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ABSTRACT 

This thesis is concerned with the investigation of the behaviour of 

various nonlinear systems when excited by a coherent light-field. 

Of particular interest to us is the possibility of observing optical 

bistability in these systems. 

In Chapter One we introduce the general theoretical methods we employ 

to perform all investigations. 

In Chapters Two and Three we develop a quantum theory of the inter­

action of light with a variety of different systems, i.e. Raman active 

media, the parametric oscillator, the two-photon absorber and a system 

of three-level atoms. 

In each case, a master equation, containing all statistical 

information about the system, is derived. This enables the systematic 

inclusion of a damping mechanism into each model. 

Discussion is limited to the steady state behaviour of the systems, 

and in general we assume the deterministic limit in which we ignore 

quantum fluctuations in the field variables. It is then possible to 

factorise the steady state expectation values of these variables. 

Steady state calculations indicate that each system may exhibit 

optical bistability in output field/intensity dependent on input field/ 

intensity. 

To determine whether a system will display optical bistability, it 

is necessary to perform a stability analysis. Where possible, such 

analytical calculations are performed. However, in certain cases the 

complexity of the highly nonlinear systems results in these calculations 

becoming extremely difficult. In Sijch cases, conclusions relating to the 

stability of the system are drawn from graphical plots of its steady 

state behaviour. 



Chapters Four to Eight are devoted to a study of the intracavity 

interaction of coherent radiation with semiconductors. 

iii 

As explained in Chapter Four (of an introductory nature), this work 

was prompted by two recent experiments which indicated the existence of 

optical bistability in semiconductors. Although both experiments used 

semiconductors as the nonlinear material, the mechanism proposed to produce 

the observed bistability in each case was vastly different. 

In Chapter Eight we discuss one of these mechanisms - interband 

excitation. We present a very simple theory of this effect and show that 

in essence it is equivalent to the theory of optical bistability in two-level 

systems. However, we stress that our theory is only approximate and relies 

on the validity of several simplifying assumptions. 

Chapters Five and Six concern the other form of semiconductor optical 

bistability - arising from the interaction between a light field and 

excitons comprising the semiconductor. 

In order to develop a quantum theory of this system using master 

equation techniques, it is necessary to transform the fermion system to a 

boson system. Bosonisation transformations required to effect this are 

developed in Chapter Five. 

In Chapter Six we present a fully quantum mechanical theory of optical 

bistability in excitonic systems. Two types of bistability are found: 

bistability in output intensity and also exciton number, dependent on input 

intensity. 

In Chapter Seven we investigate the effects of quantum fluctuations 

in a low density exciton system, by considering its Fokker-Planck equation. 

We discuss in detail the adiabatic elimination of stochastic variables 

with regard to the system's Fokker-Planck equation 
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pl.l General Background 

CHAPTER 1 

INTRODUCTION 

1 

Nonlinear optics involves the study of the physical phenomena associated 

with the nonlinear response of a medium to applied electromagnetic fields. 

For example, in certain substances, the electric polarisation may 

be a quadratic or cubic function of the applied electric field amplitudes. 

Dielectric and magnetic susceptibilities and indices of refraction can 

also be functions of applied field intensities. 

Such behaviour of materials has led to the observation of many nonlinear 

optical processes, for example: optical harmonic generation, optical 

rectification and production of combination frequencies (Bloembergen, 1965). 

When a nonlinear optical interaction is coupled to itself via a 

feedback mechanism, the phenomenon of optical bistability may occur. This 

is the ability of a system to exist in two stable states; thus exhibiting 

two distinct light transmission regimes for a given input field intensity. 

Such an idea was first suggested by Seidel (1969) and Szoke et.al. 

(1969), with regard to an optical resonator filled with a medium displaying 

an absorption dependent on light intensity. 

The first theoretical treatment of the problem was presented by 

McCall (1974), and the experimental observation of the effect followed 

soon after (Gibbs et.al., 1976). 

To date, over two hundred published papers bear testiment to the vast 

interest in the ·field. Although much of this research concerns the 

investigation of collective behaviour, about forty percent of these papers 

are devoted to experimental considerations and possible technological 

applications. 



Suggested applications of optically bistable devices include: 

differential amplifiers, pulse-shapers and limiters, memory elements and 

optical triodes. 

2 

Of greatest technological importance has been the development of 

miniaturised devices, requiring low switching powers. These are seen to 

provide a gate-way to an entirely new field of communication systems: one 

utilising optical switching and optical signal processing. The ultrahigh 

switching times attainable lead to the exciting possibility of an all­

optical computer. 

The most commonly considered example of an optically bistable device 

consists of a Fabry-Perot interferometer filled with a medium in which the 

refractive index is intensity dependent. This is shown schematically in 

Fig. 1.1 
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Fig. 1.1. Simple Optically Bistable Device 
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These are known as intrinsic devices. Bistability occurs as follows: 

Increasing the input power to the resonator changes the intensity within 

the material causing a change in the refractive index. This change has 

the effect of shifting the Fabry-Perot resonance closer to the exciting 

field resonance. This results in an increase in the field within the 

resonator, again changing the refractive index. As can be seen, this 

feedback leads to a runaway effect, which will eventually (under certain 

conditions) result in a switching from negligible transmission to complete 

transmission. 

In the pioneering experiments of Gibbs et.al., the Fabry-Perot inter­

ferometer was filled with sodium vapour. These atoms were chosen because 

they exhibit a saturable absorption (an absorption dependent on light 

intensity). Although important, this absorption was not the dominant 

effect, but instead the intensity dependence of the refractive index 

gave rise to the optical bistability. (In fact, optical bistability due 

to absorption alone is difficult to observe). 

In such a sodium vapour-filled device however, bistability occurs 

only over a narrow wavelength region. Thus, highly frequency stabilised 

lasers must be used to observe the effect. Also, the device is relatively 

large (~ 10 cm) and displays relatively· slow switching times (~ microseconds) 

compared to electronic switches (~nanoseconds). 

Thus, the actual practical use of these sodium-vapour devices seems 

limited. 

Another approach,developed by P. Smith and E. Turner of Bell 

Laboratories, (Murray Hill, New Jersey), makes use of a hybrid device to 

generate optical bistability (Smith, 1980). In this case, the Fabry-Perot 

interferometer is filled with an electro-optic crystal. A beam splitter 

sends part of the output beam to a detector which converts it to an 

electrical signal. After amplification, the signal is again applied to 



the crystal, through electrodes on the crystal end-faces. The electric 

field, which varies with light intensity, thus modulates the crystal's 

refractive index. 
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This so-called 'artificial non-linearity' is much greater than the 

non-linearity produced in any known intrinsic device. Experiments can thus 

be performed using low power continuous wave lasers. A further advantage 

of such a device is that it can be switched electrically as well as 

optically. 

Another promising development in the quest for practically useful 

optically bistable devices was discovered independently by two groups; 

one at Bell Laboratories, Murray Hill (Gibbs et.al., 1979a); and the other 

at Heriot-Watt University in Edinburgh (Miller, et.al., 1979). 

Both these groups conducted low temperature experiments (120K or 

lower) and used semiconductor materials as the nonlinear medium. In the 

experiments of Gibbs et.al., GaAs was the active medium, whilst Miller 

et.al., used InSb. 

It is interesting to note that the mechanism responsible for 

bistability is quite different in the two experiments. In GaAs, excitonic 

interaction provides the nonlinearity; whereas in InSb, interband excitation, 

modelled as a two-level system gives rise to the necessary nonlinear effect. 

Although the observation of bistability still depends on wavelength 

in such semiconductor materials, the dependence is not as critical as in 

sodium vapour. 

Also, the observed nonlinearities are large enough to allow for the 

use of very thin samples; and as the materials involved are solids a 

resonator can be simply constructed by preparing a flat sample with 

parallel faces. The large nonlinearities that are generated result in only 

a small optical path length being necessary to observe bistability. Thus 

the device exhibits relatively small response times (~picoseconds). 
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Table I indicates the merits of the various devices discussed in this 

section. Clearly, semiconductor devices seem the most promising of the 

intrinsic type. The operating conditions of these are comparable to those 

of the hybrid type. 

Table I: Bistable Optical Devices: Operating Characteristics 

(After Smith, 1980) 

DEVICE 

INTRINSIC: 

CS2 

Na vapour 

GaAs 

InSb 

HYBRID: 

LiNb03 

(Fabry-Perot 
Int.) 

Liquid-crystal 
matrix 

SWITCHING POWER 
(W) 

3 X 105 

1 X 10-2 

2 X 10-l 

1 X 10-2 

1 X 10-s 

5 X 10-7 

SWITCHING TIME 
(s) 

5 X 10-lO 

1 X 10-s 

4 X 10-8 

<S X 10-7 

5 X 10-S 

4 X 10-2 

SWITCHING ENERGY 
(J) 

l.Sx 10-4 

1 X 10-7 

8 X 10-g 

<S X 10-g 

5 X 10-13 

2 X 10-S 
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i1.2 Summary of Results 

The exciting developments discussed in the previous section provided 

the motivation for this thesis, which involves an investigation of 

bistability in various systems. 

In all cases, we will consider the intracavity behaviour of a non­

linear medium when driven by laser fields. Of greatest importance to us 

will be the determination of such properties as: 

1) Output intensities: describing any possible bistable behaviour 

(or any other interesting features}, and 

2) Fluorescent Spectra: as these can be experimentally observed, they 

provide us with a possible test of our theoretical model. Such a 

comparison will indicate the relative merit of our theory and the 

accuracy of predicted macroscopic properties. 

The remainder of this chapter ~1.3 concerns the general methods 

and approximations we will utilize to obtain this information. 

To systematically define many-body systems, our approach is within 

the framework of the second quantisation. We discuss the general form 

of the system's Hamiltonian in ~1~3(b} (i}. 

Such a second quantised theory is characterised by an N-particle 

wavefunction, (N = number of particles in the system}. When dealing with 

an interacting gas, N is typically of the order 10 23 , thus a full 

description of the entire system is clearly impossible. Fortunately, the 

wavefunction contains a lot of irrelevant information not required in the 

calculation of important physical properties. 

We reduce the complexity of the system by adopting a statistical 

approach in which we specify only the expected probability of finding a 

particle in a given state. We then define the density operator of the 

system as an expansion in terms of the many-body wavefunction. Such an 

operator is analogous to a probability distribution function. It provides 

all information about the system, yielding such properties as expectation 



values. Discussion of all systems in this thesis is thus in terms of 

the master equation: an equation of motion for the density operator -

described in detail in j1. 3(c) and (d) . 

Although the master equation contains all statistical information 

about the system, this information is not easily extracted. Instead, we 

find it necessary to transform our system to a complex phase-space in 

order to calculate required physical properties. We discuss such phase­

space distributions in ~l.3(f). 

Finally in Chapter One, we discuss the basis of an ap~roximation 

used throughout this thesis: adiabatic elimination of fast variables. 

This procedure enables the replacement of certain dynamical variables 

with their stationary solutions in all calculations, provided they 

relax on a time scale very much faster than other variables. 

7 

Chapter Two determines the conditions under which optical bistability 

can be observed in various non-linear systems. Discussion in this 

chapter is restricted to a deterministic theory only. In such an approach, 

quantum fluctuations are neglected. However, as we need only calculate 

steady state expectation values to determine expected output intensities, 

this approximation will not produce a significant deviation from reality. 

We firstly consider optical bistability arising in Raman active 

media, and review a semiclassical theory due to Lugovoi (1977). This 

predicts bistability in Stokes intensity, dependent on input intensity. 

We then present a quantum mechanical theory based on a model similar to 

Lugovoi's: quantised lattice vibrations, which give rise to the observed 

Raman frequency shift, are adiabatically eliminated. Analysis shows that 

only dispersive bistability (non-zero detuning) will be observed in such 

a system. Further discussion reveals the possibility of absorptive 

bistability on inclusion of a non-resonant susceptibility into the system. 

However, as these effects are relatively small, such behaviour is unlikely. 



In contrast to the rigorous approach followed in the investigation 

of optical bistability in the Raman effect, we utilize an approximate 

formalism in the remainder of Chapter Two: Effective Hamiltonian 

approach. 

we firstly discuss the optical behaviour of an effective two-level 

atomic model in this manner. On adiabatic elimination of atomic 

variables and in the dispersive limit (large detuning), this system 

exhibits identical behaviour to the previously discussed Raman system. 

In p2.2(b) we use an effective Hamiltonian first employed by 

Graham (1970),to consider optical bistability arising from a parametric 

oscillator resonantly driven by two input fields. The possibility of 

bistability in output intensity varying as one of the input intensities 

is predicted. This bistability is also shown to depend critically on 

the other input intensity. 

Finally in Chapter Two, we consider the behaviour of a driven 

two-photon absorber, utilizing an effective Hamiltonian. On adiabatic 

elimination of atomic variables, this system behaves exactly like a 

parametric oscillator. 

8 

Thus Chapter Two reveals the occurrence of optical bistability in a 

wide variety of non-linear systems. It also shows how apparently 

different systems can exhibit the same macroscopic properties, in certain 

limits. The following equivalences were established: 

Raman System -+-+-Effective Two-level System (on adiabatic 

elimination of atoms and in dispersive limit) 

Parametric Oscillator-+-+-Two-photon absorber (on adiabatic elimination 

of atomic variables). 



Such a correspondence is not surprising, as although the respective 

systems describe different processes, the form of the nonlinearity 

responsible for optical bistability is the same. 
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In Chapter Three, we investigate a rather different bistable system -

one involvi~g three-level atoms. 

we note that a fully quantum mechanical theory of optical bistability 

in two-level systems, containing quantum fluctuations, is an extremely 

complicated problem (Drummond and Walls, 1980b). The complexity generated 

by introducing a further atomic level into the theory renders all 

calculations intractable. 

We thus again restrict discussion to the development of a determinis­

tic theory, in which we ignore the effects of quantum fluctuations. 

Calculations performed on optical-Bloch equations for such a system 

shows bistability arises, due to the phenomenon of coherent population 

trapping. Bistable behaviour is shown to vanish when atomic collisions 

become dominant, as the coherence necessary for population trapping is 

destroyed. 

To date, such a bistability has not been experimentally observed. 

Chapter Four introduces the concept of optical bistability in 

semiconductors. 

Although both the experiments of Miller et.al. (1979) and Gibbs. et.al. 

(1979a) are discussed, we focus most attention on the latter experiment; 

in which light-exciton interaction was seen to provide the mechanism 

for bistability. The interband excitation model, proposed to describe 

the experiments of Miller et.al. is discussed in Chapter Eight. 

Chapters Five and Six are devoted to the development of a microscopic 

theory of the intracavity interaction of coherent light with a medium 

consisting of excitons. To formulate the system Hamiltonian in terms of 

exciton operators, we make use of a unitary operator which transforms 



pairs of fermion operators to boson operators. We are then able to use 

a master equation approach and systematically include such effects as 

exciton-lattice and exciton-exciton interactions into our model. 

In the two cases of high and low exciton densities, steady state 

analysis revealed bistability and hysteresis in the system. Bistability 

of a dispersive and absorptive nature in both exciton number and output 

intensity, dependent on input intensity was found. 

As yet, only high exciton density dispersive bistability has been 

experimentally observed. The bistability curves we predicted in the 

high exciton density case agrees qualitatively with the experimental 

curves obtained by Gibbs et.al., for GaAs. 

In Chapter Seven we discuss quantum fluctuations in the low exciton 

density semiconductor system, with reference to the Fokker-Planck 

equation. To calculate expectation values it is necessary to reduce 

the dimensionality of the system. we thus introduce the method of 

adiabatic elimination of variables in stochastic systems. 

~1.3 Theoretical Considerations 

~l.3(a) System Model 

This thesis is devoted to a study of the interaction of light with 

various nonlinear systems. As we will employ the general methods of 

quanttnn optics, the approach to each problem will have several features 

in common. 
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In each case, the model for our system will involve the intracavity 

interaction of coherent radiation (laser fields) with a nonlinear medium. 

This is represented in the schematic diagram: 



NONLlNEA~ 
SUBSTANC.E 

~ 

Fig. 1.2. Intracavity Interaction of Coherent Light with a 
Nonlinear Medium 

The cavity (indicated by the two vertical bars.in the figure} 

will, in general, be a Fabry-Perot interferometer. 
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For each problem, we will assume the incident field strongly couples 

to a single mode within the resonating cavity. This mode will in 

future be referred to as the cavity (or pump) mode. 

Experimentally, such an assumption relies on the ease with which 

the cavity can be tuned. Clearly, the single mode approximation 

becomes physically unreasonable when the cavity mode frequencies are 

not widely separated. 

We also assume that the cavity mode of interest couples, in turn, 

to a single mode comprising the non-linear substance. These 'system' 

modes will be of various forms: e.g. molecular vibrations, atomic levels, 

excitonic states. 

We will be mostly interested in determining expressions for the 

output intensity, as optical bistability concerns the behaviour of 

output intensity, dependent on input intensity. 

We now briefly review the general theoretical methods we will employ 

to study each problem. 



pl.3(b) Second Quantised Theory of a Loss-less System 

pl . 3 (b) _( i) Hamiltonian 

Each of the systems we will be considering will involve the intra­

cavity interaction of radiation with a medium comprised of atoms, (in 

gaseous or crystalline phase). 
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The non-relativistic classical Hamiltonian describing such a system 

neglecting losses, consists of three major parts, (Heitler, 1960), 

H (1.1) 

where 

H e.rn. = 
l 
2 --- (1.la) 

is the Hamiltonian for the pure radiation field within the cavity. 

E and t! are the electric and magnetic fields, obeying Maxwell's 

equations; £0 fo are the permittivity and permeability of the 

vacuum). 

The term He.M.-maHe..- describes the energy associated with the 

interaction of the radiation with charged material particles. It is 

obtained from the Hamiltonian for a free particle system, via the 

substitution: 

(where is the momentum of the particle, is the vector potential 

of the electro-magnetic field). 

Thus, 

--- (1.lb) 



r· -J 
refers to the position of the jth particle and 

the external Coulomb potential: nuclear attraction in the case of 

bound electrons; )'Y\ is the mass of the particle). 

is 

In the context of the first quantisation, we express the momentum 

operator as, 

yielding, 
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----(1.lc) 

Finally, the term is due to the interaction between particles. 

For example, for two electrons, this becomes a Coulomb interaction, 

------------1 l. ld) 

As the systems described in this thesis will be comprised of many 

particles, discussion will be within the framework of the second 

quantisation. Such an approach illustrates the particle nature of the 

light and matter fields. 

To this end, we define a quantum vector space for a many-body system 

by assuming that any complete set of operators describing a single 

particle can also be used to describe n such particles. 

Thus we no longer specify the properties of each individual particle. 

Instead, the system is described in terms of the number of particles of 

eigenvalue Ai. say, of the operator A This is referred to as 

the occupation nlilnber, of the ith state. 

That is, in the state vector space (Fock space) of the system, with 

basis vectors 

-----(1.2) 
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for a given operator A we associate an eigenvalue A I to n, 

particles, 

etc. 

to particles, and Ai. to 1'\i particles, 

To use such a state vector space we must express the Hamiltonian in 

terms of operators which can properly act on the vectors described by 

Eq. (1.2). This is achieved by introducing boson and fermion operators. 

~1.3(b) (ii) Bosons and Fermions 

The boson annihilation and creation operators, 

are defined by, 

and 

Such operators satisfy the commutation relations: 

] 

The fermion annihilation and creation operators, and 

are defined similarly; except that the occupation numbers can only take 

the values O and 1, and, 

where l o)F = vacuum state. 

Also, fermions obey the anticommutation relations, 

which is sufficient to ensure that any state can only be occupied by one 

particle at a time: the Pauli Exclusion Principle. 
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Of particular interest in later chapters, will be the behaviour of a 

two-level atom in the presence of an exciting field. 

Haken (1970) proves the formal equivalence between a system of two­

level atoms and a system of ~-spins: 

SPIN OPERATORS FERMION OPERATORS 

O"+ = er.,. + L (J~ .( ) 
+ a.a. 

.,. 
er- :. er,,. - I.. (J~ ( > a. Cl2. 

< ) .!. ( a! Cl2. - a:a.) 0-}' 2. 

where the components of the spin operator, 0-x , 0-~ and 0-y can 

be represented by Pauli matrices; and 

The fermion operators 

11), 1.2.). 

c, i" , (J" - are spin-flip operators. 

refer to the two atomic levels 

Using the fermion commutation relations and the fact that 

in a two-level system, we find the relations: 

[ + 
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~1.3(b) (iii) The Pure Radiation Field 

we quantise the pure radiation field in the cavity by expanding the 

vector potential in terms of plane waves and boson operators: (ignoring 

spin), 

6( !'.: , t) = [_ J ( ,.:, Eo Vi f. J ( e X f [ L ( ~ J. !: 

+ 'cit e X p [ -~ ( ~l • ! - W J t ) ] ) ----(1.3) 

The boson operators have the time dependence in the Heisenberg picture: 

The propagation vector satisfies, 

w1 = I ~1 \2 

c3. 

and the are polarisation vectors, assumed perpendicular to each 

other 

and satisfying the transversality condition: 

Using the relations 

E = 

and Eq. (1.3) in He.rn. , we find the Hamiltonian for the pure radiation 

field, (Louisell, 1973), 

_____ (1.4) 

Thus after second quantisation, the field is described in terms of 

separate energy quanta, of energy 

~1.3(b) (iv) Interaction between Field and Matter 

We introduce the particle nature of the electrons comprising the 

matter by defining the field operators, 
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where the are fermion operators and the are solutions 

of the single particle Schrodinger equation: 

we then formulate a second quantised theory by expressing the inter­

action Hamiltonian as, (Heitler, 1960), 

(1.5) 

and 

H1 = i j"l'•Ct) "!'+(!') e'" 'l/l{r') "flrl ,N o1v' 
\r: - !"'\ 

___ (1.6) 

Thus, the Hamiltonian for the loss-less system is given by Eqs. (1.4), 

(1. 5) and (1.6) . 

We also include a term in the Hamiltonian to describe the interaction 

between the incident field and cavity mode, 

The explicit form of this term is discussed in later chapters. 

pl.3(b) (v) Electric Dipole Approximation 

Louisell (1973) shows that under the dipole approximation, we may 

replace the interaction Hamiltonian, 

by 

___ (1.7) 

where f' = e.c is the atomic dipole moment. We stress that this 

is only an approximation, the limitations of which are discussed by Power 

and Zienau (1959). 

Despite its approximate form, however, we make frequent use of the 

interaction Hamiltonian Eq. (1.7) in further chapters. 



~l. 3 (c) Density Operator Equation of Motion 

All statistical information about the system is obtained from the 

density operator, defined in the Schrodinger picture as, 
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___ (1.8) 

where the state vector I Y {I;)) obeys the Schrodinger equation, 

~ t i I "Jilt)'> H \ ~lt)) ---(1.9) 
}l::: 

and p..,,, is the probability of the system being in the state J'\f'{t)) 

Using Eq. (1.9) and its adjoint, we find, from Eq. (1.8), in the 

Schrodinger picture, 

_____ ( 1.10) 

Which is the equation of motion for the density operator. 

We note that the average value of any system operator, A is 

given by, 

<A) = -----(1.11) 

pl. 3 (d) Quantum Theory of Damping: Master Equation 

In order to present a realistic model of a physical system we must 

include a damping mechanism, to account for losses. 

With this in mind, we utilize the quantum theory of damping, as 

presented by Louisell (1973). 
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We assume all damping arises from a weak coupling between the system 

and a large collection of other systems, having many degrees of freedom 

and in thermal equilibrium. Such a collection of systems is commonly 

referred to as a reservoir. For example, a reservoir could consist of 

modes of the radiation field, vibrational modes in a solid, or electron 

or hole states in an energy band of a solid. It is assumed that the 

system-reservoir interaction has little effect on the reservoir. 

Following Louisell (1973) we write the total Hamiltonian for the 

system and reservoir as, 

Hr H + H~ + \J 

where H is the system Hamiltonian, described in ~1.3(b); HR is 

the reservoir Hamiltonian and V is the Hamiltonian describing the 

interaction between reservoir and system. 

The system-reservoir interaction can be described as a scattering 

process from the system mode, of frequency Wo to a reservoir 

mode of frequency 

form: 

w· J The effective interaction energy takes the 

\J 
_____ (1.12) 

where M is a system operator (fermion, boson) and is a 

reservoir operator. 

The coupling constant X· J denotes the strength of the interaction 

and will depend on the particular system we are considering. 

Although the sum in Eq. (1.12) includes all modes of the reservoir, 

only energy conserving modes, satisfying W j ~ Wo will interact 

strongly. As these terms evolve in time according to e>'p:!: i(Wj-Wo)t 

which is approximately unity at 

to dominate in the interaction. 

we expect such processes 
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+ + 
However, terms of the form, Q j M , Qj M have been neglected 

in the expansion of V These terms vary as exp:!: i. (wJ· +Wo)t which is 

rapidly varying and will average out to zero over long times. 

Such neglect of energy non-conserving terms is known as the rotating 

wave approximation (R.W.A.). 

In general, the behaviour of the reservoir variables will be of little 

interest to us and we will be mainly concerned with the behaviour of the 

system. 

However, the density operator_corresponding to the total system 

contains reservoir information. Thus, the density operator equation of 

motion (defined by Eq. (1.10)), from which we obtain statistical properties 

of the system, also contains this reservoir information. 

We wish to remove all explicit reference to the reservoir from the 

equation of motion of the density operator and thus obtain an equation in 

terms of system operators only. This is achieved by tracing (>{t) 

over the reservoir variables, yielding a reduced density operator, 

TrR = trace over reservoir variables). 

The statistical properties of any system operator is then defined 

in terms of the reduced density operator S (-1:) . For example, the 

average value of M is given by, 

= 

T rrt, s [ M f {t)] 

T-..-R M T,..5 plt) 

T r-s [ r--, Slt)] 

The equation of motion for 

{ Tr-1&,s = trace over reservoir, system) 

Slt) is known as the master equation, 

describing the system's evolution under coupling to a reservoir. 
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Louisell (1973) derives such a master equation, in the Markoff 

approximation, via an iterative procedure. From this very comprehensive 

work we now only quote the form of the damping master equation we will be 

using in further chapters. 

1) Light mode interacting with a reservoir (Intracavity) 

The interaction Hamiltonian takes the form: 

V ==- £j ij b~- b + h.c. 

where is a reservoir operator; 6 is the boson operator 

describing the light mode. 

Damping is described by the master equation: 

05 -at (1.13a) 

, Wo is the resonant frequency of the 

light mode and 9(wo) is the density of reservoir modes. 

Physically, ~ represents the cavity half-width. 

n is the thermal occupation number of the reservoir. 

We may also write Eq. (1.13a) in the more compact form: 

os: ~l[bs,l{] + [b,s\:r]} + ..2~n[[b,s],l:r] 
'ot 

---Cl.13b) 

__ ,(1.13c) 

2) Two-level atom interacting with a reservoir (Neglecting atomic collisions) 

This is represented as follows: 1----,-

,_lt.w .. ,, 

and the interaction Hamiltonian takes the form; 

V = + h.c. 
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where (1'-, a-+ are spin flip operators describing the two-level system. 

If we neglect the dephasing effect of collisions, damping is described by; 

~ f (1 + n) ( C <T-s, er+ J 

+ n ( ( <,-tS, o--J 

+ c er-, so--t-J) 

+ [a-+,scr-J)} --(1.14) 

where is the Einstein A-coefficient for spontaneous emission from 

a two-level atom. 

We note that expressions such as Eqs. (1.13) and (1.14) have also been 

derived by Haken (1970). 

The total time evolution of the system is thus described by the 

master equation: 

= -i, [H,p] 
ii 

where H is as given in jl.3(b) and given by Eqs. (1.13), 

(1.14) . 

Before we consider in detail the methods used to obtain information 

about the system from the master equation, let us briefly review another 

fundamental concept: coherent states. 

~1. 3 (e) Coherent States (Louisell, 1973) 

The number state representation, I n) introduced in ~1.3(b) 

provides an orthogonal set of basis vectors, which describe a system of 

harmonic oscillators. 

An alternative representation, more useful in the description of the 

radiation field, involves the coherent states 

These minimal uncertainty states satisfy, (for a boson operator b ), 

They are constructed from the number states as follows: 
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such states are not orthogonal: 

< ~ I ol '> e. --k (1.,n1 + 1~1:i.) + ~~.,. 

but do form an over-complete set, obeying the completeness relation: 

1 

we now review methods used in later chapters to obtain required 

information about the system. 

pl. 3 (f) Phase Space Distributions 

The master equation derived in ~l.3(d) contains all the statistical 

information about the system. The total behaviour of the system: matter­

field interactions, behaviour of matter and fields alone and damping 

effects - is described by this equation. 

An exact solution of the master equation would yield a great deal of 

knowledge about the system. 

In certain problems, time dependent matrix elements of the density 

operator f have been obtained by use of Laplace transforms (Larnbropolous, 

1967; McNeil and Walls, 1974). Such matrix elements describe atomic 

populations and polarisations. However, in general, extraction of 

information from the master equation in this manner is an arduous task 

(see for example Saxena and Agarwal, 1980). 

We note that the density operator plays the same role as a probability 

distribution defined in a phase space for the system. 

We may define the system variables in a complex phase space by 

constructing a suitable probability distribution to which we may map the 

density operator. By adopting such a phase space representation, we can 

calculate expectation values and time ordered correlation functions of 

variables by performing classical averages, and yet still retain all 

quantum mechanical information. 
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This is because the transformed master equation can commonly be 

expressed as a Fokker-Planck equation, which may be often exactly solved. 

More importantly, the stochastic differential equations corresponding 

to these Fokker-Planck equations can always be solved in a linearised 

theory (Chaturvedi et.al., 1977). Thus, utilization of such techniques 

provides a general solution for systems close to equilibrium, in which 

the linearisation approximation is valid. 

The first phase space quasi-probability function was proposed by 

Wigner (1932); which related the density operator to a c-number 

distribution of classical variables: 

we p, q,) 

where q: and "'p are coordinate and momentum operators of a harmonic 

oscillator; 

Thus, 

q_ and p are classical variables. 

W ( p, q,) ( the Wigner function) establishes a correspondence 

between classical variables and quantum mechanical operators: 

p 
Further development of such transformations were given independently 

by Glauber (1963) and Sudarshan (1963). 

