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A B S T R A C T

This paper studies the year-by-year and month-by-month (the same month in all years) hedging 
effectiveness of futures contracts in the Spanish electricity market from 2007 to 2022. We 
compare the in-sample and out-of-sample hedging ability of naïve, minimum variance, partially 
predictable, non-parametric, and BEKK_T hedge ratios. Hedging effectiveness varies over time 
and across months because of unstable correlations between spot price changes and futures price 
changes. Some methods present meaningful in-sample performance, but the out-of-sample 
hedging effectiveness is limited. The hedging effectiveness of the naïve ratio on a year-by-year 
(month-by-month) basis, with monthly differences, is 16% (40%).   

1. Introduction

This paper studies the hedging effectiveness of electricity futures contracts in the Spanish market from 2007 to 2022 over the years
and month-by-month. The importance of this topic stems from the problems faced by the current EU’s pay-as-clear marginal-price 
design as a foundation for the wholesale electricity market. This design is under stress because of immediate challenges, such as the oil 
and natural gas shortage due to the Ukrainian war. Still, the design also faces long-term challenges caused by growing generation 
shares of non-dispatchable, zero-marginal cost technologies, Peña et al. (2022). Consequently, many authors suggest alternative 
formats, such as reinforcing the role of the forward and futures markets and auctions of long-term contracts, Fabra (2021). Therefore, 
understanding whether extant futures markets provide desired results regarding risk sharing and hedging effectiveness is crucial. This 
paper contributes to the literature by presenting empirical evidence on whether exchange-traded futures contracts help mitigate 
electricity price risk in the Spanish market. To the best of our knowledge, this is the first paper presenting empirical evidence on this 
issue in this market. Literature on the effectiveness of hedging strategies in electricity markets includes Byström’s (2003) study of the 
variance reduction performance of electricity futures on Nordpool, reporting out-of-sample hedging effectiveness from 9% to 18%. 
Malo and Kanto (2006) report hedging effectiveness of 21% in-sample and 17% out-of-sample in NordPool. In the case of California 
futures traded in the NYMEX, Moulton (2005) documents risk reductions between − 2% and 20%. Zanotti et al. (2010) estimate 
hedging efficacy for Nord Pool, EEX, and Power Next and report risk reductions between − 7% and 3%. Martínez and Torró (2018) 
report risk reduction between − 3.7% to 60% in Germany, the Netherlands, and the UK. Most evidence suggests that futures contracts 
have modest effectiveness in hedging electricity spot price risk. We organize the rest of this paper as follows. After describing the 
methods in Section 2, we present the data in Section 3. Section 4 discusses the empirical results. Section 5 concludes. 
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2. Methods 

We analyze hedging effectiveness year-by-year and month-by-month, meaning the same month in all years. We consider five 
hedging strategies. Detailed explanations of the methods of the five strategies are in the Appendix. The first is the naïve (N) hedging 
strategy with a hedge ratio equal to one.1 Second, the OLS minimum variance hedge ratio (MV), Ederington (1979). Third, the 
Ederington and Salas (2008) (EDS) hedge ratio. The fourth specification (NP) is a non-parametric time-dependent hedge ratio. The fifth 
specification (BEKK_T) is an extension of the BEKK model, Engle and Kroner (1995), as McAleer et al. (2009)given in . Let S(ti), be the 
baseload electricity spot (day-ahead) price2 corresponding to day ti, i = 1,…, T, and let F(ti, tj, tm) be the baseload futures price observed 
at time ti with delivery over the period [tj, tm], m > j > i, we shall denote F(ti) for convenience. A short position in such a derivative 
commits the seller to deliver an amount of MWh of electricity for every hour of the contracted delivery period, from day tj to day tm, at 
the corresponding futures price. Let the change in spot and futures prices during k days be 

ΔkS(ti) = S(ti) − S(ti− k) (1)  

ΔkF(ti) = F(ti) − F(ti− k) (2) 

We compute the time series of (1) and (2) using equal nonoverlapping time intervals. The length k of each time interval should be 
the same as the length of the interval for which the hedge is in effect. We consider k = d, w, m to correspond to daily (one day), weekly 
(five days), and monthly (around twenty days) changes. The k-period payoff to a firm with a long position in the spot market is 

