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Abstract
Bayesian change-point detection, with latent variable models, allows to perform segmentation of high-dimensional time-
series with heterogeneous statistical nature. We assume that change-points lie on a lower-dimensional manifold where 
we aim to infer a discrete representation via subsets of latent variables. For this particular model, full inference is com-
putationally unfeasible and pseudo-observations based on point-estimates of latent variables are used instead. However, 
if their estimation is not certain enough, change-point detection gets affected. To circumvent this problem, we propose 
a multinomial sampling methodology that improves the detection rate and reduces the delay while keeping complexity 
stable and inference analytically tractable. Our experiments show results that outperform the baseline method and we 
also provide an example oriented to a human behavioral study.
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1  Introduction

Change-point detection (CPD) methods aim to identify 
abrupt transitions in sequences of observations, for both 
univariate and multivariate cases. Typically, a change-point 
(CP) is only considered if there is a noticeable difference 
between the generative parameters of the data before and 
after the change-point event. Two classical families of 
approaches can be found in signal processing and machine 
learning for this task. First, the main focus of early literature 
has been on batch settings [7, 14], where the entire data-
set is available for analysis. Second, online CPD methods 
[1] avoid the previous assumption to fulfill two intertwined 

tasks: i) estimation of the generative parameters of the model 
as new observations come in and ii) segmentation of the 
data sequence into non-overlapping partitions based on the 
parameters obtained.

The identifiability of change-points (CP) is directly 
related to the discrepancy between the distributions govern-
ing each partition. In this context, the Bayesian framework 
provides a reliable solution to obtain uncertainty measures 
over both the parameters and the CP locations. The Bayesian 
online CPD algorithm (BOCPD) introduced in [1] uses this 
idea to derive a recursive exact inference method. However, 
when observations become high-dimensional and the num-
ber of parameters in the model grows exponentially, there is 
not enough evidence in the sequential data to obtain reliable 
estimates of the true generative parameters.

Latent variable models are particularly amenable to over-
come the high-dimensionality issue. Under the assumption 
that change-points lie on a lower-dimensional manifold, one 
can extend the BOCPD algorithm to accept subsets of sur-
rogate discrete latent variables. Each data point is therefore 
linked to a single assignment, as it is done in mixture mod-
els. The main drawback is that true latent class assignments 
are never observed but inferred, leading to introduce pseudo-
observations [11]. For this purpose, there are two main strat-
egies: i) use the posterior probability vector as a continuous 
multivariate datum, i.e. as a Dirichlet distributed variable 
or ii) observe single point-estimates of the discrete latent 
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variable. Despite that the first idea was explored in previous 
works out of the CPD problem [12], it still requires expen-
sive approximate methods due to non-tractability issues. The 
second idea allows reliable detection instead, particularly 
when posterior densities over the latent variables are certain 
enough.

In this paper, we consider the case of having poor infer-
ence of point-estimates over the latent variables that lead 
to catastrophic results on the CPD. Our contribution is to 
provide a novel extension for the hierarchical CP model that 
improves the detection rate and reduces delay even under 
extremely flat posterior distributions with high variance. 
The proposed solution considers latent variable samples as 
multivariate observations, that we model as multinomial 
distributed. This keeps the original analytic simplicity of 
the Bayesian CPD inference as well as the complexity cost 
remains significantly low. In the experiments, we prove the 
utility of the new inference method on synthetic data and we 
also provide insights to be applicable in real-world scenarios, 
such as change-point detection in a human behavior study.

2 � Bayesian Change‑Point Detection

Based on the work presented in [1], we assume that a 
sequence of observations x1, x2,… , xt may be partitioned into 
non-overlapping segments. We consider that each segment or 
partition � with � = {1, 2,…} has an associated generative 
distribution p(x|��) where the parameters �� are unknown and 
observations are assumed to be independent and identically 
distributed (i.i.d). The maximum number of partitions is also 
unknown and bounded by the total number of data points t at 
each time-step. Therefore, it may increase as new observa-
tions xt come in.

We are concerned with discovering the true generative 
distributions p(x|�t) and hence, their parameters �t at each 
time-step. To alleviate the combinatorial problem of esti-
mating parameters based on every partition hypothesis and 
time-step t, we introduce an auxiliary random variable (r.v.) 
rt , also called the run-length in the original version of [1]. 
The discrete variable counts the number of time-steps since 
the last change-point, that is

The main idea behind the run-length , rt , is that it converts 
the partition hypothesis problem into a Bayesian inference 
task as well as introduces a relatively simple CP indicator. 
This strategy augments the model, leading to a double infer-
ence mission: i) estimating the posterior distribution over 
rt given the data, p(rt|x1∶t) and ii) obtaining reliable values 

(1)rt =

{
0, CP at time t

rt−1 + 1, otherwise.

of the generative parameters �t conditioned to the partition 
hypothesis of rt.

The general method is based on the marginalization 
of the model parameters �t for the generative distribution 
given the data at each time-step,

and the factorization of the joint density p(rt, x1∶t,�t) . The 
discrete nature of the rt counting r.v. also makes it appropri-
ate for integration, being feasible to obtain the joint distribu-
tion in a recursive manner by marginalizing over rt−1,

assuming that the prior probability of rt depends only on 
the previous value rt−1 . Integrating in (3) as proposed in (2) 
leads to obtain,

where we have previously defined

When the computation of Ψ(r)
t  is not possible, for instance, 

due to the underlying generative model p(x|�t) is too expres-
sive or complex, other ways for approximate inference must 
be considered [13, 15].

