or less (i.e., due to visibility challenges), the focal follow is discarded. The observation
efforts start each day at a different location, upon which the first-seen chimpanzee is chosen
as the focal. The observation efforts were distributed across the day: typically, for each of
the groups, one hour was collected between 7:00 am-11:00 am and one hour between 2:30 pm
and 5:00 pm, after which the chimpanzees retreat into the forest to spend their nights there.
All individuals were sampled except for dependent offspring clinging to their mothers.

8.1.3 Data curation

Our study focuses on grooming behaviour due to the well-established connection between
grooming and the quality of dyadic relationships (Watts, 2002). Furthermore, we cleaned
the grooming data, collected over a period of four years (from 2015 to 2019), to be more
consistent and reliable. To analyse this data, we considered a grooming interaction to have
occurred when an individual was observed grooming another during the 10-minute focal
follow, regardless of whether the grooming action occurred throughout the entire period
or only a fraction. This approach enabled us to standardise the criteria for identifying a
grooming interaction and reduce data uncertainty, as grooming bouts often start or end
outside the focal observation period. As an alternative approach, we also assigned a weight
to each grooming bout based on the number of minutes it occurred within the observation
window. Data analysis using this criterion yields results in excellent agreement with the
previous one presented here, so we retained the first procedure as it is standard in the field.

We are studying four different groups of chimpanzees (see van Leeuwen et al. (2018)
for details), with varying population sizes (groups 1-4, n=26, 60, 11, 14, respectively). The
analysis is individual for each chimpanzee. For this reason, before constructing the networks,
we filtered chimpanzees that had groomed less than five individuals in the study period,
although we still considered grooming actions directed toward them. This condition does not
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influence the conclusions and is based on the fact that five is the size of the core of grooming
ego networks in primates (Dunbar et al., 2018). Having less than five other individuals
would lead to large errors in the fitting procedure, making the analysis results meaningless
for that specific chimpanzee. Most of the individuals filtered out due to this criterion have
been observed less than 20% of the mean number of observations obtained for the population
(∼ 300 times). This criterion also excluded a few others with more observations, typically
immature individuals who groom very little and are still very dependent on the actions of
their mothers.

Using this approach, we selected for the analysis only chimpanzees who were aged nine
years or older at the end of the observation period, excluding infants and individuals who died
between 2015 and 2019. Consequently, after curating the data, the number of individuals
included in the analysis is reduced (groups 1-4, n=21, 32, 10, 10, respectively). Some detailed
information regarding each chimpanzee’s demographics is provided in subsection G.1.1. This
restriction homogenises the population of chimpanzees studied and allows us to extrapolate
the results to the case of adults.

8.2 The model

8.2.1 Theoretical background

To provide some context for the analysis of the ego-networks’s structure in chimpanzees
presented below, it is helpful to summarise the main findings of the theoretical approach
to the continuous layered structure presented by Tamarit et al. (2022). This mathematical
model is the formalism we use here to study the social structure of chimpanzees.

In the discrete case, L is defined as the total number of relationships in an ego-network and
σ is the average cognitive cost of a relationship. Relationships belong to r different categories,
each of them bearing a different cost smax = s1 > s2 > · · · > sr = smin. As described in
detail by Tamarit et al. (2018), using a maximum entropy approach, it is possible to obtain
the probability that a given relationship of the ego-network belongs to category k as

pk = Z−1
r e−µ̂sk , Zr =

r∑
k=1

e−µ̂sk , (8.1)

where µ̂ is fixed by letting σ be the expected cost σ = E(sk). Assuming a linear distribution

of costs sk = (smax − smin)
k − 1

r − 1
, with k = 1, ..., r, we obtain

t ≡ smax − σ

smax − smin
= eµ

(r − 1)erµ − re(r−1)µ + 1

(r − 1)(erµ − 1)(eµ − 1)
. (8.2)

Using this probability distribution, we can calculate χk, which is the expected number of
relationships with costs larger than or equal to that of category k (i.e., the size of the social
circles, with k = 1 corresponding to the innermost one), as

χk =
ekµ − 1

erµ − 1
, (8.3)
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where µ ≡ µ̂(smax − smin)/(r − 1). It can subsequently be shown that, for large values of µ,
the scaling ratio, i.e., the size of one circle divided by the previous one, behaves approximately
as

χk+1

χk
∼

{
eµ, µ → ∞,

1, µ → −∞.
(8.4)

As discussed by Tamarit et al. (2018), this result predicts the known regime for values of
µ > 0, in which the circles satisfy an approximate scaling relation; in particular, for µ ≈ 1,
the expected value of 3 found on empirical data by Dunbar et al. (2015) is recovered. On the
other hand, it also predicts a so-called “inverse” regime when µ < 0, in which most of the
relationships are in the closest circle. This second behaviour had not been described before
this publication, where it was confirmed using data from small migrant communities in Spain.

In the continuum approach presented by Tamarit et al. (2022), we can take the continuum
limit (namely r → ∞, µ → 0) in Equation 8.2 with η = µ(r − 1) constant. In terms of this
new parameter η,

t ≡ smax − σ

smax − smin
=

eη

eη − 1
− 1

η
, (8.5)

and thus η = η(t) is a function of the parameter t defined in the equation above, which
represents a normalised measure of the cost of a relationship (t = 0 corresponding to the
highest cost and t = 1 to the lowest one). Once η is determined, the fraction of relationships
with a normalised cost not larger than t is given by

χ(t) =
eηt − 1

eη − 1
, (8.6)

an expression derived from Equation 8.3 in the continuum limit. This is the curve that should
fit the data. Notice that each individual will be characterised by its own value of η.

The scaling ratio of the circles can be obtained from the asymptotic behaviour, for large η,
of the logarithmic derivative of χ(t), the fraction of links whose “distance” to the individual
is not larger than t, which turns out to be

χ̇(t)

χ(t)
=

ηeηt

eηt − 1
∼

{
η, η → ∞,

0, η → −∞.
(8.7)

In this approach, the separation between the normal and the inverted regimes also takes
place at η = 0. Finally, to connect the two formalisms, we can use the fact that the discrete
version of the left-hand side of Equation 8.7 is (χk+1 − χk)/χk∆t. Then, a comparison
between Equation 8.4 and Equation 8.7 in the ordinary regime leads to η∆t ≈ eµ − 1. Since
∆t ≈ (r − 1)−1, we obtain the equivalence

η ≈ (r − 1)(eµ − 1). (8.8)

Interestingly, this result shows that the value of µ in the discrete model depends on the total
number of layers r. This fact had not been noticed in previous research because of the implicit
assumption of the existence of r = 4 layers in the structure of ego-networks. Setting r = 4
in Equation 8.8 and assuming, as empirically observed by Dunbar et al. (2015), that eµ ≈ 3,
we then find η ≈ 6.
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8.2.2 Parameter estimation

With the above approach in mind, given a dataset of relationships with continuous weights,
the scaling parameter η can be estimated using the maximum-likelihood method. Tamarit
et al. (2022) show that such an analysis leads to an expression equivalent to Equation 8.5
to connect the range of data weights to the theoretical parameters η and σ. Thus, for an
empirical dataset, we can find the values of smax and smin, which are the largest/smallest
possible costs an individual can invest in a relationship, respectively. Then, the value of σ,
which is the total cost per item, is determined by

σ = s̄ =
1

L

L∑
i=1

si, (8.9)

where si are the costs associated with each of the relationships, measured in the same units as
smax and smin, and L is the total number of relationships that an individual has. Once these
variables are fixed, the parameter η, characterising each individual’s ego-network structure,
can be estimated numerically by solving Equation 8.5. Moreover, an expression for the 1−2δ
confidence intervals associated to the parameter η can be found (see Tamarit et al. (2022)
for details). We choose a 95% confidence interval for this work using δ = 0.025.

8.3 Results

The amount of grooming between primates is often used to indicate their relationship quality
(Massen et al., 2010). We have applied the formalism presented in section 8.2 to the grooming
data of chimpanzees residing at the Chimfunshi Wildlife Orphanage in Zambia for four years,
between 2015 and 2019. Chimpanzees live in four distinct populations at this sanctuary,
with no interaction occurring between individuals from different groups. Each group lives in
different environments with identical conditions; thus, they only differ in size. This allowed us
to analyse the grooming behaviour within each population and investigate the social structure
of chimpanzees within their respective groups.

Considering the theoretical approach, given a dataset of relationships with continuous
weights, the scaling parameter η can be estimated using the maximum-likelihood method.
The basic idea of the fitting procedure is as follows: for every chimpanzee, we have the list
of other individuals groomed and how often the focal chimpanzee was observed grooming
each of them. From these data, we can obtain the range of grooming investment allocated
across different partners and the total number of observations devoted to these activities. We
can then get the corresponding η parameter characterising the chimpanzee’s distribution of
grooming times, and by inserting the value of η in Equation 8.6, we have the function χ(t)
describing the whole distribution.

It is important to note that this methodology differs significantly from the commonly
used approach in primatology, which involves regressing the response variable (e.g. grooming
times) onto socio-demographic factors such as age, sex, and kinship. Rather than regressions
with additional factors, we employ an analytical formalism to fit the distribution of grooming
behaviour observed in the chimpanzees. It is noteworthy to remark that this model does not
explicitly depend on any individual socio-demographic factors, which only enter indirectly
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a) b)

c) d)

Figure 8.2: Examples of fittings for a chimpanzee of each group - The figure represents
selected chimpanzees for which there were more available data points in each group. Selected
individuals are: a) Brenda - Group 1, b) Little Jane - Group 2, c) E.T - Group 3 and d) Bobby -
Group 4. Each figure represents χ(t), the fraction of links whose “distance” to the individual is
not larger than t. Red dots are actual data, representing the number of individuals who receive
no more grooming than a fraction t of the maximum. The blue dashed line is the fitted function
χ(t), and the blue-shadowed region is the confidence interval.

through the capacity to maintain relationships (i.e., the total amount of time devoted to
grooming). Consequently, the model provides a different kind of information. Finally, a
limitation of our approach is that chimpanzees with very few observed relationships cannot
be included in the study, despite reasonable sampling effort, due to the inaccuracies in the
corresponding fits to our analytical expressions, as explained in detail in section 8.1.

The function χ(t) is used to determine the structure of the continuous circles in the
grooming networks of individual chimpanzees, as exemplified in Figure 8.2. Plots of the fits
for all individuals in the study can be found in subsection G.2.2. While the fits are not
perfect, most data points lie within the 95% confidence interval for the fitted distribution,
with those not being close to it. Moreover, some fits are better or worse than others, but
the ones shown in Figure 8.2 were selected because they had more data for fitting. It is
important to remember that the chimpanzee data are relatively noisy because the animals
were observed in large, naturalistic enclosures with varying levels of visibility, and multiple
observers collected data over a four-year period. Despite these challenges, the fits can be
considered very good and are similar to those reported by Tamarit et al. (2022). These
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a) b)

c) d)

Figure 8.3: Histograms for the parameter distribution - The figure represents histograms
for the η parameter in each group: a) Group 1, b) Group 2, c) Group 3 and d) Group 4. The red
dashed line represents the regime change, from the standard to the inverse one at η = 0, and the
blue dashed line represents each group’s mean value.

results suggest that the continuum theory accurately describes how a chimpanzee distributes
its grooming time to others.

These findings have important implications for our understanding of social behaviour in
primates. By showing that the continuum theory is a good description of how chimpanzees
distribute their grooming time, our study contributes to introducing the layered structure
that shapes social networks in human groups to primates. Furthermore, our approach offers
a novel way to interpret social behaviour less dependent on individual socio-demographic
factors than all other traditional methods.

