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Asymmetric label switching is an effective and principled method for creating a diverse ensemble of

learners for imbalanced classification problems. This technique can be combined with other rebalancing

mechanisms, such as those based on cost policies or class proportion modifications. In this study, and

under the Bayesian theory framework, we specify the optimal decision thresholds for the combination of

these mechanisms. In addition, we propose using a gating network to aggregate the learners contributions

as an additional mechanism to improve the overall performance of the system.
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. Introduction

Data imbalance occurs in many real-world application areas, 

here the decision system is aimed at detecting rare but impor- 

ant cases. They can be found in information technology area [1,2] ; 

iomedical data [3,4] ; industrial applications [5] ; and financial ar- 

as [6] . 

This imbalance implies difficulty in learning algorithms because 

hey will be biased towards the most frequent (and usually less 

mportant) cases. To overcome such bias towards the majority class 

xamples, specific machine learning algorithms must be applied. 

ven if we limit the search to recent years, it would be pretentious 

o list all relevant works related to these algorithms (there have 

een more than 6500 papers listed in Google Scholar in the last 

 years). Therefore, we prefer to suggest tutorials [7–9] (and ref- 

rences therein) to present a complete overview to the interested 

eader. 

In general, approaches that address imbalance can be sorted 

nto three categories: 

1) Data-level methods concentrate on modifying the training

et to make it suitable for a standard learning algorithm. Bal- 

ncing distributions by creating new objects for minority classes 

oversampling and variations such as SMOTE [10] ) and remov- 

ng examples from majority classes (undersampling [11] ) be- 
∗ Corresponding author.
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ong to this category. A recently published study [12] proposed 

n improved version of SMOTE for high-dimensional datasets, 

hich supports the relevance of these methods for imbalanced 

lassification. 

2) Algorithm-level methods modify existing learning algorithms

o alleviate bias towards majority class examples. A recent example 

s [13] , where the authors used modified SVMs to deal with im- 

alanced data and can be extended to multi-class problems. Cost- 

ensitive approaches [14,15] fall into this category. 

3) Ensemble learning [16] , in which multiple base learners are

rained using diverse examples, and their complementary (or un- 

orrelated) predictions are fused to yield a final decision. Accord- 

ng to [17] , adequate diversity-increasing techniques may signifi- 

antly improve the performance of ensemble methods for imbal- 

nced problems. A more recent study [18] used Random Forest en- 

embles in combination with neutral data resampling. 

According to [19] , algorithm-level and, in particular, cost- 

ensitive approaches are more problem-dependent, whereas data- 

evel and ensemble learning approaches are more versatile. Ob- 

iously, these methods can be combined resulting in hybrid ap- 

roaches [20,21] , where the capabilities and limitations of each 

ethod can be respectively exploited and mitigated, respectively. 

This is precisely what we present in this work: an ensem- 

le learning method, based on discriminative machines with uni- 

ersal approximation capabilities, that combines the aforemen- 

ioned mechanisms. Our main contribution is to specify, under 

he Bayesian decision theory, the optimum decision thresholds 

hat consider the intensities of the partial rebalance provided by 
under the CC BY-NC-ND license
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 neutral 1 data-level method, the (mis)classification costs at the 

lgorithm-level, and the ensemble diversity. 

The remainder of this study is organized as follows. Start- 

ng from the classical Bayes classification theory, in Section 2 , 

e justify that the combination of neutral rebalancing proce- 

ures and Bregman divergences [22] as surrogate training costs 

or the ensemble’s machines permits the estimation of an equiv- 

lent likelihood ratio that solves the original imbalanced problem. 

ections 3 and 4 discuss the implications of the asymmetric la- 

el switching [23] , as a method for creating diverse learners us- 

ng the presented Bayesian approach. In Section 5 , we propose 

he use of an example-dependent weighted combination of base 

earners (i.e., a Mixture-of-Experts) in the ensemble output layer. 

ection 6 presents the experimental results for the proposed en- 

emble method. The main conclusions and directions for further 

esearch close this study. 

. Likelihood ratio equivalent classification problems 

Bayes theory establishes that the minimization of the average 

lassification cost in a binary problem leads to the Likelihood Ratio 

est (LRT) [24] : 

 (x ) = 

p(x | C 1 ) 
p(x | C 0 ) 

C 1 
≷ 

C 0 

c 10 − c 00 
c 01 − c 11 

P 0 
P 1 

= Q C Q P = Q (1) 

here x ∈ R 

d is the observed sample, { C 0 , C 1 } ( ≡ { −1 , +1 } ) the 
lasses (we assume that C 1 is the minority class), p(x | C i ) the class
 i likelihood, q (x ) the Likelihood Ratio, LR, c ji the cost of attribut-

ng a class C i sample to class C j , P i the ‘ a priori’ probability of the

lass C i , Q C = [ c 10 − c 00 ] / [ c 01 − c 11 ] , and Q P = P 0 /P 1 (the Imbalance

atio (IR)). 

