
Applied Soft Computing 133 (2023) 109930

U

e
p
l
a
r
a
v

c
b
e
w
b
t
p

o
e
b
w
o

i

h
1
n

Contents lists available at ScienceDirect

Applied Soft Computing

journal homepage: www.elsevier.com/locate/asoc

Pareto Optimal Prediction Intervals with Hypernetworks
Antonio Alcántara ∗, Inés M. Galván, Ricardo Aler
niversidad Carlos III de Madrid, Avenida Universidad, 30, 28911, Leganés (Madrid), Spain

a r t i c l e i n f o

Article history:
Received 14 December 2021
Received in revised form 11 October 2022
Accepted 7 December 2022
Available online 13 December 2022

MSC:
68T05

Keywords:
Direct prediction intervals estimation
Hypernetworks
Multi-objective optimization
Probabilistic forecasting
Deep neural networks

a b s t r a c t

As the relevance of probabilistic forecasting grows, the need of estimating multiple high-quality
prediction intervals (PI) also increases. In the current state of the art, most deep neural network
gradient descent-based methods take into account interval width and coverage into a single loss func-
tion, focusing on a unique nominal coverage target, and adding additional parameters to control the
coverage–width trade-off. The Pareto Optimal Prediction Interval Hypernetwork (POPI-HN) approach
developed in this work has been derived to treat this coverage–width trade-off as a multi-objective
problem, obtaining a complete set of Pareto Optimal solutions (Pareto front). POPI-HN are able to be
trained through gradient descent with no need to add extra parameters to control the width–coverage
trade-off of PIs. Once the Pareto set has been obtained, users can extract the PI with the required
coverage. Comparative results with recently introduced Quality-Driven loss show similar behavior in
coverage while improving interval width for the majority of the studied domains, making POPI-HN a
competing alternative for estimating uncertainty in regression tasks where PIs with multiple coverages
are needed.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
G
B
q
w
c
b
t
m
a
t
P
l
a

k
o
p
f
t

q
s
1
m
n
D
t
a

1. Introduction

In general, probabilistic forecasting estimates a probability for
very possible event that can happen, whereas standard point
rediction assigns a single value (typically the average, as in
inear least squares). This assignment of probabilities makes prob-
bilistic forecasting more valuable than point forecasting in some
esearch fields. For example, in electricity price forecasting [1],
strophysics for world mass estimation [2], probabilistic photo-
oltaic generation estimation [3] or wind energy resources [4].
However, when dealing with regression tasks (the target is a

ontinuous value), it is not possible to assign non-zero proba-
ilities to single points. For that reason, methods based on the
stimation of Prediction Intervals (PIs) are becoming popular as a
ay to estimate uncertainty in regression tasks. A PI is formed
y two values: a lower and an upper bound, which contain
he conditional dependent variable of interest with a certain
robability.
There are two main ways of estimating PIs. First, models can

utput specific values that are later used to construct PIs. For
xample, several methods in the machine learning literature have
een extended to the estimation of conditional quantiles, from
here lower and upper bounds for PIs can be computed. Some
f the most widely used include Quantile Regression Forests [5],

∗ Corresponding author.
E-mail addresses: antalcan@est-econ.uc3m.es (A. Alcántara),

galvan@inf.uc3m.es (I.M. Galván), aler@inf.uc3m.es (R. Aler).
 c

ttps://doi.org/10.1016/j.asoc.2022.109930
568-4946/© 2022 The Author(s). Published by Elsevier B.V. This is an open access a
c-nd/4.0/).
radient Boosting Quantile Regression [6], or Natural Gradient
oosting [7]. All these methods are based on optimizing the
uantile loss [8] and can be used to estimate a set of quantiles,
hich are then used to obtain the PIs. On the other hand, models
an be constructed to directly estimate the PI’s lower and upper
ounds, therefore, models output those two bounds. Regarding
his approach, Neural Networks (NNs) are the most employed
ethods, as they can have two outputs that represent the lower
nd upper bounds of the PIs. Furthermore, NNs for direct estima-
ion usually optimize losses directly related to the quality of the
I. For example, in [9], the Coverage Width-based Criterion (CWC)
oss is defined, whereas, in [10], a loss combining the PI coverage
nd sharpness is used.
Knowing the importance of probabilistic forecasting in all

inds of fields, it might be interesting to investigate the use
f Deep Neural Networks (DNNs) as the prediction method for
robabilistic regression tasks, due to the good performance and
lexibility that DNNs show in many fields, from image classifica-
ion [11] to bot detection [12] or non-parametric regression [13].

DNNs have been used to estimate PIs employing the prior
uantile estimation, making use of the quantile loss, and building
tatistically centered PIs with their corresponding quantiles [14–
8]. Neural networks have been also employed for direct esti-
ation of PIs. For example, in [19–21], one hidden layer neural
etwork is used to estimate the lower and upper bounds of PIs.
NNs have also been considered for this purpose [22]. Never-
heless, in these works, optimization was based on evolutionary
lgorithms, which are computationally expensive. A more effi-

ient approach is to use gradient descent, the widely used method

rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://doi.org/10.1016/j.asoc.2022.109930
https://www.elsevier.com/locate/asoc
http://www.elsevier.com/locate/asoc
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:antalcan@est-econ.uc3m.es
mailto:igalvan@inf.uc3m.es
mailto:aler@inf.uc3m.es
https://doi.org/10.1016/j.asoc.2022.109930
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

A. Alcántara, I.M. Galván and R. Aler Applied Soft Computing 133 (2023) 109930

f
m

n
a
l
a
h
l
w
c

e
o
a
t
Q
g
e
s
a

T

g

g
o
P
c
{

or optimizing DNN loss. However, the use of gradient descent
akes the loss function play a key role in the process.
One of the initially used loss functions for PI estimation with

eural networks is the Coverage Width-based Criterion (CWC),
lso known as Lower Upper Bound Estimation method (LUBE), a
oss function built as a multiplicative function of width and cover-
ge terms [9], to deal with the trade-off between both (PIs with
igh coverage must be wider and the other way around). This
oss has been employed in a wide range of fields, from short-term
ind power forecasting [23,24], to streamflow discharges [25] or
yberattack detection [26].
Neural networks that employ CWC are usually trained by

volutionary algorithms and not gradient descent. The structure
f CWC can cause problems with gradient descent optimization:
minimum can be found with trivial PIs of zero width due to

he multiplicative structure of the loss [27]. Recently, in [27], a
uality-Driven loss was derived to be efficiently optimized by
radient descent. In this case, the loss has two aggregated cov-
rage and width terms, instead of multiplicative ones. It adds the
ample size to the loss for giving confidence about the coverage,
nd a penalty parameter λ to control the trade-off between width

and coverage. Pearce’s own results in [27] show how models
trained with Quality-Driven loss outperform those trained with
CWC (LUBE) in PI quality for some synthetic datasets. More re-
cently, in a probabilistic estimation setting for wind power [28,
29], the Quality-Driven loss is used as a training loss for neu-
ral networks, which also outperforms the classical CWC in PI
width while maintaining the coverage goal. Besides, in these last
two works, recurrent structures like RNN, LSTM, or NNres are
employed as the goal is to address predictions on time series
problems.

Recent works have derived the Quality-Driven loss from dif-
ferent perspectives. For example, [30,31] modified the loss to
also include point estimation in addition to the probabilistic one.
In [32], changes in the Quality-Driven loss structure were made
to help the training process when the batch-size is small, while
in [33] a softened version of the loss is presented to estimate
multiple PIs.

Despite the extensive use of the Quality-driven loss in the lit-
erature, the loss formulations has some issues. First, the addition
of parameters in the function to control the coverage importance
in the coverage–width trade-off of the PIs requires the parameter
to be adjusted. Also, the losses are originally designed to estimate
a single PI for a given target coverage. Thus, if multiple PIs (with
multiple coverages) with a single model are needed, we need to
optimize through the sum or average of losses of PIs, which could
lead to possible imbalances in the performance of the obtained
PIs. Finally, if the goal is to obtain multiple PIs at once, we need
to decide in advance how many PIs are required and for which
nominal coverages.

For these reasons, in this work, we study a method based
on Hypernetworks [34] that formulates PI estimation as a multi-
objective problem between the two PI objectives (width and
coverage). The solution to a multi-objective problem is not a sin-
gle value but a set of Pareto Optimal solutions (the Pareto front).
This allows obtaining optimal PIs for every possible nominal
coverage with a single model, by looking for the solution in the
Pareto front. The main difference between this method based on
Hypernetworks and the current state-of-the-art is treating PI esti-
mation as a multi-objective problem instead of a single-objective
that aggregates PI metrics. We believe that the multi-objective
approach is more appropriate for direct PI estimation, as both
coverage and width are in conflict. For instance, coverage in-
creases when the PI is wide, but when the PI is narrow, coverage
decreases.

Hypernetworks have recently been used as a method that
can handle multi-objective problems [35], with gradient descent
2

as the optimization method. This multi-objective solution has
been applied to several problems, such as Multi-task regression,
multi-MNIST (image classification), or pixel-wise classification
and regression [35]. However, it has not received much attention
for PI estimation yet, only on specific fields [36].

The presented approach, Pareto Optimal Prediction Intervals
Hypernetworks (POPI-HN), is based on the employment of two
DNNs: a small one (the hypernetwork), which takes a vector of
preferences for coverage–width trade-off generates parameters
(weights), and the target DNN, which making use of the generated
weights and the independent variables of the problem, delivers a
PI estimation dependent on the preference vector.

The main contributions of POPI-HN are the following:

1. It obtains optimal-width PIs for all nominal coverages em-
ploying a multi-objective approach.

2. This is achieved efficiently by using gradient descent on
DNNs.

3. Unlike single-objective methods, no penalty parameter for
the coverage–width trade-off needs to be adjusted because
solutions for all coverages are obtained with a single model.

4. There is no need to specify in advance the number of PIs
to be obtained (unlike single-objective methods).

POPI-HN performance has been validated on eight different
open-access datasets for regression tasks that use PI quality met-
rics. POPI-HN PIs have been compared with those generated
by a single-objective model: Quality-Driven Deep Neural Net-
works (QD-DNN). This model employs the Quality-Driven loss
and outputs the lower and upper bounds for several predefined
PIs.