We summarise the analysis of the parameters characterising all individuals studied in
Figure 8.3. The parameter η obtained from the fits has a mode of approximately η = 4, with
a mean value close to the mode for all groups except Group 2, which is closer to 6. The range
of values for η falls within the expected range, and the mode suggests that, typically, the
scaling ratio of the circles for chimpanzees is somewhat smaller than for humans, except in
Group 2. We believe that this difference arises because Group 2 is significantly larger than
the other groups before and after filtering the data. This larger size allows group members
to develop more complex social relationships involving shorter grooming intervals with more
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a) b)

Figure 8.4: Relationship between the fittings and the structure of ego-networks - The
figure represents the relationship between the χ(t) functions and the structure of the ego-networks
for different individuals: a) Genny - Group 1 (η = 10.3) and b) Kit - Group 4 (η = 0.14). The
reason for selecting these two chimpanzees is that they present the highest and lowest η parameter
values in the entire dataset. The arrows connect the focal individual with those it grooms, while
the width of the arrows represents the total amount of time devoted to grooming a specific
chimpanzee. Orange ovals represent females and blue ones males.

individuals, leading to higher values of η and more low-intensity relationships. These results
are consistent with previous research indicating that social structure in primate groups can be
influenced by group size (Massen et al., 2010). Moreover, they support that the distribution
of grooming behaviour in primate groups can be described by a layered continuum structure,
as proposed by Tamarit et al. (2022) for humans.

Furthermore, the histograms presented in Figure 8.3 reveal that none of the fits yielded
negative values of η, which would indicate an inverted structure of relationships as observed
in human communities of migrants by Tamarit et al. (2018). However, some values of η
are close to zero, which means they lie on the border between the two regimes and should
therefore result in a higher fraction of individuals in the inner part of the distribution χ(t).
As expected, these values primarily emerge in groups where the population size is smaller
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(i.e., Group 3 and Group 4). In these groups, chimpanzees have fewer relationships but
devote more grooming time to each other, likely contributing to the observed distribution of
the parameter values.

These previous hypotheses are also supported by the results presented in Figure 8.4, which
illustrates the relationship structure of the ego-networks and the χ(t) fitted function for two
contrasting individuals. One example is Kit, whose η = 0.14 indicates an intermediate
structure between the two regimes. Kit spends a considerable amount of time grooming
primarily Kambo, Commander, Bobby and Val, as well as other chimpanzees. This finding
is consistent with the fact that Kit is in Group 4, the group where fewer individuals are
available to groom. The opposite extreme on the η scale is illustrated by Genny, in Group 1,
with η = 10.3. Genny’s grooming behaviour is typical of the normal regime, with a significant
amount of grooming directed toward her baby and some toward her other daughter Gonzaga,
and minimal grooming for other individuals. This outcome is expected, as Group 1 has many
more chimpanzees that Genny can interact with.

Overall, this analysis provides insights into the social structure of chimpanzees living
in different groups and contributes to our understanding of the continuum theory. It also
highlights the similarities between the social structures of chimpanzees and humans, despite
the substantial differences between the two species.

8.4 Discussion

The results of our study indicate that chimpanzees organise their grooming time in a way
that aligns with the continuum resource allocation theory applied to humans by Tamarit et
al. (2022). Essentially, chimpanzees allocate their grooming time among group members in
a manner similar to how humans distribute their attention to individuals when relationship
intensity is treated as a continuous variable. These findings are consistent with prior research
suggesting that grooming is a resource allocation problem (Barrett et al., 1999; Dunbar,
1992a; Fruteau et al., 2011; Kaburu & Newton-Fisher, 2015; Waal, 1997). Similar to humans,
some chimpanzees invest a large amount of grooming time in a few other individuals, mainly
when the group is small, while others distribute smaller amounts of grooming time among
many other individuals. In other words, chimpanzees exhibit exactly the same two allocation
strategies observed in human relationships, and inverted structures are more likely in smaller
groups. These findings confirm grooming as a way of expressing friendship in non-human
primates (Silk, 2002) and suggest that different social strategies may be at play among
chimpanzees, depending on their immediate group structure. Our results demonstrate that
chimpanzees in larger groups employ their social capital differently than those in smaller
groups, similar to how humans behave (Bernard & Killworth, 1973; Tamarit et al., 2018).
This suggests that chimpanzees can adapt flexibly to their social environment, distributing
social resources widely among group members when necessary but investing more intensely
in a few others when possible. Additionally, any social forces influencing group cohesiveness
(e.g., whether a group forms a whole or a modular, sub-group structure) indirectly shape a
primate’s resource allocation strategy. This connection is currently only known from the field
of human sociology (Wellman & Berkowitz, 1988).
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The key finding of our study is that chimpanzees organise their affiliative relationships in
a manner that mirrors the pattern we have previously described for humans. More precisely,
the mean group sizes of all primate species follow the same pattern observed in real human
ego-networks (Dunbar et al., 2018), and some primate species’ global network structures also
exhibit similar internal anatomies (Dunbar & Shultz, 2021; Hill et al., 2008; Kudo & Dunbar,
2001). By analysing grooming data using the continuum approach, we demonstrate that
ego-networks in chimpanzees exhibit a specific circle-based organisation. Understanding the
similarities in the organisation of social networks across different primate species can provide
important insights into the evolution of social behaviour. By comparing the patterns of
social organisation in humans and chimpanzees, we can better comprehend the social forces
that shape the behaviour of both species. For example, the flexibility in resource allocation
strategies observed in chimpanzees suggests that they are able to adapt their social behaviour
to different group sizes and social environments, just as humans do. Furthermore, our findings
support the idea that grooming serves as a means of expressing friendship in non-human
primates, highlighting the importance of social bonding in the lives of these animals.

It is important to note that while our study focused on chimpanzees, other non-human
primates also exhibit complex social behaviours and may have similar patterns of social
organisation. Therefore, future research should explore whether the continuum approach can
be used to analyse social networks in other primate species and provide a more comprehensive
understanding of the evolution of social behaviour. Future research could use behavioural
data from other primate species to determine whether the continuum analysis of ego-networks
reveals a consistent pattern in other species living in large social groups.
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9

Conclusions and future work

In this chapter, we present a synthesis of our research findings within the interdisciplinary
field of social physics, highlighting the key contributions derived from our investigation. By
examining the structure and dynamics of human social relationships through the lens of social
physics, our comprehensive analysis not only consolidates the outcomes of the various research
stages but also emphasises their significance in the broader context of the study. Furthermore,
we reflect on the limitations and challenges encountered throughout the research process,
underscoring the areas that warrant further exploration.

Moreover, we discuss the future research directions that have emerged as a result of our
findings, outlining potential avenues for extending and refining our work. These opportunities
encompass various aspects of the research domain, which include different methodologies,
applications and interdisciplinary collaborations. With this in mind, we aim to provide a
roadmap for future investigations, fostering continued growth and development within the
field.

Finally, we discuss the broader implications of our research in social physics, considering
its potential impact on practice and society at large. We underscore the relevance and
importance of our work beyond academia, demonstrating how our findings can contribute
to tangible improvements in various sectors, especially in education by preventing important
issues such as bullying. Therefore, this chapter serves as a culmination for this thesis, offering
a reflective perspective on the progress made, the challenges faced and the exciting prospects
that lie ahead in the realm of understanding the structure and dynamics of social relationships.
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9.1 Conclusions

9.1.1 Data-driven perspective

In the first part of this thesis, we have tackled the problem of understanding the structure
and dynamics of human social relationships using a data-driven approach. Additionally, we
have used different methods and techniques to uncover hidden patterns in social networks,
ultimately providing valuable insights into the complex nature of human interactions.

In chapter 2, we have examined the evolution of social relationships among high school
students by conducting a longitudinal study consisting of five waves of surveys during two
consecutive academic years. Our analysis discovered a consistent structure in the number of
reported friends and best friends across the five waves. The innermost circle of friendships
(best friends) demonstrated more stability than the outer circle (just friends), which supports
the concept of Dunbar’s circles in the organisation of social relationships and emphasises the
critical role of the different intensities in maintaining stable connections. Moreover, our
findings indicate that enmities were much less frequent and more volatile than friendships,
with many negative relationships disappearing from one survey wave to the next. All these
results do not depend on different factors, such as course, age or gender, which highlights
their consistency.

Apart from that, we also observed that sharing the same class had a significant impact on
the formation and stability of relationships among students. Our findings showed that when
students were separated into different classes between academic years, they tended to lose
a substantial proportion of their previous friendships, and these lost connections were often
replaced with new ones formed with new classmates. Furthermore, our study revealed that
reciprocal relationships remained remarkably consistent across different waves, around 60%,
with gender homophilic friendships exhibiting slightly higher levels of reciprocity compared
to cross-gender ones. These results not only reinforced the importance of frequent interaction
in maintaining or weakening relationships but also led us to continue supporting the “social
atom” metaphor. From this, we suggest that the layered structure of social relationships may
be studied as statistical-mechanical systems in equilibrium, with each relationship possessing
an associated “binding energy”, which determines the probability of appearance associated
with each link.

In chapter 3, we have investigated the role of negative relationships in social networks
and community structure. We analysed the community structure at the complete school
level and also when considering each group individually. In this way, we were able to uncover
interesting patterns and dynamics. We observed a distinct evolution of gender segregation
over time in the communities, with negative relationships playing a critical role in exposing
these gender-based divisions within the network. Furthermore, the size of each community
eventually stabilised at around 12 individuals, which intriguingly coincides with the size of the
second Dunbar’s circle. This finding reinforces the idea that human social networks tend to
naturally organise around specific numbers, suggesting that there may be innate constraints
on the size of stable communities.
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Moreover, our research also remarked on the significance of the social balance theory
in understanding the stability of triadic relationships within social networks. This theory
posits that triangles with an odd number of negative links tend to create a kind of cognitive
dissonance, rendering them unstable and likely to disappear over time. By analysing the
data and comparing it with a recently proposed null model, we have concluded that there is
indeed a strong inclination towards minimising unbalanced configurations.

Finally, in chapter 4, we have shifted our focus from scientific research to the development
of an online application designed to streamline data analysis and provide valuable insights
into social dynamics within schools. Initially intended for research purposes, we soon realised
the application’s potential to assist school staff in anticipating and addressing issues, thereby
improving the social atmosphere. We granted staff full access to the application and created
a demo user account for readers to explore its features and potential benefits.

More in detail, the application comprises ten panels, with three key panels discussed
in detail due to their usefulness in facilitating targeted interventions: interactive networks,
interactive ego-networks and interactive friendship vs. enmity dispersion. All these panels
provide valuable insights into the social structure, individual students’ relationships and
potential sources of conflict. We also discussed feedback from the guidance team leader, Silvia
Ibáñez Morcillo, which has been invaluable in demonstrating the real-world impact of our
application and leading to further improvements and refinement. Therefore, our collaborative
efforts have resulted in a tool that not only aids our research but also supports informed
decision-making and proactive measures to address social issues within the school community.

9.1.2 Model-driven perspective

In the second part of this thesis, we have employed techniques from statistical mechanics to
explain the structure of social relationships. Through this alternative approach, we have been
able to explore new viewpoints that enable us to uncover new details about human social
behaviour.

In chapter 5, we have developed a model to explain the structure of social networks by
analysing interactions between their members. We built upon the “social atom” concept and
used exponential random graphs, considering the pairwise approximation for the analysis.
We started by exploring the pairwise model, which characterises the stability of pairs of links
and defines the probability of their appearance in the system. However, the pairwise model
lacks information about the factors shaping the parameters. To address this limitation, we
introduced the linear model with reciprocity, which takes into account the limited cognitive
cost of maintaining relationships, their variable intensities, and the fact that there is a high
level of reciprocity in these relationships. This model effectively fits the maximum likelihood
values from the pairwise model, suggesting that social network structures can be explained
using these three variables.

