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Abstract

The reliability of the uncertainty characterization, also known as uncertainty realism, is of the uttermost importance for Space Sit-
uational Awareness (SSA) services. Among the many sources of uncertainty in the space environment, the most relevant one is the inher-
ent uncertainty of the dynamic models, which is generally not considered in the batch least-squares Orbit Determination (OD) processes
in operational scenarios. A classical approach to account for these sources of uncertainty is the theory of consider parameters. In this
approach, a set of uncertain parameters are included in the underlying dynamical model, in such a way that the model uncertainty is
represented by the variances of these parameters. However, realistic variances of these consider parameters are not known a priori. This
work introduces a methodology to infer the variance of consider parameters based on the observed distribution of the Mahalanobis dis-
tance of the orbital differences between predicted and estimated orbits, which theoretically should follow a chi-square distribution under
Gaussian assumptions. Empirical Distribution Function statistics such as the Cramer-von-Mises and the Kolmogorov–Smirnov dis-
tances are used to determine optimum consider parameter variances. The methodology is presented in this paper and validated in a series
of simulated scenarios emulating the complexity of operational applications.
� 2022 COSPAR. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/
by-nc-nd/4.0/).
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1. Introduction

The provision of most of the services in Space Traffic
Management (STM) and SSA relies on the proper charac-
terization of the orbital uncertainty. This is known as
uncertainty realism, and focuses on the correct representa-
tion of the Probability Density Function (PDF) of the orbi-
tal state. Uncertainty realism can be reduced to covariance
realism under Gaussian assumptions, requiring not only an
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unbiased estimation but also covariance consistency (cor-
rect covariance orientation, shape, and scale). When these
requirements are met, the PDF representing the uncer-
tainty of the system can be fully characterized by its two
first moments, gathered in a state and its associated covari-
ance matrix. These are strong assumptions, though widely
applied in operational SSA environments, where Resident
Space Objects (RSOs) uncertainty is represented by the
state and its associated covariance. Thus, covariance
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realism can be understood as a necessary but not sufficient
condition for uncertainty realism. The misrepresentation of
the uncertainty of a RSO impacts STM and SSA products,
being crucial for various tasks: RSO cataloguing, collision
risk assessment, fragmentation analysis, re-entry predic-
tion, track association, manoeuvre detection or sensor
tasking and scheduling, among others. Many existing Orbit
Determination processes are based on weighted batch least-
squares theory and provide the estimation (state and
covariance) as the nominal output, given that measure-
ments are sufficient and available. Along this process, the
dynamical model defining the motion of the orbiting object
is assumed to be deterministic, and the estimation accuracy
is determined considering only the uncertainty of the obser-
vations (Tapley et al., 2004). The resulting covariance
matrix in this estimation process is known as the noise-
only covariance (Montenbruck and Gill, 2000). However,
one of the main sources of uncertainty during OD and sub-
sequent propagation arises from the errors in the underly-
ing dynamical models, which are typically disregarded
(Alfriend et al., 2000; Montenbruck and Gill, 2000). For
instance, when the ballistic coefficient is estimated in an
OD process, the uncertainty of the atmospheric model is
not considered, and thus the induced uncertainty on the
rest of the state is not accounted for during the orbit deter-
mination and propagation. This results in overly-optimistic
noise-only covariance matrices, which causes the covari-
ance realism to degrade since the atmospheric density
uncertainty will have an impact on the uncertainty of the
estimated state, especially in the along-track position direc-
tion (Vallado, 1997).

Therefore it is customary, for SSA and particularly for
Space Surveillance and Tracking (SST) purposes, to char-
acterize and determine the inherent uncertainty in the
dynamic or measurement models and their effects, which
is commonly known as uncertainty quantification (UQ).
Two fundamental problems can be distinguished for uncer-
tainty quantification. On the one hand, the quantification
of the uncertainty present in the system models, parame-
ters, or data, also known as the inverse problem or inverse
UQ (Poore et al., 2016). On the other hand, the propaga-
tion of uncertainty (UP). The latter concentrates on how
to characterize the evolution of the system uncertainty,
accurately and efficiently. Most UP methods focus on the
propagation of an initially given Probability Density Func-
tion (PDF) of a state, though there exist methods for the
propagation of epistemic uncertainty that do not rely on
PDF propagation (Vasile, 2019). However, this is not the
focus of the present work, where linearized propagation
techniques are used. The inverse problem, on the contrary,
consists in assessing the differences between the observed
behaviour of a system and the underlying models and
parameters used to represent it. This is the target of the
work at hand.

Regarding the uncertainty in the modelling, a possible
(not exclusive) approach is to revisit the deterministic
assumption in the equations of motion. Specifically, one
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may account for the model uncertainty by introducing
stochastic dynamics or process noise, exploring different
stochastic modelling such as Brownian motion, Ornstein–
Uhlenbeck or Gauss–Markov processes (Poore et al.,
2016). The inverse problem also tackles the parameter
uncertainty, this is, the modelling of uncertain parameter
present in the dynamics or measurements equations. If the
uncertain parameter (whether static or time-dependent)
can be observed or estimated, it is possible to include its
impact in the evolution of the differential equations of
motion. In the end, the goal of parameter uncertainty mod-
elling is not only the a posteriori quantification of the
errors, but also to represent the relationship between the
uncertain parameter and the state variance.

There exists a wide variety of techniques that target
directly the complete inverse problem. Process noise meth-
ods, which consist in including additional noise terms in the
dynamics to account for un-modelled error sources, are
generally accepted over stochastic acceleration methods
since they can account for both dynamic model and param-
eter uncertainty, especially if they are physically-based
(Poore et al., 2016). However, many process noise solu-
tions, based on noise fitting to observed orbital uncer-
tainty, lack the physical meaning of the different sources
of the uncertainty since they are focused on global process
uncertainty rather than each individual source. For
instance, process noise estimation via calibration process
is proposed in (Duncan and Long, 2006; Schubert et al.,
2021). Even though these techniques are typically used
for filtering applications rather than in batch processing,
some works describe the computation of a process noise
matrix that accounts for the drag uncertainty and include
it in the batch least-squares estimation process
(Schiemenz et al., 2019). Other approaches suggest the
use of empirical covariance matrices to include all residuals
of the estimation process in the covariance computation,
regardless of whether the uncertainty has been modelled
or not (Frisbee, 2011; Cerven, 2011; Cerven, 2014). This
proposal claims to account more accurately for noise
time-variations rather than process noise or consider
parameter analysis, at the expense of missing the physical
interpretation of the uncertainty. Finally, particle filters
are also a state-of-the-art technique that allows to retain
higher moments of the target PDF by the selection of speci-
fic sigma points in pseudo Monte Carlo analysis (McCabe
and DeMars, 2014). The key of these methods is the trade-
off between accuracy and computational cost.

Therefore, uncertainty (and covariance) realism
improvement is a direct consequence of reaching the UQ
goals, this is, the characterization of the system uncer-
tainty. However, apart from the aforementioned UQ meth-
ods, there are other techniques conceived to improve
covariance realism without focusing on the sources of
uncertainty and their modelling. For instance, state distri-
bution in mean elements may be better represented by a
multivariate normal distribution (Junkins et al., 1996;
Vallado and Alfano, 2011). Other typical representations
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of the state and covariance in non-linear reference frames
that are able to slow down the realism degradation upon
propagation are being widely studied, such as in Laurens
et al. (2018). In an operational environment, operators
require simple techniques in order to improve covariance
realism since, as previously discussed, the nominal batch
least-squares OD processes provide optimistic covariance
estimations when only accounting for the measurements
uncertainty. The most common options are: (1) the previ-
ously mentioned process noise and (2) scaling techniques,
which inflate the covariance by means of scaling factors.
Some authors propose the computation of such scaling
based on increasing the initial position uncertainty to
match the velocity error (Folcik et al., 2011). Others
explore the use of the Mahalanobis distance of the orbital
differences to find the scale factor (Laurens et al., 2017).
However, a common drawback of artificially increasing
the covariance is that the physical meaning of the correc-
tion is lost, not being able to understand the contributions
of each source of uncertainty. These sort of methods based
on artificially scaling the covariance matrix are used nowa-
days in operation centres such as the Space Operations
Center (CSpOC) (Poore et al., 2016).