The structure of this article is as follows. Section 2 will math-
ematically describe PIs and their two main properties of interest:
coverage and width. The Quality-Driven loss will be introduced
with its implementation in DNNs for multiple PI estimation (QD-
DNN) in Section 3. Section 4 will describe in detail the POPI-HN
methodology, from training with preference vectors to PI esti-
mation and Pareto front construction. To test the performance
of POPI-HN, Section 5 presents a comparison between multiple
data sets and sought PIs between POPI-HN and QD-DNN. Finally,
Section 6 draws the main conclusions of this work.

2. Prediction intervals

Probabilistic forecasting is nowadays getting attention for be-
ing able to estimate uncertainty in regression tasks. One of the
main focuses of probabilistic forecasting is the estimation of PIs.
A PI is made up of an upper and lower bound pupp and plow
respectively, which contains the dependent variable y with a
certain probability.

A model g that produces a PI for the target variable y taking
the independent variables X is described in Eq. (1), where the
theoretical probability of the PI containing the conditional target
variable is named PINC (Prediction Interval Nominal Coverage).
he complementary α of PINC (PINC = 1− α) can also be used.

(X) =
[
p̂low, p̂upp

]
, such that P(p̂low ≤ y|X ≤ p̂upp)

= PINC = 1− α (1)

In real-world applications, one of the main objectives is to
et the actual coverage to be at least equal to the nominal
ne. This can be measured with the Prediction Interval Coverage
robability (PICP , Eq. (2)). This metric allows us to compute the
overage relative to a set of n samples or instances S = (X, y) =
(X , y)}i=n out of which, the PIs computed by g can be obtained:
i i i=1

A. Alcántara, I.M. Galván and R. Aler Applied Soft Computing 133 (2023) 109930

c
w
b
W

A

s
c
t
b
s
f

A

w
d

A

3
w

t
l
C
b
T
a
T

L

P
D
w
t

t
t
e
v
D
c
n
f

a
1

L

i
l
d
n
t
o
r
t
o

s
t
a
t
t
t
i

i
a
{

b
1
i

c
a
t
i
d
t
s
s
P
(
t
s
o
c

o
o
n
4
1
b
s
z
i
t
r
c
t
c
i

P̂I = {g(X i)}i=ni=1 = {[p̂
low
i , p̂uppi]}

i=n
i=1. In that case, PICP can be com-

puted using Eq. (2), where 1
[p̂lowi ,p̂uppi]

(yi) is the indicator function
that returns 1 when yi is within the PI bounds, 0 otherwise.

PICP(P̂I, y) =
1
n

n∑
i=1

1
[plowi ,puppi]

(yi) (2)

Once the coverage objective is achieved, the quality of the PI
an be determined by its width. Thus, if two models build PIs
ith the same coverage, the one with narrower intervals should
e preferred. This metric is measured with the Average Interval
idth (AIW , Eq. (3)).

IW (P̂I) =
1
n

n∑
i=1

(puppi − plowi) (3)

The simplest and most common width metric is the one de-
cribed in Eq. (3). However, there are possible modifications that
an be made to the AIW metric. For example, it can be considered
hat only those PIs that contain the dependent variable should
e used to compute the AIW . If c =

∑n
i=1 1

[plowi ,puppi]
(yi) is the

um of captured points, the AIW for captured points (AIWcapt.) is
ormulated as in Eq. (4).

IWcapt.(P̂I, y) =
1
c

n∑
i=1

(
puppi − plowi

)
1
[plowi ,puppi]

(yi) (4)

Furthermore, in some cases it is convenient to normalize the
idth to the maximum possible range ymax − ymin of the depen-
ent variable in the set of samples, as defined in Eq. (5).

IWnorm.(P̂I) =
1

n(ymax − ymin)

n∑
i=1

(puppi − plowi) (5)

. Single-objective method: Quality-Driven deep neural net-
orks

In this section, we introduce the Quality-Driven loss in order
o estimate multiple PIs. As stated in Section 1, the Quality-Driven
oss [27] was recently introduced as a work intended to improve
WC, adding flexibility and creating a loss structure that can
e used to train deep neural networks with gradient descent.
his loss can be used within a single-objective approach as it
ggregates the width and coverage of the PIs into a single value.
he Quality-Driven loss is presented in Eq. (6).

ossQD,α(P̂I, y) = AIWcapt.(P̂I)+
λn

α(1− α)
max(0, (1− α)

− PICP(P̂I, y))2 (6)

where AIWcapt. is the one defined in Eq. (4), λ is a control param-
eter, n the number of instances in the training set and (1− α) =
INC represents the sought coverage. As can be seen, the Quality-
riven loss is composed of two adding terms: one related to the
idth of the PIs and one penalty weighted by λ for the cases when
he actual coverage (PINC) is below expected.

The Quality-Driven loss is relative to a single PINC . However, if
he deep network is required to output PIs for several PINC values,
he loss can be computed as the sum of Quality-Driven losses for
very required coverage. This kind of network for multiple PINC
alues will be called Quality-Driven Deep Neural Networks (QD-
NN) and is used in this work for comparison purposes. More
oncretely, if the network needs to output PIs for p different
ominal coverages ααα = {α1, α2, . . . , αp}, the Quality-Driven loss

or multiple PI estimation is defined in Eq. (7) (note: the αi are (

3

ctually the complementary values of the nominal coverage: αi =

− PINCi).

ossQD,ααα(P̂I, y) =
p∑

i=1

LossQD,αi (P̂I, y) (7)

The structure of the QD-DNN can be visualized in Fig. 1. As
t can be seen, the predictors enter the network, pass through a
inear layer, then undergo the non-linear activation, and finally
ropout. This process is repeated depending on the depth of the
etwork (number of layers) until reaching the output layer. At
he output, 2p values are obtained: the lower and upper bound
f the PI for each of the p coverages. In Fig. 1, P̂Iαi = [p̂

low
αi

, p̂uppαi
]

epresents the ith PI, with required coverage 1− αi. For every PI,
he Quality-Driven loss (Eq. (6)) is calculated and then, the sum
f the losses (Eq. (7)) is used as a final loss for backpropagation.
Estimating multiple PIs (multiple nominal coverages) with a

ingle model by employing QD-DNN has some limitations. First,
he number of PIs and the target PINC values need to be defined in
dvance. Secondly, the larger the number of PIs, the more difficult
raining becomes (compared to using a small set of PIs). Lastly,
he λ parameter has to be selected for every coverage and, during
raining, local minimums can be found where the loss for one PI
s improved at the cost of impairing the loss of another one.

Implementing the sum of Quality-Driven losses (Eq. (7)) used
n this work for the QD-DNN model follows Algorithm 1. The
lgorithm needs the training set (TS) with the target values yTS =
y1, y, . . . , yn}, the vector ααα = {α1, α2, . . . , αp} of sought PINC
values, and the PIs generated for the training set and each of the
α values, represented by P̂Iααα , which is composed of the lower
ounds and upper bounds for each αi: (p̂low

ααα , p̂upp
ααα). Algorithm

also uses some parameters: the softening factor s and the
mportance of coverage λ.

The algorithm loops over the p different coverages (line 1),
omputes the Quality-Driven loss for each of them (lines 2–13)
nd returns the aggregated result (line 14). Lines 2–13 calculate
he two main components of the loss: PICP and AIWcapt., defined
n Eqs. (2) and (4), respectively. For the PICP , the implementation
oes not strictly follow Eq. (2), because it was found out by [27]
hat it was difficult to be optimized. Instead, a sigmoid-soft ver-
ion is used. This is done in lines 2–7, where KS,i represents the
oft number of captured points (line 7) by the ith PI. Then, soft
ICPS,i is computed in line 8 as the mean value of the vector KS,i
reduce-mean(KS,i) means first add all the elements of vector KS,i,
hen divide by the number of elements). Notice that there are
everal element-wise vector operations. For instance, p̂upp

αi
− yTS

f line 2 displays the difference between two vectors of size 1
olumn and n rows each.
The other important element of the loss will be the AIW

f captured points (Eq. (4)). For this, KH,i (a vector containing
nes and zeros depending on whether the point is captured or
ot by the PI with coverage αi) plays an important role (line
). The computation of AIWcapt. defined by [27] is done in line
2. However, we found out that there are some cases, at the
eginning of the training process, especially in datasets with a
mall number of instances, where the sum of values of KH,i can be
ero (i.e. no point is captured). This would lead to a zero divisor
n line 12. Our implementation uses line 10 for those cases, so
hat the AIW is assigned the worst possible value (the maximum
ange of the target variable). This allows the training process to
ontinue without errors even when no points are captured by
he PIs. Eventually, some points will be captured and the AIWcapt.
omputation will be able to use line 12. reduce-sum in those lines
s just the summation of all the elements of the vector.

Then, the single loss for one PI is computed as in Eq. (6)

line 13). This process will be repeated for all the p different PIs

A. Alcántara, I.M. Galván and R. Aler Applied Soft Computing 133 (2023) 109930

g
l
Q
b

t
w

Fig. 1. QD-DNN structure.
s
c
(
P
t
S

enerated by QD-DNN, all with different sought PINC values. The
osses will be aggregated as a sum of losses, producing the final
D loss (Eq. (7)) of line 14. This is the loss that will be used by
ackpropagation.

Algorithm 1: Implementation of the Sum of Quality-Driven
losses for multiple PI estimation.