This means that two ‘ problems’ with the same LR, q (x ) , and

ifferent values of Q (i.e., different cost policies, Q C , or/and ‘ a pri- 

ri’ probabilities, Q P ) are solved equivalently, the only difference 

eing the classification threshold (Q). In other words, q (x ) allows 

he construction of the NP-ROC) 2 for the problem model. 

The above serves to conceive a principled method to deal with 

mbalanced problems when working with classification machines: 

f one of such machines is able to provide a good estimate of q (x )

nd there is a way of rebalancing the problem without modify- 

ng its LR (neutral rebalancing), we can transform the imbalanced 

roblem, in which Q � 1 (because Q P � 1 and/or Q C � 1 ), into an

quivalent (more) “balanced” problem, and, finally, use the corre- 

ponding LR estimate to solve the original imbalanced problem. 

The previous idea can be made possible by using discrimina- 

ive machines with trainable transformations, such as MLPs. These 

achines must be trained using Bregman divergences [22,25] , such 

hat: 

∂L ω(x ) (y, o) 

∂o 
= −g(o)(y − o) (2) 

 is the target, o is the machine output, L ω(x ) (y, o) is a weighted 3 

regman Loss Function 4 , and g(o) > 0 is an arbitrary (positive) 

unction. After optimizing the machine weights using a Bregman 
1 A neutral rebalance must keep invariant the likelihood ratio. The well-known 

ootstrap and SMOTE techniques fall into the category (see Section 2 ). 
2 The Neyman-Pearson Receiver Operating Characteristic, or NP-ROC, is the curve 

hat presents the detection probability P D = Pr ( decide C 1 | x ∈ C 1 ) vs. the false alarm 

robability P FA = Pr ( decide C 1 | x ∈ C 0 ) (or true positive and false positive probabili- 
ies, respectively). 
3 The term ω(x ) in L ω(x ) (y, o) specifies an example-dependent cost (or weight). 
4 Common Bregman Loss Functions in machine learning are the (weighted) 

quared error, the Mahalanobis distance, the (negative) exponential loss, the logistic 

oss, or the Kullback-Leibler Divergence [26] . 

e

c

2

f

t

t

2 
oss Function over the training samples { y n , o(x n ) } N n =1 , 

 opt = argmin 
w 

∑ 

n 

L ω(x n ) (y n , o(x n ;w )) , (3) 

he machine provides an estimate of the conditional mean of y , 

 { y | x } . This is a necessary and sufficient condition and its proof is 

mmediate. For a binary classification problem with y n = ±1 , 

(x ) = E (y | x ) = P r (C 1 | x ) − P r (C 0 | x ) = 2 P r (C 1 | x ) − 1 (4)

nd the posterior probability of minority class C 1 

 r (C 1 | x ) = [ o(x ) + 1 ] / 2 (5) 

s obtained 5 

Considering the one-to-one correspondence 

r (C 1 | x ) = 

p(x | C 1 ) P 1 
p(x | C 1 ) P 1 + p(x | C 0 ) P 0 = 

1 

1 + Q P /q L (x ) 
(6) 

nd using (5) , the LR can be expressed as 

 (x ) = Q P 
1 + o(x ) 

1 − o(x ) 
(7) 

Alternative expressions for the LRT can be derived by applying 

ayes’ rule and simple mathematical transformations, such as 

 r (C 1 | x ) 
C 1 
≷ 

C 0 

Q 

Q + Q P 

(8a) 

r, equivalently, as 

(x ) 
C 1 
≷ 

C 0 

Q − Q P 

Q + Q P 

= η (8b) 

In addition, it is necessary to use rebalancing mechanisms to 

ransform the original problem into a new one. Thus, the classifica- 

ion machines provide better estimates of the LR and consequently 

etter decisions. This requires a conveniently modified decision 

hreshold that considers the impact of the rebalancing mechanism. 

Among those methods, we will focus on the ‘ neutral’ mecha- 

isms, because they do not (essentially) change the LR of the prob- 

em. Namely: 

Randomly resample (separately for each class) the training set 

examples, including standard subsampling and oversampling 

bootstrap-based processes, but not “informed” resampling 6 

Randomly generate (separately for each class) new samples, in- 

cluding SMOTE [10] . In both cases, the new population ratio 

is given by Q R P 
, where 1 ≤ Q R P 

< Q P = IR . 

Modify the cost policy, which can be described in terms of Q R C 
. 

And, obviously, their combinations, Q R = Q R P 
· Q R C 

. 

For random resampling and sample generation, ensembles are 

andatory to approximate statistical neutrality [28] . 