PS(ti, k) = ΔkS(ti) (3) 

Let H(ti − k) be the hedge ratio set at time i-k. The k-period payoff to a firm with a long position in the spot market and a short 
position in the futures market is 

PH(ti, k) = ΔkS(ti) − H(ti− k)ΔkF(ti) (4) 

As a baseline specification for H(ti − k) we use the naïve ratio H∗
k,N 

H∗
k,N(ti− k) = 1 (5) 

The second specification comes from Ederington (1979), and the optimal hedge ratio H∗
k,MV that minimizes the variance of the 

hedged portfolio (4) is 

H∗
k,MV (ti− k) =

COV(ΔkS(ti),ΔkF(ti))

VAR(ΔkF(ti))
(6) 

The third specification is based on Ederington and Salas (2008), and the EDS minimum variance hedge ratio H∗
k,EDS is 

H∗
k,EDS(ti− k) =

COV([ΔkS(ti) − E(ΔkS(ti))],ΔkF(ti))

VAR(ΔkF(ti))
(7) 

The fourth specification allows for time-varying variances and covariances in (6).3 We consider the following non-parametric 
specification H∗

k,NP for the optimal hedge ratio, 

H∗
k,NP(ti, ti− k) =

COV(ti)(ΔkS(ti),ΔkF(ti))

VAR(ti)(ΔkF(ti))
(8) 

Notice that (8) computes the optimal time-dependent hedging ratio for time ti using sample variances and covariances data up to ti- 
k. The fifth specification is a parametric threshold diagonal BEKK(1,1) model (BEKK_T henceforth) to consider asymmetric effects in 
variances and covariances.4 We estimate the BEKK_T optimal hedge ratio H∗

k,BEKK T as 

H∗
k,BEKK T(ti, ti− k) =

hk,S,F(ti)

hk,F(ti)
(9) 

When calculating out-of-sample hedge ratios, we apply a rolling window. The rolling window size is n = 240 (daily differences), n 
= 52 (weekly differences) and n = 12 (monthly differences). Using the data in the window up to ti-1, we generate a one-step-ahead 
conditional variance hk,F(ti) and covariance hk,S, F(ti)forecast for ti. We investigate the hedging effectiveness of the futures contracts 
by looking at the magnitude of variance reduction. To compare the efficiency of the hedging position (EHPk,Z) in a period of size k with 
hedge ratio Z, we utilize a metric, Ederington and Salas (2008), comparing the variance of the hedged position PHZ(ti,k)to the variance 
of the unhedged case PS(ti,k). 

1 This strategy is cost-efficient because there is no need to rebalance hedging positions, so transaction costs are minimal.  
2 This price is the simple average of hourly electricity prices.  
3 Escribano et al. (2011) and Peña et al. (2020) report that the distributions of electricity spot and futures prices and returns are time-varying. 

Therefore, it is more realistic to expect the optimal hedge ratio to be time-dependent  
4 We present the specification of the BEKK_T model in the Appendix. 
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EHPk,Z = 1 −
VAR(PHZ(ti, k) )
VAR( PS(ti, k))

; Z = H∗
k,N , H∗

k,MV ,H
∗
k,EDS,H

∗
k,NP,H

∗
k,BEKK T

; i = 1,…, T; k = d,w,m
(10) 

The closer EHPk,Z is to zero, the lower the efficiency of the hedging position. 

3. Data 

The daily (Monday to Friday) day-ahead5 power prices source is Eikon, series identifier OMELRTRB, and from now on, we refer to 
them as "spot prices." The front-month futures continuous price time series6 source is Eikon series identifier OMIPFTBMc1. The sample 
goes from July 7, 2007, to August 12, 2022 (3945 data points). Table 1 provides descriptive statistics of the daily (five days a week) 
spot and futures prices (in €/MWh) in levels and differences with Δk and k = d, w, m corresponding to daily, weekly (Friday to Friday), 
and monthly (last day of the month) differences. Panel A shows summary statistics. Spot price differences are more volatile than futures 
price differences.7 The Jarque-Bera JB statistic rejects the null of normal distribution in all cases. The Ljung-Box QLB statistic suggests 
significant autocorrelation in most series, except the monthly differenced series. Therefore, most series are partially predictable from 
their lagged values. Engle’s ARCH test statistics indicate heteroskedasticity in all cases. 