We then aimed to validate the pairwise approximation by examining reciprocity and
transitivity, which are characteristic macroscopic properties observed in real-world social
networks. We have demonstrated that the first condition is satisfied, but the second one is not.
For this reason, we have added a term related to transitivity in the Hamiltonian. However, this

117



9. CONCLUSIONS AND FUTURE WORK

brought the model to a new level of difficulty because the grand partition function becomes
intractable for systems with a large number of individuals. We attempted to address this
issue by developing a transformation of the parameters to simplify the Hamiltonian and finally
mapped it to Strauss’s model of transitive networks. This model exhibits a phase transition
and becomes sensitive to small changes in the control parameter. This is the reason why its
validity as a model to describe real networks has been questioned.

With this result in mind, in chapter 6, we have tackled Strauss’s model of transitive
networks using density-functional theory, a technique borrowed from the statistical physics
of lattice gases. Our solution demonstrated greater accuracy in describing small systems
than more traditional mean-field approaches and revealed that the canonical ensemble is the
natural description for accessing intermediate states. The model exhibits a first-order phase
transition, with low-density and high-density phases akin to gases or liquids. To conclude,
we demonstrated that Monte Carlo simulations using Kawasaki dynamics could help access
the intermediate states.

Moreover, we have analysed how our density-functional formalism can also be applied to
systems with link- or triangle-dependent interaction constants, for example, allowing for the
study of homophilic interactions. This analysis showed that homophily increases the stability
of uniform networks by raising the critical point value. While further studies are needed to
characterise such systems fully, our method offers a systematic approach to extending other
ERG models. In this way, the main contribution of this formalism is that it can be applied
to various network models and extended to other complex systems beyond network science,
ultimately shedding light on their rich and complex behaviour.

Finally, in chapter 7, we have re-evaluated the models for the analysis of social structure
by introducing a clustering term into the Hamiltonian, which allows us to fix the number of
triangles with all three reciprocal links in the system. As explained in chapter 6, this addition
results in higher-order interactions and complicates the calculation of analytical expressions
for the parameters and their confidence intervals. We first examined the pairwise model
with clustering, which captures better real-world network properties than the model without
clustering. However, it does not provide insights into factors that shape the parameters.
Therefore, as we did with the pairwise model, we studied the linear model with reciprocity
and clustering to fill this gap. Analysing the parameters of this model suggests that their
form can still be explained using only three factors (apart from clustering): the two derived
from the “social atom” concept and reciprocity.

We have also conducted Monte Carlo simulations to validate our models. The agreement
between our method and simulations supports the validity of the models and their associated
parameters, offering confidence in the insights derived from their analysis. Moreover, our
method provides a balance between computational efficiency and accuracy in capturing the
complexities of the system, making it an advantageous alternative to costly Monte Carlo
simulations for studying social systems.

To conclude, we have proposed the “social fluid” approach as an alternative paradigm
to that of networks for understanding social relationships. Inspired by statistical mechanics,
this approach allows for a more comprehensive analysis of the underlying structure of social
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systems by considering them as ensembles of interacting “social atoms”. It is our opinion
that this new perspective may help develop more effective models in the future.

9.1.3 Beyond humans: application to primates

Finally, in the third part of this thesis, we have extended the analysis to non-human primates.
We have used data from chimpanzees living at the Chimfunshi Orphanage in Zambia, and
by applying the models we have developed for humans, we have demonstrated that the
organisation of their social relationships is very similar.

In chapter 8, we have demonstrated that chimpanzees organise their grooming time in
a way that aligns with the continuum resource allocation theory applied to humans. This
suggests that, like humans, chimpanzees allocate their social resources among group members
based on relationship intensity. In consequence, these findings support the idea that grooming
is a resource allocation problem and serves as a means of expressing friendship in non-human
primates. Furthermore, we have revealed that all the relationships that form chimpanzees’
ego-networks show a circle-based organisation. Therefore, chimpanzees exhibit similar social
strategies to humans, with their social capital usage differing depending on group size. This
demonstrates the adaptability of chimpanzees to their social environment, investing social
resources widely among group members or focusing only on a few individuals.

9.2 Future work

9.2.1 Data collection and software development

One of the challenges we continue to work on beyond this thesis is the collection of data
through surveys on friendship and enmity relationships among high school students. Although
the results presented here only use the responses collected up to the 2021/2022 academic year,
we have carried out three additional data collection waves at IES Blas de Otero during this
last year, corresponding to the 2022/2023 course. In this way, we have been able to continue
monitoring the responses of the students at this centre. For some of them, we already have
information from up to eight waves spread over three years, which will allow us to characterise
their evolution and determine if there are differences in the structure of their relationships
over time. Additionally, we have started to collaborate with new educational institutions,
both in Spain and internationally, which will allow us to expand the scope of our study, gather
a more diverse and comprehensive dataset and potentially uncover new universal patterns
and trends.

Some of the innovations we have added in the latest surveys we have conducted are
new questions that, besides the ones related to friendship and enmity relationships, allow
us to understand each student’s academic performance better and create a comprehensive
profile of their personality. This is very interesting, as it will help us explore the social
differences that exist between people with complementary personalities and identify potential
correlations between personality traits, academic performance and the nature of their social
relationships. Therefore, we can gain a deeper understanding of how individual characteristics
might influence friendship and enmity dynamics among high school students by examining
all these aspects together. Furthermore, all this innovative information can provide valuable
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insights for educators and school staff to develop more effective strategies for fostering a
positive learning environment and promoting social cohesion among their students.

Moreover, we are collaborating with the company Kampal Data Solutions, a spin-off from
the University of Zaragoza, which also includes members from other universities, especially
Carlos III University of Madrid. This company has developed a new software for collecting
and visualising survey data called Kampal Schools. In the latest data collections, we are using
this software, as it offers a more comprehensive set of functionalities compared to the SAND
tool that we have employed in this thesis. However, for the groups we were already working
with previously, we continue to use SAND since we have no way of connecting student IDs
between the two applications, and we do not want to break down the available time series
data.

The most interesting aspect of the comparison between these two software programs is
that, although they ask exactly the same questions about students’ social relationships, their
order, the structure and the layout of the applications are different. Therefore, we can
compare the results obtained and verify if there is any bias in the application design that
affects the results or, on the contrary, if they are consistent. Our preliminary results show
that the patterns are identical in both cases, suggesting that they are universal, although
we continue analysing them. These findings highlight the robustness of the survey methods
and the reliability of the data collected, which strengthens the validity of our research. As
we continue to use both Kampal Schools and the SAND tool, we can further explore the
intricacies of social relationships in high school students and gain valuable insights from
the data. Furthermore, the collaboration with the company Kampal Data Solutions and
the involvement of experts from different universities incentives a multidisciplinary approach,
which can lead to innovative perspectives and solutions in addressing the challenges associated
with understanding and improving social dynamics among high school students. As our
research progresses, we hope to build upon these preliminary results and contribute to the
development of educational interventions that effectively promote positive social interactions
in high school students.

Finally, we are planning to expand our research beyond high school students. Our research
is progressing well, and we are looking to broaden our scope beyond high school students.
The development, testing, and implementation of our software have been the most challenging
aspects, but once completed, we hope to gain insight into the structure of social relationships
across different age groups. Our initial plan is to involve first-year engineering students in
the project and compare their results with the former ones in high schools. This will enable
us to examine the impact of age on social relationships and identify differences between
various stages, such as high school and university. Furthermore, we can try to understand
the factors that contribute to the formation and evolution of social networks and explore how
the transition between different stages may influence the development and dynamics of social
relationships. This broader perspective can help us identify potential patterns, trends and
key differences that may be specific to certain age groups or educational settings.
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9.2.2 More insights into social structure and dynamics

One of the certainties we conclude from this thesis is that the results we present are a relevant
contribution to the social physics discipline, particularly in what concerns the structure and
dynamics of social relationships. However, the number of open and unanswered questions
that need to be addressed in the future is significant. The data we have collected (and
continue collecting) can be very useful for managing all these questions using a data-driven
approach.

Firstly, we aim at expanding and elaborating on the “social atom” concept. We want to
verify that the patterns we have detected in human social behaviour are still being observed
by using data from the new waves, as well as continue collecting a significant amount of
data over the years that renders statistical support to this new paradigm. The new data we
have gathered correspond to the responses of students who have previously participated in the
study (those who have been in high school for the longest time) and some who have not (those
who are new to the school). Therefore, detecting the same patterns in all responses lends
significant consistency to the results. We plan to analyse the data thoroughly, considering
factors such as age, gender or itinerary of the participants. This will allow us to understand
any potential biases in the data better and to make necessary adjustments.

In particular, we want to focus on the comparison by gender. Some studies suggest
that the way men and women organise their social relationships is different. However, these
conclusions are more related to group-level dynamics than individual-level differences. Our
preliminary results indicate that no significant difference exists between genders, but more
statistics are required to figure out whether there is any gender difference in group dynamics.
Furthermore, by incorporating the new personality data we have collected in the latest waves,
we can achieve a more accurate characterisation of the participants. This will enable us
to examine the potential influence of personality traits on the patterns observed in social
relationships and determine to what extent any differences that may exist between individuals
are linked to them or even predict future relationships based on them.

Another open question arising from the results presented in this thesis is related to the
reciprocity of relationships. We have observed that this property is an essential factor in
determining social structure, and it maintains a constant value of around 60% across all
waves. Moreover, for homophilic pairs of relationships, such as those sharing a group or of
the same sex, the reciprocity rate is slightly higher. However, we are unable to explain the
reason behind the constancy of this value through all the waves. Our goal is to continue
analysing the data, utilising new techniques and developing new models that enable us to
understand this phenomenon. Therefore, we plan to explore possible explanations for the
observed reciprocity rate to determine its implications for social dynamics.

Additionally, we want to delve deeper into the importance of enmities in social dynamics.
One of the most significant findings we have obtained in this thesis, using a data-driven
approach, is that the structure of friendship and enmity relationships is completely different.
While friendships are more abundant and stable over time, enmity relationships are fewer
and less lasting. For this reason, when explaining the structure and dynamics of social
relationships, much more importance is often given to analysing friendships than enmities.
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We have already shown that the community structure within the system considerably varies
depending on whether negative relationships are taken into account or not. However, we
believe that enmities also play a crucial role in explaining the dynamics of relationships,
especially those that disappear from one wave to the next.

Our hypothesis is closely related to the social balance theory. If we consider transitivity in
a signed network, those triangles with a negative number of links are unstable and are likely
to disappear from one wave to the following, as it is not common that an individual will
maintain a friendship with someone who has an enmity relationship with one of their friends.
Therefore, using different data analysis techniques, we aim to study the connection between
the negative relationships present in one data collection and the friendships that disappear
in subsequent data collections to determine if they are related. By doing so, we hope to gain
a more comprehensive understanding of how both positive and negative relationships shape
social dynamics and determine the role of balance in maintaining social harmony.

Finally, another area of research we are working on is determining the structure of personal
networks. The personal network associated with an individual is the network that includes
all the relationships between people who have been identified as a friend by the ego, but
without considering the relationships they maintain with the ego. This type of network
allows us to understand the ego’s environment and the relationships that appear in it. Using
network theory metrics, such as different centralities, number of communities or number
of connected components, along with unsupervised machine learning techniques, we aim to
classify personal networks into different categories and compare their properties with existing
literature. Ultimately, we try to find a quantitative classification related to specific values of
known metrics that allows us to characterise personal networks. This research can provide
valuable insights into the factors that influence their structure and dynamics and help to
comprehend how individuals organise their social environments.