As we can see in equation (7), the learning process  
of �t is conditioned to the run-length rt and hence, the  
partition hypothesis, carrying out a multiple-thread infer-
ence mechanism. Importantly, at each time-step t we can 
estimate the posterior p(rt|x1∶t) , obtaining a probability 
measure of the last CP location, given by the value of rt .  
Equivalently, we obtain probability measures for the loca-
tion of the starting observation of the current partition. For 
example, having observed x1∶5 at some time-step t = 5 , we 
would compute posterior estimates �t|rt, x1∶t , one per each 
rt value. As a consequence, given the hypothesis rt = 2 , 
the estimation would be analogous to see �t|{x4, x5} , e.g. 
a CP is located two observations back, under the previous 
notation. This example is also depicted in the graphical  
scheme of Fig. 1.

(2)p(rt, x1∶t) = ∫ p(rt, x1∶t,�t)d�t,

(3)p(rt, x1∶t,�t) =
∑

rt−1

p(rt, rt−1, x1∶t,�t)

(4)=
∑

rt−1

p(rt|rt−1)p(xt,�t|rt−1, x1∶t−1)p(rt−1, x1∶t−1)

(5)=
∑

rt−1

p(rt|rt−1)p(xt|�t)p(�t|rt−1, x1∶t−1)p(rt−1, x1∶t−1),

(6)p(rt, x1∶t) =
∑

rt−1

p(rt|rt−1)Ψ
(r)
t p(rt−1, x1∶t−1),

(7)Ψ
(r)
t = ∫ p(xt|�t)p(�t|rt−1, x1∶t−1)d�t.
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However, a key inconvenient of this model appears as the 
size of observations xt rises, and the Bayesian method works 
in a potentially high-dimensional setting. In such cases, the 
complexity of the generative model increases accordingly 
to the dimensionality of xt . This leads to an extremely large 
number of parameters �t to estimate. In fact, it makes almost 
impossible to perform CPD in a reliable manner as there is 
not sufficient statistical evidence given x1∶t , to update our 
posterior distribution. In such case, CPs are typically con-
founded with noise drifts in the underlying parameters.

3 � CPD and Latent Variable Models

Latent variable models are a powerful tool in unsupervised 
learning, with significant connections with Bayesian statis-
tics. This family of approaches typically assumes that there 
exists a finite low-dimensional representation of the data 
that characterizes the generative properties of the observed 
objects. Particularly, it has become a popular solution in 
probabilistic modelling when the high-dimensionality prob-
lems rises. It allows to easily take decisions about the dimen-
sionality of the latent manifold, its nature (i.e. continuous or 
discrete) and its conditioning to the rest of r.v. implied in the 
generative model of the data.

In our particular scenario for Bayesian CPD, we may 
assume that the sequential observations x1∶t belong to a 
lower-dimensional manifold, where the true CPs lie. The 
generative model is then expressed as

where the conditional distribution p(xt|zt) is now assumed 
to be fixed and p(zt|�t) is the new likelihood distribution 
over the latent variable zt , that can be either continuous or 
discrete. With this approach in mind, we can obtain the pos-
terior distribution p(zt|xt) at each time-step t, allowing us 
to work over the latent space instead of performing param-
eter estimation over the initial observational space. Similar 
ideas were previously explored in [2, 11] as extensions of 
the BOCPD method, where only discrete zt variables were 
considered.

3.1 � Hierarchical CPD

Based on the previous idea, we introduce the hierarchi-
cal model presented in [11], where the latent variables at 
instant t, zt , are considered as categorical r.v. or classes 
[9], such that zt ∈ {1, 2,… ,K} . Hence, they work as the 
assignments of each observation object xt . In the CPD 
scenario, it can be understood as a segmentation problem 

(8)p(xt|�t) = ∫ p(xt|zt)p(zt|�t)dzt,

of different latent class models. Moreover, we would like 
to perform CP detection over the true sequence of assign-
ments z1∶t , but we cannot observe them. Instead, we only 
know the sequence of posterior distributions p(z1∶t|x1∶t) 
that has been previously inferred via, for instance, the 
online expectation-maximization (EM) algorithm [5] 
or other continual learning strategies [10]. As the cho-
sen approach, we consider to use maximum a-posteriori 
(MAP) estimates of the latent variables zt as our pseudo-
observations. Thus, the point-estimates are obtained from

Using the strategy presented in [1], we can obtain p(rt, z⋆1∶t) 
as in (2). This also translates the problem of CP detection 
over the sequence of observations x1∶t to perform CPD 
directly over the sequence of MAP estimates z⋆

1∶t
 . Impor-

tantly, to compute the posterior distribution of rt , we are 
also based on the marginalization over the parameters of 
the joint distribution. We can build the same recursiveness 
in (3) over the r.h.s. term by marginalizing over rt−1 inside 
the integral, that is

where we also consider,

The term p(�t|rt−1, z⋆1∶t−1) that appears whitin Ψ(r)
t  is obtained 

by the multiple posterior updates depicted in the diagram of 
Fig. 1 and p(z⋆

t
|�t) is a categorical likelihood density of the 

new observed assignments z⋆
1∶t

 . The details of the develop-
ments and definitions can be found in [11].

(9)z⋆
t
= argmax

zt

p(zt|xt) ∀t.

(10)p(rt, z
⋆

1∶t
) =

∑

rt−1

p(rt|rt−1)Ψ
(r)
t p(rt−1, z

⋆

1∶t−1
),

(11)Ψ
(r)
t = ∫ p(z⋆

t
|�t)p(�t|rt−1, z⋆1∶t−1)d�t.