Panel B reports year-by-year correlation coefficients between price change variables. In the total sample 2007–2022, the corre-
lation between spot and futures price changes is 0.38, 0.50, and 0.67 for d, w, and m, respectively. However, the year-by-year cor-
relation wanders. With daily price changes, the correlation varies from − 0.03 (2015) to 0.47 (2022); with weekly changes, the 
variation is from − 0.20 (2015) to 0.66 (2022), and with monthly changes is from − 0.01 (2011) to 0.88 (2021). Panel C reports month- 
by-month correlations. With daily price changes, the correlation varies from − 0.04 (June) to 0.71 (March); with weekly changes, the 
variation is from − 0.07 (June) to 0.66 (March), and with monthly changes is from − 0.18 (July) to 0.98 (September). Although not 
stable, the correlations tend to be higher from August to December. 

4. Results 

In the year-by-year analysis, we divide the data set into yearly estimation periods from 2007 to 2022. Then, we calculate 
nonoverlapping daily, weekly and monthly differences. We compute hedging ratios (5), (6), (7), (8), and (9), and the hedge effec-
tiveness measure (10) in-sample and out-of-sample. In-sample in (6) and (7) means we compute the hedging ratio for year Y using data 
from year Y. Out-of-sample in (6) and (7) means we calculate the hedging ratio for year Y using data from year Y-1. With (8) and (9), we 
report out-of-sample results. In both cases, the estimation window is rolled forward by sequentially dropping the first observation in 
the window each time and including one new observation up to ti-1. So, the length of the estimation window remains fixed at n ob-
servations.8 When calculating out-of-sample hedge ratios, we apply a rolling window. Using the data in the window up to ti-1, we 
generate a one-step-ahead conditional variance and covariance forecast9 for ti. The Appendix shows a Table with the hedge ratios and 
the annual effectiveness measure. We summarize the key results. The average values of the hedge ratios for all strategies are around 
0.7, 0.8, and 1 for daily, weekly, and monthly differences. But the yearly values of the hedge ratio and the year-by-year hedging 
performance are erratic. The average hedge effectiveness of the naive strategy is 0.03, 0.04, and 0.16 for daily, weekly, and monthly 
differences. The average in-sample hedge effectiveness of the MV and EDS is 0.05, 0.11, and 0.26 and 0.19, 0.37, and 0.59 for daily, 
weekly, and monthly differences. But in both cases, the out-of-sample performance is not significant. The average hedge effectiveness 
of the out-of-sample non-parametric strategy is 0.06, 0.09, and − 0.10 for daily, weekly, and monthly differences. The BEKK_T 
approach presents average out-of-sample hedge effectiveness of 0.0, − 0.06, and − 0.43 for daily, weekly, and monthly differences. 
Table 2 shows the t-test and p-values for the average values of hedge ratios, hedge effectiveness measures, and 99% bootstrap con-
fidence intervals computed employing 50,000 samples. The null hypothesis in hedge ratios is that the ratio equals one, and in the case 
of the hedge effectiveness measure, it is that the measure is zero. Panel A shows the results for the naïve strategy, Panel B the minimum 
variance, Panel C the partially predictable, Panel D the non-parametric, and Panel E, the BEKK_T. 