~l.3(f) (i) Glauber-Sudarshan P-representation 

This transformation expresses the density operator as a diagonal 

expansion of coherent states: 

fJ ----(1.16) 

where P( ~) is the quasi-probability distribution. [ (<i) = (ol,cl")] 



From the operator identities: ( b - boson operator). 

b lol}(o<\ - ~ lcx)<o<\ 

b+ I ol) (ol \ = [ ol" + :e.. ] I ct> <o1. \ 
'c}o{ 

I ot )<« \ b+ = \o()<o<\«* 

\cl.> <oc1 \ b = [ 0 
~ollf 

+ o1] 1~)<«1 

the transformations follow: 

bf = } [ol PC~)) tot)<«\ d:z.o< 

~f - ) [ ( « " - _; o1. ) P C ~n ] I ol > <ex \ d 2 ex. -

p b+ = J Pc~) ex~ I ol ><~ \ d2.o(, 

By applying transformations (1.16), and (1.17), we can derive a 

Fokker-Planck equation from the master equation. 
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(1.17) 

(1.18) 

The Glauber-Sudarshan P-representation is, however, not applicable 

to a certain class of problems arising in quantum optics. For example, 

use of this P-representation in the case of a driven single mode inter­

ferometer filled with a non-linear absorber, yields a Fokker-Planck 

equation with a non-positive-definite diffusion term (Drummond and Gardiner, 

1980). Thus a smooth, normalisable distribution function cannot be defined 

for this system; and we cannot form stochastic differential .equations from 

the Fokker-Planck equation. 

Problems related to singularities in the P-function can be removed 

by using instead the Glauber R-representation (Glauber, 1963): 



which always exists. Unfortunately, the R-representation is not easily 

applied to the type of problem arising in quantum optics. 
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A more useful approach is to employ the generalised P-representations 

developed by Drummond and Gardiner (1980). 

~l.3(f) (ii) Complex P-representation 

In this representation, we expand the density operator in terms of 

a non-diagonal projection operator: 

f :: ___ (l.19) 

where P(cx, ~) is the complex-P function; is a projection 

operator; and c( and ~ are complex variables to be integrated 

on separate contours C and C 1 • 

Systems which exhibited non-normalisable distribution functions under 

application of the Glauber-Sudarshan P-representation can now be solved 

via the complex-P representation; as appropriate choice of the contours C 

Cl 
and in the complex phase space of ol. and j-> 

the exact solution of such Fokker-Planck equations. 

The operator identities for this transformation are: 

b..A. -= oL..J\_ 

8" A [~ 4-
°d JA -= 'i>ol. 

A b+ = Af; 

Ab [;~ 4-cx]A 

and the following transformations exist 

bf ( ) ~ Pco1,~) 

'6f ( ) ( ~ - d1«) P(o1,~) 

f b+ ~ ~ Pca1, ~) ~ 

fb ( > (-;(3 + ol) p (ol,f) 

always allows 

(1.20) 

(1. 21) 
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Again, we generate a Fokker-Planck equation from the master equation 

on application of the transformations, Eqs. (1.19), (1.20), (1.21). 

To justify the existence of the corresponding stochastic differential 

equations, however, we must employ the positive P-representation. 

pl.3(f) (iii) Positive P-representation 

This defines the density operator through the transformation, 

--------(1. 22) 

where ol and r now vary over the whole complex plane. 

Drummond and Gardiner (1980) show that for any Fokker-Planck 

equation derived via the Glauber-Sudarshan P-representation, a corresponding 

equation with positive semi-definite drift coefficient exists in the 

positive P-representation. Also, from such a Fokker-Planck equation we 

may correctly define stochastic differential equations. 

The identities of the complex P-representation (Eqs. (1.20), (1.21)) 

also apply to the positive P-representation. In addition, there exist 

the further properties, 

b+p ~ 

and 

fb ~ [- :~. + o1J P(o1,f) 

where 

o< : olx +~o/!) 

~ = ~x + ip:, 

t £. ) p (0(,~) 
?)c(~ 

~ [ i £. + ol] P ( ~, ~) 
o~:J 

Thus, by application of the Drummond-Gardiner generalised P­

representations, construction of a Fokker-Planck equation with a normalis­

able distribution function is always possible; and we may also form the 

corresponding stochastic differential equations. 
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For completeness, we note the general form of a Fokker-Planck equation 

for a set of C - number variables ( o/1 , ••• , oln) -:. ( ~) 

(1. 23) 

In the positive-P representation, this becomes, (Drummond, 1979) 

(1. 24) 

where 0<.l. = dl -+ L oJ./ 
) 

A J. = A~ -+ c. A { 

and 

As Eq. (1.24) has an explicitly positive-semi-definite diffusion 

coefficient, we may form the corresponding Ito (Arnold, 1974) stochastic 

differential equation: 

d «t 
dt 

= 

where the 2j'Cl~) comprise a Gaussian process, 

----1.1.25) 

In most cases, it will be more convenient to write Eq. (1.25) as, 

0 d_J. = 
o!:: 

- A 1.. ( o{) + f .t Lt) ----(1.26) 

where the f~ are fluctuating terms describing noise in the system. 

They have the property 

-----(1.27a) 
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and obey the correlation relations: 

< ,, ( t) n ( f) > = olt--t:') D~j _____ (l.27b) 

where the D~j are diffusion coefficients, defined in Eq. (1.23). 

Finally in this introductory chapter, we review the basis and 

importance of an approximation frequently used in quantum optics: 

adiabatic elimination of variables. 

~l. 3 (g) Adiabatic Elimination of Variables: an introduction 

we can describe a general multi-dimensional system in terms of a 

set of variables,~ ('8,>"8i., .. 'O""). 

In some cases potential conditions are satisfied and we may exactly 

solve the Fokker-Planck equation for such systems, obtaining the quasi­

probability distribution function. Average values and correlation 

functions of system variables may then be calculated. These represent 

the most important calculations we can perform, as they yield expressions 

for emitted intensities and fluorescent spectra - experi~entally 

observable features. 

However, such exact solutions to the Fokker-Planck equation exist 

only in special cases. 

If it is possible to assume the linearisation approximation, there 

exist techniques enabling the derivation of statistical averages of 

variables for two-dimensional systems, (Chaturvedi et.al., 1977). 

For systems of higher dimensionality, however, similar calculations 

become extremely complicated. 

A common approach to simplify the system is to reduce the dimensionality 

of the system by considering physical conditions under which certain 

variables may be eliminated. 



This method, known as adiabatic elimination of (fast) variables, 

relies on the fact that certain variables relax at a much faster rate 
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than others: they possess larger damping coefficients than other variables. 

They will thus reach their steady state before the other variables have 

significantly developed in time. We may then disregard the time dependence 

of these so-called fast variables, which are said to adiabatically follow 

the other system variables. Mathematically, this amounts to replacing 

the fast variables with their steady state values in all system equations. 

Firstly, let us consider how such a procedure is implemented in a 

deterministic theory, where quantum fluctuations (noise terms) are 

neglected. Our system Ji(~ ;,:,.. D) vt ~. > aa.' . . an can then be described by the 

equations, 

t, c-a.,. 
t:a. (a.,. (1. 28) 

We eliminate variables 1 and 2 say, if they are more heavily damped 

than the other variables. The system is then described by the set, 

~I (63, .. '6 .. ) and the equations, . 
83 = f3 ( c8.)~s,C6.i.)ss, 51, .. 6") 

(1. 29) 

. 
'an : tn ( (8. )~s, (cli )ss, fl1, • .. c:l .. ) 

where (aa.)ss are formed by setting 
. 

..-!:-
('.l, =o and ti°,_ =O 

in Eqs. (1. 28) . 

We have thus reduced the dimensionality by two. 

This method was used in the theory of the laser, (Lamb, 1964), 

where it was assumed the atomic linewidths were much larger than the cavity 

linewidth. The atomic variables thus follow the electric field adiabatically. 



The approximation is quite justified in the case of the gas laser, 

where atomic decay rates are ~ 108 sec- 1 and radiative decay rates 

~ 10 7 sec- 1 . 
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The procedure of adiabatic elimination of variables is thus well 

defined when we are dealing with deterministic equations. However, as a 

complete description of the system requires the inclusion of quantum 

fluctuations, we need to consider the system's Fokker-Planck and stochastic 

differential equations. 

Great care must be taken when we attempt adiabatic elimination on 

stochastic differential equations, because of the presence of the 

fluctuating noise terms. The necessary procedures to achieve this end 

are discussed in detail in Chapter Seven. 



CHAPTER 2 

OPTICAL BISTABILITY IN NONLINEAR SYSTEMS 

The theoretical foundations of nonlinear optics were firmly 

established by the early 1930's. 
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However, at that time, the experimental observation of the associated 

effects was not possible because the high field intensities, necessary 

to produce the nonlinearities, wer~ not attainable. 

That is, propagation of light through a medium generates a polarising 

effect on the outer electrons of the atoms comprising the medium. If 

the electric field amplitude of the incident light wave is of the same 

order as the electric field binding the electrons to the atoms 

(~ 3 x 10 8 V/cm), a nonlinear relationship between the polarisation and 

the electric field will be clearly observed. 

The classical light sources available in the 1930 1s produced electric 

fields much smaller than the atomic Coulomb fields. These classical 

radiation fields, acting only as a small perturbation to atomic fields, 

thus induced a polarisation directly proportional to the applied electric 

field. 

However, with the advent of the laser in the 1960's higher power flux 

densities became available for use in optics experiments. 

As lasers exhibit light fields in excess of 10 8 V/cm the nonlinear 

relationship between electric field and polarisation is readily observed 

experimentally. In crystalline media, which are in general anisotropic, 

the polarisation is expressed as, 

where is the permittivity of the vacuum and is the nth 

order susceptibility tensor. The first term represents the usual, linear 

polarisation. 
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As mentioned in Chapter One, ~1.1, such a non-linear response of a 

medium to applied fields provides the mechanism for optical bistability. 

Various nonlinear systems have been investigated in the study of 

optical bistability. The most well known of these is the system of a 

Fabry-Perot interferometer filled with a gas of two-level atoms, first 

discussed by McCall (1974). A semiclassical theory based on this model 

was presented by Bonifacio and Lugiato (1976), and a fully quantum 

mechanical theory has been proposed by Drummond and Walls (1980b). 

An alternative approach in the investigation of optical bistability 

was adopted by Marburger and Felber (1978) and Drummond and Walls (1980a). 

These theories are based on a non-linear polarisability model, which 

involves the inclusion of a cubic nonlinearity in the polarisation. 

In the first section of this chapter, we investigate the conditions 

necessary to observe optical bistability in Raman active materials. We 

show that such materials also exhibit a cubic nonlinearity in the 

polarisation. 

We later consider materials displaying parametric oscillation and 

finally investigate optical bistability arising from two-photon absorption. 

Throughout this chapter we adopt a quantum mechanical approach; 

however, quantum fluctuations are not properly included, as we assume 

complete factorisation of expectation values. Thus we develop only a 

deterministic theory. 

~2.1 Raman Processes 

When a light beam traverses a crystalline medium, scattering from 

electrons comprising the substance occurs. Molecular vibrations, however 

can noticably affect this scattering, resulting in the emitted light being 

shifted by a frequency characteristic of these vibrations. This is known 

as Raman scattering. 
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Quantum mechanically, Raman scattering is the process in which a 

system absorbs a photon of frequency and emits a photon of 

frequency W f , while undergoing a transition to an excited state 

In a molecular system, the final state is a 

vibrational level. 

The general theory of Raman scattering has been well documented, 

for example, see, Bloembergen (1965), Penzkofer et.al. (1980), 

Bloembergen and Shen (1965), Giordmaine and Kaiser (1966), Wang (1969), 

to quote only a few. 

we present now only the salient features of the process, before 

considering in detail the mechanism for optical bistability. 

~2.l(a) Interaction Hamiltonian and Nonlinear Polarisation 

We consider the interaction of radiation with a system of n 
molecules, each consisting of two or more atoms. 

Radiation interacting with such a molecule induces an electric 

dipole moment /:J , directly proportional to the electric field E 

ft. 
_____ (2.1) 

where cl.~j is the electronic polarisability tensor of the i'th molecule. 

Physically, the dipole moment is due to the displacement of the 

electrons with respect to the nucleus of a particular atom. Thus, if 

the nuclei always remain stationary, is a constant at any given 

frequency. However, the nuclei are not stationary and oscillate about 

their equilibrium positions. This clearly results in a departure from 

linearity. Placzek (1934) described this distortion mathematically by 

expanding cl.~j in a Taylor series of normal mode vibrational 

coordinates, q, , (For a discussion of normal mode coordinates see 

Pantell and Puthoff, 1969, Chapter 7): 
0 

+ (Os!fj) q, ol ~j ol~j + 
'o'l,, e°i,u· ( 2. 2) 
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where is the polarisability evaluated at the equilibrium positions 

of the nuclei. 

Introducing an explicit time dependence into E 
the form, 

~ , E· 
J = E- c.os W· t J J 

Eq. (2.1) becomes, 

and q, of 

we see then that molecular vibrations add corrections to the dipole 

moment, producing two new emission lines, one above and one below the 

excitation frequency w· J . This is, of course, the observed Raman 

effect. 
,... 

The term ex~ EJ° CoSWj t yields the usual dipole transition spectrum. 

The emission lines corresponding to the frequencies W i - W ..r 

and Wj + Wu- represent Stokes and Anti-Stokes emission, respectively. 

From Eq. (2.3) we see that the term responsible for the Raman effect 

in Eq. (2.2) is, 

- we assume all spatial derivatives of 

equilibrium nuclei position. 

ol.:j 

-------12.4) 

are evaluated at the 

Thus, from Eq. (1.7) derived in ¢1.3(b) (v), we find the interaction 

energy corresponding to the Raman effect is, i.e. 

HINT 

H,r-1r 
____ (2.5) 



Also, if there are 
'Yl/v Nv = /\ identical molecules per unit 

volume in the substance, then the nonlinear polarisation is given by 
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p = = Nv <µ> ___ (2.6) 

(where denotes statistical average). 

We will show in~2.l(c)(ii) that in general, 

<q,> f(E:2.) 

Thus, 

p cC, 

showing that the Raman effect is associated with a polarisation cubic 

in electric field amplitudes. 

We now turn to a discussion of optical bistability in Raman systems. 

p2.l(b) Semiclassical Approach 

A semiclassical theory of optical bistability arising from the 

coherent excitation of a Fabry-Perot interferometer filled with a Raman­

active substance was first presented by Lugovoi (1977). 

In this semiclassical approach, the molecular system is treated 

quantum mechanically, whereas the fields are assumed to be classical. 

He assumes the polarisation takes the form given by Eq. (2.6) 

and obtains an equation of motion for the vibrational mode: 

.. 
X + .2. h 'X -+ w.,. )( ---(2.7) 

(where )< :. <. 9..) 

As expected, Eq. (2.7) greatly resembles the equation of motion 

for a driven damped harmonic oscillator: (m = reduced mass; 

2h = width of spontaneous Raman scattering line; w~= resonance frequency 

of vibrational mode). 
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In this theory, the electromagnetic field obeys Maxwell's equations. 

Thus the propagation of the light field is governed by the wave equation: 

V x ( 2 x E) + ~~ 0; ~i = 

where the electric field is a sum of Stokes and applied (cavity) field 

components. (Anti-Stokes emission is neglected in this theory). 

One of Lugovoi's major assumptions is that the vibrational modes 

(phonons) are damped on a timescale much faster than that of t.~e Stokes 

or laser modes. It is then possible to eliminate the phonons adiabatically. 

This amounts to replacing the variable .X with its steady state 

value in the field equations (for fixed E ) . 

where 

In this limit, he derives the following equations of motion: 

---(2.8) 

___ (2.9) 

olp = complex amplitude of exciting (cavity field); 

l olsl';. Stokes intensity; 

~, = detuning of cavity mode from external driving field,EL 

Ws = Stokes frequency; ( t! p , ls 

damping respectively) 

cavity and Stokes 

Raman coupling constant, as defined by Lugovoi 

= k ' • K" L. + l, '-

( • • 2. ) By solving these equations in the steady state olp = lolsl = 0 

Lugovoi predicts bistability in Stokes intensity, dependent on the laser 

intensity 

We may obtain greater insight into the system by adopting a quantum 

mechanical approach. 
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p2.l(c) Adiabatic Elimination of Phonons: Quantum Theory 

As in the previous section, we consider the intracavity interaction 

of a coherent driving field with a Raman-active medium. 

p2.l(c) (i) Hamiltonian 

The total physical system is described by the Hamiltonian H 
discussed in jl.3(b), 

-----(2.10) 

He..TII. is as described in Eq. (1.4) in j1. 3 (b) (ii) . 

The term H moHer- describes the energy of the uncoupled 

molecular system and takes the general form, 

HmoHer 
------l 2 .11) 

The discussion of j2.l(a) showed that the interaction term is given 

by, 

----(2.12) 

In general, the electric field is the sum of the exciting (cavity) 

field, and the scattered Stokes and Anti-Stokes fields, Es:, EA~ 

Let us restrict further discussion to the behaviour of the Stokes mode 

alone, and set, 

E = Ep + _s s 

The Hamiltonian assumes its proper second quantised form if we 

express the system variables as, 

---(2 .13a) 

__ ....,2.13b) 
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where N is the number of molecules within the interaction volume V 
is the unit polarisation vector for the light field; denotes 

the position of the jth molecule and 

the vth mode . 

is the wave vector of 

Substituting Eqs. (2.13a) and (2.13b) in Eqs. (2.11), (2.12), we 

find, in the rotating wave approximation (defined in ~1.3(d)) 

----(2.14a) 

He.m. £ ti "f\ Wrt~ ( b~). b rll -+ ~) -----(2.lSa) 

H1NT 
( aol ) N~2. 1t \{'2. <' ( Z "'e""') t t 

= ~'l, ns nr V m11~ L~s)tep W ~ p ~ s [ brt\1' bllS bRr 

+ bP.lfbtts bRp )o<ir-~s -~v-) ----i 2 .16a) 

( n = refractive index) . 

We now adopt a single mode approximation, in which we assume the 

incident field strongly couples to a single cavity mode (described by 

the operator bp ), which in turn couples strongly to a single 

Stokes mode. Thus we may write; 

H -- ~ w ,tb maHer n D 
----(2 .14b) 

-----i2.15b) 

----(2.16b) 

where 

(Raman coupling constant). 
and b is the boson operator for the phonon mode, frequency vJ 
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Assuming the applied laser field can be treated classically the 

Hamiltonian describing the interaction between incident field and cavity 

mode is; 

Ho ---(2.17) 

where EL is the amplitude of the driving field of frequency WL 

Finally, we must include damping of phonon, cavity and Stokes modes. 

The discussion of ~1.3(d) showed that a valid description of damping 

is to assume coupling of the mode in question to a reservoir in thermal 

equilibrium. 

The Hamiltonian takes the form; 

- b Q+ + 1 Q+2. bq+ - P I 0s + 3 -+ h.c. --(2.18) 

where Q, 1 Q~ 1 Q3 are reservoir operators. 

i2.l(c) (ii) Master Equation and Average Values 

We now form a master equation (equation of motion for density 

operator p ) from the Hamiltonian, in a frame rotating at the laser 

frequency W1. , 

-(2.19) 

da"'pin9 
denotes interaction picture] 

where 
Zt ~~fcb~f,b+.:) 4- [b.:,fi,:)4-.2n\[[bl'.,f],ft]} 

4- i! u-t [ bp, \:t 1 + [ b., p ~ 1 + 2 n 11" [ [ b, f) , B°1 } 
where )$ If" is decay rate of the phonon mode, ( the index 

. 
l. = s, p ) 

and the 

are the rates of the stokes and pump modes respectively 

are thermal occupation numbers of the reservoirs -

as discussed in ~1.3(d). 
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we obtain average values of the operators from the master equation 

as for any arbitrary operator O, 

( O ) = Trace ( f O) -----2.20) 

where <) denotes expectation value and the dot indicates a 

derivative with respect to time. As mentioned in.the beginning of this 

chapter, we are presenting only a deterministic theory, in which quantum 

fluctuations are ignored. We may thus assume complete factorisation of 

expectation values (e.g. < bs bp) = <bs )( br) 1 e.k. ) . Using 

-Eqs. (2.19) and (2.20), we then find, (for a cold reservoir, n = 0): 

-----(2.21a) 

-----(2.2lb) 

-----(2.2lc) 

where o{ p ::. < b p) , 
' 

and we note 

o(p, ols, ~ are all complex numbers. 

Also, '51 = Wp - WL is the relative detuning of the laser 

field with respect to the cavity mode we are considering; and b.2. = W-(c..>p-t...)s) 

is the frequency mismatch between the natural frequency of the phonon 

mode and that of the Stokes transition. 

We now wish to adiabatically eliminate the phonon modes, following 

Lugovoi's approach. 

Physically, this approximation is based on the assumption that the 

phonons are damped at a much faster rate than either the Stokes or pump 

modes, i.e. 

As discussed in Chapter One, mathematically this is equivalent to . 
setting ~ ::. 0 in Eq. (2.21c), yielding 

= - i.. X o1p «! 
o"' .., C:.0.1 

----(2.22) 



we can now appreciate the cubic nonlinearity of the polarisation, 

by setting <q) = ~ and 

p 

E = olp in Eq. ( 2 . 6) , 

~ X<Xs lolpl~ 

~"" + i..b:2. 

we may thus identify a third order nonlinear susceptibility, by 

fanning the definition: 

RAMAN NONLINEAR POLARISATION 
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p - ols I «p \1 (2.23) -
where 

Hence, 
I\/ {3) 
/'- is a complex quantity, which becomes purely 

imaginary and negative on resonance ( 62 = 0) This agrees with 

the expected behaviour of the third order Raman susceptibility, as 

discussed by Bloernbergen (Bloernbergen, 1970). 

Returning to the field equations, Eq. (2.21), by substituting 

Eq. (2.22), we find the equations governing the system in the adiabatic 

limit: 

clp = - ( ~p + i.. <S,) exp + EL - y._l. (<!IT" +~Si) olplcisl2. 

(";J; +Si.) 

els = - ~s els + '/...1. (~., - i_ cS2.) ols loipl1 

(i~ + ot) 

---(2.24a) 

----(2.24b) 
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In such a deterministic theory, we can form an equation for the 

time development of the Stokes intensity, , from Eq. (2 .24b); 

+ 
We thus find the following field equations for this Raman sys~em: 

---(2.25a) 

---(2.25b) 

where the Raman coupling constant is defined by; 

K=k 1 +i.,k 11 

' ) 

We note that Eqs. (2.25) are equivalent to those derived by 

Lugovoi, Eqs . ( 2. 8) , ( 2. 9) . 

p2 .1 (c)· (iii) Bistability Conditions 

In the following discussion we will denote the Stokes intensity as, 

5 ~ I ols 12 

and, I ~ \ E ... 12. 

Solving Eqs. (2.25) in the steady state (~p=l~sl2 =o) predicts 

two stationary regimes: 

1) s :: 0 ~ I olp I,. :: I (2. 26a) 

and ~r +J~ 

2) S -:f. 0 ::;, 52. ( K12 + K'' 2) + S ( .:2 K' 'tr + 2 cS, k 11) 

2. 62. + 'tJp + I - I<' I =O (2.26b) 

~s 



t 
s 

Thus the system has the following behaviour: 

Fig. 2.1. Steady State Stokes Intensity vs Input Intensity 

The system can exist in either of the two stationary states, 

(a) described by Eq. (2.26a) 

(b) described by Eq. (2. 2Gb) 

We now wish to determine the conditions under which the system will 

be found in each of these states; and the conditions required to 

observe a transition between stable states. We obtain this information 

by performing a linearised stability analysis. 

Stability Analysis 

we investigate the behaviour of the system close to a stable state 
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by considering the behaviour of small fluctuations about the steady state: 

i.e. set 

alp = olo + ;;tr 

S = So + s (2.27) 

where o<o, So are the steady state values of olp , S ; and exp 

-and s are the time dependent fluctuations about these values. 
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Substituting Eqs. (2.27) into Eqs. (2.25) and linearising, we find; 

• 
exp 0 -Kolo 

• * °' r 0 - le:.* o/.o~ 
(2.28a) 

• s I 2 k Soolo 0 -s 

) 
A is the matrix 

defined in Eq. (2 .28a). 

To find the eigen~alues corresponding to normal modes, we form, 

det ( I l - A) = o 

\3 - \2. ~ ' -A + a, A. + a,. A. + a'3 =O ----i2.28b) 

where 

- ., ( v K'S ) • - { vi ,1 ( II,.. )2. 4 12. I :z. 0, = -',. op+ 0 , a:z. = ~p + ..... SoJ + b1 + K. ;,o + K So cc'ol 

2h ::. 4 K.1 So lo/o \2 ( ~p k1 + K. 11 0, 4- \ \< \.t So) 

Equation (2.28b) is known as the dispersion equation and its roots 

determine the time dependence of the variables - -* ~ ot.r , ol p , 5 . For 

example, will have the following time dependence, 

Clearly, we require negative real parts of the eigenvalues A~ 
for stability in the system. This is known as the Hurwitz stability 

criterion and is equivalent ·to the conditions, Glansdorff and Prigogine 

(1974). ~. '>O , 

where 

- 63 a, a, - 0 -
' - ci2. - 0.2. a. a~ Q3 

-0 0 C\3 



Thus, for stability, we require 

and (ii) -Ch >o 

The first condition is always satisfied as and 5 0 

are all necessarily positive. However, condition (ii) is not always 

met, allowing for bistability in the system. That is, there will be 

a transition between stable states C@, @ in Fig. 2.1) when 
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----(2.29) 

K /1 
Thus, a transition will only be observed if and are 

both non-zero. As this amounts to the presence of non-zero detuning in 

the system, we see that transitions will occur only in the dispersive 

regime. 

We note that Eq. (2.29) is equivalent to the expression, 

~ ::. 0 , from Eq. (2 .26b) 
?,S 

Hence, the system is stable with respect to small fluctuations when 

)0 which corresponds to a positive slope of the curve in 

Fig. 2.1; and the system becomes unstable when 

corresponding to a negative slope of the curve. 

Transitions in the System 

We may thus determine the behaviour of the system by examining 

the slope of the curve described by Eq. (2.26b). We note however, that 

Eq. (2.26b) predicts two types of behaviour. 



t 
5 

A 
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.:r-,. 

8 

Fig. 2.2. Stokes Intensity vs. Input Intensity 

The arrows indicate transitions predicted by the stability analysis. 

Fig. 2.2a describes bistability and hysteresis, and is akin to a 

first order phase transition. Fig. 2.2b however, predicts a smooth 

transition between stable states and can be thought of as a second order 

phase transition. 

The conditions necessary for the observation of case A or case Bare 

determined by the coefficients in Eq. (2.2Gb): 

1) Case A (analogous 1st order phase transition) will be observed if, 

2) Case B requires 

k'~, + a, K" 
K'.2. + K"2. 

)0 

As, in a physically realistic system we have 

---(2.30a) 

___ (2.30b) 

K' and ~p non-zero; 

bistability (analogous 1st order phase transition) will only be observed 

if or K" are negative. 

Thus a necessary condition for bistability in the system is the 

inclusion of a non-zero detuning. 
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~2.l(c) (iv) Non-Resonant Susceptibilities 

Fundamental to our treatment of Raman interactions was the assumption 

that the exciting field was strongly coupled to a particular molecular 

transition. Transitions far of£ resonance were assumed negligible. 

However, the effect of such non-resonant transitions can be included 

into the theory: as shown by Bloembergen and Shen (1965), these transitions 

result in a contribution to the third order susceptibility. 

i.e. r Jtes ~ Resonant ] 

L NR. : Non-Resol'\ont 

The 
1\/Cl) 
/-- NR. terms involve only pure electric-dipole matrix elements, 

with no resonant denominator and thus are real quantities. It is shown 

(Bloembergen & Shen, 1965) that the ratio of \ x£~Jl to I 'X!~ l,. 
is about 10 to 1. 

Inclusion of such a non-resonant susceptibility into our theory 

would lead to the imaginary part of the constant K 

independent part. Thus, 
Cl) 

K ,, C N + I f- Nfl 

having a frequency 

where Ca is a constant depending on system parameters. 

Hence K'' has a non-zero imaginary part, even at resonance. 

This allows the possibility of observing bistability at resonance, if 
IV (3) 
JI- N R. is large enough. 

However, as the magnitude of 

situation would probably not occur. 

""(3) 
I- NI\. is relatively small, this 

Thus, in general, we conclude that bistability will only be observed 

in such a Raman sys tern in the dispersive limit ( O, ':f O , 0 .1. :f O) 
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p2.l(d) Phonon Reservoir Theory 

The discussi?n of j2.l(c) assumed the Stokes and pump modes coupled 

strongly to a single phonon mode. 

we consider now the system in which the phonons form a reservoir for 

the Stokes and pump modes. By treating the phonons as a reservoir in 

thermal equilibrium, we have essentially eliminated them; and we thus 

expect the behaviour of such a system to be similar to that described 

in ~2.l(c). 

The Hamiltonian is the same as before : Eq. ( 2 .10) , except the 

interaction term is now viewed as, 

H,NT 

HINT -\- h. C. ----(2.31) 

where Q is a reservoir phonon operator. 

The master equation associated with the Hamiltonian, Eq. (2.31), is 

derived using the standard methods of the quantum theory of damping. 

We thus find the master equation for the total system (in a frame 

rotating at the laser frequency CJ1- ) , 

[ EL 8"r - E~ br , f] 

+ ~ + 
ot dompi"'S 

L b, [ Br bp , f] 

0--t o t Ro.mo.I'\ 
ln~en:tc.h"ot\ 

----(2.32) 

where is the relative detuning of laser to cavity mode, 01 = Wp-WL. 

The term ~, 
"Z> t c:la""fi"«3 

describes damping of Stokes and 

pump modes and assumes the usual form: 

~ l~ '5~f [b.:p,~] + [b.:,fb~] + .lY'.:[[bc:,p],1:r«:]1 
0 C dQ"'Pi"j (2.33) 
< c: = s,p) 
where the Di are decay constants of Stokes and pump modes and the 

ni are the number of thermal quanta. 



The final term of Eq. (2.32) stems from the interaction term, 

Eq. (2.31). Treating the phonons as reservoir operators, we obtain 

the equation, 

Ramon 
lntM:ld-ior'\ 

where X, is the coupling constant and 'n 

occupation number of a reservoir of phonons. 

~2.l(d) (i) Deterministic Theory 

represents the thermal 

In the deterministic limit, we neglect quantum fluctuations and 

assume complete decorrelation of expectation values. We thus obtain 

the equations of motion from Eq. (2.32) (n :.o): 

• 
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olp = E I- ( ~p + ~ 61) olp ----(2.35) 

. * 
olp = E~ - c 'gr - ~ c5,) °'r ----(2.36) 

• 
+ ')loZs lolpl1 <XS = - 1Ss ~s ----(2.37) 

----(2.38) 

where < bs) = «s 

I _, \4 
We ~btain an equation of motion for the Stokes intensity '-'l~ 

from Eqs. (2.37) and (2.38), 

----(2.39) 

Equations (2.35), (.2.36) and (2.39) are equivalent to Eqs. (2~25a) 

and (2.25b) derived in ~2.l(c); except now the Raman coupling constant X 
is real. Hence all the results of ~2.l(c) are applicable to this case 

if we set K '' = o in Eqs . ( 2 . 25) 



we conclude from such a comparison that bistability will not be 

observed in the phonon reservoir system as, 
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~ )0 
'X 

-----(2.40) 

for all 'tSp , 'X and Eqs. (2.30) indicate that this system will 

exhibit an anologous second order phase transition only. 