Fig. 1   Illustration of the parallel inference mechanism for the estima-
tion of �t conditioned on the run-length rt given x

1∶t
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3.1.1 � The Problem of Flat Posterior Distributions

The hierarchical CP detector solves the problem of poor 
estimates of the likelihood parameters for high-dimensional 
observations. However, working with the sequence of MAP 
point-estimates over the latent space, may also lead to false-
alarm or missing detection problems when the inferred 
posterior distribution p(z1∶t|x1∶t) is extremely flat, e.g. it is 
of high variance and there is still uncertainty over the true 
value of zt . We have recursively seen this behavior when 
dealing for instance with a considerable amount of missing 
data over the observed sequence, or when discrimination 
of observations is hard. In these particular cases, the MAP 
estimation may not coincide with the true latent class assign-
ment, introducing extra noise in the CPD with undesired 
results.

4 � Multinomial Sampling

As presented in Section 3, we assume that the observations 
x1∶t belong to a lower-dimensional manifold where the 
true CPs lie. We consider that the generative model is fully 
expressed as in (8) and the latent space is of discrete nature, 
where we are concerned to perform the CP detection. Our 
goal now is to obtain a better characterization of the under-
lying posterior distribution, and hence zt at each time step t, 
when the density is not well fitted. We have presented one 
option based on working with the sequence of MAP point-
estimates obtained from the posterior p(z1∶t|x1∶t) . However, 
if this distribution is extremely flat, we are introducing noise 
in the CP detection process.

We propose to generate a new type of pseudo observa-
tions of the latent variable by drawing S i.i.d. samples of 
the posterior density, such that z(1)t , z

(2)
t ,… , z

(S)
t ∼ p(zt|xt) ∀t , 

rather than handling a single point-estimate z⋆
t
 . This allows 

us to work with more information about the unknown true 
assignment zt of the observation at each time-step.

The new approach addresses the question of how to deal 
with multiple subsets of S samples instead of just one vari-
able at each time step. A potential idea would be to introduce 
Monte-Carlo (MC) sampling methods, but it would lead to 
draw S ⋅ t samples at each time step, becoming unfeasible 
in the long term. Alternatively, we propose to assume that 
samples are multinomial distributed, which has the advan-
tage of preserving the prior-conjugacy and is still consistent 
with the original recursiveness of the BOCPD algorithm [1].

We recall that a multinomial distribution with natural 
parameters �t ∈ S

K and N, measures the probability that 
each class k ∈ {1, ...,K} has been observed nk times over 
N categorical independent trials with same probabilities �t . 
This model allows us to deal with an augmented number of 
pseudo-observations from zt at each time t with just the cost 

of introducing one more parameter in the model: N = S , that 
is, the total number of samples drawn from the posterior.

To treat the samples as multinomial distributed, 
we have to transform them. Given the sampled vector 
z
⋆
t
= (z

(1)
t , z

(2)
t ,… , z

(S)
t ) ∈ {1, ...,K}S , we can define its asso-

ciated counting vector ct ∈ ℤ
K
+

 where ck
t
∶=

∑S

s=1
�{z

(s)
t = k} 

∀k . Each component ck
t
 counts the times that class k has been 

drawn from the S trials, so that we have 
∑K

k=1
ck
t
= S . Thus, 

at each time t, we can consider the counting vector ct as an 
i.i.d. observation of a multinomial distribution with natural 
parameters �t ∈ S

K and S ∈ ℕ.
With the previous notation in mind, and also assuming 

the following prior distributions for the parameters

where � ∈ ℝ
K
+

 , the likelihood function expression of a new 
observation ct is given by

Using (12) and the conjugacy property, the posterior 
update rule of parameters has the following closed form 
�� = � + ct , which introduces a direct recursion when a new 
sample is observed.

Notice from the first term of (14) and the definition of ct that 
by taking the proposed multinomial model, we are not 
explicitly working with distributions over the S-dimensional 
sampled vectors themselves anymore, but over their equiva-
lence classes. Here, two sampled vectors are considered 
equivalent z⋆

S1
∼ z

⋆
S2

 iff their associated counting vectors sat-
isfy cS1 = cS2

 . That is, if the vector z⋆
S2

 is a permutation of the 
vector z⋆

S1
.

We now aim to obtain the posterior distribution 
p(rt|c1∶t−1) by building up the recursiveness suggested by 
[1] for the joint distribution. This would allow us to con-
sider a measure of uncertainty of the CP locations and 

(12)�t ∼ Dirichlet(�),

(13)ct ∼ Multinomial(�t, S),

(14)p(c1
t
, ..., cK

t
��, S) = S!

∏K

k=1
ckt !

K�

k=1

�
ck
t

k
.
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estimate the generative parameters of the multinomial 
distribution at each partition. Following the development 
of (6), we have

where again, we have defined

As presented in [1, 11], we have assumed that there exists 
a term p(rt|rt−1) that only depends on the value of the run-
length in the previous instant, rt−1 . This term acts like a con-
ditional prior probability that modulates how likely is to 
detect a new CP, that is, rt = 0 would be more or less likely 
conditioned to the previous value of run-length hypothesis 
rt−1.

We also wish to infer the parameter vector �(r)
t

 related to 
the current run-length rt and its associated data samples, 
presented in (17), through the posterior p(�t|rt−1, c

(r)

1∶t−1
) . 