If we follow the requirements stated above, the LR in the new 

ebalanced problem is given by 

 R (x ) = Q R 
1 + o(x ) 

1 − o(x ) 
(9) 

From this expression, the solution to the original imbalanced 

roblem is 

(x ) 
C 1 
≷ 

C 0 

Q − Q R 

Q + Q R 

= ηR (10) 

Reference [28] presented a more detailed discussion of the LR 

quivalence method. 
5 It should be noted that machines trained with Bregman divergences produce 

onsistent estimates of E (C i | x ) . Therefore, we should have written o(x ) = ̂

 E (C i | x ) = 

 ̂

 Pr (C 1 | x ) − 1 , where the symbol ̂  denotes estimation. In an abuse of notation, but 

or clarification purposes, henceforth, we will drop that symbol. 
6 Informed resampling [27] uses the local or global information of the class dis- 

ribution to remove or generate instances. Therefore, it modifies the empirical dis- 

ribution of the data. 
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. Ensemble diversity by asymmetric label switching 

An asymmetric switching mechanism [23] changes the labels of 

andomly selected samples at different rates for each class. 

The application of a random label switching with rates α and 

to the C 0 and C 1 samples, respectively. α > β results in a new 

nd more balanced classification problem S, which will have “

lasses”C ′ 1 and C ′ 0 . 
The new “ class” probabilities are given by 

r S (C 
′ 
1 | x ) = 

p(x | C 1 )(1 − β) P 1 + p(x | C 0 ) αP 0 
p( x | C 1 ) P 1 + p( x | C 0 ) P 0 (11) 

oreover, by adding and subtracting αp(x | C 1 ) P 1 from the numera- 

or of (11) , we obtain 

r S (C 
′ 
1 | x ) = (1 − α − β) Pr (C 1 | x ) + α (12) 

rom which 

r (C 1 | x ) = 

Pr S (C 
′ 
1 | x ) − α

1 − α − β
(13) 

hat is, we can recover (an estimate of) Pr (C 1 | x ) from (an estimate

f) Pr S (C 
′ 
1 | x ) . 

From (13) and (8a) , we obtain 

r S (C 
′ 
1 | x ) 

C 1 
≷ 

C 0 

α + (1 − α − β) 
Q 

Q + Q P 

(14) 

Applying (4) to (14) leads to 

 S (x ) 
C 1 
≷ 

C 0 

2 

[ 
α + (1 − α − β) 

Q 

Q + Q P 

] 
− 1 = ηS (15) 

s the classification rule for ensemble learners that work with 

consistently) estimated values. Clearly, (15) can be applied to each 

earner and then produce the output using a majority vote rule. 

owever, this will close the door to the possibility of including 

ther principled output aggregation methods, such as that pro- 

osed in Section 5 . 

. Combining asymmetric label switching with LR equivalent 

ebalance 

Using the LR equivalence q (x ) /Q P = q R (x ) /Q R ( Eq. (7) and (9) ),

nd the expression for the class probabilities (14) in the new 

witching problem, we obtain 

r S (C 
′ 
1 | x ) 

C 1 
≷ 

C 0 

α + (1 − α − β) 
Q 

Q + Q R 

, (16) 

hich leads to the classification rule: 

 S (x ) 
C 1 
≷ 

C 0 

2 

[ 
α + (1 − α − β) 

Q 

Q + Q R 

] 
− 1 = ηRS (17) 

Additionally, if we apply a rebalancing cost policy, the loss func- 

ion to be optimized is L 

′ 
ω (x ) 

, which includes the weighting factor 

/Q R C 
in the minority samples. 

 

′ 
ω (x ) (y n , o(x n ;w )) = 

∑ 

n ∈ C 0 
L ω (x ) (−1 , o(x n ;w )) 

+ 

Q 

Q R C 

∑ 

n ∈ C 1 
L ω (x ) (1 , o(x n ;w )) (18) 

Please note that weighting the majority samples by Q R C 
/Q is 

lso a valid option. 
3 
. Aggregating outputs 

A key factor in the design of ensembles of classifiers is the 

hoice of the aggregation method to combine the results of the 

ase learners into a single result. The aggregation strategies pro- 

osed in the literature follow two models: fusion and selection 

29] . In classifier fusion, each ensemble member is supposed to 

ave knowledge of the whole feature space, so all base classi- 

ers are involved in the final ensemble decision; methods such as 

weighted) majority vote (assuming hard decisions) or averaging 

if soft outputs are produced) belong to this group. In classifier se- 

ection, ensemble members are responsible for a subset of input 

xamples lying in specific local regions of the feature space, ac- 

ording to their competencies. 

