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ABSTRACT

This thesis is concerned with the investigation of the behaviour of
various nonlinear systems when excited by a coherent light-field.

Of particular interest to us is the possibility of observing optical
bistability in these systems.

In Chapter One we introduce the general theoretical methods we employ
to perform all investigations.

In Chapters Two and Three we develop a quantum theory of the inter-
action of light with a variety of different systems, i.e. Raman active
media, the parametric oscillator, the two-photon absorber and a system
of three-level atoms.

In each case, a master equation, containing all statistical
information about the system, is derived. This enables the systematic
inclusion of a damping mechanism into each model.

Discussion is limited to the steady state behaviour of the systems,
and in general we assume the deterministic limit in which we ignore
quantum fluctuvations in the field variables. It is then possible to
factorise the steady state expectation values of these variables.

Steady state calculations indicate that each system may exhibit
optical bistability in output field/intensity dependent on input field/
intensity.

To determine whether a system will display optical bistability, it
is necessary to perform a stability analysis. Where possible, such
analytical calculations are performed. However, in certain cases the
complexity of the highly nonlinear systems results in these calculations
becoming extremely difficult. 1In such cases, conclusions relating to the

stability of the system are drawn from graphical plots of its steady

state behaviour.
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Chapters Four to Eight are devoted to a study of the intracavity
interaction of coherent radiation with semiconductors.

As explained in Chapter Four (of an introductory nature), this work
was prompted by two recent experiments which indicated the existence of
optical bistability in semiconductors. Although both experiments used
semiconductors as the nonlinear material, the mechanism proposed to produce
the observed bistability in each case was vastly different.

In Chapter Eight we discuss one of these mechanisms - interband
excitation. We present a very simple theory of this effect and show that
in essence it is equivalent to the theory of optical bistability in two-level
systems. However, we stress that our theory is only approximate and relies
on the validity of several simplifying assumptions.

Chapters Five and Six concern the other form of semiconductor optical
bistability - arising from the interaction between a light field and
excitons comprising the semiconductor.

In order to develop a quantum theory of this system using master
equation techniques, it is necessary to transform the fermion system toc a
boson system. Bosonisation transformations required to effect this are
developed in Chapter Five.

In Chapter Six we present a fully quantum mechanical theory of optical
bistability in excitonic systems. Two types of bistability are found:
bistability in output intensity and also exciton number, dependent on input
intensity.

In Chapter Seven we investigate the effects of quantum fluctuations
in a low density exciton system, by considering its Fokker-Planck equation.
We discuss in detail the adiabatic elimination of stochastic variables

with regard to the system's Fokker-Planck equation
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CHAPTER 1

INTRODUCTION

é;.l General Background

Nonlinear optics involves the study of the physical phenomena associated
with the nonlinear response of a medium to applied electromagnetic fields.

For example, in certain substances, the electric polarisation may
be a quadratic or cubic function of the applied electric field amplitudes.
Dielectric and magnetic susceptibilities and indices of refraction can
also be functions of applied field intensities.

Such behaviour of materials has led to the observation of many nonlinear
optical processes, for example: optical harmonic generation, optical
rectification and production of combination frequencies (Bloembergen, 1965).

When a nonlinear optical interaction is coupled to itself via a
feedback mechanism, the phenomenon of optical bistability may occur. This
is the ability of a system to exist in two stable states; thus exhibiting
two distinct light transmission regimes for a given input field intensity.

Such an idea was first suggested by Seidel (1969) and Szoke et.al.
(1969), with regard to an optical resonator filled with a medium displaying
an absorption dependent on light intensity.

The first theoretical treatment of the problem was presented by
McCall (1974), and the experimental observation of the effect followed
soon after (Gibbs et.al., 1976).

To date, over two hundred published papers bear testiment to the vast
interest in the field. Although much of this research concerns the
investigation of collective behaviour, about forty percent of these papers

are devoted to experimental considerations and possible technological

applications.



Suggested applications of optically bistable devices include:
differential amplifiers, pulse-shapers and limiters, memory elements and
optical triodes.

Of greatest technological importance has been the development of
miniaturised devices, requiring low switching powers. These are seen to
provide a gate-way to an entirely new field of communication systems: one
utilising optical switching and optical signal processing. The ultrahigh
switching times attainable lead to the exciting possibility of an all-
optical computer.

The most commonly considered example of an optically bistable device
consists of a Fabry-Perot interferometer filled with a medium in which the

refractive index is intensity dependent. This is shown schematically in

Fig. 1.1

P CURVED MIRRORS <

INCIOENT TRANSMITTED

LIGHT 7 LIGHT
— . —
o

NON -LINEAR
MATERIAL

FABRY - PEROT INTERFEROMETER

Fig. 1.1. Simple Optically Bistable Device



These are known as intrinsic devices. Bistability occurs as follows:
Increasing the input power to the resonator changes the intensity within
the material causing a change in the refractive index. This change has
the effect of shifting the Fabry-Perot resonance closer to the exciting
field resonance. This results in an increase in the field within the
resonator, again changing the refractive index. As can be seen, this
feedback leads to a runaway effect, which will eventually (under certain
conditions) result in a switching from negligible transmission to complete
transmission.

In the pioneering experiments of Gibbs et.al., the Fabry-Perot inter-
ferometer was filled with sodium vapour. These atoms were chosen because
they exhibit a saturable absorption (an absorption dependent on light
intensity). Although important, this absorption was not the dominant
effect, but instead the intensity dependence of the refractive index
gave rise to the optical bistability. (In fact, optical bistability due
to absorption alone is difficult to observe).

In such a sodium vapour-filled device however, bistability occurs
only over a narrow wavelength region. Thus, highly frequency stabilised
lasers must be used to observe the effect. Also, the device is relatively
large (Vv 10 cm) and displays relatively slow switching times (v microseconds)
compared to electronic switches (Vv nanoseconds).

Thus, the actual practical use of these sodium-vapour devices seems
limited.

Another approach, developed by P. Smith and E. Turner of Bell
Laboratories, (Murray Hill, New Jersey), makes use of a hybrid device to
generate optical bistability (Smitﬁ, 1980). In this case, the Fabry-Perot
interferometer is filled with an electro-optic crystal. A beam splitter
sends part of the output beam to a detector which converts it to an

electrical signal. After amplification, the signal is again applied to



the crystal, through electrodes on the crystal end-faces. The electric
field, which varies with light intensity, thus modulates the crystal's
refractive index.

This so-called 'artificial non-linearity' is much greater than the
non-linearity produced in any known intrinsic device. Experiments can thus
be performed using low power continuous wave lasers. A further advantage
of such a device is that it can be switched electrically as well as
optically.

Another promising development in the quest for practically useful
optically bistable devices was discovered independently by two groups;
one at Bell Laboratories, Murray Hill (Gibbs et.al., 1979a); and the other
at Heriot-Watt University in Edinburgh (Miller, et.al., 1979).

Both these groups conducted low temperature experiments (120K or
lower) and used semiconductor materials as the nonlinear medium. In the
experiments of Gibbs et.al., GaAs was the active medium, whilst Miller
et.al., used InSb.

It is interesting to note that the mechanism responsible for
bistability is quite different in the two experiments. In GaAs, excitonic
interaction provides the nonlinearity; whereas in InSb, interband excitation,
modelled as a two-level system gives rise to the necessary nonlinear effect.

Although the observation of bistability still depends on wavelength
in such semiconductor materials, the dependence is not as critical as in
sodium vapour.

Also, the observed nonlinearities are large enough to allow for the
use of very thin samples; and as the materials involved are solids a
resonator can be simply constructed by preparing a flat sample with
parallel faces. The large nonlinearities that are generated result in only
a small optical path length being necessary to observe bistability. Thus

the device exhibits relatively small response times (v picoseconds).



Table I indicates the merits of the variocus devices discussed in this

section.
intrinsic type.

of the hybrid type.

Table I:

Clearly, semiconductor devices seem the most promising of the

The operating conditions of these are comparable to those

Bistable Optical Devices: Operating Characteristics

(After Smith, 1980)

SWITCHING POWER

SWITCHING TIME

SWITCHING ENERGY

matrix

PEVICE (W) (s) ()

INTRINSIC:

CS2 3 x 10° 5 x 10 10 1.5 x 10 ¢

Na vapour 1x 10 2 1x10° 1x 1077

GaAs 2 x 10! 4 x 108 8 x 10 °

InSb 1x 10?2 <5 x 10’ <5 x 10 °
HYBRID:

LiNbO3 1x 108 5 x 1078 5 x 10 13

(Fabry-Perot

Int.)

Liquid-crystal | 5 x 10’ 4 x 1072 2 x 1078




61.2 Summary of Results

The exciting developments discussed in the previous section provided
the motivation for this thesis, which involves an investigation of
bistability in various systems.

In all cases, we will consider the intracavity behaviour of a non-
linear medium when driven by laser fields. Of greatest importance to us
will be the determination of such properties as:

1) Output intensities: describing any possible bistable behaviour

(or any other interesting features), and
2) Fluorescent Spectra: as these can be experimentally observed, they

provide us with a possible test of our theoretical model. Such a

comparison will indicate the relative merit of our theory and the

accuracy of predicted macroscopic properties.

The remainder of this chapter ¢1.3 concerns the general methods
and approximations we will utilize to obtain this information.

To systematically define many-body systems, our approach is within
the framework of the second quantisation. We discuss the general form
of the system's Hamiltonian in §1,3(b)(i).

Such a second quantised theory is characterised by an N-particle
wavefunction, (N = number of particles in the system). When dealing with
an interacting gas, N is typically of the order 1023, thus a full
description of the entire system is clearly impossible. Fortunately, the
wavefunction contains a lot of irrelevant information not required in the
calculation of important physical properties.

We reduce the complexity of the system by adopting a statistical
approach in which we specify only the expected probability of finding a
particle in a given state. We then define the density operator of the
system as an expansion in terms of the many-body wavefunction. Such an
operator is analogous to a probability distribution function. It provides

all information about the system, yielding such properties as expectation



values. Discussion of all systems in this thesis is thus in terms of
the master equation: an equation of motion for the density operator -
described in detail in §1.3() and (d).

Although the master equation contains all statistical information
about the system, this information is not easily extracted. Instead, we
find it necessary to transform our system to a complex phase-space in
order to calculate required physical properties. We discuss such phase-
space distributions in §l.3(f).

Finally in Chapter One, we discuss the basis of an approximation
used throughout this thesis: adiabatic elimination of fast variables.
This procedure enables the replacement of certain dynamical variables
with their stationary solutions in all calculations, provided they
relax on a tiﬁe scale very much faster than other variables.

Chapter Two determines the conditions under which optical bistability
can be observed in various non-linear systems. Discussion in this
chapter is restricted to a deterministic theory only. In such an approach,
quantum fluctuations are neglected. However, as we need only calculate
steady state expectation values to determine expected output intensities,
this approximation will not produce a significant deviation from reality.

We firstly consider optical bistability arising in Raman active
media, and review a semiclassical theory due to Lugovoi (1977). This
predicts bistability in Stokes intensity, dependent on input intensity.
We then present a quantum mechanical theory based on a model similar to
Lugovoi's: quantised lattice vibrations, which give rise to the observed
Raman frequency shift, are adiabatically eliminated. Analysis shows that
only dispersive bistability (non-zero detuning) will be observed in such
a system. Further discussion reveals the possibility of absorptive
bistability on inclusion of a non-resonant susceptibility into the system.

However, as these effects are relatively small, such behaviour is unlikely.



In contrast to the rigorous approach followed in the investigation
of optical bistability in the Raman effect, we utilize an approximate
formalism in the remainder of Chapter Two: Effective Hamiltonian
approach.

We firstly discuss the optical behaviour of an effective two-level
atomic model in this manner. On adiabatic elimination of atomic
variables and in the dispersive limit (large detuning), this system
exhibits identical behaviour to the previously discussed Raman system.

In §2.2(b) we use an effective Hamiltonian first employed by
Graham (1970), to consider optical bistability arising from a parametric
oscillator resonantly driven by two input fields. The possibility of
bistability in output intensity varying as one of the input intensities
is predicted. This bistability is also shown to depend critically on
the other input intensity.

Finally in Chapter Two, we consider the behaviour of a driven
two-photon absorber, utilizing an effective Hamiltonian. On adiabatic
elimination of atomic variables, this system behaves exactly like a
parametric oscillator.

Thus Chapter Two reveals the occurrence of optical bistability in a
wide variety of non-linear systems. It also shows how apparently
different systems can exhibit the same macroscopic properties, in certain

limits. The following equivalences were established:

Raman System +*>Effective Two-level System (on adiabatic

elimination of atoms and in dispersive limit)

Parametric Oscillator <> Two-photon absorber (on adiabatic elimination

of atomic variables).