Data: TS = (X, y): Training Set
p: number of target coverages
ααα = {α1, α2, . . . , αp}: Complementary vector of
PINC values
P̂Iααα = (p̂low

ααα , p̂upp
ααα): PIs generated for the TS

. p̂low
ααα = {p̂low

αi
}
i=p
i=1: Lower bounds of PIs

. p̂upp
ααα = {p̂upp

αi
}
i=p
i=1: Upper bounds of PIs

s: softening factor
λ: parameter of coverage importance
(Note: ⊙ denotes the element-wise product)

Result: LossQD,ααα

1 for i = 1 TO p do
2 KHU,i = max(0, sign(p̂upp

αi
− yTS))

3 KHL,i = max(0, sign(yTS − p̂low
αi

))
4 KH,i = KHU,i ⊙ KHL,i

5 KSU,i = sigmoid((p̂upp
αi
− yTS)s)

6 KSL,i = sigmoid((yTS − p̂low
αi

)s)
7 KS,i = KSU,i ⊙ KSL,i
8 PICPS,i = reduce-mean(KS,i)
9 if reduce-sum(KH,i) = 0 then

10 AIWcapt.,i = max(yTS)−min(yTS)
11 else
12 AIWcapt.,i =

reduce-sum((p̂upp
αi
− p̂low

αi
)⊙KH,i)/reduce-sum(KH,i)

13 LossQD,αi = AIWcapt.,i+λ n
αi(1−αi)

max(0, (1−α)−PICPS,i))2

14 LossQD,ααα =
∑p

i=1 LossQD,αi
15 Return(LossQD,ααα)

4. Hypernetworks to solve the coverage–width trade-off in a
multi-objective framework

The goal of this article is to develop a method capable of ob-
aining PIs for all possible PINC while dealing with the coverage–
idth trade-off, taking advantage of the deep neural network
4

structure, and needing as few parameters as possible to facilitate
the training process. In this section, we state direct PI estimation
as a multi-objective formulation, dealing simultaneously with PIs
coverage and width.

The method described in Section 3 was a single-objective
method because although Quality-Driven loss considered two
goals, coverage and width, both were aggregated into a single
quantity, weighted by a trade-off parameter λ. In this section,
a multi-objective formulation is proposed where two separate
objectives, AIW and ϵ = 1− PICP of the PIs, are to be minimized
simultaneously.

Let t be a model that generates PIs conditional to inputs X as
hown in Eq. (8). t is defined by parameters θ, that could be the
oefficients of a linear model or the weights of a neural network
as is the case in this work). Eq. (8) describes the situation where a
I is the output of the inputs X of a single sample. Eq. (9) describes
he situation where model t is applied to a set of n instances
= (X, y) = {(Xi, yi)}i=ni=1, where X = {Xi}

i=n
i=1 and y = {yi}i=ni=1.

In that case, the output is a set of n PIs (P̂I) or equivalently their
n lower p̂low and upper p̂upp bounds (e.g. p̂low

= {p̂lowi }
i=n
i=1).

t(X; θ) = [p̂low, p̂upp] (8)

t(X; θ) = P̂I = [p̂low, p̂upp
] (9)

Then, the multi-objective optimization problem is defined by
Eq. (10).

PF = argmin
θ

(AIW (t(X; θ)), ϵ(t(X; θ), y)) (10)

where ϵ(P̂I, y) = 1−PICP(P̂I, y). In the multi-objective case, there
does not usually exist a solution that minimizes all objectives
simultaneously. Therefore, the optimal solution is not a single one
but a set of them, called Pareto optimal solutions, that together
constitute the Pareto front (PF).

In order to formally define the Pareto front, it is useful to first
define when a solution θ1 dominates another θ2. In general, this
happens when the first solution is better than or equal for all
objectives, but it is strictly better for at least one of them. In the
case of PIs, where only two objectives are considered (AIW and
ϵ), dominance is defined by Eq. (11).

θ1 dominates θ2 if :
AIWθ1 ≤ AIWθ2 and ϵθ1 ≤ ϵθ2 (11)

AIWθ1 < AIWθ2 or ϵθ1 < ϵθ2

A. Alcántara, I.M. Galván and R. Aler Applied Soft Computing 133 (2023) 109930

w

ϵ

t
c
i
w
t
f
i
t
t
P
O
g

I
c
(
(
n
t[
p
g
p
s
r
m
h
o
v
p
(
s
u
t

T
o
s

here (AIWθ1 , ϵθ1) and (AIWθ2 , ϵθ2) are the two losses or objec-
tives of t(X, θ1) and t(X, θ2), respectively.

A solution θ∗ is called Pareto optimal if it is non-dominated.
That is, there is no other solution that dominates it. For a Pareto
optimal θ∗ it is not possible to improve coverage (decrease ϵ)
without worsening AIW , and the other way around. The Pareto
front is just the set of Pareto optimal (non-dominated) solutions,
as shown in Eq. (12).

PF = {θ∗ | ∄θ′ such that θ′ dominates θ∗} (12)

It is interesting to notice that if the PF is obtained, then it is
possible to get the model that obtains the best (narrowest) PIs for
each possible nominal coverage, which was our initial goal. Let
us suppose that we require a model that provides PIs with some
coverage PINC . Then, we look for the θ∗ model in the PF whose

is 1 − PINC , and let us call it θ∗PINC . This θ∗PINC will also have
some AIW value. But given that the interval belongs to the PF, it
is non-dominated. Thus, there cannot be another model with the
same PINC but smaller AIW .

4.1. Pareto Optimal Prediction Interval Hypernetworks structure

To deal with the coverage–width trade-off, a multi-objective
approach has been developed based on hypernetworks (HN).
HNs are, in fact, two (deep) neural networks: the hypernetwork
and the target (or main) network, and they differ from standard
networks as explained below.

Standard (deep) feed-forward neural networks, as the one
described in Section 3 (see Fig. 1), are a sequence of layers that
contain a set of numerical parameters (the weights). Formally, it
can be represented as a function t(X; θ) with inputs X and pa-
rameters (weights) θ. For standard neural networks, the weights θ
are usually optimized/trained by gradient descent, so that t(X; θ)
produces the right outputs, given the inputs X.

HNs also contain a t(X; θ) network, called the target or main
network, which is also responsible for producing the right outputs
for the given inputs to solve the problem at hand. However, the
weights θ are not directly optimized by gradient descent, but are
the output of another deep feed-forward network, called the hy-
pernetwork. Formally, it is represented by function h(r;φ) where
r are the inputs to the hypernetwork, and φ are its weights.
Mathematically, they work together as t(X; h(r;φ)). It is the
hypernetwork weights φ that are optimized by gradient descent.

The previous paragraph was a general introduction to hyper-
networks, but let us now instantiate the previous HN schema to
the problem of generating the Pareto front of PIs. In this case, the
inputs r to the hypernetwork h(r;φ) are a vector of preferences
(weights) between the two objectives, coverage and width, r =
(rAIW , rϵ), such that rAIW + rϵ = 1. This vector of preferences
determines the properties of coverage and width of the PIs that
will be the output of the target network. The general scheme of
the approach can be seen in Eq. (13). In short, the hypernetwork
h(·;φ) generates a set of weights θr for the required properties r
of the PI. θr are then used as the weights of the target network,
which generates the lower and upper bounds of PIs, conditional
on inputs X.
θr
= h(r;φ)[

p̂lowr , p̂uppr
]
= t(X; θr)

(13)

As mentioned above, the preference vector r controls the
width and coverage properties of PIs. More specifically, a linear
scalarization process is followed, in which the two objectives
AIW and ϵ are linearly combined with the weights rAIW and rϵ ,
respectively, as shown in Eq. (14).

l = r AIW + r ϵ (14)
AIW ϵ

5

As will be explained later, the HN is trained so that Eq. (14)
is optimized for every different r . Thus, the PIs generated by the
target network of Eq. (13) are those that are optimal according
o the loss function in Eq. (14). In fact, linear scalarization is a
ommonly used method to generate the points of the Pareto front
n multi-objective optimization. In this case, different values of r
ill generate different points of the Pareto front, which means
hat the hypernetwork h is trained to learn the Pareto front, and
or every r , it outputs weights of a different target network, which
n turn will generate PIs with the right properties. Therefore,
he Pareto front is made up of solutions, each of them being a
arget network obtained from a different preference vector r i:
F = {t(·; θr1), t(·; θr2), . . .}. This approach will be called Pareto
ptimal Prediction Intervals Hypernetworks (POPI-HN) because it
enerates solutions that are Pareto optimal.
The POPI-HN two-network structure can be observed in Fig. 2.

n this case, we aim for a target network of m layers. As we
an see, the hypernetwork maps the preference vector r =
rAIW , rϵ) into another space, by means of a multilayer perceptron
MLP) with weights φ = {φ1, . . . , φm−1, φm}. Thus, the hyper-
etwork outputs the weights θr

= {θ r
1 , . . . , θ r

m−1, θ
r
m} of the

arget network. Finally, the weights θr are used to obtain P̂I
r
=

p̂lowr , p̂uppr
]
for a dependent variable given a set of features X.

As explained, hypernetworks generate PIs with PICP and AIW
roperties that are optimal according to Eq. (14). However, in
eneral, users need a target network that returns PIs with some
articular nominal coverage (or PINC). Therefore, to use the HN
tructure of Fig. 2, it is necessary to compute a preference vector
appropriate for some given PINC , called rPINC . However, the
apping of PINC to rPINC is not straightforward. In POPI-HN, this
as been approached by empirically computing the PICP values
f target networks obtained from a set of different preference
ectors. To avoid overfitting, this set of associations between
reference vectors and PINC values, called the validation front
VF), is computed using a validation set different from the training
et. This allows recovering the right preference vector, given a
ser-required PINC value, by looking for the closest PICP value in
he VF.

The method to generate the VF can be seen in Algorithm 2.
he VF is constructed by iteratively applying the hypernetwork
n v preference vectors r i = (cos(γi), sin(γi)) for angles γi evenly
paced from 0 to π

2 (lines 3–4). In other words, they are equally
spaced two-dimensional unit vectors belonging to the upper right
quadrant, where the Pareto front is located, given that the two
losses (AIW and ϵ) are both positive. The r i = (rAIW ,i, rϵ,i) vectors
are further normalized so that the two preferences add to 1, as
required by the hypernetwork (line 5). Then, the weights θ r i of
the target network that correspond to preference vector r i are
obtained by using the hypernetwork (line 6). Next, the target
network with weights θr i is applied to every instance in the val-
idation set (XVS) in order to obtain a set of estimated PIs, named
P̂I

r i
VS (line 7). Then, the AIW and PICP of each PI in P̂I

r i
VS are com-

puted (lines 8–9), represented by AIW (P̂I
r i
VS) and PICP(P̂I

r i
VS, yVS),

respectively. Finally, the triplet (r i, AIWi, PICPi) is added to the
VF (line 10). This is repeated v times. The result is the valida-
tion front VF = {(r1, AIW1, PICP1), . . . , (rv, AIWv, PICPv)}, which
associates each r i with its corresponding AIWi and PICPi.