The marked difference between the behaviour of this system and the 

one of ~2.l(c) is due to the corresponding real and complex nature of the 

respective coupling constants 'J. and K 

That is, in the theory of ~2.l(c), frequency mismatch between 

Stokes, pump and phonon modes generated a complex coupling constant K 

Such frequency shifts occur in the reservoir theory of this section but 

their effect is only to slightly shift the cavity resonance frequency, 

thus these terms are generally neglected (Louisell, 1973). 

Hence, bistability will not be observed in the phonon reservoir 

system. 

p2.2 Effective Hamiltonian Fonnalism 

In the final sections of this chapter, we consider bistability in 

three further systems: the effective two-level system, the parametric 

oscillator and the two-photon absorber. 

We model each system in terms of an effective Hamiltonian, which 

we state without proof. Such Hamiltonians have been widely used in 

quantum optics, for example the work of Shen (1967) and Walls and McNeil 

(1974) on nonlinear opticsi and the work of Graham (1970) on the 

parametric oscillator. 

To derive an effective Hamiltonian, it is often necessary to eliminate 

certain field operators, resulting in an effective interaction between 

remaining variables. This is usually achieved by perfonning a unitary 
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transformation on the system. In general, however, this is only possible 

if we may sum over virtual excitations of the eliminated variables; for 

example, virtual atomic levels (Power, 1974). 

we now use the effective Hamiltonian approach to view the Raman 

effect from a different perspective to that of the previous section, 

and consider electronic excitation within the atom. 

p2.2(a) Atomic System: Effective Two-Level Model 

we again assume an intracavity interaction between light and matter; 

in which two driven cavity modes are coupled to two atomic transitions, 

as indicated in Fig. 2.3: 

Fig. 2.3. Effective Two-Level Model 

I 1) and ll) are atomic energy levels). 

The most general case involves two incident fields, and E.i 

driving the two cavity modes of frequency W, and W2. • These 

cavity modes are coupled to the transitions; first, from f1) to 

several intermediate virtual levels, \L) , and secondly, from these 

intermediate levels to I l) 

Thus, a transition from to ll) proceeds as a two-photon 

process, via the virtual levels, Ii.) The fields are not on 

resonance with the r I) ~ 1.1.) transition. 



such a process can be described by the effective interaction 

Hamiltonian: 
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Heff. rNT 1i ( X1 6, 6: o--t- + h. c.) -- 2

-

41> 

where b, and b~ are boson operators describing cavity modes1 

(]' t " - • , v are spin-flip operators for the I l) -"> 11) transition and X1 

denotes the strength of the interaction. 

The total Hamiltonian of the system in the single mode approximation 

and rotating wave approximation then becomes, 

H = Ho + H Eff. \NT + H l) + Holampin';! 

where 
"R 
2 Wo ~ + --(2.42a) 

( Wo = resonance frequency of two-level system). 

+ --(2.42b) 

I I 
W, , W,1. are the frequencies of the two applied fields, of amplitude 

E, and Ei respectively). 

The cavity damping takes the same form as in the previous section 

---(2.42c) 

(G,,Q~ = reservoir operators, for example, modes of the radiation field) 

and we assume atomic damping of the fonn, 

---(2.42d) 

(QA= reservoir operator) . 

Thus, although there is no direct coupling between II) and fl) 

we assume radiative damping occurs via these levels, as indicated by 

Eq. (2.42d). 
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From the Hamiltonian given by Eqs. (2.42), {2.42a), {2.42b), {2.42c) 

and (2.42d), we form the master equation, in the interaction picture. 

= - t. [ { Ho + H Eff. INT + + 
i, 

(subscript I denotes interaction picture) . 

where 

( ~ 1 , ~.2. = damping coefficient of modes 1 and 2; '<fA = radiative 

damping constant of two-level atom; r1 = number of thermal quanta). 

As before, we obtain equations of motio_n for system variables from 

the master equation, assuming complete decorrelation of operators. 

We also assume a zero temperature reservoir and set n = 0 

We find the following semiclassical equations. 

Field equations: 

--(2.43a) 

---1.(2 .43b) 

Atomic equations: 

--(2.44a) 

--{2.44b) 

fJ • * ( r 12. = - 1. X, ~1 ol, f:1.2 - f") - ---(2 .44c) 

f" + f:1.2 = 1 ---2.44d) 

- and the complex conjugate equations. 

InEqs. (2.43),(2.44), 

I\ ,i.1 
o, u = detunings between cavity modes and applied fields, 

I ~= W,-W, I\ I I u = W:i.-W.2.; = atomic detuning = W,-W:i.-W0 • 



In this model, we assume the atom relaxes to its steady state 

rapidly compared with the cavity modes. The discussion of ~l.3(g) in 

the introduction showed that this approximation is justified if our 

intracavity interaction model is similar to a typical gas laser. 

Thus, if 

we may adiabatically eliminate the atoms, by setting 

. . 
f11 = f2.2 

. 
f -- 0 12. in Eqs . ( 2 . 44) 

This yields, (for real X, ) 
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(J°.Li )ss = X~ lo<1l2.lo!2\2 

2 xt lol,\1.lol2.\1 -+ [ 1 + ol.] 
--(2.45a) 

y0,,)s~ - 1 - (f2.2)ss - ---(2.45b) 

---(2.45c) 

Substituting these steady state values back into the field equations, 

Eqs. (2 .43), we find, 

(2.46a) 

( ~ - ib)[t + l<llit1 1ofa\1 .l)l~(t +02Tl] 

ci1 = E ,_ - ( "61 + ~ A') o(.,_ + __ x_~_ol_l._1ot_._,,. _______ _ (2.46b) 

(~ + c:0)[1 +la,\:Llo/3.\1 .lX,1 (~ +ztfl) 
In the limit of large detmiing (dispersive limit), we can expand 

the denominators in Eqs. (2.46) to first order. That is, we assume 

.2. "'1., 
~-""-_lcl,\2 loi:L\2· <'.<- 1 

. [i + 01 J 
and find the field equations: 

v2., I l. ,._ ol, ol2.l 

(1r - ~8) ----(2.47a) 

= E2 - (~.,_ + i~)ol 2 
---(2.47b) 



These equations describe the behaviour of an effective two-level 

system, in the dispersive limit on adiabatic elimination of the atomic 

variables. 
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We note that if we set the input fields on resonance with the cavity 

modes ( A =- b' = 0) and consider one driving field only (El. =-0) , the 

Eqs. (2.47) become, 

----◄ 2.48a) 

+ ----(2 .48b) 

where 

V / • // / V2. 'Y 
A- l : f :J. + I.. fl. ; f :i. : I'- I DA 

2L~+i/] 

,, x~ o 

Equations (2.48) are equivalent to the 

, f'- = [~ + b'] 
Raman equations, previously 

derived in ;2.l(c). Thus, all results obtained in i2.1 pertaining to 

bistability and hysteresis are also applicable to such an atomic system. 

The major result, we may quote, is that this system will exhibit 

bistability in the intensity , dependent on the input 

intensity I EI \ 2. 

p2.2(b) The Parametric Oscillator 

Parametric oscillation occurs when a nonlinear crystal is driven by 

light of frequency 

frequencies, CJf, 

Wt , producing two output light fields of different 

and Wf 
J. 

If excitation proceeds via virtual states, we can write the effective 

Hamiltonian as, (Graham, 1970), 

where b, , 62. 

modes; and I< p 

---(2.49) 

and 63 are boson operators for the three cavity 

is the coupling constant, chosen real. 



Equation (2.49) describes the process, 

/'f\"'a 

1iw~~ 
~'nW:i. 
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Assuming that it is possible to drive the cavity modes of frequency 

W, and W .2. on resonance, we find the total system Hamiltonian: 

H -= Ho + H Ef-f, INT + H D + H dompin9 

where 

, HEff.tNT is as given in Eq. (2.49), 

and 

The master equation follows as in previous sections and again we 

obtain the deterministic equations: (cold reservoir, n = 0) 

. 
- ~, ~\ + * + E, 

~I 
= Kp ~2. ~3 (2 .SOa) 

. 
~2 = E2. - ~.1 ~2 + Kp ~; ~3 (2.SOb) 

. 
~3 = - tS3 ~3 - Kp~,~.1 (2 .soc) 

where <b,) = (3, 
' < b.1.) = ~2. , < b3) = ~3 ; if 1 , ?! 2. J 'g 3 are the 

respective damping rates of modes 1, 2, and 3. 

We now solve the system in the steady state, by setting ~' = ~.2. = ~3 =O 

in Eqs. (2.50) . 

Equation (2.SOa) yields, 

which when substituted in Eqs. (2.SOb) and (2.SOc) results in the equation 

of state for the system: 

-(2.51) 

where 
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we have thus derived an equation of state in terms of the two input 

driving fields and one cavity mode only. 

we can write Eq. (2.51) as a real equation, 

-(2.52) 

The behaviour of the system, as described by Eq. (2.52) is plotted 

in Fig. 2.5, for various values of system parameters. The form of these 

curves suggest a bistability in the intensity I R.2 \2.. r , dependent on 

l E .. \1 ~ - this is indicated in Fig. 2.2. 

Fig. 2.~. Expected Bistability in Parametric Oscillator System 
(arrows indicate bistable transitions). 

To determine the conditions necessary for bistability, a stability 

analysis must be perform~d. However, the complexity of this six variable 

does not allow a straight­

forward analytical approach. 

Nevertheless, Fig. 2.5 clearly indicates instability in the system 

and we can expect bistability to occur as shown in Fig. 2.4. 

We can obtain the sufficient conditions for such a bistability: this 

requires the solutions of the equation, 

to be real and positive. 



~-4 

i 4-8 

lp:l· 

3-2 

1 ·6 

0 1·l 2-4 J,E, 4.g 6-0 

lE.212 ~ 

Fig. 2 .5. Output Intensity I ~.:z 11 vs. Input Intensity IEi Ii. l PARAME:TRIC. OSCIL-LAToR.) 

(Data: ~, = ~.2 -:: ir:: I ; in curve (i) IE., ,2 : :1, ; 

<ii>lE,\2. = 3 ; Ciii> \E,11 = 4 ; <iv> IE1l,.=-S U1 
1.0 
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On performing this, we find bistability can only be expected when, 

IE.11 > 4~,1 ~2 

Xr 
-(2.53) 

This behaviour is clearly shown in Fig. 2.5: 1~211 becomes 

double-valued for a given l E:i\1 when condition (2 .53) is satisfied. 

Thus the parametric oscillator is an example of a system exhibiting 

bistability in output intensity, varying in accordance with an input 

field intensity, and critically dependent on a second input field intensity. 

Finally in this chapter, we consider bistability in a further system, 

the two-photon absorber. 

f2.2(c) TWo Photon Absorber 

As in previous sections, we model the system as the intracavity 

interaction of two driven cavity modes with two atomic levels. We indicate 

this as follows: 

1iwi ! 
=1i.) 

1iw, ...__J --

ll) 

11) 

Fig. 2.6. Two Photon Absorber 

We assume there exist a number ·of virtual intermediate levels IL) , 

between levels and ll) , over which we can perform a stnn. 

This enables construction of an effective Hamiltonian, 

H Eff. INT : 1' ( x~ b, b.2 er+ + h.c.) ----c2.54) 

where b, , b.i are boson operators for the cavity modes of frequency 

W1 , W.2.. ; er+ is the spin-flip operator for the l 1) ~ 11) transition. 



Including the effects of cavity and atomic damping, and two driving 

fields on resonance with the cavity modes; we find the deterministic 

equations, following the same procedure as in previous sections, 

Field Equations: 

• 
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ol I : E., ---(2.SSa) 

ol1 = E :i. - ~i o<:2. - L Xt1. ex;)/; f :11 

Atomic Equations: 

p,-,. - -~ Xo.dt cl.i C f:u -f11) - ¾- f 12 

where o/1 = <'.b,) ; oh.= <b:1.) , fi.j = <.i.lplj) 

---,(2.SSb) 

-(2.56a) 

--{2.56b) 

---(2 .56c) 

and E1 , E,_ are amplitudes of the incident fields driving cavity modes 

, respectively; ~,, ~:1., ~A 

atomic damping rates. (We assume n = O) 

are the cavity mode and 

As in the effective two-level system, we adiabatically eliminate 

the atomic variables, in the limit, 

This results in the field equations, 

cl, = E, - -g, cl, - 2 '6 A x~ «, lol.i 1:i. ---.... 2.57a) 

~~ + g x! I cl, \2. lo(2. \2. 

J1 = E.2 - ~i o(2 - 2 '?SA x;, o(,2. 1o1, 12 
----i2.57b) 

~A + cg )l~ l«il" \ol2.\ 4 

We now adopt the absorptive limit, in which the damping coefficient 

~A becomes large with respect to other system parameters. This is 

valid in such an adiabatic limit. Assuming 

9 x.!. lold2. l«2.11 

IS~ 



we expand the denominators in Eqs. (2.57) to first order, resulting in 

the equations, 

62 

-----(2.58a) 

-------\2.SSb) 

where 

Equations (2.58) describe the behaviour of a two-photon absorber on 

adiabatic elimination•of atomic variables. 

It is interesting to note that in the steady state, c,/., = oi2 = O 

Eqs. (2.58) predict the equation of state, 

I E .2. I 2 = I ob. I 1 [ ~ 1 + 'Xa l E JL ) 
(~, + 'Xo. lol2.\2. )2' --(2.59) 

which is equivalent to the equation of state for the parametric 

oscillator, given by Eq. (2.52). 

Thus, in the abso:rptive limit 0A large) the two-photon 

absorber behaves like a parametric oscillator (resonance case). As before, 

we expect the system to display bistability when; ( c . f . Eq . ( 2 . 5 3) ) 

I E, f'· ) 4 8:i. 

as indicated in Fig. 2.7. 
'Xa. 

Fig. 2.7. Expected Bistability in the Two-Photon Absorber -

- in Output Intensity, Dependent on Input Intensity. 

Again, we have shown the equivalence of two nonlinear systems. 



CHAPTER 3 

OPTICAL BISTABILITY FROM A SYSTEM OF THREE-LEVEL ATOMS 

~3.1 Introduction 

Semiclassical and fully quantum mechanical theories of optical 

bistability, arising from the intracavity interaction of coherent light 

with a system of two-level atoms, have been discussed by many authors 

(for example, McCall (1974), Bonifacio and Lugiato (1976), and Drummond 

and Walls (1980b)}. 

These theories describe two distinct regimes, referred to as 

absorptive and dispersive bistability. 

Absorptive bistability is a resonance effect, and occurs due to the 

feedback introduced into the system from the interplay of the following 

conditions. 

i) An increase in intensity results in saturation of the atoms and 

thus less absorption of rapiation by the atoms, and 

ii) the intensity of the radiation within the cavity increases as 

absorption by the atoms decreases. 

Dispersive bistability_, associated with a system exhibiting an 

intensity dependent refractive index, arises b~cause of the optical 

feedback generated when the following conditions are met: 

i) An increase in intensity changes the refractive index, consequently 

shifting the cavity resonance frequency towards the exciting 

frequency, and 

ii) the intensity of the cavity radiation increases as the cavity 

frequency shifts closer to the exciting frequency. 

In practice, however, purely absorptive bistability is difficult to 

observe; and the first experimental observation of optical bistability 

relied on the intensity dependence of the refractive index. 
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In this chapter, we consider an unusual effect displayed by three­

level atoms under the action of two driving fields, which provides a 

mechanism for optical bistability in such a system. 

This phenomenon, known as coherent population trapping occurs when 
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the driving fields are on resonance with the atoms and the atomic damping 

is of a certain radiative nature. It results in a transfer of the entire 

atomic population to a linear combination of the two lower levels of the 

atom, if the system is initially prepared in a statistical mixture of all 

three levels. This final linear combination of levels does not interact 

with the driving fields, thus the system evolves to a non-absorbing state. 

The theory of this effect is discussed at length by Arimondo and 

Orriols, (1976), Orriols (1979) and Whitley (1977). 

Experimentally, these so-called narrow non-absorption resonances 

have been observed by Gray et.al. (1978) and Alzetta et.al. (1976, 1979). 

In ~3.2 and ~3.3 we discuss the interaction of a coherent driving 

field with an 'inverted-V' and 'V' configuration respectively. In both 

systems, we find the following steady state behaviour. 

OCATPUi 

INPUT 

Fig. 3A. Steady State Behaviour in Three-Level Systems 

A fonn of such a curve suggests bistability in the system: branches 

of positive slope are assumed to describe stable states, and the branch 

having negative slope is assumed unstable. Bistable transitions will 

then occur at points A and Bin Fig. 3A. 
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To rigorously determine the occurrence of bistability, a linearised 

stability analysis must be performed. However, the complexity of the 

three-level system renders any such analytical calculation intractable. 

Hence, in this chapter the stability of the system will not be explicitly 

investigated. 

The behaviour displayed by Fig. 3A does however indicate an instability 

in the system. Thus whenever such behaviour is found in our investigations 

in this chapter, we will assume there is a possibility of observing 

bistability in the system. 

t3.2 'Inverted-V' Configuration 

~3.2(a) Hamiltonian 

We consider the intracavity behaviour of a system of N three-level 

atoms ('inverted-V' configuration), subject to two coherent driving 

fields. 

This is indicated in Fig. 3.1. 

-----13) 
Ea. 

) < 

------Jt) 

Fig. 3.1. 'Inverted-V' Configuration Interacting with Two Fields 

~ Cl and Eb represent the amplitudes of the two input fields. 

These drive two cavity modes (assumed to be on resonance with the fields) 

of frequency Wo., Wb 
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The atomic levels 11), ll) and 13) have energies h W1 , 

and "h W3 respectively. Atomic .transitions are as indicated 

in Fig. 3.1, which we note, is equivalent to a Raman system. 

we construct a Hamiltonian for such a system, in terms of the 

~ + IT"" t (J - ,.,-"' -opera tors , v , , v J. , , , v ,;.. where ;T'" + n-, -
VI , V, are spin-

flip operators for the 11) ➔ 1'5) transition, and ,r + -
v,2. , 0"2 are 

spin-flip operators for the l:t) ➔ \3) transition, 

i.e. 0-1+ \1) = \3) ; er; -13)-:: I 1) 

<r, ±. 12) =o 
• 0-2-,. I .2. ) = I 3 ) 

' 
J 

Thus, we view the system as two driven 

common upper level, \ 3 ) . 

o-l, 1) =o 
two-level systems, with a 

We assume an electric-dipole interaction between cavity modes and 

atoms: 

HINT ----3.1) 

Following the second quantised formalism, we expand the dipole 

operator f- as, (Aga:rwal, 1974), 

---3.2) 

and the electric field E as, 

where 

(3.3) 

El 

where b, and are boson operators for the two cavity modes. 

Again we utilize the single mode approximation. U(!:) is a mode function, 

chosen to describe the cavity and is the polarisation vector. 

Substituting Eqs. (3.3) and (3.2) in Eq. (3.1), we find, in the 

rotating wave approximation, 

----(3.4) 



where 

We write the total Hamiltonian for the system as, 

where the free Hamiltonian is, 

and H,r-1T is given by Eq. (3 .4). The interaction between driving 

fields and cavity modes is given by, 

67 

---(3.6) 

again, we have assumed classical driving fields. The cavity and atomic 

damping is described by the Hamiltonian terms, 

where Q, 
---3.7) 

and Q:L are reservoir operators (e.g. modes of the radiation 

field); 

--(3.8) 

QA and QB are reservoir operators) . 

The form of the damping expressed by Eq. (3.8) describes spontaneous 

emission from the two pseudo two-level systems. We do not include 

radiative coupling between levels It) and l 2) 

Such a damping scheme assmnes relaxation to levels other than the 

three we are considering is on a much slower time scale. 

The reverse case is considered by Brewer and Hahn (1975), who 

derive steady state and transient solutions of such a three-level system. 

They assmne relaxation between levels JI) , l .2 ') and is 

slow compared to decay from these states to other nearby levels. 
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i3.2(b) Master Equation 

We form the master equation (in the interaction picture), 

Ah:»mic 
damp. (3 • 9) 

(subscript I denotes interaction picture) 

where 

" [ K,fcb,p,IU + (b,,p!U +1n,[[b,,fJ,1{]1 
£:I 

and 

'll;'{ (, + n.)( [ u-t f, <T, .. ] + ( er,- , fer;+ J) 

+ n~ ( C f1"/'p, o-.:-) -+ C cn~p<r~ -J) 1 

(3 .10) 

(3.11) 

where the Ke: are cavity damping coefficients; ~ Ai. are spontaneous 

emission rates and the fl~ are the number of thermal quanta present 

in the reservoir. 

In all following discussion, we assume a zero temperature reservoir, 

and set 1\~ = 0 

The equation describing atomic damping, Eq. (3.11), has been 

derived under the Markoff assumption (Louisell, 1973). Such an approach 

cannot properly describe the effect of atomic collisions. 

However, in any intracavity experiment, we expect the atomic vapour 

density to be such that collisions cannot be ignored. We include these 

effects in phenomenological manner, discussed presently. 

We derive the equations describing the time evolution 

of system variables, from the master equation, by assuming complete 

decorrelation of expectation values: 

Field Equations: 

----(3.12a) 

---(3.12b) 

(and hermitian conjugate equations) 

where 

' 
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The factor N appears in Eqs. (3.12) as we are assuming the cavity 

modes couple to N identical non-interacting atoms. Note, there are 

no cavity detuning terms in Eqs. (3.12) as we assume cavity modes are on 

resonance with the applied fields. 

Atomic Equations: 

. 
f" + ---(3.13a) 

• 
f2'l =- + ~923 ol..2.f:1.3 + 'lfA2 f33 

---1.3.13b) 

. 
f33 = L9~?i r:i.tf31 - ~913 ol1f13 + L9i3 ol:f:3.2. - ~D,2.3ol:ifi3 

';J (3.13c) 
- (~A, + '6 A;a.) f 3 3 

= - i. ( fl - ~) f12. - i: 9i3 ol,* f3z + i:, 92.3 cl.i f•3 __ (3.13d) 

= -{i,[j + i:9~ oli p,:i. -(3.13e) 

--(3.13f) 

I 
(and hermitian conjugate equations), where 'Y\iJ. = fi.t - f jj ; ~ , Di. 
are atomic detunings: ~ = W3 -W, -WQ , ~' = W3 -W.2. - W b • 

We mentioned previously the necessity to include collisional effects. 

As collisions tend to result in a leak of atomic population from the 

system, we expect f 11 and f:i. 2 to decay at some given rate. Also, 

the dephasing effect of collisions could give rise to a coupling between 

levels It) and l l) 

Following the phenomenological approach of Orriols (1979), we 

introduce the collisional damping rates, 

with the following equations: 

. } 

f•' = 't, ( f 22 - fn) 
. i, ( fn - f,_,.) f:u. = 
. _J_ p,2 = 'C :I. f•'-

associated 

----( 3 .14a) 

----(3.14b) 

-----13 .14c) 



We do not consider velocity-changing collisions. The approach we 

adopt is by no means rigorous, but adequately describes the expected 

behaviour. 

Equations (3.13) and (3.14) describe the behaviour of the atomic 

variables. 

p3.2(b) (i) Steady State Behaviour of Atomic Variables 
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Let us now turn our attention to the atomic system alone, and consider 

Eqs. (3.13) and (3.14). 

As an interesting and most simple case, we asstnne the fields are 

on resonance with the two atomic transitions ( ~ "= t!. =o) . Also, it 

is assumed that the atomic vapour is dilute enough to enable the neglect 

( ,,.,,-, of collisional effects, ~ = 'C_;:' =O) 

Then, in the steady state ( fhj = o) , 

f33 f•3 :: f23 = 0 

f'-'- : I c:J, 1:t 

let, \2 + lclil 2 

I _J,. ,2. ; f" = __ Cl'_ .. __ _ 

lcld2 + lcl.al2 

we find, 

lt 
-o/, ol.2. 

lol, 12. +l~:a.1 4 

(3.15) 

Thus, we see there is no steady state population in the upper level~ 

and the system resembles a two-level atom, with dipole matrix element f, 2 . 

As f33 ::. 0 there is no emitted fluorescence. Hence, we may 

use the system as a switch: at a certain value of the detuning the cavity 

becomes non-absorbing and thus transparent, so by varying the detuning, 

the system may switch from one state to another (absorbing to transparent). 

The behaviour described by Eqs. (3.15) is, of course, the manifestation 

of coherent population trapping, discussed in the introduction, /3.1. 

p3.2(b) (ii) Steady State Behaviour of Total System 

Having considered the atomic system, we now discuss how this 

behaviour gives rise to optical bistability. 
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To completely describe the general system {ti-:/: O, fl :/:0, t't 14-0, t~\=o) 

in the steady state, we must solve Eqs. (3.12), (3.13), and (3.14) with 

However, the solution of such 

atomic equations proves a formidable task. 

In practice, one must solve the system numerically, as done by 

orriols (1979). He finds the following steady state behaviour for the 

population of the upper level. 

Fig. 3.2: Steady State Atomic Population as a Function of Detuning 
(After 0rriols (1979)) (Schematic) 

The narrow resonance at zero detuning is indicated by the solid 

.,. _, - 4"' _, -0 
curve in Fig. 3 .2., which describes the system in which v 1 - 1...2, -

(no collisional damping). Such curves have also been obtained by Walls 

and Zoller (1980), and the narrow resonance dip is also shown to have 

an intensity dependent width. 

The dotted curve in Fig. 3.2 describes the system in which collisional 

effects have been included. We note that the dip vanishes, thus collisions 

tend to wash out this interesting effect. 

Numerical solutions of the system as given by 0rriols (1979), and 

Walls and Zoller (1980) provide a useful picture of the system's atomic 

behaviour. However, to investigate the possible occurrence of optical 

bistability in the system, we need an analytic solution to the atomic 

and cavity mode equations. As such a solution is not possible in the 

general case, described by Eqs. (3.12), (3.13) and (3.14), we must impose 

some simplifying conditions on the system. 



Fortunately, an analytical solution to the steady state atomic 

equations is possible in the special case, 

We assume the same cavity mode 

coupled to both atomic transitions, and we consider one driving 

field EQ. , only. 
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ii) We assume a dilute atomic vapour 

and ignore collisional effects. 

iii) We assume symmetrical detuning: 

and we define the damping 
I 

coefficients, 

~ Al = ~ Al. = 2. TI 
~A1 -+ if A2. 

:2.. 

Thus the field equation now becomes, 

where K = k, ::. Ki and l<.E. = Ea.. 

= 

----(3.16) 

The atomic Eqs. (3.13) and (3.14) are now soluble, as shown by 

P. Zoller, yielding, (Walls and Zoller, 1980) 

f II : f 21 : ½ ( \ - f33) 

f33 = s, 
:2. + 3 5, 

(3.17) 

where s. is the saturation parameter, 

s, :. lbwi, T, \ 90{, ,i -
---(3.18) 

Also, 

thus, 

---(3.19) 



we see from Eqs. (3.16) and {3.19) that the atom-cavity mode 

interaction is determined by the population of the upper level, f 33 . 

we have seen that ('33 as a function of detuning exhibits a distinct 

dip at resonance. It is the intensity dependence of the width of this 

dip that gives rise to bistability (output field I c:,{, 12. , dependent 
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on input field IE 12. 
), (Walls and Zoller, 1980; Walls et.al, 1981). 

p3.2(c) Bistability 

Following the approach adopted in the study of two-level systems 

(Drummond and Walls, 1980b), we scale the system variables as follows: 

y = 1 I 9 E I (TI T 2) 111 

C = N lg 11 T.,, 
2.K 

and find the state equation, 

y - X [ + -
b4 

) 

~c 82. 

414 ] + 462 + 2 x2. 02 -+ 

For C > I the possibility of observing bistability 

is indicated, as shown in the schematic diagram, Fig. 3.3 

1' 
X 

(a.) 

(3.20) 

--(3.21) 

in the system 

(b) 

Fig. 3.3. Schematic Diagram of Bistability Arising from a System 
of Three-Level Atoms 

(a) Output field vs. Input field. 

(b) Output field vs. detuning. 

(arrows indicate expected bistable transitions) 
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we note the condition C.) 1 , to observe bistability, is four 

times less than that required to observe bistability in two-level systems 

(Bonifacio and Lugiato, 1976). 

The bistability discussed in this section has relied on the 

fulfillment of certain specialised conditions, for example, the choice 

of the damping. 

Fig. 3.2 shows that the behaviour of f33 changes dramatically 

when collisional damping becomes significant. We thus expect the onset 

of bistability to be partly determined by the effects of collisions on the 

system. 

To investigate the relationship between bistability and collisional 

damping rates, we must again solve Eqs. (3.13) and (3.14). These can 

only be solved numerically on inclusion of collisional damping rates ~1,'C2 . 

Fig. 3.4 shows the variation of output field ( X) with input 

field (Y) as the ratio t2. / T1 is varied. The disappearance 

of bistable behaviour is indicated, as the ratio 'C.2, IT, increases: as 

collisional damping rates become comparable with radiative damping rates. 

Finally in this section, we discuss the importance of the condition 

, required for bistability. 

We expect that any departure from this simplification will drastically 

affect the observed bistability. 

Again, the system equations were solved numerically, and Fig. 3.5 shows 

the behaviour of the system as the ratio oC, / ob. is varied. 

Bistability is shown to vanish as the system becomes more asymmetrical 

and the ratio CX2, /d.1 increases. 

we now investigate the possibility of observing optical bistability 

in a slightly different system, the 'V' configuration .. 
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f3.3 'V' Configuration 

As in the previous section, we consider the intracavity interaction 

of two driven cavity modes with a system of N three-level atoms. 

we indicate this in Fig. 3.6. 

-----J.2.) 

------1•> 

I I 
-------13) 

~Wb 
~ 

Fig. 3.6. 'V' Configuration - Interaction Between Atom and Fields 

Ea. and Eb are the amplitudes of the input fields, resonantly 

driving the two cavity modes of frequency W o. , W b These modes 

couple to the two atomic transitions Ii) ~ \3) and f 1) ~ \3). 

77 

This system can be described in terms of two driven two-level atoms, 

with a common lower level l 3) This is similar to the 'inverted-V' 

configuration described in the previous section, where the upper level 

was common to both transitions. 

The Hamiltonian for the 'inverted-V' configuration, Eqs. (3.4), (3.5), 

(3.6), (3.7) and (3.8) will be equivalent to one describing this 'V' 

configuration; the only difference is in the definition of the spin-flip 

operators, and 

That is, in the 'V' configuration, + O'-; and {J", - are spin-flip 

operators for the 11) ~ I 3) transition, where 

(3.22a) 

,...+ -and v,. , 0".1, are spin-flip operators for the 13) .(:-"> I 2.) transition, where, 

cr,.- 1.2) = \ 3) , a;_± I\) = 0 
(3.22b) 
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Bearing in mind the definitions Eqs. (3.22a), (3.22b), the Hamiltonian 

for the 'V' configuration is identical to that of the 'inverted-V' 

configuration Eqs. (3.4) to (3.8). 