An alternative lying between the “pure” fusion and selection 

trategies, is the Mixture-of-Experts model [30] . In this model, for 

ny given input x , the gating network is responsible for learning 

he appropriate weighted combination of estimations of the “ a 

osteriori” class probability function obtained by each ensemble 

earner (or expert). The function is defined as follows: 

p(y | x ;�) = 

M ∑ 

m =1 

g m 

(x ;�g ) p m 

(y | x ;w m 

) , (19)

here M is the number of experts, the function g m 

(x ;�g ) is 

he gate output for expert m given x (satisfying the usual con- 

traints 
∑ M 

m =1 g m 

(x ) = 1 , and 0 ≤ g m 

(x ) ≤ 1 ), with parameters �g ,

p m 

(y | x ;w m 

) is the centered estimation of the “a posteriori” class 

robability function obtained by each ensemble learner (see (13) ); 

nd w m 

are the learner weights. The collection of both expert and 

ating network parameters is defined as � = { �g , w 1 , . . . w M 

} . 
Even if we know the full statistical model of the data (fea- 

ures and labels), the estimation of the global optimum parameters 

is a difficult (if not unfeasible) problem. Therefore, we use the 

xpectation-Maximization (E-M) approach. EM uses a two-step it- 

rative procedure, which usually appears to be faster than gradient 

escent [31] . The first step, the Expectation step (E-step), involves 

omputing the conditional expectation of the log-likelihood given 

he observed data and the current estimates. In the second step, 

alled the Maximization step (M-step), new gating and ensemble 

arameters are determined. 

In particular, the posterior probabilities h (s ) m 

(x n ) for each data 

air (x n , y n ) are computed in the E-step ( s -th epoch) as: 

 

(s ) 
m 

(x n ) = 

g m 

(x n ; v (s ) m 

) p(y n | x n ;w 

(s ) 
m 

) ∑ 

k � = m 

g k (x n ; v (s ) k 
) p(y n | x n ;w 

(s ) 
k 

) 
(20) 

The M-step is then divided into two parts. In the first, and for 

ach learner, a modified version of Eq. (3) is minimized: 

 

(s +1) 
m, opt = argmin 

w m 

N ∑ 

n =1 

L 

h (s ) m (x n ) 
(y n , o(x n ;w m 

)) (21) 

here the posterior probabilities h (s ) m 

(x n ) act as an extra weighting 

actor, causing the gate network to reward experts that make good 

redictions with stronger error feedback updates. It is important to 

oint out that a rebalancing cost policy, similar to that considered 

n (18) , can also be included in (21) . 

In the second part of the M-step, the following maximization 

roblem is solved for the gating network: 

 

(s +1) 
opt = argmax 

V 

N ∑ 

n =1 

M ∑ 

m =1 

h (s +1) 
m 

(x n ) log g m 

(x n ; v m 

) (22) 

A simple heuristic in the M-step for the overall set of linear co- 

fficients V reduces the optimization to a one-pass weighted least 

quares computation [30] , which results in a computational com- 

lexity of O(N · M · (d + 1) 2 ) . 
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Table 1 

Description of the datasets. N: Number of instances, d: Number of attributes, 

IR: Imbalance Ratio. The datasets were ordered according to their IR. 

Datasets Description N d IR 

EcoliImU UCI, class imU vs rest 336 7 8.6 

Satimage4 UCI, class 4 vs rest 6435 36 9.3 

Abalone7 UCI, class 7 vs rest 4177 8 9.7 

Ringnorm10 Synthetic dataset 1650 20 10 

BalanceB UCI, class B vs rest 625 4 11.8 

Ecoli4 UCI, Keel, class 4 vs rest 336 7 15.8 

Aba9vs18 UCI, Keel, class 9 vs 18 731 8 16.4 

SolarflareM0 UCI, target: M- > 0 1389 32 19 

Ringnorm20 Synthetic dataset 3150 20 20 

Oil UCI, target: minority class 937 49 22 

Flare-F UCI, Keel, class F vs rest 1066 11 23.8 

Winequal4 UCI, target: < = 4 4898 11 26 

LetterimgZ UCI, class Z vs rest 20,000 16 26 

Yeast4 UCI, Keel, class 4 vs rest 1484 8 28.1 

Aba17 UCI, Keel, class 17 vs 7,8,9,10 2338 8 39.3 

Ringnorm40 Synthetic dataset 6150 20 40 

Yeast6 UCI, Keel, class 4 vs rest 1484 8 41.4 

6
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l  

e
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p

s

1

s

m
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s
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α
d

a

s

6

m

W

c

M

(

M  

t

t

a
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t

3

r
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7 We leave an (under development) implementation of the Asymmetric Label 

Switching algorithm at https://github.com/franjgs/LabelSwitching for the interested 

readers. 
. Experiments 

The imbalanced datasets are presented in Table 1 . As it can be 

een, they cover a wide range of Imbalance Ratios, dimensionality 

nd sizes. 

All datasets were obtained from Keel [32] and UCI [33] . Those 

rom the UCI were configured in the same way as [34] . Ringnorm 

as replicated from Breiman’s work [35] . 

