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Abstract—The development of efficient and reliable electric space
propulsion systems relies on accurate modeling and identification
of their underlying dynamics. Traditional approaches to model
identification often involve intricate physical analysis or making
extensive assumptions, limiting their applicability and scalability.
In this thesis an algorithm for accurate modeling and identification
of electric space propulsion systems is presented. The algorithm,
based on sparse regression and model parsimony, allows automatic
data-driven identification of models for space plasma thrusters. It
incorporates statistical techniques, physical constraints, and
trajectory-based information for robust system identification. The
algorithm is demonstrated using PIC/fluid simulation data from a
Hall Effect Thruster for several operating points. Models of
varying complexity are obtained, focusing on physical
explainability and coefficient variation with operating point. The
resulting equations for average ion and neutral densities align well
with existing models. Point-wise density models exhibit location
dependency in the discharge chamber. The algorithm showcases its
general applicability to other electric propulsion systems.

”All models are wrong, but some are useful.” George E. P. Box

I. INTRODUCTION

Hall Effect Thrusters (HETs) have emerged as highly successful
electric space propulsion systems. Typically, these systems
employ an annular chamber that utilizes electron collisions to
ionize an injected neutral gas, resulting in the formation of a
plasma consisting of electrons and ions. This plasma is
subsequently accelerated by an induced axial electric field,
which is established between an internal anode (also serving as
a propellant injector) and an external cathode. Despite their
extensive usage in space and extensive research, certain aspects
of HET physics remain incompletely understood, prompting
ongoing investigations.

Figure 1: Lateral cut and 3D view of a Hall Effect Thruster. The
areas delimited in the upper left correspond to the ones used for
the global models (red) and pointwise analysis (blue). Taken from
[1].

One intriguing phenomenon that merits attention is the presence
of oscillations within the HET discharge. Their presence has
been linked to enhanced transport and impacts the performance
and efficiency of the device in a deleterious way [2]. Notably,
the most prominent oscillation observed in HETs is the
breathing mode. This mode entails significant low-frequency
discharge current oscillations that primarily occur along the
axial direction within the chamber. The physical mechanism
responsible for these breathing oscillations is currently
well-defined and typically described as an
ionization/neutral-depletion instability.

A Breathing Mode cycle starts with neutrals filling the chamber
from anodic injection and ion recombination in the walls.
Ionization events occur due to neutral-electron collisions, slowly
at first until either the densities or the temperature raise enough
to start a cascading process which leads to a very pronounced

increase in ion density. The ionization occurs in a radial front
which starts in the downstream region and moves upstream
inside the channel as the neutrals are depleted. The avalanche
ionization stops and the instability saturates when most neutrals
are depleted, and the ion density goes down until the cycle
starts once more. This is made possible by the multi-scale
nature of the phenomena, as neutral velocities are typically an
order of magnitude below ion velocities and the injection and
ionization processes also set their own scales.

In the context of electric propulsion research, the presented
description elucidates a spatially-dependent complex process
exhibiting similarities to a predator-prey relationship. However,
the impetus for adopting simple description stems from the
need to comprehend the global behavior of the instability and
exploit the resultant models’ simplicity. By isolating the
system’s dynamic characteristics, researchers are empowered to
unravel critical insights into electric propulsion mechanisms.

Most models for the Breathing Mode in the literature are derived
from the ion and neutral continuity equations

ṅi +∇ · niui = Sion (1a)
ṅn +∇ · nnun = −Sion, (1b)

where Sion = Rion(Te)ninn is the ionization source term
proportional to the ionization rate Rion, ui and un are the ion
and neutral velocities, assumed to be constant. Taking a
volumetric average to go from the 3D equations to a generic,
simple 0D global model, most of the literature obtains a model
similar to

ṅi = Sion − Swalls − ni
uiz

L
(2a)

ṅn = −Sion + Swalls + ginj − nn
unz

L
, (2b)

Indeed, the very first 0D model [3] was able to replicate the non-
linear self-sustained nature of the oscillations by replicating the
predator-prey equations for ions and neutrals

ṅi = ζionnnni − ni
uiz

L
(3a)

ṅn = −ζionnnni + nn
unz

L
, (3b)

However, linear stability analysis revealed that this model is
metastable and cannot sustain these oscillations in a real
thruster. Furthermore, the model fails to account for the
constant neutral particle influx from the channel gas injector
[4], but introducing this term directly yields decaying
oscillations [5]. Follow-up works have tried to overcome these
obstacles by introducing fluctuating neutral injection from
anodic pre-ionization [6] or feedback coming from the moving
ionization front [7], [8]. Others have introduced
physically-motivated oscillations in the ionization rate through
the electron temperature [9], ion velocity [9] or even the
characteristic length [5] either by adding additional governing
equations to the system or coming up with self-consistent
dependencies on the immediate or delayed densities. Indeed, it
seems clear that two fluctuating terms are needed to have
self-sustained oscillations, but it is unclear which terms those
should be. In this context the usage of data-driven techniques
seems ideal, as they can help elucidate and expand existing
models while minimizing the researcher’s bias.

In one noticeable detail, many of the recent 0D models for the
breathing mode justified the oscillation as the coupling between
two zone within the thruster, but asides from the ionization
zone it is not clear where this coupling occurs. Even when Hall
Effect Thrusters are typically divided into distinct regions
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defined by their dominant processes, these are known to overlap
and clear limits cannot be defined unless arbitrary thresholds
are defined. The problem of identifying subspaces of the
spatiotemporal domain with distinct physics is not special to
Hall Effect Thrusters, and refers to the more specific problem
of Dominant Balance Analysis. However, complex geometries
do not lend themselves to this analysis unless they are
simplified. This is treated directly in fields and applications
such as turbulence research [10], [11], geophysical flows [12],
optical systems, bursting neurons and Rotating Detonation
Engines [13]. These works segment the different zones with
application-specific clustering algorithms based on expert
knowledge, or unsupervised clustering based on post hoc
interpretation. [13] uses data-driven techniques, but still depends
on user-defined parameters and governing equations. A purely
unsupervised alternative should be able to provide for the same
results with less researcher work and bias.

In this line, previous work done by the author as part of the
MiSE’s Integral Project identified the Sparse Identification of
Non-linear Dynamics framework [14] as a very suitable
technique for interpretable system identification. Based on
sparse regression on the system dynamics, SINDy returns
models based on algebraic expressions from a user-provided
library, where the algorithm is able to assertain which library
features appear in the true dynamics, culling the rest. The
aforementioned work implemented a Python library based on
the basic SINDy formulation and expanded with an optimizer
with oracle properties [15], automatic model selection based on
parsimony principles [16], statistical resampling techniques for
selection robustness [17] and a weak form [18] for noise
robustness. This work has also highlighted limitations of the
SINDy methodology, specifically its reliance on linear
regression without accounting for temporal causality and the
need for coupling the regression process among the different
variables. To address these issues, this thesis develops a Integral
Least Square model fine-tuning methodology, enabling direct
regression on trajectory data after feature identification. This
approach rectifies the temporal causality concerns and benefits
from a smaller search space.

Additionally, in physical applications, incorporating underlying
physical/mathematical knowledge is crucial for enhancing
model performance and interpretability. Enforcing physical
priors through regularization and constraints has been explored
as a means to align predictions with the system’s understanding.
Recent advancements have been made to incorporate constraints
into the SINDy algorithm, expanding its capabilities in the
presence of energy-preserving quadratic non-linearities [19] or
through new constraint-friendly optimizers such as the Sparse
Relaxed Regularized Regression (SR3) [20] and Conditional
Gradients based approaches [21]. Even newer approaches use
Discrete optimization through Mixed-Integer Optimization
(MIO) [22], which allows to express arbitrary linear, quadratic,
and semidefinite constraints on both the coefficients and
sparsity structure. However, some of these approaches are
designed for high-dimensional and high-noise scenarios and
sacrifice algorithmic simplicity and interpretability, thus
reducing the core advantages offered by SINDy’s versatile and
interpretable algorithmic framework. In this work we propose a
simpler alternative based on linear regression which allows to
impose linear equality constraints.

The first part of this thesis explores an unsupervised perspective
of obtaining 0D Breathing Mode global models for the
downstream region, gradually introducing additional variables to
assess their adjustment to expectations. By using the

aforementioned fine-tuning techniques, the resulting models are
improved for predictive purposes. In the second part of this
thesis we conduct a parametric analysis to test the fidelity of
the selected models, and test a novel implementation of
data-driven Dominant Balance Analysis to identify dynamical
regimes within the thruster. Overall, this research aims to
provide a fresh perspective to the Breathing Mode and its
spatial dynamics within Hall Effect Thrusters, and validate the
algorithms for future use in electric propulsion research.

II. METHODS

This sections intends to outline the Methods used within our
implementation of the SINDy framework. A brief summary of
the SINDy problem with the ALASSO optimizer, the Pareto
knee selection criterion and the usage of Weak forms and data
bootstrapping will be shown first, as their detailed descriptions
can be found in the Integral Project, which can be found in
APPENDIX 1.

The rest are methods developed within this Master thesis and
which expand upon this core. Namely, introducing constraints,
an Integral version of Least Squares and the basis of pointwise
modeling will be covered afterwards in more detail. An
explanation of how everything fits together within the algorithm
is also outlined.

A. Sparse Identification of Nonlinear Dynamics (SINDy)

Most physical systems have only a few relevant terms that define
their dynamics. For a dynamical system of state X(t) governed
by a set of ordinary differential equations of the form

d

dt
x(t) = ẋ(t) = f(x(t)) (4)

where we can construct a pair of matrices X and Ẋ representing
the state variables and their derivatives sampled at discretes points
in time:

X =




xT (t1)
xT (t2)

...
xT (tm)


 =




x1 (t1) x2 (t1) · · · xk (t1)
x1 (t2) x2 (t2) · · · xk (t2)

...
...

. . .
...

x1 (tm) x2 (tm) · · · xk (tm)




Ẋ =




ẋT (t1)
ẋT (t2)

...
ẋT (tm)


 =




ẋ1 (t1) ẋ2 (t1) · · · ẋk (t1)
ẋ1 (t2) ẋ2 (t2) · · · ẋk (t2)

...
...

. . .
...

ẋ1 (tm) ẋ2 (tm) · · · ẋk (tm)


 .

(5)

To determine the function f in a data-driven way, we can
express the problem as a linear regression for each of the
columns of (5), denoted from now on Ẋj where j ∈ [1, ..., k].
By either measuring the state derivatives directly or computing
them numerically from the state measurements we can obtain
said columns. Likewise we can measure or construct from state
measurements a feature library Θ. Each of its columns
represents a different feature/function fi(X) (a scalar function
dependent on the state and is a candidate to be present in the
dynamics f ), evaluated at each time-step i.e.
Θ(X) = [f1(X), f2(X) ... fn(X)]. We then formulate the
regression problem as in Equation (6) to solve for the
coefficients βj :

Ẋj = βj ·Θ(X) (6)
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From the assumption that f is sparse we would expect for most
of the βj,i in the true coefficients βj = [βj,0, βj,1, ..., βj,n] to
be near or equal to zero; however, this would not be the case
if Ordinary Least Squares regression was to be applied to (6).
Likewise, the brute-force approach of trying all possible Θ and
choosing the best-performing one can get intractable for high-
dimensional systems and candidate libraries.