Fig. 3 illustrates how the VF can be used to map the re-
quired PINC into the appropriate preference vector. Fig. 3 is a
graphical representation of the VF = {(r i, AIWi, PICPi)}i=v

i=1 . Each
blue point in the figure corresponds to one element i of the
VF with coordinates (AIWi, 1 − PICPi). Let us suppose we aim
to generate PIs with nominal coverage PINC = 0.75. The point
in the VF that minimizes |PICP − 0.75| (equivalently |ϵ − α| =

A. Alcántara, I.M. Galván and R. Aler Applied Soft Computing 133 (2023) 109930
Fig. 2. POPI-HN structure.
t
P
t

4

d

Algorithm 2: Generation of the Validation front.
Data: φ: Weights of the hypernetwork

VS = (XVS, yVS): Validation set
v: Number of preference vectors

Result: VF = {(r1, AIW1, PICP1), ..., (rv, AIWv, PICPv)}:
Validation front

1 VF ← {}
2 for i = 0 TO (v-1) do
3 γi =

π
2 ∗

i
v−1

4 (rAIW ,i, rϵ,i)← (cosγi, sinγi)
5 ri ← (rAIW ,i

rAIW ,i+rϵ,i
,

rϵ,i
rAIW ,i+rϵ,i

)
6 θr i ← h(ri;φ)
7 P̂I

r i
VS ← t(XVS; θ

ri)
8 AIWi ← AIW (P̂I

ri
VS)

9 PICPi ← PICP(P̂I
ri
VS, yVS)

10 VF ← VF
⋃

(r i, AIWi, PICPi)
11 end

|ϵ − 0.25|) is chosen. In the actual VF of Fig. 3, this corresponds
with a point with ϵ = 1 − PICP = 0.251 and AIW = 0.221,
and the corresponding preference vector r = (0.679, 0.321).
Thus, the required target PINC 0.75 has been assigned to the
preference vector r = (0.679, 0.321). Now, the appropriate model
t(., h((0.679, 0.321), φ)) can be used to generate PIs with the
nominal coverage required. It can also be seen that the more
points v in the VF, the easier it will be that one of them is close
to the target PINC .

Algorithm 3 shows how to compute the PI for some PINC
value (P̂IPINC) and some input variables X using the VF and the
hypernetwork. First (lines 1–6), the preference vector rPINC that
generated a PICP value closest to the required PINC in the VF is
selected. A minor detail is that POPI-HN has a preference/bias
for PIs that satisfy the desired coverage, as this is an important
objective. This is shown in line 1, so that if there is at least one
element ei in the VF that satisfies the coverage, then the closest
element in the VF is obtained from those elements PICPk ≥ PINC
(line 2). Otherwise, the closest element will be selected from the
remaining elements in the VF (line 4). Next, the hypernetwork h
is used together with the selected preference vector to obtain the
weights θrPINC of the target network (line 7). Finally, in line 8 the
6

Fig. 3. Using the validation front to map PINC = 0.75 into the corresponding
preference vector r = (0.679, 0.321).

arget network is applied to the inputs X in order to estimate the
I for the required PINC (that is, the lower and upper bounds of
he PI).

.2. Training the Pareto Optimal Prediction Interval network

The hypernetwork weights φ are the result of a gradient
escent training process on the training dataset. Algorithm 4

summarizes the training algorithm. Line 1 initializes the weights
φ. Also, although the method loops along a specific maximum
number of epochs (maxEpochs at line 3), there is an early-stopping
mechanism to avoid overfitting [37]. This mechanism is based on
the selection of the model corresponding to the epoch where its

A. Alcántara, I.M. Galván and R. Aler Applied Soft Computing 133 (2023) 109930

φ
h
e
a

w
e
r
t
w
t
T
8
o
a
9
t
1
A
c
h
w

t
u
t
p
d
c

(
a
y
u
a
i

l
a
t
a

b
(
t
N
t
v

l
m
t
m
t
p
b

i
a

5

s
e
t
w
o
o
a
H
o
w

Algorithm 3: POPI-HN generation of prediction intervals
for some input variables X and some nominal coverage
PINC.

Data: VF = {(r i, AIWi, PICPi)}i=v
i=1: Validation front from

Alg. 2
PINC: target nominal coverage
X : input variables

Result: P̂IPINC = [p̂lowrPINC , p̂upprPINC]

1 if ∃ei ∈ VF such that PICPi ≥ PINC then
2 (rkPINC , AIWkPINC , PICPkPINC) = ekPINC ←

argmin
ek∈VF subject to PICPk≥PINC

(|PICPk − PINC |)

3 else
4 (rkPINC , AIWkPINC , PICPkPINC) = ekPINC ←

argmin
ek∈VF subject to PICPk<PINC

(|PICPk − PINC |)

5 end
6 rPINC ← rkPINC
7 θrPINC ← h(rPINC ;φ)
8 P̂IPINC = [p̂lowrPINC , p̂upprPINC] ← t(X; θrPINC)
9 Return(P̂IPINC)

performance on the VF is best. The quality of the VF is measured
by employing the hyper-volume [38]. The best hyper-volume so
far, and the associated weights, are stored in variables hvbest and
, respectively. They are initialized in lines 1–2 (0 is the worst
yper-volume value) and they are updated in the training loop
very time the performance on the VF is improved (lines 13–16,
s explained later).
Next, the method loops for a number of epochs (line 3) where

eights φ are going to be incrementally adjusted. First, a pref-
rence vector r is sampled from a Dirichlet distribution of pa-
ameter β ∈ R2 (line 4). Then, the hypernetwork is used with
he current weights φ and the preference vector r to obtain the
eights θr of the target network t (line 5), which is then used
o obtain the PIs for each training instance TS = {}i=ni=1 (line 6).
he two losses AIW and ϵ are computed for them (lines 7 and
). As mentioned above, a linear scalarization process is used to
btain the solutions of the Pareto front. That is, a loss is computed
s a weighted aggregation of AIW and ϵ with weights r (line
), using the loss defined in Eq. (14). This loss is used to update
he hypernetwork weights φ by means of gradient descent (line
0). Finally, a VF is built from the validation set as presented in
lgorithm 2 (line 11), whose hyper-volume is compared to the
urrent best hyper-volume (lines 12–13). If it is better, the best
ypernetwork weights φ will be updated (lines 14–15). These
eights will be returned by the method (line 18).

For the POPI-HN training process, AIW and ϵ = 1− PICP have
o be computed. In the case of coverage, a soft version of PICP is
sed to estimate ϵ = 1− PICPS , which will give more stability to
he model during training. This soft version improves the training
rocess, especially at the early stage of the training and when
ealing with a difficult task where it is possible to have a low
overage at the beginning.
The soft PICPS is computed in the same way as in Algorithm 1

lines 2–8). The soft vector of the captured points KS is computed
s KSU⊙KSL = sigmoid((yTS−p̂lowr)s)⊙sigmoid((p̂uppr−yTS)s), with
TS as the target vector of values, p̂lowr and p̂uppr the lower and
pper bounds of the PI generated from the preference vector r ,
nd s representing a softening factor (a factor of 160 was used

n this work). An element-wise product between KSU and KSL

7

Algorithm 4: Training POPI-HN.
Data: TS = (XTS, yTS): Training Set

VS: Validation Set
Result: φ: Hypernetwork weights

1 φbest ← φ← initializeWeights()
2 hvbest ← 0
3 for epoch = 1 TO maxEpochs do
4 (rAIW , rϵ) = r ∼ Dirichlet(β)
5 θr

← h(r;φ)
6 P̂ITS ← t(XTS; θ

r)
7 AIWθr ← AIW (P̂ITS)
8 ϵθr ← 1− PICPS(P̂ITS , yTS)
9 loss = rAIWAIWθr + rϵϵθr

10 φ← update(loss, φ)
11 VF ← Algorithm2(φ, VS) # Generate the Validation

front
12 hv′ ← hyper-volume(VF)
13 if hv′ > hvbest then
14 hvbest ← hv′
15 φbest ← φ

16 end
17 end
18 Return(φbest)

(which stand for the difference between the upper bound of the
PI p̂uppr and the dependent variable yTS , and between yTS and the
ower bound p̂lowr followed by a softening factor s multiplication
nd a sigmoid function application) will generate KS . Finally,
he mean of elements across the vector KS will result in a soft
pproximation of the coverage PICPS .
Regarding the width, the value of the AIW will be calculated

y normalizing its value with the range of the dependent variable
Eq. (5)). First, a width vector is formed as the difference between
he vector of upper values p̂uppr and lower values p̂lowr of the PIs.
ext, the mean of elements across the vector is applied to obtain
he AIW (Eq. (3)) and it is divided by the range of the dependent
ariable: max(y)−min(y).
With these implementations for the coverage and width, the

oss-space will be bounded between zero and one for every
etric. This will be useful for the POPI-HN validation process, as

he hyper-volume metric needs a reference point to be computed,
easuring the quality of the non-dominated front by computing

he area with respect to the reference point. With this approach,
oint (1, 1) can be used as a reference, resulting in homogeneity
etween different experiments.
Finally, to encourage the reproducibility of the method, the

mplementation of POPI-HN in Python has made open access
vailable to practitioners in [39].

. Benchmarking experiments

In this section, the performance of POPI-HN when building
everal PIs for different target coverages will be evaluated over
ight different benchmarking regression datasets. As a baseline,
he quality of the PIs will be compared with the ones obtained
ith QD-DNN models. Therefore, the performance of the multi-
bjective method (POPI-HN) will be compared with a single-
bjective method (QD-DNN). Notice that QD-DNN could have an
dvantage over POPI-HN as it is trained for a specific set of PINCs.
owever, the main focus of POPI-HN is to obtain a complete PF
f solutions for all possible PINC while having good coverage and
idth performance.

A. Alcántara, I.M. Galván and R. Aler Applied Soft Computing 133 (2023) 109930

b

c
T
l
f
d

p
i
o
t
t
m
F
v

t
l
b

a
a
s
t
o
h
n
T
a
o
t
m

t
i
t
t
h

(
b

P
d
s
T
v
u
t

Table 1
Benchmarking regression datasets.
Dataset n D

Californiaa 20,640 8
Concreteb 1,030 8
Energyb 738 8
Kin8nmc 8,192 8
Power Plantb 9,468 4
Proteinb 45,730 9
Superconductorb 21,263 81
Yachtb 308 6

aScikit-learn Datasets: https://scikit-learn.org/stable/datasets/real_world.html.
UCI Machine Learning Repository: https://archive.ics.uci.edu/ml/index.php.

cDELVE Repository: https://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html.