.1. Performance indicators 

There is a debate about whether the F 1 -score or Matthews Cor- 

elation Coefficient (MCC) is the most appropriate for imbalanced 

atasets [36] . F 1 -score provides the harmonic mean between pre- 

ision and recall . It can also be expressed as a function of TP (True

ositives), FP (False Positives), and FN (False Negatives), as follows: 

 1 = 2 
P recision · Recall 
P recision + Recall 

= 

2 TP 

2 TP + FP + FN 

nlike F 1 -score, which does not take into account True Negatives 

TN), MCC is a metric that includes all four confusion matrix cate- 

ories [37] : 

CC = 

TP · TN − FP · FN √ 

( TP + FP )( TP + FN )( TN + FP )( TN + FN ) 

In our experiments, we observed that, from a qualitative point 

f view, the relative performance improvement of the proposed 

ethods is similar, whether F 1 -score or MCC is used. For this rea- 

on, and for simplicity, we primarily use the F 1 -score as the base 

etric. 

.2. Description of the experiments 

In our experiments, we used an ensemble of M= 31 MLP base 

earners, each with a single hidden layer with n h = 4 neurons, a hy-

erbolic tangent as the activation function, and the modified out- 

ut activation function act1 described in [23] (Section 2). 

For the loss function, we used the weighted squared error, 

hich is a Bregman divergence. The learners’ weights were opti- 

ized using the LBFGS-B method (see Eqs. (3) or (21) ), which has 

 computational complexity of O(N · M · d · n h · l mem 

· k LBF GS ) , where 

 mem 

and k LBF GS are the size of the memory and the number of it-

rations [38] . 

Ensemble diversity is achieved by random initialization of the 

eights and asymmetric label switching. It is important to point 
4

ut that we have made no attempt to optimize the default im- 

lementations of sckit-learn or Pytorch for both the en- 

emble of MLPs and the LBFGS-B method ( l mem 

= 10, and k LBF GS ≤
50 ), so the presented results are simply a reference to demon- 

trate the relative performance gain resulting from the studied 

ethods 7 

We averaged the results over 50 independent runs, each with a 

andom 75%-25% train-test split. 

We considered different rebalancing strategies, namely: 

1. Asymmetric label switching uses an averaging output layer to 

fuse learners’ estimations ( SW ). 

2. A statistically neutral rebalancing technique was applied to 

the input to achieve more balanced populations ( RB_SW ). In 

this study, we used the standard SMOTE implementation of 

imblearn . 

3. Applying a cost-sensitive training that weighs the minority 

samples Cost_SW . 

4. Asymmetric label switching using a gating network at the out- 

put layer ( SW_Gate ). In our experiments we used a gating net- 

work with a linear structure at the input and softmax activation 

output layer. In our experiments, the gating network parame- 

ters were estimated after N EM 

= 5 iterations of the E-M algo- 

rithm described in Section 5 . 

We explored switching rates ( α, β) from 0 to 0.45 in 0.05 

teps. The intensities of the neutral population and cost rebalance 

 Q R P 
and Q R C 

, respectively) ranged from 1 to IR. Note that, when

= 0 and β = 0 , the results obtained with RB_SW and Cost_SW 

escribe the performance of the rebalance methods (SMOTE 

nd cost weighting, respectively) with no asymmetric label 

witching. 

.3. Results 

The first analysis concerns the ensemble output aggregation 

echanism, that is, averaging versus gating network. 

The first point to consider is computational complexity. 

hereas averaging requires a single optimization of (21) (with 

omplexity O(N · M · d · n h · l mem 

· k LBF GS ) ), each iteration of the E- 
 algorithm involves the sequential optimization of (21) and 

22) (gating network coefficients), which has a complexity of O(N ·
 · (d + 1) 2 ) . Because the last term is usually much smaller than

he previous one (especially for low dimensional datasets, d < 20 ), 

he computational complexity using a gating network (vs. aver- 

ging) is approximately N EM 

(number of E-M iterations) times 

reater. To interpret the orders of magnitude in a practical man- 

er, Table 2 presents the training time (mean and standard devia- 

ion) of an ensemble of 31 MLPs (4 neurons each) on a 6-core @ 

.5 GHz Intel Xeon processor with 32 Gb of RAM, averaged over 50 

uns. The N EM 

-fold increase in complexity is an important factor in 

xed-computational-budget scenarios, in which it may be better to 

imply average over larger ensembles than to optimize the param- 

ters of the gating network. 

The second point concerns the relationship between IR and 

witching rates ( α, β). To simplify the analysis, we used the syn- 

hetic Ringnorm dataset [35] . In addition, to simplify the inter- 

retation of the results, we only consider the β value at which the 

aximum performance in F 1 -score is reached ( β = 0 . 05 for IR = 10;

nd β = 0 . 0 for IR = 20). The results are presented in Fig. 1 , where,

n addition to the mean value of F 1 , the standard deviation is also 

hown (error bars at each point). 

https://github.com/franjgs/LabelSwitching
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Table 2 

Training Time (seconds and increase factor; (average ± standard deviation)) comparison over 50 

runs for learners fusion by averaging and by gating network ( N EM = 5 ) on a 6-core 3.5 GHz Intel 

Xeon platform. 