The Sparse Identification of Nonlinear Dynamics (SINDy)
exploits the key idea that f is sparse by solving for (6) through
regression but adding a regularization term to promote sparsity
in the solution:

βj = min
βj

{∥∥∥Ẋj − βjΘ(X)
∥∥∥
2

2
+ λR(βj)

}
(7)

where R(βj) is a norm term that penalizes the presence of
non-zero elements in the coefficient vector, and λ weights the
regularization over the typical least squares term. It can be seen
that by using λ = 0 in (7) the Ordinary Least Squares
formulation is recovered.

Figure 2: Schematic view of the ALASSO algorithmic
implementation.

In a previous study we found the Adaptive Least Absolute
Shrinkage Operator (ALASSO) method to be the most suitable
for our study. As a variation of the traditional LASSO method,
it uses the L1-norm but with each coefficient having a different
weight in the regularization term based on their Ordinary Least
Squares coefficients βols

j , such that in Equation 7:

R(βj) =
∑

i

∥wi · βj,i∥1 =
∑

i

∣∣∣∣∣
1∣∣βols
j,i

∣∣ · βj,i

∣∣∣∣∣ (8)

The algorithm can be seen in detail in Figure 2. After the correct
features are selected, a final Ordinary Least Squares fit is done on
the remaining features to ensure that the coefficients aren’t biased.
In the following sections some other options for additional fine-
tuning of the coefficients will be explored.

B. Hyperparameter tuning: Pareto front Analysis

To select the model for Ẋj in an automatic, data-driven way we
use the Pareto ”knee” criteria. We plot every model obtained from
running the minimization in Equation (7) with different λ values
in the space of the two functions we want to minimize: model

error and complexity. We select the model which minimizes a
distance metric dPareto,i defined for model i as:

dPareto,i =

√
(1−R2

i )
2 +

(
nterms,i

nfeatures

)2

(9)

where R2
i stands for model coefficient of determination, nterms,i

for the model number of non-zero terms and nfeatures is the
number of columns/functions in the library Θ. In previous work
the Pareto knee was observed to be too strict in practice, leading
to overly-sparse solutions. However, we decide to maintain this
approach instead of using other options which tend to overfit the
data.

C. Data bootstrapping and feature culling

Data bootstrapping and random feature culling have been
proposed to address the inconsistent feature selection problems
for noisy and correlated data. This approach involves repeating
the model search process on multiple random subsamples of the
data and dropping random features from our feature library at
each search, introducing variability into the generated models.
This was seen to improve the search when correlated features,
few data, noise or outliers are present.

D. Weak SINDy

Weak SINDy applies integration by parts and places the derivative
on analytical test functions instead of the possibly-noisy data. A
weak form of (6) has been obtained from multiplying both sides
by

∫ b

a
ϕ(u)du, where ϕ(u) is the analytical test function. In our

case, ϕ(u) = 1 similar to [18], [23] so that we arrive to
∫ t1

t0

Ẋjdt =

∫ t1

t0

βjΘ(X)dt (10)

⇒ Xj(t1)−Xj(t0) ≈ ∆t βj

t1∑

t=t0+∆t

Θ(X) (11)

In previous work this was confirmed to yield good results for
noisy data but depend strongly on its parameters nwindows and
npoints per window.

E. Physics-informed model constraints

Another way of improving the performance of the resulting
equations is through the introduction of physics-based
constraints, coming from conservation laws (mass, momentum,
energy) or previous knowledge of the system. Within the
SINDy framework there exist several ways of introducing
constraints depending on the optimizer. Most are equivalent to
the usage of Lagrange multipliers by including the constraint as
an additional penalty term in Equation (7):

βj = min
βj

{∥∥∥Ẋj − βjΘ(X)
∥∥∥
2

2
+ λR(βj) + αC(βj)

}
(12)

However, this introduces an additional hyperparameter α which
must be tuned, can turn the optimization non-convex and does
not guarantee that the constraints will be satisfied exactly.

Given some initial knowledge of the model form, either from prior
information or from a preliminary run of the SINDy algorithm, it
is possible to formulate a constrained linear regression problem
which incorporates equality constraints. The linear constraints can
be incorporated into a matrix C
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Figure 3: Summary of the algorithm’s workflow, with the outputs and desired objectives outlined.

C =




c11 c12 · · · c1k
c21 c22 · · · c1k

...
...

. . .
...

cn1 cn2 · · · cnk




(13)

We need to couple the original regression problem to solve for
the entire dynamics of Ẋ simultaneously. To do this we take
the original Ẋ matrix and stack all its columns Ẋj into a single
column. Similarly, we take the original Theta (now including only
the features which we know will be in our model) and form an
expanded Theta matrix where each of its columns is made of a
repetition of the original column to match the size of the newXdot

˙̂
X = Θ̂(X)⊙ Cb (14)




Ẋ1

Ẋ2

...
Ẋn


 =




f1(X) f2(X) · · · fk(X)
f1(X) f2(X) · · · fk(X)

...
...

. . .
...

f1(X) f2(X) · · · fk(X)


⊙ C




b1
b2
...
bk




(15)
where ⊙ represent element-wise multiplication, such that for
each element ϑi,j of the new Θ̂, we have ϑi,j = fi(X) · ci,j .
This solves the system identication problem simultaneously for
all state variables through a shared coefficient vector b. The
expanded coefficient matrix, can be recovered from the reduced
coefficients vector b by multiplying by the corresponding
column in C:

βj = Cj · b (16)

which will exactly satisfy the equality constraints. Note that with
this method we are able to impose linear relationships between
the elements of β or make them equal to zero, but we cannot
impose specific values of the coefficient.

F. Integral Least Squares

Another way to introduce coupling between the variable dynamics
is through integration. Once the correct model form is identified
through SINDy+Pareto and having the resulting coefficient values
as an initial guess, we can optimize these values by minimizing
the difference between the original trajectories and the model
outputs. This implies including a model integration step where

the model is integrated for npoints over nwindows. We then have
the following equations

β = min
β

{ ∑

nwindows

∥∥∥∥X−
∫

Θ(x(t))

∥∥∥∥
2

2

}
(17)

In this case the problem cannot be formulated as a linear
regression problem, as the integration step introduces
non-linearities. However, the same local minimization algorithm
(Nelder-Mead) that was used in the model search step can be
used, given that we start from an initial estimate β0 which we
expect lies close to the fine-tuned solution. This keeps the
computation time small compared to global optimizers like
Evolutionary Algorithms or Simulated Annealing. Another
benefit of having an initial estimate is that we optimize a vector
multiplying β0, such that even if the problem has coefficients
ranging between many orders of magnitude (as is our case), the
optimization is done for a vector with values close to 1, which
aids convergence.

From our experience with the Weak formulation we expect this
formulation to also depend on the window number and window
length. In this case, short window length could lead to overfit. On
the other hand, fitting too long of a window would not only lead
to increased computational cost and perhaps overfitting, but also
leading to the all-zeros trivial solution as it is the one that best
averages oscillating trajectories if the real model can’t be found.

A sweet-spot must be found, in our case through trial and error.
Similar to the weak case, a big number of integration windows
could serve to regularize and minimize overfitting, but increasing
this number would gradually decreasing returns while increasing
computational cost significantly.

During integration the unmodelled variables are treated as forcing
terms and passed to the function at every time-step from an input
array.

G. Pointwise modelling

By taking advantage of the automatic nature of the SINDyEP2
model discovery workflow, we can pass the time series of the
variables for every point in the thruster to obtain a 0D model in
each. In this way we are able to mimic the results of [13] with
fewer hyperparameters and using a simpler algorithm. However,
there are some key drawbacks: the approach presented here skips
the domain segmentation by unsupervised clustering step and is
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unable to promote sparsity in the number of dynamic domains
directly, as done with Sparse Principal Components Analysis.

However, we would expect from the continuous nature of
physical phenomena that the transitions from one dynamic
domain to another should be smooth, with the strictness of the
Pareto selection criterion making this transition clear; expert
assessment can do the rest. We also don’t share the problem of
redundant clusters, so by having a reduced ”equation space”
(feature library) we should expect few dynamic regimes.
Furthermore, uncertainty estimates similar to those of the
Gaussian Mixture Models seen in [13] could also be obtained
from using the data bootstrapping module, but this is not
explored in this work.

Another reason to use reduced libraries instead of a fully
generalized one (as in the original model search) is due to the
quality of the data within real systems and the computational
cost of running the algorithm for large libraries. For a general
pointwise search we recommend building a library with the
terms that predominantly appear in the Pareto front of a
preliminary model search.

In our eyes this pointwise analysis serves a dual purpose:
determining the spatial extent of applicability for candidate
models and helping to provide meaning to unconventional terms
appearing in the equations.

H. Implementation in the algorithm

In this project we have implemented the previously explained
methods within a Python framework denoted EP2-SINDy. Our
implementation can be structured in four main parts:

• Data Pre-processing: the original time series data enters;
the output is the target and feature arrays, which can be in
their Weak and/or bootstrapped versions. The numerical
derivatives are computed by the Smoothed Finite
Difference method, while the weak version of Theta is
computed by numerical integration by the trapezoidal rule.
The feature library itself is computed as all polynomial
combinations of the system variables up to degree n. To
generate each bootstrap we sample the data with
replacement, randomly selecting between 20 and 80
percent of the available data. The number of features
dropped per bootstrap is set by a parameter nculled. Both
target and features can be normalized.

• Model identification: taking the target and feature arrays, it
outputs a collection of candidate models obtained using the
SINDy algorithm with the optimizer of choice. The desired
length and number of points used in the hyperparameter
sweep can also be adjusted.

• Model selection: taking the candidate models, it selects the
optimal one by computing the Pareto distances and returning
the model with the minimal one.

• Post-processing: plots the Pareto front in the error vs nterms

space, as well as printing a list with the algebraic shape of
the models within for further analysis.

• Extensions: once the correct features have been selected,
the coefficients can be fine-tuned by running a Least
Squares on the differential or weak forms of the dynamics
with and without constraints, or directly on the trajectory
data through the Integral Least Squares method. As an
additional option, the resulting feature selection or reduced
library can be passed to the Pointwise analysis tool over a
selected spatial domain, or fitted to several datasets to
assess model robustness and extrapolability.

All of this is implemented within a core function, while all
pre-processing which depends on the specific characteristics of
the system (like selecting which features to model and which to
include in the feature library, filtering, removing outliers...) has
to be done outside of the core function.

The entire workflow is represented in Figure 3.