It is seen that simple and reliable UQ method that pro-
vide realistic characterization of the uncertainty are
required by operators nowadays. One of the classical
approaches for parameter UQ in the dynamic equations
is the consider parameters theory, which can be classified
within the process noise techniques (Montenbruck and
Gill, 2000). It consists in extending the state space by
including parameters in the dynamic models, such as atmo-
spheric force, solar radiation pressure force or measure-
ment models. These parameters are devised to follow a
certain model with its corresponding uncertainty, e.g. a
Gaussian distribution with a null mean (to maintain an
unbiased estimation) and a certain variance. This allows
the representation of unaccounted error sources of the
dynamical or measurement models by including the param-
eter uncertainty. This formulation can be combined with
batch estimation or filtering algorithms such as in the
Schmidt-Kalman filter (Zanetti and D’Souza, 2013;
Jazwinski, 1970). This approach provides the advantage
of tracking the effect of the specific uncertain physically-
based parameters that are included, as opposed to artificial
scaling factors. However, one of the main drawbacks of the
consider parameter theory is that realistic variances of such
parameters are not normally known, a common problem in
process noise methods. Overly optimistic, or oversized,
variances may fail to model the uncertainty of parameters
in the estimation and subsequent propagation of the
covariance, not achieving covariance realism.

The aim of this work is to present a novel methodology
to determine the variance of the considered parameters to
improve the realism of the state covariance matrices
obtained from operational OD processes. The method is
based on the orbital differences between estimated and pre-
dicted orbits. Under Gaussian assumptions, the differences
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between both orbits projected into the covariance space, i.e.
Mahalanobis distance, should follow a v2 distribution to
achieve covariance realism. Thus, the variance of the con-
sider parameters can be determined by means of a statistical
comparison process between the observedMahalanobis dis-
tance distribution and the expected one, i.e. a v2 distribu-
tion. We refer to estimated orbits as those ones obtained
after an Orbit Determination process, backed up with
observations. Predicted orbits refer to the propagation of
those estimates with the same dynamical model to the
future. The work carried out focuses on Low Earth Orbits
(LEO) regimes, tackling some of the most relevant uncer-
tainty sources such as the atmospheric density in the drag
force acceleration, the range bias in the radar measurements
or the solar proxies prediction (Vallado et al., 2014).

A precursor analysis based on the consider parameter the-
ory to improve the covariance realism is performed in
(Lopez-Jimenez et al., 2021). There, it is proposed to correct
the noise-only covariance with a least squares fitting to a so-
called observed covariance, the latter being obtained as an
empirical covariance based on orbital differences from a sta-
tistically representative population of different orbit determi-
nations. This approach has a main drawback. To compute
such empirical covariance, orbital differences corresponding
to multiple orbital positions and observation scenarios (ob-
servations geometry, number of measurements, etc) are
mixed. In the work presented here, this issue is mitigated
by the normalisation obtained with the Mahalanobis dis-
tance, which is the cornerstone of the work in this paper.
The estimated covariance in a batch least-squared process
is affected as well by the orbit position of the estimation
epoch and the observation scenario. Thus, orbital differences
normalized by their associated covariance (i.e. Mahalanobis
distance) could be treated as samples from the same distribu-
tion, concretely as a v2 distribution under Gaussian assump-
tions if the covariance is realistic, since as discussed later, the
Mahalanobis distance of each sample shall be constant in
time under certain assumptions. Preliminary studies that
analysed the applicability of this methodology to LEO or
GEO regimes can be found in (Cano et al., 2021b; Cano
et al., 2021a), respectively.

The remainder of the paper is organised as follows: in
Section 2 the consider parameter theory is reviewed and
the methodology is presented. In Section 3, the simulation
process and environment are described. Next, the results of
the proposed covariance determination methodology are
shown in Section 4. The focus is placed on the physical
interpretation of the consider parameter variances obtained
and the level of covariance realism enhancement achieved.
Finally, Section 5 summarizes the conclusions of this work
and the future work to be performed.
2. Methodology

This section revisits in first place the consider parame-
ters theory and its direct effect on the covariance computa-
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tion. Then, the specific formulation derived to include the
consider parameter theory in the Mahalanobis distance
computation is described. Finally, the consider parameter
models devised in this work are defined.
2.1. Consider parameters theory in batch least-squares

algorithm for orbit determination

The complete description of the consider parameter the-
ory (or consider covariance analysis, as termed by some
authors) can be found in many references such as
(Montenbruck and Gill, 2000; Tapley et al., 2004). For
brevity, only the final derivation in the nominal batch
least-squares process is described next. Let us define the
estimated state vector as

yest ¼
rðtÞ
vðtÞ
pðtÞ

0
B@

1
CA 2 Rn

y ð1Þ

being rðtÞ; vðtÞ and ny the position, velocity and estimated
state dimension, respectively. pðtÞ represents the estimated
parameters, either applied to the force or the measurement
models. Typical examples of these parameters are the Drag
Coefficient (Cd) in LEO orbits or the Solar Radiation Pres-
sure Coefficient (Cr) in GEO. The consider parameters to
be modelled in our system can be gathered in a consider
parameter vector

yc ¼
c1

..

.

cn

0
BB@

1
CCA 2 Rn

c ð2Þ

where nc is the number of consider parameters. They are
defined to follow a Normal distribution of the form

ci � N 0; r2
i

� �
; i ¼ 1; � � � ; n ð3Þ

The null mean definition allows the expected value of the
orbit estimation to remain unbiased (Montenbruck and
Gill, 2000). On the contrary, the covariance of the estima-
tion is affected. Recalling the nominal batch least-squares
estimation, the noise-only covariance is

Pn ¼ HT
y WHy

� ��1

2 Rny�ny ð4Þ

where Hy corresponds to the Jacobian of the observations
with respect to the estimated state, and W is the weighting
matrix containing the confidence of each measurement and
the possible correlation among the measurements. Then,
the consider covariance results in:

Pc ¼ Pn þ PnH
T
y W

� �
HcCH

T
c

� �
PnH

T
y W

� �T
ð5Þ

where Hc is the Jacobian of the observations with respect
to the consider parameters and
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C ¼
r2
1 � � � 0

..

. . .
. ..

.

0 � � � r2
n

0
BB@

1
CCA ð6Þ
contains the variances of the consider parameters, where
no correlation between them is assumed. Eq. (5) can be
simplified to obtain

Pc ¼ Pn þ KCKT 2 Rny�ny ð7Þ
K ¼ Pn HT
y WHc

� �
2 Rny�nc ð8Þ
where nc is the number of consider parameters. Therefore,
the consider covariance is obtained as the noise-only
covariance plus a covariance correction, which depends lin-
early on the consider parameter variances.
2.2. Consider parameters effect in orbit propagation

The consider covariance is obtained at estimation epoch
and models the effect of the uncertainty of the consider
parameters that affect the estimation, regardless whether
their uncertainty affects the force or the measurements
model. However, our interest in enhancing the covariance
realism extends also to the covariance propagation for
SST purposes. In this paper, we assume linear propagation
of the covariance matrix, as it is generally applied in most
operational scenarios in SST. More complex and accurate
uncertainty propagation methods are out of the scope of
this work since Gaussianity is a cornerstone assumption
in the proposed methodology. In this respect, Michael’s
normality tests can be applied to assess data linearity
(Michael, 1983; Royston, 1993). A complete derivation of
linear propagation theory can be found in many well-
known references, such as (Montenbruck and Gill, 2000).
First, let us define the extended state vector as

yext ¼

rðtÞ
vðtÞ
pðtÞ
c1

..

.

cn

0
BBBBBBBBB@

1
CCCCCCCCCA

2 Rnyþnc ð9Þ
which is composed of the estimated parameters plus the
consider parameters of our analysis. In the end, to account
for the effect of the main dynamic parameters in the prop-
agation of the state, it is required to integrate the varia-
tional equations. Its solution is the Extended State
Transition Matrix (ESTM)
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W t; t0ð Þ ¼ U t; t0ð Þ S t; t0ð Þ
0 I

� �
W 2 RðnyþncÞ�ðnyþncÞ

U 2 R6�6

S 2 R6�np

I 2 Rnp�np

ð10Þ

where:

� np is the number of dynamical parameters to consider
during propagation, which in this case corresponds to
the estimated dynamical parameters plus the consider
parameters, excluding position and velocity, hence,
np ¼ ðny � 6Þ þ nc

� U t; t0ð Þ corresponds to the state transition matrix, which
relates the position and velocity at any time t with
respect to the initial state at time t0.