Datasets N d Averaging Gating Network Inc. Factor 

EcoliImU 336 7 4.06 ± 0.09 18.60 ±0.77 4.58 ±0.20 

Satimage4 6435 36 10.92 ±0.97 59.80 ±0.87 5.48 ±0.45 

Abalone7 4177 8 8.27 ± 0.18 41.2 ± 0.13 4.98 ±0.12 

Ringnorm10 1650 20 5.92 ± 0.12 25.77 ± 0.70 4.35 ±0.24 

BalanceB 625 4 4.56 ± 0.06 19.61 ±0.58 4.30 ±0.11 

Ecoli4 336 7 4.21 ±0.24 19.18 ±0.73 4.56 ±0.23 

Aba9vs18 731 8 4.98 ± 0.08 24.96 ±0.49 5.01 ±0.22 

SolarflareM0 1389 32 6.07 ±0.14 30.62 ±0.64 5.04 ±0.10 

Ringnorm20 3150 20 7.68 ±0.15 37.60 ±0.44 4.90 ±0.13 

Oil 937 49 5.48 ±0.12 23.94 ±0.94 4.37 ±0.21 

Flare-F 1066 11 5.52 ±0.06 26.03 ±0.20 4.72 ±0.13 

Winequal4 4898 11 9.08 ±0.26 45.95 ±0.32 5.06 ±0.18 

LetterimgZ 20,000 16 22.04 ±0.67 119.7 ±1.66 5.43 ±0.17 

Yeast4 1484 8 5.77 ±0.07 28.86 ±0.19 5.00 ±0.09 

Aba17 2338 8 6.57 ±0.25 33.89 ±0.19 5.16 ±0.19 

Ringnorm40 6150 20 11.03 ±0.42 53.97 ±1.08 4.89 ±0.20 

Yeast6 1484 8 5.94 ±0.17 29.07 ±0.39 4.89 ±0.11 

Fig. 1. F 1 -score evolution for Ringnorm (IR = 10 vs. IR = 20). 
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Fig. 2. F 1 -score and MCC evolution for Balance-B (IR = 11.7). The darker-colored 

surface corresponds to the Switching+Gate ensemble. 
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α  
It is clearly seen that the α values (majority class switching 

ate; C 0 → C 1 , or −1 → +1 ) that achieve the best performance in-

rease with the imbalance ( αopt = 0 . 3 for IR = 10 versus αopt = 0 . 35

or IR = 20), which makes sense because the higher the IR, the 

arder it is for machines to detect minority samples. Therefore, 

ncreasing the majority class switching rate improves the perfor- 

ance. Clearly, if α is too aggressive ( α > 0 . 35 ), the performance

egrades again. Another important aspect is that the improvement 

roduced by the gating network is more significant when the Im- 

alance Ratio is greater, and the experts’ performance is worse (for 

ow α). 

In Fig. 2 , we represent the behavior in terms of F 1 -score and 

CC of the output aggregation mechanism on the UCI dataset 

alance-B (which was chosen only for illustration purposes). As 

entioned previously, from a qualitative point of view (and for 

his dataset, quantitative as well), the relative improvement in per- 

ormance for both metrics is similar. It can also be seen how, in 

his case, the contribution of the gate is significant throughout the 

ange of α and β values. Thus, without label switching ( α = β = 

 ), the ensemble with aggregation by averaging, or ”baseline” (di- 
5 
ersity by initialization of weights), achieves a mean F 1 -score of 

.15 (with a standard deviation of 0.15), while the weighted ag- 

regation raises this value to 0.41 (standard deviation 0.18), which 

s comparable to the maximum reached by SW (0.42 ± 0.16 at 

= 0 . 4 , β = 0 . 0 ). The SW_Gate optimum is 0.61 ± 0.15, which is
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Fig. 3. F 1 -score evolution for Balance-B . Comparison of methods. 
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Table 3 

F 1 -score confidence intervals (average standard deviation) for the datasets consid- 

ered. 

Datasets Baseline SW ( α, β) 

EcoliImU 0.57 ± 0.12 0.68 ± 0.05 (0.25, 0.05) 

Satimage4 0.60 ± 0.03 0.63 ± 0.03 (0.2, 0) 

Abalone7 0.00 ± 0.00 0.43 ± 0.04 (0.35, 0.1) 

Ringnorm10 0.59 ± 0.08 0.80 ± 0.05 (0.25, 0) 

BalanceB 0.15 ± 0.15 0.42 ± 0.16 (0.4, 0) 

Ecoli4 0.82 ± 0.12 0.88 ± 0.12 (0.15, 0.15) 

Aba9vs18 0.51 ± 0.13 0.61 ± 0.12 (0.25, 0) 

SolarflareM0 0.08 ± 0.07 0.24 ± 0.07 (0.4, 0.05) 

Ringnorm20 0.28 ± 0.07 0.73 ± 0.06 (0.35, 0) 