III. DATA GENERATION

In this section we give a brief overview of the code used to
generate the data, and describe the data characteristics.

A. HYPHEN-HET Simulation

The 2D axisymmetric hybrid PIC/fluid HET simulator named
HYPHEN-HET [24] was used to generate the data for this
study, which is available for public use through a Zenodo
dataset [25]. The code uses a fluid description for electrons but
treats ions and neutrals kinetically, using a time-marching
sequential loop to couple the modules. It includes models for
complex phenomena within the thruster like inter-particle
collisions, plasma-wall interactions, the formation of plasma
sheaths on the thruster walls and a empirical model for
anomalous electron transport, linked to turbulence.

A dedicated sheath module is used to model the transition from
the bulk quasineutral plasma to the non-neutral plasma near the
walls using a planar, unmagnetized, collisionless, kinetic model
including Secondary Electron Emission and retaining
non-Maxwellian distributions. The sheath is solved with the
appropiate conditions both for dielectric and metalic walls. For
plasma-wall interactions, neutral quasispecular scattering and
neutralization and ion recombination are also modelled.

Both elastic and inelastic (excitation, ionization) collisions are
modelled, with cross-sections taken from the BIAGI database [26]
for single-ion generation and the Drawin model [27] for double-
ion generation. The code is also able to simulate Charge Exchange
slow ions and fast neutral populations, but this is not included in
the current simulations.

The SPT-100 is simulated by modeling its specific geometry,
magnetic topology and cathode position. We chose to use data
obtained for a previous data-driven study [28] where stable
oscillations appear with a dominant breathing mode. In this
thesis we will use the nominal case used in said study, operating
with Xenon with a discharge voltage of VD = 300 V and an
anode mass flow rate of ṁA = 5 mg/s. Other off-nominal cases
(with the turbulent transport term not fitted with experimental
data) will be used to perform a parametric analysis.

The data is obtained from 41 × 49 points in the axial-radial
(z-r) simulation domain by time-averaging every 100 simulation
steps, resulting in a sampling time of 1.5 µs for a total of
12001 points. From the simulations we extract the time series
for the neutral density, singly-charged density, electron
temperature and singly-charged ion velocities (both axial and
radial) at all points in the discharge channel of the thruster. We
interpolate the ionization rate for singly-charged ions and
neutrals at each point by using the same look-up table used
within HYPHEN which relate the electron temperature and
ionization rates. From now on we will omit specifying the
singly-charged nature of the ions and their variables for brevity;
we do not select data from the doubly-charged ions as their
population is much fewer, and defining an ion velocity with two
populations can result ambiguous. For the pointwise models we
take the data straight from each point without spatial averaging.
For the global models, we average spatially over an area
downstream the discharge chamber.
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IV. MODELS FOR THE BREATHING MODE

We now finally turn to the application of the algorithm for
obtaining 0D models for the ion and neutral density dynamics
downstream. The models are obtained by running the ALASSO
optimizer with nbootstraps = 32 on the differential form of the
inputs, with progressively more complex feature libraries. We
plot the Pareto front for the simplest and more complex cases to
give an outlook on the process behind model selection.

A. Simple model

In this section we review the model discovery done for the simple
case during the Integral Project. For a first application of the
algorithm in the real scenario we tried to find a self-consistent
model by using a library featuring all polynomial combinations
of ni and nn up to degree n=2.

Figure 4: Pareto front of both ions (top) and neutrals (bottom)
corresponding to Model 1.

bluePoli!40 score (R2) nterms dPareto model
-8.46 1 9.46 ṅi = 1.89 · 10−15n2

n
0.63 2 0.49 ṅi = −1.45 · 105ni + 4.12 · 10−14ninn

0.69 3 0.59 ṅi = −2 · 105ni + 4.31 · 10−14ninn + 2.13 · 10−14n2
i

-2.56 1 3.57 ṅn = 2.04 · 10−14ninn

0.85 2 0.36 ṅn = 4.58 · 104nn − 4.89 · 10−14ninn

0.88 3 0.51 ṅn = −7 · 104nn − 5.02 · 10−14ninn − 4.16 · 10−15n2
n

Table I: Some of the models obtained along the Pareto front for
the ion (top) and neutral (bottom) dynamics, along with their
respective metrics. In bold, the minimal Pareto distance for each
variable.

The first three models of the Pareto front can be seen in Table I.
The Pareto optimal combination results in:

ṅi = −1.45 · 105ni + 4.12 · 10−14ninn (18a)

ṅn = 4.58 · 104nn − 4.89 · 10−14ninn (18b)

The optimal model corresponds exactly with Equation (3),
featuring an ionization term ninn (a source for the ions, a sink
for the neutrals), an ion outflow term −ni and neutral inflow
nn. Examining the resulting Pareto front, a sharp drop in error
can be seen for the 2-term models. In the neutral front we see a
significant number of models very similar in terms of error,
which is a dangerous hint of the strongly correlated nature of
our library; for our unfiltered data it would not be possible to
assert if the models in the Pareto front for nterms > 2 are
physically relevant. Beyond this, we can also see how the error
does not decrease much further for increasing number of terms
and saturates at around 25% (10%) for the ions (neutrals). This
can be related to the higher-frequency dynamics observed in the
original data which cannot be modelled by our low order
library. We compare the coefficients in Equation (18) with those
computed from average values within the downstream area:

ui/L ≈ 5500m s−1 / 2.5cm = 2.20 · 105s−1

un/L ≈ 260m s−1 / 2.5cm = 1.04 · 104s−1

Rion(Te) ≈ 7.17 · 10−14m3s−1
(19)

which lie pretty close to the observed one, another confirmation
of the correct physical meaning assigned to each coefficient.

B. Adding the dependence on ionization rate

To obtain a more complex model we add the ionization rate
Rion to our n=3 degree library. This comes motivated by the
observation by some authors that oscillations were recovered for
constant neutral injection models once the ionization rate
dependence on a changing electron temperature was introduced
through ninnRion.

bluePoli!40 score (R2) nterms dPareto model
-8.46 1 9.46 ṅi = 1.89 · 10−15n2

n
0.92 2 0.41 ṅi = −2.66 · 105ni + 1.16 ninnRion

0.95 3 0.60 ṅi = 1.83 ninnRion − 5.45 · 10−14ninn +−3.14 · 1018niRion

-0.69 1 1.70 ṅn = −3.81 · 10−14n2
i

0.88 2 0.42 ṅn = 1.83 · 1023 − 0.77 ninnRion

0.94 3 0.60 ṅn = 1.16 · 1023 − 0.81 ninnRion − 1.99 · 104nn

Table II: Some of the models obtained along the Pareto front
for the ion (top) and neutral (bottom) dynamics, along with their
respective metrics. In bold, the minimal Pareto distance for each
variable.

Looking at Table II we obtain the following Pareto-optimal
model:

ṅi = −2.66 · 105ni + 1.16 ninnRion (20a)

ṅn = 1.83 · 1023 − 0.77 ninnRion (20b)

Indeed, the ionization rate appears as part of the ionization term
Sion. Interestingly, the neutral dynamics change from having a
proportional neutral influx to a constant one. This is aligned with
what was modelled in the literature, but the decision on the correct
term for the equation was done in an unsupervised way. We can
see that the ionization term coefficient is now approximately equal
to 1, albeit still different for the two equations.

C. Adding the dependence on the ion velocities

In this last increase in complexity we use a library featuring all
polynomial combinations of ni, nn, Rion, ui,z and ui,r up to
degree n=2, and an additional column for the term ninnRion.
We do this to avoid the computational cost and high degree of
correlation that would come from doing a bootstrapped model
search with a library including 35 features.
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Figure 5: Integration of the three identified models, compared to the real trajectory.

Figure 6: Comparison of the derivatives obtained from numerical differentiation of the data and evaluating the different models on
the training data.

bluePoli!40 score (R2) nterms dPareto model
-8.46 1 9.46 ṅi = 1.89 · 10−15n2

n
0.95 2 0.40 ṅi = −41.2 niui,z + 0.82 ninnRion

0.99 3 0.60 ṅi = −47.7 niui,z + 1.26 ninnRion − 2.09 · 10−14ninn

-0.69 1 1.70 ṅn = −3.81 · 10−14n2
i

0.88 2 0.42 ṅn = 1.83 · 1023 − 0.77 ninnRion

0.94 3 0.60 ṅn = 2.55 · 1023 − 0.89 ninnRion − 2.23 · 1030Rionui,zui,r

Table III: Some of the models obtained along the Pareto front
for the ion (top) and neutral (bottom) dynamics, along with their
respective metrics. In bold, the minimal Pareto distance for each
variable.

Figure 7: Pareto front of both ions (top) and neutrals (bottom).

Looking at the resulting Pareto fronts in Figure 7 we still see
the pronounced drop indicative of correct identification. It can
also be seen that beyond the 2-term solution there are plenty of
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plausible models with the same number of terms and very close
in accuracy. From Table III we have the following Pareto-optimal
equations

ṅi = −41.2 niui,z + 0.82 ninnRion (21a)

ṅn = 1.83 · 1023 − 0.77 ninnRion (21b)

The ion axial velocity appears in the ion equation as part of
the convection term. However, there is no term going with ui,r,
representing radial transport with a source or sink Swalls. For the
neutrals, the dynamics stay the same as in the previous case. A
3-term model displaying the radial velocity is next in the Pareto
front (Table III), but no apparent meaning can be given to it.

Integrating Equations (18), (20) and (21) in Figure 5 we can
visually observe the performance of each model compared to
the original data. The original data has the characteristic sharp
increases and smoother decreases corresponding with the ions
in the start, saturation and replenishment of the instability. The
simple predator-prey model follows the correct shape and
amplitude, but has a visibly lower frequency. The model
accounting for the ionization rate has the correct frequency, but
a lower amplitude for the neutrals. Surprisingly, the most
complete and better-scoring of the three models performs the
worst, having the right frequency but the wrong shape and
amplitude.

The reason for this mismatch is two-fold, and can be seen from
Figure 6: on the one hand, the constant injection model for the
neutral dynamics has a better R2 score by 3% (see Tables I and
II, for instance), but the shape seems to miss the shoulder-like
shape of the original dynamics. On the other hand, as was
mentioned in the Introduction, the regression is done on
pre-computed trajectories, very different from the one that the
system follows once the model is integrated self-consistently.

V. EXTENSIONS

In the previous section we have observed the same limitations
of the standard SINDy approach as was concluded during the
Integral Project. In this section we aim to address these limitations
by first applying the weak form of the inputs for model discovery,
and then, by using the methods covered in Sections II-E and II-F.
For simplicity we apply the methods to the predator-prey model.