Such a correspondence is not surprising, as although the respective
systems describe different processes, the form of the nonlinearity
responsible for optical bistability is the same.

In Chapter Three, we investigate a rather different bistable system -
one involvipg three-level atoms.

We note that a fully quantum mechanical theory of optical bistability
in two-level systems, containing quantum fluctuations, is an extremely
complicated problem (Drummond and Walls, 1980b). The complexity generated
by introducing a further atomic level into the theory renders all
calculations intractable.

We thus again restrict discussion to the development of a determinis-
tic theory, in which we ignore the effects of gquantum fluctuations.

Calculations performed on optical-Bloch equations for such a system
shows bistability arises, due to the phenomenon of coherent population
trapping. Bistable behaviour is shown to vanish when atomic collisions
become dominant, as the coherence necessary for population trapping is
destroyed.

To date, such a bistability has not been experimentally observed.

Chapter Four introduces the concept of optical bistability in
semiconductors.

Although both the experiments of Miller et.al. (1979) and Gibbs. et.al.
(1979a) are discussed, we focus most attention on the latter experiment;
in which light-exciton interaction was seen to provide the mechanism
for bistability. The interband excitation model, proposed to describe
the experiments of Miller et.al. is discussed in Chapter Eight.

Chapters Five and Six are devoted to the development of a microscopic
theory of the intracavity interaction of coherent light with a medium
consisting of excitons. To formulate the system Hamiltonian in terms of

exciton operators, we make use of a unitary operator which transforms
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pairs of fermion operators to boson operators. We are then able to use
a master equation approach and systematically include such effects as
exciton-lattice and exciton-exciton interactions into our model.

In the two cases of high and low exciton densities, steady state
analysis revealed bistability and hysteresis in the system. Bistability
of a dispersive and absorptive nature in both exciton number and output
intensity, dependent on input intensity was found.

As yet, only high exciton density dispersive bistability has been
experimentally observed. The bistability curves we predicted in the
high exciton density case agrees qualitatively with the experimental
curves obtained by Gibbs et.al., for GaAs.

In Chapter Seven we discuss quantum fluctuations in the low exciton
density semiconductor system, with reference to the Fokker-Planck
equation. To calculate expectation values it is necessary to reduce
the dimensionality of the system. We thus introduce the method of

adiabatic elimination of variables in stochastic systems.

é;.3 Theoretical Considerations

§1.3(a) System Model

This thesis is devoted to a study of the interaction of light with
various nonlinear systems. As we will employ the general methods of
quantum optics, the approach to each problem will have several features
in common.

In each case, the model for our system will involve the intracavity
interaction of coherent radiation (laser fields) with a nonlinear medium.

This is represented in the schematic diagram:
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Fig. 1.2. Intracavity Interaction of Coherent Light with a
Nonlinear Medium

The cavity (indicated by the two vertical bars in the figure)
will, in general, be a Fabry-Perot interferometer.

For each problem, we will assume the incident field strongly couples
to a single mode within the resonating cavity. This mode will in
future be referred to as the cavity (or pump) mode.

Experimentally, such an assumption relies on the ease with which
the cavity can be tuned. Clearly, the single mode approximation
becomes physically unreasonable when the cavity mode frequencies are
not widely separated.

We also assume that the cavity mode of interest couples, in turn,
to a single mode comprising the non-linear substance. These 'system'
modes will be of various forms: e.g. molecular vibrations, atomic levels,
excitonic states.

We will be mostly interested in determining expressions for the
output intensity, as optical bistability concerns the behaviour of
output intensity, dependent on input intensity.

We now briefly review the general theoretical methods we will employ

to study each problem.
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§l.3(b) Second Quantised Theory of a Loss-less System

$1.3(b) (i) Hamiltonian

Each of the systems we will be considering will involve the intra-
cavity interaction of radiation with a medium comprised of atoms, (in
gaseous or crystalline phase).

The non-relativistic classical Hamiltonian describing such a system

neglecting losses, consists of three major parts, (Heitler, 1960),

H = He.m. + He.‘m.-‘motter + HI _ (1.1

where

Hem = ) (EO’E)sz/uoH_—J\z)dV —(1.12)
Cav£+j
is the Hamiltonian for the pure radiation field within the cavity.
( E_ and !—j are the electric and magnetic fields, obeying Maxwell's
equations; Eo ’ /Uo are the permittivity and permeability of the
vacuunm) .
The term He-m.-maHer describes the energy associated with the
interaction of the radiation with charged material particles. It is

obtained from the Hamiltonian for a free particle system, via the

substitution:

p o op-en

(where _P is the momentum of the particle, A is the vector potential
of the electro-magnetic field).

Thus,

He.m.-ma“er = ZJ [.iLm (‘PJ - C_A_(fJ)>+V(fJ)]

(l.lbj
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( rj refers to the position of the jth particle and \J(fs is

the external Coulomb potential: nuclear attraction in the case of
bound electrons; T\ is the mass of the particle).
In the context of the first quantisation, we express the momentum

operator as,

v

15t

¥2 —

yielding,

He.m.'maHer = 2j{>."7.Lm (TL{_"V‘ - e‘ﬁ‘) + \/(_CJ)] _—(1.1c)

Finally, the term F{I is dque to the interaction between particles.

For example, for two electrons, this becomes a Coulomb interaction,

Hr = e —(1.14)

T, - a

As the systems described in this thesis will be comprised of many
particles, discussion will be within the framework of the second
quantisation. Such an approach illustrates the particle nature of the
light and matter fields.

To this end, we define a quantum vector space for a many-body system
by assuming that any complete set of operators describing a single
particle can also be used to describe n such particles.

Thus we no longer specify the properties of each individual particle.
Instead, the system is described in terms of the number of particles of
eigenvalue >\L , say, of the operator /\ . This is referred to as

the occupation number, n: , of the ith state.

That is, in the state vector space (Fock space) of the system, with

basis vectors

lf\u,ﬂ,_,f\g,...f\c,...> —_— (1.2)
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for a given operator /\ , Wwe associate an eigenvalue Aq to N,

particles, )&1 to T\, particles, and )\L to MN¢ particles,

etc.

To use such a state vector space we must express the Hamiltonian in
terms of operators which can properly act on the vectors described by

Eq.(1.2). This is achieved by introducing boson and fermion operators.

§1.3(b)(ii) Bosons and Fermions

.‘-
The boson annihilation and creation operators, E)i and E)i

are defined by,

b(, |n|) N AT )

v T lﬂl,.. , LA SV~

and

.|-
b,;ln‘,...,m,.. Y VAR (T A VIR PR T

Such operators satisfy the commutation relations:

oo ) tq . .
Cbe,b;) =Lk, =0 5 DUhbe,bj) = &
The fermion annihilation and creation operators, Q. and Cit

are defined similarly; except that the occupation numbers can only take
the values 0 and 1, and,
a. lO>F =0 where ‘O>F = vacuum state.
Also, fermions obey the anticommutation relations,
- + .t - . + =
Cagavle = Calatl, =0 ;5 Cawabl, = Su

which is sufficient to ensure that any state can only be occupied by one

particle at a time: the Pauli Exclusion Principle.
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Of particular interest in later chapters, will be the behaviour of a
two-level atom in the presence of an exciting field.
Haken (1970) proves the formal equivalence between a system of two-

level atoms and a system of %-spins:

SPIN OPERATORS FERMION OPERATORS

+

. +
g = O’x+t.o’5 — a.aq,

v

.’—
U_ = o—x - L 0—'3 € > O, az
0 < > % (afa, -ala)

where the components of the spin operator, 0x ,

0’5 and O+ can
be represented by Pauli matrices; and ot , 0~ are spin-flip operators.

The fermion operators (,, O refer to the two atomic levels

Y, 12y,

Using the fermion commutation relations and the fact that

¥ ¥
a| O\ + OJ. az = 1
in a two-level system, we find the relations:
Co*,o-] = 20y

*

Lo~,0]l =30

~
Q
1
€
"
~
Q
]
~
<)
1\
O
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§1.3(b) (iii) The Pure Radiation Field

We quantise the pure radiation field in the cavity by expanding the

vector potential in terms of plane waves and boson operators: (ignoring

spin),

+ T
/__A_\(_Y_j,t) = é{; (zw;eoV) Q;(GXP[ i(\&;.r — wet)] E;

+b+; exp [-¢ (gt .r _w;’c)]) _— (1.3

The boson operators have the time dependence in the Heisenberg picture:

by (t) = by exp(-Cwn’c) , b*-;(’c) = ‘DI exp(c‘wzt)

The propagation vector gg , satisfies,

gzl = l?_—l‘z
cz

are polarisation vectors, assumed perpendicular to each

1(d>

A
t.&r =0
N
and satisfying the transversality condition: Q L. ‘_?-_Q =0

Using the relations /Uo H=YxA

Q)
\3>

E= -

l

o

°

and Eq. (1.3) in He.m., we find the Hamiltonian for the pure radiation

field, (Louisell, 1973),

Hem. = é’ﬁwa (byby + 15) —

Thus after second quantisation, the field is described in terms of

separate energy quanta, of energy t\ wy

él.3(b) (iv) Interaction between Field and Matter

We introduce the particle nature of the electrons comprising the

matter by defining the field operators,

W) = &, Yulr)an
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where the C%u are fermion operators and the Q&. are solutions

of the single particle Schrodinger equation:

[- WV 4 V(s)J Pulr) = Eu Gulr) = RwuPulr)

2m

We then formulate a second quantised theory by expressing the inter-

action Hamiltonian as, (Heitler, 1960),

He.m.-matter = \V*(Y_“){i—m (FC‘Z ~ eA(r_)Y*' V(f)}"*’(ﬁ)d\l (1.5)

and

Hy =ifw+(gw*(r'> e W(r) W) dvav' g

e - ¢l
Thus, the Hamiltonian for the loss-less system is given by Egs. (1.4),
(1.5) and (1.6).

We also include a term in the Hamiltonian to describe the interaction

between the incident field and cavity mode,
Ho

The explicit form of this term is discussed in later chapters.

§1.3(b)(v) Electric Dipole Approximation

Louisell (1973) shows that under the dipole approximation, we may

replace the interaction Hamiltonian,

3 ( p-eA) & N

u

H e.m. -matter
by

He.m.- maHer

)]

3m P 4 V() -y E(r,8)

(1.7)

where /Ll = er is the atomic dipole moment. We stress that this
is only an approximation, the limitations of which are discussed by Power
and Zienau (1959).

Despite its approximate form, however, we make frequent use of the

interaction Hamiltonian Eq. (1.7) in further chapters.
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§1.3(c) Density Operator Equation of Motion

All statistical information about the system is obtained from the

density operator, defined in the Schrodinger picture as,

p(t) = f,y Py 1) )< w(t) | - (1.8

where the state vector l “P(t):} obeys the Schrodinger equation,

LR 2 vy = HIivw> —(1.9)
ot
and Py is the probability of the system being in the state | wie)> .

Using Eq. (1.9) and its adjoint, we find, from Eg. (1.8), in the

Schrodinger picture,

. ‘ ch 2
°“§-t = £, 0, {FR WY = 1y %<w\}

= L py { HIvddyl = 1w <vin ]

> (k2 - [H’P] -  (1.10)
2t

Which is the equation of motion for the density operator.
We note that the average value of any system operator, /\ , is

given by,
(A > = Tr'ace (AP) _—(1.11)

é}.3(d) Quantum Theory of Damping: Master Equation

In order to present a realistic model of a physical system we must
include a damping mechanism, to account for losses.
With this in mind, we utilize the quantum theory of damping, as

presented by Louisell (1973).
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We assume all damping arises from a weak coupling between the system
and a large collection of other systems, having many degrees of freedom
and in thermal equilibrium. Such a collection of systems is commonly
referred to as a reservoir. For example, a reservoir could consist of
modes of the radiation field, vibrational modes in a solid, or electron
or hole states in an energy band of a solid. It is assumed that the
system-reservoir interaction has little effect on the reservoir.

Following Louisell (1973) we write the total Hamiltonian for the

system and reservoir as,

P{T' = H+ F*R + V
where H  is the system Hamiltonian, described in ﬁl.3(b); Fig is
the reservoir Hamiltonian and \/ is the Hamiltonian describing the
interaction between reservoir and system.
The system-reservoir interaction can be described as a scattering
process from the system mode, of frequency Wo , to a reservoir

mode of frequency w; - The effective interaction energy takes the

form:

Vo= 7€M +he) —

where Pﬂ is a system operator (fermion, boson) and CQj is a
reservoir operator.

The coupling constant Xj denotes the strength of the interaction
and will depend on the particular system we are considering.