We may thus derive equations for the system variables 

from the master equation, Eq. (3.9). 

Field Equations: 

• Ea. o<1 =. - K, ~. - t:9,3 N f•3 

o{l. - E,b - Ki «2. - ~ 9 2 3 N f 23 -

( 3. 23a) 

(3.23b) 

where o(, and olJ. are amplitudes of the two cavity modes. Damping 

and k2 ; and fi:.j of these modes is described by the constants K, 

are matrix elements of the density operator. 

Atomic Equations: 

(3.24a) 

(3.24b) 

. 
i. 9,3 o{, f 3, - C:. 9i3 o1t f•3 + ~ 9.2.3 ol,. f32 - ~ 9~acJi f2.3 f33 (3 .24c) 

-+ Y,A,f11 -1- '6A-,_f,_2 
• 

-~ ~•3 d.,f32. ..\- c:9t3 ext f 13 - f ~A,;~A:a. -f- i.(A-~)1 f•:L (3.24d) f,2 ::. 

. 
-i. 9,3 o1, Cfu -fu) -+ i: 9,_3 olif ,,_ - f ~• -f- i. f). 1 f ,3 

(3.24e) 
f•a = 
• 

-+ i. 9,3 o1.,p:,., - i ~.:,. -+ l. A'} f.u f21 = - t. 92.3 ol2. ( fa3 - f:1.2.) (3.24f) 

f 11 + f :J.2 -+ f 3 3 = 1 (3.24g) 

where A= W, - W3 -Wa. , f::!. : c..J:a. -W3 -WI> are the relative 

atomic-cavity mode detunings; DA, , )$A1 are the spontaneous emission 

rates of the two atomic transitions II)~ 13) and 12) ~ \3) . 
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we have neglected collisional effects in this case. 

As in the 'inve~ted-V' configuration, we attempt an analytic 

solution of the atomic equation in the specialised case, 

2) 

driving field, 

Symmetrical detuning, 

only. 

- W.1.1 

2 

and we define the damping coefficients, 

T. 

we then find the field equation 

KE 

consider one 

= 

--(3.25) 

(where k E = E(l. ) , and the steady state atomic variables, 

where 

Also, 

= = 
1- + 3 A1 T, 

.2 T, 9o1,* 
The steady state upper populations, fu and 

markedly on resonance, similar to the behaviour of 

case. 

--- (3.26) 

decrease 

in the 'inverted-V' 

However, in the 'V' configuration the population does not completely 

vanish; f11 -:I. 0 at resonance. This is because spontaneous emission to 

the lower level 13) destroys any coherence between levels, necessary 

to produce population trapping. 
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From Eqs. (3.25) and (3.26), we find the steady state equation for 

the system, 

y - )( -+ lb C .011 - (1 ) 1 (3.27) 
x2.. 

where X , Y and C are as defined in j3.2, Eqs. (3.20). 

The behaviour of this system, according to Eq. (3.7) is shown in 

Fig. 3.7: possible bistable behaviour is clearly indicated. 
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0 3.0 6-0 q.o 1.:2.0 y 
Fig. 3.7. Output Field (X) vs. Input Field (Y) for the V-Configuration. 
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CHAPTER 4 

OPTICAL BISTABILITY IN SEMICONDUCTORS - GENERAL CONSIDERATIONS 

As mentioned in Chapter One, two recent experiments have revealed 

optical bistability in semiconductors: the experiments of Miller et.al. 

(1979) using InSb, and that of Gibbs et.al. (1979a) involving GaAs. 

The suggested mechanism for bistability is quite different for each 

of these experiments. To aid the discussion of these differences we now 

briefly review the theory of semiconductors. 

p4.l Elementary Theory of Semiconductors 

According to the band theory of solids, semiconductors consist of a 

valence band (completely filled with electrons) separated from the empty 

conduction band by a small energy gap. 
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If such a solid is optically excited, electrons may move across the 

energy gap, leaving behind an unoccupied state, known as a hole. Coulomb 

attraction between electrons and holes leads to the formation of bound 

electron-hole pairs, called excitons (Knox, 1963). 

Excitons are the lowest energy excitations in weakly excited, pure 

semiconductors. They are electrically neutral and do not contribute to 

electrical conduction. 

If the orbiting radius of electron and hole is of the order of the 

lattice constant of the material, this tightly bound pair is called a 

Frenkel exciton. Such excitons are found mainly in molecular solids and 

are thought to provide a means of energy transfer in these systems. 

At the other extreme, the exciton radius extends over many unit cells. 

These weakly bound pairs are known as Wannier excitons and are the type 

present in semiconductors. 
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The Wannier exciton has the properties of a Hydrogen-like atom if 

we neglect exchange effects. The exchange interaction arises because 

of the identity between electrons in the conduction and valence bands. 

However, such effects are relatively small in Wannier excitons, in which 

the electron-hole distance is large. 

We will show later that for low exciton concentrations, exciton 

operators obey boson commutation relations. A great deal of research 

has been performed assuming excitons are perfect bosons, leading to a 

theory of Bose condensation in excitonic systems, (Hanamura and Haug, 1977; 

Keldysh and Kozlov, 1968). 

Present day lasers, however, generate sufficient excitation to 

produce very high exciton concentrations. The boson approximation then 

breaks down, because of effects associated with the Pauli exclusion 

principle, as will be discussed later. 

We are now in a position to consider in detail the two experiments 

mentioned at the beginning of the chapter. 

The semiconductor used in the experiments of Miller et.al. was InSb, 

in which the p~esence of excitons may be ignored (Miller et.al., 1980). 

The suggested bistability mechanism for this system involved interband 

excitation; we will discuss this further and develop our own theory of 

this effect in Chapter 8. 

We now direct our attention to the experiments of Gibbs et.al., using 

GaAs; in which it is suggested that interaction between the light field 

and excitons comprising the semiconductor gives rise to bistability. 



t4.2 Excitonic Bistability - Experimental Evidence 

To explain the results of their experiments, Gibbs et.al. suggest 

that light just below the exciton frequency is absorbed, producing free 

carriers which alter the exciton absorptivity. The refractive index of 

the medium thus becomes intensity dependent and provides the necessary 

mechanism for bistability. 
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Their assumptions are based on an experimental investigation of the 

nonlinear spectroscopy of GaAs, (Gibbs et.al., 1979b). They find that 

the absorption coefficient as a function of intensity is similar to a 

Bloch-like saturation curve, apart from an unsaturable loss term. Although 

this suggests that the excitons behave as two-level atoms, Gibbs et.al. 

conclude only that the free exciton transition saturates like a homo­

geneously broadened line. Bistable behaviour is explained as follows: 

absorption of light by excitons saturates because of, 

(a) exciton-exciton collisions; 

(b) screening of Coulombic interaction in electron-hole pairs by 

free carriers, and 

(c) depletion of electrons and holes necessary to produce new excitons. 

They also point out that the unsaturable loss term prevents the 

observation of purely absorptive bistability. 

The explanation of the generation of a nonlinear intensity dependent 

refractive index in GaAs is thus solely based on an experimental.determina­

tion of excitonic absorptivity. A microscopic theory, essential to the 

understanding of underlying physical processes was not presented by 

Gibbs et.al. 

we now wish to develop such a theory. To this end we consider the 

theory of excitons in greater detail. 
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f4.3 Theory of Wannier Excitons 

f4.3(a) Introduction 

Conceptually, we view an exciton as an electron-hole pair. The 

wavefunction for a many particle system consisting of electron and hole 

states is symmetric to an exchange of excitons. As a symmetric wave­

fucntion is characteristic of bosons, this suggests excitons may obey 

Bose statistics. 

That excitons exhibit boson-like properties has been discussed 

extensively (Haken, 1977; Hanamura, 1974a, Keldysh and Kozlov, 1968). 

However, at the high exciton densities it is now possible to achieve; 

N .....,, 1017 - 10' i C m- 3 {N = exciton density), the average separation 

between excitons, N-'l3 
is of the same order as the exciton's associated 

Bohr radius, a~. The fact that excitons consist of fermions now becomes 

of great importance; as the Pauli exclusion principle prevents electrons 

(or holes) of different excitons coming close together if they have 

N-'13 
parallel spins. Thus, when is of the order of a.o , deformation 

of excitons occurs and we can no longer expect them to behave like bosons. 

We formulate this more rigorously as follows: the creation operator 

for a Wannier exciton can be expressed as a linear combination of electron­

hole pairs (Hanamura and Haug, 1977), 

= £ 6 -t- J+ 
,I!,,,. f, .F, +..p.l (I(~) 0 .J?, O--f2.1 

---(4.1) 

where are fermion operators for electron {momentum j, 

and hole (momentum .f.2. ) ; is a normalised wavefunction of 

the ground state of a Hydrogen-like atom; 

<8/rrciI" = 
( I + p-i.a;)2 

---(4.2) 

The expansion (4.1) describes the non-localised nature of the electrons 

and holes comprising Wannier excitons. For small radius (Frenkel) excitons, 

we may treat the fermion pair 
t + 

0._f, d.fi as a pseudo-spin operator - leading 

to a theory very similar to that of a two-level atom (Haken, 1976, Egri, 1979). 
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From Eq. (4.1) we form the commutation relation, 

(4. 3) 

Taking matrix elements of Eq. (4.3), we find, 

= - 0 (Na!) (4 .4) 

Equation (4.4) indicates that excitons obey boson statistics if 

, as found earlier, from physical considerations. 

For low density systems then, we may adopt the so-called harmonic 

approximation in which excitons are treated as non-interacting harmonic 

oscillators, obeying Bose statistics. 

It has been suggested that nonlinear interaction between such boson­

like exci tons and other particles comprising semiconductors could lead to 

laser action. Of the proposed schemes, those most likely to produce laser 

action are: 
... 

1) (e>t) + (ex) --,. (h;,Jp1'oton + (ex) (Benoit a la Guillaume et.al., 
1969; Haken, 1977) 

2) (e'X) + electron /ho\e ➔ (hv)photon + e)(cited e\ec.tron /hole 
(Benoit i la Guillame et.al., 1973) 

where (e)'.) refers to an exciton; (h-v) to emitted quanta. 

Haken et.al.(1975} develop a theory of laser action due to such processes. 

A theory of laser action in CdS involving such processes was proposed 

by Haug (1968). In this substance, 

N - IOU> Crt\-3 ao = 30 A , 

and the exciton-boson limit is valid. 
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Returning now to the optical bistability experiments concerning 

GaAs, 

N - 10 13 to 102.4 m- 3 ao = 140 A 
Na! 

Clearly the harmonic approximation breaks down in this case and we 

cannot assume excitons behave as bosons. An alternative approach is thus 

required. 

A quantum theory of excitonic optical bistability, incorporating high 

density effects, has been developed by Goll and Haken (1980). 

i4.3(b) Excitonic Bistability: Theory of Goll and Haken 

Writing the Hamiltonian for the system in terms of fermion operators, 

Goll and Haken derive Heisenberg equations of motion for the operators: 

-------<4.Sa) 

, 
h ~ 1. + N :. ~H' (pJ.1. 1 d, d.e1 ---(4.Sb) 

= ---(4.Sc) 

The B+ 's and their hermitian conjugates define creation and 

destruction of excitons at the discrete lattice sites L , and the 
L 

operators, N define inversion; (.ptt' is a wavefunction describing 

the relative motion of electrons and holes. 

The commutation relation, 

-(4.6) 

indicates that the algebra of these operators is not closed, as Eq. (4.6) 

involves terms that cannot be expressed in terms of B 1 B+ or N 
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Deterministic equations of motion are obtained by averaging the 

Heisenberg equations and assuming complete factorisation of expectation 

values. Including phenomenological damping terms, the following equations 

are found: 

. -DL 
. 
A~ 

= 

= 

<- "'I B~ + i, Yt ( DL + C,(o)) s: -9/f1. DL -~ s: 
29 (A~ B~ 4 BL A:) - ~" (DL. -t- (,P(o}) 

. 
'A: l H1;,~t - G 8~ 

where BL, NL are C - numbers and, 

(4. 7a) 

(4. 7b) 

(4. 7c) 

"Y is the resonance frequency of the excitons; Y ::c describes the 

strength of interparticle interactions { e- e 1 h- h, e-h ). 
-+ 

and AL are the negative and positive frequency parts of 

the vector potential of the light field; and g is the coupling constant 

for the light field-exciton interaction ( G is a similar constant). 

The first term in Eq. (4.7c) stems from the Hamiltonian of the free 

light field in the crystal, H li~nt 

and ~II are the damping coefficients. 

Equations (4.7) bear a strong resemblance to the optical Bloch 

equations. Bistability is thus expected to follow as in the case of 

two-level atoms. 

Goll and Haken solve Eqs. (4.7) in the steady state and predict 

bistable behaviour in output intensity, dependent on input intensity. 

Such a theory thus provides a simple model of optical bistability in 

semiconductors, due to excitonic interaction with the light field. 
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However, it has some limitations: Firstly, damping is included in 

a phenomenological manner only. Secondly, we cannot fonnulate the system's 

Hamiltonian in terms of the exciton operators described by Eqs. (4.5). As 

a result, we cannot derive the corresponding master equation and Fokker­

Planck equation. Hence the statistical properties of the exciton variables 

cannot be easily calculated. 

We thus wish to develop an alternative theory in which the system 

Hamiltonian is constructed entirely out of exciton operators. To enable 

the straightforward calculation of statistical averages, we also require 

such operators to have a well defined, closed algebra. 

Once our Hamiltonian is constructed, we can derive the master equation 

and hence include damping in a systematic fashion. 

The approach necessary to formulate such a microscopic theory is 

discussed in the next chapter. 



CHAPTER 5 

BOSON EXPANSIONS OF FERMION OPERATORS 

~5.1 Introduction 

In a second quantised formalism, we derive a Hamiltonian for the 

semiconductor system by defining the field operators as an expansion 

of fermion operators. 

As well as the boson operators describing the light field, such a 

Hamiltonian would thus consist of electron and hole operators, each 

obeying separate anticommutation relations. 

Instead of deriving statistical averages of the electron and 
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hole variables, we would prefer to obtain information about the excitons 

formed from the electrons and holes; as in this thesis we are concerned 

with excitonic optical bistability. We thus wish to express the 

Hamiltonian in terms of exciton operators and remove all explicit 

reference to individual electrons and holes. Also, the discussion of the 

previous chapter showed that a sound treatment of the light-exciton 

system follows only if the Hamiltonian is constructed from exciton 

operators which have a well defined algebra. 

We have seen that exciton operators, expressed as bilinear 

combinations of fermion operators, obey boson commutation relations 

in the low exciton density limit. This suggests that a suitable approach 

is to treat our fermion system as a boson system. As bosons obey much 

simpler commutation relations than the anticommutation relations of 

fermions, this would be a favourable step. 

However, in the experiments of Gibbs et.al. (1979), in which 

bistability was observed, high exciton densities invalidated the low 

density boson approximation. 
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To develop a suitable model to describe high exciton density 

systems, we follow in essence a method adopted by Hanamura (1970). This 

involves the direct transcription from the fermion space to a boson 

space. Interactions between fermions then become corresponding inter­

actions between bosons, thus all physical effects (e.g. Pauli effects) 

are consistently included. 

Hanamura's work on Wannier excitons was confined mainly to the 

development of a theory of Bose-condensation (Hanamura, 1974a).. 

He also discussed the optical properties of these excitons, with 

emphasis on transient effects such as self induced transparency, (Hanamura, 

1974b), but did not consider optical bistability. Thus, using a 

bosonisation transformation to consider optical bistability is a new 

approach in this field. 

The method of boson expansions of many-fermion systems has been 

used in the development of a quantum theory of several quite different 

phenomena (Garbaczewski, 1978). 

For example, Holstein and Primakoff (1940) introduced a low­

temperature theory of the Heisenberg ferromagnet described in terms 

of a boson representation of spin waves. Another such bosonised theory 

of spin waves was presented by Dyson (1956). 

More recently, bosonisation of fermion operators has been extensively 

used in the study of the weak excitation limit of atomic nuclei 

(Belyaev and Zelevinski, 1962; Marumori, 1960; Marumori et.al., 1964; 

Janssen e~.al., 1971; Sorensen, 1967, 1970; Usui, 1960). 

The first such transformation was developed by Usui (1960), to 

formulate a theory of diamagnetism of metals. This transformation 

unfortunately generated non-hermitian boson Hamiltonians and non-normalisable 

basis vectors in the boson subspace. However, these defects were removed 

by Marumori et.al. (1964), who further modified Usui's transformation. 
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In the nuclear models discussed by these authors, the Hamiltonian 

for the system was written entirely in terms of pairs of electron operators. 

Thus these theories were concerned with bosonisation of electron-electron 

pair operators. We refer to such a transformation as bosonisation of 

generalised bifermion operators. 

Our semiconductor system, however, is characterised by electron-hole 

pairs. To transform our Hamiltonian we thus need to a4apt the existing 

theories of generalised bifermion t"ransformations. 

In f5.2 we present a brief summary of the generalised theory of 

bosonisation of bifermion operators (electron-electron pairs). we extend 

these ideas to develop a theory of bosonisation of electron-hole pair 

operators in i5.3. 

25.2 Transformation of General Bifermion Operators 

The idea that one could replace a fermion space with a corresponding 

hypothetical boson space was first introduced by Sawada (1957) and 

Wentzel (1957), in the theory of the high density electron gas. 

In the so-called harmonic approximation, Sawada showed that fermion­

pair operators obeyed approximate boson commutation relations in the 

high density limit. However, this apparent correspondence leads to an 

incorrect physical model, as we now show. 

In all following discussion, let us designate the boson and fermion 

spaces by Va and VF respectively. If the system Hamiltonian is 

constructed only in terms of pairs of electron operators such as, 

t -t' , a a , a.a., 

the fermion space is characterised by the antisymmetrised basis vectors, 
n 

where 

and 

lm) 
Q.i' 

f' 

lo) 

= CXctn 0.-t-pn lo)= lJ.a"':t,a"r;.lo) (5.1) 

is a fermion creation operator for an electron in state/-' 

is the fermion vacuum state. 
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... t 
We note that the operator pairs a a , a.a and 

when applied to the basis state (5.1), will create or destroy an electron 

pair, or conserve total electron pair number 

could not describe the semiconductor system). 

(clearly the state (5.1) 

The most general element of a boson space corresponding to this 

fermion space is, 

Im) - -----1. 5 . 2) 

-r 
where b ol.: p.: = boson creation operator and 10) is the boson vacuum 

state. Let us now restrict discussion to the case .}/, = ..N.1 = • • "'..N,.. = 1 

In the harmonic approximation we replace fermion-pair operators by 

boson operators; thus the fermion state described by Eq. (5.1) is 

assumed to correspond to the boson state, 

"' 
= TL l:;c1, p• lo) ---1.5.3) 

We know, from the theory of Jordon and Wigner (see for example, 

Schiff (1968), Chapter 14), that the postulate that fermions obey 

anticommutation relations is sufficient to ensure that a dynamical state 

can be occupied by only one particle at a time. This is, of course, 

the traditional expression of the Pauli principle. The anticommutation 

relations imply the equivalence, 

Im) 

where 

~ ' n 

= TI.?~•dp, lo) ~ (-1f P'ij a;,, a°p; \o) 
P, ~-, 

means a permutation of any two indices of 

___ (5.4) 

the set (cl,pi., ... ol .. pn) 

However, no such relationship exists in the corresponding boson 

state, Eq. (5.3). That is, 
,,_ 

1m) = TT=pot.:~.: lo) is linearly independent to the state, 
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Thus we cannot assmne a strict equivalence between the fermion state, 

Eq. (5.2) and the boson state, Eq. (5.3). In fact, this simple replacement 

of a pair of fermion operators with a boson operator only follows if we 

neglect the effects of the Pauli principle on particles. 

We see then, that implicit in both the low density boson approximation 

(see j4.3a) and Sawada's high density harmonic approximation is the 

assmnption of negligible Pauli effects. 

These problems are overcome if we define a suitable unitary trans­

formation to map the fermion space to a correctly antisymmetrised 

boson space. 

p5.2(a) Antisymmetrisation of the Boson Space 

We define boson operators, 
t oc1p satisfying 

= o«-zr ~p, - <5"'-,o~i 

= [ b °' p , 8" er" J =o 
(5.5) 

V VB/ 
and introduce a subspace of 8 , spanned by the antisymmetrised 

boson states: 

fm) 

where ~ 

(5 .6) 

p' is a normalisation constant and the permutation operator 

results in the state I m) changing sign when any two indices of 

the set ( ol,p, 1 ••• ol"~n) are interchanged. 

This boson state can also be represented as, (Janssen et.al., 1971), 

lrn) = fl <ol exp\! folp ~«~ Q~ a«} a~,ap, ... a~ .. a~" 10)\0) 
(5. 7) 

To find the normalisation factor .)./ , we must form (rnlm)=l 

and thus need to consider the number of distinct permutations of the term 

with respect to the indices (cc',~,, . . . ol..,. ~n ). 

Firstly, there are ( l n) 1. different arrangements of these indices. 
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However, as 

= 

we find that of these arrangements are equivalent, so we must 

divide the total number of arrangements by n~ . Also, for each of 

the n pairs (cl,~•, . . . cl"~ n) there are two ways of arranging each one. 

As this is equivalent to having 11 objects and two containers to put 

them in (container 1: pairs in order ol~ ~j ; container 2: pairs in 

order ~j ex~ ) , there are ways of arranging the pairs amongst 

each other. As a result, we must divide the total number of arrangements 

'l n 
by ,1.. Thus, the number of distinct pennutations is, 

where 

Ji/ = /(.2.-n-,)U 

(.2 n-1 )! ~ = (ln-1 )(.2-n-3)(~7'-S) ... 

---(5.8) 

Following Janssen et.al., (1971) we introduce the operator, 

---1(5.9) 

which generates the required permutations when acting on the ground state. 

We can then write: 

Im) 

We prove these properties of the operator 

---(5.10) 

in ~5.3(c) and 

the Appendix, in the case of the electron-hole pair transformation. 

Thus, we have defined a set of antisymmetrised boson states Im) 

(Eq. (5.10)) in one-to-one correspondence with the fermion states Im) 

(Eq. (5.1)). We now consider the explicit form of the operator which 

will effect such a 'Pauli-principle-conserving' transformation. 



i5.2(b) usui 1 s Transfo:anation 

The first transformation developed to map from a fermion to a boson 

space was that due to Usui (1960), taking the general form, 

U, = IO)(ol exp f ½ £,;.~ b+ol~ apa« 1 Jo)(ol ---(5.11) 
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This operator has the desired property that it maps IO)~VF ➔ 
I 

v8 e lo) 

but the corresponding basis vectors are not normalised, as one may show 

from Eq. (5.1), (5.7) and (5.11), 

LI.lo) \m) = /(2n-l)q tm) lo) ---(5.12a) 

and 

(ol (rn I U, = /(2n-1 )~l <ml (o\ ---(5.12b) 

⇒ (ol (m I u; u.1 m) \O) = (1n-1 )! ~ <Ol (mlm) 10) --(5.12c) 

This defect in the normalisation properties may be rectjfied by 

introducing a modified Usui operator (Janssen et.al., 1971), 

"' °" I [ )n u, = IO)(ol l n:o an)! t.olp a~a; bclp IO)<ol 

and 

From Eqs. (5.1), (5. 7) and (5.13), we find, 

U, \M) \O) =/(ln-\) ! ! Im) IO) 

t 
Col <m \ U, = /(2n-,)H <o\ (ml 

Equations (5.12a), (5.12b), (5.14a) and (5.14b) yield, 

-(5.13) 

--(5.14a) 

--(5.14b) 

-showing that U, U behaves as unity in 

and U, U, behaves as unity in the boson 

___(5 .15) 

the fermion space to) ~ VF 

subspace V~ @ lo) 

One may also show that the matrix elements of any operator are 

unchanged under such a transformation between fermion and boson spaces. 
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Janssen et.al. (1971) derives the relationships associated with 

this transformation 
,... + "" U, dalap U, = B«f! P. 

- ~ 

U, a~aot U, :: bc(p P, (5.16) 

= 
~ 

where P, is a projection operator, projecting out the nonantisymmetrised 

components from each boson state, 

~ /' 11 = l...rn lm)(m\ =-

The relationships described by Eqs. (5.16) have the advantage that 

they generate finite expressions for the transfonned pair operators. 

One drawback of this transformation, however, concerns the non­

hermiticity of the resulting operators. That is, if 

1, :: LI, F Ct 
is the boson image of the fermion operator F - + 

then because U, =I- U, , 

if F. = F / it is not the case that 'J, 1 = This is also 

apparent from Eqs. (5.16). 

Thus any boson Hamiltonian fanned using this transformation will not 

be hermitian. 

This problem is not encountered in a modified version of Usui's 

transformation, developed by Marumori et.al. (1964). 

~5.2(c) Transfonnation of Marurnori et.al. 

This transformation is based on the use of the unitary operator, 

--(5.18) 



It generates the required mapping, 

UM: 10) ~ VF ~ v; ® Jo') 

and maps to properly normalised states: 

UM lo)lm) = \m) lo) ----(5.19) 

yielding, as in the modified Usui transformation 

< m' I U ~ UM I m) : <5 m, ml 

Calculating the matrix element of any fermion operator F 
we find, 

<ml Flm') = (ml 1'1m') 

where indicating that the value of matrix elements 

is preserved under the transformation UM 

In contrast to Usui's transformation, we find that hermitian 

conjugation of operators is valid under U,., : 
-t E = F2 

Janssen et.al.(1971) derived compact formulae for this transformation: 

U + + + 
M Olll ap LIM 

i" I 
B o1.p ✓.:I =+::::;N;::::: P. 

I 

= ✓I +'N 

l-i i;~.r bp-, P, 
N = lo1.p \j"~P b«~ -where P, is the projection operator defined by Eq. (5.17). 

(5.20) 

The term Jt + N occurring in relations (5.20) generates infinite 
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boson expansions. Thus although we avoid the non-hermicity of transformed 

operators encountered in Usui's approach, we now have to deal with infinite 

sums of bosons. 

In practice we can only use the transformation UM in certain 

limits, when truncation of the infinite expansion is possible. 
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~5.2(d) Other Transformations 

Another such transformation was introduced by Belyaev and 

Zelevinski (1962) and further developed by Sorensen (1967). In this 

fonnalism, pairs of fermion operators are replaced by a boson expansion, 

the expansion coefficients of which are chosen to preserve the commutation 

relations of the fermion-pair operators. Unfortunately, the wavefunction 

so formed contains unphysical components which violate the Pauli principle. 

A completely different means of deriving a boson representation for 

a fermion space was presented by Janovici and Schiff (1964): th~ generator­

coordinate method. As shown by Janssen et.al. (1971) such a method yields 

the same results as the algebraic method of Marumori et.al. 

We now extend the ideas of ~5.2 to the special case of the transformation 

of electron-hole pair operators. 

pS.3 Bosonisation of Electron-Hole Pair Operators 

In pS.2 we considered the bosonisation of a general fermion system, 

characterised by bifermion operators. 

Such a theory cannot be applied to our semiconductor system, as the 

fermion state (5.1) has no reference to hole states which are necessary 

to describe a semiconductor. 

In fermion space, the semiconductor Hamiltonian can be written 

entirely in tenns of the pairs of operators, 

c{ o.. , ad.+ , a. d , d-t-d 

thus the general fermion state describing the semiconductor system is 

given by, 

... d ... 
Oatn ~" [O) ( 5. 21) 

where O.ct.: and d ~~ are electron and hole operators respectively, 

for the single particle states a~, ~i 



Hence we wish to develop a transformation that will map electron­

hole pair operators to boson operators. 
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Following the work of Marumori, we expect the desired transformation 

will have the form: 

U = I o)<ol £,;::0 J'tn) [ £-ip (61-«~ dp ao1) ]"10)(01 

where ~(n) is determined from normalisation considerations. We discuss 

this further in ls.3(b). 

Mappings of interest are: 

Uct+aU+ , 
U. a.d Ui' 

However, mappings of the type 

u o.+ d u+ u o.+ a+ ut , 
are not considered in our theory, as the application of such pairs of 

fermion operators to the basis state (5.21), produce states which lie 

outside the vector space spanning the semiconductor system. 

~5.3(a) Boson Subspace 

We wish to construct a boson state equivalent to the fermion state 

(5. 21) , as 

Im)= ----(5.22) 

t 
where b«,pi is a boson operator: the oli refer to electron states 

and the ~ i. refer to hole states. 

From anticommutation relations 

where the operator P generates all possible permutations of electron 

indices (hole indices) for fixed hole indices (electron indices). 
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However, as mentioned in js.2, such a correspondence does not exist 

for the boson state (5.22). In fact, the operator P will produce n! 

linearly independent states. (There are actually (l'\~)1 different 

permutations of the indices (a,p,, ... ,o(.ftpn) describing all possible states, 

but only n ! of these give rise to distinct boson states). 

The required antisymmetrised boson state corresponding to the 

fermion state (5.21), is, 

Im) -(5.23) 

where the factor ..L 
.fni. 

is included for normalisation purposes and the 

summation is over permutations of electron (hole) indices with hole 

(electron) indices fixed. 

p5.3(b) Transformation of Electron-Hole Pair Operators 

we now wish to construct an operator U such that, 

U lm)IO) = l'rY'\)IO) ----(5. 24a) 

and 

u.+ lm)IO) = 1 m) 10) ---(5.24b) 

The discussion of section 5.2 suggests we choose an operator of the 

form: 

-(5.25) 

where f (-n.) is to be determined. 

Applying such an operator to a fermion state, as in Eq. (5.24a), 

we find 

U lm)IO) = 10)(01 £:o t(1") [ £o,.p (b+olf dpao1)f11o)(ol O.+'/J,Of•··· 
-t- + \ 

... Cl lf'n df" 10) 101 

= 10) t(n) ~?.ol .. b al,~, ••. 8'« .. fn 10) <o I cl~ ... Qq" ... dp, aei, a\, di,, ... 
,, ... ~ft ... a\n dr"' IO) (5. 26) 



we have included the nth term only of the summation over n, 

as the fermion state Im) contains exactly n terms. 

We note that 

l <o I d~n a olt\ ••• d.p. aa1, a+.,, d} .... a\,, dpn lo) i;alf ... i;-.,,,.p .. Jo) 
"'· ""al" 
~-- "'" 
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---(5.27a) 

( P = permutation of electron indices, for fixed hole indices), as: 

-(5.27b) 

and the summation over (ct,,•· olr1, ~• , .. ~") generates n~ such 

expectation values (for fixed hole indices), with a corresponding sign 

change whenever the order of the fermion operators is inverted. 