A. Solution with Physical constraints

We use a reduced library based on the remaining functionals in
Equation (18), Θ(X) = [ni, nn, ninn] which will be used to
build the stacked library matrix. Owing to the fact that we
know the ionization term is shared and of opposite sign, while
the convective term only appear in their respective equations,
we build the following constraint matrix:

C =

[
1 0 1
0 1 −1

]
(22)

which constraints the ionization coefficients to be equal for both
equations, but with opposite sign. Running the constrained Least
Squares procedure returns the following model:

ṅi = −1.64 · 105ni + 4.66 · 10−14ninn (23a)

ṅn = 4.39 · 104nn − 4.66 · 10−14ninn (23b)

which results in the red trajectory seen in Figure 9. Just by
adding this simple constraint we are able to correct the
oscillation frequency while keeping the oscillation shape and
frequency.

However, we have attempted to introduce the same constraint
in Models 2 and 3, but the resulting trajectories did not change
significantly. This may be a pointer that either the model or the
constraint are either incorrect or too restrictive for those cases.

B. Weak form solution

In a previous study we have seen how using the weak forms
improved selection in noisy cases, but the formulation had a
strong dependence on the integration window hyperparameters.
We are interested in see how it behaves for our system of
interest, where instead of noise we have non-stochastic
high-frequency dynamics superimposed to the low-frequency
Breathing Mode. Setting nwindows = 10000 and changing
npoints from 10, 50, 70 and 300 to cover within one window,
respectively: a glimpse of the trajectory, half an oscillation, a
full oscillation and many oscillation. The results can be seen in
Figure 8

For a small number of integration points the solutions (and
resulting model) tends towards the differential form one, as
would be expected; for an intermediate amount around 70
points we recover a trajectory similar to the constrained and
integral models, although the frequency still differs from the
one of the data. For higher number of windows the frequency
spectrum seems correct, but the trajectory lags behind. For even
higher numbers the frequency is again incorrect. Remarkably,
the correct choice of the parameter, nwindows ≈ 70, leading to
model:

ṅi = −1.51 · 105ni + 4.21 · 10−14ninn (24a)

ṅn = 4.93 · 104nn − 5.17 · 10−14ninn (24b)

also leads a trajectory very similar to the one resulting from using
constraints, but without the necessity to know the real system.

C. Integral Least Squares solution

We have seen that introducing constraints has improved the
solution by correcting the mismatch in frequency without
altering the shape of the oscillations. We are left to wonder if
using information from the trajectory to improve our initial
model could yield the same result. We start from the solution
given by the base algorithm to obtain the correct model shape
(and reduce our feature library to Θ = [ni, nn, ninn]) and an
initial estimate for the coefficients. We then run the ILS
algorithm as explained in Section II-F, with nwindows = 30,
wsize = 100.

Previous work from the Weak formulation has seen that the
solution depends on the selection of these parameters

VI. PARAMETRIC STUDY

After finding promising models for the nominal operating point
we are interested in studying the dependence of the model
coefficients with the two input parameters of the discharge: the
discharge voltage VD and the mass flow rate ṁA. We then pick
five additional operating points where the breathing mode is
apparent and perform a least squares fit to the optimal support.
We only do this analysis for the model depending on the
ionization rate and ion velocities as the meaning of the
coefficients is the most clear.
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Figure 8: Comparison between true data and weak form predictions for the trajectories, phase space, derivative and Fourier spectrum.
The weak forms depend on the number of points used per integration window.

Figure 9: Comparison between true data and the constrained, weak and integral fine-tuned model predictions, with the Fourier power
spectrum on the right.

After finding promising models for the nominal operating point
we are interested in studying the dependence of the model
coefficients with the two input parameters of the discharge: the
discharge voltage VD and the mass flow rate ṁA. We then pick
five additional operating points where the breathing mode is
apparent and apply our algorithm. We compare the results with
and without the constraint on the ionization rate. We enumerate
the resulting coefficients in Table IV and Table V, were taken
within the equations to correspond with Equation 25.

ṅi = niui,z/L+ ϵion,ni
ninnRion (25a)

ṅn = ginj − ϵion,nn
ninnRion (25b)

where ϵion,ni
= ϵion,nn

≡ ϵion for the constrained case. The
trends with mass flow rate for the cases at VD = 300V can be
seen in Figure 10. We had too few point to set trends with the
discharge voltage, so we refrain from visual analysis.

VD(V ) ṁA (mg/s) L (cm) ginj(m
−3/s) ϵion,ni ϵion,nn

200 5 0.018 2.36 · 1023 1.06 1.06
300 2 0.020 7.62 · 1022 0.97 0.67
300 4 0.023 1.56 · 1023 0.84 0.59
300 5 0.024 1.89 · 1023 0.82 0.64
300 6 0.026 2.23 · 1023 0.77 0.61
400 5 0.026 1.70 · 1023 0.84 0.77

Table IV: Characteristic values for the terms appearing in
Equation (25) for each of the operating points studied.

Figure 10: Trend of the characteristic length, injection and
ionization terms for increasing mass flow rates, with and without
constraints.

VD(V ) ṁA (mg/s) L (cm) ginj(m
−3/s) ϵion

200 5 0.016 2.72 · 1023 1.01
300 2 0.021 7.31 · 1022 0.91
300 4 0.024 1.53 · 1023 0.81
300 5 0.025 1.85 · 1023 0.78
300 6 0.027 2.17 · 1023 0.75
400 5 0.028 1.57 · 1023 0.76

Table V: Characteristic values for the terms appearing in Equation
(25) for each of the operating points studied, to make ϵion,ni =
ϵion,nn ≡ ϵion

The linear increase of the injection term with injection rate was
to be expected, but we see that both the characteristic length
and ionization term depend on ṁA. Given that using the
ionization rate directly inside the ionization term already
accounts for changes in electron temperature for different mass
flow rates, this is surprising. Likewise, many studies link the
characteristic length in Equation (25) to the fixed thruster
channel length. One reason for this change could be that it is
compensating for the changing ionization term.
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Figure 11: Pointwise distribution of coefficient values inside the discharge chamber, with the terms appearing in the ion dynamics
at the top row and the neutral dynamics at the bottom. The color bar shows the magnitude of the exponent while the sign indicates
whether the term is positive or negative within the equation, i.e. val = sign(βj,i) · |log10(|βj,i|)|.

In the case of ϵion,i, we see decreasing ionization values for
increasing mass flow rate. Because of this and the fact that the
value strays from 1, we would expect that within the ionization
term there are other physical process being modelled; for
instance, the decrease in the coefficient could be linked to a
sink term proportional to ninnRion from ion recombination to
the walls; however, this simple analysis is not sufficient to
discern this, but only to obtain trends. In the case of the
unconstrained ϵion, we could say that a trend is not clear, and
differences in value could be due to the numerical uncertainty
in the coefficients; i.e. the term stays practically constant, and
we could say that either the processes captured within the term
cancel each-other out or are independent of mass flow rate.

For the constrained cases we can see how the trends remain, and
the ionization term coefficient, now common to both equations,
mimics the trend of ϵion,ni

. A spatial analysis of the coefficient
evolution might be able to shed more details into the meaning of
the coefficients.

VII. POINTWISE MODELS

Using the same model from the previous Section, we establish a
reduced library including only the terms which could shed light
into some of the unknowns seen in this thesis:
Θ = [1, nn, niui,z, niui,r, ninnRion(Te)]; based on this library,
we ran a model search for each point within our expanded
spatial domain covering the upstream and downstream channel
areas. In this way we can study the range of application of the
previous section models and the spatial dependence of certain
terms. The results of this analysis can be seen in Figure 11.

Some general insight should be provided first: we see that the
ionization terms are present in practically all the domain and
do not change their magnitude or sign significantly; likewise, the
axial ion convection term is applicable to most of the channel, and
only dissapears upstream near the backstreaming region, where
ion velocity goes to zero and reverses direction towards the anode.
This hints to a global ion behaviour, with a global model only
slighty modified by extra terms in more complex areas.

This is the case near the walls, where the radial convection term
finally appears unlike in the bulk plasma. Interestingly, it acts as
a source term for the ions on the lateral walls, and a sink near
the anode; for the neutrals it is always a source term.

For the neutrals, the neutral inflow term can be seen to go from
a proportional predator-prey-like injection downstream to a
constant injection near the anode; this seem to match our

intuition, as further downstream there should be a strong effect
from the neutrals coming from ion recombination to the walls.

Overall, trying to obtain more than general conclusions from this
analysis appears harder than expected, as there is a strong spatial
overlap between terms, and some visually consistent patterns do
not have clear explanations. After all, some of this patterns could
be related to the quality of the data, a specially important factor
when no averaging or filtering of any type is performed. However,
away from the walls it can be seen that the ions follow uniform
dynamics while the neutral dynamic model changes the nature of
its injection term over the domain.

VIII. CONCLUSIONS

Within this thesis we have reviewed and completed the
implementation of data-driven framework for system
identification. By expanding the SINDy algorithm with
components which lead to robust model selection and model
fine-tuning we have obtained a general-purpose algorithm which
nonetheless shows promise in its application to electric
propulsion systems.

Global models of increasing complexity were obtained which
aligned pretty well with the ones found in the literature. The
predator-prey model was again found to be the simplest model
able to capture the Breathing Mode dynamics. More complex
models, including one accounting for a time-varying ionization
rate and ion velocities, were shown to be preferred even though
their modelling of the neutral dynamics does not seem to match
the one observed in the data. The more complex models capture
well the frequency but not the amplitude of the oscillations.
This highlighted that improved performance as measured in the
dynamics does not imply better performance when integrating
the model, and naturally required the use of advanced
techniques.

In that line, a contrained and an integral variant of Least
Squares on the selected features were also shown to yield
improvements over the initial model. Using the weak form of
the inputs could also improve the model, but precise knowledge
of the right parameters is needed.

A parametric study allowed to validate the consistency of the
model and expanded the meaning of its terms, as we were able
to suggest that the ionization term in our advanced models may
account not only for ionization, but also many other processes
whose physical terms get reduced into a single, simple
description from the sparsity criterion. While this effective
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approximation is desired, it was seen that models with more
terms along the Pareto front cannot be directly related with
more detailed approximations, as previous works suggested
[23].

Pointwise models pointed our attention to the spatial
dependence of the neutral inflow term, while the presence of
different areas heavily influenced by the wall and injector were
also made clear. Outlining a precise number of clusters was not
possible due to many overlaps between the dynamic subsets, but
smooth transitions between regions could be observed.

Compared with experimental data, which cannot be measured in
the channel of a HET and is limited in temporal and spatial
resolution, HYPHEN has lent us the ability to get fully resolved
spatio-temporal data. Indeed, having a algorithm capable of
processing high-dimensional datasets coming from HYPHEN
simulations can present for powerful modeling capabilities.
Here we have limited ourselves to study a well-known
phenomena in one of the most conventional thruster types, but
this could be expanded to more advanced designs, as long as
the simulations are a good representation of the ground truth.