Although the sum in Eq. (1.12) includes all modes of the reservoir,
only energy conserving modes, satisfying W; ¥ Wo will interact
strongly. As these terms evolve in time according to exp'-‘-' i(u)d‘-—(,o.)o)t
which is approximately unity at W; ® We , we expect such processes

to dominate in the interaction.
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However, terms of the form, CQS ™M ) (i? Pfr have been neglected
in the expansion of V . These terms vary as ethL (WJ'+WO)t which is
rapidly varying and will average out to zero over long times.

Such neglect of energy non-conserving terms is known as the rotating
wave approximation (R.W.A.).

In general, the behaviour of the reservoir variables will be of little
interest to us and we will be mainly concerned with the behaviour of the
system.

However, the density operator corresponding to the total system
contains reservoir information. Thus, the density operator equation of
motion (defined by Eq. (1.10)), from which we obtain statistical properties
of the system, also contains this reservoir information.

We wish to remove all explicit reference to the reservoir from the
equation of motion of the density operator and thus obtain an equation in
terms of system operators only. This is achieved by tracing /O(t)

over the reservoir variables, yielding a reduced density operator,
Sk = Tr‘RF(t)

( TfR = trace over reservoir variables).

The statistical properties of any system operator is then defined
in terms of the reduced density operator S(t) . For example, the

average value of P4 is given by,

(MY

Trg,s L MP('Q] (Tre,s = trace over reservoir, system)
Tee M Trg plt)
= MEY = Trs LM si)]

The equation of motion for  S(t) is known as the master equation,

describing the system's evolution under coupling to a reservoir.
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Louisell (1973) derives such a master equation, in the Markoff
approximation, via an iterative procedure. From this very comprehensive

work we now only quote the form of the damping master equation we will be

using in further chapters.

1) Light mode interacting with a reservoir (Intracavity)

The interaction Hamiltonian takes the form:

V=2 %b;b +he

where \33 is a reservoir operator; b is the boson operator

describing the light mode.

Damping is described by the master equation:

- ¥s ([Es,b] +CY sbl)+ ¥(1+a)(Cbs, 51+ [ b,sb])

(L.13a)

@loov
a|n

2
where §=TC IX (W)} 9(1.00) 3 Wo is the resonant frequency of the
light mode and 9(0\30) is the density of reservoir modes.
Physically, ¥ represents the cavity half-width.

N is the thermal occupation number of the reservoir.

A = [€XP (%w;‘rﬂ,) _‘]" (1.13b)
We may also write Eq. (1.13a) in the more compact form:
2s = ¥{lbs,B) +Lb,s¥]} + 2¥A[Ch,s1,6] .15

2t

2) Twa-level atom interacting with a reservoir (Neglecting atomic collisions)

This is represented as follows: 2

§ hwkes.

and the interaction Hamiltonian takes the form;

V = f,,' X Br)- o~ + h.c
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where 6"3 ot are spin flip operators describing the two-level system.
If we neglect the dephasing effect of collisions, damping is described by;
0S = $o {(|+ﬁ)(l:0“s,0'+] + EO",SO“"J)

2t 2 - - + -
+n(lo*s,0-] + Lao* So-]) —1.14)

where Jo is the Einstein A-coefficient for spontaneous emission from

a two-level atom.
We note that expressions such as Egs. (1.13) and (1.14) have also been

derived by Haken (1970).

The total time evolution of the system is thus described by the

master equation:

.- o
% = -flpl «

where F4 is as given in §1.3(b) and 9

damping

is given by Egs. (1.13),
(1.14). ? tldamping

Before we consider in detail the methods used to obtain information

about the system from the master equation, let us briefly review another

fundamental concept: coherent states.

§1.3(e) Coherent States (Louisell, 1973)

The number state representation, |f\> introduced in 61.3(b)

provides an orthogonal set of basis vectors, which describe a system of

harmonic oscillators.

An alternative representation, more useful in the description of the

radiation field, involves the coherent states |C*‘>

These minimal uncertainty states satisfy, (for a boson operator b ),

blay = old)

They are constructed from the number states as follows:

lay = ekl £ % Ind
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Such states are not orthogonal:

<[3 la > = e,"li(“""'+lpl")+dp"

but do form an over-complete set, obeying the completeness relation:

(- -]
Jldxdld’-«x = &7 = L
- o
™
We now review methods used in later chapters to obtain required

information about the system.

¢1.3(f) Phase Space Distributions

The master equation derived in ¢1.3(d) contains all the statistical
information about the system. The total behaviour of the system: matter-
field interactions, behaviour of matter and fields alone and damping
effects ~ is described by this equation.

An exact solution of the master equation would yield a great deal of
knowledge about the system.

In certain problems, time dependent matrix elements of the density
operator /0 have been obtained by use of Laplace transforms (Lambropolous,
1967; McNeil and Walls, 1974). Such matrix elements describe atomic
populations and polarisations. However, in general, extraction of
information from the master equation in this manner is an arduous task
(see for example Saxena and Agarwal, 1980).

We note that the density operator plays the same role as a probability
distribution defined in a phase space for the system.

We may define the system variables in a complex phase space by
constructing a suitable probability distribution to which we may map the
density operator. By adopting such a phase space representation, we can
calculate expectation values and time ordered correlation functions of

variables by performing classical averages, and yet still retain all

quantum mechanical information.
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This is because the transformed master equation can commonly be
expressed as a Fokker-Planck equation, which may be often exactly solved.

More importantly, the stochastic differential equations corresponding
to these Fokker-Planck equations can always be solved in a linearised
theory (Chaturvedi et.al., 1977). Thus, utilization of such techniques
provides a general solution for systems close to equilibrium, in which
the linearisation approximation is wvalid.

The first phase space quasi-probability function was proposed by
Wigner (1932); which related the density operator to a c-number

distribution of classical variables:

(1.15)

Wpya) = @er J| €77V Tr(e# P8 ) dudy

where 2£ and ?3 are coordinate and momentum operators of a harmonic
oscillator; CL and P are classical variables.
Thus, VJ(P,CL) (the Wigner function) establishes a correspondence
between classical variables and quantum mechanical operators:
44
P>
Further development of such transformations were given independently

by Glauber (1963) and Sudarshan (1963).

§1.3(f)(i) Glauber-Sudarshan P-representation

This transformation expresses the density operator as a diagonal

expansion of coherent states:

L= 5 P(a) lad<al d*= — {19

where P( o ) is the quasi-probability distribution. [ (a)= (ol,ol")]
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From the operator identities: ( b ~ boson operator) .

bladal = & ladd<a)

b lay<at) = [d* + %{]ld)@\

(1.17)
2Vl = latyat) oL*
l2><lb = [ 2, +d:\1o<><eq
the transformations follow:
bp = gtoe Pa)]) 1a¥<at) d*«
B'/o z 5[ (o = 2) Pla) ) 1y <ot} d2et
(1.18)

plo* f P(2) o* 1 d<atl d2e

pe b f[ (o = 2 Pla)] 1 y<et el

By applying transformations (1.16), and (1.17), we can derive a

I

Fokker-Planck equation from the master equation.

The Glauber-Sudarshan P-representation is, however, not applicable
to a certain class of problems arising in quantum optics. For example,
use of this P-representation in the case of a driven single mode inter-
ferometer filled with a non-linear absorber, yields a Fokker-Planck
equation with a non-positive-definite diffusion term (Drummond and Gardiner,
1980) . Thus a smooth, normalisaple distribution function cannot be defined
for this system; and we cannot form stochastic differential equations from
the Fokker-Planck equation.

Problems related to singularities in the P-function can be removed

by using instead the Glauber R-representation (Glauber, 1963):

p= Jﬁl“dld d g R, g)exp [- (i +1g1) /2 J14><p)
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which always exists. Unfortunately, the R-representation is not easily
applied to the type of problem arising in quantum optics.

A more useful approach is to employ the generalised P-representations

developed by Drummond and Gardiner (1980).

¢1.3(f)(ii) Complex P-representation

In this representation, we expand the density operator in terms of

a non-diagonal projection operator:

(1.19)

p = Sf P(e,p) I\ (et p) dtdip

where th,ﬁ) is the complex-P function; J\_(d,g) is a projection

operator; and & and @ are complex variables to be integrated

/
on separate contours C and C(C

Systems which exhibited non-normalisable distribution functions under
application of the Glauber-Sudarshan P-representation can now be solved
via the complex-P representation; as appropriate choice of the contours C

! .
and C in the complex phase space of o and F> always allows
the exact solution of such Fokker-Planck equations.

The operator identities for this transformation are:

b A = a /N

b+j\,=[(5'*'?—d]_/\_ (1.20)
AV NB
Ab [’éa_ + d] N
P
and the following transformations exist
b/o — o Pla,p)
Bp — (- %) Pla,p)
f!:*' —> P(d,g)r.%
P b «—s (-%3 + o) Plet@)

i

(1.21)
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Again, we generate a Fokker-Planck equation from the master equation

on application of the transformations, Egs. (1.19), (1.20), (1.21).

To justify the existence of the corresponding stochastic differential

equations, however, we must employ the positive P-representation.

¢1.3(f)(iii) Positive P-representation

This defines the density operator through the transformation,

P = SP(d,g) N d*« d*B (1.22)

where o and P' now vary over the whole complex plane.

Drummond and Gardiner (1980) show that for any Fokker-Planck
equation derived via the Glauber-Sudarshan P-representation, a corresponding
equation with positive semi-definite drift coefficient exists in the
positive P-representation. Also, from such a Fokker-Planck equation we
may correctly define stochastic differential equations.

The identities of the complex P-representation (Egs. (1.20), (1.21))

also apply to the positive P-representation. In addition, there exist

the further properties,

b+‘0 - {@, —%x] Pla,g) [@ + L”bb_dg] P(e{,p)
and
f’b & [—%x + d} P(o(,ﬁ) « [6%3 +oz] P(d,p)

where

o = olx +{ly

? ﬁx + CPS

Thus, by application of the Drummond-Gardiner generalised P-

representations, construction of a Fokker-Planck equation with a normalis-
able distribution function is always possible; and we may also form the

corresponding stochastic differential equations.
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For completeness, we note the general form of a Fokker-Planck equation

for a set of C - number variables (of,...,an) = (&)

B_I_’(o_l,t) = Zﬂ 2 Ay (2, 8)Pat) + éé‘
e

P
L Delg )

9 Dya,t) Paa,t)
3dj

(1.23)

In the positive-P representation, this becomes, (Drummond, 1979)

2Pra o) = 21{3_ Ny 4 b_A}} Pa,8) + £ 2 2 divd, Pap
ot Dol eli 4 0e 34t

L 2.2 didi 2 .2 dud; }P(o_e,t)
*lé‘ﬁ{u’} 2 A T I

3 (1.24)

. X . aY
where gy = o 4 C o , Ag = L +¢ Al

and

T .
As Eq. (1.24) has an explicitly positive-semi-definite diffusion

coefficient, we may form the corresponding Ito (Arnold, 1974) stochastic

differential equation:

d a1 = —Ag(a,t) + dg() g —_ (1.25)
dt 4

where the ésu(e) comprise a Gaussian process,
Cewy &) = &y Ste-t)
In most cases, it will be more convenient to write Eg. (1.25) as,

0 oAy = = Ag( + Talt) ——————(1.26)
ot

where the TS are fluctuating terms describing noise in the system.

They have the property

< T3 )) =0 —_ (1.27a)
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and obey the correlation relations:

Ty 15067 dlt-t') Dy - (1.27b)

where the [>CJ are diffusion coefficients, defined in Eq. (1.23).
Finally in this introductory chapter, we review the basis and
importance of an approximation frequently used in quantum optics:

adiabatic elimination of variables.

§1.3(g) Adiabatic Elimination of Variables: an introduction

We can describe a general multi-dimensional system in terms of a
set of variables, A (6.,5:., .. Gn).

In some cases potential conditions are satisfied and we may exactly
solve the Fokker-Planck equation for such systems, obtaining the quasi-
praobability distribution function. Average values and correlation
functions of system variables may then be calculated. These represent
the most important calculations we can perform, as they yield expressions
for emitted intensities and fluorescent spectra - experimentally
observable features.

However, such exact solutions to the Fokker-Planck equation exist
only in special cases.

If it is possible to assume the linearisation approximation, there
exist techniques enabling the derivation of statistical averages of
variables for two-dimensional systems, (Chaturvedi et.al., 1977).

For systems of higher dimensionality, however, similar calculations
become extremely complicated.