Oil 0.57 ± 0.13 0.62 ± 0.12 (0.15, 0) 

Flare-F 0.20 ± 0.11 0.34 ± 0.09 (0.4, 0.1) 

Winequal4 0.21 ± 0.05 0.27 ± 0.06 (0.4, 0) 

LetterimgZ 0.92 ± 0.02 0.94 ± 0.01 (0.05, 0.05) 

Yeast4 0.32 ± 0.10 0.44 ± 0.12 (0.35, 0) 

Aba17 0.28 ± 0.12 0.44 ± 0.09 (0.4, 0.05) 

Ringnorm40 0.03 ± 0.04 0.56 ± 0.06 (0.45, 0.15) 

Yeast6 0.54 ± 0.13 0.61 ± 0.11 (0.3, 0) 

s
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eached at α = 0 . 25 and β = 0 . Another important aspect is that

here are improvements for a wide range of α and β values close 

o the optimum, and that the increase in the beta factor (switching 

rom minority to majority) tends to degrade the performance. 

In our second analysis, we graphically compared the perfor- 

ance of the four rebalancing techniques proposed in this work 

n the Balance-B dataset (the selection of both Balance-B and 

ingnorm datasets is merely based on visualization purposes). 

The results are represented in Fig. 3 , where the error bars indi- 

ate standard deviation. As a baseline, we used the ensemble with 

iversity by random weight initialization with no label switching 

 α = β = 0 ; F 1 -score = 0.15 ± 0.15). It was observed that the gat-

ng network produced a significant improvement in mid and high 

rates ( 0 ≤ α ≤ 0 . 35 ), worsening performance for more aggressive 

values ( α > 0 . 35 ), while the population rebalancing RB_SW (us- 

ng SMOTE with Q R P 
= 1 ) resulted in improvements in the entire 

ractical range of α ( 0 ≤ α < 0 . 5 ). 

Finally, in Tables 3 and 4 , we show the results of all tested 

ethods on the datasets considered. It is observed that asymmet- 

ic switching achieves a notable increase in performance with re- 
Table 4 

F 1 -score. The SW_Gate results indicated with ∗ are those i

ing. Please note that Q R C (rebalancing cost policy) and Q R P 
Section 2 . 

Datasets Cost_SW ( α, β, Q R C ) SW_Ga

EcoliImU 0.72 ± 0.09 (0.35, 0.09, 6) 0.68 ±
Satimage4 0.63 ±0.03 (0.25, 0, 8) 0.63 ±
Abalone7 0.44 ± 0.03 (0.35, 0, 5) 0.44 ±
Ringnorm10 0.81 ± 0.05 (0.25, 0, 8) 0.82 ±
BalanceB 0.41 ± 0.16 (0.35, 0, 10) 0.61 ±
Ecoli4 0.92 ± 0.08 (0.15, 0.05, 8) 0.88 ±
Aba9vs18 0.62 ± 0.12 (0.3, 0, 14) 0.61 ±
SolarflareM0 0.26 ± 0.09 (0.35, 0, 16) 0.24 ±
Ringnorm20 0.75 ± 0.06 (0.4, 0.05, 18) 0.77 ±
Oil 0.63 ± 0.10 (0.1, 0, 12) 0.62 ±
Flare-F 0.36 ± 0.06 (0.4, 0.05, 20) 0.34 ±
Winequal4 0.27 ± 0.04 (0.4, 0, 12) 0.28 ±
LetterimgZ 0.95 ±0.01 (0.05, 0, 20) 0.94 ±
Yeast4 0.44 ± 0.11 (0.35, 0, 24) 0.47 ±
Aba17 0.48 ±0.08 (0.45, 0.05, 32) 0.46 ±
Ringnorm40 0.65 ± 0.08 (0.45, 0.05, 36) 0.62 ±
Yeast6 0.60 ± 0.09 (0.3, 0, 28) 0.61 ±

6 
pect to the Baseline ensemble (with diversity only by random 

eight initialization) (see Table 3 ). 

Confidence intervals in bold in Table 4 are those in which 

he rebalancing methods achieve statistically consistent improve- 

ents (the difference in average is at least equal to the semi-sum 

f the standard deviation) with respect to the Baseline. It is ob- 

erved that, in general, they slightly outperform the asymmetric 

abel switching, but there is no clear winning method. To support 

his, we performed a statistical analysis of the performance of the 

ethods across the 17 datasets considered. In particular, we used 

he Python package autorank [39] , which yielded the results in- 

icated in Table 5 . 