Further work should seek to find data-driven models for the
ionization rate/electron temperature and ion velocity, although
these models do not seem to be sparse or easily expressed by
polynomials. Other options for expansion could include
increasing the training dataset to discover data-driven control
laws, obtain bifurcation diagrams for mode transitions in HETs
[29], obtain models for the oscillations in EPTs... From the
algorithmic point of view, the bootstrapping use could be
expanded to provide uncertainty estimates, autoencoders could
be used to simultaneously learn Reduced Order Models and
equations [30]. However, we must be wary of its limitations, as
it acts as no substitute to the researcher but should be
complemented and guided by it.
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Abstract—The development of efficient and reliable electric space
propulsion systems relies on accurate modeling and identification
of their underlying dynamics. Traditional approaches to model
identification often involve intricate physical analysis or making
extensive assumptions, limiting their applicability and scalability.
This project presents and benchmarks an algorithm based on
sparse regression and model parsimony for the automatic
data-driven identification of models for space plasma thrusters.
Several alternatives of the algorithm are outlined and tested
against a benchmark of four synthetic dynamical systems and real
data from a Hall Effect Thruster simulation. The results obtained
demonstrate the algorithm’s ability to identify simple models from
complex datasets displaying relevant features and relationships, as
well as its limitations.

I. INTRODUCTION

Hall Effect Thrusters (HETs) have emerged as highly successful
electric space propulsion systems. Typically, these systems
employ an annular chamber that utilizes electron collisions to
ionize an injected neutral gas, resulting in the formation of a
plasma consisting of electrons and ions. This plasma is
subsequently accelerated by an induced axial electric field,
which is established between an internal anode (also serving as
a propellant injector) and an external cathode. Despite their
extensive usage in space and extensive research, certain aspects
of HET physics remain incompletely understood, prompting
ongoing investigations.

One intriguing phenomenon that merits attention is the presence
of oscillations within the HET discharge. Their presence has
been linked to enhanced transport and impacts the performance
and efficiency of the device in a deleterious way [1]. Notably,
the most prominent oscillation observed in HETs is the
breathing mode. This mode entails significant low-frequency
discharge current oscillations that primarily occur along the
axial direction within the chamber. The physical mechanism
responsible for these breathing oscillations is currently
well-defined and typically described as an
ionization/neutral-depletion instability resembling a
predator-prey relationship [2], [3], [4]. However, a consistent
model that comprehensively explains the physics of this
instability, including its onset criteria and growth rate, is still
missing. In this context, machine learning and data-driven
techniques offer the potential to uncover hidden insights from
high-dimensional data, enabling the discovery of patterns
without the limitations imposed by researcher bias.

Figure 1: Lateral cut and 3D view of a Hall Effect Thruster. Taken
from [5].

Several such techniques have already been employed for
modeling and analysis in Hall Effect Thrusters. Examples
include the use of Dynamic Mode Decomposition [6] to isolate
the Breathing Mode from other dynamics, Neural Networks [7]
for obtaining scaling laws, Gaussian Process regression [8] to

model anomalous transport, and Stochastic system identification
[9] to model discharge oscillations. However, the success of
these models has been limited thus far due to lacking
interpretability, requiring excessive amounts of data and/or
computations or requiring a-priori model specifications which
either constrain the search or lead to overfitting to the training
dataset, limiting physical insights. Symbolic regression [10] has
also been employed to obtain algebraic equations for the
anomalous transport term while penalizing complex expressions
to prevent overfitting, with much better results. In the broader
context of plasma physics, sparse regression and its algorithmic
implementation, the Sparse Identification of Non-linear
Dynamics (SINDy) framework [11], have proven successful in
deriving algebraic equations that capture system dynamics in
low-pressure discharges [12], fusion [13], and various
theoretical settings [14], [15] but have not yet been tested for
modeling dynamics of space propulsion plasmas. The SINDy
framework offers notable advantages over Symbolic regression,
including reduced computational costs, easier implementation,
and an abundance of variants that expand and strengthen its
applications, such as weak formulations [16], [17], [18],
different optimizers [19], [20] or by use of statistical techniques
[21].

Beyond avoiding researcher bias, unsupervised (data-driven)
system identification offers another significant advantage—it
enables exploration of otherwise unapproachable model
searches in high-dimensional parametric spaces. In such spaces,
the parameters can encompass variables that define operating
points, noise characteristics, or even spatial dependencies of the
dynamics. However, a major challenge arises from the heavy
reliance of these techniques on external parameters known as
hyperparameters, which are not determined by the algorithm
itself. Typically, these hyperparameters are manually fine-tuned
through a trial-and-error process, involving the execution of the
algorithm with various combinations and the selection of the
best-performing combination based on error metrics. This may
not be feasible for the aforementioned cases, or when there is
limited understanding about system under study.

To overcome these limitations, advanced methods for
hyperparameter tuning have been utilized with SINDy,
including the utilization of Information Theory metrics (such as
AIC and BIC) [22] and Pareto Analysis [20]. These methods
aim to strike a balance between model complexity and accuracy
and have demonstrated superior performance compared to
alternatives like k-fold Cross-Validation in terms of both results
and computational efficiency. By leveraging these techniques, it
becomes possible to enhance the effectiveness of unsupervised
system identification, enabling the discovery of optimal
hyperparameter configurations that yield accurate and robust
models in high-dimensional parametric spaces.

The main objective of this project is to evaluate some of the
most promising methods employed within SINDy and assess
their potential applicability to electric propulsion systems.
Specifically, we wish to compare the performance of two
different optimizers (STLSQ and ALASSO), two formulations
(Differential and Weak), the use of statistical techniques and
automatic hyperparameter tuning to improve system
identification robustness. We first implemented the algorithms
within a general framework, denoted EP2-SINDy and written in
Python. In the second part of the project we benchmarked the
algorithms by measuring performance metrics on data coming
from four synthetic data-sets and from a Hall Effect Thruster
simulation exhibiting Breathing Mode oscillations. The
conclusions obtained from this project set the ground for further
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expansions and applications as part of the author’s Final
Master’s Thesis.

II. METHODS

A. Sparse Identification of Nonlinear Dynamics (SINDy)

Most physical systems have only a few relevant terms that define
their dynamics. For a dynamical system of state X(t) governed
by a set of ordinary differential equations of the form

d

dt
x(t) = ẋ(t) = f(x(t)) (1)

where we can construct a pair of matrices X and Ẋ representing
the state variables and their derivatives sampled at discretes points
in time:

X =




xT (t1)
xT (t2)

...
xT (tm)


 =




x1 (t1) x2 (t1) · · · xn (t1)
x1 (t2) x2 (t2) · · · xn (t2)

...
...

. . .
...

x1 (tm) x2 (tm) · · · xn (tm)




Ẋ =




ẋT (t1)
ẋT (t2)

...
ẋT (tm)


 =




ẋ1 (t1) ẋ2 (t1) · · · ẋn (t1)
ẋ1 (t2) ẋ2 (t2) · · · ẋn (t2)

...
...

. . .
...

ẋ1 (tm) ẋ2 (tm) · · · ẋn (tm)


 .

(2)

To determine the function f in a data-driven way, we can express
the problem as a linear regression for each of the columns of
matrix 2, denoted from now on Ẋj . By either measuring the
state derivatives directly or computing them numerically from the
state measurements we can obtain said columns. Likewise we can
measure or construct from state measurements a feature library Θ,
where each of its columns represents a different feature/function
of the state fi(X) candidate to be present in the dynamics f ,
evaluated at each time-step i.e. Θ(X) = [f1(X), f2(X) ... fk(X)].
We then formulate the problem as in Equation (3), where we have
to solve for the coefficients βj :

Ẋj = βj ·Θ(X) (3)

From the assumption that f is sparse we would expect for most
of the βj,i in the true coefficients βj = [βj,0, βj,1, ..., βj,k] to
be near or equal to zero; however, this would not be the case if
Ordinary Least Squares regression was to be applied to Equation
(3). Likewise, the brute-force approach of trying all possible Θ
and choosing the best-performing one can get intractable for high-
dimensional systems and candidate libraries.

The Sparse Identification of Nonlinear Dynamics (SINDy)
exploits the key idea that f is sparse by solving for (3) through
linear regression but adding a regularization term to promote
sparsity in the solution:

βj = min
β̂

∥∥∥Ẋj − β̂Θ(X)
∥∥∥
2

2
+ λR(β̂) (4)

where R(β) is a norm term that penalizes the presence of non-zero
terms in the coefficient vector, and λ weights the regularization
over the typical least squares term. It can be seen that by using
λ = 0 in (4) the Ordinary Least Squares formulation is recovered.
There are several common options for R(β). The ideal R(β) is
the L0 norm, because it penalizes the amount of model terms
without penalizing their magnitude; however, minimizing on this
norm leads to non-convex optimization problems. The L1 and L2
norms act as proxies of the first, penalizing the absolute value
and the square root of the coefficients, respectively. Depending

on the form of R(β), whether the optimization is iterative or done
in a single step and other factors, many optimizer variants can be
defined varying in their definition of (4). In this work we focus
and compare two of the most successful optimizers: STLSQ and
ALASSO, which are explained in detail at the end of this section.

Assuming a proper selection of R(β) and given the correct
sparsity setting, SINDy is able to find the features relevant to
the dynamics and set the coefficients of the rest equal to zero.
This approach has several advantages compared to other system
identification methods:

• The optimization problem is formulated in a linear way,
even if Θ(X) can contain arbitrarily complex non-linear
functions.

• In theory, an arbitrary number of candidate functions can
be included in Θ(X) without hampering finding the true
model.

• The optimization problem is uncoupled among the state
variables of the dynamical system, as it only depends on
their time-series.

• By not requiring a priori specification of a model asides from
the selection of library candidate terms, sparse regression
isn’t as heavily affected by human bias, or unknown gaps
in domain knowledge. The algorithm so far is purely data-
driven, as its minimization is based solely on the data.

The second point is only true for entirely orthogonal features,
due to increasing ill-possened of the problem owing to feature
correlation as the number of features increases. Furthermore,
the formulation is based on several large assumptions: namely,
that the true first-order dynamics of each state variable are
sparse, that the true functionals present in the real dynamics are
represented in Θ(X) and that Equation 3 holds (which is not
the case for noisy data). Most of these assumptions can be
relaxed by either looking for approximate models or extending
the SINDy formulation with additional expansions of the
method. Overall, the ease of adaptation and implementation is
another big advantage of using SINDy.

Figure 2: Schematic view of the STLSQ and ALASSO
algorithmic implementation.

1) STLSQ: The Sequentially Thresholded Least Squares
(STLSQ) algorithm was presented in the original SINDy paper
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[11], and has been shown to have guaranteed local convergence
[23], often outperforming convex variants such as the LASSO.
The algorithm works as shown in Figure 2: by iteratively doing
Ordinary Least Squares regression with R(β) = 0, and then
culling from the initial library the features whose coefficient is
below a set threshold. At each iteration the Least Squares
procedure is repeated on the remaining features, until all the
non-zero coefficients are above the given threshold. The
thresholding step has been shown to be an effective proxy of
L0-norm regularization [20], but requires that either all the
coefficients are of the same order of magnitude or that the
target and features are normalized before inputting them into
the algorithm.