� S t; t0ð Þ is the so-called sensitivity matrix, which contains
the partial derivatives of the state vector with respect to
the model dynamical parameters, both estimated and
considered. These parameters are defined as constant
in the dynamic model as is customary in many propaga-
tion methods (Tapley et al., 2004), though in this case
having a certain variance that the proposed methodol-
ogy intends to estimate.

The ESTM can be computed by solving numerically its
associated partial differential equations as shown in
Montenbruck and Gill (2000). The typical linear covariance
propagation applying the state transition matrix would be

PnðtÞ ¼ U t; t0ð ÞPn t0ð ÞU t; t0ð ÞT ð11Þ
However, to account for the effect of the uncertainty of the
consider parameters in our covariance propagation, we
define the extended consider covariance

Pcext t0ð Þ ¼ Pc 0

0 C

� �
¼ Pn þ KCKT 0

0 C

 !
2 RðnyþncÞ�ðnyþncÞ

ð12Þ

where in addition to the classical consider covariance, the
uncertainty of the consider parameters is also explicitly
included. Thus, the extended covariance at any time, using
the ESTM, is

PcextðtÞ ¼ W t; t0ð ÞPcext t0ð ÞW t; t0ð ÞT ð13Þ
By using the ESTM, the effect of the uncertainty of the
model parameters is mapped into the position and velocity
covariance not only at estimation, but also along the prop-
agation. Of course, depending on the choice of consider
parameters, they may affect only the estimation process,
the propagation process, or both. This is a relevant factor
to take into account in the analysis, and is further discussed
for each consider parameter. The goal of the work at hand
is to determine the values of C so that the consider covari-
ance realism is improved.
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2.3. Specific consider parameters

In this section, the main consider parameters that have
been modelled in our work are presented. All of them fol-
low the definition of Eq. (3). The general methodology pre-
sented in Sections 2.1 and 2.2 allows to include any desired
consider parameter in the dynamic or measurement model.
A relevant benefit of this methodology is that each param-
eter can be defined to model a specific uncertainty source,
tailored to any orbital regime, which in principle allows
to maintain the trace of the error sources. However, this
traceability can be compromised by the correlation
between the different consider parameter models, which
may lead to the contribution of each uncertainty source
to be hard to decouple. Therefore, another target of the
work presented here is to assess the ability of the proposed
methodology to maintain such traceability.

2.3.1. Aerodynamic model consider parameter

The classical drag force equation including the aerody-
namic model consider parameter is defined as:

adrag ¼ � 1

2
q
CdA
m

vrelj j2 vrel

vrelj j 1þ cAEð Þ ð14Þ

where q is the atmospheric density, Cd the drag coefficient,
A the cross-sectional area, m the object mass and vrel is the
relative speed vector of the object with respect to the atmo-
sphere. Finally cAE is the consider parameter, whose objec-
tive is to model the error in the atmospheric density and
ballistic coefficient, containing Cd as well as mass and
cross-sectional area uncertainty. The uncertainty of this
parameter affects both the estimation and propagation arc.

2.3.2. Range bias

This parameter is included to represent possible errors in
the measurements model and calibration process. In this
case, the measurement model becomes

z� ¼ zþ cz ð15Þ
where z represents the range measurement and cz is the
range bias error consider parameter. Note that Eq. (15)
could represent any other measurement retrieved from a
sensor, which in the case of a typical radar for SST pur-
poses includes azimuth and elevation angles, range and
range rate. The purpose of this consider parameter is to
model the variance of the range bias of the sensor network,
modeled as constant for each OD arc. Even though a sen-
sor network mean bias can be applied after sensor calibra-
tion using previous data, an error is committed in
subsequent OD arcs. The uncertainty of such error is what
the proposed range bias consider parameter aims to model.

2.3.3. Atmospheric proxies prediction consider parameter

The aim of this parameter is to represent another rele-
vant source of uncertainty in LEO, related to the uncer-
tainty associated to the prediction of the atmospheric
F 10:7 or Ap proxies that are used to compute the
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atmospheric density at future times. Not only the proxies
observations may vary depending on the source, but also
the predicted values error represent a relevant uncertainty
source (Vallado and Kelso, 2013). The consider parameter
cPE model is introduced in the drag force, namely,

adrag ¼ � 1

2
q
CdA
m

vrelj j2 vrel

vrelj j 1þ cPE � tpred
� � ð16Þ

where tpred is the prediction time (days), thus, cPE has units

of frequency [days�1]. The source of uncertainty to be mod-
elled here is considered to be only present during the orbit
propagation and proportional to the prediction time,
which is defined to start the day the first forecasted proxy
is used in the atmospheric model. Although such a model
will not have an impact during the orbit estimation, its
associated covariance will affect the propagation of the
state via the ESTM. This leads to a dominance of this
model error after long propagation intervals, allowing to
decouple its contribution from other modeled uncertainty
sources.

Observed space weather data from NOAA is applied
during OD, assumed as true, whereas predicted proxies
are used during propagation as is detailed in 3.4. It can
be noted that, as concluded in other studies such as in
Vallado and Kelso (2013), the observed space weather data
has its own uncertainty, arising from different observations
and data processing of the different space weather sources.
In the work presented here, this uncertainty during orbit
estimation is modeled as Gaussian, and thus, it is contained
inside the aerodynamic model consider parameter previ-
ously defined.

2.4. Covariance determination method

2.4.1. Mahalanobis distance with consider covariance

The Mahalanobis distance (dM ) is a well-known statisti-
cal metric that describes how far a state yðtÞ is from a cer-
tain reference yref ðtÞ, projected into the covariance space

(Mahalanobis, 1936). The squared Mahalanobis distance
is:

d2
M ¼ y� yref

� �T
Pþ Pref

� ��1
y� yref
� � ð17Þ

where P and Pref are the covariance matrices of the state
and the reference, respectively. Both matrices are computed
from Eq. 13, each one using their corresponding estimated
covariances and ESTM matrices. Note that the orbit used
as reference can also suffer from model errors, and thus
the consider parameter correction impact on its noise-
only covariance must also be considered as in Eq. 13. Eq.
17 assumes that no correlation exists between both vari-
ables y and yref , though this is not guaranteed, for instance,
when the sensor network is common to both state estima-
tions. The assumption of no correlation between the state
and the reference is found in other studies such as Poore
et al. (2016) or Hill et al. (2012). In the work presented
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here, we also assume no correlation between the state
and the reference, mitigating any possible correlation by
ensuring that the computed reference orbit, yref , does not
share any observation with the orbit state under analysis,
y. Nonetheless, the validity of this assumption is assessed
during the simulation results provided in this work. In
addition to this, the covariance of the reference can be
neglected when it is several orders of magnitude smaller.
This occurs when the used reference orbit is assumed per-
fect (without uncertainty) (Folcik et al., 2011; Sabol
et al., 2010) or when their sources are known to be highly
accurate such as Precise Orbit Determination outputs.

For simplicity, the reference covariance is omitted in the
following equations, although it is considered in the com-
putations when applicable. In order to introduce the con-
sider parameter effect, we recall the definition of the
extended state vector of Eq. (9) and combine Eqs. 12,13
with Eq. (17), which yields

d2
MðtÞ¼DyðtÞT W t; t0ð Þ PnþKCKT 0

0 C

 !
W t; t0ð ÞT

 !�1

DyðtÞ

ð18Þ
where DyðtÞ ¼ yextðtÞ � yrefðtÞ. Eq. (18) allows to compute
the Mahalanobis distance at any epoch along the propaga-
tion arc as a function of the consider parameter variances
contained in matrix C, assuming that a batch least-
squares parameter estimation process has been performed,
followed by a propagation step.

2.4.2. Consider parameters variance determination

Under linear and Gaussian assumptions, this is, when
the differences between the state and the reference are nor-
mally distributed and the covariance is representative of
such distribution (i.e. realistic), the squared Mahalanobis
distance should follow a v2 distribution, whose detailed
characteristics may be found in D’Agostino and Stephens
(1986). Eq. (18) allows us to evaluate the Mahalanobis dis-
tance at any propagation epoch by computing the orbital
differences between a predicted orbit and a reference. Thus,
if a population of estimated (and later propagated) orbits
are available, together with reference orbits, it is possible
to look for the consider parameter variances in matrix C
so that the squared Mahalanobis distance population
resembles the expected theoretical v2 distribution. Hence,
computing the consider parameter variances is reduced to
a statistical comparison process, where the free variables
are the variances of the consider parameters. The covari-
ance determination process can be divided in three main
steps:

1. For a population of orbits, perform an OD process to
obtain the noise-only covariance and the components
of matrix K. Then propagate the estimated states to
obtain the predicted orbits and the ESTM.
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2. For each predicted orbit, compute the orbital differences
at any desired propagation epoch comparing against a
reference orbit.