A common approach to simplify the system is to reduce the dimensionality
of the system by considering physical conditions under which certain

variables may be eliminated.
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This method, known as adiabatic elimination of (fast) variables,
relies on the fact that certain variables relax at a much faster rate
than others: they possess larger damping coefficients than other variables.
They will thus reach their steady state before the other variables have
significantly developed in time. We may then disregard the time dependence
of these so-called fast variables, which are said to adiabatically follow
the other system variables. Mathematically, this amounts to replacing
the fast variables with their steady state values in all system equations.

Firstly, let us consider how such a procedure is implemented in a
deterministic theory, where quantum fluctuations (noise terms) are
neglected. Our system x/4 (’a‘.,ﬁl, .. 6n) can then be described by the
equations,

a = §.(4,.. &)

§. (G.,.. Gn) (1.28)

)
»
i

$a(B.,.. Ba)

o
>

We eliminate variables 1 and 2 say, if they are more heavily damped

than the other variables. The system is then described by the set,

!
«.14 (53,..6.\) and the equations,

63 = 'S:B ( (aa\ss ,(6;.355 ) 63, .. ﬁn)
: (1.29)
6" = ;ﬂ( (an)ss, (ﬁz)ss, Aa, - - 6!\)

where (/O\Jss and @J“ are formed by setting é.:o and é:_ =0
in Egs. (1.28).
We have thus reduced the dimensionality by two.
This method was used in the theory of the laser, (Lamb, 1964),
where it was assumed the atomic linewidths were much larger than the cavity

linewidth. The atomic variables thus follow the electric field adiabatically.



31

The approximation is quite justified in the case of the gas laser,
where atomic decay rates are " 10% sec”! and radiative decay rates
n 107 sec !,

The procedure of adiabatic elimination of variables is thus well

defined when we are dealing with deterministic equations. However, as a
complete description of the system requires the inclﬁsion of quantum
fluctuations, we need to consider the system's Fokker-Planck and stochastic
differential equations.

Great care must be taken when we attempt adiabatic elimination on
stochastic differential equations, because of the presence of the

fluctuating noise terms. The necessary procedures to achieve this end

are discussed in detail in Chapter Seven.
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CHAPTER 2

OPTICAL BISTABILITY IN NONLINEAR SYSTEMS

The theoretical foundations of nonlinear optics were firmly
established by the early 1930's.

However, at that time, the experimental observation of the associated
effects was not possible because the high field intensities, necessary
to produce the nonlinearities, were not attainable.

That is, propagation of light through a medium generates a polarising
effect on the outer electrons of the atoms comprising the medium. If
the electric field amplitude of the incident light wave is of the same
order as the electric field binding the electrons to the atoms
(v 3 x 10° V/cm), a nonlinear relationship between the polarisation and
the electric field will be clearly observed.

The classical light sources available in the 1930's produced electric
fields much smaller than the atomic Coulomb fields. These classical
radiation fields, acting only as a small perturbation to atomic fields,
thus induced a polarisation directly proportional to the applied electric
field.

However, with the advent of the laser in the 1960's higher power flux
densities became available for use in optics experiments.

As lasers exhibit light fields in excess of 108 V/cm the nonlinear
relationship between electric field and polarisation is readily observed

experimentally. In crystalline media, which are in general anisotropic,

the polarisation is expressed as,

f = Eo('}(-(o)g + /X—_(z)EE_ ; IX_G)E_E_.E +)

—

: @)
where £o is the permittivity of the vacuum and *f is the nth

order susceptibility tensor. The first term represents the usual, linear

polarisation.
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As mentioned in Chapter One, ﬁl.l,such a non-linear response of a
medium to applied fields provides the mechanism for optical bistability.

Various nonlinear systems have been investigated in the study of
optical bistability. The most well known of these is the system of a
Fabry-Perot interferometer filled with a gas of two-level atoms, first
discussed by McCall (1974). A semiclassical theory based on this model
was presented by Bonifacio and Lugiato (1976), and a fully quantum
mechanical theory has been proposed by Drummond and Walls (1980b).

An alternative approach in the investigation of optical bistability
was adopted by Marburger and Felber (1978) and Drummond and Walls (1980a).
These theories are based on a non-linear polarisability model, which
involves the inclusion of a cubic nonlinearity in the polarisation.

In the first section of this chapter, we investigate the conditions
necessary to observe optical bistability in Raman active materials. We
show that such materials also exhibit a cubic nonlinearity in the
polarisation.

We later consider materials displaying parametric oscillation and
finally investigate optical bistability arising from two-photon absorption.

Throughout this chapter we adopt a quantum mechanical approach;
however, quantum fluctuations are not properly included, as we assume
complete factorisation of expectation values. Thus we develop only a

deterministic theory.

ﬁZ.l Raman Processes

When a light beam traverses a crystalline medium, scattering from
electrons comprising the substance occurs. Molecular vibrations, however
can noticably affect this scattering, resulting in the emitted light being

shifted by a frequency characteristic of these vibrations. This is known

as Raman scattering.
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Quantum mechanically, Raman scattering is the process in which a
system absorbs a photon of frequency Wi and emits a photon of
frequency W# , while undergoing a transition to an excited state
f\(h)t— uog) . In a molecular system, the final state is a
vibrational level.

The general theory of Raman scattering has been well documented,
for example, see, Bloembergen (1965), Penzkofer et.al. (1980),
Bloembergen and Shen (1965), Giordmaine and Kaiser (1966), Wang (1969),
to quote only a few.

We present now only the salient features of the process, before

considering in detail the mechanism for optical bistability.

§2.l(a) Interaction Hamiltonian and Nonlinear Polarisation

We consider the interaction of radiation with a system of 71
molecules, each consisting of two or more atoms.
Radiation interacting with such a molecule induces an electric

dipole moment /AJ , directly proportional to the electric field E: p

(2.1)

M= 2/,1., = ﬁolcj EJ'
where tdij is the electronic polarisability tensor of the i'th molecule.
Physically, the dipole moment is due to the displacement of the

electrons with respect to the nucleus of a particular atom. Thus, if
the nuclei always remain stationary, dij is a constant at any given
frequency. However, the nuclei are not stationary and oscillate about
their equilibrium positions. This clearly results in a departure from
linearity. Placzek (1934) described this distortion mathematically by
expanding O‘ﬂ' in a Taylor series of normal mode vibrational
coordinates, CL y (For a discussion of normal mode coordinates see
Pantell and Puthoff, 1969, Chapter 7):

clcj = <ch + 3555 CL + ..

09, equ. (2.2)
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where O(Cj is the polarisability evaluated at the equilibrium positions

of the nuclei.

Introducing an explicit time dependence into E and q, of

the form,

~

-'-’%COSLO\,—t ) E: EJ'C.O.SLA)Jt

J p—4
Eq. (2.1) becomes,

MCES .3)
/u{' = d"J E COSUJJ{T +2[ ) CLE [Cos(%-o-wv)t-l-CoS(wJ-u)o)t] .

We see then that molecular vibrations add corrections to the dipole
moment, producing two new emission lines, one above and one below the
excitation frequency (;JJ' . This is, of course, the observed Raman
effect.

The term dEJ' EJ'Costt yields the usual dipole transition spectrum.

The emission lines corresponding to the frequencies (,,)J’ -
and ‘*’a + Wy represent Stokes and Anti-Stokes emission, respectively.

From Eq. (2.3) we see that the term responsible for the Raman effect
in Eq. (2.2) is,

(dCJ)Raman = a;_‘/CJ' q,
CLR equ.

= - = [ O : (2.4)
M %) 9 E;
29,
- we assume all spatial derivatives of ol,;j are evaluated at the

equilibrium nuclei position.

Thus, from Eq. (1.7) derived in §51.3(b) (v), we find the interaction

energy corresponding to the Raman effect is, i.e.

HINT = -/gE

= Hine = -L ({,‘ [ao{‘J]q}E E. —
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Nn
Also, if there are NV = A& identical molecules per unit

volume in the substance, then the nonlinear polarisation is given by

(2.6)

. 2
p- v = Ny = N5 )eqrE
(where { ) denotes statistical average).
We will show in §2.1(c)(ii) that in general,
{q> = F(EY)
Thus,
E o E(; E_, EK_

showing that the Raman effect is associated with a polarisation cubic

in electric field amplitudes.

We now turn to a discussion of optical bistability in Raman systems.

§2.1(b) Semiclassical Approach

A semiclassical theory of optical bistability arising from the
coherent excitation of a Fabry-Perot interferometer filled with a Raman-
active substance was first presented by Lugovoi (1977).

In this semiclassical approach, the molecular system is treated
quantum mechanically, whereas the fields are assumed to be classical.

He assumes the polarisation takes the form given by Eg. (2.6)
and obtains an equation of motion for the vibrational mode:

¥ : 40t 2
X + 2h% + WeX = ™ 2% - (2.7

(where X =497 )
As expected, Eq. (2.7) greatly resembles the equation of motion
for a driven damped harmonic oscillator: (m = reduced mass;
2h = width of spontaneous Raman scattering line; (J. = resonance frequency

of vibrational mode).
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In this theory, the electromagnetic field obeys Maxwell's equations.

Thus the propagation of the light field is governed by the wave equation:
1

¥ x (UYxE) + gzaz_g = -4T P

- - - Dt? C dt*
where the electric field is a sum of Stokes and applied (cavity) field
components. (Anti-Stokes emission is neglected in this theory).

One of Lugovoi's major assumptions is that the vibrational modes
(phonons) are damped on a timescale much faster than that of the Stokes
or laser modes. It is then possible to eliminate the phonons adiabatically.
This amounts to replacing the variable X with its steady state

value in the field equations (for fixed E .

In this limit, he derives the following equations of motion:

&F = —'( XP + 0 5;) o(P - KL o(‘)\ols\z + ¢ EL _(2.8)
. /
las)® = —2% + 2ws ke | olp\*lets\* - (2.9
where olP = complex amplitude of exciting (cavity field);

2
|olsl]= stokes intensity;
6, = detuning of cavity mode from external driving field, EL

Ws

Stokes frequency; ( ¥p, ¥s : cavity and Stokes

damping respectively)

Kl.. = Raman coupling constant, as defined by Lugovoi

/
= KI_ +L|<:I_

By solving these equations in the steady state ( o.IP = |ols|t = O)
Lugovoi predicts bistability in Stokes intensity, dependent on the laser
intensity l El- 11 .

We may obtain greater insight into the system by adopting a quantum

mechanical approach.
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$2.1(c) Adiabatic Elimination of Phonons: Quantum Theory

As in the previous section, we consider the intracavity interaction

of a coherent driving field with a Raman-active medium.

§2.l(c) (i) Hamiltonian

The total physical system is described by the Hamiltonian H

discussed in §1.3(b) ’

H = Hmatter + He.m. +Hinr + Ho + Hdamr.-nj (2.10)

Hem is as described in Eq. (1.4) in §1.3(b) (ii).
The term Hm,H-er describes the energy of the uncoupled

molecular system and takes the general form,

! ( 2 -
L . 2.11)
= é . . w' . 5
HmoH'er ] am CLJ + 3 CLJ
The discussion of §2.l(a) showed that the interaction term is given
by,
HlNT =".%€- (a—d‘.") E:E; —(2.12)
L ’aq, q, J *
In general, the electric field is the sum of the exciting (cavity)
field, -E-P and the scattered Stokes and Anti-Stokes fields,g_s’ EAS

Let us restrict further discussion to the behaviour of the Stokes mode

alone, and set,

E = .Ep + Es
The Hamiltonian assumes its proper second quantised form if we

express the system variables as,

q; = (mN YV)'&,( expt @\rf—"j)( Beslt) + B'_g\,(é))(ﬁ(zw b ——<2.13a)

E = éx (22:1‘\,;.;>->/1 _é_x L[gm (t)QXP(‘CgLfD — (2.13b)
- bzx(*)exp(i&r,-\]
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where N is the number of molecules within the interaction volume V
E)‘. is the unit polarisation vector for the light field; X; denotes
the position of the jth molecule and gu‘ is the wave vector of
the vth mode.
Substitutj.ng Egs. (2.13a) and (2.13b) in Egs. (2.11), (2.12), we

find, in the rotating wave approximation (defined in 561.3(d))

Hmatter = Znu— Fw (gn.rbnu- + ."2-)

(2.14a)
He.m. = éﬂx ‘\:\ wﬂ,k ( b;,)_ Enk + %) —_—(2.15a)
o | M h™ 2“:“’__’) +or
Hinr = (?q/)ns np Vm? zl%ﬂr ( w gp .é_s [ beobe BRP
+ bnv bas gnr ]é(gr-lg,s -Ew) (2.16a)

( N = refractive index).