5.1. Experimental setup

Six different PIs will be built with each regression dataset for
omparison purposes: PINC 70%, 75%, 80%, 85%, 90% and 95%.
hus, twelve final values will be obtained in the QD-DNN output
ayer. However, notice that POPI-HN is capable of generating a PI
or every sought PINC , therefore the six PIs will be obtained as
escribed in Algorithm 3.
Eight different regression task datasets will be used to com-

are QD-DNN with POPI-HN. Table 1 summarizes them with
nformation about the number of instances n and the dimension
r number of features D. As can be seen, the number of observa-
ions in the datasets ranges from a few hundred in Yacht to more
han forty-five thousand in Protein. Regarding dimensionality, in
ost of the domains, it is not large, apart from Superconductor.
or each of these eight datasets, the dependent and independent
ariables have been standardized before the training process.
In each case, it is necessary to select the correct value of

he different hyper-parameters, including the number of hidden
ayers, number of neurons per layer, learning rate, the size of the
atch, etc.
For this purpose, the following methodology is applied: data

re randomly split into a train and test subsets representing 80%
nd 20% of the complete dataset, respectively, and a grid search
election is made. Regarding QD-DNN, the best model according
o the sum of losses (Eq. (7)) is saved in every epoch. On the
ther hand, the metric for model selection of POPI-HN is the
yper-volume indicator [38], which in this case is the area of the
on-dominated front with respect to a certain reference point.
he point (1, 1) (the upper right corner) will be used because,
s mentioned above, ϵ and the normalized AIW are in the range
f 0–1. The larger the hyper-volume, the better, because that is
he direction in which the two objectives are optimized. Thus, the
odel with largest hyper-volume on the VF will be selected.
Regarding the tuning process, a grid search was employed for

he hyper-parameter selection. The learning rate was 5 × 10−5
n all cases, using ADAM [40] as the optimizer and Elu [41] as
he non-linear activation function. The weight decay regulariza-
ion technique [42] has also been used. The rest of the selected
yper-parameters can be seen in Table 2.
Notice that for datasets with the smallest number of instances

Concrete, Energy, and Yacht), all training sets are used as a single
atch.
When the adjustment process is finished, and QD-DNN and

OPI-HN models have their respective hyper-parameters for each
ataset, testing is carried out. In this case, datasets are randomly
plit in an 80/10/10 proportion, for training, validation and test.
hat is, 80% of the original data are used for training, 10% for
alidation, and the remaining 10% for test. The validation set is
sed for early-stopping [37] and hyper-parameter tuning, and the
est set for model evaluation.
8

Models will start training with the respective dataset and
corresponding selected hyper-parameters, will be stopped with
the best value of Quality-Driven loss or hyper-volume and the
unbiased performance of the models will be obtained in the test
subset. This procedure will be repeated 20 times, each time with
a different random split in the datasets and network initialization.

The form of PICP presented in Eq. (2), and the non-normalized,
non-captured version of AIW (Eq. (3)) will be used to measure the
quality of the obtained PIs.

To deal with the possible instability of the models due to the
randomized sets and net initialization, the test will be repeated
20 different times. The results will be aggregated (average) across
these 20 runs. Tables 3 and 4 display the mean values together
with the standard error.

Finally, to verify the reliability of the results, some statistical
tests will be applied to the results. To determine that PICP is not
worse than PINC (with a 5% significance level), the t-test [43]
will be used. To fulfill the assumptions of the test, normality in
the values was also proven by using the Shapiro–Wilk test [44],
whereas independence is present due to the randomization of the
experiments. Tests were satisfied, not being able to reject the null
normality hypothesis in any case for the same significance level.

When comparing the AIW values, the non-parametric Mann–
Whitney U test [45] has been employed to determine which
method produces narrower PIs. This test will tell if one randomly
selected value from one group (AIW from QD-DNN or POPI-HN)
would be smaller or larger than one value from the other group.
That is, to check if the differences in AIW are significant.

To analyze the variability in the results from the different runs,
the non-parametric Levene’s test [46] has been used to compare
which method produces more variance in their results.

5.2. Results

In this section, the performance of QD-DNN and POPI-HN for
the eight different datasets will be presented and discussed. It
is important to remember that QD-DNN has been specifically
trained for the six PIs, while POPI-HN obtains the complete set
of solutions (all possible PINC values). The VF has been obtained
as shown in Section 4, and the six PIs will be extracted from there
(see Algorithm 3). An illustrative example can be found in Fig. 4,
where a VF and its corresponding test PIs metrics are shown for
a run in each of the eight datasets.

The results will be presented as follows. The two main objec-
tives regarding PI construction will be evaluated: coverage (PICP)
and width (AIW) for the six PIs (i.e. six PINC values). Values will
be shown as the mean across the 20 different runs, accompanied
by their standard error.

5.2.1. Coverage results
PICP values can be seen in Table 3. The average value is shown

in bold when the alternative hypothesis (PICP ≤ PINC) cannot be
accepted by the t-test (at 5% confidence level).

As can be seen, both QD-DNN and POPI-HN deliver a good
performance in terms of coverage, being able to reach the PINC
sought in all domains and most of the PINC values. Both methods
fail in some cases. For example, in the California dataset, QD-DNN
is unable to overtake the PINC for 90% and 95%. In these same
PINC values POPI-HN fails for the Concrete domain, and PINC 95%
with the Kin8nm data.

The case where the PICP is farther away from the PINC for
POPI-HN is in the dataset with a smaller number of instances:
Concrete. When the number of instances is big enough, POPI-
HN does not fail in coverage. It must be noticed that POPI-HN
has a high dependency on the VF, therefore, we can assume
that, with a bigger number of observations, the VF will be more
representative of the complete dataset.

https://scikit-learn.org/stable/datasets/real_world.html
https://archive.ics.uci.edu/ml/index.php
https://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html

A. Alcántara, I.M. Galván and R. Aler Applied Soft Computing 133 (2023) 109930
Table 2
Hyper-parameters selected for each model and dataset.
Dataset Method Hidden layers Neurons per layer Weight decay Batch-size Lambda

California QD-DNN 4 150 0. 2500 0.05
POPI-HN 6 200 0. 2500 –

Concrete QD-DNN 4 200 0.1 Train set 0.05
POPI-HN 4 100 0. Train set –

Energy QD-DNN 4 150 0. Train set 0.05
POPI-HN 4 100 0. Train set –

Kin8nm QD-DNN 5 200 0.1 1500 0.01
POPI-HN 4 150 0. 1500 –

Power Plant QD-DNN 3 150 0.1 1500 0.05
POPI-HN 4 100 0. 1500 –

Protein QD-DNN 4 150 0. 2500 0.05
POPI-HN 5 200 0. 2500 –

Superconductor QD-DNN 4 150 0. 2500 0.05
POPI-HN 5 150 0. 2500 –

Yacht QD-DNN 3 150 0. Train set 0.01
POPI-HN 4 100 0. Train set –
Fig. 4. Example of POPI-HN validation fronts (blue) and Test PIs metrics (red) for each dataset.
9

A. Alcántara, I.M. Galván and R. Aler Applied Soft Computing 133 (2023) 109930

s
f
K

c
i
E

5

Table 3
Mean PICP ± one standard error. Values presented in boldface are statistically significant using the t-test.
Dataset Method PINC 70 PINC 75 PINC 80 PINC 85 PINC 90 PINC 95

California QD-DNN 0.71 ± 0.01 0.76 ± 0.01 0.80 ± 0.01 0.85 ± 0.01 0.89 ± 0.01 0.94 ± 0.01
POPI-HN 0.70 ± 0.01 0.75 ± 0.01 0.80 ± 0.01 0.85 ± 0.01 0.90 ± 0.01 0.95 ± 0.01

Concrete QD-DNN 0.73 ± 0.04 0.77 ± 0.04 0.81 ± 0.04 0.86 ± 0.03 0.90 ± 0.03 0.94 ± 0.02
POPI-HN 0.69 ± 0.06 0.74 ± 0.06 0.80 ± 0.06 0.84 ± 0.05 0.88 ± 0.05 0.93 ± 0.03

Energy QD-DNN 0.91 ± 0.03 0.94 ± 0.05 0.96 ± 0.03 0.98 ± 0.02 0.99 ± 0.01 1.00 ± 0.01
POPI-HN 0.73 ± 0.07 0.78 ± 0.06 0.83 ± 0.05 0.87 ± 0.06 0.91 ± 0.05 0.95 ± 0.03

Kin8nm QD-DNN 0.72 ± 0.01 0.77 ± 0.02 0.82 ± 0.01 0.87 ± 0.01 0.91 ± 0.01 0.96 ± 0.01
POPI-HN 0.70 ± 0.02 0.74 ± 0.02 0.80 ± 0.02 0.85 ± 0.02 0.90 ± 0.01 0.94 ± 0.01

Power Plant QD-DNN 0.72 ± 0.02 0.77 ± 0.02 0.81 ± 0.02 0.86 ± 0.01 0.91 ± 0.01 0.95 ± 0.01
POPI-HN 0.71 ± 0.02 0.76 ± 0.02 0.81 ± 0.02 0.85 ± 0.01 0.90 ± 0.01 0.95 ± 0.01

Protein QD-DNN 0.72 ± 0.01 0.76 ± 0.01 0.80 ± 0.01 0.85 ± 0.01 0.90 ± 0.01 0.95 ± 0.00
POPI-HN 0.70 ± 0.01 0.75 ± 0.01 0.80 ± 0.01 0.85 ± 0.01 0.90 ± 0.01 0.95 ± 0.00

Superconductor QD-DNN 0.75 ± 0.01 0.79 ± 0.01 0.83 ± 0.01 0.87 ± 0.01 0.92 ± 0.01 0.96 ± 0.00
POPI-HN 0.71 ± 0.01 0.76 ± 0.01 0.81 ± 0.01 0.85 ± 0.01 0.90 ± 0.01 0.95 ± 0.01