Regarding the naïve strategy, the t-test statistic for the null of zero effectiveness gives p-values of 0.07, 0.16, and 0.01 for daily, 
weekly, and monthly differences, respectively. The 99% bootstrap confidence intervals contain the zero value in all cases. In the case of 
the MV and EDS in-sample, the t-test statistic for the null of zero effectiveness in-sample gives p-values of 0.00 in all cases. However, 
the t-test statistic for the null of zero effectiveness out-of-sample does not reject the null of no effectiveness. The 99% bootstrap 

5 This series is the average of the twenty-four hourly prices.  
6 This futures contract traded in OMIP is a purely financial instrument with no physical delivery. This series contains the price of the front-month 

futures baseload (24/7) contract. For instance, on August 16, 2022, the OMIPFTBMc1 price is the price of the futures contract ES BASELD SEP22, 
which is the monthly futures baseload contract delivered 24/7 during September 2022. Although OMIP offers daily, weekend, weekly, monthly, 
quarterly, and yearly contracts, more than 95% of trading volume corresponds to contracts with monthly or longer maturity. In terms of monthly- 
equivalent trading volume, on average, monthly contracts supposed the 53% of total long-term trading volume, followed by quarterly contracts with 
36% and yearly contracts with 11%, CNMC (2020). Therefore, in this paper we employ the most liquid futures contract available.  

7 All differenced series are stationary as suggested by the Dickey-Fuller test statistic (not shown).  
8 We report results for n = 240 (daily differences), n = 52 (weekly differences) and n = 12 (monthly differences).  
9 With (8) the forecast for ti is the ratio estimated at ti-1. With (9) and using the data in the window up to ti-1, we generate a one-step-ahead 

conditional variance hk,F(ti) and covariance hk,S, F(ti)forecasts 
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Table 1 
Descriptive statistics. Spain spot and front-month (M1) futures electricity prices (€/MWh). Daily data, five days a week. Sample Period July 7, 2007, to August 12, 2022.  

Panel A. Summary statistics  
Obs. Mean Median Max. Min. SD Skew. Kurt. JB p-val. QLB(5) p-val. ARCH p-val. 

S(ti) 3945 57.6 49.0 545.0 0.0 42.0 3.8 22.1 6.95E+04 0.00 1.72E+04 0.00 1.74E+04 0.00 
F(ti) 3945 59.3 49.5 460.0 20.0 41.4 4.0 22.3 7.21E+04 0.00 1.88E+04 0.00 4.38E+04 0.00 
Δd S(ti) 3944 0.0 − 0.1 178.4 − 122.1 10.7 1.0 57.3 4.85E+05 0.00 2.01E+02 0.00 7.46E+02 0.00 
Δd F(ti) 3944 0.0 0.0 94.5 − 100.0 4.9 − 1.4 180.7 5.19E+06 0.00 1.48E+02 0.00 5.04E+02 0.00 
Δw S(ti) 788 0.1 0.3 123.4 − 120.5 16.0 − 0.1 22.1 1.19E+04 0.00 1.25E+02 0.00 4.25E+02 0.00 
Δw F(ti) 788 0.1 − 0.1 169.0 − 139.3 11.2 0.4 123.0 4.73E+05 0.00 7.01E+01 0.00 1.26E+02 0.00 
Δm S(ti) 181 0.6 − 0.2 122.7 − 124.6 24.0 0.0 12.2 6.35E+02 0.00 5.66E+00 0.34 3.80E+02 0.00 
Δm F(ti) 181 0.6 0.5 91.3 − 90.4 14.0 0.5 26.1 4.05E+03 0.00 2.88E+00 0.71 1.31E+01 0.00 
Panel B. Year-by-year Correlation D: Corr(ΔdS(ti), ΔdF(ti)),W: Corr(ΔwS(ti), ΔwF(ti)),M: Corr(ΔmS(ti),ΔmF(ti))  

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2007–22 
D 0.09 0.07 0.09 0.29 0.15 0.12 0.31 0.11 − 0.03 0.03 0.20 0.04 0.03 0.15 0.43 0.47 0.38 
W 0.29 0.05 0.01 0.41 0.33 0.28 0.49 0.03 − 0.20 0.28 0.26 0.45 0.19 0.18 0.58 0.66 0.50 
M 0.84 0.24 0.08 0.59 − 0.01 0.36 0.65 0.48 0.32 0.24 0.64 0.62 0.26 0.27 0.88 0.57 0.67 
Panel C. Month-by-month correlation 
Month 1 2 3 4 5 6 7 8 9 10 11 12 Mean 
D 0.33 0.11 0.71 0.18 0.09 − 0.04 0.05 0.29 0.41 0.25 0.22 0.49 0.26 
W 0.47 0.65 0.76 − 0.05 0.04 − 0.07 0.04 0.42 0.25 0.44 0.34 0.65 0.33 
M 0.38 0.64 0.06 0.61 0.65 0.87 − 0.18 0.94 0.98 0.94 0.95 0.85 0.64  
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confidence intervals contain the zero value. The p-values of hedge effectiveness of the NP are 0.04, 0.03, and 0.27 for daily, weekly, 
and monthly differences, and the 99% bootstrap confidence intervals contain the zero value. 