3. With all the data from the orbits population to construct
Eq. (18), obtain the consider parameters variance that
minimizes a certain metric of statistical comparison
between the observed squared Mahalanobis distance
distribution and the v2 distribution. The different met-
rics and minimization solver are described in
Section 2.4.4.

Therefore, the objective is to retrieve the consider
parameter distribution that has affected the population of
orbits. This can be done provided that a sufficient amount
of samples is available, where ‘sufficient’ means that a pre-
scribed accuracy target can be attained as a trade-off
between accuracy and amount of data available. This is
further discussed in Section 4.3. The methodology looks
for orbits affected by errors that are modelled to follow
the consider parameter definitions of Section 2.3, this is,
each orbit is affected by a constant error, drawn from the
proposed consider parameter distribution whose variance
we aim to estimate. The diversity of errors observed in
the population allows to determine the variance of the pro-
posed consider parameters applying the proposed covari-
ance determination methodology. If the variance of the
parameters is properly captured and the proposed models
are representative of the system uncertainty, we can correct
the estimated covariance and improve the covariance real-
ism, as is seen in Section 4. In that regard, if the methodol-
ogy is demonstrated to provide satisfactory and accurate
results, being able to decouple the consider parameters
impact and any other orbit correlation, we can maintain
the trace of the error sources and their tailored correction
in the covariance matrix.

One of the final objectives of this methodology is its
operational applicability. To obtain a population of orbits
of a single object in a SSA scenario, where the data is
scarce, we have to resort to orbits estimated at different
epochs, with different space weather proxies or even obser-
vation geometry. This is the reason why we propose the
Mahalanobis distance metric to unify the orbits population
under the same distribution (i.e. v2). On the one side, we
are comparing against a reference orbit, and on the other
side we are normalizing such differences with a covariance
matrix generated from an OD process that will be coher-
ently affected by the same diversity of estimation epochs
and OD conditions. In fact, the Mahalanobis distance for
each orbit is expected to remain approximately constant
under Gaussian assumptions and sufficiently linear dynam-
ics (Sabol et al., 2010).
Fig. 1. Orbit estimation and propagation scheme for 1 Monte Carlo
sample.
2.4.3. Reference orbit for Mahalanobis distance

An orbit to be used as reference is required to compute
the Mahalanobis distance. In many studies, the reference
orbit used for the Mahalanobis distance computations is
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an assumed true, errorless orbit (Folcik et al., 2011;
Sabol et al., 2010). In the context of this work, this orbit
is defined as the ”true reference” and its covariance can
be neglected. In real operations, these kind of references
may be available as Precise Orbit Determination products,
with orbit precision of the order of 1 cm. However, these
solutions require the collaboration of the satellites for such
precise computations.

Thus, these solutions are not generally available in most
operational situations in SST, where non-collaborative
RSO are the main targets. For this purpose, this work pro-
poses to use estimated orbits as reference orbits to compare
against the propagated ones. In other words, if measure-
ments are available for a certain period of time, we can
use measurements in the propagation arc of another orbit
to determine a reference orbit, whose absolute estimation
error is several orders of magnitude lower that the propa-
gated orbit under analysis. This has been defined as the
Operational reference orbit (see Fig. 1). As was discussed
in Section 2.4.1, this operational reference has a non-
negligible covariance since it is estimated after an orbit
determination process. Therefore, its covariance must be
included when computing the Mahalanobis distance. The
process to generate the Operational reference orbit in the
presented simulations is detailed later in Section 3.1.

Both types of reference orbits (the ”true” and the ”oper-
ational”) are tested in this work. Achieving similar perfor-
mances of the methodology when using any of these
refereces is of paramount importance for the operational
applicability of the proposed covariance determination
method, as it would not require external and precise ephe-
meris to use as reference.
2.4.4. Statistical comparison metrics and solver

The statistical comparison process consists in comparing
the Cumulative Distribution Function (CDF) of the
observed squared Mahalanobis distances with the v2 distri-
bution CDF of as many degrees of freedom (DOF) as the
ones included in the Mahalanobis distance computation.
This can be reduced to the minimization of an Empirical
Distribution Function statistic (EDF). These kind of tests
are based on measuring the discrepancy between the



Table 2
Simulated reference RSO state.

Semi-major axis 7186.878 km
Eccentricity 0.001113
Inclination 98.72 �
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EDF (step function that approximates the CDF of a pop-
ulation) and a given function such as the v2. Among the
multiple options available in the state-of-the-art
(D’Agostino and Stephens, 1986; Poore et al., 2016), two
relevant metrics are presented and compared along this
work:

1. Cramer-von-Mises (CvM): it is a quadratic statistic,
based on the squared differences between both distribu-
tions, in this case with constant weights. A directly
applicable formulation for the Cramer-von-Mises statis-
tic to test if a given population X 1; � � � ;Xn comes from a
v2 distribution is

J ¼ 1

12n
þ
Xn
i¼1

v2CDF X ið Þ � 2i� 1

2n

� �2

ð19Þ

where n is the total amount of samples, being sorted in
increasing order. The null hypothesis of this test is that
the candidate distribution belongs to the v2 distribution.
Such hypothesis can be can be rejected with a 99.9%
confidence level if the metric reaches values above 1.16
approximately. For a more robust applicability of such
metric, upper tail correction factors as described in
D’Agostino and Stephens (1986) can be applied.

2. Kolmogorov–Smirnov (KS): it is a supremum statistic
that consists in the maximum vertical difference between
the empirical and theoretical CDFs, i.e.,

D ¼ max v2CDF X ið Þ � i
n

����
����

� �
ð20Þ

Again, n is the total amount of samples, sharing the
same null hypothesis as the Cramer-von-Mises statistic.
In this case, the null hypothesis can be rejected for met-
rics higher than 1.95 at same 99.9% confidence level.
Again, tail correction factors can be applied.To mini-
mize those metrics, the Differential Evolution algorithm
(Storn et al., 1997) is applied, which consists in a heuris-
tic approach for global multivariate function optimiza-
tion, suitable also for nonlinear or non-differentiable
functions. Instead of requiring an initial guess, this algo-
rithm allows to define boundary regions for the opti-
mized variables, in this case, the consider parameter
variances. The boundaries applied for the consider
parameter variances in all the simulations carried out
in this work are shown in Table 1. As expected, the
smaller the search region is, the faster the algorithm con-
verges to the global solution. These values have been
selected as a compromise between operational applica-
bility and computational efficiency, representing a wide
Table 1
Minimisation boundaries

rAE [%] rPE [%/day] rRB [m]

Upper bound 60 60 200
Lower Bound 0 0 0
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enough region to ensure that the unknown solution is
contained, but maintaining physically logical upper
boundaries.

3. Validation environment

3.1. Simulation scheme

To test the covariance realism improvement achieved
with the proposed methodology, a validation campaign
in a simulated environment has been carried out. The sim-
ulation process to generate a realistic environment is
described next. Fig. 1 is included for further details of the
process. It depicts a timeline of a Monte Carlo sample, con-
sisting in an orbit determination and propagation process
and differentiating between the reference orbit and the esti-
mated/predicted orbit obtained during each process
iteration.

� True reference orbit: it is obtained propagating a refer-
ence state associated to an existing RSO (see Table 2)
from a certain reference epoch. The dynamic model of
this propagation is deterministic and is not perturbed
with randomly generated samples of the consider
parameters (see Table 3 for further details). The length
of this propagation arc is sufficient to cover all required
arcs of posterior orbits.

� Monte Carlo iterations:
– Simulated orbit: from the reference state, a propaga-

tion is performed over 7 days backwards from the
estimation epoch (t0), which are the nominal OD arcs
of interest in LEO applications. Along this step, the
aerodynamic model perturbation is included, obtain-
ing a simulated orbit. Though for each sample the
aerodynamic model perturbation (cAE) is constant,
each value is drawn from a Gaussian distribution
with null mean and a simulated variance, following
the consider parameter expectations of the perturba-
tions. Recovering the input variance through our
covariance determination methodology would serve
as validation. The space weather information used
RAAN 77.03 �
Arg of pericenter 111.436 �
True anomaly 71.98 �
Epoch (UTC) 2018–01-07 00:00:00.000

Mass 500 kg
SRP area 10 m2

Drag area 10 m2

Drag coefficient 2.0



Table 3
Dynamical model characteristics.