From Eqs. (5. 23), (5. 26) and (5. 27) we find, 

---(5.28) 

As we require the transformation U to have the property described 

by Eq. (5.24a), we obtain the result, 

and thus find the necessary transformation, 

(5. 29) 

We also require Eq. (5.24b) to be satisfied: Eqs. (5.23) and (5.29) 

yield, 

Ut1m)10) = lo) c~•.)1 [ a+a1. dp, ... d""clp ... 10) £P(-1/ P bo( .. p" ... 
~ •••• al" + + 
,. ••• p.. bolf • o 't•f • ... E, "'"f"' lo) -----15 . 30 > 
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The summation over the permutations in Eq. (5.30) generates n~ 

terms. Also, the summation over ( ol, ... ,«-,,,r,, .. P"') yields another -nl 

terms for each of the permutations generated by P , and the fermion 

operators produce a sign change to cancel the effect of (-l)r. Thus, 

Equations (5.30), (5.31) and (5.1) imply, 

= Eq. (5 .24b) as required. 

We have thus derived an operator producing the desired transformation 

between a fermion space, characterised by electrons and holes, and an 

antisymmetrised boson space:-

--- (5.32) 

i5.3(c) Antisymmetrised Boson Operators 

Following the discussion of ~5.2, we introduce the operator 

= -(5.33) 

then we may write the antisymmetrised boson state, Eq. (5.23) as, 

I 

Im)= fni. -(5. 34) 

In all such terms o/. refers to electron states and (3 to hole 

states. 

Expression (5.34) is proved by induction in the Appendix. 

From this definition we find 

+ 
Bct"~n 10)(0\ Bot .. ~n ... Sc1,~, 
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'Any even permutation of the boson state can be written as, 

__.(s. 35a) 

:. 

as the B«.:~i: are antisymmetrical with r_espect to the indices (ol,,. • •/•l .. ) 

with ( ~•, .. , {3") fixed (or vice versa) . 

Equations (5.35a) and (5.35b) indicate that the odd and even 

permutations generate the same terms, and as there are -nt such 

permutations, 

- 1 £Bt- B1-- n. o1, ... o1.. ci,~, • • • ol"p~ IO)(o I bo1 .. ~ ....... bcl,~, -CS. 36a) 
~--· p .. 

Similarly 

-(S.36b) 



~5.3(d) Projection Operator 

In analogy to Eq. (5.17) we form a projection operator f 
projects out the unphysical components from each boson state: 

, which 

'f> = £, n P,, = £ ... \ m )( m I = C=o f. .. (~1 ) 3 ei'..,p, ... s:.p~ 10 )(o I 
P•·· p.. X Bcinp"' ... B«, p, 
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~oe £ _1 -t- t 
::: G~::o ot, ...... (-n~):a. B«,~1 ··· Bc1n~n IO)(OI bc1 .. p.-.. • • b«,p, -(5.37a) 

~-··II" 
(usingEq. (5.36a)). 

Clearly, 

--(5.37b) 
~ 

We now derive some useful relations involving P , Bo1~ and -N 

where 

Firstly, consider 

---(5.38a) 

and similarly, 

---(5.38b) 
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---(5.39a) 

Also, as [ ~atp, N ] = _ i;-"11 , Eq. (5. 39a) becomes, 

(5. 39b) 

Another important relationship follows from, 

j3' bo(~ 'f" == £r¥t,m' \rv{)(m'\ bctplrn)(rnl = £rt\lmC«,p1)(m·I -<5.4o> 

where IMCo1,pJ) = the state lm) with the particular pair ( ol, ~) removed 

eqs. (5.40) and (5.41) yield 

(5.42) 

Finally, consider 



--

= 

:. 
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l~=o 
n'-

- (-n~ )1 
1'\ '· -

(' + t + 
e,, B~p ... Bo1,a, .•. Bc1"_,g.,_, lo)(o I 8-Ysn ... 

e1, ... a.. 1 - r r r 
,, ••• ~" • • · Bal, p, (using Eq. (5. 36a)) 

l oO ' _l 
= n:o [(n-•)! ]2· 1'\! l B~,p. • • • s:n-,An-1 B~a .. lO)(ol Byp,. Bcn.-,pn-1 •• 

./, .. o1.. r , r 
~ •... ,.. . .. 8a1,r, --(5.43a) 

Also, 

lt\~O 

l'\'2. [ ('l"\•. )2, 
tif, .. ,fll ... 
, .... p .. 

ln:o -n2. l ('l"\•J:i. «, ... ah, 
fl, ... f&"' 

l ob I l 
• n=o [(n-,) ~ ]i (-n~} 

(using (5. 36a) 

Comparing (5.43a) and (5.43b) we find, 

(5.44) 

Frequent use of Eqs. (5.39), (5.42) and (5.44) will be made in the 

derivation of fermion-pair operator transformations. 

~5.3(e) Properties of U 
r­

Having defined the transformation U and projection operator P 
can now consider the explicit nature of the mapping. 

Equations (5.24a) and (5.24b) yield, 

, we 

(it'\' I u+u Im) = Col <rn' I u+u lm)lo) ~ <01 (mlm')lo) (5.45a) 
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<o I (m' r U u+ Im) lo) = (ol<m' l'l'Yl) lo) and ( m / I u ut I 'M) = 
= O ,...,, ""' (5.45b) 

J 

indicating that u+ Ll behaves as unity in the fermion space, and 

as unity in the boson subspace. 

The matrix element of an arbitrary operator, F between fermion 

states is then given by, 

( 'YY\ I F Im') = < ml u+ U F u+ U Im) = (rn l 1' Im') 

where 

----<S.46) 

is the boson image of F Thus the matrix element of any operator 

is unchanged under the action of the operator U 

Also, as in the transformation of Marumori et.al., the hermiticity 

of transformed operators is preserved. 

Furthermore, Eq. (5.29) implies 

uut = 10)<01 £' .. I I [t- + 1-w, 
G-n=o ~ R Go1~ be(~ clp O« lo)(olo) (ol 

l'"° I I [ti + + b 1™ X (.,'l'\'\=o :;;! ~ G.u all' dd 1'~ ro><oJ 

(where _fl. denotes the summation indices {ol,, ... ol .. ,f ••···f"','lf,, .. 'l:fn,cS,, .. J .. 1). 

d d ++ :t-:t" 
The operators f, Q el, . . . p ... Qc1n and a""' d~" ... Qlf, d~, are antisymmetric. 

with respect to the indices (~1o1,, ... ~l'\01,.) and (~nbn, ... ,, ~.s,) 

respectively. The sums in expression (5.47) will thus contain the 

+ 0" 
antisynnnetrised components of the states Dol, f, ... Ooln~n IO) 

t Lt 
and (ol bi"in ... 6~1,, only, and we may replace Doc',f, • • • Dol"f" IO) 

by the antisymmetrised state(~~) Btct,f, ... B":t,.~"" \O). 
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In the boson subspace we may replace IO) lO) <o I ( 0 \ by IO~ ( 0 I 
whence, 

---(5.47b) 

Equations (5.45b) and (5.47b) indicate that the projection operator 

acts like the unity operator in the boson subspace. 

From Eqs. (5.29) and (5.37) we also find, 

We note that, 

(ol botn~n ... b«,~, ~""An ... J;tt,S, lo) = botn'tn c5~ .. cS"' -~- dol,"lt,d~,c§, 

and as the summation over ..fl.. generates Tl~ such terms for fixed 

I /' + -t 
''1"\')"2. (.., B ¥,~ •••. B1"'S" 10) d.s, O!, ... d~"'airn (ol 
'- • l1••l'" 6, .. 2>n 

Following the discussion of the derivation of Eq. (5.47b) we replace 
+ t 

the antisyrnmetrised boson state B1,cS, ... Bi"S" lo) by the boson state 

leading to 

(5 .48b) 

Similarly, 

U+~p -- u+ (5. 48c) 

As a consequence of Eqs. (5.46), (5.47b), (5.48b) and (5.48c), 

= (5.49) 

implying that the application of an arbitrary transformed (boson) 

operator to any boson state projects out the non-antisymrnetrised states. 



we have thus successfully extended the ideas of the generalised 

transformation derived by Marumori et.al. to the case of electron-hole 

pair operators. Let us now derive the explicit transformations. 

fs.3(f) Derivation of Electron-hole Pair Operator Transformations 

Firstly, consider 

U~av Ut = 10)<01 l:o -n~ .fni. [ 2.o1p l:;c1p dpa«f' IO)(ola;av 
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Y- lo)(o1 l,:=o ~~! [2-1.sa-1-rd! blf.s]y,.,10><01 cs.so, 
Expression (5.50) will be non-zero only for those terms in which the 

summation over { «,, • ·· « .. , ~', ... ~ n) generates the same number of electron 

and hole operators as the sunmra.tion over { i,, . . ,'($"M, b,, ... J"""} . 

where ...n.. again denotes summation over all indices. 

As in the derivation of expression (5.47b), we replace the boson 
+ t 

state bcil,~1 ... bol .. fn \O) by the antisymmetrised state 

(~J s:.p .... s:"'" lo) (because of the antisymmetrical nature of 

the fermion operators in the swnmation). 

' = lo) £:=o (n~)s- £..n..<old~.ao1 .... dpnaa1 .. a;a,, a\ .... d~ ...... 

... d)',c1t \o) B~.p .... BTctl\pnlOXol6i .. s., ... BY,S,·<ol (5.51) 

Consider the summation over 1l : By construction, all the subscripts 

in any given term are different (otherwise the fermion operators generate 

a zero result) . The fermion operators a): and C\y can be moved as follows: 

£..{)_ ➔ £.n. 2r,s <o\ <-a;aocr + <5J'«Yo)[TTi.tr (d~Laa1J]d~rd:s 

X [rri.jS (a\L di.: ))C:SYls - ells av )10) B~.p .... s: .. ~ .... lo)(olBtntSf\ •.. slf.6, 
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---'5.52) 

The matrix elements in Eq. (5.52) produce Kronecker delta functions 

as described by Eq. (5. 27b) . As the sum over .fl. yields 1\~(1\-1) ! such 

matrix elements for fixed !d"-'i ... cl,, ~n, ... ~, 1 we obtain, 

E9,u. s. 51 ~ ,f .,_ n•( 11-1) 1 -n ! B~c1+ ... s;,.10)(0 I By~~ ... Bi.o, <5.531 

'4•·· "" 
We note that in all further discussion, we include the fermion 

ground states in the boson states as, 
t t r. + 

10) Ba,~, ... Bol .. ~n \O)(O\ Bctn~I'\ ••. Bol,~, <:o I = B«,p, ... S« .. , .. 10)10)<01 (ol 

X Boln~n ... 8 cl,~ I 
.,. -t 

~- Bol, ~· ... Bc1 .. p .. IO)(o \ Sc1 .. pn ... Ba1,~. --(5 .54) 

Thus, substituting (5.53) in (5.51) and using (5.54), we find, 

(letting 11 ➔ 'I"'\.+ I 

Replacing 1"\ 

°'to1 .. B:,~, ... B~"~" \O)(o I 8ci1 .. ~ ..... 8c1,~, .BYf 
,, .. "" 

by the corresponding operator N acting on the boson state, 

L!> 

(using the definition of P, Eq. (5.37a)) 
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1' + ' ✓-" /" = L-f Bl'f (1 +N) P b...,f' P (using Eq. (5.42)) 

(' -6+ b "p = GI' P t"f' v f (using Eq. ( 5 • 39b) 

(using Eq. (5.44), (5.37b)) (5.55) 

where the summation over f is over hole states only, and 

N = l«p b+«p b (X~ 

Similarly, for the hole pair, 

(5.56) 

where summation over p' refers to all electron states. 

Finally, we consider 

Li a; d! u+ = IO )<o \ l :=Q T\~ ~ [ l«~ i;~~ d,sao1 r\10)(0 I 

xa;ctt 10)(0\[;=0 ~~Lf~ia~d! b~b}1n1o)<ol c5 •57 l 

Non-zero contributions to Eq. (5.57) arise only when the summation 

over {c1, 1 ••• oi'f'l 1 ~,,--·~"1 is raised to a power one greater than the 

summation over f l 1, .• lm 1~ 1, .• ~"'" 1, 



Consider the summation over J'L , 

l 11- <o I d~, ac1, ... dfn aa" ~ d! a+in~, d&n-, ... a\,d6. 10> B:,,~, ... 
. . . B~"P" 10 )(o l B ln-1 Jn-1 ... 81,0, 

: l (n-,)~ (n-1)! n1.<nc1,p, ... nci1n-•~n-1ldpnaot~a;dt (5.59) 
ol, ..• o(,. -t- + . 
, •••• ~" )CI no(,._,p,,., ... net,,,) 8«,,, ... Bo{,.p .. 10)(01 Bol"-'~"-' ... Bc1,~, 

The two factors of (n-1) ~ in Eq. (5.59) arise from the 

summations over the electron and hole indices { )',,.,, .. l',, c:Sn-1,._. 6,) for 

fixed f cl, ~ 1 . The factor rt" is necessary as we can choose 

the remaining electron-hole pair (i.e. d~n C\dn 
2. 

) fi ways . Thus, 

Again, 

/I+ n 

(5.60) 

+ L- + 
BJ.Av 6 Bci,p, 

of,. -oln-1 ~· -.. ,,.., 
+ 

•.• Bct"-'f3n-1 lO)(o \ Bct"-' ~"-I ••• B«,(3, 

I (' -t" + 
(-n!)1 o/~«.. Bci,p, ... Bct,.~n lo)(o\ Bc1., ... B«.~• 

f••··I'" ✓.::-
identifying the projection operator P and replacing 

by the corresponding operator /1 + N acting on the 

boson state, we obtain 

T I 
::. B ,PY /;::l =+ N;::- ---(5.61) 

And, using Eq. (5.39b), 

U a:"'d:. u+ .c--P L+ / A r .. = D/-'v . \ + N ---(5.62) 

Equations (5.55), (5.56) and (5.62) represent all possible 

transformations of electron-hole pair operators we may form with the 

transformation U (defined by Eq. (5. 29)) . 
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For completeness we now quote the main results of this section. 

Table 5.1: Electron-Hole Transformations 

u = 

.. -
I where f and f indicate summation over electron and hole 

states respectively and, 

and 

Unfortunately the transformed electron-hole operator pair 

generates an infinite boson expansion, due to the term ✓I + N 
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To express such a term we use the general operator expansion derived by 

Gardiner (Steyn-Ross and Gardiner, 1982), 

---(5.63) 

denotes normal ordered product. 



Thus use of the transformation U 

which the series, Eq. (5.63) converges. 

is limited to certain cases in 

In the next chapter we use this transformation to develop a micro-

scopic theory of excitonic optical bistability in semiconductors. 



CHAPTER 6 

THE QUANTUM THEORY OF EXCITONIC OPTICAL BISTABILITY 

j6.l Introduction 

In this chapter we develop a microscopic theory of the optical 

bistability arising from the interaction of a coherent light field with 

excitons comprising a semiconductor. 

we start with the Hamiltonian for the system written in terms of 

electron and hole operators. Following the discussion of Chapter Five, 
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we transform such a Hamiltonian to one characterised by exciton operators. 

In the exciton Hamiltonian so derived we can identify such processes as 

exciton-exciton and exciton-field interactions without ambiguity. 

we also wish to define exciton operators for our system in order 

to systematically include damping of excitons. That is, the quantum 

theory of damping requires us to define a damping Hamiltonian of the 

form, 

H ex<:-,¼on -
do"'pin~ 

is a reservoir operator and 

t 
Q~ be~ + h.c 

[where Q~ t­
bex an exciton operator]. 

This is clearly not possible in a fermion system described in terms of 

electrons and holes. 

To achieve the desired exciton Hamiltonian, we use the bosonisation 

procedure described in Chapter Five to transform pairs of fermion 

operators to boson operators. 

We deal with the infinite boson expansions generated by such a 

transformation by considering two limiting cases of the system: 

i) the low exciton density case (j6.3(b)): in which we truncate the 

boson expansion (as the terms of this series increase in powers of 

exciton density). We then derive the master equation and Fokker­

Planck equation for this system. 



ii) The high exciton density case (~6.6(b)): we perform a canonical 

transformation on the exciton operators, allowi_ng us to expand 

about the deterministic solution. 
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We note that the bistability experiments of Gibbs et.al. correspond 

to a high exciton density system. Nevertheless, we investigate 

the possibility of observing bistability in both high and low 

exciton density systems. 

~6.2 The Model: Fermion Space 

We consider the intracavity interaction of a coherent driving field 

with a semiconductor. 

We are interested in the case when the light field excites an 

electron from the filled valence band to the empty conduction band 

(thereby creating a hole in the valence band) and so creates an exciton. 

For simplicity we consider a two-band semiconductor only and neglect 

electron spin. 

Firstly, let us ignore the effects of damping on the system. The 

discussion of Chapter One, ~l. 3 (b). indicated that the required Hamiltonian 

for such a lossless system in a second quantised theory is, 

H = f-'t+(~) { fm (~ V - e ~ )2. + Veff. ~~I) J "f (~) ,P x 

+ Hr + He.m. + HD ---(6.la) 

(we discuss damping of the system later in this chapter). 

We may write Eq. (6.la) as, 
non-Iii\. 

H 1;,"t 

+ 
+ H.r 
Hl) 

+ He.'W\ 

----(6.lb) 

The first three terms of Eq. (6.lb) stem from expanding the 

squared bracket in Eq. (6.la) and noting '1 A= o -·- they are: 
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--(6.2) 

this represents the free Hamiltonian of the semiconductor; 

( Vef~ (1i1) is the potential due to the electrons). 

2) The interaction between light and matter, 

--- (6.3) 

and 

3) 

---(6.4) 

This term describes an interaction between electrons and the 

light field which is nonlinear in A . For small values of the 

vector potential fJ (i.e. small values of its matrix elements) we 

may neglect this term. 

The term HI occuring in Eq. (6.lb) describes interaction between 

particles: 

Hr = ½ H d3,c.d 1 ~ "\'~(~)"\\'~(~) V(l}S-~I) i'(~)"I'(~) --(6.5) 

where V(1x-«;i1) = e'- is the Coulomb interaction potential. 

1 )i -ig I 

Also, the term in Eq. (6.lb) describes the free 

field, which in the single mode approximation becomes, 

---(6.6a) 

where b is a boson operator characterising the light field within 

the cavity. 

Finally in Eq. (6 .lb), H 0 describes coupling between the 

external driving field (of frequency WL and amplitude E ) and the 

cavity mode of interest; 

HO = di ( E e)(p (- ~wa..t) 8" - h.c.) --C6.6b) 
Thus, the Hamiltonian describing the lossless semiconductor consists of 

expressions (6.2), (6.3), (6.5), (6.6a) and (6.6b). 



f6.2(a) Semiconductor Hamiltonian 

The Hamiltonian for the semiconductor material alone is given by 

Eqs . ( 6 . 2) and ( 6 . 5) , 

Hs.,. = J d3x 1'~(~) Ho(~) "P(~) 

+ i Hd3xd3g "l'+(~)'o/'(~)Vn~-~1) 'Plj) "1'(~) C6. 1, 

i:;lV.1. 
where Ho = -"I'm + \J~ff (l~l) , is the single particle Hamiltonian. 

As the semiconductor is characterised only by conduction and 

valence electrons, we expand the field operators as, 

"Y c ~) = lR, ollc. <.PIC., c~) -+ £1(" al(" <t~"' C2S) ---(6.8) 

where QR.c. and alt"' are fermion annihilation operators for electrons 

(momentum ltc., ~11" ) in the conduction and valence bands respectively. 

The (.p's are eigenfunctions of H0 , satisfying, 

Bloch's theorem states that eigenfunctions in an infinite lattice are 

plane waves modulated by the period of the lattice (see for example 

Haken, 1976, Chapter 4). 

We thus express the eigenfunctions as: 

(J IL j ( ~) : U ~j ( ~) e X p (c: ~j . ~) /-.fN 
for an electron with wavevector ~ in band j 

--(6.9) 

U rt j ( ?:S ) is the 

Bloch function, having the same periodicity as the lattice. We include 
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a factor , where N is the number of unit cells in the crystal, 

so that Uitj (~) per lattice cell is normalised. 

Expanding the Hamiltonian Hs.c in terms of the field operators 

as given in Eq. (6.9), we find (see for example Haken, 1976): 
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(6.10) 

where, for example 

= f J d3x d3~ (I;,,(~) (.P;.z, C1) V (1~-~1) 

and 1 
X {p'f'-3, ( '.4-) Cf f.1tC ( ~) 

V (, x - u 1) = e - ~ '~-~, 
In the derivation of Eq. (6.10), terms not conserving pair 

+ + 
excitations, such as a~c. alt.'G Q_t, Ql'V' , have been neglected. 

Such terms result in polarisation of electronic orbitals and can be 

accounted for by including a dielectric constant in the Coulomb 

interaction potential Vc~,~)(Hanamura and Haug, 1977). 

We introduce the concept of a hole via the time reversal operator K 

(Hanamura and Haug, 1977), 

a ~II' = 
- the annihilation of an electron in the valence band having wavevector tt 

is equivalent to the creation of a hole of wavevector - ~ . 

Equation (6.10) then becomes 

Hs.c. = Eo + £,. Ec:.Ctt)at.ara. -t £,,. £"l~)d:dfl. 

(6.11) 



where 

E0 represents a constant energy term which we will neglect in future 

calculations; and in the effective mass approximation, (Haken, 1976), 

E, C "-) = E~ + 'f\2 tt'Z. 

2 'l"V\ e 

where 'mt and Tnh are the respective effective masses for electrons and 

holes and 

Ej = energy of gap. 

Evaluation of Interaction Hamiltonian 

We discuss now the approximations employed to evaluate the matrix 

elements occurring in the interaction terms of Eq. (6.11). Firstly, 

121 

1.t' + + I 
2. ~ a It, ai<'J. aie3 a tt+ 

R, .. it.., 
--(6.12) 

Evaluating the integral I of Eq. (6.12), 

I = ~,.ff d3xcPj e-~!•-~ u~ic,c. (~) e-~~2.- 1 Ll~2c: (j) V(1~-M,\) ec:tP•~uiJd~) 
.x ec:a ... is u .i,..c.(~) 

where we have used the explicit fo:rm of the eigenfunctions (lr,.,j as 

defined in Eq. (6.9). 



we asst.nne that the exponential factors and the potential V~,~are 

slowly varying functions of X. and ~ over one lattice cell. The 

integral I can then be decomposed into summations over the unit cells, 

[,1.,.,. exp[~(!:4-~,).!_ 

* X Uriac. ('&,) 
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where the volume of the unit cell is U-o and separate cells have midpoint 

vectors 1 and ~ . 

We next expand the Bloch functions with respect to R. and, assuming 

only small values of ~ are important, retain only lowest order terms. 

Also, we note the orthogonality of the Bloch functions: 

= 1 

(6 .13) 

(the Bloch functions are normalised to one within a lattice cell). 

Using Eq. (6.13), the integral I becomes, 

I = ~2. £,,TY\ exp [ i. (~4 - ~,).& + i.(f!:3 -~2)-'!!'] \J(.f,":!') (6 .14) 

As VU,'l'!'}and the exponential functions vary slowly (and may be set 

constant over a lattice cell) we may replace the sum over lattice cells 

in Eq. (6.14) to an integral over the crystal: 

~:L £ ,_ ➔ ~,. fJ d3 x' cP j 1 

I 
(the factor N2 multiplying the summation is replaced by a corresponding 

factor of I 
\/~ 

outside the integral as there are 

in the system volume V.) 

Thus changing to the centre of mass coordinate, 

R = ~'+~' 
;2. 

N 

and a relative coordinate, r :. "!:,1 - ~ the integral I becomes 

lattice cells 



I = ~• ff d ~ cli: exp [ L !3:. (!!,4 - ~.+ !!,, -1!,1) + Li.(~..- 1!,, +!!,1-r?,,)J 

X VC'!:) 

[as the Jacobian of the pair ( fl , '!: ) 

is 1]. 

Integrating over R we find, 

1 = 

with respect to ~' , ~ 
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~ I = cS~ .. + r! 3 ' ~' + !.1 '\T" ( 9) ---(6 .15) 

where ~ = I~' - ~+ \ and -V- ( 'l,) = -!:i V ( q) is the Fourier transform 

of V Cr.) . 

Thus equations (6.12) and (6.15) yield, 

¾ /' / ) + + _ l. , ~.,, l.1c. 1 v I Je3,, tt4c a 112, aie2. a 1( 3 a rt 4 

= -(6.16) 

In a similar manner we evaluate the remaining interaction terms 

of Eq. (6 .11): 

2> ½ l <- tt. "', - rt.iv- I\/ I - lt3 ", - tt4-") d~. dtra.a dtt3dr1.+ 
R, .• rz.4 

= ¼ l v(a) .J+' d+, d ' d ' 
... rt,', I(!, q_ " a"· tt:a. Jlt.1 -'I, I(, + q, ---(6.17) 

(prime indicates valence band momenta) 

and finally, we consider 

3) 

£ ( < tt,c., l't1 v IV\ tl.2.1T, lt4-c.) - < ~.,, Je3 v- IV I ~+c, ~.a. u-)) 
k,-· R-4 t 

)(. ai. d~2. dl(3 ar1.4- ----(6.18) 



The second matrix element in Eq. (6.18) vanishes as it generates 

an average over Bloch functions of the following form: 

ff d3 X d3 ~ u!,~ (o) u!,., ( ~) Uo,, ( '.,) Uo,.,. ( ~) 
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(from (6.13)) 

Thus expression (6.18) becomes 

t i" 1" 
.. v, -v-Cq) aK. +~ d vt~ dic.f-q, al(, 
l'I • ft:a, I q. 

---(6.19) 

Grouping Eqs. (6.16), (6.17) and (6.19), and including free 

Hamiltonian terms, we find the Hamiltonian for the semiconductor system 

alone: 

+ 1 Z\ -u-( q.) [ t:, .. ,t a: •. +q. d>t!: "'I, a .. i a~, + £,./+•~d!,qd.•~'l.d• .. , 

- 2 £ ~ a.+ .ec:. +q.. d+re(,- d x~ -1- a iec ] 
R<,Kv 

where ~c and ie~ are wavevectors of conduction and valence band 

states respectively. 

(6. 20) 

The first two terms of Eq. (6.20) represent the kinetic energy of 

the electrons in the conduction band and the holes in the valence band. 

The third term describes interactions between particles in the semi­

conductor: the first term in the square brackets refers to interactions 

between electrons in the conduction band~ the second term to interactions 

between holes in the valence band~ and the third term describes interactions 

between electrons and holes. 
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p6.2(b) Semiconductor-Light Field Interaction 

The Hamiltonian for this process is given_by Eq. (6.3).Substituting 

the explicit form of the vector potential A (Eq. (1.3), fl.3(b) (iii)) 

we find in the rotating wave approximation, (Haken, 1976) 

HINT = HmaHeT"-li9h~ = {; l ca;, d! b 914,, -t- h. C .) 
p,v 

--(6 .2la) 

(b = boson operator for cavity mode) 

Again we have assumed the single mode approximation (driving field 

is strongly coupled to one cavity mode only); and 

_fi:ie ( 
= ✓ vwG ) <;; l~) ~ e.~!$-'!5 i ~(~) d3x ---(6.2lb) 

(cavity mode has frequency w , wavevector ~ ) . 

Thus our total lossless system is described by the Hamiltonian, 

H = Hs.c. + H1NT + He.'W\. + Ho ---(6.22) 

where the terms of Eq. (6.22) are given by Eq. (6.20), (6.21), (6.6a) 

and (6. 6b) . 

Our aim is to develop a theo:i::y of optical bistability in semi-

conductors arising from excitonic interaction. 

However, the Hamiltonian, Eq. (6.22), describes the behaviour of 

electrons and holes in the semiconductor and does not refer explicitly 

to the excitons comprising the medium. Thus it is necessary to transform 

our Hamiltonian to one characterised by excitonic operators. 

This is most easily accomplished by performing a bosonisation 

transformation on the fermion operators and re-expressing the Hamiltonian 

in terms of exciton operators. Once a suitable definition of exciton 

operators is achieved, we can include an exciton damping mechanism into 

our model in a systematic fashion. 



i6.3 Boson Hamiltonian 

i6.3(a) Semiconductor Hamiltonian 

Following the theory discussed in Chapter Five,we apply the 

bosonising transformation on the fermion Hamiltonian Hs.c. as follows, 

where U 
6 

and P are the transformation and projection operators 

defined in Chapter Five (see Table 5.1). 

The terms of Eq. (6.23) are, 

1) Hof : U [ t,., E, (It,) O.titcll~, + £fl-, E.v-(~) d!" dl<\T] ut 
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: l Rr.,'-11 [ Er. ( tt,) + E II" ( rt11)] i:; ttd~lf b R.r. ll!v- p ---,(6.24) 

where the are boson operators. 

2) 

--(6.25) 

Certain ambiguities arise in the transformation described by Eq. (6.25) 

because the bosonising operator U transforms pairs of fermion 

operators only. As the four fermion operators in Eq. (6.25) can be 

arranged pair-wise in two distinct ways (with a corresponding sign 

change) we must consider the transformation of the two possible 

arrangement of operators: 
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UtU=-1 1 as in fermion space (see ~S.3(e)). 

Finally, - -4) H e-h P = 

--(6.28) 

The first term of expression (6.28) yields 

(see Table 5 .1) 

~ 
as P = 1 
presence of 

in the boson subspace (see ~S.3(e)) we _ignore the 

on the left - hand side of Eq. (6. 29) . 



128 

-(6.30) 

The second term of expression (6.28) is, 

Thus, from Eqs. (6.24), (6.26), (6.27), (6.30) and (6.31) we find 

the boson Hamiltonian, 
~ 

Hs.e. P = ----(6.32) 

where 

Ho=£ [ E,(tt,) + E"(R11)) ~Rc:tl1tb1l,rt1t - l V"(tt) S"~,~'L~.r•itbit,R"' 
lt11 R.c: Ile, R..r 

' - q, 
the second term of Ho stems from harmo.nic contributions from Eqs. (6. 30) 

and (6.31). 

- I l ,+ + 
H3 = 2 ll.r,JLc,~ '\T(9,) DJrh+Cf... lt~+1,. bsz.~ltir b~~IZ~ bl'Cc ~11' 

l.r•, It~ 
The Hamiltonian so derived is similar to that developed by 

Hanamura (1974a). His approach however, was based on a Usui-type trans­

formation which, as indicated in p5.2(b), generates a non-hermitian 

boson Hamiltonian. Hanamura solved this problem by using a complicated 

ordering procedure. 
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We avoid these difficulties by using the transformation U 
but unfortunately must cope with infinite boson expansions, as discussed 

in the next section. 

p6.3(b) Semiconductor-Light Interaction 

We wish now to transform the interaction Hamiltonian 

H, NT = 1; £ ~ d! b 9 + h. c. 
,MY 

However, we must deal with the infinite boson expansion generated 

by the expression, 

U a;, d! u+ = ---,(6.33) 

Using the generalised operator expansion Eq. (5.63), we find that 

Eq. (6.33) is a boson series in which the terms increase in powers of 

+ 
b~j bij (exciton density). Thus, for low density systems, higher 

order terms will become negligible and we may expand Eq. (6.33) to 

second order only, 

=> U a~ d~ u+ -:::: ( b+ C r:: ) Li- t L+ 6 )--P 
' r 'f"Y - l - v2. 014.., l,ij Df',Yj '!"iYj --(6.34) 

Thus, using Eq. (6.34) we find, 

u HINT u+ = 'i=L,..T i = 1; { 9 b £ R,RII' C ~ R.c: "" 

- (1-,Ji') t I 8"Rcllv b1t~lt~ bK~k:,.) + h.c.1 
llo:,lt.r 

(6. 35) 

We stress that Eq. (6. 35) applies only to low density systems. 

p6.3(c) Low Exciton-Density Hamiltonian 

we wish now to transform Eqs. (6.32) and (6.35) to suitably define 

exciton operators as bound electron-hole pairs. Thus we need to 

transform the Hamiltonian in such a way as to diagonalise the harmonic 

term This is achieved by using a transformation: 

---(6.36) 

(notation as in Hanamura, 1974a) 

(V = system volume) 
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where ~v ( cl fZc. + ~ tt") is the Fourier transform of the v-th state of 

a hydrogen-like atom: ol = 1Y\h /('me+ m h) and ~=1-o£. 