9.2.3 Refining statistical mechanics models

Another area of research that emerges from the results presented in this thesis is the study
of the structure and dynamics of social relationships using models derived from statistical
mechanics. The “social fluid” concept introduces a new perspective for understanding these
systems, which is completely different from previous approaches. Traditionally, networks have
been the tool used to model social relationships. Within this discipline, numerous techniques
have been developed to simulate systems increasingly similar to those observed in the real
world. Some examples of these techniques include weighted networks (for relationships of
varying intensity), signed networks (friendships or enmities) and multiplex networks (different
groups or communities). These complex techniques, developed over decades for the study of
gases and liquids, have proven to be very helpful in understanding their behaviour. The use
of statistical mechanics in the study of social systems may be very useful in gaining insights
into them.

The models we have presented in the second part of this thesis use exponential random
graphs and density functional theory to reproduce macroscopic features of social systems,
such as reciprocity and transitivity. Despite our effort, they may be used more as examples of
applying these techniques than as realistic representations of the complete structure of social
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relationships among high school students. Our models focus solely on understanding each
group at the individual level, without considering inter-group relationships. Additionally,
different phenomena derived from the data analysis, such as homophilic relationships (e.g.,
between people of the same gender) being more probable, are not considered. To include all
these properties in our models, it is necessary to add a parameter associated with each of them
in the Hamiltonian of the system. This would result in a larger parameter spectrum, more
complex relationships and complicated calculations. Our objective is to reflect in our models
all these properties observed in real systems, even if it is not possible to obtain analytical
results, and we have to resort to numerical methods to determine the parameters.

Moreover, we want to continue studying the correspondence between models derived using
statistical mechanics and Bayesian methods, such as parameter estimation using Monte Carlo
simulations. The results presented in this thesis suggest that very similar maximum likelihood
values for the parameters are obtained using both methods. If we were able to confirm
this hypothesis, it would lend significant power to the introduction of statistical mechanics
techniques for network analysis. Although the associated calculations are often complicated
in these models, the computational power required compared to Bayesian methods is much
lower. As computational power is one of the main limitations for analysing large systems,
models based on statistical mechanics would enable us to study more complex social networks
with reduced computational resources. Furthermore, this interdisciplinary approach could
lead to the development of novel techniques, further enhancing the understanding of social
systems and their dynamics.

9.2.4 Comparison with other species of non-human primates

Finally, one of the most interesting and innovative research areas that emerge from our work
is to continue exploring whether the models we have developed to understand the structure of
human social relationships can be extrapolated to other species, especially to other primate
groups. In this thesis, we have worked with grooming data from four chimpanzee groups at
the Chimfunshi Orphanage in Zambia, and we have demonstrated using a continuous version
of Dunbar’s circles that their social behaviour is similar to that observed in humans.

At present, thanks to the ongoing collaboration with our anthropologist co-authors, we
have access to more grooming data among different primate species. Specifically, we have
analysed grooming data from various bonobo and chimpanzee groups. Some of these groups
live in captivity in different European zoos, while others reside at the Lola Bonobo sanctuary
in Africa. Again, we have applied the continuous model to this data, and our results suggest
that the social behaviour of all these primate groups shares many similarities. This research
offers a unique opportunity to investigate further the commonalities in social structure across
different primate species.

Additionally, these datasets are very rich and provide specific demographic data for each
of the individuals we have analysed. This has allowed us to study how some of these factors,
such as species, habitat, or age, affect the way in which these animals structure their social
(grooming) relationships. With this in mind, we have used machine learning techniques, such
as boosting, to determine the influence of each of these factors on the model. Our preliminary
results suggest that this social structure changes slightly between bonobos and chimpanzees.
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Bonobos are a more sociable species than chimpanzees, so they apply their social capital
to maintain a larger number of relationships, although most of them are less intense. In
contrast, chimpanzees form fewer relationships, but they are more intense. The same is
observed for age as a factor. The younger the primates are, the more relationships they
maintain simultaneously, and this number decreases over time. Elderly individuals maintain
only a very limited number of relationships, but all of them are very intense. Finally, other
factors, such as habitat, do not affect this structure, suggesting that it is more closely tied
to the nature of the species and their cognitive abilities than to the enclosure they live
in. Therefore, our findings suggest that the social structure of these primates is primarily
influenced by inherent species characteristics and their cognitive capabilities. These insights
contribute to a better understanding of the evolutionary underpinnings of social behaviour
among primates and may even help us understand better human social dynamics.
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Appendix for Chapter 2

A.1 Supplementary figures

A.1.1 Number of respondents across groups
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Figure A.1: Distribution of the students participating in all five waves - Left: by course.
Right: by itinerary.
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Figure A.2: Distribution of the students participating in all five waves - Left: by sex.
Right: by “repetidores” or not.

A.1.2 Number of friendships
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Figure A.3: Number of friendships declared by course - Left: all friends. Right: best
friends. Bottom: just friends.
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Figure A.4: Number of friendships declared by itinerary - Left: all friends. Right: best
friends. Bottom: just friends.
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Figure A.5: Number of friendships declared by gender - Left: all friends. Right: best
friends. Bottom: just friends.
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Figure A.6: Number of friendship declared by “repetidores” or not - Left: all friends.
Right: best friends. Bottom: just friends.

A.1.3 µ parameter
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Figure A.7: µ parameter distribution across waves
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Figure A.8: µ parameter distribution with division by groups - Top left: by course. Top
right: by itinerary. Bottom left: by gender. Bottom right: by “repetidores” or not.

A.1.4 Slopes of the linear fit to aggregate evolution
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Figure A.9: Slope of linear fits to the evolution - Left: number of friendships. Right: µ
parameter.
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A.1.5 Transitions of relationships between waves
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Figure A.10: Best friends transitions - Percentage of individuals that ended up in a given
category in wave n, when they were marked as “best friend” in the previous wave (conditional
probability P (x,wn| + 2, wn−1)). Top: from wave 1 to wave 2. Middle: from wave 2 to wave 3.
Bottom: from wave 3 to wave 4.
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Figure A.11: Friends transitions - Percentage of individuals that ended up in a given category
in wave n, when they were marked just as “friend” in the previous wave (conditional probability
P (x,wn| + 1, wn−1)). Top: from wave 1 to wave 2. Middle: from wave 2 to wave 3. Bottom:
from wave 3 to wave 4.
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Figure A.12: Enemies transitions - Percentage of individuals that ended up in a given
category in wave n, when they were marked just as “enemy” in the previous wave (conditional
probability P (x,wn| − 1, wn−1)). Top: from wave 1 to wave 2. Middle: from wave 2 to wave 3.
Bottom: from wave 3 to wave 4.
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Figure A.13: Worst enemies transitions - Percentage of individuals that ended up in a given
category in wave n, when they were marked as “worst enemy” in the previous wave (conditional
probability P (x,wn| − 2, wn−1)). Top: from wave 1 to wave 2. Middle: from wave 2 to wave 3.
Bottom: from wave 3 to wave 4.
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Figure A.14: Best friends origin - Percentage of individuals that end up as “best friends”
in wave n and were marked in any category in the previous wave (conditional probability
P (x,wn−1|2, wn)). Top left: from wave 1 to wave 2. Top right: from wave 2 to wave 3. Bottom
left: from wave 3 to wave 4. Bottom right: from wave 4 to wave 5.
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Figure A.15: Friends origin - Percentage of individuals that end up as “friends” in wave n
and were marked in any category in the previous wave (conditional probability P (x,wn−1|1, wn)).
Top left: from wave 1 to wave 2. Top right: from wave 2 to wave 3. Bottom left: from wave 3 to
wave 4. Bottom right: from wave 4 to wave 5.
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Figure A.16: Enemies origin - Percentage of individuals that end up as “enemies” in wave
n and were marked in any category in the previous wave (conditional probability P (x,wn−1| −
1, wn)). Top left: from wave 1 to wave 2. Top right: from wave 2 to wave 3. Bottom left: from
wave 3 to wave 4. Bottom right: from wave 4 to wave 5.
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Figure A.17: Worst enemies origin - Percentage of individuals that end up as “worst ene-
mies” in wave n and were marked in any category in the previous wave (conditional probability
P (x,wn−1|−2, wn)). Top left: from wave 1 to wave 2. Top right: from wave 2 to wave 3. Bottom
left: from wave 3 to wave 4. Bottom right: from wave 4 to wave 5.
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A.1.6 Number of S-S, S-D, D-S, and D-D relationships
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Figure A.18: Number of pairs of relationships - S-S: same class in both academic years.
S-D: same class the first year and different the second. D-S: different class the first year and same
the second. D-D: different classes in both academic years.

A.1.7 Reciprocity
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Figure A.19: Reciprocal relationships - Top left: by course. Top right: by itinerary. Bottom
left: by gender. Bottom right: by “repetidores” or not.
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Figure A.20: Reciprocity per itinerary - B-B (bilingüe-bilingüe), B-NB (bilingüe-no bil-
ingüe), NB-NB (no bilingüe-no bilingüe).
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Figure A.21: Reciprocity per group - S (same group), D (different group).
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Figure A.22: Reciprocity per sex - Percentage of non-reciprocal relationships that are di-
rected from men to women (green) and from women to men (orange) in each wave.
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Appendix for Chapter 3

B.1 Supplementary tables

B.1.1 Distribution of the students

Male Female Total

A 9 20 29
B 11 20 31
C 15 15 30
D 19 11 30
E 19 12 31

Total 73 78 151

Table B.1: Distribution of the students by group and gender - The table contains
information on the distribution of the students by group and gender. It is valid for the two
waves, December 2018 and May 2019.
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B.1.2 Community structure

C1 C2 C3 C4

A 27 2 0 0
B 28 3 0 0
C 0 3 27 0
D 0 10 20 0
E 0 0 2 29

Total 55 18 49 29

C1 C2 C3

A 28 1 0
B 31 0 0
C 0 8 22
D 2 10 18
E 0 2 29

Total 61 21 69

Table B.2: Distribution of the communities by group in the complete school - The
table contains information on wave 1 (left) and wave 2 (right).

C1 C2 C3 C4

Male 15 16 23 19
Female 40 2 26 10
Total 55 18 49 29

C1 C2 C3

Male 20 19 34
Female 41 2 35
Total 61 21 69

May
C1 C2 C3 Total

C1 55 0 0 55
C2 5 12 1 18

December C3 1 7 41 49
C4 0 2 27 29

Total 61 21 69

Table B.3: Distribution of the communities by gender in the complete school - The
table contains information on wave 1 (left), wave 2 (right) and transitions between communities
(bottom).
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C1 C2 C3

Male 2 4 3
Female 11 6 3
Total 13 10 6

C1 C2 C3

Male 0 8 1
Female 12 3 5
Total 12 11 6

May
C1 C2 C3 Total

C1 5 4 4 13
December C2 6 4 0 10

C3 1 3 2 6
Total 12 11 6

Table B.4: Distribution of the communities by gender in group A - The table contains
information on wave 1 (left), wave 2 (right) and transitions between communities (bottom).

C1 C2 C3

Male 2 5 4
Female 13 7 0
Total 15 12 4

C1 C2 C3

Male 1 8 2
Female 10 2 8
Total 11 10 10

May
C1 C2 C3 Total

C1 10 4 1 15
December C2 1 2 9 12

C3 0 4 0 4
Total 11 10 10

Table B.5: Distribution of the communities by gender in group B - The table contains
information on wave 1 (left), wave 2 (right) and transitions between communities (bottom).
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C1 C2

Male 12 3
Female 5 10
Total 17 13

C1 C2

Male 12 3
Female 5 10
Total 17 13

May
C1 C2 Total

C1 16 1 17
December C2 1 12 13

Total 17 13

Table B.6: Distribution of the communities by gender in group C - The table contains
information on wave 1 (left), wave 2 (right) and transitions between communities (bottom).