Regarding the BEKK_T strategy, the t-test statistic for the null of zero effectiveness gives p-values of 0.43, 0.25, and 0.07 for daily, 
weekly, and monthly differences, respectively. The 99% bootstrap confidence intervals contain the zero value in all cases, and the 
optimal hedge ratio is above one on average. In summary, the size of the futures position wanders. In some years, a negative hedge ratio 
is indicated; in others, a tiny futures position seems optimal, while in other years, the size of the hedge ratio is almost three. Besides, the 
empirical evidence suggests a limited ability of futures contracts to hedge a spot position out-of-sample. Several authors, Furió and 
Torró (2020) and Matsumoto and Yamada (2021), suggest the existence of seasonal patterns in energy commodity demand and spot 
and futures prices due to climate oscillation throughout the year. These seasonal patterns may impact the design of optimal hedging 
strategies. Therefore, we analyzed the hedging effectiveness on a month-by-month basis with N, MV, EDS, and NP methods.10 That is 
the same month from different years. We include full results in the Appendix but summarize the key results. The hedging effectiveness 
of the naïve ratio on a month-by-month basis is not different from zero with daily and weekly differences. However, with monthly 
differences, the average effectiveness is 40% and statistically significant. The hedging effectiveness varies, from 0.95 in September to 

Table 2 
Test statistics and 99% upper (BUL) and lower (BLL) bootstrap intervals for Hedge ratios Naïve (N), Minimum Variance (MV), Partially Predictable 
(EDS), Non-parametric (NP), and BEKK Threshold (BEKK_T) Hedge effectiveness measure EHP. Sample Period July 7, 2007, to August 12, 2022.  

Panel A: Naïve Average S.D. t-Test P-value 99%BUL 99%BLL 

EHPd 0.03 0.07 1.47 0.07 0.08 − 0.01 
EHPw 0.04 0.15 0.98 0.16 0.13 − 0.06 
EHPm 0.16 0.28 2.24 0.01 0.34 − 0.01 
Panel B: MV Average S.D. t-Test P-value 99%BUL 99%BLL 
In-Sample       
Hd,MV 0.74 0.70 − 1.50 0.07 1.21 0.36 
EHPd 0.05 0.07 2.65 0.00 0.10 0.01 
Hw,MV 0.77 0.82 − 1.13 0.13 1.28 0.26 
EHPw 0.11 0.12 3.73 0.00 0.19 0.04 
Hm,MV 1.05 0.78 0.27 0.39 1.55 0.60 
EHPm 0.26 0.24 4.26 0.00 0.41 0.12 
Out-of-sample       
Hd,MV 0.74 0.72 − 1.42 0.08 1.12 0.41 
EHPd 0.03 0.07 1.62 0.05 0.08 − 0.01 
Hw,MV 0.77 0.84 − 1.04 0.15 1.19 0.36 
EHPw 0.03 0.21 0.60 0.27 0.15 − 0.12 
Hm,MV 1.07 0.80 0.36 0.36 1.48 0.70 
EHPm − 0.16 0.68 − 0.93 0.18 0.17 − 0.69 
Panel C: EDS Average S.D. t-Test P-value 99%BUL 99%BLL 
In-Sample       
Hd,EDS 0.78 0.57 − 1.52 0.06 1.18 0.47 
EHPd 0.19 0.07 10.56 0.00 0.24 0.15 
Hw,EDS 0.81 0.64 − 1.21 0.11 1.23 0.43 
EHPw 0.37 0.13 11.08 0.00 0.44 0.28 
Hm,EDS 1.10 0.58 0.66 0.26 1.47 0.75 
EHPm 0.59 0.22 10.58 0.00 0.74 0.46 
Out-of-sample       
Hd,EDS 0.78 0.59 − 1.44 0.07 1.09 0.51 
EHPd 0.03 0.07 1.81 0.04 0.09 0.00 
Hw,EDS 0.81 0.66 − 1.11 0.13 1.15 0.50 
EHPw 0.05 0.19 1.00 0.16 0.16 − 0.08 
Hm,EDS 1.11 0.60 0.72 0.24 1.41 0.83 
EHPm − 0.01 0.31 − 0.16 0.44 0.18 − 0.22 
Panel D:NP Average S.D. t-Test P-value 99%BUL 99%BLL 
Hd,NP 0.74 0.55 5.41 0.00 1.11 0.41 
EHPd 0.06 0.13 1.78 0.04 0.17 0.00 
Hw,NP 0.76 0.79 3.87 0.00 1.26 0.23 
EHPw 0.09 0.18 1.86 0.03 0.20 − 0.03 
Hm,NP 0.95 0.68 5.54 0.00 1.43 0.54 
EHPm − 0.10 0.66 − 0.60 0.27 0.29 − 0.56 
Panel E Average S.D. t-Test P-value 99%BUL 99%BLL 
Hd,BEKK_T 1.19 0.41 11.57 0.00 1.46 0.93 
EHPd 0.00 0.08 − 0.17 0.43 0.05 − 0.05 
Hw,BEKK_T 1.23 0.42 11.83 0.00 1.50 0.97 
EHPw − 0.06 0.37 − 0.69 0.25 0.11 − 0.35 
Hm,BEKK_T 1.29 0.45 11.54 0.00 1.59 1.01 
EHPm − 0.43 1.12 − 1.56 0.07 0.14 − 1.26  