Reference frame J2000 ECI
Gravity field 16x16

Third body perturbations Sun & Moon
Earth geodetic surface ERS-1
Polar motion and UT1 IERS C04 08

Earth pole model IERS 2010 conventions
Earth precession/ nutation IERS 2010 conventions

Atmospheric model NLRMSISE-90
Solar radiation pressure Constant area

Drag force Constant area

Tab
Me
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Table 5
Characteristics of simulated radar.

Field of view Pyramidal asymmetric
Line of sight Azimuth 180 �

Elevation 75 �
Aperture Azimuth �43 �

Elevation +15�/�10�
Geodetic coordinates Longitude �5.5911 �

Latitude 37.16643 �
Height 0.1423 km

Observation spacing 5 s
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along this step corresponds to observed proxies as
provided by the Space Weather Prediction Center
(NOAA), assumed to be the true proxies.

– Tracks generation: From such perturbed orbit, tracks
are simulated from a ground-based sensor, in this
case, corresponding to a LEO radar with similar vis-
ibility capabilities and accuracy as a real operational
case (see Table 4 for the measurements noise and
Table 5 for the radar characteristics). The range bias
perturbation (cRB) is introduced in this step analo-
gously to the previous perturbation. An example of
the resulting observations can be seen in Fig. 1.
Approximately, between 8 to 10 tracks are generated,
of around 2 min of duration each, providing between
750 and 1000 measurements (range, range-rate, azi-
muth an elevation). These numbers vary from one
iteration to the next one due to the visibility intervals
(orbit revisit period and orbit geometry).

– Orbit determination and propagation: an OD is per-
formed with the simulated measurements, again with
a 7 days determination arc. The estimated state is
then propagated forward 11 days from the estimation
epoch (t0), corresponding to the last measurement,
obtaining the predicted orbit and the extended state
transition matrix. To realistically introduce the effect
of the uncertainty in the solar proxies prediction
(cPE), true proxies are used only up to the estimation
epoch, and as in daily satellite operations, algorithms
for the prediction of space weather proxies are used
complete the required set. Further details about this
prediction are given in Section 3.4.

– Operational reference orbit: as previously defined, the
purpose of this orbit is to check whether the method-
ology works when using a reference orbit that has
been obtained in an orbit determination process. To
this end, tracks are simulated as if the True reference
orbit was observed, again with the same sensor net-
le 4
asurement noise considered.

Measurement type r Units

wo-way range (ground-satellite) 10 m
o-way range rate (ground-satellite) 300 mm/s
Satellite azimuth and elevation 1 �
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work. Another OD process is performed using this
new set of measurements and the true space weather
proxies. For consistency, the length of the determina-
tion arc of this orbit is set to coincide with the deter-
mination arc of the orbit under analysis, equal to
7 days. The tracks generation and OD arc in this case
is set to range from t0 þ 4 up to t0 þ 11, which corre-
sponds to the interval of interest for our orbit com-
parisons and covariance matrix correction. Recall
that t0 is defined from the previously estimated/prop-
agated orbit. Fig. 1 depicts this process. It is impor-
tant to notice that this Operational reference orbit
has a certain non-negligible covariance matrix as part
of the OD process that needs to be included in the
Mahalanobis distance computation.

In order to generate more samples following an
operational-like scenario, a new sample is created shifting
the reference epoch by one day and repeating the previous
list of steps again, applying different samples of the pertur-
bations at each iteration. Once the complete population of
estimated and predicted orbits is obtained, together with
their covariance time-evolution, the covariance determina-
tion methodology previously explained can be applied to
estimate the variance of the different consider parameters.
The expected values of such variances correspond to those
used in the simulation process, for the drag force, for the
range bias, and for the space weather prediction, which
are described in Section 3.4.
3.2. State vector components in the Mahalanobis distance

As previously discussed, one of the keys of the proposed
methodology is the assumption that the Mahalanobis dis-
tance metric allows to include all orbital differences in the
same theoretical v2 distribution. Under Gaussian and lin-
ear assumptions, the Mahalanobis distance for each orbit
should remain approximately constant if the system errors
are properly modeled.

Nonetheless, numerical instabilities were observed in the
computation of the Mahalanobis distance when consider-
ing the complete state vector dimensions. These instabilities
were tracked down to non-linearities that appeared in the
position-velocity cross terms of the covariance matrix after
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4 days of propagation, which caused ill-conditioning of the
matrix and an exponential growth of the Mahalanobis dis-
tance in 1 principal component of the velocity. This same
phenomenon was also seen in Sabol et al. (2010), where
they attribute it to the inability of the Cartesian coordi-
nates to maintain the Gaussianity. The connection between
those non-linearities after propagation and OD character-
istics such as observability, track length, orbit geometry
or sensor network is a future line of research. Moreover,
testing the proposed methodology in coordinates that
maintain better the linearity such as equinoctial elements
or curvilinear coordinates is a clear line of improvement.

However, other authors propose similar Mahalanobis
distances and v2 distributions analysis where only position
covariance is considered, arguing that position covariance
realism is of higher relevance for high velocity collision risk
assessments, which is one of the most common types of
RSO encounters (Laurens et al., 2017). Additionally, the
position-only Mahalanobis distance remains sufficiently
stable for the circular orbits under analysis. Therefore, in
the Mahalanobis distance computation of the work pre-
sented here, we consider components related to the position
differences projected to TNW local frame. Carrying out the
analysis in local frames aligned with the satellite motion
provide further insight on the effect of the considered per-
turbations. The impact of this choice in the proposed
methodology is assessed with the simulated scenario results
shown in Section 4.

3.3. Reference state, dynamic and sensor model

This section will briefly state the simulated scenario set-
tings used to conduct the work presented here. The initial
reference state is described in Table 2, representing a
LEO object at around 800 km altitude. The reference epoch
is the starting epoch of the simulation scheme described
above. The dynamic model characteristics are described
in Table 3, and the simulated noise of the radar measure-
ments during the track generation can be seen in Table 4.

3.4. Covariance determination configuration

3.4.1. Common tests characteristics

This subsection describes the common characteristics of
the test cases conducted in this analysis. Special character-
istics of the selected test cases for analysis are presented
later in Table 6.

� Analysis interval: arc where the Mahalanobis distances
are computed. In this case, from t0 þ 4 to t0 þ 11 days
in a 1 day time-step, obtaining a total of 8 different anal-
ysis epochs for each orbit. Analysing multiple epochs in
the propagation arc not only provides additional ele-
ments to the Mahalanobis distance population, but it
also allows to provide a consider parameter variance
representative of a wider arc. Though it may appear that
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different arbitrary points of the orbits are mixed in the
same analysis, this is mitigated by the Mahalanobis dis-
tance concept, which normalizes the orbital differences
with their covariance. The beginning of analysis interval
is chosen at t0 þ 4 to let the atmosphere errors to dom-
inate the covariance. Despite typical propagation arcs of
LEO applications range up to t0 þ 7, it is relevant to
include further propagation to properly characterize
the proxies prediction error. Both the aerodynamic
and the atmospheric proxies consider parameter models
impact the aerodynamic drag force. Thus, a wider anal-
ysis window is crucial to discern the linear impact of the
proxies consider parameter model (Eq. 16).

� Time frame: time step between each Monte Carlo sam-
ple. Set to 1 day forward shift, analogously to an oper-
ational scenario.

� RMS rejection: as customary in most statistical applica-
tions, a 3 RMS rejection criteria has been set on the
Mahalanobis distance distribution, which on average
has led to a 4% of rejection.
3.4.2. Simulated uncertainty

This subsection describes the simulated variances chosen
for the different test cases, which are introduced into the
simulations as explained in Section 3.1. All test cases in
Section 4 contain the same perturbation levels for the aero-
dynamic and range bias consider parameter models, for
benchmarking purposes, corresponding to:

� Aerodynamic model (rAE): 20%. This values is chosen as
representative based on state-of-the-art studies, which
state that around a 10–20% of uncertainty can be
expected for the atmospheric density models (Vallado
et al., 2014; International Reference Atmosphere
COSPAR, 2012).

� Range bias (rRB): 20 m. This value has been chosen from
operational scenarios expectations of previous analysis
such as (Cano et al., 2021b).