Another complication of the STLSQ algorithm comes from a
decrease in accuracy of model selection for increasing noise
levels. Recent variations of the algorithm add L2-norm
regularization to the regression problem (STRidge [24]) but this
adds one additional parameter related to the regularization
strength and biases the coefficients towards small values.
Moreover, the same paper that gives it local convergence
guarantees warns about the danger of inconsistent feature
selection due to early culling of important features [23].
2) ALASSO: One method which drops the thresholding step
while acting as an unbiased and convex proxy of the L0-norm
is the Adaptive Least Absolute Shrinkage Operator (ALASSO)
method. As a variation of the traditional LASSO method, it
uses the L1-norm but with each coefficient having a different
weight in the regularization term based on their Ordinary Least
Squares coefficients βols, such that Equation 4 becomes:

R(βj) =
∑

i

∥wi · βj,i∥1 =
∑

i

∣∣∣∣∣
1∣∣βols
j,i

∣∣ · βj,i

∣∣∣∣∣ (5)

This has been shown to have oracle properties, in the sense that
it performs as well as if the true underlying model were given
in advance [25]. By using a weighted L1 norm it is able to
place a stronger penalty on the coefficients βj,i that are
anticipated to be small (or zero) on top of avoiding penalizing
big coefficients values. In a more formal sense, the ALASSO
gives a consistent estimator β in terms of variable selection and
parameter estimation in the limit of sample size N → ∞,
meaning that it gives an unbiased estimate corresponding to the
true model. Furthermore, because of the use of the L1 norm
instead of an L2 norm, the algorithm leads the coefficients to
zero and no thresholding step is needed. Our implementation of
the ALASSO algorithm can be seen in Figure 2, where
applying the weights to the feature library is equivalent to doing
so to the coefficients, and allows to re-use the Ridge regression
implementation of the Sklearn Python library. Unlike the
STLSQ algorithm in which it is done automatically, a final
Ordinary Least Squares fit is done on the remaining features to
ensure that the coefficients aren’t biased.

B. Hyperparameter tuning: Pareto front Analysis

One of the limitations of SINDy is the need to find the correct
sparsity level, set by the hyperparameters α in ALASSO and λ
in STLSQ as seen in the previous section. There is no known
method for the optimal choice of such regularization parameters
[26], but there are several methods [27] to approximate it:

• Supervised methods (requiring knowledge of the problem
or of the noise variance): heuristic (rule of thumb) methods,
Morozov’s discrepancy principle.

• Unsupervised (data-driven) methods: (Generalized)
Cross-validation, Information criteria like the AIC/BIC,
L-curve/Pareto front analysis.

Among the second kind, using GCV has been observed to easily
lead to overfitting while the definition of the AIC/BIC can be
somewhat arbitrary. For this reason, in this work we choose to
explore Pareto front analysis.

By considering a wide range of hyperparameter values, from zero
to infinity, various sets of solutions to the optimization problem
can be obtained. These solutions span from the inaccurate all-zero
solutions for λ = ∞ to the better-scoring but non-sparse least
square solutions for λ = 0. The key is to find a sweet spot where
the model strikes a balance between overfitting and underfitting
the data. This principle is known as the Pareto ”knee” criteria.
Plotting the error versus complexity for each model allows us to
identify the best models at different levels of complexity, forming
an L-shaped curve within the solution space known as the Pareto
front. The knee of this curve likely represents an appropriate
trade-off point, where both metrics are minimized effectively.

In our case we define the complexity exactly as the L0-norm of
the model, normalized by the total number of features in the
library. We define the error as 1–R2, where R2 is the coefficient
of determination on the whole dataset. For ideal cases a clear
inflection region in terms of error would appear as model
complexity is increased representing the addition of all terms
necessary to minimally represent the dynamics; this is precisely
the definition of the knee-point and Pareto-optimal model.
However, real system exhibiting noise, secular terms (as will be
seen in the Underdamped Oscillator model) or represented in a
non-sparse basis may not display this feature. To locate the
knee-point we instead use the geometrical property that the
knee is the point closer to the ideal solution, in this case one
with zero complexity and zero error. To find the knee we define
an Euclidean distance in the normalized space:

dPareto,i =

√
(1−R2

i )
2 +

(
nterms,i

nfeatures

)2

(6)

such that the knee corresponds to the model which minimizes
this distance. We take this method from Multi-objective
Optimization’s Weighted Metric Method [28], although in our
case we use this method to choose one optimal solution from
the already-existing solution space, instead of iteratively
locating all Pareto front solutions.

C. Data pre-processing

1) Train-test set separation: Train-test data separation is crucial
in Machine Learning as it provides us with an estimate of how
well the model will perform on unseen data, on top of avoiding
model overfits to the training data. In our case, to obtain the test
set we sample 25% of the data without replacement. We use the
train set to find and fit the models, while the test set is only used
to evaluate the scores for the Pareto front selection.
2) Computing the derivatives: If the data are smooth in the sense
of lacking abrupt or irregular fluctuations, then Finite Difference
methods give accurate derivative approximations. When the data
are noisy, they give derivative estimates with more noise than the
original data. To compute the numerical derivatives we use the
Smoothed Finite Difference method, which first uses a Savitzky-
Golay filter to smooth the data, then takes Finite Differences.
3) Weak SINDy: The subtraction operation in numerical
differentiation amplifies the noise present in the original
time-series. Applying filtering can smooth out fast dynamics
and introduce artifacts, hampering the feature selection process.
For this reason some authors have proposed the use of Weak
versions of Equation 3 [17], [18], obtained from multiplying
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Figure 3: Summary of the algorithm: first SINDy is applied to obtain the candidate models for the dynamics of every modelled
variable by sweeping a range of the algorithm hyperparameters. Then the candidates are plotted in a Pareto front and the optimal
one is chosen based on the ”knee” criterion. Expansions of the framework are enumerated on the left; some are present in this study
while others are planned to be implemented in the future. Modified from [XXX].

both sides by
∫ b

a
ϕ(u)du, where ϕ(u) is an analytical test

function, such that
∫ t1

t0

ϕ(t)Ẋj(t)dt =

∫ t1

t0

βjϕ(t)Θ(X(t))dt (7)

By using integration by parts and a ϕ(u) with an analytically
defined derivative we can completely remove the derivative of
the data from the left hand side, i.e.

∫ t1

t0

ϕ(t)Ẋj(t)dt =

= ϕ(t1)Xj(t1)− ϕ(t0)Xj(t0)−
∫ t1

t0

ϕ̇(t)Xj(t)dt (8)

In this work we take ϕ(u) = 1 similar to [16], [15], and arrive to
the integral equation of the dynamics by substituting in 8, which
can be approximated numerically

∫ t1

t0

Ẋjdt =

∫ t1

t0

βjΘ(X)dt (9)

⇒ Xj(t1)−Xj(t0) ≈ ∆t βj

t1∑

t=t0+∆t

Θ(X) (10)

Note that the coefficients βj obtained through this method are
the same as for the differential formulation, but the
minimization of equation (4) is done directly on the trajectory
data, i.e. X̂j = Xj(t1) − Xj(t0) and Θ̂(X) =

∫ t1
t0

βjΘ(X)dt
computed by numerically integrating the function library
evaluated on the data (in our implementation, using the
trapezoidal rule). In the limit of t1 = t0 + 1 ∗ ∆t we would
expect this formulation to be identical to the differential one,
which indeed is the case. This has served as a test of the
algorithm implementation.

We repeat the procedure for several (t0, t1) to obtain many pairs
of (X̂j , Θ̂(X)) to stack for the regression. Within our study we
will the proposed improvement in model accuracy and the effect
in the choice of the number of windows and the number of points
per window.
4) Building the feature library: While other options are
possible, to build the feature library used in the Right Hand
Side of the equations we build libraries composed of all
polynomial combinations of the system variables up to degree
n, i.e. for three variables

Θ(X) =
[
1, x, y, z, xy, xz..., xiyjzk

]
(11)

such that i+j+k = n. We usually select a degree as low or close to
the expected dynamics as possible, as high degree polynomials
can present heavily statistical correlation and complicate feature
selection.
5) Data bootstrapping and feature culling: The convex
formulation of ALASSO and convergence guarantees of STLSQ
ensure that each optimization run produces a unique solution.
However, consistent feature of these algorithms has already
been questioned, specially when finite sample sizes and highly
correlated features are used to construct the library. In such
cases, the algorithm may yield alternating solutions (selecting
one of each pair of the correlated functions) when the data or
the features present in the library are modified slightly,
potentially overlooking a more accurate model with the same
number of terms.

Data bootstrapping and random feature culling have been
proposed to address the variability in solution outcomes. This
approach involves repeating the optimization on multiple
random subsamples of the data and examining the variations in
the resulting models. This allows to assess the stability of the
algorithm on the given problem and the uncertainty in each
term, and has been shown to be equivalent in performance to
Bayesian techniques [21], [29] offering important improvements
over the base optimizers where it is applied. As for our current
implementation we use bootstrapping solely for model
identification, although future expansions could implement it for
uncertainty quantification through model ensembles. To generate
each bootstrap we sample the data with replacement, randomly
selecting between 20% and 80% of the available data.
Additionally, we drop a random feature from our feature library,
introducing variability into the bootstrapped models.

D. The algorithm

In this project we have implemented the previously explained
methods within a Python framework denoted EP2-SINDy. Our
implementation can be structured in four main parts:

• Data Pre-processing: the original time series data enters;
the output is the target and feature arrays, which can be in
their Weak and/or bootstrapped versions. During
pre-processing one can choose to normalize both target and
features, which passes the inputs normalized by their
column-wise L2-norm into the optimizer, but still does the
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last Ordinary Least Squares fit on the unnormalized inputs.
The bootstrapping step is implemented through a function
which returns a bootstrap of the data with nculled columns
of Θ(X) randomly dropped out. The Weak version of
inputs is also obtained through a function which returns
the inputs with columns of length nwindows instead of
ntimesteps.

• Model identification: taking the target and feature arrays, it
outputs a collection of candidate models obtained using the
SINDy algorithm with the optimizer of choice. The desired
length and number of points used in the hyperparameter
sweep can also be adjusted.

• Model selection: taking the candidate models, it selects the
optimal one by computing the Pareto distances and returning
the model with the minimal one.

• Post-processing: plots the Pareto front in the error vs nterms

space, as well as printing a list with the algebraic shape of
the models within for further analysis.

All of this is implemented within a core function, while all
pre-processing which depends on the specific characteristics of
the system (like selecting which features to model and which to
include in the feature library, filtering, removing outliers...) has
to be done outside of the core function.