C1 C2 C3

Male 10 9 0
Female 1 1 9
Total 11 10 9

C1 C2 C3

Male 10 9 0
Female 1 1 9
Total 11 10 9

May
C1 C2 C3 Total

C1 2 9 0 11
December C2 8 1 1 10

C3 1 0 8 9
Total 11 10 9

Table B.7: Distribution of the communities by gender in group D - The table contains
information on wave 1 (left), wave 2 (right) and transitions between communities (bottom).
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C1 C2 C3

Male 9 8 2
Female 3 2 7
Total 12 10 9

C1 C2 C3

Male 11 2 6
Female 0 8 4
Total 11 10 10

May
C1 C2 C3 Total

C1 5 2 5 12
December C2 4 4 2 10

C3 2 4 3 9
Total 11 10 10

Table B.8: Distribution of the communities by gender in group E - The table contains
information on wave 1 (left), wave 2 (right) and transitions between communities (bottom).

B.1.3 Social balance

wave 1 wave 2

# positive links 0 1 2 3 0 1 2 3

option a 0 15 106 2974 1 31 195 4774
option b 341 1403 1696 2974 1737 4974 2501 4774

Table B.9: Distribution of the triangles in the network, considering positive and
negative links - The table contains information on the number of observed triangles formed by
a mix of positive and negative links in the first wave (left) and in the second wave (right) for the
complete course depending on the criteria.
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B.2 Supplementary figures

Figure B.1: Network representation of all the social relationships - The figure represents
the network corresponding to all the social relationships in wave 1 (top) and wave 2 (bottom)
with division by group.
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Figure B.2: Network representation of the communities - The figure represents the
community analysis results when considering only positive links and all links. From top to
bottom, all links in wave 1, only positive links in wave 1, all links in wave 2 and only positive
links in wave 2.
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Figure B.3: Network representation of all the social relationships with division by
gender - The figure represents the network corresponding to all the social relationships in wave
1 (top) and wave 2 (bottom) with division by gender.

150



C

Appendix for Chapter 4

C.1 Supplementary information

C.1.1 Original emails with the feedback received

In this section, we present the main emails received with feedback on our application from
the guidance team at the high school. The first of these was received on October 12th, 2021,
two weeks after we first granted them access to the application. Its original content, written
in Spanish, is the following:

Hola a todos,

En primer lugar, daros la enhorabuena por vuestro trabajo.

La aplicación me parece de mucha utilidad porque nos da mucha información acerca de las
relaciones de los alumnos. Para mı́, en orientación, que no doy clase, me da much́ısima
información de los alumnos y de cómo se relacionan en su grupo y en otros grupos.

He usarla observando a alumnos que tenemos en seguimiento por varios motivos.

Me ha resultado de utilidad saber que un alumno absentista es bien valorado por un compañero,
y yo no lo sab́ıa, ya que podré buscar ayuda en él de cara a la motivación para que asista con
más frecuencia al IES.

También he confirmado, que teńıa dudas, del rechazo que provoca un alumno respecto a sus

151



C. APPENDIX FOR CHAPTER 4

compañeros y me ha sorprendido ver que hay otro alumno más aceptado de lo que yo pensaba.

Me resulta de utilidad ver que hay alumnas con situaciones emocionales graves que tienen más
apoyos de los que pensaba, y saber con quién hay reciprocidad me resulta de mucha utilidad
para poder buscar alumnos acompañantes para ellas.

También he podido ver cómo han ido mejorando algunas relaciones del curso pasado a este
en algún alumno concreto que me apetećıa saber si hab́ıa mejorado sus relaciones.

Respecto a los alumnos de 1º ESO, que son nuevos en el centro, me parece muy gráfico poder
verlo con los tutores y prevenir situaciones porque ya se detectan personas vulnerables según
vuestro cuestionario.

Estoy segura de que con más tiempo (solo he dedicado esta tarde) podré sacarle mucha más
utilidad. Como por ejemplo, tener en cuenta los datos para hacer agrupaciones. Eso no sé
cómo se haŕıa.

Reitero mi enhorabuena y mi agradecimiento por compartir conmigo los datos, porque cada
vez que entreviste a un alumno, voy a tener la posibilidad de contrastar los datos ofrecidos
en la entrevista con la dinámica de sus relaciones y me va a ofrecer mucha información.

Muchas gracias a todos.

The second email is more recent, dated January 29th, 2023. It reflects the usage of the
application by the institute and its usefulness in improving coexistence within it. Like the
previous one, it is also written in Spanish, as communication has been conducted in this
language:

GRACIAS.

Y quiero comenzar aśı, dándoos las gracias.

Mi mayor interés en esta segunda toma era por dos casos, principalmente. Luego veré más
alumnos, pero mi preocupación eran dos alumnos porque estamos preocupados y, gracias a
vuestras visualizaciones, me da mucha información, tanta información, que he estado más
de dos horas solo con estos dos alumnos. Me he hecho una tabla de resultados para poder
verlo todo en detalle.

Me alegra confirmar que debemos seguir ocupados con uno de ellos, pero bajar el nivel de
preocupación. Y tenemos que seguir preocupados con el otro caso.

Me da pistas sobre a quién debo poner mis ojos en el patio y en clase (le diré al equipo
educativo que vigile) y sobre a quién debo reforzar relaciones, porque ambos alumnos en
cuestión no se dan cuenta de que son bien valorados por más gente de lo que creen. Por
supuesto, intentaré reforzar esas relaciones sin dar detalles de estas encuestas, le diré al
equipo educativo que en los trabajos en equipo pongan juntos a quienes yo estoy viendo que se
reforzaŕıan, en las parejas de educación f́ısica, incluso en las mesas de clase... Hay muchas
formas de intentar reforzar relaciones sin que ellos sepan que es por lo que han puesto en las
encuestas... De ah́ı la frase t́ıpica de “que parezca un accidente...”.

Aśı que MUCHAS GRACIAS.
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La pena es que no puedo dedicar todo el tiempo que quiero a la aplicación.

Os seguiré diciendo.

Un saludo.
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D.1 Supplementary calculus

D.1.1 Confidence intervals for the parameters

We define the variable ℓ(G) as

ℓ (G) = − logP (G) = −H (G) + Ω(G). (D.1)

The first derivative of this function with respect to each parameter, evaluated at the
maximum likelihood values, satisfies(

∂ℓ(G)

∂Eij

∣∣∣∣
E=Em

)
= 0. (D.2)

The Hessian matrix H(G) is constructed by computing the second derivatives of ℓ(G) with
respect to the parameters analytically and evaluating them at the empirical efficacy values
Em, that is

H(G) =

(
∂2ℓ(G)

∂Eij ∂Ekl

∣∣∣∣
E=Em

)
. (D.3)

The second derivatives satisfy

∂2ℓ(G)

∂Eij ∂Ekl
=

[
− ∂2H(G)

∂Eij ∂Ekl
+

∂2Ω(G)

∂Eij ∂Ekl

]
=

∂2Ω(G)

∂Eij ∂Ekl
, (D.4)
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since the Hamiltonian depends linearly on the efficacies.

Finally, the variance-covariance matrix V (G) is

V (G) = [−H(G)]−1 . (D.5)

The diagonal entries of this matrix correspond to the variances associated with the parameters
Eij .

For the linear model with reciprocity, where the efficacies are the sum of other parameters,
the following properties are considered when finding the variances of each parameter:

1. Var(X+Y +Z) = Var(X)+Var(Y )+Var(Z)+2Cov(X,Y )+2Cov(X,Z)+2Cov(Y,Z),

2. Var(aX) = a2Var(X),

3. Cov(aX, bY ) = abCov(X,Y ).

We assume that the parameters follow a normal distribution (due to it being the most
unbiased hypothesis). Therefore, this expression for the confidence intervals holds:

Êij − zα/2
σ√
n
< ⟨Eij⟩ < Êij + zα/2

σ√
n
, (D.6)

where Êij represents the estimated value of the parameter, ⟨Eij⟩ is the mean value, and zα/2
is the value of a normal distribution with 0 means and variance 1 that leaves a percentage of
α/2 on its right side.

Therefore, calculating the confidence intervals of the efficacy parameters in different mod-
els is reduced to computing the Hessian matrix in each and applying the procedure outlined
in this section.

D.1.1.1 Hessian matrix for the pairwise model

In the pairwise model, the entries of the Hessian matrix, evaluated at the maximum likelihood
parameters, satisfy (

∂2Ω

∂Eij ∂Ekl

∣∣∣∣
E=Em

)
= −⟨Rij⟩

(
δi,kδj,l −

⟨Rkl⟩(
N
2

) ) . (D.7)

D.1.1.2 Hessian matrix for the linear model with reciprocity

In the linear model with reciprocity, the entries of the Hessian matrix are defined by

∂2Ω

∂λ2
= − 2

(
N

2

)
(e−µ + 1) e−(λ+2µ+β)

(
e−(2λ+4µ+β) + (e−µ + 1)(2e−(λ+2µ) + e−µ + 1)

)(
(1 + e−µ)2 + e−(λ+2µ+β)

(
2 + 2e−µ + e−(λ+2µ)

))2 ,

∂2Ω

∂λ∂µ
=

∂2Ω

∂µ∂λ
= − 2

(
N

2

)
(e−µ + 2) e−(λ+2µ+β)

(
e−(2λ+4µ+β) + (e−µ + 1)(2e−(λ+2µ) + e−µ + 1)

)(
(1 + e−µ)2 + e−(λ+2µ+β)

(
2 + 2e−µ + e−(λ+2µ)

))2 ,
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∂2Ω

∂λ∂β
=

∂2Ω

∂β∂λ
= − 2

(
N

2

)
(e−µ + 1)

2 (
e−(λ+2µ) + e−µ + 1

)
e−(λ+2µ+β)(

(1 + e−µ)2 + e−(λ+2µ+β)
(
2 + 2e−µ + e−(λ+2µ)

))2 ,
∂2Ω

∂µ2
= − 2

(
N

2

)
e−µ(4e−(λ+µ+β) + 11e−(λ+2µ+β) + 2e−(2λ+4µ+2β) + 8e−(λ+3µ+β)(

(1 + e−µ)2 + e−(λ+2µ+β)
(
2 + 2e−µ + e−(λ+2µ)

))2
+

8e−(2λ+3µ+β)e−(λ+4µ+β) + 9e−(2λ+4µ+β) + 2e−(2λ+5µ+β) + 4e−(3λ+5µ+2β)(
(1 + e−µ)2 + e−(λ+2µ+β)

(
2 + 2e−µ + e−(λ+2µ)

))2
+

e−(3λ+6µ+2β) + (1 + e−µ)2)(
(1 + e−µ)2 + e−(λ+2µ+β)

(
2 + 2e−µ + e−(λ+2µ)

))2 ,
∂2Ω

∂µ∂β
=

∂2Ω

∂β∂µ
= − 2

(
N

2

)
(e−µ + 1) (e−µ + 2)

(
e−(λ+2µ) + e−µ + 1

)
e−(λ+2µ+β)(

(1 + e−µ)2 + e−(λ+2µ+β)
(
2 + 2e−µ + e−(λ+2µ)

))2 ,

∂2Ω

∂β2
= −

(
N

2

)
(e−µ + 1)

2 (
2e−(λ+2µ+β) + 2e−(λ+3µ+β) + e−(2λ+4µ+β)

)(
(1 + e−µ)2 + e−(λ+2µ+β)

(
2 + 2e−µ + e−(λ+2µ)

))2 .