Thus, (-.,,K defines the exciton (boson) destruction operator. 

-The harmonic term Ho then assumes the desired form, 

- I t [ f\1 K2. ) + t' + 
Ho : l-,, IC. E.9 - tb,n + 2. M Cv,I( c,,,IC. = G ,,,K .nv,k. C-1,K c. ... , K 

where K = centre of mass momentum; t b, 'I"\ = binding energy of the 

nth excitonic state and M = me + m h. 

Applying the transformation (6.36) to the total Hamiltonian we find 

-, ...... , -, -- Ho H ::. Ho + Hex -+ HINT + 6. 37) 

[As 'p =1 in the boson subspace, we ignore its explicit presence 

in further discussion]. 

where 

where 

M, = ~J v-(9,) t t; ( ol ( tt" + 1<. + q,) + ~ ~.,.) t ;, ( ol ( K. 1 + ~~ .-q,) +~le~) 

+ ;;(_,l(K.'+ ~") + ~(tt"" +q,)) f;, (ol(K+!e~) +~(le~-q,)) 

- 2t;(olO~.+le"+q,) + ~ie,.,.)f;,(ol(k'+tl.~) +~(it'""+q.))1 

Xt..,(ol(K..,le.r) + ~le"")fl',(ol(K'+~~) + ~te:r). 

M2. = /vi V(cpf ;; (ctCi'+~""+q) +~~:,.);;, (ol(k'+ ie~ -q. )-+ ~tz"") 

+ f; ( ol ( K + ~.,) + ~ ( ~~ -'\,)) f ;, ( ol ( K '+ ~~ ) + ~ ( 1(11" +q,)) 

- 2 f,. (c(( K_.. ~"+q_,) + ~ tl.:,_ )f;, (ol( K' + ~~ -q.) +~~"') 1 
I" I I) 

X. J..., (cal ( K + kll"} + ' lit1T) ,t-,,• ( ol ( K' +1'.,) + '3 ~If' 

(summation is implied over all indices in M, and Ma. ) . 
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and 

"Y'2,. : I - .r,_ 

Viv 
~, 

In the derivation of HINT in Eq. (6.37) we assumed the cavity 

mode (governed by the boson operator b ) was strongly coupled to a 

particular exciton mode, of momentum K Coupling to other exciton 

modes was assumed to be weak enough to ignore their contribution to the 

interaction. Also, the summation over Y was dropped, indicating that 

we only consider one level of the exciton (ground state). 

Having successfully formulated the Hamiltonian in terms of the 

C C~ exciton operators K, ~ we can now introduce damping of excitons 

into the system. 
~I 

We firstly note that the terms of Hex. describe interactions 

between all exciton modes. These terms thus give rise to damping which 

arises from collisions between different excitons. 

Additional excitonic damping stems from the coupling of excitons 

to the crystal lattice. Adopting the usual methods of the quantum theory 

of damping, we assume the lattice vibrations, i.e. phonon modes, comprise 

a reservoir in thermal equilibrium which is weakly coupled to the exciton 

mode we are considering. 

The Hamiltonian describing this process is, 

___ (6.38) 

where QL is a reservoir operator. 

A similar exciton-phonon model was considered by Toyozawa (1958, 1959). 

In his extensive papers, he derives the Hamiltonian: 

Hex.-pho11on 

+ 
where b.:J· 

= t.,W,(j,j',•:) (b.:,j-j' + b.:,j 1-1)c:,,c.,,,,J' 
~,J,J .,,,. 

is a boson creation operator for the phonon mode; 

refer to mode and wavenumber of the phonon. 

---(6.39) 

L and j 



+ 
C v,t is the boson creation operator for an exciton; Y is the 

internal quanttnn ntnnber, ,t is the wavenumber. 

Hamiltonians (6.38) and (6.39) will be equivalent if we define the 

correspondence, 

Thus, the work of Toyozawa shows that the reservoir operator of 

Eq. (6.38) should be viewed as a combination of exciton and phonon 

operators; and damping of a given exciton occurs via another exciton 

mode and not solely through the lattice. 

Damping of the cavity mode is described by the Hamiltonian, 
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-----(6.40) 

The reservoir (described by the operator GF ) could in this 

case consist of modes of the radiation field; or the exciton modes -, 
we ignored in the derivation of HINT 

p6.4 Master Equation 

In the single mode approximation, the Hamiltonian becomes, (in a 

frame rotating at the frequency WL ) 

R =- 'ft !J, c\ c" + -r, ~2. tb - M:i. c+" c: cKc" + 1i 9 (-r, 6+ c I( 

- -r:i. i; c+I( c"c~) + ~ -t; Eb + ct £ 'X, c:. cl<.2. c"J 
I(, IC;a. kJ 

+ c: c: £ X2. CK, c"~ + etc" £ ~3 c:,c"-,. -i- b+ £ j X+ bj 
l't, !Ca_ IC, IC.z 

+ ct £ 'Xs bl( C1e + h.c. 
"· K;a. I J. 

where c5, and 6J.. are detuning terms 1 01 :::. f'L - c..> '- , 6 ~ = r..:> -w a.. 

and = coupling between field mode and reservoir, 

(6 .41) 

= coupling between exciton mode and exciton-phonon reservoir. 
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we assume it is possible to consider the exciton ground state only 

and thus ignore the summation over internal quantum numbers. 

The last five terms of Eq. (6.41) describe coupling of cavity and 

exciton modes to reservoirs. The first three of these damping terms -, 
stem from applying the single mode approximation to H e'l< • 

we obtain the master equation for the system following the methods 

described in Chapter One, ~1.3(d): 

where 

-1. ~. (ctc",f) - t:o.i [b+b.p) + ~ M,. [ctc:cl<c",f] 
1' 

+ 

---(6.42) 

= K,,a. (cc"p, ct]+ [ct,pc!J) + K,,b(cct,a,cic} 

+ [ ci, f' c" J) + 1<.2,0. ( c cl'cl< f, ct c:] 
+ [cicc",fctc:J) + Kl,b(Cctc~p,c"c"1 

""Cc! c:, pc." cl())+ K3 C cc:Ctcf,c:c.,) + cctc" ,pc:c"l) (6 .43) 

where k,,a. = Tt 9 {Wo) \ 'X.(Lvo)\2 n,,a. ( l+ -n,,1,)(1 -t T11,c) 

g(wo) = density of states of reservoir modes, 

Wo = exciton resonance frequency, 

-n .;; L ..;;. = thermal population of reservoir mode 
f 11,a; I If) .. ;• I 11 C 

and k,,b: TC.9{w.) I X,CW0)\2 =n,.~ n,,c. ; K.2,b: tt:fw.)\~2.l2°ih,a.TI1,b j 

k.2.,0. : rrg(wo) \ X2.(Wo)\1 (1+fl1,a.)(1+ ii,.,1,) ·, 

k3 = re 9cw.) I ~312.( -n3,a. + T\3,b -+ l ri3,a. "Y\3,b). 



Thus, in Eq. (6 .43), the constants K1 , K :z. and K 3 describe 

the strength of exciton-exciton interactions (collisions). Also, 

°-f. = ks ~ ( 1-+ -ne:,.) ( [ C1ep, ct] + [ Cic, ,o ct J 
11::. Ex- P~°"'o" 

+ 'nex ( [ c+"'°' Cid + [ct, pcicJ)1 
where ks-= rr9'two) l'Xsl 1 describes the damping of excitons due to 

exciton-lattice interactions, 

and 

(6.44) 

O_f. 
'o l: 

= I( 4 { ( 1 + n) ( [ 6 f, I:; ] _.. [ b, f b+) ) + -n ( [ ~ f, b] 

+ (b\pbJ)} ---6.45) 

- describes the radiative damping of 

the cavity mode. 

f6.5 Fokker-Planck and Langevin Equations 

We can evaluate the system's quantum fluctuations explicitly by 

transfonning the operator master equation into a Fokker-Planck equation. 

Following the discussion of ~l.3(f) we use the generalised P­

representation and write: 

where 

t°: JP(c11,~1,ol;1,~,1) lol1,c/l)<~~)~ll do1.d~,dqJ.d~.2. 

<~~,~! I ol,,ol~) 

b ➔ oh. 
' Using this transfonnation we find the Fokker-Planck equation, 

oP = 
oc 

f O [ ~, ol, -+ 'X. ol, ol, ~, -1- .: 9, c/2 - L 9• ( ~2 «'.' -1- 1 ol,ol, ~,)] 

?Jc/, 

-+ C. C. } p ----(6.46) 
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where C. C. means: r:,t, ➔ 13• , ol:,. ➔ ~2., I'.. ➔ -i. 

and 

91 = 9 Y'"i 

X = 1 ( k2, o. - k1, b - (t/1;) M,.) = 'Xa.+~Jb 

k1 - 2 [ (~If\) M2. - K2.,a. - k2,b - K3] -

K.2 = f/ k 2, b + 1 k3 11 : ~ K2,b + 2 k,, b + 1 ks- ne)(. 

~.2. = k4 + ;,, f>1 =- Oc. + t-'6d 
In deriving Eq. (6.46) we neglected derivatives higher than second 

order. 
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As discussed in fl.3(f), in the positive P-representation there exists 

a Fokker-Planck equation with positive semi-definite drift coefficient, 

which corresponds to Eq. (6.46). 

From such a Fokker-Planck equation we find the Langevin equation, 

- 'if I o/ I - 'X ol' ol 1 ~ I - ~ 9 I cl 1 4- i:. 9 l. ( ~ 2 ol t + 2. cl,. d. ~I) 

- ¥; ~· - 'X-*'3• ol, ~· -1- ( 9• ~2. - .: 92. C ol2. ~f + 2 ~2. ol. ~.) 

- '6.J. o/2. + E - ~9, cl, + ~9.2. ol,cJ, ~• 

- i; ~2. + E~ t .:9,ol, - i: 9;i. ~• o1, ~• 

+ K, ol} + 2.:92.ol,ol1 

f<2 ol, ~' -+ 'yt 
. ,. 
1.91ol1 

0 

'K2.ol, (!• + 'Y\. 

kr ~~ - :Z .:9,. ~, ~,. 
0 

• ~2. -L<J :z. I 

. l. 
L9.2.«1 

0 

0 
2 K+-n 

0 ~ 
-i92 ~; 

.2K+r. 
0 

where the ti lt) comprise a Gaussian stochastic process; 

f, {t) 

la.l~> 

i1 {-t) 

l1t lt) 

(6.47) 

We will discuss Eqs. (_6.46) and (6.47) in more detail in Chapter 

Seven but now turn our attention to the deterministic behaviour of the 

system; particularly to its bistable nature. 



p6.6 Steady State Behaviour 

p6.6(a) Low Density Case 
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The low exciton density system is described by the Langevin equations, 

Eqs. (6.47). As a first approximation we neglect noise and investigate 

the steady state properties of such a system by considering the 

deterministic equations: 

where, in the deterministic limit : 

(6. 48a) 

(6.48b) 

(6.48c) 

(6.48d) 

1 • ' ' th dy ( ,:, • ~,,,_ ~,! -- o) So ving equations in e stea state ~• = «i = ~, = ~. 

we find, 

,~~ [( 'lfb +Xbn,)(92 -n. -9,) + U ~o. + ta. n,)(39 2 -n, -g,)] +~C9.1n,-9,T(3(j2.n,-9,l 

1(39,.1',-9.)(92 n, -g,)11 (6.49) 

and 

} "Yl 2. = 11, { ('6b + i b n,Y· -+ c~a. + 'X.a.'Y\,y-

(3~2.1'1 - g. ) 1 (9.11'\1 - g. )2. 

where I = I El~.s. = steady state input field intensity. 

n,:: (toli11 )s.s. = steady state exciton number (intensity). 

n2 = (Jol.il1 )s.s. = steady state output field intensity. 

(6.50) 

Equations (6.49) and (6.50) indicate possible singularities in the 

system when 92. 'Y\1 :: ~, However, these equations 

were derived in the low exciton density limit in which we assume, 

As 9.2.n1 

9:i TI, ~< 91 
approaches 91 the low density limit becomes 

invalid and Eqs. (6.49) and (6.50) no longer describe the system. 
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To determine the possibility of observing bistability in this system, 

a stability analysis is required. However, the highly nonlinear nature 

of this four-dimensional system hinders such analytical calculations. 

As a first approximation, we consider the very low exciton density 

limit: 

) 

Equations (6.49) and (6.50) then become 

r1i = n, [ ( ~b + 'Xb-n,Y 4- ( ~o. + io. n,)1. J 
9~ 

--(6.Sla) 

--(6.Slb) 

where p, : ( ~c. lb + '6d. 'Xe1. )2' + ( ~c. 'Xa. - 'X b '6~ )2 

Stability Analysis for Very Low Density Systems 

(For a discussion of linearised stability analysis, see Chapter Two, 

~2.l(c)). 

In such a low density system ( i.e. g:z.:O) 

deterministic Eqs. (6.48) by substituting: 

we linearise the 

(where o(. 0 , ~ 0 are the deterministic means of ~., ol:,_ respectively; 

6ot , 8 ~ are small deviations from these means) ; and retaining only 

constant terms and terms linear in <5 ol J 8 ~ in Eqs. (6 .48) . 
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In this way we find the linearised equations: 

. (6.52) 

bot = (- o,it - J. 1X"1olol1 )~ol* - ~¥ o1./' 1 6rx. + ~g,o~ 

= 

Equations (6.52) yield the dispersion equation: 

where 

mo = I J 

2.9~ - IXl2 (Jaol2 )2" + l~:i.l~ +I~,+ l'X1~ .. 11 l1 -Re(-~,-l'Xl...!ol2)Re(~2.) 

g~m, - t'X.i1(1«0\1.)l,Re(i2.) - l~i12.Re(-~,-.2.X1«ol1.)-t Re(i,Jl"1+2tl«ol1.12. 

~ obtained from Eq. (6.Sla). 

Stability Conditions: 

The Hurwitz stability criteria for this system are 

(I} mo ) 0 

(2) 'l'Y'I, ) 0 

and ( S) ~ [ m3 ( 'l'Y'l,m,. - m3) - m~ £! } ) 0 
o'Yl, ~'Y\, 
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The system exists in a stable state only when conditions (1) to (5) 

are satisfied. Gi'ven th t th a e parameters can be chosen such that all 

these conditions are met, conditions (4) and (5) imply the system is 

only stable when, 

is unstable when 

)0 

oI < o 
on." 

and is critically unstable when 0 

The steady state behaviour corresponding to Eq. (6.51) is illustrated 

in Figs. 6.a and 6.b. 

I 

Fig. 6.a: Plot of n, V$. I 

for Low Density 
System 

T\1 

:z: 

Fig. 6.b: Expected Bistability 
in Low Density 
System 

According to the stability analysis, the top and bottom branches 

of Fig. 6.a (branches (i) and (iii) will be stable to small fluctuations 

(i.e. in these regions). Branch (ii) in Fig. 6.a will 

be unstable and the turning points ( P and Q ) correspond to bistable 

transition points. 
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Bistability thus occurs as indicated in Fig. 6.b. 

We note that in the limit of large exciton damping (in which the 

excitons may be adiabatically eliminated), the parameter ~I is very much 

larger than all other system parameters. In this case: 

TY\o : 1 
' 

m, ~ +Re (i,) m2. ~ L Re (i,) J1 , 
lY'3 - [Re(~,) ]2. Re (i.i) 

' 
m 4 - ()! 

,v t,. (~j + ¥:) [ Re (~.)]4 
C,-n1 

The Hurwitz criteria for stability then become (large ~, limit): 

(1) 7Y\o = l > 0 

(2) 1'Y'\, -+ReCii,) )0 

(3) m,r(h,_- m 3 - [Re(~,)]?> )0 

(4) m 3 (m,m:i. - m 3) - m~ ~ (Re ('6,))5 ) O 
oY'\1 

and 

(5) oI {m3 ('l'Y\,m2.-Tf'~) - m~ oI 1 ~ [ReC~,)r >O 
o"f\, o-n, f 

Hence, conditions (1) to (5) are always satisfied in the adiabatic 

limit ( Ci large). 

We may thus conclude that bistability as indicated in Fig. 6.b 

will occur in the low density system in the adiabatic limit of large ~ I • 

The conditions for bistability are determined by requiring the 

equation to have real positive solutions. This implies the 

bistability conditions, 

2 f.z. < 0 
_____ (6 .53) 

The inequalities (6.53) will obviously be satisfied for a large 

range of parameters. 

we note that the bistability depends solely on the exciton-exciton 

interaction. 
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Let us consider the absorptive limit , id = ob = O In this 

case, pi = 2 ( g~ + Oc: Oa.) Oc. .Xo.. , which is negative only if o~ 
is negative, as all other parameters are positive. This requires either 

very large values of the thermal occupation numbers of the reservoir 

modes, or strong exciton-exciton interacti'ons. Th 1 us, pure y absorptive 

bistability is possible only when exciton-exciton collisions become 

dominant. 

If we now include a non-zero value of 92. into the system, we do 

not expect the bistable behaviour to change significantly - as long as 

92. <~ 1 and 'Y\, remains relatively small. 

Figs. 6 .1 and 6 .2 show plots of 1'11 IFS. I and 

for small g,_ . (The values of l11 at the points A, B, C, and Din 

Fig. 6 .1 correspond to the values of n 1 at the points A, B, C and 

D in Fig. 6.2). 

Dotted arrows indicate expected bistability. That is, from the 

stability analysis for the case 92 :. 0 

branch of Fig. 6.1 will be unstable, as 

we find that the middle 

OI /or1i ~ 0 ; and the top and 

bottom branches will be stable as O I / 0n,) 0 . Bistable transitions 

occur at the points A and con Fig. 6.1 as oI/on,== 0 at these points. 

As output intensity depends parametrically on I through l"\1 , we 

expect a corresponding bistability will be observed in output intensity 

, dependent on input intensity I This is indicated in 

Fig. 6. 2. 

we see than that bistability is possible in a low exciton density 

system. However in experiments involving GaAs (in which bistability 

was observed) exciton densities are too high to justify the neglect 

• th • E (6 34) We need to consider of higher order terms in e expansion, q. • • 

the high density case separately. 
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f6.6(b) High Density Case 

Problems arise when we wish to describe the high exciton density 
~ I 

system, as the infinite boson expansion occurring in HI NT (see Eq. (6. 33)) 

now becomes divergent. We overcome this difficulty by performing a 

transformation on the exciton operators which generates a finite 
-, 

expression for H1NT 

Consider the explicit form of the interaction Hamiltonian: (i.e. from 

Eqs. (6.21a) and (6.33)), 

where 

V 

we now set, 

A+ l = -(6.55) 

where A is a boson operator such that <A> = O and >-. is a constant 

where 

(c):: A 

The large exciton density limit thus corresponds to large 

we may expand perturbatively about the deterministic solution. 

A and 

Substituting Eqs. (6.55) into Eq. (6.54), we expand the denominator 

1l. ' 
to first order and retain terms of order /\. and /\. only: 

_, 
H1NT 

::. - ~ 9 b £2 ( C:3 I A 11 y l/.1. ~ { ( 3 A++ -2 X'):\. 

+ A "'A.* 1 + h • C • 

(6 .56) 



The Hamiltonian described by Eq. (6.56) yields the following 

contributions to the deterministic equations: 

< b > = L x < c 1 "- 12 r 1'2. A { c 3 A + 1 A ) >...* + A+ >... 1 > --(6.57) 

< c/() - i, X < 3 b ( IAl 2f 1
'2 l}..l1 + i::- ( I Al1 t 1' 2 A.1 > ---(6.58) 

where () denotes average value, and 

= 9. £ a. E 3 - •12. 

X :z. 

Using the definitions (A) = O , < C) = A = «, , ( b) = ol. J. , 

we combine Eqs. (6.57) and (6.58) with the deterministic equations 

obtained from 
~1 ~1 ~I 

Ho + Hex + HD + H da.,..,pi"'g (i.e. Eqs. (6.48) with 

to find the high exciton density equations, 

-(6.59) 

-(6.60) 

and complex conjugate equations. 

Equations (6.59) and (6.60) can be solved in the steady state to 

yield, 

I - --(6.61) 

4 x.2. 

1"11 = 4'x.2. { ~ ( 'ls'b + 'XbTI,Y + (~o.-+- ~a.-n,)2·1 -(6.62) 

where 
'lfc. 'lfb 

J.,. 
~c:. ')li. 

+ ~cl ta. J.., = + ~d1!o.. = 2 2. 

~c:l "" )_'+ 'tSc 'X.a. ~d'XI. 
+ 4 x.' ). 3 = '6c. ~o. = - ----- 2. 2. 

Equations (6.61) and (6.62) show that the steady state now displays 

a quadratic nonlinearity. 

When graphing the behaviour of the high exciton density system, we 

note that for low values of 11 1 , Eqs. (6.61) and (6.62) become invalid. 

Thus, in this region we must use the theory developed in ~6.5(a) for the 

low density system. 
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Fig. 6.3 shows the variation of exciton number ('Y'\,) with input 

intensity (I)• The graph is a combination of two curves: the upper 

part describes the high density behaviour (Eq. (6.61)) and the lower 

part corresponds to the low density case (Eq. (6.49)). 
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In these two distinct regions, the respective theories accurately 

predict the system's behaviour. However, in the intermediate region 

(indicated by broken lines in Fig. 6.3) we are unsure of the applicability 

of either theory. We expect the actual behaviour of the system to follow 

Fig. 6.3, except in the intermediate region; where we assume a smooth 

transition between high and low density behaviour will occur. 

It is assumed that the point G in Fig. 6.3 corresponds to a point 

of critical instability and that a bistable transition will occur as 

indicated. 

As we are unsure of the precise behaviour of the system in the region 

around the point E in Fig. 6.3, the stability analysis necessary to 

determine the actual nature of the hysteresis was not performed. Such 

investigations are proceeding. 

Nevertheless, we do expect a transition to occur in the neighbourhood 

of the point E, and that bistability will arise as indicated in Fig. 6.3. 

Fig. 6.4 shows the corresponding variation of output intensity 

with input intensity. (The values of Yl, at the points E, F, G and H 

in Fig. 6.3 correspond to the values of YI, at the points E, F, G and H 

• F' 6 4) The upper and lower curves were obtained from the high and in ig ... 

low density theories respectively. Again, broken lines indicate regions 

in which neither theory is valid. 

As the input intensity is increases, exciton number n, varies as 
~ 

in Fig. 6.3, until at I 2 a transition occurs, indicated by EF 

Because 11 2 depends parametrically on I , via 11 1 
we thus expect 
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a similar unstable behaviour in output intensity at I 2 . Such a 

transition is indicated by the arrow ➔ 
EF in Fig. 6.4. Similarly, the 

transition 
➔ 

GH at occurs in Fig. 6.4 

As in the low density case, the possibility of observing bistability 

requires to have real, positive solutions. This 

results in the condition, 

In contrast to the low density case, a non-zero ,X is no longer 

necessary for bistability. However, absorptive bistability still requires, 

<Sa. < 0 

i.e. dominant exciton-exciton interaction. 

Thus, bistability and hysteresis in output intensity dependent on input 

intensity is also displayed in the high exciton density system. 

We note that this behaviour follows the experimental curves of 

Gibbs et.al. (1979), showing output intensity versus input intensity for 

GaAs. 

~6.7 Optical Bistability in Semiconductors 

We have thus presented a theory of light-semiconductor interaction 

which includes effects such as exciton-exciton interactions and radiative 

damping. As such it represents an improvement on the phemonenological 

theory of Goll and Haken (1980). 

After developing a boson Hamiltonian, we were able to model the 

system in the two limiting cases of low and high exciton densities. 

Steady state analysis showed the system exhibits bistability in both 

exciton number and output intensity dependent on input intensity. 

At present though, excitonic bistability of output intensity 

dependent on input intensity has been observed in GaAs only in the high 

density limit. 
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Our work, however, shows that bistability can occur in materials 

having lower exciton density: In this limit, dispersive and absorptive 

bistability were shown to depend critically on exciton-exciton interactions. 

Thus, such interactions provide the nonlinearity necessary to produce 

an intensity dependent refractive index. We also see that these exciton­

exciton interactions generate the cooperative effects necessary for 

bistability. (An example of such a low exciton density system is CdS, 

in which nonlinear optical effects have already be observed (Benoit a la 

Guillame et.al., 1969; Haug, 1968). 

At high exciton densities, in the dispersive limit, bistability was 

shown to occur without the presence of exciton-exciton interactions. 

The nonlinearity producing bistability in this case arose from the 

interaction between the light field and the medium. From the expression 
~I 

for H1NT (Eq. (6.56)) we see that this involves the interaction of 

a photon with two or three excitons. This agrees in essence with the 

suggested bistability mechanism proposed by Gibbs et.al. (1979): 

light absorbed just below the exciton resonance frequency produces 

carriers, changing the absorptivity and polarisability of the medium, 

thus leading to an intensity dependent refractive index. 

we also predicted purely absorptive bistability at high exciton 

densities, which was seen to require strong exciton-exciton interactions. 

So far, only dispersive bistability has been experimentally observed. 

Finally, we note that Eqs. (6.48) with 92 = 0 are identical to the 

equations of motion for the driven anharmonic oscillator. ( cl, ~ 

arnpli tude of oscillator, ol. 2. ~ field mode) . 

such a system is known to exhibit bistability, depending critically 

· ·t • e 1\1 1·n this case (Steyn-Ross, 1979). on the anharmon1c1 y, i •• /\, 

Thus we see that weakly driven excitonic systems can display bistability 

if the parameter l is sufficiently large. As 1J. depends on exciton­

exciton collisions (clearly a temperature associated effect) such a 

bistability is a consequence of exciton-exciton interactions. 
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CHAPTER 7 

QUANTUM FLUCTUATIONS IN LOW EXCITON-DENSITY SYSTEMS 

p7.l Introduction 

We now discuss quantum fluctuations in the low exciton density 

semiconductor system by considering the Fokker-Planck equation, Eq. (6.46). 

From this equation we wish to derive the system's photon statistics. 

As potential conditions are not satisfied in this highly nonlinear system, 

the statistical properties are most easily calculated via linearised 

fluctuation theory (Chaturvedi et.al., 1977). However, for systems of 

dimensionality higher than two, these calculations become very complicated. 

A reduction of the excitonic system 1 s dimensionality is thus required 

to enable the straightforward calculation of statistical properties. 

Fortunately, in most of the systems we model, actual experimental 

conditions will be such that we do not have to explicitly consider 

certain variables. 

For example, in intracavity experiments we can construct the cavity 

so that the cavity mode has a much longer lifetime than the excitons. 

We are then able to adiabatically eliminate the excitons. 

Alternatively, in experiments using very fast pulsed lasers 

(~ picosecond pulses) the excitons can have a longer lifetime than the 

cavity mode which may then be adiabatically eliminated. 

This chapter concerns how these two types of variable eliminations 

can be performed in a low exciton density system, with a view to 

calculating photon statistics. 

As mentioned in fl.3(g), adiabatic elimination of variables is well 

defined within a deterministic theory, but problems arise when we introduce 

noise into the system. Thus, we firstly discuss how such an elimination 

· h' the framework of a stochastic theory. can be performed wit in 
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7.2 General Adiabatic Elimination Methods 

Let us consider a general nonlinear two-dimensional 

by the coupled stochastic equations, 

system, described 

-------17.1) 

------(7.2) 

where f1 and f l are arbitrary functions and 1:, ( t) , 'Cl. (t:) are 

stochastic fluctuating terms where, 

i.=1.,2. 

and 

D~j b(t-t') 

where D ;J· • d • ff • • is a i usion matrix element of the Fokker-Planck equation 

corresponding to Eqs. (7.1) and (7.2). 

We assume ex, is damped on a much faster time scale than oi.2 , 

thus enabling the elimination of o<., . 

As a first approximation we may follow Haken (1978) and neglect all 

noise terms associated with the variable CX, (i.e. set 'fol, ( t) = 0 

in Eq. (7 .1)). We then substitute the stationary mean of of. 1 into 

Eq. (7.2), as in the deterministic case discussed in i1.3(g). The 

reduced system is thus described by the single stochastic differential 

equation, 

------(7.3) 

where (o(,) 55 was obtained from solving Eq. (7.1) with ol,=-o and f«,<t·)=O. 

A major drawback of this method is that the only noise in the 

reduced system now stems from the variable oC1. We expect that this 

neglect of noise in will be justified when the noise in mode 2 

is large in comparison. When this is not the case however, major errors in 

the calculation of important physical properties will occur. 
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The need to include the effects of noi·se from eliminated variables 

was recognised by Haken (1970) and Louisell (1973) in their treatment 

of adiabatic elimination of atomic variables in the laser. 

Following their approach, elimination of o<, 

in Eq. (7.1) thus yielding, 

(o<dss = f3(0<,, 1 fa,{t)) 

proceeds by setting 

----(7.4) 

The steady state mean of ~, now contains explicit reference to 

noise terms. The reduced system is then described by the equation 

----(7.5) 

At a first glance, such an approach seems promising,as Eq. (7.5) 

contains noise terms arising from both variables. However, in a nonlinear 

system the function f~ occurring in Eq. (7.5) could well contain terms 

of the form, 

----(7.6) 

Such a product of fluctuating terms is infinite and does not describe 

any real physical situation. 

The procedure we have been describing actually has no rigorous basis, 

and as we have seen, involves a suspect treatment of system noise . 
. 

That is, although setting o(, = 0 in Eq. (7 .1) properly describes the 

stationary regime, this procedure assumes the noise term fo,(t) remains 

constant. 

However, we assume that the correct adiabatic noise limit will be 

found by performing a systematic expansion of the noise terms. Such 

methods, directly applicable to stochastic differential equations do not 

exist. 

Thus, in this chapter we adopt what is believed to be the first 

systematic method of adiabatic elimination of variables from the Fokker­

Planck equation - that proposed by Gardiner (1982). 
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This procedure, based on a projection operator technique, follows 

the methods of Wilemski (1976) and Papanicolaou (1977): A projection 

operator in terms of the stationary distribution function (Ps) of the 

variable to be eliminated is constructed. Such an operator projects 

vectors into a subspace in which all vectors are expressed as a product 

of the stationary distribution Ps , and an arbitrary function of the 

remaining variables. This new subspace thus represents a reduced system, 

describing only the variables not eliminated. 