Regarding the simulation of the uncertainty of the
atmospheric proxies prediction, a preliminary analysis is
conducted to assess the level of uncertainty expected in
an operational scenario. We select an harmonic pulsation
prediction model for the typical 11 years solar cycle. Start-
ing at the beginning of the simulation scheme (2018–01-01),
in time steps of 1 day, in a 1 year period, we obtain 11-days
predictions of the solar proxies for each step. Then, we
compare the prediction of F 10:7 and Ap proxies against the
observed values (NOAA). The results are shown in Figs. 2
and 3 for the F 10:7 and Ap proxies, respectively. In the for-
mer one, despite an almost null mean, a linear growth of
the 1r value is appreciated, with a slope of 0.32%/day. This
behaviour has led us to propose the linear growth model
for the Proxies prediction model error of Section 2.3.3. In
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Fig. 3, on the contrary, a constant 1r absolute error of 8
units is observed for Ap.

However, the proposed linear model for the atmospheric
proxies prediction error is applied in the aerodynamic
force. To determine the impact that the observed proxies
uncertainty supposes on the aerodynamic force, we intro-
duce a perturbation equivalent to the observed 1r values
of F 10:7 and Ap for a single orbit propagation. These results
are presented in Figs. 4 and 5. These figures represent the
relative difference of drag acceleration between 2 orbits:
an unperturbed orbit with the real proxies, and the second
one including the 1r level perturbations. In Fig. 4, only the
F 10:7 proxy has been perturbed, observing also a linear
acceleration difference evolution, of an order of magnitude
similar to the slope of the F 10:7 proxy itself. However, when
the Ap perturbation is also included as shown in Fig. 5, not
only the slope is increased, but also a significant bias is
obtained.

This analysis is useful to anticipate uncertainty levels
expected in the presented simulation environment derived
for the proxies prediction error, where the 1r proxies
uncertainty are translated in slopes of 1:35%=day errors
in the aerodynamic force. In light of these results, the fol-
lowing 2 cases have been considered to introduce the atmo-
spheric proxies error in the simulations:
Table 6
Selected test cases characteristics and results.

Id Consider Parameter Results Accur

1 rAE = 18.18% 9
rRB = 21.8 m

rPE = 3.64 %/day 2

2 rAE = 18.63% 6
rRB = 20.01 m 0

rPE = 3.19 %/day 6

3 rAE = 18.24% 8
rRB = 22.2 m 1

rPE = 1.95 %/day

4 rAE = 19.69% 1
rRB = 22.97 m 1

rPE = 1.27 %/day

5
rAE = 21.02% 5
rRB = 24.73 m 2

rPE = 0.00 %/day

6 rAE = 19.49% 2
rRB = 22.08 m 1

rPE = 1.93 %/day

7 rAE = 19.52% 2
rRB = 21.49 m 7

rPE = 1.81 %/day
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� Operational forecast: corresponding to the exact same
forecast applied for the preliminary analysis, to be rep-
resentative of operational prediction errors.

� Controlled proxies error: a simulated standard deviation
of 3%/day is introduced with the proposed model of Sec-
tion 2.3.3. The value is chosen to be of the order of mag-
nitude of the expected variance of the real forecast as
discussed above. This allows to test if the method is able
to properly characterise the uncertainty in a scenario in
which we have full control on the input perturbations,
introducing them as in the proposed model similarly
to the aerodynamic model and range bias perturbation.
4. Results

In this section, the results of selected tests cases are pre-
sented and analysed in relation to the effectiveness of the
proposed covariance determination methodology to char-
acterise the uncertainty of the system. The section is
divided in 4 subsections. The first two discuss the results
of the different test cases, the first one using the True refer-
ence orbit (Section 4.1) and and the second one applying
the Operational reference orbit (Section 4.2). The third
subsection presents a brief analysis on the accuracy of the
acy %j j Metric Relevant features

.1 0.4 True reference
9 CvM metric
1 500 samples

Controlled PE

.9 0.62 True reference
.05 CvM metric
.3 1000 samples

Controlled PE

.8 0.86 True reference
1 CvM metric
- 500 samples

Op. forecast

.6 1.5 True reference
4.9 KS metric
- 500 samples

Op. forecast

1.67 True reference
.1 CvM metric
3.7 500 samples
- Op. forecast

without PE

.6 0.82 Op. Ref.
0.4 CvM metric
- 500 samples

Op. forecast

.4 1.68 Op. Ref.

.5 CvM metric
- 1000 samples

Op. forecast



Fig. 2. F10.7 relative prediction error as a function of prediction time.

Fig. 3. Ap absolute prediction error as a function of prediction time.

Fig. 4. Aerodynamic acceleration relative error with predicted F 10:7 1r
perturbation.

Fig. 5. Aerodynamic acceleration relative error with predicted F 10:7 1r
and Ap 1r perturbation.
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methodology (Section 4.3). The last subsection discusses
the performance of the covariance determination method-
ology in terms of covariance realism (Section 4.4).

Table 6 shows these results for 7 test cases, where the
columns for each case correspond respectively to: 1) the
identification number of each test case 2) the determined
consider parameters standard deviation after applying the
presented covariance determination process 3) the accuracy
of the determined consider parameters standard deviation
results as compared with the uncertainty introduced in
the simulations 4) the final statistical comparison metric
obtained 5) the relevant features of each case, such as the
used reference, the chosen metric and the amount of Monte
Carlos samples (i.e. orbits estimated and propagated). Let
us explain the Relevant features column of Table 6. For
each test, we are differentiating when the true reference
orbit is used for the Mahalanobis distance computations
or whether the previously defined Operational reference
one is considered. Also, the chosen statistical metric is men-
tioned, either Cramer-von-Mises (‘‘CvM”) or Kol-
mogorov–Smirnov (‘‘KS”). The amount of samples used
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during the computations is also shown. Finally, for each
test case, the chosen option to introduce the atmospheric
proxies prediction error is included, either the variance
according to the proposed model (‘‘Controlled PE”) or
the operational forecast (‘‘Op. forecast”). Additionally,
note that in the case of the proxies prediction consider
parameter, accuracy is only provided for the controlled
perturbations case, as only in such scenario we have a
properly known target uncertainty.
4.1. True reference orbit

Test Case 1 uses the unperturbed true orbit as reference
for the Mahalanobis distance computations, with 500 sam-
ples. As is seen in Section 4.3, this number has been
selected as a compromise between having sufficient statisti-
cal samples for enough accuracy, but maintaining a realis-
tic time-span (1.5 years approximately), which is relevant in
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operational scenarios. In this test, the atmospheric proxies
prediction error uncertainty has been introduced in the sys-
tem with the fully controlled model. As observed in Table 6,
an accuracy better than a 10% is obtained for the aerody-
namic model error and range bias error, whereas a lower
accuracy is found for the prediction error. As is further dis-
cussed later, the Cramer-von-Mises test statistic shows the
lowest value of all test cases, pointing out a proper model
matching between the actual uncertainty and the proposed
models. Being able to characterize properly the different
sources of uncertainty introduced in the system is an indi-
cator of the ability of the covariance determination method
to maintain the trace of the error sources, decoupling their
impact on the orbits despite the methodology assumptions
that neglected the correlation between the consider param-
eters and the analysed orbits.

Test Case 2 shares the same configuration as Test Case
1, with the controlled perturbation of the atmospheric
proxies, but in this case increasing the samples up to
1000. This test case allows to demonstrate that the accu-
racy of the proposed methodology increases with the
amount of samples, as would be expected, though further
discussion about the accuracy of the method is provided
in Section 4.3. Additionally, the Cramer-von-Mises metric
still rejects the null hypothesis, maintaining a good fit
between the system uncertainty and the proposed models
as can be seen in Fig. 6. This figure shows the histogram
of the final squared Mahalanobis distance distribution
after applying the determined consider parameter vari-
ances, together with its empirical CDF as blue line. It also
depicts the theoretical PDF and CDF of the v2 distribution
of the corresponding DOF as red lines, as well as the
empirical CDF of the distribution when no consider
parameter correction is applied as a black line. This test
case shows that the methodology is able to provide accu-
Fig. 6. Test 2. Squared Mahalanobis distance distribution with optimum
consider covariance results.

2771
rate results with a proper statistical matching when the sys-
tem uncertainty is correctly modelled, as in this controlled
case.