D.1.2 Estimation and confidence intervals for the number of triangles

D.1.2.1 Mean and variance of triangles with homogeneous links

To compute the mean and variance of the number of triangles in a network, we first define
N = {1, . . . , N} as the set of nodes of the network and the variable

Xijk =

{
1, if the nodes i, j, k form a triangle,

0, otherwise.
(D.8)

The total number of triangles in the network is represented by

T =
∑

{i,j,k}⊂V3

Xijk, (D.9)

where the sum is taken over all subsets of three indices from N.

If a link between nodes i and j in set N has a probability p, which is independent of
other links, then Xijk is a Bernoulli random variable with probability p3. This results in an
expected value of T defined by

⟨T ⟩ =
(
N

3

)
p3, (D.10)

as p3 is the probability of a triangle forming between three nodes and
(
N
3

)
is the number of

subsets of three indices in N.
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To calculate the variance, we need to obtain the average of T 2, which is

⟨T 2⟩ =
∑

{i,j,k}⊂V3

∑
{i′,j′,k′}⊂V3

⟨XijkXi′j′k′⟩, (D.11)

a sum we have to calculate taking into account that when the indices match in both subsets,
the values of Xijk y Xi′j′k′ are not independent.

Therefore, we group them as follows:

(a) {i, j, k} = {i′, j′, k′}. In this case Xijk = Xi′j′k′ , so

⟨XijkXi′j′k′⟩ = p3. (D.12)

The total number of such terms in the sum is
(
N
3

)
.

(b) The intersection of the sets {i, j, k} and {i′, j′, k′} contains exactly two indices when
two triangles share one of their links, as illustrated in the figure:

In this case
⟨XijkXi′j′k′⟩ = p5, (D.13)

and the number of terms in the sum is equal to
(
N
4

)
× 12, which represents the number

of ways to choose four indices to form the two triangles multiplied by the number of
ways to place two of the four indices of the intersection (

(
4
2

)
= 6) and the number of

ways of placing the two remaining indices in the other two nodes.

(c) The intersection of the sets {i, j, k} and {i′, j′, k′} contains exactly one index when the
two triangles share a vertex, as illustrated in the figure:

In this case
⟨XijkXi′j′k′⟩ = p6, (D.14)

and the number of terms in the sum is equal to
(
N
5

)
× 30, which represents the number

of ways to choose five indices to form the two triangles multiplied by the number of
ways to pick one index for the intersection (5) and two more indices for one of the sets
(
(
4
2

)
= 6). The remaining two indices go to the other set in a unique way.

(d) The intersection between {i, j, k} and {i′, j′, k′} is empty, meaning the triangles are not
connected. In this case

⟨XijkXi′j′k′⟩ = p6, (D.15)
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and the number of terms in the sum is equal to
(
N
6

)
× 20, which represents the number

of ways to choose six indices to form the two triangles multiplied by the number of
ways to distribute 6 elements into two sets such that the sets do not share any element
(
(
6
3

)
= 20).

To sum up,

⟨T 2⟩ =
(
N

3

)
p3 + 12

(
N

4

)
p5 + 30

(
N

5

)
p6 + 20

(
N

6

)
p6. (D.16)

It can be verified (using induction, for example) that by setting p = 1 in the formula
above (

N

3

)
+ 12

(
N

4

)
+ 30

(
N

5

)
+ 20

(
N

6

)
=

(
N

3

)2

, (D.17)

which is the total number of possible ways to choose two pairs of subsets, each consisting of
three arbitrary indices from N.

As previously discussed, ⟨T ⟩ is determined by Equation D.10, so

⟨T ⟩2 =
(
N

3

)2

p6 =

[(
N

3

)
+ 12

(
N

4

)
+ 30

(
N

5

)
,+20

(
N

6

)]
p6, (D.18)

using Equation D.17.

Thus, the variance of T turns out to be

⟨T 2⟩ − ⟨T ⟩2 =
(
N

3

)
p3(1− p3) + 12

(
N

4

)
p5(1− p). (D.19)

It is noteworthy that the initial term of this sum represents the variance of the combination
of
(
N
3

)
Bernoulli variables, each having a value of 1 with a probability p3 and 0 otherwise.

The additional term provides an adjustment that does not seem negligible.

D.1.2.2 Mean and variance of triangles with heterogeneous links

Now, the links can be classified into two categories, 1 and 2, and each category can occur
with distinct probabilities, p1 and p2. First, we will determine the number of triangles that
have two links of type 1 and one link of type 2, that is

Xijk =

{
1, if i, j, k form a triangle with two links of type 1 and one of type 2,

0, otherwise.
(D.20)

The expected value of T is

⟨T ⟩ = 3

(
N

3

)
p21p2, (D.21)

where the factor 3 accounts for the three possible positions where the link of type 2 could be
placed within the triangle.

Concerning the variance, we repeat the same group of terms that were used in the sum
given by Equation D.11:
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(a) {i, j, k} = {i′, j′, k′}. In this case Xijk = Xi′j′k′ , so that

⟨XijkXi′j′k′⟩ = p21p2. (D.22)

The number of terms within the sum is
(
N
3

)
× 3.

(b) The intersection of the sets {i, j, k} and {i′, j′, k′} includes only two indices. Depending
on where this type 2 link appears in the triangles, there are two possible scenarios. The
first is illustrated in the figure:

In this case

⟨XijkXi′j′k′⟩ = p41p2, (D.23)

and the number of terms in the sum is
(
N
4

)
×12, just as it is in the case of homogeneous

triangles.

The second scenario is illustrated in the following figure:

In this case

⟨XijkXi′j′k′⟩ = p31p
2
2, (D.24)

and the number of terms in the sum is
(
N
4

)
×12, as in the case of homogeneous triangles,

multiplied by the 4 different ways of positioning the type 2 links in the two triangles.

(c) The intersection of the sets {i, j, k} and {i′, j′, k′} includes only one element. This is
the situation where a single vertex connects two triangles, as shown in the figure:

In this case

⟨XijkXi′j′k′⟩ = p41p
2
2, (D.25)

and the number of terms in the sum is equal to
(
N
5

)
×30, as in the case of homogeneous

triangles, multiplied by the 9 different ways of positioning the type 2 links in the two
triangles.
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(d) The sets {i, j, k} and {i′, j′, k′} have no common elements. The triangles are not con-
nected in any way. In this scenario

⟨XijkXi′j′k′⟩ = p41p
2
2, (D.26)

and the number of terms in the sum is
(
N
6

)
×20, as in the case of homogeneous triangles,

multiplied by the 9 different ways of positioning the type 2 links in the two unconnected
triangles.

To sum up,

⟨T 2⟩ = 3

(
N

3

)
p21p2 + 12

(
N

4

)
p41p2 + 48

(
N

4

)
p31p

2
2 + 270

(
N

5

)
p41p

2
2 + 180

(
N

6

)
p41p

2
2. (D.27)

By subtracting the square of the formula in Equation D.21 and using Equation D.17,

⟨T 2⟩ − ⟨T ⟩2 =
(
N

3

)
3p21p2(1− 3p21p2) + 12

(
N

4

)
p31p2(p1 + 4p2 − 9p1p2). (D.28)

Once more, the initial term of this sum corresponds to the variance of the total of
(
N
3

)
Bernoulli variables, which each take on a value of 1 with probability 3p21p2 and a value of 0
otherwise, and the second term adds a correction.

D.1.2.3 Confidence intervals for the number of triangles

We assume that the links in the triangles follow a normal distribution. The confidence
intervals are determined by

T̂ − zα/2
σ√
n
< ⟨T ⟩ < T̂ + zα/2

σ√
n
, (D.29)

where T̂ represents the estimated value of the parameter, ⟨T ⟩ is the mean value, and zα/2 is
the value of a normal distribution that leaves a percentage of α/2 on its right side.

D.1.3 Transformation for the linear model with reciprocity

We are working with the Hamiltonian on the graph G

−H(G) =
∑
⟨ab⟩

[
λ(2− δσab,0 − δσba,0) + µ(σab + σba) + β(1− δσab,0)(1− δσba,0)

]
+

γ

N

∑
⟨abc⟩

Tabc,

where σab ∈ {0, 1, ..., r}, ⟨ab⟩ denotes links in G, ⟨abc⟩ denotes triangles in G and Tabc = 1 if
there is a reciprocal triangle spanning the three nodes a, b and c of the triangle and Tabc = 0
otherwise. In other words,

Tabc ≡ (1− δσab,0)(1− δσba,0)(1− δσac,0)(1− δσca,0)(1− δσbc,0)(1− δσcb,0). (D.30)

The grand partition function Ξ is calculated by summing over all possible configurations of
the system, which means
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Ξ =
∑

{σab,σba}

e−H(G). (D.31)

Let us now define on every pair ⟨ab⟩ the new variables

τab ≡ (1− δσab,0)(1− δσba,0). (D.32)

The variables in question can take only two values, namely τab = 0 and τab = 1. The value
of τab depends on whether σabσba = 0 or σabσba ̸= 0. If we consider the sum over the pair in
the grand partition function defined by Equation D.31, then:

Sab(τ ) ≡
r∑

σab=0

r∑
σba=0

exp
{
λ(2− δσab,0 − δσba,0) + µ(σab + σba) + τab

[
β + Jab(τ )

]}
, (D.33)

where, for simplicity, we have introduced the short-hand

Jab(τ ) ≡
γ

N

∑
c ̸=a,b

τacτbc. (D.34)

We can divide this sum into two parts as follows:

Sab(τ ) =


∑

σab,σba : τab=0

exp {λ(2− δσab,0 − δσba,0) + µ(σab + σba)} , if τab = 0,∑
σab,σba : τab=1

exp
{
λ(2− δσab,0 − δσba,0) + µ(σab + σba) +

[
β + Jab(τ )

]}
, if τab = 1,

and after performing the sums

Sab(τ ) =


1 + 2eλ+µ

r−1∑
k=0

ekµ, if τab = 0,

e2λ+2µ+β+Jab(τ )

(
r−1∑
k=0

ekµ

)2

, if τab = 1,

(D.35)

Therefore, if we define the variable

ϕ = β + 2λ+ 2µ− log

(
1 + 2eλ+µ 1− erµ

1− eµ

)
+ 2 log

(
1− erµ

1− eµ

)
, (D.36)

we can rewrite

Sab(τ ) =

(
1 + 2eλ+µ 1− erµ

1− eµ

) ∑
τab=0,1

exp
{
τab
[
ϕ+ Jab(τ )

]}
. (D.37)

As a result, we obtain an alternative expression for Equation D.31, which is given by

Ξ =

(
1 + 2eλ+µ 1− erµ

1− eµ

)(N2 )∑
τ

e−H̃(G), (D.38)
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where

−H̃(G) ≡ ϕ
∑
⟨ab⟩

τab +
γ

N

∑
⟨abc⟩

τabτacτbc. (D.39)

This Hamiltonian corresponds to Strauss’s model (Strauss, 1986) for graph G and has been
analysed using mean-field techniques by Park and Newman (2005).