Notice that up to now we have used the uncoupled nature of the
problem to formulate the regression in term of Ẋj and not the
entire Ẋj . We accentuate this as the main core of the algorithm
takes as inputs Ẋj and Θ(X) or their Weak versions X̂j and
Θ̂(X), so the algorithm has to be re-run for every
j ∈ [1, 2...nvar], as will be done when we want to identify a
whole dynamical system.

E. Data

In this section we outline the characteristics of the data
generation. The Lorenz attractor, Van der Pol oscillator,
underdamped harmonic oscillator and Lotka-Volterra system
equations will be displayed. What these systems mainly have in
common is that they can be represented by a low-dimensional
set of first-order Ordinary Differential Equations (ODEs)
composed of polynomial combinations of their variables.
Additionally, data from a Hall Effect Thruster simulation,
representative of the problem motivating the use of the
algorithms, was also obtained.
1) Damped Harmonic Oscillator: An oscillator exhibiting
damping,

d2x

dt2
− 2ζω0

dx

dt
+ ω2

0x = 0 (12)

where x is the position of the oscillating mass and ω0 its natural
frequency. The trajectories are the balance of the restoring force
and the frictional force proportional to the velocity. The second
order differential equation can be transformed into a system of
first order differential equations by using v = dx/dt,

ẋ = v (13a)

ẏ = −2ξω0v − ω2
0x, (13b)

We simulate the system with ξ = 0.1, ω0 = 3 for 30 s at a
sample rate of 100Hz. Its use in the benchmark is motivated
by the simplicity of the system and the secular effects of very
small damping in the dynamics. Finally, we build the polynomial
feature library with n = 2.
2) Lotka-Volterra System: The Lotka-Volterra equations
describe the dynamics of two interacting populations: a predator
population and a prey population. Prey’s growth rate is constant
(they find enough food at all times) and their death rate is

proportional to the number of predators. Predator’s death rate of
the predators is constant and their growth rate is proportional to
the prey number.

ẋ = ax− bxy (14a)
ẏ = cxy − dy, (14b)

The difference in predator and prey time-scales and the fact that
ions and neutrals seem to follow similar dynamics in the
Breathing Mode oscillations motivates its use in the benchmark.
We used a = 2/3, b = 1, c = 1, d = 1/3 and simulated the
system for 100 s at 10 Hz sampling frequency at several
different initial conditions. We build the polynomial feature
library with n = 2.
3) The Van der Pol System: Non conservative, self-oscillating
system with non-linear damping derived to model oscillations in
a vacuum tube triode circuit, represented by equation

d2x

dt2
− µ(1− x2)

dx

dt
+ x = 0 (15)

Applying the Liénard transformation y = x−x3/3−ẋ/µ the Van
der Pol oscillator can be written in its two-dimensional normal
form.

ẋ = µ(x− x3/3− y) (16a)
ẏ = x/µ, (16b)

Having the presence of a third-degree nonlinearity motivates its
use in the benchmark. We simulate the system for 20 s at a
sample rate of 50 Hz for the same initial condition of [1, 1] but
with values of the non-linear term µ going from 10 to 0.1. In this
case we build the polynomial feature library with n = 3.
4) The Lorenz System: Very simplified model for atmospheric
instability composed of a system of three variables (the stream
function, the change in temperature and the deviation in linear
temperature) and three dimensionless parameters (the Prandl
number, the Reyleigh number and a ratio of the fluid
dimensions). This system of equations exhibits chaotic
nonperiodic trajectories which form a strange attractor in 3D
space.

ẋ = σ(y − x) (17a)
ẏ = x(ρ− z)− y, (17b)
ż = xy − βz, (17c)

The chaotic nature of the trajectories motivates its use in the
benchmark. We simulate the system with ρ = 28, σ = 10 and
β = 8/3 for 10 s at a sample rate of 300 Hz for several starting
conditions. We build the polynomial feature library with n = 2.
5) SPT-100 Hall Effect Thruster: The 2D axisymmetric hybrid
PIC/fluid HET simulator named HYPHEN-HET [30] was used
to generate the data for this study, which is available for public
use through Zenodo [XXX]. The code uses a fluid description
for electrons but treats ions and neutrals kinetically. It includes
model for plasma-wall interactions such as ion recombination, the
formation of plasma sheaths on the thruster walls and a empirical
model for anomalous electron transport, linked to turbulence.

The SPT-100 is simulated by modeling its specific geometry,
magnetic topology and cathode position. We chose to use data
obtained for a previous data-driven study [6] where stable
oscillations appear with a dominant breathing mode. We choose
the nominal case used in said study, operating with Xenon with
a discharge voltage of VD = 300 V and an anode mass flow
rate of ṁA = 5 mg/s.

The data is obtained from 41× 49 points in the axial-radial (z-r)
simulation domain by time-averaging every 100 simulation steps,
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resulting in a sampling time of 1.5 µs for a total of 12001 points.
From the simulations we extract the time series for the neutral
density and ion density at all points in the discharge channel of
the thruster. For obtaining the models, we average spatially over
an area downstream the discharge chamber.

Most models in the literature are derived from the ion and neutral
continuity equations

ṅi +∇ · niu⃗i = Sion (18a)
ṅn +∇ · nnu⃗n = −Sion, (18b)

where Sion = Rion(Te)ninn is the ionization source term
proportional to the ionization rate Rion, ui and un are the ion
and neutral velocities, assumed to be constant. Taking a
volumetric average to go from the 3D equations to the 0D
global model, most of the literature [31], [32] obtains a model
similar to

ṅi = Sion − Swalls − ni
uiz

L
(19a)

ṅn = −Sion + Swalls + ginj − nn
unz

L
, (19b)

The meaning of the characteristic length L and the shape of the
terms ginj and Swall are debated in the literature, mainly
coming from uncertainties in the plasma-wall interactions and
differences in the extension of the modelled domain.
Data-driven techniques are ideal here since having the general
form of the equations enables verification of algorithm usage,
while terms with known meaning but unknown symbolic form
provide the chance to expand or validate existing knowledge
without researcher biases. Based on the theoretical model in
this project we used n = 2 to obtain a self-consistent model for
the densities.

III. BENCHMARK RESULTS

In this section we display the results of the application of the
algorithms to synthetic data. We define four variants of the
SINDy formulation to try to isolate the effects of the
optimizers, formulations and statistical techniques, as can be
seen in Table I. ALASSO was chosen as the algorithm of the
Bootstrapped and Weak variants after the optimizer comparison,
but for clarity the results for the four variants will be displayed
together.

Optimizer Formulation Bootstrapping?
”STLSQ” STLSQ Differential No
”ALASSO” ALASSO Differential No
”BALASSO” ALASSO Differential Yes
”wALASSO” ALASSO Weak No

Table I: Algorithmic components of the four variants.

In this benchmark we will first characterize the performance of
the Weak algorithm under noise for varying window number
and length to find how much the result depends on its
parameters. Afterwards the four variants will be compared in
terms of the minimal sample rate and time needed for correct
system identification. Finally, the four variants will be
compared in their ability to find and select the correct models,
by considering both the presence of the correct model within
the Pareto front as well as the model selected by using the knee
criterion outlined in Section II-B.

A. Weak SINDy performance

Our implementation of the Weak formulation depends on two
parameters: the number of integration windows nwindows

(which equals the number of points used in the regression) and

the number of points used per window npoints. We use data
coming from the Lotka-Volterra with increasing levels of noise.
We assume the correct model form is known in advance to
isolate the effect of the hyperparameters on the resulting
coefficients and do an Ordinary Least Squares fit to the correct
model with the Weak form of the inputs as explained in Section
II-C3. We measure the error in the coefficients, defined as

error(β) =
∥β − βtrue∥2
∥βtrue∥2

(20)

for four different number of windows and points per window at
every noise level, averaged over 50 realizations. We compare this
with the coefficient error from doing the fit on the Differential
form of the inputs. The results can be seen in Figure 5 compared
to the Differential formulation results.

Figure 5: Dependance of the Weak SINDy algorithm performance
on the number and size of the integration windows in terms of the
coefficient error for increasing levels of noise with a comparison
with the use of the Differential form. Analysis done for the Lotka-
Volterra model with ∆t = 0.033s, sampling frequency fs =
30Hz

.

In general, it can be seen that using the Weak formulation clearly
reduces coefficient error when compared with the Differential
formulation. There also seems to be optimal choice of parameters,
in this case npoints ≈ 100 and nwindows ≈ 3000. However,
there seems to be sub-optimal results for too large or too small
window sizes, while increasing the number of points (windows)
on which the regression takes place has increasingly marginal
returns. This can be linked to the fact that using the trapezoidal
rule acts as a low-pass filter [16], where selecting the wrong
cut-off frequency can introduce artifacts or smooth out important
dynamics. Indeed we would suspect and have tested, the choice
of optimal parameters depends on the dynamical system under
study, related to the characteristic frequency of the system.

B. Dependence on sampling characteristics

The success of system identification is also expected to be
related to the sampling rate and sampling time of the training
trajectory. A low sampling rate may result in information loss
and less accurate models. Similarly, at a constant sampling rate
smaller sampling times enable the observation of fast dynamics,
while larger times can smooth out important transient behaviors.
Again, we would expect concrete limit values to have a
dependency on the frequencies of the system under study, too.

We define an identification frontier as the set of lowest sample
rates for which the optimizer is still able to correctly identify
the system, for every sample time. In our case we are mainly
interested in how this frontier varies for the different variants, so
we simulate the Lotka-Volterra system varying the two parameters
and run the SINDy algorithm with the 4 different variants. If
equations (14) are present within the resulting Pareto sweeps,
we count it as a correct identification. We perform the analysis
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Figure 4: Display of the true and simulated dynamics next to the original and identified equations for the 4 synthetic systems and
the Breathing Mode data. The real and simulated dynamic attractors can be seen on the right. 5% noise was added to the synthetic
data to better differentiate among the trajectories and display EP2SINDy’s capabilities.

for a single, noise-less trajectory (same initial conditions for the
integration at each sample rate and size setting).

Figure 6: Point plot displaying the correct (green) or incorrect
(red) identification of the correct model in the case of the Lotka-
Volterra system for three of the variants. ALASSO extends the
identification boundary a bit, but data bootstrapping allows to
extend it to very low sampling rates and times.

The resulting frontiers of identification are plotted in Figure 6,
where the biggest improvement can be seen for the
Bootstrapped ALASSO; this could be explained by the better
approximation of population statistics for sparse data by
resampling with replacement. For the other variants, the

detection frontier is very similar, with a slight worsening for the
Weak ALASSO variant. It should be remarked that neither the
Weak formulation nor the oracle properties Adaptive LASSO
seem to improve the frontier. For the later, this is a good
reminder that true model selection is only guaranteed for
infinite sample sizes.

C. System identification for noisy data

We now test the four variants on the data from the four synthetic
systems outlined in Section II-E, with the addition of the ”knee”
selection step to select the optimal model among the Pareto front.
We use 100 realizations of randomly selected initial conditions
(or the µ parameter in the case of the Van der Pol oscillator)
at three different noise levels. In this and the following sections
the noise will be generated from a Normal distribution with zero
mean and variance dictated by a user-defined noise level σnoise

and the Root Mean Squared Error of the data, i.e.