Test Case 3 shares again the same configuration as Test
Case 1, but now applying the operational atmospheric fore-
cast procedures. It can be noted that the consider parame-
ter variances obtained with the proposed covariance
determination methodology are representative of the intro-
duced perturbation in the presented simulations. In both
the aerodynamic model and range bias, the obtained results
differ by less than a 11% to the target values (20% for rAE,
20 m for rRB). In terms of the Proxies prediction error, the
method has determined a 1.95%/day, whose order of mag-
nitude is similar to the expected uncertainty as discussed in
Section 3.4.2 and observed in Fig. 5. Regarding the
Cramer-von-Mises statistical comparison metric, a score
of 0.86 is obtained, thus not rejecting the null hypothesis.
The obtained squared Mahalanobis distance distribution
is shown in Fig. 7. Overall, the distribution matches the
expected v2 behaviour, despite being slightly overpopulated
on the first quarter of the CDF, which is ultimately appre-
ciated in the test metric, being larger than in Test Case 1.
Recovering the v2 behavior is a direct indicator of covari-
ance realism improvement, which is the main objective of
the method. This indicates that the determined covariance
is able to characterise the uncertainty of the system better
than when no correction is applied. Although this is further
analysed later via covariance containment tests, the CDF
of the initial non-corrected squared Mahalanobis distance
distribution is included in Fig. 7, for comparison. It can
be clearly seen how the initial distribution is far from
resembling a v2 behaviour, obtaining less than 5% of the
population in the range showed in the figure. These
remarkably large squared Mahalanobis distances in the
Fig. 7. Test 3. Squared Mahalanobis distance distribution with optimum
consider covariance results.



Fig. 9. Test 5. Cramer-von-Mises metric logarithmic contour as a function
of aerodynamic model and range bias consider parameter standard
deviations.
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non-corrected distribution are due to an overly optimistic
size of the noise-only convariance.

Test Case 4 is analogous to Test Case 3 except for the
optimisation metric used, in this case, Kolmogorov–Smir-
nov. The results of Table 6 point out that similar consider
variances are obtained, indicating that both metrics arrive
to similar results. A small trade-off between aerodynamic
model uncertainty and proxies prediction uncertainty is
observed in this case. Again, the obtained Kolmogorov–
Smirnov metric does not allow to reject the null hypothesis.

Test Case 5 allows to show the benefits of upgrading the
uncertainty model of the system. In this test case that
shares the same characteristics as Test Case 3, no consider
parameter correction for the Proxies Prediction error has
been included. The obtained squared Mahalanobis distance
distribution for this case can be seen in Fig. 8. The Cramer-
von-Mises metric is above the threshold of 1.16, which
rejects the null hypothesis that the population belongs to
a v2 distribution. For further insight when only 2 consider
parameters are present, a contour plot of the CvM metric
as a function of both consider parameters is shown in
Fig. 9. Here, the existence of a global minimum can be
observed, corresponding to the optimum consider parame-
ters found by the proposed methodology. However, the
existence of such minimum does not ensure a correct statis-
tical comparison, as is the case when the used models are
not sufficient. This confirms that a better uncertainty char-
acterisation is obtained when the solar prediction uncer-
tainty is included as a consider parameter when predicted
atmospheric weather forecasts are used. As expected, the
better the uncertainty of the system is modelled, the better
the proposed covariance determination method is able to
improve the covariance realism. This highlights the rele-
vance of properly modelling all sources of uncertainty in
the space environment.
Fig. 8. Test 5. Squared Mahalanobis distance distribution with optimum
consider covariance results.
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4.2. Operational reference orbit

Test Case 6 uses the Operational Reference orbit for
orbital differences computations. The similarity of these
results with the ones obtained in Test Case 3 indicates that
the covariance determination is able to achieve satisfactory
results without requiring an assumed perfect orbit. In an
operational environment, this allows to use orbit determi-
nations with observations during the propagation arc,
not depending on external sources of precise ephemeris
and showing the operational applicability of the proposed
method in SSA operational environments. As was
described previously, the uncertainty of such OD must be
taken into consideration for a correct Mahalanobis dis-
tance computation. Even though in the chosen simulation
scenario the operational references orbits did not contain
any model error (only measurements error), the proposed
methodology is able to cope with modelling errors in the
operational reference orbit since, as explained in Eq. 18,
the covariance of the reference orbit is also corrected by
the consider parameter variances.

Finally, Test Case 7 has been included to show a bench-
mark with an increased number of orbits in the case of
using both the Operational Reference orbit and the opera-
tional atmospheric proxies forecast. On the one hand, the
accuracy of the optimum consider parameter variances is
improved for the aerodynamic model and the range bias.
Increasing the statistical population allows the method to
better characterise the uncertainty, as was also seen in Test
Case 2. On the other hand, the Cramer-von-Mises statistic
obtained leads to the rejection of the null hypothesis. As
can be seen in Fig. 10, the obtained distribution does not
significantly deviates from the theoretical v2 behaviour.
Nonetheless, the increased population allows the
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Cramer-von-Mises test to have sufficient statistical evi-
dence that the distribution does not match the v2 beha-
viour. This is attributed to a mismatch between the used
model for the prediction of proxies and the one used in
the covariance determination methodology. The fact that
the statistical comparison in Test Case 2 is significantly bet-
ter (see Fig. 6) points out that the proposed model for the
atmospheric proxies prediction is not sufficient when the
operational forecast procedure is applied. Recalling the
analysis of Section 3, the introduced uncertainty had two
differentiated sources, the F 10:7 Solar Flux and the Ap Geo-
magnetic Index. Though the retrieved consider covariance
(rPE) is in line with the expectations derived from the
F 10:7 uncertainty, the Ap uncertainty has not been charac-
terized. Not tackling this non-negligible uncertainty source
leads to the model mismatching showed on the metric.
number of orbits.
4.3. Accuracy analysis

It has been seen in the previously discussed results that,
as expected, the accuracy of the method improves when
increasing the amount of samples included in the analysis.
In this subsection, the accuracy of the covariance determi-
nation method is assessed in two different ways. Firstly, we
assess the number of orbits (or samples) that are required
by the statistical minimisation process. Fig. 11 shows the
RMS of the accuracy achieved by the covariance determi-
nation method as a function of the number of orbits, in
the simulation scenario of Test cases 1 and 2. Fig. 11 shows
that the choice of the number of orbits to include in the
analysis corresponds to a trade-off between accuracy and
the amount of data available. When using approximately
more than 700 orbits, an accuracy of the order of 5% is
achieved. An accuracy of around 15% is expected in the
range between 100–600 orbits, whereas it decreases signifi-
Fig. 10. Test 7. Squared Mahalanobis distance distribution with optimum
consider covariance results.
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cantly for less than 100 orbits, since not enough samples
are available to characterise the uncertainty of the system.

Secondly, the provided accuracy results presented in
Table 6 correspond to a single execution of the simulation
for each Test case scenario. However, this result would cor-
respond to a ”sample” of the method accuracy, since
slightly different results may appear when repeating the
simulations, applying different realizations of the perturba-
tions and measurement noise. Table 7 shows the consider
parameter variances results for test case 1 with 10 different
seeds for the noise and perturbation generation.

Even though only 10 repetitions of the simulations have
been carried out, these results provide insight on the
expected standard deviation of the methodology accuracy.
Extending this analysis to more repetitions and to the other
test cases scenarios is proposed for future work. The mean
values of the consider parameter variances are close to the
target values, with the target value being included inside
the standard deviation. The worst accuracy is found for
the proxies prediction error, which is attributed to its cou-
pling with the aerodynamic model error, which reduces its
traceability. The mean of the accuracy RMS remains at
Table 7
Test cases 1 accuracy standard deviation.

N = 500 Computed r Accuracy

RMS [%]
Seed AE [%] PE [%/day] RB [m]

1 18.18 3.64 21.80 14.36
2 18.76 3.35 21.37 8.59
3 21.35 2.97 20.95 4.80
4 20.77 3.83 19.42 16.21
5 19.53 3.60 19.41 11.75
6 21.83 3.06 19.98 5.41
7 20.19 3.24 20.23 4.70
8 19.01 3.52 21.21 10.98
9 19.99 3.57 19.17 11.23
10 18.92 3.62 19.37 12.47

Mean 19.85 3.44 20.29 10.05
std 1.22 0.28 0.85 4.16
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10% even for 500 orbits, with a standard deviation of a 4%,
which is considered satisfactory.
Fig. 13. Test 4. Consider covariance 3r containment with determined
consider parameter variances.
4.4. Covariance containment

Under Gaussian assumptions, if the observed squared
Mahalanobis distance follows a v2 distribution, an
improvement in the covariance realism would be directly
achieved. In this respect, covariance containment tests such
as the one proposed by (Wiesel, 2003) provide further phys-
ical insight and visual representation of the proposed
methodology effectiveness. To evaluate if the covariance
is representative of the orbital differences, the Mahalanobis
distance can be used as a metric to see the amount of points
that lay inside a kr ellipsoid (k ¼ 1; 2; 3; 4) and compare it
against the theoretical expected fraction for a multivariate
Gaussian distribution of the same number of DOF. In the
presented cases, it corresponds to 3 DOF (TNW position
differences).