D.2 Supplementary tables

No reciprocal
links

1 reciprocal
link

2 reciprocal
links

3 reciprocal
links

Real Model Real Model Real Model Real Model

1 ESO A 17 17 (1;33) 82 71 (37;105) 78 99 (64;134) 85 46 (16;76)

1 ESO B 5 5 (0;10) 35 30 (8;52) 79 58 (29;87) 56 38 (11;65)

1 ESO C 29 21 (4;38) 81 56 (26;86) 47 50 (22;78) 28 15 (1;29)

1 ESO D 68 74 (33;115) 264 251 (177;325) 277 284 (210;358) 208 107 (54;160)

1 ESO E 23 11 (0;22) 34 19 (4;34) 6 10 (0;20) 9 2(−1;5)

1 ESO F 21 26 (5;47) 113 103 (60;146) 140 134 (90;178) 73 58 (23;94)

1 ESO G 25 27 (6;48) 55 36 (14;58) 20 16 (2;30) 5 2(−3; 7)

No reciprocal
links

1 reciprocal
link

2 reciprocal
links

3 reciprocal
links

Real Model Real Model Real Model Real Model

2 ESO A 13 17 (2;32) 103 81 (41;121) 100 129 (84;173) 137 69 (29;109)

2 ESO B 16 16 (1;31) 67 48 (21;74) 52 48 (21;75) 29 16 (1;31)

2 ESO C 11 12 (0;24) 43 38 (15;61) 54 42 (18;66) 29 15 (1;29)

2 ESO D 15 14 (0;28) 75 60 (30;90) 50 83 (53;113) 78 38(10;66)

2 ESO E 21 25 (5;45) 83 68 (37;99) 55 61 (31;91) 29 18 (2;34)

2 ESO F 23 17 (2;32) 69 53 (24;82) 63 56 (26;86) 48 19 (3;35)

2 ESO G 27 28 (7;49) 117 94 (54;134) 101 103 (62;144) 74 38 (11;65)

No reciprocal
links

1 reciprocal
link

2 reciprocal
links

3 reciprocal
links

Real Model Real Model Real Model Real Model

3 ESO A 89 70 (32;108) 255 209 (140;278) 251 211 (140;278) 136 70 (32;108)

3 ESO B 5 6 (0;14) 39 25 (7;43) 43 33 (13;53) 39 15 (1;28)

3 ESO C 2 4 (0;8) 10 12 (1;23) 12 13 (1;25) 10 5 (1;9)

3 ESO D 55 45 (17;73) 111 88 (50;127) 84 58 (27;89) 40 13 (1;24)

3 ESO E 4 5 (0;10) 27 27 (8;47) 42 50 (23;77) 105 31 (9;53)

Table D.1: Distribution of triangles - Comparative between the real number of triangles and
those expected when performing a random distribution of the links. The numbers in parentheses
correspond to the confidence intervals. Each of the tables above is associated with a different
course in wave 1.
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D.3 Supplementary figures

D.3.1 Pairwise model
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Figure D.2: Parameters of the pairwise model - Values obtained for the parameters of the
pairwise model for each of the remaining groups in wave 1.

D.3.2 Linear model with reciprocity
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Figure D.3: Parameters of the linear model with reciprocity - Values obtained for the
parameters of the linear model with reciprocity for each of the remaining groups in wave 1.
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E.1 Supplementary calculus

E.1.1 Free energy of a single triangle

For a triangle,
Ξ3 = (1 + zij)(1 + zjk)(1 + zki) + ζijkzijzjkzki, (E.1)

hence

ρij =
zij(1 + zjk)(1 + zki) + ζijkzijzjkzki

Ξ3
,

ρjk =
zjk(1 + zij)(1 + zki) + ζijkzijzjkzki

Ξ3
,

ρki =
zki(1 + zij)(1 + zjk) + ζijkzijzjkzki

Ξ3
.

(E.2)

It will prove convenient to introduce

ρijk ≡
ζijkzijzjkzki

Ξ3
. (E.3)

Now, dividing Equation E.1 by Ξ3 we get

(1 + zij)(1 + zjk)(1 + zki)

Ξ3
= 1− ρijk. (E.4)
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On the other hand, Equation E.2 can be rewritten as

ρij − ρijk =
zij(1 + zjk)(1 + zki)

Ξ3
,

ρjk − ρijk =
zjk(1 + zij)(1 + zki)

Ξ3
,

ρki − ρijk =
zki(1 + zij)(1 + zjk)

Ξ3
.

(E.5)

Multiplying them out and using Equation E.3 and Equation E.4 leads to Equation 6.12. Also,
using Equation E.4 in Equation E.5 we obtain

ρij − ρijk =
zij

1 + zij
(1− ρijk),

ρjk − ρijk =
zjk

1 + zjk
(1− ρijk),

ρki − ρijk =
zki

1 + zki
(1− ρijk),

(E.6)

whose solutions are

zij =
ρij − ρijk
1− ρij

, zjk =
ρjk − ρijk
1− ρjk

, zki =
ρki − ρijk
1− ρki

.

Substituting these expressions in Equation E.3 and using Equation 6.12 we obtain

Ξ3 =
(1− ρijk)

2

(1− ρij)(1− ρjk)(1− ρki)
. (E.7)

Thus Φ3 = ρij log zij + ρjk log zjk + ρki log zki − log Ξ3 becomes Equation 6.11.

E.1.2 Probability of forming a triangle

The probability that nodes i, j, k form a triangle can be obtained from the grand potential
as

Tijk ≡ ⟨τijτjkτki⟩ = −N
∂Ω

∂γijk
. (E.8)

But inverting the Legendre transform defined by Equation 6.5,

Ω = F −
∑
{ij}

ϕijρij , (E.9)

where ρij depends ϕ and γ through Equation 6.7. Thus,

Tijk =
∑
{lm}

ϕlmN
∂ρlm
∂γijk

−N
∂F

∂γijk
. (E.10)

Now,
∂F

∂γijk
=
∑
{lm}

∂F

∂ρlm

∂ρlm
∂γijk

+

(
∂F

∂γijk

)
ρ

,
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where the last partial derivative is taken at constant ρ. Thus, substituting into Equation E.10
and using Equation 6.7 we obtain

Tijk = −N

(
∂F

∂γijk

)
ρ

= −(1 + ζijk)

(
∂F

∂ζijk

)
ρ

. (E.11)

Notice that the free energy depends on ζijk only through ρijk via Equation 6.12, therefore

Tijk = − (1 + ζijk)

(
∂F

∂ρijk

)
ρ

(
∂ρijk
∂ζijk

)
ρ

=(1 + ζijk)ρijk

[
1− 3ρijk

ρijk(1− ρijk)
+

1

ρij − ρijk

+
1

ρjk − ρijk
+

1

ρki − ρijk

](
∂ρijk
∂ζijk

)
ρ

.

On the other hand, taking logarithms in Equation 6.12 and differentiating with respect to
ζijk at constant ρ we get

1

ζijk
=

[
1− 3ρijk

ρijk(1− ρijk)
+

1

ρij − ρijk

+
1

ρjk − ρijk
+

1

ρki − ρijk

](
∂ρijk
∂ζijk

)
ρ

,

which finally leads to Equation 6.13.

E.1.3 Strauss’s model for small networks

Let τ denote a vector of components τν , where ν is a subset of 2 elements of {1, 2, . . . , N},
and W ≡ {0, 1}N . The grand partition function is defined as

Ξ =
∑
σ∈W

exp

ϕ

N∑
i<j

τij +
γ

N

N∑
i<j<k

τijτjkτik


=

(N2 )∑
L=0

(N3 )∑
T=0

Q(L, T )eϕL+γT/N ,

(E.12)

where Q(L, T ) is the number of configurations τ with L links and T triangles.

Let us setN = 4 and compute the values of Q(L, T ). Clearly, Q(L, 0) =
(
6
L

)
for L = 0, 1, 2,

butQ(L, T ) = 0 otherwise. Furthermore, Q(5, 2) = 6, Q(6, 4) = 1, andQ(5, T ) = Q(6, T ) = 0
otherwise. As for L = 3, 4, there are configurations with either T = 0 or T = 1. Thus,
Q(3, 1) = 4 and Q(3, 0) =

(
6
3

)
− 4 = 16. On the other hand, Q(4, 0) = 3 and Q(4, 1) =(

6
4

)
− 3 = 12. Accordingly, if we denote x ≡ eϕ, y ≡ eγ/4,

Ξ =1 + 6x+ 15x2 + 16x3 + 3x4 + 4x3(1 + 3x)y

+ 6x5y2 + x6y4.
(E.13)
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The density can be obtained as

ρ =
1

6

∂

∂ϕ
log Ξ =

x

6

∂

∂x
log Ξ, (E.14)

and from that,

f =
F

6
= ρ log x− 1

6
log Ξ. (E.15)

Thus, fixing the interaction γ (i.e., fixing y) we can obtain parametrically, as 0 < x < ∞, the
curve f(ρ, γ).
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F.1 Supplementary figures

F.1.1 Pairwise model with clustering
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Figure F.1: Parameters of the pairwise model with clustering - Values obtained for the
parameters of the pairwise model with clustering for each of the remaining groups in wave 1.
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F.1.2 Linear model with reciprocity and clustering

F.1.2.1 Comparative with the linear model with reciprocity
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Figure F.2: Parameters of the linear model with reciprocity and its comparative
with the linear model with reciprocity - Values obtained for the parameters of the linear
model with reciprocity for each of the remaining groups in wave 1.

F.1.2.2 Comparative with the pairwise model with clustering

E
10

E
11

E
20

E
21

E
22

-5

-4

-3

-2

-1

0
1 ESO B

Pairwise model with clustering
Linear model with reciprocity
and clustering

E
10

E
11

E
20

E
21

E
22

-5

-4

-3

-2

-1

0
1 ESO C

Pairwise model with clustering
Linear model with reciprocity
and clustering

E
10

E
11

E
20

E
21

E
22

-5

-4

-3

-2

-1

0
1 ESO D

Pairwise model with clustering
Linear model with reciprocity
and clustering

E
10

E
11

E
20

E
21

E
22

-5

-4

-3

-2

-1

0
1 ESO E

Pairwise model with clustering
Linear model with reciprocity
and clustering

E
10

E
11

E
20

E
21

E
22

-5

-4

-3

-2

-1

0
1 ESO F

Pairwise model with clustering
Linear model with reciprocity
and clustering

E
10

E
11

E
20

E
21

E
22

-5

-4

-3

-2

-1

0
1 ESO G

Pairwise model with clustering
Linear model with reciprocity
and clustering

174



F.1 Supplementary figures

E
10

E
11

E
20

E
21

E
22

-5

-4

-3

-2

-1

0
2 ESO A

Pairwise model with clustering
Linear model with reciprocity
and clustering

E
10

E
11

E
20

E
21

E
22

-5

-4

-3

-2

-1

0
2 ESO B

Pairwise model with clustering
Linear model with reciprocity
and clustering

E
10

E
11

E
20

E
21

E
22

-5

-4

-3

-2

-1

0
2 ESO C

Pairwise model with clustering
Linear model with reciprocity
and clustering

E
10

E
11

E
20

E
21

E
22

-5

-4

-3

-2

-1

0
2 ESO D

Pairwise model with clustering
Linear model with reciprocity
and clustering

E
10

E
11

E
20

E
21

E
22

-5

-4

-3

-2

-1

0
2 ESO E

Pairwise model with clustering
Linear model with reciprocity
and clustering

E
10

E
11

E
20

E
21

E
22

-5

-4

-3

-2

-1

0
2 ESO F

Pairwise model with clustering
Linear model with reciprocity
and clustering

E
10

E
11

E
20

E
21

E
22

-5

-4

-3

-2

-1

0
2 ESO G

Pairwise model with clustering
Linear model with reciprocity
and clustering

E
10

E
11

E
20

E
21

E
22

-5

-4

-3

-2

-1

0
3 ESO A

Pairwise model with clustering
Linear model with reciprocity
and clustering

E
10

E
11

E
20

E
21

E
22

-5

-4

-3

-2

-1

0
3 ESO B

Pairwise model with clustering
Linear model with reciprocity
and clustering

E
10

E
11

E
20

E
21

E
22

-5

-4

-3

-2

-1

0
3 ESO C

Pairwise model with clustering
Linear model with reciprocity
and clustering

E
10

E
11

E
20

E
21

E
22

-5

-4

-3

-2

-1

0
3 ESO D

Pairwise model with clustering
Linear model with reciprocity
and clustering

E
10

E
11

E
20

E
21

E
22

-5

-4

-3

-2

-1

0
3 ESO E

Pairwise model with clustering
Linear model with reciprocity
and clustering

Figure F.3: Parameters of the linear model with reciprocity and its comparative
with the pairwise model with clustering - Values obtained for the parameters of the linear
model with reciprocity for each of the remaining groups in wave 1.
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F.1.3 Monte Carlo simulations for the pairwise model with clustering
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Figure F.4: Comparative between the parameters associated with the pairwise model
with clustering and Monte Carlo simulations - Values obtained for the parameters of the
pairwise model with clustering and its comparative with Monte Carlo simulations for each of the
remaining groups in wave 1.