We now adopt a single mode approximation, in which we assume the
incident field strongly couples to a single cavity mode (described by

the operator bP ), which in turn couples strongly to a single

Stokes mode. Thus we may write;

Hmatter = 'ﬁwgb ————(2.14b)
Hem = ‘F\w‘,\;},b‘, + s g;bs — (2.15b)

Hee = X [ g Us bp + bhs B} ] —(2.16b)

where

X = (5__@) N% (Qwﬁws) ’e:p/_és S(rp-Rs ~Ra)
3% nsnp\/m"‘ o)

(Raman coupling constant) .

and b is the boson operator for the phonon mode, frequency (o
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Assuming the applied laser field can be treated classically the
Hamiltonian describing the interaction ‘between incident field and cavity

mode is;
. T —cwet ¥ cwet
HD = LF\[ELbPe - EL bpew ] —(2.17)

where EL is the amplitude of the driving field of frequency (JL .
Finally, we must include damping of phonon, cavity and Stokes modes.
The discussion of ¢1.3(d) showed that a valid description of damping
is to assume coupling of the mode in question to a reservoir in thermal
equilibrium.

The Hamiltonian takes the form;

+ + +
- (2.18)
Hdampinﬂ - bP Ql + bst + ng + h.c
where Q.)Q; 'Qs are reservoir operators.
552.1(c) (ii) Master Equation and Average Values
We now form a master equation (equation of motion for density

operator /0 ) from the Hamiltonian, in a frame rotating at the laser
frequency WL ,
op = -L [ { Hematter + Heam. + Hine + HD}I,P} + 0P (2.19)

at ‘H ? t damP€n3

L I denotes interaction picture]

where a

ot

tormpng ™ L0 % { [bip, Bi) + Dbipbil 4 25 Lbe, ], B2}
+ Xv{[bp,ghl’_b,f»b"] +2ﬁaEEb,fl,B’]}

where Xu’ is decay rate of the phonon mode, ( the index ( = 5>P )

XP y \65 are the rates of the Stokes and pump modes respectively
and the n¢ are thermal occupation numbers of the reservoirs -

as discussed in §l.3(d) .
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We obtain average values of the operators from the master equation

as for any arbitrary operator O,

(O = Trace (p'O) - (2.20)

where <> denotes expectation value and the dot indicates a
derivative with respect to time. As mentioned in the beginning of this
chapter, we are presenting only a deterministic theory, in which quantum

fluctuations are ignored. We may thus assume complete factorisation of

expectation values (e.g. <bs bp> = <bs>< bP> , ete ). Using

Egs. (2.19) and (2.20), we then find, (for a cold reservoir, n=0):
O'(P = -(XP + Lé.)d‘) + BL - CXets B —_—(2.21a)
. . ¥*
& = -~ ¥sols — L XolpB - (2.21b)

P

where O(P = <b|>> , s = (bs> ) p = <b> and we note

O(P, ods | g are all complex numbers.

(2.21c)

"’(XU’ _,.,;6,_)@ - CXdPO(g

Also, 51 = (*)P - W is the relative detuning of the laser
field with respect to the cavity mode we are considering; and 62-: w"(“)l”w‘)
is the frequency mismatch between the natural frequency of the phonon
mode and that of the Stokes transition.

We now wish to adiabatically eliminate the phonon modes, following
Lugovoi's approach.

Physically, this approximation is based on the assumption that the

phonons are damped at a much faster rate than either the Stokes or pump

modes, i.e.

o > %, ¥

As discussed in Chapter One, mathematically this is equivalent to

setting P =0 in Eq. (2.21lc), yielding

. *
Fss = - X olp ols —_— (2.22)
Jr + (b2
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We can now appreciate the cubic nonlinearity of the polarisation,

by setting <CL> = ﬁ and E = o(F

> Ecl/u..'Z.é, > _E = - Ny 2d L)(o(slolgl1

29, Yv + 102

in Eq.

(2.6),

We may thus identify a third order nonlinear susceptibility, by

forming the definition:

RAMAN NONLINEAR POLARISATION

(3)

E = RAMAN oLs ]dp‘l

where A/(3)  _
RAMAN

(32 + 62) (29,

l_N.V__(a_QL){CSz-in]

(2.23)

Hence,

imaginary and negative on resonance ((Sz = O)

(3
/X ) is a complex quantity, which becomes purely

This agrees with

the expected behaviour of the third order Raman susceptibility, as

discussed by Bloembergen (Bloembergen, 1970).

Returning to the field equations, Eq. (2.21), by substituting

Eq. (2.22), we find the equations governing the system in the adiabatic

limit:
&P = —(‘AP +i8)) odp + B - ¥ (8 +L3Jd}>ldsl" (2.24a)
(3¢ +63)
& = —¥sols + X (Xu-(.éz)o(sldpl" (2.24b)

(3% + &)
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In such a deterministic theory, we can form an equation for the

2
time development of the Stokes intensity, !dsl , from Eq. (2.24b);

|ds|®> = dls ols  + N ols

We thus find the following field equations for this Raman system:

dp = - (¥p+i8)edp + EL - K otp lots|® ——(2.25a)

lds1* = = 2 ¥slasl® + 2K [osi® Ioll:ll —————(2.25b)

where the Raman coupling constant is defined by;

_ ! . H !/ _ 2 n 2
K=K +LK , K™= X 3¥v 5 K" = x*§.
2 2 T o
v + 62 Yo +5:,'
We note that Egs. (2.25) are equivalent to those derived by

Lugovoi, Egs. (2.8), (2.9).

@.l(c)’(iii) Bistability Conditions

In the following discussion we will denote the Stokes intensity as,

S > losi?

2

and, I < |l
Solving Egs. (2.25) in the steady state (D.lp = lols|? =O) predicts

two stationary regimes:

1) S=o0o =% lotpl* = T —  (2.26a)
and XF + 5?.
2)

s#0 = s*(K?*+k")+ s(ax' v+ 28K

4 X;’ + é’f _ E_' I =0 ——(2.26b)
¥s
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Thus the system has the following behaviour:

! ®

Fig. 2.1. Steady State Stokes Intensity vs Input Intensity

The system can exist in either of the two stationary states,

(a) described by Eq. (2.26a)

(b) described by Eq. (2.26b)

We now wish to determine the conditions under which the system will
be found in each of these states; and the conditions required to
observe a transition between stable states. We obtain this information

by performing a linearised stability analysis.

Stability Analysis

We investigate the behaviour of the system close to a stable state

by considering the behaviour of small fluctuations about the steady state:

i.e. set

O(F = 020 + dP

§ = So + 5 (2.27)
where oo, So are the steady state values of o/P 5 S ; and SZP

and S are the time dependent fluctuations about these values.
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Substituting Egs. (2.27) into Egs. (2.25) and linearising, we find;

/ ( )
O.(Fw "(XP-H'AS\)'KSo @) - Koo \ (&'P
a | - o “(hprib) -KS,  —k* o | | &
(2.28a)
M ! * ! <
LS ) L 2K So oo 2K Socls O ) \ S )

is the matrix

5 % =

defined in Eq. (2.28a).

">
>

X5 % =(F,a.3)

b

To find the eigenvalues corresponding to normal modes, we form,

det (IA-A) =0

= /\.3 + a, )LZ + 3.\ +3ds =0 ——(2.28b)
where
Gi= 20¥p + K'Se) 5 3y = (¥p + KISoV + (b1 + K'So) + 4K S0 4o *
Gy = 4K'Solo® (Bpk!+ K", + IKISS)
Equation (2.28b) is known as the dispersion equation and its roots

~ ~
determine the time dependence of the variables CLP,lif > S . For

I~
example, olr will have the following time dependence,

Lo (8) = & $la,s.) eMF
Clearly, we require negative real parts of the eigenvalues )kL
for stability in the system. This is known as the Hurwitz stability
criterion and is equivalent to the conditions, Glansdorff and Prigogine
(1974). B >0 , L, >0 , A3;)0
where

A| :Ol ) Ag_ = a; i A3 =

o
o
»
O O o
W -
o ®
St H o
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Thus, for stability, we require
(') Ch >0 and (ll) ag >0

. s . e /
The first condition is always satisfied as XP ) K and S,
are all necessarily positive. However, condition (ii) is not always
met, allowing for bistability in the system. That is, there will be

a transition between stable states (@ ' @ in Fig. 2.1) when
53 =0 = X"& = -(¥pk' 4+ 1KI*So) _—(2.29)

Thus, a transition will only be observed if K“ and él are
both non-zero. As this amounts to the presence of non-zero detuning in
the system, we see that transitions will occur only in the dispersive
regime.

We note that Eq. (2.29) is equivalent to the expression,

9L - O, from Eq. (2.26b)
?S

Hence, the system is stable with respect to small fluctuations when

ol
— Y0 , which corresponds to a positive slope of the curve in

05

Fig. 2.1; and the system becomes unstable when %]SE <O v

corresponding to a negative slope of the curve.

Transitions in the System

We may thus determine the behaviour of the system by examining
the slope of the curve described by Eq. (2.26b). We note however, that

Eq. (2.26b) predicts two types of behaviour.
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7/

1> I->

A B
Fig. 2.2. Stokes Intensity vs. Input Intensity

The arrows indicate transitions predicted by the stability analysis.

Fig. 2.2a describes bistability and hysteresis, and is akin to a
first order phase transition. Fig. 2.2b however, predicts a smooth
transition between stable states and can be thought of as a second order
phase transition.

The conditions necessary for the observation of case A or case B are

determined by the coefficients in Eg. (2.26b):

1) Case A (analogous lst order phase transition) will be observed if,

KIXP'\'alK” <o

R ——(2.30a)
2) Case B requires
K%+ &K v g (2.30b)

Klz + Kﬂz
As, in a physically realistic system we have |<’ and XP non-zero;
bistability (analogous lst order phase transition) will only be observed
if é. or K” are negative.
Thus a necessary condition for bistability in the system is the

inclusion of a non-zero detuning.



48

952.l(c) (iv) Non-Resonant Susceptibilities

Fundamental to our treatment of Raman interactions was the assumption
that the exciting field was strongly coupled to a particular molecular
transition. Transitions far off resonance were assumed negligible.

However, the effect of such non-resonant transitions can be included
into the theory: as shown by Bloembergen and Shen (1965), these transitions
result in a contribution to the third order susceptibility.

i.e.

(3 () (3) [ Res : Resonmant :]
/X. = IXR.eS. + ,XNR. NR . Non-Resonant
3
The NR terms involve only pure electric-dipole matrix elements,

with no resonant denominator and thus are real quantities. It is shown
‘ (» \2 o |2
(Bloembergen & Shen, 1965) that the ratio of %P.es to IIXNp.
is about 10 to 1.
Inclusion of such a non-resonant susceptibility into our theory

would lead to the imaginary part of the constant K having a frequency

independent part. Thus,

3)
K” : K” + C\ %NR.

where C, is a constant depending on system parameters.
/] . .
Hence K has a non-zero imaginary part, even at resonance.

This allows the possibility of observing bistability at resonance, if

(3
NR is large enough.

. 3) ) .
However, as the magnitude of NR is relatively small, this

situation would probably not occur.

Thus, in general, we conclude that bistability will only be observed

in such a Raman system in the dispersive limit (5; -‘r’LO, 51# O) -
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§2.l(d) Phonon Reservoir Theory

The discussion of §2.1(c) assumed the Stokes and pump modes coupled
strongly to a single phonon mode.

We consider now the system in which the phonons form a reservoir for
the Stokes and pump modes. By treating the phonons as a reservoir in
thermal equilibrium, we have essentially eliminated them; and we thus
expect the behaviour of such a system to be similar to that described
in §$2.1(c).

The Hamiltonian is the same as before: Eq. (2.10), except the

interaction term is now viewed as,

}4|NT = h X.[.E;\;:})f + h-c-]

b G & he ——

where CQ is a reservoir phonon operator.

= Hinr

The master equation associated with the Hamiltonian, Eq. (2.31), is
derived using the standard methods of the quantum theory of damping.
We thus find the master equation for the total system (in a frame

rotating at the laser frequency Wi ),

222 = E Ev E;>" E:ikD? ,f’l Y [.E;>bp ,f9}

ot 3 3
* —% - _% Raman (2.32)
? dampms ° InFeraction
where §, is the relative detuning of laser to cavity mode,éu:tdp-bJL.
%P . .
The term describes damping of Stokes and

ot

pump modes and assumes the usual form:

| = £ %i{Cbp BT+ Thi,pbi] + 27 [Lbe,p1, K]

damp-'ng

b t dqmp‘n& (2.33)
(¢=5,p)
where the 3& are decay constants of Stokes and pump modes and the

ne are the number of thermal quanta.
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The final term of Eq. (2.32) stems from the interaction term,
Eq. (2.31). Treating the phonons as reservoir operators, we obtain
the equation,
op = ’X{(HF‘\) ([betlo, b.;lbs] +[bpgs,/0gf,l,5])

Raman
ot Interackion

+ F\(E bf':bslo,bpb:]+[b?bs,/)bpgsl)~} (2.34)

where X is the coupling constant and n represents the thermal

occupation number of a reservoir of phonons.