Hence the dimensionality of the system is reduced in this new 

subspace, providing the necessary simplification we require to derive the 

system's statistical properties. 

p7.3 Projection Operator Technique: General Procedure 

Before considering the explicit case of the semiconductor system, 

we will review the basic steps of the projection operator method, as 

presented by Gardiner (1982). 

The procedure assumes it is always possible to scale the system 

variables such that the Fokker-Planck equation can be written as, 

= ----(7.7) 

where ~ is a dimensionless parameter, and ~ ➔ oo describes the adiabatic 

limit. Physically, we identify ~ with the damping coefficient of the 

variable to be eliminated, as adiabatic elimination requires the damping 

coefficient to be large in comparison to other system parameters. 

• to the simplified case of a two-variable we restrict this discussion 

system in which ~ = ( o<,,cl,.) and represents the variable we wish 

to eliminate. 
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In Eq. ( 7. 7) , the operator L, concerns the variable to be 

eliminated, o( I > 

L, :: 0 -t( ol11c(2.) + l L_D(~) 
()c)('i 2 'Z>oi.2 7. 8) 

and L,. and L3 are operators involving o( 1 and ol2. , to be discussed 

shortly. 

We now wish to derive a Fokker-Planck equation involving the variable 

~l only, and thus describing the distribution function, 

-----(7.9) 

This can be achieved by a method based on the following simple 

argument: In the large ~ limit, L, dominates in the Fokker-Planck 

equation, thus a solution of the equation will be a solution of 

bP 
ot 

= '62 L, p 
----(7.10) 

multiplied by some function of o(:,_ (yet to be determined) . 

As ~ is very large, the solution of Eq. (7.10) rapidly approaches 

its steady state and we thus only need consider the stationary solution, 

described by, 

L, P = o ----c1.11> 

More rigorously, we define a projection operator, ~ as, 

where f is an arbitrary function and Ps ( ol,) 

-----(7 .12) 

satisfies Eq. (7.11). 

With regard to the vector space containing all functions of (d,,~~), 

8' projects any vector to a subspace consisting of vectors of the form, 

u Cot, ,o1,.) = Ps (ol,) D. Co<2.) 

"" where U(«2.) is an arbitrary function of cx.2, • 
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Thus by applying ~ to the Fokker-Planck equation we project 

out any explicit reference to o<, and obtain an equation in terms of o(~ 

only. 

To this end we define, 

V = pp ---~7 .13a) 

w =(l-~)p ----(7 .13b) 

;?; P =v+-w 

and we are interested in obtaining an equation for '\J" alone. 

The operators L2. and L 3 of Eq. (7. 7) describe, in the main, the 

behaviour of the variable OCi . forms the basis of the new, 

reduced Fokker-Planck equation and must involve only OC 1 . All remaining 

terms of the Fokker-Planck equation are contained in Li . 

In practice, L1 and L2. are chosen so that L3 can be written 

in terms of o<2. only and such that L2. satisfies, 

----(7.14) 

a condition essential to the elimination procedure, as we will see later. 

As an illustrative example, let us consider the following system 

(Gardiner, 1982) ,. 

bP = .Q.... )$ 2 [ f(cl:L) - ACol,)] 
~t ~ol. 

L [ b(d,.) o(, + Q.(cc',.)1 

ool:2. 

----(7.15) 

where f , A 7 b and Q. are in general nonlinear functions. 

Equation (7.15) can be cast in the form of Eq. (7.7) by setting, 

L = 0 [ t(ol:z.) -A(c,(,)] + 02 8(0h) 
I - 0o(~ bol, 

----(7.16) 

The remainder of Eq. (7.15) forms the operator L3 ; however we need 

h • abl o( occurring in the second term. to remove reference tote vari e 1 

This is achieved by defining the statistical average 

TnCcl2.) = <:ol,>.,. = J P5 (cc'i) cl, dot, ----(7.17) 
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and forming the operator L2 , 

---7.18) 

Thus, 

---(7.19) 

The operators L, ,l2 , L3 described by Eqs. (7.16), (7.lfl) and 

(7.19) combine to produce the Fokker-Planck equation, Eq. (7.15), which 

can now be written in the form of Eq. (7.7). 

We also note, 

i' L 1 f' t = - Ps ( ol,) J d o1i' .Q_ bco1:,.) [ ol, - m(c1:,. )] Ps ( o1:) j do1.:' t( c(:1,ot:,.) 
oo12 

- - Ps (ol,) .Q_ b(ot2) f do1.'(o1, -rn(o'2.)) Ps(o1Djdo(,"t(o1..'' o1.2.) 
b~ , 

= 0 

as J dol: (o<, - m(ol:z.)) Ps(ol.') = 0 

Thus, f L,. f = 0 

from Eq. (7.17). 

Adiabatic elimination is initiated by applying f' 

We firstly obtain an equation for '\f , 

toEq.(7.7). 

_Q._pp 
0 I: 

= 0'\1" 
ot 

= r ( ~:,. L + L~ + L3) 

- g,(~a.L, + L2 + L 3)[ 8'-' P -t (1-f)P] 

f' L,. S' =- 0 we find, 

where V and W are defined by Eqs. ( 7 .13a) and ( 7 .13b) . 

(7. 20) 

Secondly, we derive an equation for W from Eq. (7. 7) 

(1-P) .a_p = (1-f)(cS2.L, +L~+L3)P = (l-8')(01 L, +L2+ L3)[s:'P 
C,t +(1-&")P] 

(Using (7 .11) and (7 .14)) 

02.L,w-+ (1-~)L21.v -+ L:1-v 

-+ ( I - ~) L3 ( v- + 'l.\J") 
--(7 .21) 
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The elimination procedure, in which all reference to the dynamical 

behaviour of W is removed, follows by solving Eqs. (7.20) and (7.21) 

in the large ~ limit. 

The coupled equations (7.20) and (7.21) can be solved using a 

Laplace transform method, in which we define, 

"W(S) = ---(7 .22) 

and 

V(S) = ---(7 .23) 

Assuming W(O) = 0 

of Eqs. (7.22), (7.23), 

, Eqs. (7.20) and (7.21) become, on application 

---(7 .24) 

Solving Eqs. (7.24), the following expression, to second order in~ 

is obtained - in the large ~ limit 

---(7 .25) 

If L3 has no O dependence, the term ff'L3 dominates in Eq. (7.25). 

The Fokker-Planck equation then becomes, in the adiabatic limit, 

--(7.26) 

where we have set 

We see then that to lowest order, the elimination procedure is 

equivalent to the first approximation of Haken (1978), discussed in 

~7. 2: in which all noise in ex, is ignored and oC1 replaced by its 

stationary value. This follows as in this case the noise of variable d1 

is comparatively small and we may assume the deterministic result: 

m(ol2.'l ,;::: (ol.,) ss , where (oli)ss is the deterministic mean. 
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Equation (7.26) wili be applicable only if L~ has terms of higher 
y-l 

order than O in its drift and diffusion coefficients. 

However, it is often the case that the terms of L3 have only a 

small noise contribution. In this instance we must include all other 

terms , 0 ( ~ - .2.) , in Eq. (7.25). 

As shown by Gardiner (1982), Eq. (7.25) then becomes, 

(7. 27) 

We discuss the evaluation of these additional terms with reference 

to the explicit case of the semiconductor system. 

In the remainder of this chapter we consider the two limiting cases: 

i) Adiabatic elimination of excitons and 

ii) Adiabatic elimination of cavity mode, 

and derive the statistical properties of the system for case i). 

f7.4 Adiabatic Elimination of Excitons in the Semiconductor System 

This regime assumes the excitons are damped on a much faster time 

scale than the cavity mode. 

The linewidth of excitons in semiconductors is typically 0.1% of 

the exciton energy. This is approximately 0.1 eV, corresponding to a 

lifetime of l0- 12sec. As a typical cavity lifetime is about 10-7sec, 

our assumption is justified. 

p7.4(a) Linearised Theory 

As we will be using a linearised fluctuation theory to calculate the 

photon statistics, we first linearise the system. To this end we define, 

Exciton Mode: cx 1 =ao+ol. (3, = ol.oy, + o{ + 

Field Mode: p2 = ~: t ~+ 
(7.28) 
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where 0( 0 and ~o are the deterministic means of o<, and o(;,. , and 

d.. and ~ are small deviations from these means. 

We note that the variables ( • (.). ' p_+ and similarly 1 1 are not 

necessarily complex conjugates; as the stochastic variables ~, and f3• 

are not complex conjugates (Drummond and Gardiner, 1980). Thus, in all 

further discussion, pairs of variables such as ( o(, 01.+) are assumed 

to vary independently over separate complex planes, and are only complex 

conjugate in the deterministic mean. 

Linearisation of the system follows by substituting Eqs. (7.28) into 

the Fokker-Planck equation (Eq. (6.46)); and retaining only terms linear 

in o( and ~ in the drift matrix, and only constant terms in the 

diffusion matrix (Chaturvedi et.al., 1977). This yields the linearised 

Fokker-Planck equation: 

bP 
oc 

= { _Q_ [ )i, o1 + ')( ( l o1 lo/o\2 + c1.+ o1;) + Lg,~ - L9, ~+ ol.' 

o« -,2~ 92 ~: do!o - .2 ~g:z. ~ lolol 1 - 1 .:9.2 ~o (ol+o.'o-+ cl0~ 0n] 

l 0'1 [ k:z.lolol~ +""\] 
1 aol+od. 

'c. c.' where means: 

(7.29) 

and the constants ~., ~2., 'X, 911 92,,k,J K1,"1. and 

in Chapter Six after Eq. (6.46). 

were defined 

p7.4(b) System Scaling 

In order to implement the elimination procedure described in f7.3, 

we must write Eq. (7.29) in the form of Eq. (7.7). 
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This requires a suitable scaling of variables and parameters. As 

the final form of the Fokker-Planck equation (i.e. after elimination) 

depends crucially on the choice of scaling, such scaling must be 

justifiable on physical grounds. 

The most obvious scaling concerns the linear damping coefficient 

~1 - ks. In the adiabatic limit we are considering, the excitons have 

a relatively short lifetime and thus Ks 

parameters . We then expect, 

is large in comparison to other 

--------{ 7. 30) 

where i..., o0 corresponds to the adiabatic limit (see j7. 3). 

For the remaining variables, however, the choice of scaling is not 

as obvious. 

A reasonable assumption is that the form of the system's deterministic 

equations (Eqs. 6.48), should be preserved after scaling. That is, 

we expect the system's steady state behaviour to remain unchanged after 

the elimination procedure. 

With this in mind, the correct 

follows only if we set 'X. ,.._ 0 ( ~2.) 

then have a 04 dependence, as 

to follow this approach. 

dependence of the operator L1 

However, the noise terms of L1 

we are thus not able 

Another method is to evaluate the various parameters and by 

determining their relative magnitudes, define a suitable scaling. 

Hanamura (1974a) investigated the parameters and found the following 

functional dependence: 

where 

, 

is the Bohr radius and V 

In general, we may choose V >> a! 
V / rio to be very large. 

is the volume. 

and thus expect the ratio 
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This presents a possible criterion for the scaling of these variables; 

if we assmne 

~ ---(7.31a) 

thus, 

---(7 .3lb) 

where 'X1 , C and d are all constants. 

The scaling 'X. ~ 0 ( r 1 ) implies, (see the definitions following 

Eq. (6 .46)) : 

and 

kl/ where 

Also, 

where 

and 

----17. 32a) 

----1.7. 32b) 

are constants. 

---(7 .33a) 

y'I ) o ~ K2. ~ 0(~-4 V K - K' y~ OJI ~ 5 D 

Similarly, from the definitions following Eq. (6.46), 

I 11 = 0 I Y\ r + l ~ 'IC -n e'J( 

( 'Y] I is a constant) 

---,(7 .33b) 

----\7 .34a) 

...... v-4 , - v.1. 
~ 11_ = 'Y\ I o + 2 K -n ex o ( 7 . 34b) 

we note that there is no dimensional relationship betweenJ'f: ,and ~ 
defined in Eq. ( 7. 30) . However we expect that Ks and f5£. 

,J~ 
will 

both become very large. 
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The scaling defined in Eq. (7.31) will always hold in this semi­

conductor system, and is not a feature of the adiabatic limit alone. In 

contrast, the scaling Ks ~ 0 ( ~2.) holds only in the adiabatic limit of 

large exciton damping. 

We stress that the scaling defined by Eqs. (7.31) represents only one 

possible choice. Clearly there exists a whole range of different scalings. 

However, our particular choice will produce the desired form of the 

Fokker-Planck equation, Eq. (7.7) (required to carry out the elimination 

procedure); and also correctly describes the relative magnitudes of 

the variables X and We believe this to be sufficient 

justification for the scaling regime defined by Eqs. (7.31). 

We redefine the system variables as, 

c:J.. I ~ o( + do 'l( 

-----(7.35) 

Defining the variables as such results in the cavity mode becoming 

large, and the exciton variable approaching its deterministic mean as ~ 

becomes large. This is c~early the expected behaviour in the adiabatic 

limit. 

All remaining system parameters are not scaled in any way; and thus 

the scaling of the system in this adiabatic limit is defined by Eqs. (7.31), 

(7.32), (7.33), (7.34), and (7.35). 

Substituting these equations into Eq. (7.29), we find the scaled 

Fokker-Planck equation, 
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op : f -g.:z. ~ [ ~'ex + i: c~ - id p-r «: - .2.i. d ~ lolo\2 J + ~2. if l k 1 iie:x 
b t l ~ex 2 oo{oc<+ 

+ 1._[X,(lollolol1 + ot+cx;) -2.:d~!clolo - li.d~o (o1.+«o +dJ°cl)+~rol] 
ocl i+ 

We wish to cast Eq. (7.36) into the form of Eq. (7.7). The operator 

L, will be formed from the first two terms of Eq. (7. 36). 

Much of the calculation in the elimination procedure requires 

knowledge of the explicit form of Ps(~) satisfying, 

To simplify L, and thus more easily obtain Ps C ~) we transform 

cl to a variable describing an Ornstein-Uhlenbeck process. Such a 

process represents the simplest of all stochastic systems and is described 

by the Fokker-Planck equation, 

It has 

where JI/ 

= f .Q.cx + 
ool 

the stationary distribution function, 

Ps.( ~) = - lei 12.) 
.JJe-xp( o. 

is a normalisation factor, Jv = ( TT Dt•·)-' 

---(7.37) 

---(7.38) 

The distribution, Eq. (7.38) predicts the expectation values, 

---(7.39) 

and 
---(7.40) 
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~7.4(c) Transformation to An Ornstein-Uhlenbeck Process 

We transform o( as follows, 

----1( 7 .41a) 

and 

----17.41b) 

[where X , X+ are not necessarily complex conjugates]. 

Further defining 

____ (7.42) 

[again, y , Id+ are not complex conjugate, except in the mean], 

we obtain the transformations, 

0 0 0 = _Q_ , ----t7.43a) 

oo{ ox ool+ ax+ 

0 = F. ..Q_ + F2. 0 -\- _Q_ ___ (7.43b) 

0~ ~x ox+ 0~ 

a F; .Q_ + i:,+ 0 + .Q.. 
o~+ ox ox+ 0 ~ft-

where 

l='o = I<.' [ icy L d~+«;- - .2i:d~lalol2 ] ----(7 .44a) 

F, = I<, I [ LC - 2.:d1o1012] ----(7.44b) 

and 
I 

[ .; d ol;- 2 J F:2. = I<.' ----(7.44c) 

The Jacobian of the transformation defined by Eqs. (7.41) is unity. 

Thus the probability distribution is still properly normalised after 

this transformation. 
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We note that if the change of variables was such that the Jacobian 

was not equal to unity, the probability distribution function would have 

to be suitably transformed in order to yield the correct Fokker-Planck 

equation. 

Substituting Eqs. (7.41), (7.42), (7.43) in Eq. (7.36) yields, 

= { )!'2. _Q_ K' X 
ox 

+ t 02. 2 k' nex 
2 oxox+ 

-1- o [ (x-Fo)(2 Xi\o!oll -.2i:d~o~o - .2c:d~ool..*)-+ (x+-F:)(x,o1:-.2~-d~odo)) 
?) )I. 

+ l o 1.. [ K: C<'o1 + 1.: d ol. ~D} + o ( a -1- F, a + Fi £. ) i. d cl..o2 

2 0)(2. OX ~ C)X (}Xi-

i=, _Q_ 

+ c? k~ I olo \ 1 

2 '62 oxox-+ 

( X - Fo) L ( C - l d lclo 11 ) + [ £. 4- + F2. ~ ] [ 'ib~ + 
013 ox 0 )(+ 

-t'. doto2 ( x+- - i:;,+)] 

+ I (3 -+ F, Q. + F.2 L)(1... + F/L + F/ Q_) 2k+-n 

2 '6 2 01;1 ")(. ox-r 0 ~ ox+ ox 

-l- c.c.} p __ (7 .45) 

The variable X now describes an Ornstein-Uhlenbeck process and 

we may write Eqs. ( 7 .45) as, 

oP = ( 'glL, + L2 + L3)P --(7.46) 

oc 
where 

L. 0 k' X o"l.. 2 ,- -r C .c. = + K -ne'X 
__ (7.47) 

() )( 2 oxox+ 
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L2. = _£_ [ (X-Fo) ( J.. X, lcl .. 12. - 1i:c1po*ol., -.2.:d~oolo* + i F, (c - ld lqlof 2) + idoi!J. F:) 
ox + (x+ - Fa+)( 'X, d.; - 2id~o «o - ~dot: F, - ~ F; ( C - 2d 10lol2)) 

+ ifi. ~ F, + ~,. ~+ F;] 

+...L 01. [k',ol; +.2.:do1opo] +.Q..(.Q. + F,..a_ + F.2..Q.) ~do1; 
J- ~ ox 03 ox ox+ 

---(7.48) 

and 

L3 = l [ 01 u - ~ Fo (c - 2d Idol'-)+ ido1 .. 1 F:] + _I 02. 2 K4 fi + c..c. (7 .49) 
o~ J 2~~~jo~+ • 

where 

and 

From Eqs. (7.37) and (7.47) we see, 

IUll. = -ne')(. = <x+x>s 

< X)s = 0 

we thus define the projection operator, 

for an arbitrary ftmction },(X1!1) 

----,7.50) 

----(7.51) 

----(7.52) 
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We now show that f' L 1 i' = 0 

contains terms only of the fonn, 

The operator L:i. (Eq. (7 .48)) 

:.,'l"\+'T'l"I /,i 
i) _u___ v,, (x, ~) 

ox" o'lC.+""' 
where T\ =- o, • , l. 

1'\'\ = o, 1, l. 

and 

ii) 

Fanning ~ L l. 8' for terms described by i), we find, 

fL1 i').(x,~) = Ps(~') !d2 x :;:;x•nn <P,(x,y) Ps(~) J d!l><"}(x~y) 
(7 .53) 

and as Ps (~) and all its derivatives are zero at +00 and - oO 

to ensure a bounded distribution function, 

C cP· x (7.54) 

thus terms such as Eq. (7.53) vanish. 

Also, for terms described by ii), 

l'L, r'a-(l<,"1) : Ps (~•):':ff a•x /1.(x) ~~) jd•x" }(X",~) (7.55) 

As J d2 X cP2. (x) Ps (~) = '12 (t.. X)5 ) = 0 , Eq. (7 .55) vanishes. 

Thus, Eqs. (7.53) and (7.55) indicate the desired result: 

Having suitably defined the operators L 1 , L :t and L3 we can 

follow the procedure defined in ~7.3 to adiabatically eliminate the 

variable X. 

Equation (7.49) shows that the operator L3 has noise terms of 

order ~-2. only. Thus, as indicated in ~7.3, as well as 

the terms of L3 , the required Fokker-Planck equation must include 

all terms of order 'lf-2. arising in the elimination process. 
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Hence we need to evaluate the additional terms, 

----7.56) 

and 

----(7.57) 

Equations (7.49) and (7.52) clearly show, 

and we need only consider the term Eq. (7.56). 

y-1 
We note that expression· (7.56) is already of order u in the 

elimination expansion (Eq. (7.27)), thus we may neglect all terms of 

v-2. 
order o occurring in L:z. when evaluating Eq. (7 .56) . 

For convenience we rewrite L :z. as, 

---"""17.58) 

where 

----(7 .59b) 

L ,_x~, = a'- i. d o1.; ----(7 .60a) 

ox3y 

L;'h = ( L~'d•) + ___ -"'7. 60b) 

, ---~7.61) 

and 

b0 = - F0 { l 'X.ilclo 12 - .2~ d ~: olo - .2.L' d ~ool/) - i. Fo F1 (C-2dlclol'-) -i. Fo 1:/ d«;" 

- F+ ('X, ol; - J. .:dpooio) - L do1: F. F/ - L F: F2, (c-.2dlolo12,) +)!2(~ F,+ f:iTF;t)' 

d 2.) .d ~:i. F+ = l 'Xdclol2.- .:2.:d~lcl. - 2~of.~oolo't + ~ F, (c-2 lciol + L clo .:z 

'X1 o{; - ,l.;d~oolo - ~ d oJ.;" F1 - L F.i ( C - 2 d lo/oil.) 
,._ 

k, «: + .l~dclo~o , b-'l = i. F:l dolo'J. 

Mo = - i:. ~. K' 



and Fo I F 1 , Fl. are defined in Eqs. (7 .44), 
I 

and c,d,~ 1 and K, aredefinedinEqs. (7.31), (7.32). 

Defining 

V(S) 

we may write the explicit form of expression (7.56), 

We have dropped the terms and 

the operator Ll. . L,-• occurring on the left hand side of 
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__ (7.62) 

from 

inEq. (7.62). 

These terms contain derivatives with respect to X 

vanishing integrals, as indicated by Eq. (7.54). 

and thus yield 

To evaluate expression (7.62), we use the general relationship 

(Gardiner, 1982), 

J d'-x f,(~) L,-'f2 (~)Ps(!) = -L"° dt <f,(?S,,-t)f2 (~,0))5 (7.63) 

In this case, f, contains only linear terms in X , i.e. 

Thus, as X describes an Ornstein-Uhlenbeck process, the only 

non-vanishing correlations arising from Eq. (7.63) will be, 

---(7 .64a) 

From Eq. (7.51) and the quantum regression theorem (Louisell, 1973), 

we find, 

-(7.64b) 

we also note that the derivatives with respect to X occurring 

in Li act directly on Ps c~) as, 

_Q_ Ps C~) = - x+ Ps (~) ---'7.65a) 

?Jx -n ex 
and 

0 Ps<?!) = - X Ps(~) ---(7 .65b) 

?Jx+ 'Y\e~ 
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Using Eqs. (7.65), Eq. (7.62) becomes, 

r L.2. L;' Li v(s) : Ps (~') J cf-Zx [ L;' + L;1 ] L;1 [ Li' 4- Li.2. - b~ xi■ 

+ 

iie.x 

[ I - ~)(.+ :a.) 
(T'lex) 

---(7.66a) 

Thus, using Eq. (7.63) and (7.64b), Eq. (7.66a) becomes, 

= - Ps ( ~) n~x f _£... ( l do<! b: 
K 1 o y "iiex 

2. [ .J 1 M d 2. ) -,,.1- r 1 1 .2. -a. ] + Q_ l O.«o o + Mo clo + _u_L Mo + d (loiol 1

) + d 1 (lol0 l2

) 

of· 'T\ex oy 01;1+ 'Y\-e')( 

+ c.c.1 P('9-) ---(7.66b) 

--(7.67) 

where J.. is the expression occurring within the curly brackets in 

Eq. (7 .66b). 

The reduced Fokker-Planck equation for the variable ~ in the 

adiabatic limit now follows from Eq. (7.27), 

----(7.68) 

Inverting Eq. (7.68), 

Defining 

As 

::;> rJ. -u-H) - 8' [ L3 - ~-2. Li L;-' L2.] -v-Cfl 
a1 

we find (using Eq. (7 .67)) 

depends only on y > and 

d f ( ~) : [ L3 ■+ ~-2 i ] P<~) 
dt 

--(7.69) 

, Eq. (7.69) becomes, 
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Thus, from Eqs. (7.49) and (7.66) we find the reduced Fokker-Planck 

equation: 

+ ~-2. 9,:2. '3+ l 
_I a'- l [ 
2 k' o~o~+ 

M2. -
o 'l'le)( 

(7. 70) 

where 

and 

. 

q, :2. : ~' ( dot; e1 - Moe,.) 

e, = i=. b{Z1dclol1 -2C:dp:c10 -.2~cl~ool! )- i F, (c - .2dlo!ol2 ) -i..F;dc1; 

-t-¥2.] + F
2

[-('X, d; - 2~dpoc10) -«:dot; F, -~ F2 (c-.2d1.i1012.)] 

e,. = F/ [-(11.i«ol:t-.2.:ap:do -.2C:d~oal)-t:F,(c-2dlclol2 )-+ <b. 

- ~ F: da:] + F,+ [-('k,o1:-2~d po«o) -L dc1: F, - i. F2 (c -1 d l«o 1

2

)] 

and 'C . C .1 means ~ ➔ ~ ... , C: ➔ -~ 
( eh.) 

Equation (7.70) completely describes the behaviour of the cavity mode, 

including statistical fluctuations, in the limit of heavily damped 

excitons. 

v-'­
we note that the drift coefficient contains terms of order o 

which did not arise from the operator L3 Such terms, derived in 

part from diffusion terms, would not be generated by the approximate 

elimination methods described in i1.2. That is, the drift terms of the 

corresponding reduced Fokker-Planck equation derived by these methods stem 

solely from the drift coefficient of the original Fokker-Planck equation. 
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This is an indication of the shortcomings of these approximate methods. 

v-2._ The diffusion coefficients of Eq. (7.70) are all of order o 

This is as expected, as L3 (the leading term in the elimination 

y-l. 
expansion, Eq. (7.27)) only had noise terms of order o 

Finally in this section we note that the form of Eq. (7.70) depends 

critically on our initial choice of scaling. For example, this scaling 

leads to the effects of exciton-exciton collisions (described by the 

parameter 'X ) being evident only in terms of order ~-2. in the drift 

coefficient. 

As we derive statistical properties of the system from this equation, 

we must be quite sure that the scaling is justified on physical grounds. 

p7.5 Photon Statistics for Cavity Modes 

Having derived a linearised two-dimensional Fokker-Planck equation 

we can now use the theory developed by Chaturvedi et.al. (1977) to derive 

expectation values and spectra for the system. 

From this theory, we find that a two-dimensional system: ~:(ol,,ol.1) 

obeying the linearised Langevin equations, 

cJ. = A ct == -- + ----(7.71) 

(where 8 , ~ are matrices, f (-t) is a vector of stochastic terms) - -
has correlation matrix 

-----17.72) 

where 

(7. 73) 

and spectrum, 
1.. Tr ( ~) de+( A) - = 

= I ( ~- + ; , . ,)-1 D ( AT • )- I 
........ -- - -1.w 2Tt 

---(7. 74) 



174 

We apply these results to our system by forming the linearised 

Langevin equation corresponding to Eq. ( 7. 70) , 

d ~ = a, 
a2.l ~+] [ 

d, 
d:i.+l \ [ l,Ci) l -t-

dt 8+ a.'i aT d,. cA. !:a.Ct) (7.75) 

where f,(i) , t~(i) are Gaussian stochastic terms, and 

(7.76) 

d, = ~2. [ 2 K+ n + ').M~1ol: (2-ne)(. +l)} 

d 2. : "t,12. K' [ 1 M: TI e,r. + cP ( lelo \-2 ) 1 ( \-+ 't\e.x)) 

FromEqs. (7.73), (7.74) and (7.75) we then find, 

+.2.d 1 d+ + d a, , + a.1 • -1a. a1 .2. 

+ d,(la,12.- 1a2.11) 

+ + d d+ -a,a.z. ,-a,a.2. 1 

+ ld1 la,12. 

~ Cw) = (6. A2.Y' (at -i:w)[d, (at+C:w)-d2.a2.l 

-a2.[cl2.Cat +.:w) - d:a:i) 

(at-c:w)[-d.a! + Gl:i.(a,+C:w)] 
-a2. [-d2.a! + d;+ (a, ..,.:1,,1).)) 

+ +d d+ -a. a:a. • - a.a2. , 

+ 2 c;lz,la.12. 

-t-2.d 1 d+ 2 +d a 2 • + a. , - a,aa. i 

+ dt(1a,12.- la:a.12.) 

( 7. 77) 

-a1. [d,(af +C:w)-da.a;z.] 

-+(a,-.:w)(d.a. (a;'"+ C:w) 
-d,+a:z.) 

-a; [-d.at + d.i(a,+C:wU 

+(a, -i. w) [- d s.at 
;. dt(a,+.:w)] 
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p7.5(a) Moment Calculations 

From Eqs. (7.76), we see 

and 

As each term of ~ and S<w> contain either a factor of d, 

or d1 , we obtain the highest order contributions to these matrices 

by neglecting terms of order 'l(-2 . . 
U occurring 1.n 01 and completely 

neglecting Ui, 

Thus to highest order in O , we find the total emitted intensity 

(to first order in the linearised asymptotic expansion), 

~ I~ = -n 2 - 2[-ne,t(C.2.- 4cd-n, + 5d2 'Y\~) +d2.-n~J (7.79) 

-- I /J,o \'-where 1'12. r 

and 

n, ::. I o<o 12 

·t·k.'[~1 t~,(c1 -4cd'Y'\, + 3d"1"\t)J 

= steady state emitted intensity in deterministic 

limit, 

= deterministic exciton intensity. 

From Eq. (7.79) we note that to this order, the emitted intensity 

depends only on the strength of the exciton-light coupling (i.e. the 

parameters C 1 d ) . There is no dependence on exciton-exciton collisions 

assllltled small in this limit. 

we may also derive the second order correlation function, 

gico) = I + 2:_[<~t~> + Re ( ~: ~ ~ 2 ) ) 1 
1'\2. ~o 

- -+ 2 [ C 1:1. -+ Re ( ~/ c .. ) 1 
'n2. ~0 

---(7.80) 
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The evaluation of expression (7.80) requires knowledge of the 

deterministic mean of the field mode amplitude, ~o As C11 and C1.:,. 

are both positive, the possibility of observing photon antibunching 

depends on the form of ~o 

p7.S(b) Fluctuation Spectrum 

Again, we retain only terms of highest order in ~ 

and find the spectrum of the transmitted light, 

[S(w)],., d2. 

p7.6 Adiabatic Elimination of Cavity Mode 

p7.6(a) Scaling 

in ~ (w) 

-----7.81) 

We now consider the limit in which the excitons have a much longer 

lifetime than the cavity mode. 