To carry out the inference method depicted in Fig. 1 we 
need to find Ψ(r)

t  , that in fact can be seen as the posterior 
predictive density of the new pseudo-observation ct con-
ditioned to the run length rt−1 and the previous data in the 
referred partition,

The predictive term p(ct|rt−1, c
(r)

1∶t−1
) has not closed form but 

it is still a function of the statistics of the model. Thus, its 
computation is straightforward

where we have defined S� ∶=
∑K

k=1
�k
t−1

 . Additionally, using 
both the definition of the binomial coefficient and the prop-
erties of the Gamma function, Γ(n + 1) = n! for n ∈ ℕ , we 
transform the previous expression to the following one:

The term S� grows by S at each time-step, leading to numeri-
cal instabilities in the l.h.s term of (19) for high values of t. 
Therefore, we have considered the following expression that 
is numerically more stable and it is a result of the manipula-
tions in the terms of (19). Then, it is

(15)p(rt, c1∶t) =∫
∑

rt−1

p(rt, rt−1, c1∶t,�t)d�t =

(16)=
∑

rt−1

p(rt|rt−1)Ψ
(r)
t p(rt−1, c1∶t−1),

(17)Ψ
(r)
t ∶= ∫ p(ct|�t)p(�t|rt−1, c

(r)

1∶t−1
)d�t.

(18)Ψ
(r)
t = p(ct|rt−1, c

(r)

1∶t−1
).

Ψ
(r)
t =

Γ(S + 1)Γ(S�)
∏K

k=1
Γ(ck

t
+ �k

t−1
)

∏K

k=1
Γ(ckt + 1)

∏K

k=1
Γ(�k

t−1
)Γ(S + S�)

,

(19)Ψ
(r)
t =

(
S + S� − 1

S

)−1 K∏

k=1

(
ck
t
+ �k

t−1
− 1

ck
t

)
.

with S(k−1)
c

∶=
∑k−1

l=1
cl
t

∀k = 1…K . This predictive prob-
ability is the one that we introduce in (15) for the estimation 
of rt , and hence the detection of CPs.

4.1 � Change‑Point Prior Distribution

The prior distribution of a change-point p(rt|rt−1) needs to 
be defined to carry out the recursiveness of equation (15) at 
each time-step t.

In particular, we have considered the prior term to be time 
independent, as proposed in the original BOCPD version. 
The conditional distribution takes the form,

where H(�) is the hazard function for the geometric distribu-
tion with timescale parameter � , that results in a memoryless 
process where H(�) = 1∕� is constant, as detailed in [6]. We 
consider � as a model hyperparameter that we fix, but there 
are also existing works [16] where � is learned in an online 
manner. However, this usually leads to extra complexity in 
the model, and in our case, falls out of the scope of this work.

4.2 � Definition of Change‑Points

The presented recursive method a
llows us to obtain p(rt|�1∶t) and therefore, the probability 
that the last CP occurred a number of rt time-steps ago. This 
fact is given from the normalization of the joint distribution

MAP estimates-based CPs. Given the posterior density 
we can define the sequence of likely CP locations {r⋆

1∶t
} 

through the MAP estimates of the posterior distribution of 
the run-length,

This estimation r⋆
t
 of the CP hypothesis variables is the most 

used in the literature and the one that we use in our experi-
ments of section 5, since it defines the most likely CPs along 
the time sequence.

Cumulative probability-based CPs. We propose a 
new alternative strategy to characterize the variable rt from 
p(rt|�1∶t) . For fixed t, we consider the probability that a CP 
occurred in the previous n days so, in this approach, we 
define the sequence {r⋆

1∶t
} by

(20)Ψ
(r)
t =

K∏

k=1

ck
t
−1∏

j=0

�k
t−1

+ j

S� + S
(k−1)
c + j

S(k−1)
c

+ j + 1

j + 1
,

(21)p(rt|rt−1) =
{

H(rt−1 + 1), rt = 0

1 − H(rt−1 + 1), rt = rt−1 + 1

(22)p(rt��1∶t) =
p(rt, �1∶t)∑
rt
p(rt, �1∶t)

.

r⋆
t
= argmax p(rt|�1∶t).

Journal of Signal Processing Systems (2022) 94:215–227 219



1 3

Note that r⋆
t
= 1 for t ≤ n , leading to need at least n days of 

data to use this strategy for CP location definition. Exam-
ple results are shown in the experiments section, consider-
ing different number of days for the cumulative probability 
computation.

4.3 � Computational Cost

Algorithm 1 presents all steps that must be followed to 
obtain the sequence of CP location estimates {r⋆

1∶t
} . As the 

original method of [1], the time-complexity of the general 
model equation (6) per time-step is linear in the number of 
data-points so far observed. In the other hand, we see that 
the complexity related to the number of samples, S, needed 
for the Multinomial CPD performance, grows linearly with 
S per time-step. This follows from expression (20) and the 
fact that 

∑K

k=1
ck
t
= S . The low computational cost is one of 

the most important contributions of this work.

5 � Experimental Results

In this section we evaluate the performance of the proposed 
multinomial sampling extension for hierarchical CPD. First, 
we study the improvements of the method (named Multi-
nomial CPD) over synthetic data, where we may increase 
or decrease the quality of inference over the latent vari-
ables to prove that detection is still reliable. In the second 
experiment, we evaluate the method using real-world data 
of a monitored user from an authorized human behavior 
study, analyzing how we are able to reduce the delay in the 
whole detection process. In the third experiment, we study 
the performance of the method for very large number of 
latent classes, that is, different values of K, the dimension 
of the latent variables. In the experiments, we consider that 
a change point is detected at time-step t = t� if there is an 
abrupt decrease from r⋆

t�−1
 to r⋆

t′
 , which means that the CP 

occurred at instant t = t� − r⋆
t�
 . We set r⋆

t
< r⋆

t−1
− 20 as the 

condition for detection. This can be also adapted if more 
precision is required.

r⋆
t
= p(rt ≤ n|�1∶t) =

n∑

i=1

p(rt = i|�1∶t).
5.1 � Synthetic Data Evaluation

In our first experiment, the Multinomial CPD model has 
been applied to sequences of synthetic data and the results 
have been summarized in Fig. 2 and Table 1. Particularly, we 
want to evaluate the performance of the method for several 
sampling sizes S, drawn at each time-step and for different 
levels of flatness (uncertainty) of the generative posterior 
distribution.