$2.1(d) (i) Deterministic Theory

In the deterministic limit, we neglect quantum fluctuations and
assume complete decorrelation of expectation values. We thus obtain

the equations of motion from Eg. (2.32) (R -‘-‘-O) .

dp = By - (Bp+ ¢8)alp — p X (lets* 1)  ———(2.35)

a = EL - (¥p -8 op — of X(lasP+)) — 230

s

- ¥sols + (Yds }dPl" _(2.37)
o XK _ * *
Xs = —¥sols + W ldP\" —_(2.38)

where <bP> = dP , <b5> = ds
. . _ 2
We obtain an equation of motion for the Stokes intensity |o{™

from Egqs. (2.37) and (2.38),

las1* = 2 XlelpPlals® — 2 ¥s lols 12 —(2.39)

Equations (2.35), (2.36) and (2.39) are equivalent to Egs. (2.25a)
and (2.25b) derived in §2.1(c); except now the Raman coupling constant x
is real. Hence all the results of §2.1(c) are applicable to this case

. " -
if we set K"=0 in Egs. (2.25)
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We conclude from such a comparison that bistability will not be
observed in the phonon reservoir system as,
¥ >0

for all XP ) af and Egs. (2.30) indicate that this system will

(2.40)

exhibit an anologous second order phase transition only.

The marked difference between the behaviour of this system and the
one of §2.l(c) is due to the corresponding real and complex nature of the
respective coupling constants % and K .

That is, in the theory of §2.l(c), frequency mismatch between
Stokes, pump and phonon modes generated a complex coupling constant K .
Such frequency shifts occur in the reservoir theory of this section but
their effect is only to slightly shift the cavity resonance frequency,
thus these terms are generally neglected (Louisell, 1973).

Hence, bistability will not be observed in the phonon reservoir

system.

§2.2 Effective Hamiltonian Formalism

In the final sections of this chapter, we consider bistability in
three further systems: the effective two-level system, the parametric
oscillator and the two-photon absorber.

We model each system in terms of an effective Hamiltonian, which
we state without proof. Such Hamiltonians have been widely used in
quantum optics, for example the work of Shen (1967) and Walls and McNeil
(1974) on nonlinear optics; and the work of Graham (1970) on the
parametric oscillator.

To derive an effective Hamiltonian, it is often necessary to eliminate
certain field operators, resulting in an effective interaction between

remaining variables. This is usually achieved by performing a unitary
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transformation on the system. In general, however, this is only possible
if we may sum over virtual excitations of the eliminated variables; for
example, virtual atomic levels (Power, 1974).

We now use the effective Hamiltonian approach to view the Raman
effect from a different perspective to that of the previous section,

and consider electronic excitation within the atom.

62.2(a) Atomic System: Effective Two-Level Model

We again assume an intracavity interaction between light and matter;
in which two driven cavity modes are coupled to two atomic transitions,

as indicated in Fig. 2.3:

[
A =77 &
‘—s 12)

1)
Fig. 2.3. Effective Two-Level Model

¢ 1Y ana |2> are atomic energy levels).

The most general case involves two incident fields, El and E; '
driving the two cavity modes of frequency (Jiy and Wgz . These
cavity modes are coupled to the transitions; first, from “) to

several intermediate virtual levels, |L> , and secondly, from these

intermediate levels to |2> .
Thus, a transition from Il) to ll) proceeds as a two-photon
process, via the virtual levels, IL> . The fields are not on

resonance with the “> —> ]2) transition.
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Such a process can be described by the effective interaction

Hamiltonian:
= % (X b,b, o* ———2.41
Eff.INT = 10:b2 07 + h.c. -
where b. and b,, are boson operators describing cavity modes;

ot , 07 are spin-flip operators for the |t) — ll} transition and X,
denotes the strength of the interaction.
The total Hamiltonian of the system in the single mode approximation

and rotating wave approximation then becomes,

H = Ho + HE{{.\N’\' + Hb + Hdampfnﬂ

where "
T U
Ho = 2 Wo 03 + fw bb + hw, b,bz (2.42a)
( We = resonance frequency of two-level system) .

. . E syt
Hy, = L’B(E,Bﬂe-‘“" + E, l;l e"w‘t—h.c.) ——(2.42b)

; ’
( Wi, W; are the frequencies of the two applied fields, of amplitude

E, and E,_ respectively) .

The cavity damping takes the same form as in the previous section

+ +
Heavity domping = Qb+ Qubs +he. ————(2.42¢)
(Q‘,Q,_ = reservoir operators, for example, modes of the radiation field)

and we assume atomic damping of the form,

Ha+om.'c. damFin3 = QA of + h.e —(2.424)
(QA = reservoir operator).
Thus, although there is no direct coupling between l|> and ll>

we assume radiative damping occurs via these levels, as indicated by

Eq. (2.424d).
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From the Hamiltonian given by Egs. (2.42), (2.42a), (2.42b), (2.42c)

and (2.42d), we form the master equation, in the interaction picture.

_a_ﬂ = "_(;_ [{ Ho + HEff,th + HD.}I’P] + a_ﬁ

¢t + Dt | damping

(subscript 1 denotes interaction picture).

where Qﬁ = ég Xi{tbiﬂ&] + [bi,lobt]+2ﬁ'g[[bc,p],&]}

"bt Jam in _ _ _
Py X_ég(l-m)(tcr p0*) + L0 pat]
2
+ A(Lop,o-]+ EO't,ocr'J)}
( X\ 9 52, = damping coefficient of modes 1 and 2; XA = radiative
damping constant of two-level atom; n = number of thermal quanta).

As before, we obtain equations of motion for system variables from
the master equation, assuming complete decorrelation of operators.
We also assume a zero temperature reservoir and set n =0

We find the following semiclassical equations.

Field equations:

<5(l = El - Lx'dz/DQ.l - (Xl"'CA)Oll (2.43a)
5(1 = B, -1 delF\Q. - (X; +0A) oy —(2.43b)

Atomic equations:
’ (2.44a)

/On = et Xida °('*/0:.| + LXndM;IOu + %A P2z

Lo = - o1 4 Xioho Oay ~ Yapar  —2.400)

P

P+ pa = 1 —(2.449)

Ul dy ¥ (10“'/0") _ (b_’f_ + ‘:5)/012. —(2.44c)

- and the complex conjugate equations.

In Eqs. (2.43),(2.44), oi = {b\) , da={ba) pej =<ilpli)

/
A , A = detunings between cavity modes and applied fields,

/ ]
A= W =-w, AN w;-w,f : (S = atomic detuning = Wi=Wa-W,,
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In this model, we assume the atom relaxes to its steady state
rapidly compared with the cavity modes. The discussion of §1.3(g) in
the introduction showed that this approximation is justified if our

intracavity interaction model is similar to a typical gas laser.
Thus, if
! XA » \61,\61

we may adiabatically eliminate the atoms, by setting

/éu = 10.23 = /0'\1 =0 in Egs. (2.44)

This yields, (for real X))

(/o,,)SS _ X leul* Lol o
2 X{ lettlolat® + [ 23 + 8]
90")55
2

] - sz\)ss ——————(2.45b)
(/On)ss = X dzdv* (4 + 6) (2.45¢)
[2 +is)[2xhe el + (3 467)]

Substituting these steady state values back into the field equations,

Egs. (2.43), we find,

o, = E, - (¥, + (.A)da - XT i ldat? (2.46a)
. 2 2\-1
(% - )1+ttt 2t (B +8)7]

dy = BEp - (B +LA)dy + Xihalodl® (2.46b)

2 ~
3 + ié) ! +1du"ldz\’:lX3({& +&*
(5 ! 7 %) )
In the limit of large detuning (dispersive limit), we can expand
the denominators in Eqgs. (2.46) to first order. That is, we assume
. .
X0 e laal? << 1
Z
[7‘—6 + b‘}

and find the field equations:

d, = E - (% +¢ Aoty = Xt o lolal
¥ —(2.
(_:% Lg) (2.47a)

&; = E2 - (Xl +LA,)0‘1 + X?O(p_ |°le1

(’% +¢<S)

(2.47b)
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These equations describe the behaviour of an effective two-level
system, in the dispersive limit on adiabatic elimination of the atomic
variables.

We note that if we set the input fields on resonance with the cavity
modes ( A= A/=0) and consider one driv:j.ng field only (EJ.: O) , the

Egqs. (2.47) become,

o.(‘ = E, =% o - Xachldal? —_— (2.483)
. » 2
oy = = ¥a0a + Az dalelil —  (2.48Db)
where
Xy = /0:: "":/Og ;/02/ = X ¥a , /02” = _—x‘z‘s
2[_§$.+61] [2.52 -\-51}
4 %

Equations (2.48) are equivalent to the Raman equations, previously
derived in §2.l(c) . Thus, all results obtained in ¢2.l pertaining to
bistability and hysteresis are also applicable to such an atomic system.

The major result, we may quote, is that this system will exhibit
bistability in the intensity ldy \l , dependent on the input

intensity I E‘ ‘2 .

§2.2(b) The Parametric Oscillator

Parametric oscillation occurs when a nonlinear crystal is driven by
light of frequency (J{ , producing two output light fields of different
frequencies, CO,;, and (,Ofl .

If excitation proceeds via virtual states, we can write the effective

Hamiltonian as, (Graham, 1970),

HE‘H' INT = L‘Fl KP <b+| b+2 bg - bl b:z B—3) —(2.49)

where b| y b;_ and bg are boson operators for the three cavity

modes; and KP is the coupling constant, chosen real.
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Equation (2.49) describes the process,

‘F\u.)3

AN\,
A

'st:,
Assuming that it is possible to drive the cavity modes of frequency

(W and W2 on resonance, we find the total system Hamiltonian:

H = Ho + HEf{,INT + Ho + Hdampinﬁ

where

3 ¥
Ho = é(#\boi bibi 5 qu‘m-r is as given in Eq. (2.49),

Hp = ih (BB et & E,H, e-»f — h.c.)

and 3
Ho\omPinj = éi b+c Q;' +h.c.

(where (J; are reservoir operators).

The master equation follows as in previous sections and again we

obtain the deterministic equations: (cold reservoir, n = 0)

B = “¥p * KppaBs + E, —(2.508)
ﬁ'; = E, - 3282 + Kp @.*p3 ——————(2.50Db)
fé3 =~ ﬁs - KpBiBa - (2.500)

where (b)Y = ﬁg , {by) = ﬁ,_ , <b3> =ﬁ3; X;,X1JX3 are the
respective damping rates of modes 1, 2, and 3.
We now solve the system in the steady state, by setting é| ’-'ﬁ..z 353 =0
in Egs. (2.50).
Equation (2.50a) yields,
(ﬁ3)ss = -—KPF—I‘B“
33
which when substituted in Egs. (2.50b) and (2.50c) results in the equation
of state for the system:
Ez_ = ﬁl ¥, + XP‘EJZ
2 (¥ + 'X-Plﬁzlz)z

where %P - .’;P .
3

—(2.51)
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We have thus derived an equation of state in terms of the two input
driving fields and one cavity mode ('ﬁz) only.
We can write Eg. (2.51) as a real equation,

Ea)" = 18l 8 + XplEL
(% + %pIpal*)

(2.52)

The behaviour of the system, as described by Eg. (2.52) is plotted
in Fig. 2.5, for various values of system parameters. The form of these
2
curves suggest a bistability in the intensity !p;\ , dependent on

2
1B\ - this is indicated in Fig. 2.2.

[pa

|E; 12

Fig. 2.4. Expected Bistability in Parametric Oscillator System
(arrows indicate bistable transitions).

To determine the conditions necessary for bistability, a stability
analysis must be performed. However, the complexity of this six variable
system <pl)ﬁ|*, ﬁz,ﬁ: , ﬁs , ﬁ;) does not allow a straight-
forward analytical approach.

Nevertheless, Fig. 2.5 clearly indicates instability in the system
and we can expect bistability to occur as shown in Fig. 2.4.

We can obtain the sufficient conditions for such a bistability: this

requires the solutions of the equation,

dIEP _ g
dlpﬁ

to be real and positive.
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(o

Igal*

3.2 1
1-6 4
(i) (i) (ifi) Giv)
O | a 1-2 i 2':_ 3T6 4‘-8 6-0

|E, 17 —>

1 3
Fig. 2.5. Output Intensity l‘gzl vs. Input Intensity |[E, 1> (PARAMETRIC OSCILLATOR)

(Data: X’ = ¥, :IXF:I : in curve (i) ]E.]z =2 ;
(11) |E* = 3 ;o (iii) JEF= 4 ;v |E\1F =5 )
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On performing this, we find bistability can only be expected when,

l E'll > 4'\6'231
Xp

This behaviour is clearly shown in Fig. 2.5: lﬁzll becomes

(2.53)

double-valued for a given lEzll when condition (2.53) is satisfied.