Yacht QD-DNN 0.86 ± 0.07 0.87 ± 0.07 0.90 ± 0.07 0.92 ± 0.06 0.95 ± 0.05 0.98 ± 0.02
POPI-HN 0.75 ± 0.09 0.78 ± 0.09 0.81 ± 0.05 0.84 ± 0.05 0.88 ± 0.06 0.94 ± 0.05
Table 4
Mean AIW ± one standard error. Values presented in boldface are statistically significant using U-test.
Dataset Method PINC 70 PINC 75 PINC 80 PINC 85 PINC 90 PINC 95

California QD-DNN 0.58 ± 0.01 0.65 ± 0.01 0.74 ± 0.01 0.86 ± 0.01 1.02 ± 0.01 1.30 ± 0.03
POPI-HN 0.55 ± 0.02 0.63 ± 0.02 0.74 ± 0.03 0.88 ± 0.03 1.07 ± 0.03 1.39 ± 0.05

Concrete QD-DNN 0.69 ± 0.02 0.77 ± 0.03 0.86 ± 0.02 0.96 ± 0.02 1.10 ± 0.02 1.34 ± 0.03
POPI-HN 0.53 ± 0.07 0.60 ± 0.07 0.68 ± 0.08 0.77 ± 0.08 0.89 ± 0.10 1.12 ± 0.20

Energy QD-DNN 0.18 ± 0.01 0.19 ± 0.01 0.22 ± 0.01 0.25 ± 0.01 0.28 ± 0.01 0.34 ± 0.02
POPI-HN 0.09 ± 0.01 0.10 ± 0.01 0.12 ± 0.01 0.13 ± 0.01 0.15 ± 0.02 0.18 ± 0.02

Kin8nm QD-DNN 0.80 ± 0.01 0.89 ± 0.01 1.00 ± 0.01 1.12 ± 0.01 1.29 ± 0.02 1.53 ± 0.02
POPI-HN 0.51 ± 0.02 0.56 ± 0.02 0.63 ± 0.03 0.71 ± 0.04 0.81 ± 0.03 0.95 ± 0.05

Power Plant QD-DNN 0.51 ± 0.00 0.56 ± 0.00 0.62 ± 0.00 0.69 ± 0.00 0.79 ± 0.01 0.95 ± 0.01
POPI-HN 0.42 ± 0.02 0.46 ± 0.01 0.52 ± 0.01 0.58 ± 0.01 0.67 ± 0.02 0.80 ± 0.03

Protein QD-DNN 0.72 ± 0.01 0.83 ± 0.01 0.96 ± 0.01 1.13 ± 0.02 1.35 ± 0.02 1.73 ± 0.03
POPI-HN 0.60 ± 0.02 0.74 ± 0.02 0.89 ± 0.02 1.08 ± 0.02 1.33 ± 0.03 1.72 ± 0.05

Superconductor QD-DNN 0.57 ± 0.02 0.64 ± 0.01 0.73 ± 0.02 0.85 ± 0.02 1.01 ± 0.02 1.25 ± 0.02
POPI-HN 0.44 ± 0.02 0.52 ± 0.02 0.61 ± 0.02 0.71 ± 0.02 0.86 ± 0.03 1.06 ± 0.03

Yacht QD-DNN 0.08 ± 0.01 0.09 ± 0.01 0.10 ± 0.01 0.12 ± 0.01 0.14 ± 0.01 0.17 ± 0.02
POPI-HN 0.05 ± 0.01 0.06 ± 0.01 0.07 ± 0.01 0.08 ± 0.01 0.10 ± 0.02 0.12 ± 0.02
Regarding datasets with a higher number of instances, we can
ee that the coverage is not under the PINC by more than 0.01,
or example, with QD-DNN in California and with POPI-HN in
in8nm datasets.
Generally, both methods perform in a correct way regarding

overage. Also, it can be noticed how the standard error is larger
n datasets with a small number of observations, such as Concrete,
nergy, or Yacht.

.2.2. Width results
On the other side, AIW results are shown in Table 4. Values are

presented in boldface when it is possible to determine through
the U-test if there is statistical evidence that AIW values produced
by POPI-HN are smaller than those of QD-DNN, or the other way
around. When it is not possible to reject the null hypothesis that
both values are the same, both values are shown in bold.

Results show how POPI-HN produces narrower intervals in all
the PINC values for the Concrete, Energy, Kin8nm, Power Plant,
Protein, Superconductor, and Yacht datasets. In the California
dataset, QD-DNN and POPI-HN compete with each other regard-
ing the AIW for different PINC values. In summary, POPI-HN also
shows a good performance regarding the AIW .

It might be thought that the direct optimization of the AIW by
POPI-HN has some performance advantages in a multi-objective
context over the optimization done by QD-DNN. Besides, because
for multiple PI estimation the QD loss is a sum of losses, there is
a possibility that the lowest loss is obtained when improving one
PI but worsening another one. In this sense, POPI-HN minimizes
its loss for the complete set of solutions.
10
Table 5
AIW percentual change by using POPI-HN vs. QD-DNN (negative values imply
that POPI-HN is better than QD-DNN). Values displayed only if there is significant
evidence of AIW being different between methods (Table 4).
Dataset PINC 70 PINC 75 PINC 80 PINC 85 PINC 90 PINC 95

California −5% −2% – 2% 4% 7%
Concrete −23% −23% −20% −20% −19% −16%
Energy −47% −46% −47% −47% −48% −49%
Kin8nm −37% −37% −37% −36% −37% −38%
Power Plant −18% −17% −16% −16% −15% −16%
Protein −16% −11% −7% −4% −2% –
Superconductor −22% −18% −17% −16% −15% −15%
Yacht −31% −29% −28% −30% −31% −31%

Finally, to easily check the mean decrease (or increase) of the
PI width produced by POPI-HN versus QD-DNN, the percentage
change in the AIW is stated in Table 5.

As can be seen, in general, the biggest improvements come
with medium coverage intervals, like PINC 70% and 75%, and
the improvement starts to decline a little for higher coverage
intervals like PINC 90% and 95%. This might be due to the ease
of improvement in the medium part of the Pareto front. When
dealing with the highest coverages, more extreme values appear,
and the width cannot be minimized in the same way while
keeping the coverage level.

To summarize, the improvement in the AIW metric is clear by
using POPI-HN, in addition to being able to generate a PI for every
sought PINC with a single trained model. Reductions in the AIW

A. Alcántara, I.M. Galván and R. Aler Applied Soft Computing 133 (2023) 109930

o
t
a

i
s
t
o

f
d
t
v
v
C

m
i
v
m
t
a

5

s
o
T
h
o

s
p
n
p
h
f
a
2
r
P

Table 6
Statistical analysis for the variability in the results.
Dataset Metric PINC 70 PINC 75 PINC 80 PINC 85 PINC 90 PINC 95

California PICP = = = = = =

AIW – = – – – –

Concrete PICP = = = = = =

AIW = = = = – –

Energy PICP – = = – – –
AIW = = = = = =

Kin8nm PICP = = = = = =

AIW = = – – – –

Power Plant PICP = = = = = =

AIW – – – – – –

Protein PICP = = = = = =

AIW = = = = = –

Superconductor PICP = = = = = =

AIW = = = = = =

Yacht PICP = = = = = –
AIW = = = = = =

go up to almost 50%, whereas in the few cases where the width
increases, it does it by no more than 7%.

5.2.3. Variability results
The last statistical analysis will be focused on the variability

f the results. As mentioned before, the non-parametric Levene’s
est is employed to check whether the results from POPI-HN have
bigger variance than the ones from QD-DNN or vice versa.
Table 6 summarizes this statistical analysis. An equal sign

s employed to indicate that the variance from the results is
tatistically the same. On the other side, a minus sign indicated
hat the variance of the results from QD-DNN is smaller than the
ne from POPI-HN.
As we can see, the variance regarding the PICP is the same

or both POPI-HN and QD-DNN in most of the datasets. Only in
atasets with a low number of observations (Energy and Yacht)
he variance of the results from POPI-HN is higher in some PINC
alues. Concerning the AIW , POPI-HN tends to throw a higher
ariability in the results in a bigger number of domains, like
alifornia, Kin8nm, or Power Plant.
This behavior may be due to the own nature of the developed

ethodology, as we select a point in the VF where the coverage
s achieved, giving robustness to this metric but allowing more
ariability in the PI width. From all statistical tests that have been
ade, we consider that, even if in some cases the variability of

he results is higher for POPI-HN, it is compensated by the good
verage PICP and AIW performance described in Tables 3 and 4.

.2.4. POPI-HN hyper-parameter sensitivity
After the performance analyses carried out in the previous

ections, we aim now to study the hyper-parameter sensitivity
f the proposed POPI-HN in the different employed datasets.
he sensitivity study is done with respect to the number of
idden layers and neurons per layer, the main hyper-parameters
f POPI-HN.
We make use of the following procedure to obtain the sen-

itivity results. First, we train POPI-HN for a given set of hyper-
arameters (number of layers: 3, 4, 5, and 6; number of hidden
eurons per layer: 50, 100, 150, and 200). Periodically, we com-
ute the hyper-volume in the VF, saving the model with the
ighest one. We use this trained POPI-HN to compute a test
ront with the test dataset. The computation of this test front is
nalogous to the computation of the validation front (Algorithm
), i.e., the trained h(·;φ) is fed with different preference vectors
i to obtain the target network weights θr i . With these weights,

Is are obtained for the test set instances, being able to calculate

11
PICP and AIW , and generate a test front. Finally, the hyper-volume
of the test front is obtained and used to study the sensitivity. This
process is repeated for all hyper-parameter configurations.

Test hyper-volume for different hyper-parameter configura-
tions in each dataset are shown in Fig. 5. The color scale is
common across all datasets, with the lowest value representing
the minimum test hyper-volume in light yellow, and the highest
value being the maximum test hyper-volume in dark blue.

Generally, we can see how the hyper-parameter sensitivity is
dependent on the dataset employed. For example, in the Cali-
fornia, Superconductor, or Yacht datasets, sensitivity on the test
hyper-volume is not present regarding the number of neurons or
layers.

However, there are other datasets where this sensitivity ap-
pears, like Energy, Power Plant, or Protein. In particular, in the
Power Plant dataset, the hyper-volume seems to decrease when
increasing the number of neurons per layer, whereas in the Pro-
tein dataset the hyper-volume tends to increase when increasing
the number of hidden layers.