We have fixed the number of CPs on the latent sequence 
to five, that is, six partitions, each one occurring every 100 
time steps. Moreover, we have run the algorithm for T = 600 . 
In the experiment, the posterior distributions p(zt|xt) of the 
latent variables are also simulated. This guarantees that the 
posterior densities are as ill-fitted as we want in every exam-
ple, avoiding the intervention of inference’s stochastic condi-
tions in the results. For each partition � , we have generated 
a set of 100 K-dim vectors ��,t from a Dirichlet distribution 
with parameters �� . At the same time, these 6 K-dim vec-
tors �� have been sampled from a Uniform distribution in 
the interval (0, �) . This parameter � defines the flatness of 
the synthetic posterior distribution, where a lower � implies 
a flatter generative distribution. The hyperparameter K has 
been fixed to 20 classes for the whole experiment. In the pro-
posed model, each S-vector has been sampled from a Mul-
tinomial(��,t, S ) with the vector ��,t previously presented.

The prior probability of the run length rt is a function 
of the hyperparameter �−1 , which controls the prior prob-
ability of a change: the higher is � , the less probable is a 
change. For the Multinomial CPD method (MCPD), we have 
defined it as a function of the number of samples � = 10S to 
make both comparable the terms involved in (6) and also the 
results in the experiment for different number of samples. 
The intuition behind this choice is that, for high values of S, 
we want the prior probability of a change to be almost zero, 
so that the change-point occurrence is determined from the 
data. However, more accurate results may be found by tuning 
the � parameter at each particular case. For the comparison 
with the Hierarchical CPD method (HCPD) we considered 
the same values except for the hyperparameter lambda, that 
has been fixed to 1020 independently of the flatness level of 
the simulated distributions.

In Fig. 2 we compare the MCPD (left column) for dif-
ferent number of samples S = 10, 50, 100, 150, 200 with 

Table 1   Multinomial CPD vs. 
Hierarchical CPD metrics. All 
delay values (×10)

S = 10 S = 50 S = 100 Hier. S = 10 S = 50 S = 100 Hier.
� cpd rate cpd rate cpd rate cpd rate delay delay delay delay

2.0 - 0.12 0.32 - ∞ 5.33 ± 2.30 5.37 ± 1.59 ∞

3.0 0.52 0.88 0.84 0.2 5.30 ± 2.09 5.68 ± 3.01 4.20 ± 2.17 10.0 ± 7.87

4.0 0.88 0.96 1.0 0.76 3.57 ± 2.15 3.28 ± 2.53 2.30 ± 0.96 5.27 + 2.00

10.0 0.96 1.0 1.0 0.96 2.06 ± 1.77 1.32 ± 0.39 1.31 ± 0.40 3.52 ± 2.00
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the HCPD (right column) and different levels of flatness 
� = 3.0, 10.0, 50.0 (each row). In the upper figures we can 
see the distributions of the latent variables or the MAP 
assignments at each time step, respectively. In the bottom 
figures the MAP estimates of the run-length rt are jointly 
shown with dashed lines indicating the true change-points. 
We have also summarized the results of running the method 
five times for each pair of values (S, � ) in Table 1. There, 
we also show the total precision rate, defined as the ratio 
of change points detected for each pair, and the mean and 
standard deviation of the delay, defined as the time points 
between the instant of the detection t = t� and the real instant 
t = t� − r⋆

t�
 in which the CP occurred. For example, if a CP is 

detected at t = 150 and r⋆
150

= 30 , this means that a change 
occurred at t = 120 , and the delay of the detection would be 
30 steps. Looking at the results included in Fig. 2, with the 
MCPD we detect the five change points for every value of 
� and many of the values of S considered. In the table we 
confirm that the precision increase as S grows, detecting less 
change points when the distribution is highly flat for lower 
values of S and in particular for the HCPD, that is similar to 
the limit case in which S = 1 . For � = 2.0 no change points 
are detected using the HCPD method. However, with the 
MCPD, even if the distribution is that flat we are able to 

find the change points by increasing the number of samples, 
obtaining a precision of 88% for 50 samples at � = 3.0 ver-
sus the 20% in the HCPD case, or even a 100% of precision 
already at � = 4.0 when S = 100.

For higher values of � , we can see both in the Fig. 2 and 
the Table 1 that the performance is good enough for both 
methods in terms of CPD precision. However, the delay 
of the detections is always notably lower in the proposed 
MCPD. In comparison to the HCPD, we can see in the table 
that the average of the delay in the detections is reduced by 
more than a half when 100 samples are considered, indepen-
dently of the flatness of the distribution, with just 23.08 time 
steps of average delay when � = 4.0 or 13.1 when � = 10.0.