Thus the parametric oscillator is an example of a system exhibiting
bistability in output intensity, varying in accordance with an input
field intensity, and critically dependent on a second input field intensity.

Finally in this chapter, we consider bistability in a further system,

the two-photon absorber.

62.2(c) Two Photon Absorber

As in previous sections, we model the system as the intracavity

interaction of two driven cavity modes with two atomic levels. We indicate

this as follows:

127

hw,

=1
hw, ;
1"y

Fig. 2.6. Two Photon Absorber

We assume there exist a number of virtual intermediate levels IL) ’

between levels [I) and |2) , over which we can perform a sum.

This enables construction of an effective Hamiltonian,

Hegome = F(Xa b.b,ot + h.c.) —_—(2.54)

where Eh y bl are boson operators for the cavity modes of frequency

W, , Wy ; 0% is the spin-flip operator for the [1Y —> |2} transition.
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Including the effects of cavity and atomic damping, and two driving
fields on resonance with the cavity modes; we find the deterministic

equations, following the same procedure as in previous sections,

Field Equations:

o, = E| - %1y - L Xa o(;:k/om —(2.55a)

o2 = Ea —¥acy - L Xa d'*la‘“ (2.55b)

Atomic Equations:

Pu =t L Xa olydly pra -LXao(-*o(f/D;, + XA/on —(2.56a)

pa

/On.

where o, = <{b\> ; dy = {by?> s lo;j: (CI,DIJ'>

1]

-1 Xa ciola Pz + L Xa d-*o(;*pg. R paa  —{2.56b)

- Xadlda (paa-pu) - 7125_ pra —(2.56¢)

and El y EJ_ are amplitudes of the incident fields driving cavity modes

du, dz , respectively; Xl, Xz, XA are the cavity mode and

atomic damping rates. (We assume n = 0)

As in the effective two-level system, we adiabatically eliminate

the atomic variables, in the limit,

In O 3, Xz

This results in the field equations,

*

o, = B, = ¥ di - 2%¥a X:',o(.lol;)’“ —(2.57a)

I+ AE i * 21

oy = Ey = ¥aoa - 2¥a N5 dplat?
¥ + QXE oL ldal*

We now adopt the absorptive limit, in which the damping coefficient

——2.57b)

XA becomes large with respect to other system parameters. This is
valid in such an adiabatic limit. Assuming
3 Yol lelal?  g¢ 1
%A
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we expand the denominators in Egs. (2.57) to first order, resulting in

the equations,

O.l‘ E[ - did - ﬁ(o. o\ ]dzlz -_ . (2.58a)

dy = Ei = ¥1da - ¥Xa odaldii? —_—  (2.58Db)

where XQ - .?.x:'

TA
Equations (2.58) describe the behaviour of a two-photon absorber on
adiabatic elimination of atomic variables.
It is interesting to note that in the steady state, o = 5(2 =0

Egs. (2.58) predict the equation of state,
2
IE21? = Jdat*]| ¥, + XalEl

2\

(3 + Yaloai)

which is equivalent to the equation of state for the parametric

—_—(2.59)

oscillator, given by Eq. (2.52).
Thus, in the absorptive limit ( XA large) the two-photon
absorber behaves like a parametric oscillator (resonance case). As before,

we expect the system to display bistability when; (c.f. Eq. (2.53))

lE* > 4¥%0%
Yo

as indicated in Fig. 2.7.

)

|da)*

151‘1—9
Fig. 2.7. Expected Bistability in the Two-Photon Absorber -
- in Output Intensity, Dependent on Input Intensity.

Again, we have shown the equivalence of two nonlinear systems.



CHAPTER 3

OPTICAL BISTABILITY FROM A SYSTEM OF THREE-LEVEL ATOMS

¢3.1 Introduction

Semiclassical and fully quantum mechanical theories of optical
bistability, arising from the intracavity interaction of coherent light
with a system of two-level atoms, have been discussed by many authors
(for example, McCall (1974), Bonifacio and Lugiato (1976), and Drummond
and Walls (19§0b)).

These theories describe two distinct regimes, referred to as
absorptive and dispersive bistability.

Absorptive bistability is a resonance effect, and occurs due to the
feedback introduced into the system from the interplay of the following
conditions.

i) An increase in intensity results in saturation of the atoms and
thus less absorption of radiation by the atoms, and

ii) the intensity of the radiation within the cavity increases as
absorption by the atoms decreases.

Dispersive bistability, associated with a system exhibiting an
intensity dependent refractive index, arises because of the optical
feedback generated when the following conditions are met:

i) An increase in intensity changes the refractive index, consequently
shifting the cavity resonance frequency towards the exciting
frequency, and

ii) the intensity of the cavity radiation increases as the cavity
frequency shifts closer to the exciting frequency.

In practice, however, purely absorptive bistability is difficult to
observe; and the first experimental observation of optical bistability

relied on the intensity dependence of the refractive index.

63
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In this chapter, we consider an unusual effect displayed by three-
level atoms under the action of two driving fields, which provides a
mechanism for optical bistability in such a system.

This phenomenon, known as coherent population trapping occurs when
the driving fields are on resonance with the atoms and the atomic damping
is of a certain radiative nature. It results in a transfer of the entire
atomic population to a linear combination of the two lower levels of the
atom, if the system is initially prepared in a statistical mixture of all
three levels. This final linear combination of levels does not interact
with the driving fields, thus the system evolves to a non-absorbing state.

The theory of this effect is discussed at length by Arimondo and
Orriols, (1976), Orriols (1979) and Whitley (1977).

Experimentally, these so-called narrow non-absorption resonances
have been observed by Gray et.al. (1978) and Alzetta et.al. (1976, 1979).

In §3.2 and &3.3 we discuss the interaction of a coherent driving
field with an 'inverted-V' and 'V' configuration respectively. In both

systems, we find the following steady state behaviour.

oureut

INPUT

Fig. 3A. Steady State Behaviour in Three-Level Systems

A form of such a curve suggests bistability in the system: branches
of positive slope are assumed to describe stable states, and the branch
having negative slope is assumed unstable. Bistable transitions will

then occur at points A and B in Fig. 3A.
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To rigorously determine the occurrence of bistability, a linearised
stability analysis must be performed. However, the complexity of the
three-level system renders any such analytical calculation intractable.
Hence, in this chapter the stability of the system will not be explicitly
investigated.

The behaviour displayed by Fig. 3A does however indicate an instability
in the system. Thus whenever such behaviour is found in our investigations
in this chapter, we will assume there is a possibility of observing

bistability in the system.

¢3.2 'Inverted-V' Configuration

é§:2(a) Hamiltonian

We consider the intracavity behaviour of a system of N three-level
atoms ('inverted-V' configuration), subject to two coherent driving
fields.

This is indicated in Fig. 3.1.

13>
Ea T + Eb
— ~hwi &——
fwa
~S

12>

Nt

I

Fig. 3.1. ‘'Inverted-V' Configuration Interacting with Two Fields

Eo. and Eb represent the amplitudes of the two input fields.
These drive two cavity modes (assumed to be on resonance with the fields)

of frequency Wa. , Wb -
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The atomic levels |'> ) ‘1> and ‘3> have energies ‘F\w.,
’ﬁw,, and FW3 respectively. Atomic .transitions are as indicated
in Fig. 3.1, which we note, is equivalent to a Raman system.

We construct a Hamiltonian for such a system, in terms of the
+ t - +

operators, g, ’ 0—1 ’ a, y O':-; where g, ) O',- are spin-
flip operators for the 117 213>  transition, ana O _-,.+ ey are
spin-flip operators for the 125 — 13) transition,

ie. oy =132 ;73 =1 5 0T 2y =13) 5 07130 = 12)

12y =o ; o 11y =0
Thus, we view the system as two driven two-level systems, with a

common upper level, l3>

We assume an electric-dipole interaction between cavity modes and

atoms:

HINT = "/U. E —3.1)

Following the second quantised formalism, we expand the dipole

operator /(_J_ as, (Agarwal, 1974),

/.4 = /:_!13 7 + Ma3 03 + hoe. —(3.2)

and the electric field E as,

E=E +E,

where
‘Fiwa)/z_

E =« (2& . unyb - B*din b ]

(3.3)
E, = () (6, tutmrba - X Ul K, ]
where b. and bz are boson operators for the two cavity modes.
Again we utilize the single mode approximation. U(r) is a mode function,
chosen to describe the cavity and g_ is the polarisation vector.
Substituting Egs. (3.3) and (3.2) in Eq. (3.1), we find, in the

rotating wave approximation,

Hing = h [g.a bt g + ng B; 0~ + h.c.] —(3.4)
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where

gs = M o)’

We write the total Hamiltonian for the system as,
H = Ho + HtNT + HD + Hdampins

where the free Hamiltonian is,

=

. * . % 5
) 913 = /gza L Ul(r)(_“;\b_&)

2

Ho = ‘F\wa b‘\"b| + ‘F\Wb B:. ‘Dl + Tﬁfwg =) 0‘.} +'F\(w3-w;)of (3.5)

and H|N1- is given by Eq. (3.4). The interaction between driving

fields and cavity modes is given by,

Hp = LF\[EaB}B’CMt + Eb 8; p-iwn® -h.c.]

again, we have assumed classical driving fields. The cavity and atomic

(3.6)

damping is described by the Hamiltonian terms,

t +
Hcavi’rg "la"‘Pi“ﬁ = Q,b‘ <+ Q;b; + h.c. —(3.7)
where Q. and Q;\_ are reservoir operators (e.g. modes of the radiation

field);

Ha+om:c dOmPinﬁ = QA 0'1"' + QB O’;{" + h.C. ——(3.8)

( Qp. and QB are reservoir operators).

The form of the damping expressed by Eq. (3.8) describes spontaneous
emission from the two pseudo two-level systems. We do not include
radiative coupling between levels |‘> and [2> .

Such a damping scheme assumes relaxation to levels other than the
three we are considering is on a much slower time scale.

The reverse case is considered by Brewer and Hahn (1975), who
derive steady state and transient solutions of such a three-level system.
They assume relaxation between levels “> 5 ‘2> and 13> is

slow compared to decay from these states to other nearby levels.
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¢3.2(b) Master Equation

We form the master equation (in the interaction picture),

d _-b[{Ho+H.Nr+H}, ]+ 2 + D |
—ﬁ o p ;i Cavity 5‘%_ g

dOmP,
(subscript I denotes interaction picture)

where

2

é K.,{Eb../o,b]'*[b«.,lob] *th[_tb‘,/o) 9]}
=

domP. (3.10)

, fi{(!*ﬁ')([m’lo a*l+Lo- Fo-"'])
€ Ldamp. F R (T, o]+ Lot oo )]

where the K{ are cavity damping coefficients; ¥ A, are spontaneous

1Y
"
Mn
o

(3.11)

emission rates and the ¢ are the number of thermal quanta present
in the reservoir.

In all following discussion, we assume a zero temperature reservoir,
and set n¢ =0 .

The equation describing atomic damping, Eg. (3.11), has been
derived under the Markoff assumption (Louisell, 1973). Such an approach
cannot properly describe the effect of atomic collisions.

However, in any intracavity experiment, we expect the atomic vapour
density to be such that collisions cannot be ignored. We include these
effects in phenomenological manner, discussed presently.

We derive the equations describing the time evolution
of system variables, from the master equation, by assuming complete
decorrelation of expectation values:

Field Equations:

&\ = EQ - K| 0(\ - C9‘3NP|3 ——(3.12a)

(3.12b)

Ev - Kaoa -i9gysNpaa

(and hermitian conjugate equations)

where by 2o, LbyYy = da , Lilplid> = p
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The factor N appears in Egs. (3.12) as we are assuming the cavity
modes couple to N identical non-interacting atoms. Note, there are
no cavity detuning terms in Egs. (3.12) as we assume cavity modes are on
resonance with the applied fields.

Atomic Equations:

/_',“ = - LQT; o{’,",os, + Q)3 o Pz + XA:,Oag (3.13a)
P‘n - - 63*23 O(:[O:”l + (;923 0(2/013 + XA: /033 ~——{(3.13b)
. . % . . % * .