The obvious choice of scaling in this case is, 

(large cavity damping) 

Thus let, 

and ----<7.82) 

In ~7.4(b) we defined the scaling of the semiconductor parameters 

'X ) 9 I and 9.2. . Such a scaling is determined solely from our 

theoretical model and is independent of the various adiabatic limits we 

adopt. 

Thus we again assume this scaling and set, 

----(7.83) 

9,::C'IS 9:i. = di-1 

(where 'X1 , Ki' , K{ , C and d are constants). 
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In this case the exciton dampi_ng coefficient is no longer scaled, i.e. 

hence from Eqs. (7.33a) and (7.34a) we find 

-----(7.84) 

We also assume, 

------(7.85) 

The large driving field scaling described by Eq. (7.85) is 

necessary to produce the -~2. dependence of the operator L, . 

In this limit, we do not scale the variable «.2. (cavity mode) but 

define 

Thus, in the adiabatic limit 'IS ~ oo 

becomes very large. 

------(7.86) 

, the exciton amplitude 

We note that the scaling defined in Eqs. (7.85) and (7.86) is 

consistent with large exciton amplitude in the adiabatic limit. 

Substituting Eqs. (7.82), (7.83), (7.84), (7.85) and (7.86) into 

the semiconductor Fokker-Planck equation (Eq. (6.46)) we find the 

scaled equation: 

~p =- s '6 1 .1_[ Kc.0b. - E, + ~Co(, - t:dol,ol,~1] -+ ~l. L2kc: -n 
a~ 1 ~1 2. a~~~ 

+ c (o,'i ( ir )S- 4 +KS')+ d,cl, ~,')C, _. ico/2 -id (~2«,2.+ 1.al:a.f,ol,)] 

Ool,-+ L rl [)S-2 K:ol,:z. + .:l~d,s-iei1,o1,.] + l ~[~-4 K{«,p, +2\<siie-,J 
2. oott 2. ?>cl.op, + "\:c ~-, °",. J 

+ ~~ [ i d.2 O(~ J 
1:Jcl, 0°'2, -+ C. C. -------(7.87) 

As in ~7.4, we wish to write Eq. (7.87) in the fonn of Eq. (7.7). 

The operator L, of such an equation will consist of the first two tenns 

(and their complex conjugates) of Eq. (7.87). We see now that the choice 

E ~O(l1) gives rise to the desired ~ 1 dependence of L. 
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Following the method of i7.4, we ease computations by transfo:aning 

ol1 to a variable describing an 0rnstein-Uhlenbeck process. 

~7 .6 (b} Transfo:anation to Ornstein-Uhlenbeck Process ( ob.) 

This is achieved via the definitions: 

I 

K, [ t: Cd1 - E, - i, d0l.~1c::J,] == ol1 -+ So ----(7.88) 

~( [ - ~ c ~. - et + l d ~· ol, ~' 1 
and 

X = cl, ----7.89) 

Again, the pairs of variables ( X, x+) and ( y, y+) are complex 

conjugate only in the steady state. 

We thus find the transfonnations: 

= ----(7.90) 
) 

0 = ~,.£_ + G2 .Q_ + 0 
oot, ay a~+ 0 )(. 

-----l7.91) 

b = Cj~ 0 -+ 91 ~ .+ 0 
a~, ay+ oy () ')C.+ 

where 

So 
.L [ LC X - E, -i: cl x2 x+] = Kc. 

----(7 .92a) 

t;, I ( LC - .2 ~ d. x x+ ) = Kc. 
----(7.92b) 

and 

~ 2 = }G [ ~ d x+:i.) ----(7.92c) 

Substituting Eqs. (7.90), (.7.91) and (7.92) into Eq. (7.87) we 

find the required Fokker-Planck equation, 

----(7.93) 
::. 



where 

L2. = _Q_ [ i:c~ - i:d x1 ~+ - .2i:d~ xx+) 
ox 

+ c.c. 
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---(7.94) 

+t~• .L + ~,. .£... ) ( x Ks- -+ x2 x+ X, + i. c(y-<;.) 

o~ oy+ -Ld[(t~t-~-t:,)x'- + 2(y-So)xx+J) 

(7.95) 

and 

L3 = ~ [ X (<l:i: "tS-4 + Ks-) +_1,.2x+x, + C:c.(-g.) + i.dx2 ~: 

?Jx +l~d~.-xx+] 

+ c.c.. ---(7.96) 

Clearly the operator L. describes an Ornstein-Uhlenbeck process, 

thus, 

---(7.97) 

where 

---(7.98) 

and ---7.99) 

We thus define the projection operator 

---(7.100) 

for an arbitrary function j, 
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L v-z. As the operator 1 (including terms of order o ·) consists only 

of terms of the form, 

~-n+1'Y'I 
o (;A (X, 11) ( ""' ""', , 

s, .. .:S 0,1,2.) 

it follows that 8', L 2. f 1 = 0 (See the discussion of ~7 .4 (c), especially 

Eqs. (7.53), (7.54), and (7.55)). 

The highest order noise terms occurring in. L 3 are O ( 1'-2.) . Thus 

we must again include all terms of order ~-i arising in the elimination 

process. As [ L~ , f 1] = 0 , we need only evaluate, 

f, L2 Lt L,. v(s) ----(1.101> 

v-.:z. 
We need not consider the explicit form of the terms of order o 

occurring in as these only appear in terms of order ~-4 in the 

elimination expansion. 

To simplify further calculations, we write L:z. as, 

L,C2, 

+ 2. + 

where 

L".2' = 0 , ----- ( 7 .103) 

a.x 
2. 2. L';2. = (Li')+ Lt = 0 l m3 + 'l'YI+ y -i- ms 1;1+) + _Q_ ·rvH. + a m1 , 

oy ~ y2. o~o~+ 
(7.104) 

and 

L:~• 
,. 

L~~b. ( L;ld•)+ (7.105) 
=- 0 'mg = 

c~ox 
and where 

= L c - 2 i: d xx+ m2. =- i: d x 2. , 

= 
= 

(j, ( x k 5 -t x:L )("1" 'X, - cc go -+ t'. d X 1 g/ + 2&'.d Sox x+) 

+ s:c)(.+KS' + x•f-2 x \, + C:c st - i:dxUso -ii:d5tx">'+), 

g,c.:c-.2~dxx+) + St(i:d.x.+.1) , 7VlC. = t'. g.dx'-> 

-S,i.d.x1 -+ ~!(-i.c + 2i:dxx+) , m7 = i.~2.dx'-, 
------( 7 .106) 
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Writing V'(S) as Ps(~)P(?S) and noting that LPs(u) =- -~+ Ps(u) 

expression (7.101) becomes: 
0~ :J" -n ':J' 

f. L2 L,-• L2. ir<s) = Ps { ~) f d. 2 t:, [ L~' + L~1 ] L~' [ L~' + L~,. - m 3 'd-t-
-Fi 

+ -rn4 (' - ~-~l) - 1'Yl5 ~ y+ -+ -rt'l'- ~+l - TY'\, 
( I - ~:~) 

1' 'fil. 'fi 2. T\ 

+~ (-y+) 1"'r\ s + c.c. J Ps ( ~) Ps<~) (7.107) 
C)X 'fl 

The integrals occurring in Eq. (7.107) give rise to time integrals 

of correlation functions: 

---(7.108) 

As ~ describes an Ornstein-Uhlenbeck process, the only non-zero 

correlation functions are, 

---(7.109) 

Thus using Eqs. (7.108) and (7.109) in Eq. (7.107) we find, 

f,L 2 L,-1L2 v(s) = - Ps('d-) -n fl_ (1.:dx+m,. + li.o.xm, +.1.idxmt 
Kc: l 'ox 

+m,m?> + -m 1 m~ + .2.:.d.:x-t-ms) + 02- (1m,m.2. + 'YY\,'TY\1) 

o:x.2. 

+ o,. ( m, -m; + m 1 m; + m~) -+ c. c. } P (2S) -(7 .110) 
c,x?,x+ 

---(7.111) 

Following the discussion of ~7.4(c), we find the reduced Fokker-Planck 

equation: 

---(7.112) 

where L3 is given by Eq. (7.96) and i' is defined by Eqs. (7.110) 

and (7.111). 
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Retaining only terms of order ~-l. and higher in L3 , Eq. (7.112) 

becomes, 

{ ?Jax ( [ X ks + X 2 X + :I'., - L G 5. - L d X 1 ~: 

+ 2.. ~ d. go X x-t ] 

[ 2~ cl x+m1 4 .li.d.x m, + .'.2~dX1'Y'\"; + m,m 3 + -m!J'l"lii 

+ :l.~cLx+m,]) 

( 
02. 

a X 2 

+ cl· [ 1 k S' TI ex 
oxox+ 

+ + ) ) ~ + 2-rn,7"', + l'tY12 mc + m~] +c.c.)P<!) 

(7.113) 

I / + (where C. C. means, X ➔ X , i. ➔ -~) 

Equation (7.113) represents the Fokker-Planck equation for the 

exciton mode X , in the adiabatic limit of heavily damped cavity modes. 

We note again the presence of terms of order \'-2 . . o 1.n the drift 

matrix - not generated by the approximate methods of ~7.2. 

If required, one may now apply the linearised fluctuation theory 

of ~7.5 to this system and obtain statistical information. 

p7.7 Discussion 

We have seen how the projection operator method can be employed to 

successfully reduce the dimensionality of a Fokker-Planck equation of a 

nonlinear system. This represents the most accurat~ and systematic 

method known to adiabatically eliminate variables in stochastic systems. 
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However, the correct choice of scaling, crucial to the procedure, 

is not always obvious. This scaling determines the final form of the 

reduced Fokker-Planck equation and thus the predicted statistical properties 

of the system, so we must be able to satisfactorally justify our choice. 

In general we base this choice.on physical considerations (e.g. the 

magnitude of damping rates) and experimental evidence. we also scale 

variables and parameters to preserve the system's deterministic 

behaviour. 

Once the scaling is defined, the most straightforward approach is 

to transform the variable to be eliminated to one describing an Ornstein­

Uhlenbeck process. This is the best understood of all stochastic systems, 

having a known stationary distribution,and thus simplifies calculations 

greatly. 

Essential to the definition of a Ornstein-Uhlenbeck process is the 

thermal noise defining the diffusion coefficient. we note that a corranon 

practice in other approximate elimination methods is to assume thermal 

noise is negligible, and then proceed with the elimination of variables. 

This is clearly a major error as the more accurate projection operator 

method depends critically on the inclusion of thermal noise. 
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CHAPTER 8 

INTERBAND EXCITATION IN SEMICONDUCTORS 

p8.l Introduction 

As well as in the experiments involving GaAs, optical bistability 

has also been observed in InSb by Miller et.al., (1979). The large 

dielectric constant of this material inhibits the Coulomb effects necessary 

for exciton formation. The excitons are thus screened and we cannot 

use the theory developed in Chapter Six to explain the experimentally 

found bistability. 

Weaire et.al., (1979) estimated the refractive index of InSb and 

( '\/Cl)) found it corresponded to a third order susceptibility ~ much larger 

than that expected due to valence electron effects. 

X(J) 
To explain the existence of such a high , Miller et.al. (1980) 

proposed a model which included two associated effects: saturation and 

power broadening. 

It was assumed that the incident field excited electrons from valence 

to conduction bands. However, the excitation in these experiments occurred 

at energies less than the gap; and as impurity effects are saturated in 

InSb, transitions from impurity levels could not account for this. The 

mechanism for interband absorption is thus unclear. 

Nevertheless, Miller et.al. (1980) do present a model of interband 

excitation in which each vertical transition is viewed as a two-level 

oscillator. Radiative transitions couple only pairs of states having the 

same k-value in different bands. Using standard theory (Yariv, 1975) they 

find the susceptibility of a collection of N two-level systems (with only 

the lower states initially occupied) and sum over the appropriate band 

states to find the refractive index. 



This so-called 'direct saturation' model adequately explains the 

system's nonlinearities. There do though, exist problems in the 

inclusion of relaxation terms. The only damping included in the model 

is interband radiative recombination, in which the electron and hole 

fonning the two-level system recombine with the subsequent emission 

of a photon. However, an electron fonning the upper state of a given 

two-level system may be scattered to another state in the conduction 

band, thereby destroying the electron-hole pair. Thus the effects of 

this intraband interaction must be included into the theory. 
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In this chapter we present a very simple model to explain the 

intracavity interaction between a light field and a semiconductor such 

as InSb. We assume the electrons and holes (in respective conduction 

and valence bands) can be modelled as N two-level systems and form 

the interactive meditnn. 

our theory relies on several simplifying assumptions, explained in 

later sections of this chapter. 

By deriving a master equation for such a system, we include inter­

and intra-band damping in a consistent fashion. Bistability, similar 

to that of atomic systems is found in the steady state. 

<fi0.2 The Model 

we consider the intracavity interaction of coherent light with a 

two-band semiconductor. we assume the incident field couples strongly 

to only one cavity mode ( frequency W ) , which in turn couples to the 

medium. The Hamiltonian for such a lossless system was derived in 

Chapter Six, ~6.2, 

H He.""'. Ho HI) HINT 
(8 .1) 

= -+ + + 
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where 

He.m. = wJ;'b ----(8.2) 

(b is a boson operator associated with a cavity mode of frequency w ) . 

Ho is the Hamiltonian term describing the coupling of the driving 

field (amplitude E and frequency WL with the cavity mode: 

----(8.3) 

Hs.c. is the Hamiltonian for the semiconductor system alone: 

-----(8.4) 

where G.r.&c, d,e.,.are fermion operators for electrons and holes respectively; 

Ile and I'{\/" are wave-vectors for conduction and valence band states; 

E-v- ( ~u-) = 1'12 te; 
~"l'Y\h 

J 
Ec.(1tt,) = E9 -1- -fi:i.~! 

1-n,e 

where Tt\e, -m~ are the respective electron and hole effective masses; 

V-(9,) is the Fourier transform of 

Coulomb interaction potential. 

the 

HINT describes the interaction between the cavity mode and the 

semiconductor, 

H1NT = {; fJba~ d~ 9 + h.c.) -----(8.5) 

where 9 is the light-matter coupling constant (see Eq. (6.2lb)). 

As well as the terms of the Hamiltonian, Eq. (8.1), we must also 

include the effects of damping into our model - these are discussed later. 



In fanning the system Hamiltonian we have applied the single mode 

approximation to the modes cf the cavity. We now assume the single 

driven cavity mode excites only one electron across the gap, that is 

it couples strongly to only one two-level oscillator. 

We thus confine our attention to one electron state and one hole 

state only and assume all other electronic states form a reservoir for 

the system. 

The Hamiltonian, Eq. (8.1) then becomes, 
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H = H Res. + H s + H ve ------(8.6) 

where Hs is the Hamiltonian describing the system involving the cavity, 

electron and hole states of interest: 

H s = {; w ~ 6 + 1i We a+~o aito + 11 Wh &:~ di(~ 

+ 1i ( 9ai"1to d:~ b + h.c.) + -\;,r, (aic.,J;,al(od~~) ( 8. 7) 

The first three terms of Eq. (8.7) describe the free part of the 

Hamiltonian. The fourth term describes the light-matter interaction; 

and the final term stems from eq. (8.4) and describes an electron-hole 

interaction. 

HRe~. is the electronic reservoir Hamiltonian: 

HRee ={Hs.c. (t<G"#leo, ~.,:#t2~)} ---(8.8) 
~- l¼ef""'t 

Finally, H ve describes the interaction between the electron and 

hole states of interest ( ~11" = tt.:; lte ; ~.) and electronic reservoir modes: 

+ 

(8.9) 

(the e~ occurring in Eq. (8.9) arise from v(q,) in Eq. (8.4)) • 
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Each of the terms of Eq. (8.9) represents a form of electronic damping. 

The first three refer to scattering of the electron into the reservoir 

states of the conduction and valence bands; and the next three terms 

describe scattering of the hole into reservoir states. The final term 

of Eq. (8.9) describes the destruction of the electron-hole pair (two­

level oscillator) through scattering into conduction and valence band 

states. 

All the terms of Eq. (8.9) describe a type of intraband relaxation 

which, as indicated in ~8.1, should be included into our model. 

We note that the first six terms of Eq. (8.9) refer to the intraband 

scattering of isolated electrons and holes; whereas the final term refers 

explicitly to the decay of an electron-hole pair via intraband relaxation. 

As we are concerned only with the behaviour of the electron-hole pair 

forming the two-level oscillator, we ignore the first six terms of 

Eq. (8.9), assuming these processes have a negligible effect on the two­

level system. This is a major simplifying assumption. 

Thus, Hve describing intraband damping is, 

(8 .10) 

where Qe, is a combination of electron and hole reservoir operators. 

The discussion of ~8.1 showed that as well as intraband damping 

we must also consider radiative damping of the two-level system. This 

has the Hamiltonian 

-----(8.11) 

where Qe2 -represents an operator associated with a radiation field 

forming a reservoir. Equation (8.11) describes a process in which the 

electron-hole pair recombines to emit a photon. 
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Finally we must include damping of the cavity mode: the Hamiltonian 

assumes the usual form, 

H CQuit!1 = bt G F + h.c. 
ciamp. 

------(8.12) 

where Q F is a reservoir operator (mode of radiation field). 

Thus the Hamiltonian for our system is, 

H = H11- + Hs + Hdampi"j ------(8.13) 

where H~ is the Hamiltonian describing the reservoir formed from 

conduction and valence band states and modes of the radiation field. 

Hs is the system Hamiltonian, given by Eq. (8. 7) and Hdia."'r;"9 

refers to system dampi_ng, 

H ve + H elec. + H ca11:t9 
c{a.,.,p. cilc:i~,. 

where the terms of Eq. (8.14) are given by Eqs. 

--------18 .14) 

(8.10), (8. 11) and (8.12) . 

Equation (8.13) describes a system in which a driven cavity mode 

excites a single electron from the conduction band to the valence band: 

This excitation is viewed as a two-level oscillator. 

As such, the system is described in terms of the operators a,d, a-t 

and d+ , and is thus four-dimensional. We can simplify the Hamiltonian 

by recalling the discussion of ~l.3(b) (ii); in which the formal 

equivalence between a two-level system and a spin-~ system was shown. 

That is, we assume the correspondence, 

and 

where 

sh.3Cbl cu>. 

o.-t d+ ~ o-+ 

a d ~ ()'-

½ (o.+a - d+d.),,..,, o--Y 

and crl' are the spin-flip operators defined in 
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If we set our zero of ene_rgy as follows 

------------"flwe (Conduction band) 

1iwo 0-------------

- E -------------1' W h (Valence band) 

(where fl Wo is the energy separation between electron and hole). 

Then the Hamiltonian, Eq. (8.13), becomes, 

-----(8.15) 

Eq. (8.15) thus describes a system of a driven two-level system 

in which we have included the effects of radiative (interband) and 

intraband damping of the electron-hole pair. Also present is the term 

'\J", r:7' + er - , describing a type of dipole-dipole interaction. 

Apart from this term, Eq. (8.15) is identical to the Hamiltonian 

describing a driven two-level atom (Drummond and Walls, 1980b). As 

bistability is found in such a system, we expect similar behaviour in 

the semiconductor system. 

p8.2(a) Master Equation 

Transforming to a frame rotating at the laser frequency WL 

find the master equation, 

we 

-----(8.16) 
+ 



where the last two terms of Eq. (8.16) • were derived using the quanttnn 

theory of damping, discussed in Chapter One, il.3(d); 
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+ rte.: ( [ cr+-,o,cr-J + [ cr-t-, fer-])] --(8 .17) 

where ( ~ e,, -ne,) and ( ~e2., -n e.1.) are the damping coefficients and 

reservoir occupation numbers for intraband and interband damping respectively. 

= ~, f 2 bf b+ - f b+ b - b+ bf 

+ 2 -n [ [ b , f J , l:n ) ---(8.18) 

where ~. is the cavity damping coefficient and n the thermal 

occupation number of the reservoir of radiation modes. 

Also, is the relative detuning of the laser 

with the two-level system; and b2, = W - WL is the cavity detuning. 

In order to produce a more realistic model of a semiconductor we 

consider the effect of many such two-level oscillators; and consider 

the interaction of a coherent driving field with N two-level systems. 

The master equation, Eq. (8.16), then becomes, 

~ = -c. £,., /)y [ cr,,~fJ - i. o,. [ bb,,o] - i t"l'¼f£ [a-/o;..·,f] 
ot 

----(8.19) 

where the summation over 'J , JA extends over the N oscillators. 
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In the deterministic limit, we neglect quantum fluctuations and 

assume a complete decorrelation of system vari'ables. h 
Wet en find the 

average values of system operators from Eq. (8.19): 

Cavity: 

. 
~ = -('lS1+C:a2.)~ + E -ilv9!<crv-) ---(8.20) 

where and we have set ii -=-o 

Setting "rl e, = ne 1 : O 

equations: 

in Eqs. (8.17) we find the oscillator 

Oscillators: 

(8. 21) 

(8. 22) 

• .fr / ) * + 1,9-., ,c,y- ~ - i. 9y <<Sy>~ 

- ~ ey [ .2.(cf'ys-> + I ) (8.23) 

where summation over v is implied in Eqs. (8.21), (8.22) and (8.23) 

p8.3 Steady State Analysis 

To investigate bistability in the system, we wish to solve Eqs. (8.20), 

(8.21), (8.22), and (8.23) in the steady state. The summations over V 

and /-1 in these equations complicate such calculations. 

We now adopt a further simplifying assumption: We assume the light 

field interacts equally strongly with each of the N oscillators 

constant); and that the light-oscillator does not 

affect the behaviour of the neighbouring oscillators. We may thus replace 

the summation in Eq. (8.20) by the factor N 
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i.e. Z,y 9: ( er..,-) ~ N 9~.( cry-) 

and hence find the equation of motion for the cavity mode: 

----1.8.24) 

The oscillator equations of motion are complicated by the term, 

----(8.25) 

To simplify this term we assume the steady state values of each 

oscillator are approximately equal: 

⇒ In steady state, 

The summation in Eq. (8.21) then becomes, 

Assuming it is possible to perform the summation over the v-..,,.. , 

we thus find 

---(8.26) 

where V is the sum over all the 'U"v/' •s . 

Substituting Eq. (8.26) into Eqs. (8.21), (8.22), (8.23) we can obtain 

stationary solutions for this system by setting < a-+) =- < er) = <a-i-) =o 

However, this procedure generates a cubic equation describing 

the steady state value of < Cl 7 ) . As this is difficult to solve 

analytically, we employ a further simplifying assumption and use a 

perturbative method of solution, treating -V 

i.e. we let, 

as an expansion parameter, 

---(8.27) 

By adopting the expansion (8.27), we assume the interaction between 

different oscillators (described by Eq. (8.26)) produces only a small 

perturbation to the light-matter interaction. 



Perturbative analysis yields, (to first order only) 

Zeroth Order: 
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- 1 ~ 9 * @* ( 11, 1 + 't e) 
(~11- 'l!e)..8 

----18.28) 

First Order: 

where 

(er,,~ )s.s. = ..2i:g.,,~*(-t::'J-~E)(lb19l.1.\pl2 71-JP-) 
~:1. ( JJ- - 2 '\f,~ + 2~'\J", 'lie) 

f8.3(a) Equation of State 

---(8.29) 

We obtain the equation of state for the system by substituting 

Eqs. (8.28), (8.29) in Eq. (8.24) and setting ~ = O: 

Zeroth Order: 

First Order: 

E = f(~' + ~02 -1- lNl91'-(t:"1- ~e) (Jb19,2 l~l21Y,"1- .,B-1 )) 

,82 ( .lJ -2v,'t'\, - .2~v. 'h) 

----(8.30) 

---(8.31) 

Equations (8.30) and (8.31) illustrate the steady state behaviour 

of the semiconductor system. 

The first order equation (8.31) describes the system in which we 

have included the effects of interactions between the N two-level 

oscillators. 

Equation (8.30), the zeroth order approximation, greatly resembles 

the equation of state of a system of N driven two-level atoms (Drummond, 

1979). We now compare Eq. (8.30) with the two-level atom case. 
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8.4 Zeroth Order system~ Atomic·system Equivalence 

Introducing the definitions: 

~I = ~ I + ~ 01 = '1!. ( I + .: bA) -----(8.32a) 

~ II = l-7l - ~E = ~E C:os - 1) -----(8.32b) 

And the scaling (c.f. Eqs. (3.20), Chapter Three), 

_____ (8.33) 

y = -----(8.34) 

Eq. (8.30) becomes, 

y 
-----(8.35) 

Equation (8.35) is identical to the state equation for a travelling 

wave interacting with two-level atoms (Drummond, 1979). 

We may thus use the results of the atomic system to determine the 

conditions for bistability in the semiconductor system. 

p8.4(a) Conditions for Bistability 

i) Absorptive Bistability 

we note firstly that the semiconductor and atomic systems are not 

identical; because of the presence of V, in the 'detuning' term~ 

Thus, 01 = 02. :. 0 in the semiconductor system does not correspond 

to the absorptive regime, as c5 8 :/-0 • 

However, when O 1 = "'\T, we have the case 'Yl_ = 0 and Eq. (8. 35) 

becomes, 

y -----( 8. 36) 
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which is identical to the absorptive bistability state equation derived 

by Bonifacio and Lugiato (1976). 

Equation (8.36) predicts bistability in the system when: 

C > 4 ------(8.37) 

ii) Cavity on Resonance 

This case arises when Following Drummond 

(1979), we find bistability occurs when, 

2. 

c2 ~ 210s C >'> 1 and -------(8.38) 
4 

This situation can occur even if the oscillators are on resonance, 

as, 

b, = o 

iii) Cavity Detuned 

We consider now the case OA. :fa O and Os :. 0 This occurs only 

if v, = ~. 

Then, for bistability occurs if (Drummond, 1979), 

------ (8.39) 

iv) Dispersive Bistability 

Finally, if c5A :f.o, Os '4: 0 

1979): 

we have two situations (Drummond, 

then if C 1'5.o.\ and I c:Ss I 
' 

are all very much 

greater than unity,bistability occurs when 

------(8.40) 

(b) If dA~B>O then bistability occurs if, 

------(8.41) 



Hence, (subject to all simplifyi_ng assumptions) the bistability of 

the semiconductor system is completely described in terms of the 

behaviour of the atomic system. The major difference between the two 
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systems is the presence of V'1 in the term 'Y\ 
from a type of dipole-dipole interaction ( er+ er- ) 

The term V', originates 

which does not 

occur in the atomic system. The effect is to shift the resonant 

frequency of the oscillators. 

~8.5 Effects of Oscillator~oscillator Interaction 

We now consider Eq. (8.31), describing the behaviour of a system 

in which oscillator-oscillator interactions have been included. 

Using the definitions, Eqs. (8.32), (8.33) and (8.34), Eq. (8.31) 

becomes, 

y 4c(I-C:'5s)[81"T}X.2.- 4-g~ (1 +IX12 -tcS;)2"J ] 

4(1 + 1'1<12.+ b~ Y-[.2 'IE (I+ 1)(.1 2 + oi) - 2'\1i11-lL1'ile] 
(8.42) 

To examine the change in the system's behaviour due to the first 

order perturbation, we graphically compare Eq. (8.42) with the zeroth 

order equation of state, Eq. (8.35), for specific values of system 

parameters. 

This is illustrated by Fig. 8.1 - a plot of X versus Y: parameters 

have been chosen such that we are within the bistable region. 

The solid curve in Fig. 8.1 describes Eq. (8.35) and the dotted 

curve corresponds to Eq. (8.42) for v, = 10 Hence , even when v; 

is the same order as the other system parameters, the effect of the first 

order perturbation is minimial. 

we thus conclude that the zeroth order perturbation is sufficient 

to describe the semi-conductor system: the effects of oscillator­

oscillator interactions can be ignored. 
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£8.6 Discussion 

We have thus presented a fully quantum mechanical theory of interband 

excitation in semiconductors. 

The fermion system of electrons and holes was viewed as a collection 

of N electron-hole pairs, each behaving as a two-level oscillator 

(the upper level of which corresponded to an electron state and the lower 

level corresponded to a hole state). 

The applicability of our model depends on the validity of the many 

simplifying assumptions incorporated into the theory. 

That is, the system Hamiltonian we used was derived from first 

principles in Chapter Six. However, in order to obtain results from 

this many body Hamiltonian, certain approximations were made. 

Firstly, the only type of intraband relaxation included in the model 

was that in which the electron and hole comprising the oscillator were 

simultaneously scattered into fermion reservoirs in their respective 

bands. Intraband scattering in which only the electron (upper level of 

the oscillator) is scattered into a reservoir while the hole (lower level) 

remains in the same state was considered unlikely. We thus neglected 

Hamiltonian terms describing such single electron or hole scattering. 

Secondly, we assumed the interaction between the light field and each 

of t.~e N oscillators was identical; and each oscillator-light inter­

action was completely independent. These conditions will be satisfied 

for suitable field strengths and if the oscillators are sufficiently 

widely spaced to ensure negligible interference between oscillators. 

Thirdly, the stationary value of a given oscillator variable 

(e.g. upper state population) was assumed equal for each oscillator. 
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Finally, we assumed the interaction between oscillators (described 

by the coupling coefficient 1fv~ ) was small in comparison to the light-

oscillator interaction. We then used V = lv-..,? 

parameter in a perturbative method of solution. 

as an expansion 

Our model thus presents only a very simple picture of the light­

semiconductor system. 

Nevertheless, effects such as inter-band and intra-band relaxation 

of electron-hole pairs were systematically included into our theory. 

These effects were manifested in the equation of state via the parameter 

~E thus both intra- and inter-band scattering gives rise to the 

same macroscopic damping effects. 

Also, analysis showed that zeroth order perturbation terms were 

sufficient to describe the behaviour of the system. To this order, the 

system was shown to exhibit bistability similar to that of a two-level 

atomic system (subject to the validity of all the simplifying assumptions 

we adopted) . 

Finally, we note that such a spin-~ system can be used to describe 

a system of Frenkel excitons (Haken, 1977). As Frenkel excitons 

characterise molecular solids, optical bistability may occur in such 

solids if all parameters are such as to satisfy the appropriate conditions. 
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APPENDIX - PROOF OF EQUATION· (5 ~ 34) 

We prove this expression by induction: Firstly, we show it is valid 

for 'Y\ = l > .3 . 

n = 2: Eq_u. 5.34 ~ 

whe:i:::e P means a permutation of the ot'S (rs) with fixed~(~). 

As (1) = (2), we find Eq. (5.34) holds for 1\ =2. 

Similarly, for n = 3 Eq. (5 .34) =>' 

which is equivalent to the definition of the three-boson state, 

obtained from Eq. (5.23) 

Finally, we must show that if Eq. (5.24) holds for 'Y\ , then 

it holds for 'Y\ + I we assume, 

(3) 
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we may write, 
I 

ECJP- (4) =7' £,(-1/ p' C:-cl"+iP"+' b'"cl,f, ... bo1 .. p,, to) 

P/ 
where means a permutation of the set (cl,, .. Joln+1) with (p, 1 •• , ~"+') 

fixed, or vice versa. 

Equations (3) and (4) indicate 

which is the required result. 
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