5.2 � Computational Cost Analysis

We analyze the precision rate and average delay in the 
detection for several sampling sizes and their associated 
computational cost. In Fig. 4 we show these measurements 
from S = 10 to S = 200 evaluated each 10 samples using 
the MCPD proposed method. The first point of every line 
( ≈ S = 1 ) has been obtained using the HCPD method for 
every row plot. We consider the same synthetic data gener-
ated for subsection 5.1 with K = 20 latent classes, � = 10S 

Fig. 2   Comparison between the multinomial CPD, based on sampling 
from the latent class posterior, and the baseline CPD method. The 
resulting CPs (bottom figures) are considered as jumps over the MAP 
estimates (solid lines) of the run-length rt ∀t . Dashed lines indicate 
the true change points. Left Column: Each row represents an exam-

ple with a more or less flat posterior distribution (upper figures) indi-
cated by � . Colors of the rt lines indicate the number of samples S 
used. Right Column: Results for CPD from different point-estimate 
pseudo-observations z⋆

1∶t
 (upper figures)
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for the MCPD experiments and � = 104 for the HCPD 
results. In the first row of Fig. 4, we show the computa-
tional cost evolution in seconds (red line) as the number of 
samples increases, jointly with an adjusted linear regression 
(blue line). As commented in subsection 4.3, we see that 
the computational cost increases linearly with the number 
of samples. We have fixed � = 3.0 for this experiment, but 
notice that the computational cost is constant for any level of 
flatness. The method has been run 3 times and, in the second 
and third row of the figure, we show the total precision rate 
(range 0.0-1.0) and average delay (range 0-100 time-steps) 
in the detection for the same range of sample sizes but dif-
ferent levels of flatness � = 2.0 , � = 3.0 , � = 4.0 , � = 6.0 and 
� = 10.0 . Recall that higher � corresponds to lower flatness. 
In this experiment, the delay has been computed just for the 
detected CPs, leading to some cases of lower delay values 
for higher flatness.

We see that both the precision rate and the delay tend to 
the maximum (minimum for the delay) the method can get 
for each flatness level as the number of samples increases. 
The precision rate reaches this value around 50 samples for 
� ≥ 3.0 , that is 1.0 for � ≥ 4.0 . The delay presents faster 
stabilization, due to the computation just over the detected 
CPs. With respect to the associated computational cost, 
it increases just 0.3 seconds from the use of the HCPD 
method (1.1 sec) to the use of MCPD (1.4 sec) for S = 50 
samples. Looking at these results and taking into account 
that the maximum accuracy of the method is superseded 
to the quality of the original data, we can conclude that a 
size of S = 50 samples could give enough good results in 
most of the cases. Anyway, choosing a higher sampling 
size like 100 or even 200 would increase the computational 
cost in just 1.0 second, ensuring to achieve the maximum 
precision rate and lower delay independently of the data 
quality level.

Fig. 3   Human behavior CPD with heterogeneous daily mobility met-
rics from a user. Three upper rows. Respectively, 310 days of dis-
tance wandered, presence at home and number of steps every 30 min-
utes. Fourth row. Posterior expectations over the K = 20 latent class 
indicator zt . Fifth row. Hierarchical CPD for several multinomial-
sampling cases

Fig. 4   Computational cost analysis from 10 to 200 samples (MCPD). 
The first point of the lines ( ≈ S = 1 ) in every plot corresponds to the 
HCPD result. First row. Computational cost (red line) evolution and 
adjusted linear regression (blue line). Second row. Total precision 
rate (range: 0.0-1.0) of CP detection for 3 runs and different levels of 
flatness. Third row. Average delay (range: 0-100 time-steps) of CP 
detection for 3 runs and different levels of flatness
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5.3 � CPD for Large Number of Latent Classes

In this work we have discussed an approach to lead with 
high-dimensionality data by working over the latent repre-
sentation of the observations. In this experiment we study 
the performance of the method in the sense of precision and 
delay in the detection when the number of latent classes, K, 
is large, for different levels of flatness, � , of the posterior 
distribution over the latent variables. The number of CPs 
has been fixed to 5 on the latent sequence, that is, six parti-
tions, each one occurring every 100 time steps. Moreover, 
we have run the algorithm for T = 600 and S = 100 for every 
pair (�,K) . The hyperparameter � has been fixed to 10S as 
before. The details in the generation of the data are the same 
as explained in subsection 5.1. For metrics computation, we 
compare with the ground truth, but assuming that a CP is 
considered as not detected if the delay is higher than 100 
time-steps. The delay of a not detected CP computes as 100 
for the total metric of a trial.

In Tables 2 and 3 we compare the precision and delay 
respectively for the Multinomial CPD and Hierarchi-
cal CPD considering different number of latent classes 

K = 10, 20, 40, 50, 100, 200 (columns) and different levels of 
flatness � = 3.0, 4.0, 5.0, 10.0, 20.0 (rows). The precision is 
presented as the total ratio of detected points over the trials 
and the delay is shown as the mean and standard deviation 
of the delay of every CP and every trial.

In the results we see that, in general, the higher is K, 
the lower is the detection rate and the higher is the average 
delay. In terms of precision, the Multinomial CPD is able 
to detect more than 92% of the CPs when the flatness is 
higher than 4.0. Even though, the detection rate for � = 3.0 is 
always over 84% when K is lower than 100. For these values 
of flatness, the HCPD precision is lower than 64% when we 
have more than 40 classes, as expected.

The delay of the MCPD is less than a half compared to 
the HCPD results of Table 3 for every pair (�,K) . In fact, 
the average delay in the detection when the flatness is higher 
enough is not larger than 18.2 for the MCPD even for 100 
and 200 classes. In the case of the HCPD, the average delay 
is always over 80 for K = 200 as expected due to the low 
detection rate and the value considered in the not-detected 
cases to compute this metric.