10 We do not apply BEKK_T because of data limitations. 
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− 0.15 in July. The strategy yields negative effectiveness in March and July and is null in April. Overall, this strategy gives better results 
in June and from August to December. MV and EDS strategies present significant in-sample effectiveness (similar to yearly) but 
negative out-of-sample performance. The hedging effectiveness is not statistically different from zero with the NP method. 

The sample period we analyze, 2007–2022, contains many crisis periods. For instance, the global financial crisis of 2007–2009, the 
Eurozone crisis of 2009–2012, the Covid pandemic 2020–2022, and the current Ukrainian crisis. Following the insights of Pan et al. 
(2022), we test for structural changes by running a robust regression to estimate the MV hedge ratio allowing for changes in yearly 
coefficients. We may see significant changes in the hedge ratio over time, suggesting structural changes. During the 2007–2009 global 
financial crisis, the optimal ratio was not different from zero. Howfrom 2010–2011 the ratio was higher than one and above two in 
2013. From 2014 to 2019, the ratio was zero again. However, the ratio was near one during the three years of the Covid-19 pandemic 
2020–2022. The Wald test rejects the null of coefficient equality, thus suggesting structural changes. Detailed results are in the 
Appendix. 

5. Conclusions 

This paper studies the year-to-year and month-to-month hedging performance of exchange-traded electricity futures in the Spanish 
market from 2007 to 2022. The empirical results, based on five different specifications of the hedge ratio, suggest that although the in- 
sample performance may be helpful, the out-of-sample performance is limited. Hedge ratio estimates indicate a volatile and sometimes 
counterintuitive hedge position due to unstable correlations between spot and futures price changes. Although hedging effectiveness 
varies over time, some methods present significant in-sample hedging effectiveness from 2007 to 2022. But in the out-of-sample 
evaluation, the hedging effectiveness of most strategies is not substantial. On a positive note, the hedging effectiveness of the naïve 
ratio on a year-by-year (month-by-month) basis, with monthly differences, is 16% (40%) and statistically significant. As other studies 
suggest, Moulton (2005), electricity futures are of limited use for hedging electricity price risk because of the wandering correlation 
between spot and futures price changes. This situation contrasts with the one observed in other energy markets where futures contracts 
present hedging efficiencies of up to 90% (e.g., Furió and Torró, 2020; Bai and Kavussanos, 2022, Li et al., 2021). 
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