Regardless of the observed sensitivity, the hyper-parameter
selection process used in this work (model with the highest
hyper-volume in the VF is selected, as explained in Section 5.1),
allows finding the best configuration for POPI-HN, obtaining an
optimal PI for any desired coverage.

5.2.5. Time performance
We will finish this section by analyzing the running time

performance of the proposed POPI-HN. First of all, we make some
comments regarding the time complexity of the algorithm.

Notice that POPI-HN is composed of two different NNs: the hy-
pernetwork and the target network. During the training time, the
hypernetwork has the same time complexity as a classical DNN,
as shown in Algorithm 4. That is, forward and backward (gradient
descent) passes are applied across several epochs (one epoch goes
through all instances in the training set). The only important
additional steps (compared to standard feed-forward networks)
are the computation of the target network weights employing
the hypernetwork and the computation of hyper-volume required
for POPI-HN early-stopping. The former is step 5 of Algorithm
4: θr

← h(r;φ) and the later is executed in line 12. Also,
gradient descent is applied to the weights of the hypernetwork
(not the target network). Similar considerations can be made
for prediction/inference (forward pass) with POPI-HN having two
extra steps (see Algorithm 3): the θrPINC ← h(rPINC ;φ) step in the
forward pass (line 7) and also the selection of the point in the
validation front (lines 1–5 of Algorithm 3).

In any case, actual computing times are going to depend on
many factors, such as the network complexity (number of layers
and neurons) of the networks, which might be different for QD-
DNN and POPI-HN, due to hyper-parameter tuning being carried
out individually for each kind of network and each problem. The
use of GPUs will also affect actual training and testing times, as
many computations can be carried out in parallel. Differences
between large and small networks may not be noticed, as they
are run in parallel, as far as they fit within GPU memory. Actual
training and testing times for the selected models are presented
in Table 7. Notice that both POPI-HN and QD-DNN were trained
the same amount of epochs in each bench-marking dataset, as
explained in Algorithm 4 of Section 4.2. Although the best model
selected by early-stopping might correspond to one with lower
epochs (the one that obtains the best validation Quality-Driven
loss for QD-DNN or hyper-volume for POPI-HN), both are first
trained for a maximum number of epochs. All the experiments
were carried out in an Intel Xeon Silver 4110 CPU at 2.10 GHz
with 125 Gb RAMmemory and an NVIDIA GeForce GTX 1080 GPU.

In general, training time differences are minimal between

POPI-HN and QD-DNN. When training in the datasets with a

A. Alcántara, I.M. Galván and R. Aler Applied Soft Computing 133 (2023) 109930
Fig. 5. Test hyper-volume for different hyper-parameter configurations in each dataset.
Table 7
Training and testing time for each final model and dataset.
Dataset Method Training time (s) Testing time (s)

California QD-DNN 1519.2 0.8
POPI-HN 2136.6 0.4

Concrete QD-DNN 418.3 0.3
POPI-HN 396.6 0.1

Energy QD-DNN 338.5 0.9
POPI-HN 370.4 0.1

Kin8nm QD-DNN 1696.2 0.8
POPI-HN 1607.1 0.1

Power Plant QD-DNN 2250.8 0.9
POPI-HN 1832.9 0.2

Protein QD-DNN 3721.1 1.5
POPI-HN 4085.6 1.3

Superconductor QD-DNN 2674.3 1.0
POPI-HN 2807.7 0.6

Yacht QD-DNN 243.6 0.1
POPI-HN 248.8 0.1

higher number of observations (California, Protein, Superconduc-
tor), POPI-HN is slightly slower than QD-DNN. However, this
may be due to the hyper-volume computation for saving the
12
best model in a precise epoch, a computational expensive metric
with time complexity of O(2v + v log v), where 2 represents the
number of dimensions in our space (number of objectives to
minimize, i.e., AIW and ϵ = 1 − PICP), and v is the number of
points in the validation front [47].

Practitioners could choose to train POPI-HN for a predefined
number of epochs without periodically computing the hyper-
volume to reduce computation costs. Finally, regarding testing
times, both methods are relatively fast, with no large differences
among them.

6. Conclusions

In this work, a methodology for estimating Pareto Optimal
Prediction Intervals with Hypernetworks has been introduced:
POPI-HN. This method can estimate a complete set of Pareto
Optimal solutions for the PI coverage–width trade-off in regres-
sion problems, that is, a Pareto front, treating the task as a
multi-objective problem.

POPI-HN is formed by two deep neural networks: the hyper-
network, which takes a preference vector for the coverage–width
trade-off as its input, and it is in charge of generating the weights
that the main network will employ. This main network will

A. Alcántara, I.M. Galván and R. Aler Applied Soft Computing 133 (2023) 109930

o
d

S
p
m
c
o
o
d
n
n

a
f
w
T
o
i
D
i
P
f
P

r
t
v
m
w
m

a
e
b
s
d
r
t

d
t
n
i
n
d
b
a
T
m
f
f
a
s

C

c
C
t
C
a

D

c
t

D

A

5
w
P
&

R

utput a PI from input features, whose coverage and width are
ependent on the preference vector.
One of the main advantages of this method is its flexibility.

ampling random preference vectors and with a proper training
rocess, it is able to obtain the full Pareto front with a single
odel. That is, for every nominal coverage, the Pareto front
ontains a model that returns PIs as narrow as possible. On the
ther side, its ease of use makes POPI-HN an interesting main
ption to solve probabilistic regression problems. The method
oes not employ additional parameters or configurations, and
o more hyper-parameters than a classical feed-forward neural
etwork are needed to be adjusted.
For comparative purposes, POPI-HN performance was evalu-

ted in eight different benchmarking datasets by obtaining six PIs
or six different coverage levels. The obtained PIs were confronted
ith the ones obtained by Quality Driven Deep Neural Networks.
his QD-DNN is also a promising method for the direct estimation
f PIs. Its structure allowed easy training by gradient descent and
mplementation of multiple PI outputs at once. However, QD-
NN shows some disadvantages against POPI-HN: as the method
s single-objective, it is needed to decide in advance how many
Is to be obtained, and to adjust an extra parameter of the loss
unction λ (important to compute the weight of the penalty for
Is that do not satisfy the required coverage).
Results show similar and correct behavior of both methods

egarding the coverage objective. However, when we focus on
he width objective, POPI-HN outperforms QD-DNN for most PINC
alues in the majority of datasets, achieving a width improve-
ent of up to 49% in some cases. This might be due to the
idth optimization in the multi-objective framework. Further-
ore, time complexity for POPI-HN method is close to QD-DNN.
In summary, the POPI-HN implementation has resulted in
method that not only achieves the required coverage in our
xperiments but it is also able to improve the PI width obtained
y QD-DNN. Furthermore, POPI-HN can obtain PIs for every pos-
ible nominal coverage, whereas QD-DNN requires the number of
ifferent PIs and their nominal coverages to be predefined. It also
equires an additional trade-off λ parameter in order to aggregate
he two objectives into a single-objective loss.

The current version of POPI-HN requires splitting the available
ata into a training set and a validation set. The latter is used
o compute the validation front, which is required for mapping
ominal coverage values into preference vectors. It would be
nteresting to carry out future research on alternatives that do
ot depend on a validation set for this purpose, that for some
atasets might be too small. Also, in this work, POPI-HN has
een applied to standard feed-forward neural networks, but other
rchitectures appropriated for time series, such as Long Short-
erm Memory Neural Networks (LSTM) or temporal transformers
ight benefit from it. Possible application fields could include,

or instance, the energy market to obtain multiple probabilistic
orecasts of wind energy, business problems to predict demands
t different levels of confidence, or financial markets to model a
tock price.

RediT authorship contribution statement

Antonio Alcántara: Investigation, Methodology, Software, Data
uration, Validation, Writing – original draft. Inés M. Galván:
onceptualization, Investigation, Methodology, Funding acquisi-
ion, Investigation, Supervision, Writing – review. Ricardo Aler:
onceptualization, Investigation, Methodology, Software, Funding
cquisition, Investigation, Supervision, Writing – review.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.
13
ata availability

Github link in the paper

cknowledgments

This publication is part of the I+D+i project PID2019-10745
RB-C22, funded by MCIN /AEI/10.13039/501100011033. This
ork was also supported by the Comunidad de Madrid Excellence
rogram. Funding for APC: Universidad Carlos III de Madrid (Read
Publish Agreement CRUE-CSIC 2022)

eferences

[1] J. Nowotarski, R. Weron, Recent advances in electricity price forecasting: A
review of probabilistic forecasting, Renew. Sustain. Energy Rev. 81 (2018)
1548–1568.

[2] J. Chen, D. Kipping, Probabilistic forecasting of the masses and radii of
other worlds, Astrophys. J. 834 (1) (2016) 17.

[3] C. Wan, J. Lin, Y. Song, Z. Xu, G. Yang, Probabilistic forecasting of pho-
tovoltaic generation: An efficient statistical approach, IEEE Trans. Power
Syst. 32 (3) (2016) 2471–2472.

[4] D. Kim, J. Hur, Short-term probabilistic forecasting of wind energy
resources using the enhanced ensemble method, Energy 157 (2018)
211–226.

[5] N. Meinshausen, G. Ridgeway, Quantile regression forests, J. Mach. Learn.
Res. 7 (6) (2006).

[6] M. Landry, T.P. Erlinger, D. Patschke, C. Varrichio, Probabilistic gradient
boosting machines for GEFCom2014 wind forecasting, Int. J. Forecast. 32
(3) (2016) 1061–1066.

[7] T. Duan, A. Anand, D.Y. Ding, K.K. Thai, S. Basu, A. Ng, A. Schuler, Ngboost:
Natural gradient boosting for probabilistic prediction, in: International
Conference on Machine Learning, PMLR, 2020, pp. 2690–2700.

[8] L. Hao, D.Q. Naiman, D.Q. Naiman, Quantile Regression, Vol. 149, Sage,
2007.

[9] A. Khosravi, S. Nahavandi, D. Creighton, A.F. Atiya, Lower upper bound
estimation method for construction of neural network-based prediction
intervals, IEEE Trans. Neural Netw. 22 (3) (2010) 337–346.

[10] C. Wan, Z. Xu, P. Pinson, Direct interval forecasting of wind power, IEEE
Trans. Power Syst. 28 (4) (2013) 4877–4878.