5.4 � Cumulative Probability Metric

In subsection 4.2 we have proposed an alternative characteri-
zation of the variable rt for CP definition from the posterior 
p(rt ∣ �1∶t) : to consider the cumulative probability that a CP 
happened in the previous n days as a CP location indicator. 
We present an example of this metric using the synthetic 
data generated in subsection 5.1 for � = 4.0.

In Fig. 5 we show the output of the detection over the 
mentioned dataset for the MCPD method with S = 50 sam-
ples, K = 20 latent classes and � = 1050 . In the first row we 
have the posterior distribution of the latent class indicator 
zt along time. In second, third and fourth rows we show the 
sequence of MAP estimates of the run length (green line) 
jointly with the negative logarithm of the cumulative prob-
ability,− log p(rt ≤ n ∣ �1∶t) , for the 5 (blue line), 10 (orange 
line) and 15 (brown line) previous days, respectively. The 
true change points are indicated with dashed lines and the 
cumulative probability for t ≤ n is not plotted because it is 
1 by definition and therefore, not informative for our goal.

We see that the cumulative probability based-approach is 
consistent with the use of MAP estimates for CP definition. 
However, it could brings to reduce even more the delay in 
the detection by considering that a CP occurred if there is a 
sufficient growth of the cumulative probability at a particu-
lar time-step. These increases are presented in the images 
as peaks, that coincide or occur some time-steps before the 
MAP estimate peaks. Clear examples happen at t = 400 and 
t = 500 where the delay could be reduced to 0 for the first 
CP or to more than a third for the second CP with respect to 
the MAP strategy.

Fig. 5   Cumulative probability measurements. First row. Posterior 
distributions over the K = 20 latent class indicator zt . Second, third 
and fourth row. Results of the MCPD method for S = 50 samples: 
MAP estimates (green line) of the run-length rt ∀t and negative log of 
the cumulative probability for 5 (blue line), 10 (orange line) and 15 
(brown line) days, respectively. Dashed lines indicate the true change 
points
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5.5 � Human Behavior Dataset

The data are part of a human behavior study with daily 
measurements obtained by anonymized monitoring of users 
using their personal smartphones. The monitoring and pre-
processing of data was performed by the Evidence-based 
Behavior ( eB2 ) app between April, 2019 and March, 2020 
[3].

From monitored raw traces of latitude-longitude pairs, we 
calculate distance in kilometers between sequential locations 
and its global distance to the user starting point, i.e., his/her 
home. After splitting all data into 30-minutes frames per 
24h, we obtained three multivariate heterogeneous observa-
tions per day: i) xdistance ∈ ℝ

48 , ii) xhome ∈ {0, 1}48 , where 1 

means staying at home and 0 otherwise, and iii) xsteps ∈ ℝ
48 , 

where the real-positive values where mapped to real-valued 
using the mapping log(1 + y) . We introduced an heteroge-
neous mixture model given that each daily observation is 
xt = {xdistance, xhome, xsteps} . We refer to heterogeneous as a 
mix of statistical data types. Additionally, we assume that 
there is a single latent class indicator zt that indicates the 
behavioral profile that the user has followed on that particu-
lar day. The last step is to obtain the complete sequence of 
posterior estimates p(z1∶t|x1∶t) via the EM algorithm. The 
learning method of the mixture model can be adapted to 
the online nature of CPD using [5] or [10] if the number 
of classes K is unbounded. Results obtained are shown in 
Fig. 3 for different number of samples drawn by the posterior 

Table 2   MCPD vs. HCPD 
precision rate in the detection. 
The metric has been computed 
as the ratio of detected CPs 
over five trials per each pair 
(�,K) with S = 100 . A CP is 
considered not detected if the 
delay in the detection is higher 
than 100 time-steps. Best results 
are underlined 

Multinomial CPD

K = 10 K = 20 K = 40 K = 50 K = 100 K = 200

� cpd rate cpd rate cpd rate cpd rate cpd rate cpd rate

3.0 0.92 0.84 0.92 0.96 0.84 0.4
4.0 0.92 0.96 1.0 1.0 1.0 1.0

5.0 0.96 1.0 1.0 1.0 1.0 1.0

10.0 0.96 1.0 1.0 1.0 1.0 1.0

20.0 1.0 1.0 1.0 1.0 1.0 1.0

Hierarchical CPD

K = 10 K = 20 K = 40 K = 50 K = 100 K = 200

� cpd rate cpd rate cpd rate cpd rate cpd rate cpd rate

3.0 0.24 0.48 0.44 0.28 0.4 0.16
4.0 0.52 0.84 0.64 0.6 0.64 0.08
5.0 0.8 0.92 0.76 0.84 0.6 0.36
10.0 0.84 0.92 0.8 0.84 0.84 0.52
20.0 0.92 1.0 0.92 1.0 0.88 0.72

Table 3   MCPD vs. HCPD 
delay in the detection. The 
metric has been computed as 
the mean ± standard deviation 
of the delay in the CPs detection 
over five trials per each pair 
(�,K) with S = 100 . For the 
not-detected CPs the delay has 
been considered 100 to obtain a 
comparable metric. Best results 
are underlined 

Multinomial CPD

K = 10 K = 20 K = 40 K = 50 K = 100 K = 200

� delay delay delay delay delay delay

3.0 44.2 ± 29.54 45.64 ± 27.51 57.42 ± 19.93 56.48 ± 19.14 71.04 ± 16.36 98.96 ± 2.96

4.0 28.62 ± 19.82 28.72 ± 11.58 27.36 ± 7.79 35.8 ± 16.09 38.16 ± 9.05 48.2 ± 8.4