F.1.4 Monte Carlo simulations for the linear model with reciprocity and
clustering
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Figure F.5: Comparative between the parameters associated with the linear model
with reciprocity and clustering and Monte Carlo simulations - Values obtained for the
parameters of the linear model with reciprocity and clustering and its comparative with Monte
Carlo simulations for each of the remaining groups in wave 1.
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F.1.5 Distribution of the parameters
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Figure F.7: Histograms representing the distribution of the parameters - Histograms
representing the distribution of the density of relationships ρ, the parameter ϕ and the parameter
γ/N for all the groups in the five waves.
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G.1 Supplementary tables

G.1.1 Information on the chimpanzees

Group Individual Sex Age* Origin Parameter η

1 Pal Male 39 Wild born Yes
1 Booboo Male 38 Wild born Yes
1 Tobar Male 38 Wild born Yes
1 Girly Female 38 Wild born Yes
1 Rita Female 37 Wild born Yes
1 Tara Male 37 Wild born Yes
1 Ingrid Female 29 Captive born Yes
1 Brenda Female 24 Captive born Yes
1 Genny Female 23 Captive born Yes
1 Renate Female 23 Captive born Yes
1 Bob Male 19 Captive born Yes
1 Gerard Male 18 Captive born Yes
1 Ilse Female 17 Captive born Yes
1 Chrissie Female 13 Captive born Yes
1 Rusty Male 13 Captive born Yes
1 Regina Female 13 Captive born Yes
1 Innocentia Female 13 Captive born Yes
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1 BJ Female 12 Captive born Yes
1 Gonzaga Female 12 Captive born Yes
1 Irene Female 8 Captive born Yes
1 Rachel Female 7 Captive born Yes
1 Richard Male 5 Captive born No
1 Ian Male 5 Captive born No
1 Genny’s baby Female 4 Captive born No
1 Ida Female 4 Captive born No
1 Ricky Male 1 Captive born No

Table G.1: Group 1 demographics - *Age at the end of the observation window (late 2019).

Group Individual Sex Age* Origin Parameter η

2 Noel Female 43 Wild born Yes
2 Donna Female 36 Wild born Yes
2 Little Jane Female 35 Wild born Yes
2 Coco Female 35 Wild born Yes
2 Maggie Female 34 Wild born Yes
2 Misha Female 32 Wild born Yes
2 Mikey Male 32 Wild born No
2 Pan Male 31 Wild born Yes
2 Pippa Female 31 Wild born Yes
2 Dora Female 31 Wild born Yes
2 Trixie Female 30 Wild born Yes
2 Zsabu Male 30 Wild born Yes
2 Masya Female 29 Wild born Yes
2 Violet Female 29 Wild born No
2 Diana Female 29 Wild born Yes
2 Little Judy Female 24 Captive born Yes
2 Dolly Female 23 Captive born Yes
2 Carol Female 23 Captive born Yes
2 Nikkie Female 22 Captive born Yes
2 Tess Female 21 Captive born Yes
2 Tilly Female 19 Captive born Yes
2 Debbie Female 18 Captive born Yes
2 David Male 18 Captive born Yes
2 Maxine Female 18 Captive born No
2 Doug Male 17 Captive born Yes
2 Nina Female 17 Captive born Yes
2 Claire Female 17 Captive born Yes
2 Toni Female 17 Captive born No
2 Vis Male 16 Captive born Yes
2 Taylor Female 16 Captive born No
2 Daisey Female 15 Captive born Yes
2 Mary Female 14 Captive born No
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2 Long John Male 13 Captive born Yes
2 Little Jenkins Female 13 Captive born Yes
2 Max Male 13 Captive born Yes
2 Darwin Male 13 Captive born No
2 Dizzy Female 12 Captive born Yes
2 Moyo Male 12 Captive born Yes
2 Charity Female 12 Captive born Yes
2 Little Jones Female 9 Captive born No
2 Little Jacky Male 8 Captive born No
2 Danny Male 8 Captive born No
2 Martin Male 8 Captive born No
2 May Female 7 Captive born No
2 Masya’s baby Female 7 Captive born No
2 Mavis Female 7 Captive born No
2 Chitalu Female 6 Captive born No
2 Debbie’s baby Male 5 Captive born No
2 Tom Male 5 Captive born No
2 Tina Female 4 Captive born No
2 Don Male 4 Captive born No
2 Toni’s baby Female 4 Captive born No
2 Nina’s baby2 Female 4 Captive born No
2 Mumba Male 3 Captive born No
2 Nancy Female 3 Captive born No
2 Merial Female 2 Captive born No
2 Little Joey Male 2 Captive born No
2 Camilla Female 2 Captive born No
2 Muriel Female 2 Captive born No
2 Victoria Female 2 Captive born No

Table G.2: Group 2 demographics - *Age at the end of the observation window (late 2019).

Group Individual Sex Age* Origin Parameter η

3 Buffy Female 35 Wild born Yes
3 Clement Male 27 Wild born Yes
3 Brian Male 26 Wild born Yes
3 E.T. Female 25 Wild born Yes
3 Roxy Female 25 Wild born Yes
3 Barbie Female 24 Wild born Yes
3 Bussie Male 15 Captive born Yes
3 Bruce Male 10 Captive born Yes
3 Lods Female 9 Captive born Yes
3 Brent Female 6 Captive born Yes
3 Bill Male 1 Captive born No

Table G.3: Group 3 demographics - *Age at the end of the observation window (late 2019).
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Group Individual Sex Age* Origin Parameter η

4 Nicky Male 29 Wild born Yes
4 Sinkie Male 26 Wild born Yes
4 Bobby Male 26 Wild born Yes
4 Kambo Female 24 Wild born Yes
4 Kathy Female 21 Wild born Yes
4 Miracle Female 20 Captive born Yes
4 Val Male 20 Wild born Yes
4 Commander Male 20 Wild born Yes
4 Kit Male 15 Captive born Yes
4 Jack Male 12 Captive born No
4 Leila Female 9 Wild born No
4 Ken Male 8 Captive born Yes
4 Jewel Male 6 Captive born No
4 Grace Female 5 Wild born No

Table G.4: Group 4 demographics - *Age at the end of the observation window (late 2019).

G.2 Supplementary figures

G.2.1 Grooming networks

Figure G.1: Grooming network - Group 1 - Orange ovals represent females and blue ones
males.
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Figure G.2: Grooming network - Group 2 - Orange ovals represent females and blue ones
males.

Figure G.3: Grooming network - Group 3 - Orange ovals represent females and blue ones
males.
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Figure G.4: Grooming network - Group 4 - Orange ovals represent females and blue ones
males.
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G.2 Supplementary figures

G.2.2 Individual fits of the distribution of ties

Figure G.5: Individual fits of the distribution of ties - Group 1
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Figure G.6: Individual fits of the distribution of ties - Group 2
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G.2 Supplementary figures

Figure G.7: Individual fits of the distribution of ties - Group 3

Figure G.8: Individual fits of the distribution of ties - Group 4
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G.2.3 Ego-networks

Figure G.9: Ego-networks - Group 1 - Orange ovals represent females and blue ones males.
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Figure G.10: Ego-networks - Group 2 - Orange ovals represent females and blue ones males.
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Figure G.11: Ego-networks - Group 3 - Orange ovals represent females and blue ones males.

Figure G.12: Ego-networks - Group 4 - Orange ovals represent females and blue ones males.
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Quetelet, A. (1835). Sur l’homme et le développement de ses facultés, ou Essai de physique
sociale (Vol. 2).

Read, J. M., Eames, K. T. D., & Edmunds, W. J. (2008). Dynamic social networks and
the implications for the spread of infectious disease. Journal of the Royal Society
Interface, 5, 1001–1007.

Reblin, M., & Uchino, B. N. (2008). Social and emotional support and its implication for
health. Current Opinion in Psychiatry, 21, 201.

Roberts, S. B. G., & Dunbar, R. I. M. (2015). Managing relationship decay: Network, gender,
and contextual effects. Human Nature, 26, 426–450.

Roberts, S. G. B., & Dunbar, R. I. M. (2011). Communication in social networks: Effects of
kinship, network size, and emotional closeness. Personal Relationships, 18, 439–452.

Roberts, S. G. B., Dunbar, R. I. M., Pollet, T. V., & Kuppens, T. (2009). Exploring variation
in active network size: Constraints and ego characteristics. Social Networks, 31, 138–
146.

Robins, G., Pattison, P., & Elliott, P. (2001). Network models for social influence processes.
Psychometrika, 66, 161–189.

Robins, G., Pattison, P., Kalish, Y., & Lusher, D. (2007). An introduction to exponential
random graph (p*) models for social networks. Social Networks, 29, 173–191.

Ron, T., & McGrew, W. C. (1988). Ecological assessment for a chimpanzee rehabilitation
project in Northern Zambia. Primate Conservation, 9, 37–41.

Roy, C., Bhattacharya, K., Dunbar, R. I. M., & Kaski, K. (2022). Turnover in close friendships.
Scientific Reports, 12, 11018.

Sah, P., Méndez, J. D., & Bansal, S. (2019). A multi-species repository of social networks.
Scientific Data, 6, 44.

Saramäki, J., Leicht, E. A., López, E., Roberts, S. G. B., Reed-Tsochas, F., & Dunbar, R. I. M.
(2014). Persistence of social signatures in human communication. Proceedings of the
National Academy of Sciences (USA), 111, 942–947.

203



REFERENCES

Savic, I., Garcia-Falgueras, A., & Swaab, D. F. (2010). Sexual differentiation of the human
brain in relation to gender identity and sexual orientation. Progress in Brain Research,
186, 41–62.

Sawyer, R. K. (2005). Social emergence: Societies as complex systems. Cambridge University
Press.

Schweitzer, F. (2018). Sociophysics. Physics Today, 71, 40.

Sekara, V., Stopczynski, A., & Lehmann, S. (2016). Fundamental structures of dynamic social
networks. Proceedings of the National Academy of Sciences (USA), 113, 9977–9982.

Silk, J. (2002). Using the ’F’-word in primatology. Behaviour, 139, 421–446.

Smirnov, I., & Thurner, S. (2017). Formation of homophily in academic performance: Students
change their friends rather than performance. PLoS One, 12, e0183473.

Smith, K. P., & Christakis, N. A. (2008). Social networks and health. Annual Review of
Sociology, 34, 405–429.

Snijders, T. A. B. (2002). Markov chain Monte Carlo estimation of exponential random graph
models. Journal of Social Structure, 3, 1–40.

Snijders, T. A. B. (2011). Statistical models for social networks. Annual Review of Sociology,
37, 131–153.

Snijders, T. A. B., Wang, P., & Steglich, C. E. (2010). Temporal exponential-family random
graph models for social networks. Journal of the American Statistical Association,
105 (490), 890–903.

South, S. J., & Haynie, D. L. (2004). Friendship networks of mobile adolescents. Social Forces,
83, 315–350.

Spitzer, F. (1971). Markov random fields and Gibbs ensembles. The American Mathematical
Monthly, 78, 142–154.
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