Another important aspect is that SMOTE and cost weight- 

ng techniques are powerful rebalancing methods (their perfor- 

ances correspond to the α = β = 0 case). However, their effec- 

iveness can be improved by combining them with asymmetric la- 

el switching. It is also important to point out that both mech- 

nisms (rebalance and switching) can interfere with each other, 

nd not always in a constructive manner. Evidence of this in- 

erference in learning is that the optimum rebalance factors are 

lightly smaller than the original Imbalance Ratio when combined 

ith asymmetric label switching. For example, we can see in 
n which the gating network is equivalent to averag- 

(rebalanced population ratio) are those introduced in 

te ( α, β) RB_SW ( α, β, Q R P ) 

0.05 (0.25, 0.05) ∗ 0.69 ± 0.10 (0.45, 0.1, 4) 

0.03 (0.1, 0) 0.63 ± 0.03 (0.25, 0, 7) 

0.02 (0.35, 0) 0.45 ± 0.03 (0.35, 0, 8) 

0.04 (0.3, 0.05) 0.82 ± 0.06 (0.45, 0.1, 6) 

0.15 (0.25, 0) 0.64 ± 0.07 (0.25, 0, 1) 

0.12 (0.15, 0.15) ∗ 0.90 ± 0.08 (0.05, 0.1, 10) 

0.12 (0.25, 0) ∗ 0.62 ± 0.12 (0.35, 0, 8) 

0.07 (0.35, 0.05) ∗ 0.24 ± 0.07 (0.4, 0.05, 16) 

0.04 (0.35, 0) 0.76 ± 0.06 (0.45, 0, 14) 

0.12 (0.15, 0) 0.65 ± 0.10 (0.2, 0.05, 18) 

0.08 (0.4, 0) 0.36 ± 0.11 (0.4, 0.05, 20) 

0.06 (0.4, 0) 0.30 ± 0.06 (0.45, 0, 22) 

0.01 (0.05, 0) 0.95 ± 0.01 (0.05, 0, 16) 

0.08 (0.35, 0) 0.45 ± 0.06 (0.4, 0, 24) 

0.09 (0.4, 0.05) 0.46 ± 0.11 (0.45, 0.05, 32) 

0.08 (0.4, 0) 0.69 ± 0.06 (0.45, 0, 36) 

0.11 (0.3, 0) ∗ 0.65 ± 0.08 (0.35, 0, 36) 
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Table 5 

Comparison of the performance of rebalancing methods. 

Mean(F1) Std(F1) Conf. Interval Cohen’s D Improvement 

Baseline 0.396 0.270 [0.292, 0.501] 0.000 - 

SW 0.564 0.202 [0.460, 0.669] –0.705 medium 

Cost_SW 0.585 0.208 [0.480, 0.689] –0.782 medium 

SW_Gate 0.589 0.201 [0.485, 0.694] –0.812 large 

RB_SW 0.604 0.202 [0.499, 0.708] –0.869 large 
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[

able 4 that for Aba17, Ringnorm40 , or Yeast6 (all of them 

ith IR 
 40 ), the optimum Q R C 
and Q R P 

factors are between 28 

nd 36. 

. Conclusions and future lines 

It is relatively common for classification machines to handle 

ractical scenarios that present imbalanced class populations. For 

hese scenarios, we analyzed different methods that partially rebal- 

nce the original problem, allowing us to increase the effectiveness 

f machine learning and consequently improve the final perfor- 

ance with respect to conventional models. Our starting point was 

he Bayesian formulation for optimal (binary) classification and the 

se of an ensemble of machines trained with a Bregman diver- 

ence as a surrogate loss function, which provides a consistent es- 

imate of the posterior class probabilities. 

The analyzed methods fall into three categories: At the data- 

evel, neutral rebalancing methods, that is, those that do not mod- 

fy the form of the class likelihoods; at the algorithmic-level, the 

se of cost policies in training; and at the ensemble-level, the 

se of asymmetric label switching as the source of diversity and 

eighted aggregation of base learner’s outputs. These methods 

ransform the original problem by introducing a rebalancing effect 

hat facilitates base learner training. Transformed problems require 

ew decision thresholds, which have been specified in an optimal 

ayesian sense. 

In the experimentation part, we considered these principled 

eutral rebalancing mechanisms separately to better understand 

heir contribution to performance improvement. Obviously, it is 

easonable to expect that the results listed in this work could be 

mproved by jointly optimizing the architecture of the ensemble 

number, type, and training of the base learners) and the global 

ombination of methods, a possibility that remains to be explored 

n future studies. 

Among the strengths of this study, we have proposed a Bayesian 

ramework that allows the design of ensembles of classifiers that 

imultaneously combine different mechanisms to address imbal- 

nce classification problems. We leave open further research on 

he analysis of the adequate proportion of each of these mecha- 

isms to optimize their performance in a particular classification 

roblem. 

Regarding weaknesses, we point out that the actual formula- 

ion is limited to binary classification problems. Currently, we have 

tudied the application of label switching to the (still imbalanced) 

ichotomic problems derived in multi-class classification, but more 

esearch is needed. The analysis of other neutral rebalancing meth- 

ds other than SMOTE is also pending, as well as the use of other 

ating network architectures not necessarily linear, and the reduc- 

ion of the training complexity, especially for fixed-computational- 

udget scenarios. 
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