5.0 18.76 ± 6.49 21.84 ± 8.61 22.72 ± 8.77 24.52 ± 6.35 27.96 ± 7.92 36.48 ± 6.29

10.0 14.84 ± 11.15 14.6 ± 5.71 13.88 ± 6.48 13.64 ± 4.29 14.96 ± 2.55 18.12 ± 4.19

20.0 10.0 ± 3.59 11.08 ± 4.36 10.2 ± 2.87 10.16 ± 3.25 10.04 ± 1.56 12.84 ± 2.22

Hierarchical CPD

K = 10 K = 20 K = 40 K = 50 K = 100 K = 200

� delay delay delay delay delay delay

3.0 91.28 ± 19.07 87.64 ± 19.38 94.72 ± 10.99 90.44 ± 19.28 96.28 ± 8.03 99.76 ± 1.18

4.0 64.48 ± 30.45 71.8 ± 25.31 78.92 ± 24.34 74.85 ± 20.91 85.36 ± 17.56 99.12 ± 3.58

5.0 43.27 ± 25.65 57.07 ± 27.65 61.96 ± 21.31 68.69 ± 28.14 83.64 ± 19.68 93.88 ± 14.16

10.0 31.4 ± 25.32 45.96 ± 27.23 44.35 ± 23.62 52.74 ± 24.07 61.04 ± 19.38 88.8 ± 17.99

20.0 25.01 ± 20.18 26.04 ± 19.18 38.31 ± 21.46 41.8 ± 20.31 58.59 ± 22.49 81.28 ± 20.18
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distribution over the latent variable. We can see that the 
method finds three change points around day 100, day 230 
and day 290, clearly partitioning the time in four behavioral 
periods between the first and last day of monitoring. These 
changes have not been contrasted with external information 
of the user yet, but the results are consistent in terms of num-
ber of detections for every value of S considered, and seem 
to be coherent with the overview of the distributions in the 
third raw of the figure. Moreover, we can see that increasing 
the number of samples at each time step, we can reduce the 
delay in the detection almost 50 days w.r.t. the hierarchical 
CPD method.

5.6 � Comparative CPD Results

In this section, we show comparative CPD results for four 
different Bayesian approaches and two additional methods 
from the classical literature. Particularly, we use data from 
the magnetic response obtained during the drilling of a well. 
This dataset has been previously used in the context of CPD 
methods by [1]. We remark that the true location of CPs is 
not provided.

The methods considered for the comparison are i) the 
Bayesian CPD algorithm [1], ii) Hierarchical CPD [11], 
iii) the infinite-dimensional method of [10] and iv) the 
Multinomial-based approach proposed in this work. The 
detection curves are shown in Fig. 6, where we observe 
that the better performance comes from the proposed 
approach using Multinomial samples. The Bayesian CPD  

algorithm does not include the latent variable hierarchy, 
which in cases with corrupted, missing or heterogeneous 
observations is necessary. Its performance is a bit more  
noisy than ours around the time-step t = 1000 . The hierar-
chical CPD method is similar to ours but only uses one sin-
gle MAP estimate from the underlying distribution p(zt|xt) 
and in this case, it fails when the characterization of CPs 
requires a higher precision, e.g. around t = 1200 . This is 
understandable as the sampling methodology allows us to 
better characterize the latent variable distribution in that 
sections of the signal. Moreover, the infinite-dimensional 
approach of [10] which does not consider a fixed dimen-
sionality for the latent space performs similar to our method. 
However, it does not detect small transitions in the short-
length scale of the time-series, as we do. Examples of these 
CPs can be found in t < 1000 and t > 3500 from Fig. 6.

Additionally, we compared our method with other non-
Bayesian CPD approaches, which are included in the rup-
tures library for offline CPD methods.1 In particular, we 
considered optimal partitioning [8] and the binary segmen-
tation [14] method. The detection results were similar for 
both methods, and they only marked CPs in the t range 
[1000, 2500]. This means that the short-length transitions 
at the beginning and end of the signal were not considered as 
the other Bayesian methods do. In this context, it is worthy 
to mention the work of [4], where a thorough evaluation 
of CPD methods is performed w.r.t. a large benchmark of 

Fig. 6   Comparative CPD results for four different methods based on 
Bayesian inference. First row: Univariate data corresponds to the 
nuclear magnetic response obtained during the drilling of a well. Sec-

ond row: All run-length curves are MAP estimates for rt given each 
method. Infinite curve makes reference to the infinite-dimensional 
version of the Hierarchical CPD model

1  Python library is publicly available at https://​pypi.​org/​proje​ct/​ruptu​res/.
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datasets. The final results shed light on the advantage of con-
sidering Bayesian CPD methods in certain cases, similarly 
as we see in our experiments.

6 � Conclusion

In this paper, we have presented a novel methodology for 
improving the Bayesian CPD algorithm of [1] with latent 
variable models. Under the assumption that CPs lie in a 
lower-dimensional manifold, inference is carried out with 
pseudo-observations based on posterior point-estimates of 
the latent variables given the data. We introduce a multi-
nomial-sampling method that improves the detection rate 
and reduces the delay when we treat with high-dimensional 
sequences of observations. The analytical tractability in the 
inference is maintained as well as a low computational cost. 
The experimental results show significant improvements in 
the CPD as posterior estimates become less certain. Inter-
estingly, even under a good inference performance, the 
multinomial sampling method reduces the delay of detec-
tion, what in practice is a key point for its application to 
real-world problems. We illustrate an example on a human 
behavioral study, that detects changes in the circadian pat-
terns of a user. In future work, this could be integrated with 
other CPD methods that consider the dimensionality of the 
latent variables unbounded [10].
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