Test Case 6 results are chosen for this analysis due to a
greater resemblance to an operational scenario, as it main-
tains a realistic amount of data, it uses the Operational ref-
erence for comparison and achieves sufficient accuracy.
Figs. 12 and 13 depict the orbital differences in TNW for
such test case for a 3r ellipsoid using the noise-only covari-
ance and the determined consider covariance, respectively.
Those points laying outside the ellipsoid are marked as red
dots, as green otherwise. Firstly, the covariance contain-
ment result in Fig. 13 is close to the expected theoretical
containment of a 3 DOF Gaussian distribution (see
Table 9), showing a remarkable enhancement of the covari-
ance realism as opposed to the outstandingly low contain-
ment of the noise-only covariance of Fig. 12. Bear in mind
that such test case contained orbital differences for a wide
propagation interval.

This correction of the covariance realism, derived from
the computed consider parameters variances, is clearly
dominant in the Along-track uncertainty component,
where the order of magnitude of orbital differences is sev-
eral times greater than the other 2 components, the Normal
Fig. 12. Test 4. Noise-only covariance 3r containment.
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and Cross-track directions. This is the expected behaviour
for LEO objects for the analysed error sources. The atmo-
spheric drag force affects satellites on the direction of the
velocity and thus both aerodynamic and proxies prediction
errors are accumulated in the Along-track direction. Simi-
larly, range-bias errors induce orbital differences in the
direction of motion coinciding again with the Along-
track direction in the nearly-circular orbit considered. We
can distinguish three contributions to the covariance cor-
rection, recalling that the consider parameter correction
is applied at estimation epoch:

� The aerodynamic model consider parameter variance
affects mostly the drag coefficient covariance at estima-
tion epoch, and such correction at estimation epoch is
mapped into position covariance via the ESTM during
the orbit propagation.

� The range bias variance affects the Along-track position
and velocity covariance at estimation epoch, not affect-
ing directly the propagation since it corresponds to a
measurement model error. Of course, such initial infla-
tion on position and velocity components will indeed
impact the covariance propagation.

� The variance of the proxies prediction consider parame-
ter does not provide any correction at estimation epoch,
since there is no uncertainty on the proxies during the
determination arc. However, the impact of this consider
parameter is mapped to the position covariance due to
the effect of the complete ESTM propagation.

Despite the observed increment of the covariance real-
ism, it is relevant to analyse the improvement achieved at
each analysed propagation epoch. The individual contain-
ment results for such epochs can be seen in Table 9 and its
counterpart using the noise-only covariance in Table 8. All
shown results share the common consider covariance cor-
rection using the optimum results of Test Case 6. A color
scale has been added to facilitate the comparisons. Overall,
as previously mentioned, the covariance realism provided



Table 9
Test 4. Consider covariance containment.
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by the uncorrected noise-only covariance is significantly
lower than the determined consider covariance, for the
noise levels introduced in the presented simulations. It
can be noted that the 3r average containment of Table 9
differs slightly from the one showed in Fig. 13. The reason
is the outliers rejection process. On the results showed in
the figure, all data is analysed simultaneously, which causes
the RMS rejection process to reject more data from con-
flicting epochs such as t0 þ 11 days, as is further explained
below. These rejected outliers are not accounted for in the
covariance containment, increasing slightly the contain-
ment percentage. On the contrary, the daily results of
Table 9 have their own individual outlier rejection, leading
to the slight differences observed between both results.

The individual containment results are, on average,
around the expected theoretical results though presenting
oscillations. This is expected since a singular consider
parameters correction is aiming to correct the covariance
at different propagation epochs simultaneously, whereas
the uncertainty present in each of them is expected to vary.
However, including all epochs in the same optimisation not
only allows to provide the most representative solution for
the interval, but also provides an additional amount of sta-
tistical population, facilitating the analysis. Two different
regions of Table 9 are highlighted as reddish colours. First,

the containment results at the 4th propagation day are lower
than expected for 1r and 2r ellipsoids. For short propaga-
tion periods, the estimation uncertainty is still relevant as
compared to the covariance inflation introduced by the con-
sider parameter correction, reducing the covariance realism
enhancement of the methodology. Second, reduced covari-
ance realism performance is observed at t0 þ 11 days. This is
undoubtedly related to the inaccuracies of the solar proxies
prediction model as was seen in Test Case 7. After long
propagations, not only the linearity assumptions are
stressed, but also the effect of the proxies prediction errors
gain relevance as compared to the other sources. Therefore,
not modelling such uncertainty perfectly is causing the con-
Table 8
Test 4. Noise-only covariance containment.
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tainment at such regions to decay. However, it is important
to highlight that long propagation arcs need to be included
in the proposed covariance determination methodology so
that the effect of the solar proxies prediction can be distin-
guished from the effect of the aerodynamic model error.
5. Conclusions

This work has introduced a novel methodology to char-
acterise the uncertainty in the space environment and
improve the covariance realism. To this end, the consider
parameter theory of batch least-squares methods has been
applied in combination with Extended State Transition
Matrix propagation to improve the covariance realism by
means of the modelled consider parameters. This work
focused on the aerodynamic model error, the range bias
error and the error of the prediction of space weather prox-
ies. The theoretical base to map the effect of the additional
parameters in the covariance affecting both the estimation
or the propagation arc has been developed. To compute
the unknown variances of such parameters, a minimisation
process has been proposed based on the comparison
between the observed Mahalanobis distance distribution
and its theoretical v2 behaviour under Gaussian assump-
tions, using predicted and estimated orbits to compute
the orbital differences.

The results, obtained in a simulated scenario, showed
that the proposed methodology is able to characterise the
system uncertainty accurately for the aerodynamic model
error, the range bias error and the atmospheric proxies pre-
diction when the uncertainty present in the system follows
the proposed models. A straightforward advantage of the
proposed covariance determination method is that a
physics-based traceability of the uncertainty sources is
maintained. EDF statistics such as Cramer-von-Mises or
Kolmogorov–Smirnov were successfully applied along the
statistical comparison process, not only improving the
method robustness as compared to previous studies
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(Cano et al., 2021b; Cano et al., 2021a), but also providing
direct information about the quality of the proposed uncer-
tainty models. When applying the operational proxies fore-
cast method, despite the clear improvement in the
statistical comparison as opposed to not including it, the
tests metrics showed that the observed squared Maha-
lanobis distance distribution diverged from the v2 distribu-
tion when sufficient statistical samples were included in the
analysis. This is a clear line of improvement, mostly related
to the characterisation of the Ap proxy uncertainty, high-
lighting the relevance of the uncertainty model for the pro-
posed covariance determination methodology.

Furthermore, the method has provided accurate results
when selecting the Operational reference orbit, this is, when
using estimated orbits as reference to obtain the Maha-
lanobis distance instead of an unperturbed, ‘‘true” orbit.
This is relevant for the operational scenarios aimed at,
since generally, external data such as precise orbit products
are not available for most satellites or space debris objects.

Finally, covariance containment tests have provided a
clear visualisation of the covariance realism improvement
achieved with the proposed covariance determination
method as compared to the expected containment of a mul-
tivariate Gaussian distribution. The covariance is elon-
gated mostly on the Along-track direction to
accommodate the uncertainty present in the aerodynamic
force. Overall, the obtained containment shows satisfactory
accuracy to the theoretical containment results except on
the beginning and end of the analysis arc. This is again a
line of improvement, also related with the quality of the
proposed uncertainty models.

Nonetheless, there is still a long road ahead. Apart from
the proxies prediction model refinement to better charac-
terise the effect of Ap proxy uncertainty, it is customary
to move onto real data to completely assess the perfor-
mance of the proposed method and consider parameters.
Further analysis of the methodology accuracy standard
deviation in different scenarios is also required for future
research. Additionally, the Gaussian assumptions that rep-
resent the basis of this method should be revisited, widen-
ing the method for other distributions such as log-normal
or Gauss-von-Mises, as well as more complex uncertainty
models such as stochastic Brownian motion, Ornstein–
Uhlenbeck, Gauss–Markov processes or even time–space
correlations in atmospheric uncertainty.
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