Normal(µ = 0, σ = σnoise · RMSE(data)) (21)

and summed to the original time series. For each system, variant
and noise level we measure the number of times the correct model
appears in the Pareto front (see Table II), the percentage of times
the Pareto optimal model corresponds to the correct one (Table
III) and the average number of terms of the Pareto optimal model
correctly identified (Table IV).
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We can see that, in terms of finding the correct model,
ALASSO has a better performance in general than STLSQ,
with the exception being the Van der Pol system. Furthermore,
the bootstrapped and Weak variants generally outperform the
base algorithm, with remarkable identification numbers.

For higher noise levels the Bootstrapped variant significantly
outperforms the rest, while the Weak variant performance is
variable depending on the dynamical system, and only slightly
better than the basic ALASSO; this may be due to what was
observed in Section III-A, as the window parameters were kept
constant between systems at npoints = 100 and
nwindows = 3000 instead of finding the optimal ones for each.
The fact that the Bootstrapped variant performs better when
sampling rates and times are way above the lower limits seen in
Section III-B indicates that the base optimizers are inconsistent
in their feature selection for the noisy cases. This makes
Bootstrapping essential for any real-world application, as even
the slightest level of noise for finite sample sizes can make the
optimizer miss the true model.

When it comes to the accuracy of the Pareto criterion for model
selection, some odd things are visible; for some cases, correct
selection improves for higher levels of noise. Moreover, because
the model scoring is based on the same data for the STLSQ,
ALASSO and BALASSO variants, we would expect their model
selection scores to be similar if not equal, but this is not the
case. The first irregularity could be related to a significant drop
in scores for all models except for the correct one when noise is
added, but the second one seems to hint that our selection method
is very sensible to the shape of the Pareto front in general, and
not only the presence of the true model.

For the wALASSO variant, scoring is done in terms of the
weak versions of the inputs; this new scoring given near-perfect
selection rates for the Lotka-Volterra system independent of the
noise level, while the contrary is true for the Underdamped
Oscillator.

The heavy dependence of the results on the dynamical system
under study can be explained from looking at Table IV or
Figure 4. In the case of the Lorenz system, the correct model is
identified within the Pareto front many times, but it seems that
it always dropped for a simpler one 6-term model with the y
term in ẏ missing. This is due to the little weight it has on the
dynamic equation and the use of the parsimony criterion. This
also seems to be the case for the noise-less selections in the
Underdamped Oscillator, as the small damping term is the one
being dropped out. However, we know from integrating the
models in Figure 4 that these terms have a strong influence on
the trajectory, either because the system is chaotic (Lorenz) or
because of secular effects (underdamped oscillator).

IV. BREATHING MODE RESULTS

Based on the previous results we choose to use the BALASSO
variant to look for models in the scenario of interest. We use 32
bootstraps with one feature randomly culled per bootstrap. The
results can be seen in Table V and Figure 7.

score (R2) nterms dPareto model
-8.46 1 9.46 ṅi = 1.89 · 10−15n2

n
0.63 2 0.49 ṅi = −1.45 · 105ni + 4.12 · 10−14ninn

0.69 3 0.59 ṅi = −2 · 105ni + 4.31 · 10−14ninn + 2.13 · 10−14n2
i

-2.56 1 3.57 ṅn = 2.04 · 10−14ninn

0.85 2 0.36 ṅn = 4.58 · 104nn − 4.89 · 10−14ninn

0.88 3 0.51 ṅn = −7 · 104nn − 5.02 · 10−14ninn − 4.16 · 10−15n2
n

Table V: Some of the models obtained along the Pareto front
for the ion (top) and neutral (bottom) dynamics, along with their
respective metrics. In bold, the minimal Pareto distance for each
variable.

Figure 7: Pareto front of both ions (top) and neutrals (bottom).

Examining the resulting Pareto front first, we can see the signs
of correct identification from the sharp drop in error when for the
2-term models. We can also see how the error does not decrease
much further for increasing number of terms and saturates at
around 25% (10%) for the ions (neutrals). This can be related
to the higher-frequency dynamics observed in the original data
which cannot be modelled by our low order library.

Looking at Table V, the 2-term models follow the exact form of
the predator-prey or Lotka-Volterra model, with the neutrals
acting as prey and the ions as predators. We integrate the
equations and compare their trajectories with the original data
to see the correct amplitude and shape of oscillation, but at a
slightly different frequency as plotted in Figure 4. Looking at
the system attractor, we see how SINDy filtered the high
frequency components coming from other type of oscillations,
and the result matches the Lotka-Volterra limit-cycle attractor.

We can compare the coefficients with values expected from (19),
with typical values for Hall Effect Thruster magnitudes taken
from their average values over the averaged downstream area and
compared to the ones appearing in the optimal models of Table
V:
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ui/L ≈ 5500m s−1 / 2.5cm = 2.20 · 105s−1

un/L ≈ 260m s−1 / 2.5cm = 1.04 · 104s−1

Rion(Te) ≈ 7.17 · 10−14m3s−1
(22)

where Rion(Te) stands for the ionization rate, the term going with
ninn. The computed values lie pretty close to the observed one.
Along with an order of magnitude difference between ion and
neutral convection terms we find ionization terms that, although
different, share the same magnitude. The neutral injection follows
a proportional model, which comes unexpected from intuition but
may be due to the simplifications needed to make the 0D model
work. Guided by this, it would be interesting to see if adding the
electron temperature and/or ion velocities and their respective
governing equations would change the model.

Finally, it should be highlighted that the model was discovered
successfully even with differences of tenths of orders of
magnitude between the coefficients. This is mainly thanks to the
normalization and renormalization steps, which lets us obtain
results in meaningful SI units of the system unlike other
implementations of the algorithm.

V. CONCLUSIONS

In this study we have seen that STLSQ and ALASSO have
comparable performance in most cases. Contrary to what was to
be expected, they both exhibit unstable feature selection as can
be seen by the improvement in detection performance by using
Bootstrapping.

The automatic hyperparameter tuning was tested in challenging
scenarios where it was shown how it missed very relevant terms
of the dynamics (dissipation, terms of little effect on the train
trajectory. . . ) due to their strictly-secular contribution. While this
didn’t hamper the identification of the predator-prey dynamics, it
has been shown that for future use it will be necessary to either
use manual hyperparameter selection, use many trajectories for
validation or change the model selection criteria. The last one
seems promising, as we have seen in the benchmark that SINDy
is able to identify the correct models within its hyperparameter
sweep.

Another identified intrinsic limitation of the SINDy + Pareto
methodology is its sole reliance on regressing to the system
dynamics. As we have seen, even the Weak formulation which
uses the trajectory data directly does not incorporate
information about temporal causality. Moreover, the regression
process is uncoupled for each variable, while the quality of the
integrated model depends on the coupling between variables.
This seems to lead to obtaining models with the wrong
frequency in the Breathing Mode case. One solution would be
to include integration within the optimization loop to regress
directly on causal trajectory data; a sort of Integral Least
Square done once the correct features are found. This can also
open the possibility of keeping the Pareto knee criteria but
using an Integral score for each model, instead of the one based
on the dynamics. We could also include knowledge from the
real system as physical constraints.

Practically, the use of the Adaptive LASSO with Bootstrapping
in the differential formulation was shown to be the most robust
in our case of application; for data with a significant degree of
noise the same algorithm with the coupled use of Bootstrapping
+ Weak formulation could yield better results. While the Weak
formulation was tested to lower coefficient error and improve
model identification in some cases, its use is conditioned to the
use of optimal parameters for the window size and length.

Judging this may not be possible if the true equations are not
known in advance. Finally, in the current implementation
automatic selection is not recommended unless required, but
future expansions of the Pareto analysis or alternative
approaches might change this outcome.

Based on all this and looking into the future, for the Final
Master’s Thesis we plan to:

• Try other model selection criteria (AIC/BIC).
• Develop an Integral Least Squares method to fit the most

promising features coming from the SINDy regression on
the dynamics to the trajectory data, through an optimization
loop involving model integration at several windows.

• Extend our application of the algorithm in the real system
of interest

– Include the electron temperature and ion velocities into
the model search

– Incorporate physical constraints in the model search
process.

– Refine the existing models by performing a final Integral
Least Squares step.

– Perform a parametric analysis of the coefficients by
fitting the model to several operating points, with the
possibility of finding a control law.

– Exploit the automatic nature of the algorithm to
perform a pointwise model search, to highlight the
expected spatial term dependences.

Overall the algorithm developed here shows much promise to
model many plasma phenomena observed in electric propulsion
with simple models, but we must be wary of its limitations and
use our insight as researchers to supervise the algorithm.
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UnderdOsc L-V VdP Lorenz
Noise level 0% 5% 20% 0% 5% 20% 0% 5% 20% 0% 5% 20%
STLSQ 100 100 95 100 81 37 99 55 0 97 0 0
ALASSO 100 100 100 100 92 60 100 18 1 100 21 0
BALASSO 100 100 100 100 100 97 100 60 5 100 61 15
wALASSO 100 100 100 100 94 86 100 41 1 100 51 0

Table II: Number of realizations where the correct model was identified for the four algorithms under study.

UnderdOsc L-V VdP Lorenz
Noise level 0% 5% 20% 0% 5% 20% 0% 5% 20% 0% 5% 20%
STLSQ 100 53.0 57.9 99.0 100 16.2 100 96.3 N/A 0 N/A N/A
ALASSO 0 47.0 46.0 92.0 98.9 1.7 73.0 100 0 0 0 N/A
BALASSO 0 0.11 0.11 92.0 90.0 1.0 78.0 83.3 0 0 0 0
wALASSO 0 0 0 99.0 100 98.8 32.0 22.0 0 N/A N/A N/A

Table III: Percentage of correct model selections. Only the cases where the correct model was present within the Pareto front were
accounted for. Not Applicable cases correspond to those where there was not a single realization where the correct model was within
the Pareto front.

UnderdOsc (3) L-V (4) VdP (4) Lorenz (7)
Noise level 0% 5% 20% 0% 5% 20% 0% 5% 20% 0% 5% 20%
STLSQ 3.00 2.17 2.17 3.99 3.83 3.66 3.99 3.72 2.11 6.01 4.75 4.53
ALASSO 2.00 2.0 2.0 3.92 3.88 3.81 3.50 2.95 2.13 6.00 5.08 5.88
BALASSO 2.00 2.71 2.49 3.92 3.83 3.43 3.50 3.00 2.16 6.00 5.28 5.1
wALASSO 2.00 1.91 1.18 3.99 3.91 3.88 2.64 2.39 1.95 6.00 5.81 5.26

Table IV: Average number of terms from the correct model identified within the Pareto optimal model.
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