[11] A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep
convolutional neural networks, Adv. Neural Inf. Process. Syst. 25 (2012)
1097–1105.

[12] S. Kudugunta, E. Ferrara, Deep neural networks for bot detection, Inform.
Sci. 467 (2018) 312–322.

[13] J. Schmidt-Hieber, Nonparametric regression using deep neural networks
with ReLU activation function, Ann. Statist. 48 (4) (2020) 1875–1897.

[14] W. Zhang, H. Quan, D. Srinivasan, An improved quantile regression neural
network for probabilistic load forecasting, IEEE Trans. Smart Grid 10 (4)
(2018) 4425–4434.

[15] K. Hatalis, A.J. Lamadrid, K. Scheinberg, S. Kishore, A novel smoothed loss
and penalty function for noncrossing composite quantile estimation via
deep neural networks, 2019, arXiv preprint arXiv:1909.12122.

[16] D.B. Or, M. Kolomenkin, G. Shabat, Generalized quantile loss for deep
neural networks, 2020, arXiv preprint arXiv:2012.14348.

[17] S.J. Moon, J.-J. Jeon, J.S.H. Lee, Y. Kim, Learning multiple quantiles with
neural networks, J. Comput. Graph. Statist. (2021) 1–11.

[18] A. Alcántara, I.M. Galván, R. Aler, Deep neural networks for the quantile
estimation of regional renewable energy production, Appl. Intell. (2022)
1–36.

[19] H. Quan, D. Srinivasan, A. Khosravi, Particle swarm optimization for con-
struction of neural network-based prediction intervals, Neurocomputing
127 (2014) 172–180.

[20] I.M. Galván, J.M. Valls, A. Cervantes, R. Aler, Multi-objective evolutionary
optimization of prediction intervals for solar energy forecasting with
neural networks, Inform. Sci. 418 (2017) 363–382.

[21] I.M. Galván, J. Huertas-Tato, F.J. Rodríguez-Benítez, C. Arbizu-Barrena,
D. Pozo-Vázquez, R. Aler, Evolutionary-based prediction interval estima-
tion by blending solar radiation forecasting models using meteorological
weather types, Appl. Soft Comput. (2021) 107531.

[22] M. Zhou, B. Wang, S. Guo, J. Watada, Multi-objective prediction intervals
for wind power forecast based on deep neural networks, Inform. Sci. 550
(2021) 207–220.

[23] H. Quan, D. Srinivasan, A. Khosravi, Short-term load and wind power
forecasting using neural network-based prediction intervals, IEEE Trans.
Neural Netw. Learn. Syst. 25 (2) (2013) 303–315.

http://refhub.elsevier.com/S1568-4946(22)00979-6/sb1
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb1
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb1
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb1
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb1
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb2
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb2
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb2
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb3
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb3
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb3
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb3
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb3
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb4
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb4
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb4
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb4
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb4
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb5
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb5
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb5
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb6
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb6
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb6
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb6
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb6
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb7
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb7
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb7
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb7
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb7
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb8
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb8
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb8
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb9
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb9
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb9
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb9
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb9
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb10
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb10
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb10
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb11
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb11
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb11
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb11
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb11
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb12
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb12
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb12
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb13
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb13
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb13
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb14
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb14
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb14
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb14
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb14
http://arxiv.org/abs/1909.12122
http://arxiv.org/abs/2012.14348
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb17
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb17
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb17
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb18
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb18
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb18
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb18
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb18
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb19
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb19
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb19
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb19
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb19
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb20
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb20
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb20
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb20
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb20
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb21
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb21
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb21
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb21
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb21
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb21
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb21
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb22
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb22
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb22
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb22
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb22
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb23
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb23
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb23
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb23
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb23

A. Alcántara, I.M. Galván and R. Aler Applied Soft Computing 133 (2023) 109930
[24] R. Li, Y. Jin, A wind speed interval prediction system based on multi-
objective optimization for machine learning method, Appl. Energy 228
(2018) 2207–2220.

[25] R. Taormina, K.-W. Chau, ANN-based interval forecasting of streamflow
discharges using the LUBE method and MOFIPS, Eng. Appl. Artif. Intell. 45
(2015) 429–440.

[26] A. Kavousi-Fard, W. Su, T. Jin, A machine-learning-based cyber attack
detection model for wireless sensor networks in microgrids, IEEE Trans.
Ind. Inform. 17 (1) (2020) 650–658.

[27] T. Pearce, A. Brintrup, M. Zaki, A. Neely, High-quality prediction
intervals for deep learning: A distribution-free, ensembled approach,
in: International Conference on Machine Learning, PMLR, 2018,
pp. 4075–4084.

[28] J. Hu, Y. Lin, J. Tang, J. Zhao, A new wind power interval prediction
approach based on reservoir computing and a quality-driven loss function,
Appl. Soft Comput. 92 (2020) 106327.

[29] F. Liu, Q. Tao, D. Yang, D. Sidorov, Bidirectional gated recurrent unit-based
lower upper bound estimation method for wind power interval prediction,
IEEE Trans. Artif. Intell. (2021).

[30] Y. Lai, Y. Shi, Y. Han, Y. Shao, M. Qi, B. Li, Exploring uncertainty
in regression neural networks for construction of prediction intervals,
Neurocomputing 481 (2022) 249–257.

[31] T.S. Salem, H. Langseth, H. Ramampiaro, Prediction intervals: Split nor-
mal mixture from quality-driven deep ensembles, in: Conference on
Uncertainty in Artificial Intelligence, PMLR, 2020, pp. 1179–1187.

[32] H. Zhong, L. Xu, An all-batch loss for constructing prediction intervals,
Appl. Sci. 11 (4) (2021) 1728.

[33] J. Hu, W. Zhao, J. Tang, Q. Luo, Integrating a softened multi-interval
loss function into neural networks for wind power prediction, Appl. Soft
Comput. 113 (2021) 108009.

[34] D. Ha, A. Dai, Q.V. Le, Hypernetworks, 2016, arXiv preprint arXiv:1609.
09106.

[35] A. Navon, A. Shamsian, G. Chechik, E. Fetaya, Learning the Pareto front with
hypernetworks, in: International Conference on Learning Representations,
2021, URL https://openreview.net/forum?id=NjF772F4ZZR.
14
[36] A. Alcántara, I.M. Galván, R. Aler, Direct estimation of prediction intervals
for solar and wind regional energy forecasting with deep neural networks,
Eng. Appl. Artif. Intell. 114 (2022) 105128.

[37] Y. Yao, L. Rosasco, A. Caponnetto, On early stopping in gradient descent
learning, Constr. Approx. 26 (2) (2007) 289–315.

[38] E. Zitzler, L. Thiele, Multiobjective optimization using evolutionary
algorithms—a comparative case study, in: International Conference on
Parallel Problem Solving from Nature, Springer, 1998, pp. 292–301.

[39] A. Alcántara, POPI-HN, 2022, URL https://github.com/
antonioalcantaramata/POPI-HN/.

[40] D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, 2014, arXiv
preprint arXiv:1412.6980.

[41] D.-A. Clevert, T. Unterthiner, S. Hochreiter, Fast and accurate deep network
learning by exponential linear units (elus), 2015, arXiv preprint arXiv:
1511.07289.

[42] A. Krogh, J. Hertz, A simple weight decay can improve generalization, Adv.
Neural Inf. Process. Syst. 4 (1991).

[43] T.K. Kim, T test as a parametric statistic, Korean J. Anesthesiol. 68 (6)
(2015) 540.

[44] N.M. Razali, Y.B. Wah, et al., Power comparisons of shapiro-wilk,
kolmogorov-smirnov, lilliefors and anderson-darling tests, J. Statist. Model.
Anal. 2 (1) (2011) 21–33.

[45] P.E. McKnight, J. Najab, Mann-whitney u test, Corsini Encyclopedia Psychol.
(2010) 1.

[46] D.W. Nordstokke, B.D. Zumbo, A new nonparametric levene test for equal
variances, Psicológica 31 (2) (2010) 401–430.

[47] M. Emmerich, A. Deutz, Time complexity and zeros of the hypervolume
indicator gradient field, in: EVOLVE-a Bridge Between Probability, Set
Oriented Numerics, and Evolutionary Computation III, Springer, 2014,
pp. 169–193.

http://refhub.elsevier.com/S1568-4946(22)00979-6/sb24
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb24
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb24
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb24
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb24
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb25
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb25
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb25
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb25
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb25
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb26
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb26
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb26
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb26
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb26
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb27
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb27
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb27
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb27
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb27
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb27
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb27
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb28
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb28
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb28
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb28
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb28
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb29
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb29
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb29
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb29
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb29
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb30
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb30
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb30
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb30
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb30
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb31
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb31
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb31
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb31
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb31
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb32
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb32
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb32
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb33
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb33
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb33
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb33
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb33
http://arxiv.org/abs/1609.09106
http://arxiv.org/abs/1609.09106
http://arxiv.org/abs/1609.09106
https://openreview.net/forum?id=NjF772F4ZZR
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb36
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb36
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb36
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb36
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb36
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb37
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb37
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb37
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb38
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb38
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb38
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb38
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb38
https://github.com/antonioalcantaramata/POPI-HN/
https://github.com/antonioalcantaramata/POPI-HN/
https://github.com/antonioalcantaramata/POPI-HN/
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1511.07289
http://arxiv.org/abs/1511.07289
http://arxiv.org/abs/1511.07289
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb42
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb42
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb42
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb43
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb43
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb43
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb44
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb44
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb44
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb44
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb44
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb45
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb45
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb45
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb46
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb46
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb46
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb47
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb47
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb47
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb47
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb47
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb47
http://refhub.elsevier.com/S1568-4946(22)00979-6/sb47

	Pareto Optimal Prediction Intervals with Hypernetworks
	Introduction
	Prediction Intervals
	Single-Objective Method: Quality-Driven Deep Neural Networks
	Hypernetworks to Solve the Coverage–Width Trade-off in a Multi-Objective Framework
	Pareto Optimal Prediction Interval Hypernetworks structure
	Training the Pareto Optimal Prediction Interval Network

	Benchmarking Experiments
	Experimental setup
	Results
	Coverage results
	Width results
	Variability results
	POPI-HN hyper-parameter sensitivity
	Time performance

	Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References