/033 = L9‘3 0(:*103| —'L9|3 01:/0|3 + (—913 oly /Og,z - ngsda 13(3.130)

-i(Aa- A')lon, - (,97'3 0(1*/032 + 1923 0(11013 ——(3.139)

P

2 - . A, . .
/0.3 = -(cA +_A2i'2)lp,3 - ‘_9:'3 *F N3 o+ L9"5_3 °(1*P11 ——(3.13e)

3 - . ! Ba.+ ¥A ) . % B .
/023 = "(L A+ —E._——’: /09.3 + ‘-'9|3 oty /azt - L913O(:n32 —{3.130)
(and hermitian conjugate equations), where N =/0£.‘. -/DJ‘J' ; O ) A

are atomic detunings: A= W3 -Wi~Wa , Al = W3-Wsa-WhH.

We mentioned previously the necessity to include collisional effects.
As collisions tend to result in a leak of atomic population from the
system, we expect /Ou and‘ /012 to decay at some given rate. Also,
the dephasing effect of collisions could give rise to a coupling between
levels |1) and |27 .

Following the phenomenological approach of Orriols (1979), we

introduce the collisional damping rates, T, T, associated

?

with the following equations:

.

/Ou = }I:', (/022 —/o“) ——————(3.14a)

/0.22. = %. ( Iﬂn - ,0;2) ——(3.14b)

/011

It

-1
€. pu ———————(3.14¢)
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We do not consider velocity-changing collisions. The approach we

adopt is by no means rigorous, but adequately describes the expected

behaviour.

Equations (3.13) and (3.14) describe the behaviour of the atomic

variables.

§3.2(b) (i) Steady State Behaviour of Atomic Variables

Let us now turn our attention to the atomic system alone, and consider
Egs. (3.13) and (3.14).
As an interesting and most simple case, we assume the fields are
. I _.A’_) .
on resonance with the two atomic transitions (ZS = =Q) . Also, it

is assumed that the atomic vapour is dilute enough to enable the neglect

- -t _
of collisional effects, ( T, '= 'Cz‘ =0 )

Then, in the steady state (/0;) = O) , we find,

P33 = P = Paz =0
/Ozz R X /p,, = Joal® ',/9n.= — ool (3.15)
lot 12 + ledal? loh1? + ldlal* oty 1* +1ela) >
Thus, we see there is no steady state population in the upper level;
and the system resembles a two-level atom, with dipole matrix element /3,2 .
As /053 =0 there is no emitted fluorescence. Hence, we may
use the system as a switch: at a certain value of the detuning the cavity
becomes non-absorbing and thus transparent, so by varying the detuning,
the system may switch from one state to another (absorbing to transparent).
The behaviour described by Egs. (3.15) is, of course, the manifestation

of coherent population trapping, discussed in the introduction, ¢3.l.

§§:2(b)(ii) Steady State Behaviour of Total System

Having considered the atomic system, we now discuss how this

behaviour gives rise to optical bistability.
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To completely describe the general system (A# 0 )Al:/:O, C'f'#-o,t:::o)
in the steady state, we must solve Egs. (3.12), (3.13), and (3.14) with
IO‘,_'j =0 ) O.fa = 0'(2 =0 . However, the solution of such
atomic equations proves a formidable task.

In practice, one must solve the system numerically, as done by

Orriols (1979). He finds the following steady state behaviour for the

population of the upper level.

Pa3

o) (6-0")~>
Fig. 3.2: Steady State Atomic Population as a Function of Detuning
(After Orriols (1979)) (Schematic)

The narrow resonance at zero detuning is indicated by the solid
curve in Fig. 3.2., which describes the system in which Tj ' '-"-f;;:‘ =0
(no collisional damping). Such curves have also been obtained by Walls
and Zoller (1980), and the norrow resonance dip is also shown to have
an intensity dependent width.

The dotted curve in Fig. 3.2 describes the system in which collisional
effects have been included. We note that the dip vanishes, thus collisions
tend to wash out this interesting effect.

Numerical solutions of the system as given by Orriols (1979), and
Walls and Zoller (1980) provide a useful picture of the system's atomic
behaviour. However, to investigate the possible occurrence of optical
bistability in the system, we need an analytic solution to the atomic
and cavity mode equations. As such a solution is not possible in the
general case, described by Eqgs. (3.12), (3.13) and (3.14), we must impose

some simplifying conditions on the system.
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Fortunately, an analytical solution to the steady state atomic

equations is possible in the special case,

i) oy =z (9‘3 = 913 = g) : We assume the same cavity mode
coupled to both atomic transitions, and we consider one driving

field Eo, , only.

- -1
ii) T, b= tz =0 : We assume a dilute atomic vapour

and ignore collisional effects.

! W
iii) We assume symmetrical detuning: A =-A = 2
and we define the damping coefficients, |
¥ = Y _ : Ia 4+ ¥A2 =
At~ Ar = 2T, ) —2—- T,

:? Tz = 2Tl
Thus the field equation now becomes,
& = ~Kan - UNg*(py + p5;) + KE — (3.16)
where K = K, =K2 and KE = Ea.
The atomic Egs. (3.13) and (3.14) are now soluble, as shown by

P. Zoller, yielding, (Walls and Zoller, 1980)
L
/oll = /02,2 = 2 (l—/033)
- (3.17)
P = S

2 + 35
where .5; is the saturation parameter,
2
Sl = ‘6 wil T' \9d“ 4w
w
T, (wh - 4‘90(‘\,_):. 4~ (3.18)
2

Also,

gdl /013 = "(Ol\alﬂzg)* = '.%&.‘fln.

thus,

P33 t pPaa =___4—l1-9°{ P33 3:19)
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We see from Egs. (3.16) and (3.19) that the atom-cavity mode
interaction is determined by the population of the upper level, /933 .
We have seen that /953 as a function of detuning exhibits a distinct
dip at resonance. It is the intensity dependence of the width of this
dip that gives rise to bistability (output field |o/,|* , dependent

2
on input field IEI ), (Walls and Zoller, 1980; Walls et.al, 1981).

$3.2(c) Bistability

Following the approach adopted in the study of two-level systems
(Drummond and Walls, 1980b), we scale the system variables as follows:
X = .2|9cx.l(T.T13"1 , Y = 2lgE]| (T.7,)"%
(3.20)

C= NIghh , &= wal,
2K

and find the state equation,

Y= X1 + 3c s —(3.21)
O + 48 + 28T+ 4P

For C > | the possibility of observing bistability in the system

is indicated, as shown in the schematic diagram, Fig. 3.3

X =
X

(@) T l b)

Y = $—>
Fig. 3.3. Schematic Diagram of Bistability Arising from a System
of Three-Level Atoms

(a) Output field vs. Input field.

(b) Output field vs. detuning.

(arrows indicate expected bistable transitions)
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We note the condition C » 1 , to observe bistability, is four
times less than that required to observe bistability in two-level systems
(Bonifacio and Lugiato, 1976).

The bistability discussed in this section has relied on the
fulfillment of certain specialised conditions, for example, the choice
of the damping.

Fig. 3.2 shows that the behaviour of f933 changes dramatically
when collisional damping becomes significant. We thus expect the onset
of bistability to be partly determined by the effects of collisions on the
system.

To investigate the relationship between bistability and collisional
damping rates, we must again solve Egs. (3.13) and (3.14). These can

only be solved numerically on inclusion of collisional damping rates'ta,tﬁ .

Fig. 3.4 shows the variation of output field (X) with input
field CY) as the ratio U2 /'E is varied. The disappearance
of bistable behaviour is indicated, as the ratio 'tzlhn increases: as

collisional damping rates become comparable with radiative damping rates.

Finally in this section, we discuss the importance of the condition
o, =y , required for bistability.

We expect that any departure from this simplification will drastically
affect the observed bistability.

Again, the system equations were solved numerically, and Fig. 3.5 shows
the behaviour of the system as the ratio O(l/olg_ is varied.

Bistability is shown to vanish as the system becomes more asymmetrical
and the ratio ®a /o, increases.

We now investigate the possibility of observing optical bistability

in a slightly different system, the 'V' configuration.
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Fig. 3.4. Output Field (X) vs. Input Field (Y) for Different Values of T2/T; for

the Inverted-V Configuration (C = 4, 8= 1)
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9§3 .3 'V' Configuration

As in the previous section, we consider the intracavity interaction
of two driven cavity modes with a system of N three-level atoms.

We indicate this in Fig. 3.6.

-_— —
Ea

125 Es
1) hwp
V a Y a W
Fwa
~
13>
Fig. 3.6. 'V' Configuration - Interaction Between Atom and Fields

Eq, and Eb are the amplitudes of the input fields, resonantly
driving the two cavity modes of frequency (Wea , W)H . These modes
couple to the two atomic transitions 1Y ¢* 13) and [2) &> 13D,

This system can be described in terms of two driven two-level atoms,
with a common lower level ‘3> . This is similar to the 'inverted-V'
configuration described in the previous section, where the upper level
was common to both transitions.

The Hamiltonian for the 'inverted-V' configuration, Egs. (3.4), (3.5),
(3.6), (3.7) and (3.8) will be equivalent to one describing this 'V’
configuration; the only difference is in the definition of the spin-flip
operators, O—.t and OC. ‘zt .

That is, in the 'V' configuration, 0'|+ and 0, are spin-flip

operators for the 117 ¢> |3)  transition, where

GrI3Y =1, ot =13y oty =0 (3.22a)

+ - . . ey
and (0, , 0, are spin-flip operators for the [3) <> |27 transition, where,

(3.22b)
o 13y =12 612> =13>, oty =0



78

Bearing in mind the definitions Egs. (3.22a), (3.22b), the Hamiltonian
for the 'V' configuration is identical to that of the 'inverted-v'

configuration Egs. (3.4) to (3.8).

We may thus derive equations for the system variables

from the master equation, Eq. (3.9).

Field Equations:

0.(1 = E.a. - K, &, "'l:glg N/O,g (3.23a)

Ay = Ep - Kg o2 - (:923 Nlo13 (3.23b)

where o(‘ and d.‘!. are amplitudes of the two cavity modes. Damping
of these modes is described by the constants K, and Kz ; and ]Of.J'

are matrix elements of the density operator.

Atomic Equations:

P.ll = “1;9‘3 dl F3| 40 d’]k 93 /0‘3 - 3}\]/0“ (3.24a)

Pr = -{gazdapP3y + Q33 0(2*/0.13 = 8Aa P22 (3.240)
,533 = (gi3iPa - LY ozi‘/).g +ga3 %2 P32 ’C9;3°1:/0,.3 (3.240)
+ XA\/OII + Xhz/ozl
Pa = ~(gasd G ot + ((p-&)| pra (3-249)
12 9|3 :/032 + ngg ola P;z - ¥Aa1+8A2 L IO
2

(3.24¢e)

/013 = —{'9‘3 ol (,033 -'IO“) -+ (’923 d.l’oll - {}2&' + (-A}IO‘3
P = —-{'azzdz(Psg = Paz) + tGizol,Pa - {}IAg + CAv}ng (3.24f)

Pn+ P2z + P33 = 1 (3.249)

'
where A= Wi-W3 ~Wa , A =w,-W3z-Wbh are the relative
atomic-cavity mode detunings; \JA. , XA,_ are the spontaneous emission

rates of the two atomic transitions M) « 13> ana 127 < 13 .
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We have neglected collisional effects in this case.

As in the 'inverted-V' configuration, we attempt an analytic

solution of the atomic equation in the specialised case,

1) o, = oy (Ki=Ky =K 5 Gi3 = Yas =3) , and we consider one
driving field, Ea. only.

- Wa
Z

= I
2)  Symmetrical detuning, A=-A =

and we define the damping coefficients,

|
x = XA = — 5A. = _
’ S A S 4

= T.=2T,

We then find the field equation

(3.25)

Ay = KE - Koy - L9N(Pg_3 +/0|3)

(where KE = Ea. ), and the steady state atomic variables,

/0" = /02.2 = —-—-—-A'

where "1'-; + 5A1
A= 4iger D3 - 0l + 41ga®) + 205

Ty ("‘: - w3 + 4194.\‘) + 4-‘%%1

Also,

P23 * Pz = = P —(3.26)
2T . ga
The steady state upper populations, /0,, and /02“" decrease

markedly on resonance, similar to the behaviour of /033 in the 'inverted-v'
case.

However, in the 'V' configuration the population does not completely
vanish; /On #Q at resonance. This is because spontaneous emission to

the lower level |3) destroys any coherence between levels, necessary

to produce population trapping.
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From Egqs. (3.25) and (3.26), we find the steady state equation for
the system,
Y = X i+|6CQn
Xz
where X y Y’ and C are as defined in ¢3.2, Egs. (3.20).

(3.27)

The behaviour of this system, according to Eg. (3.7) is shown in

Fig. 3.7: possible bistable behaviour is clearly indicated.
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CHAPTER 4

OPTICAL BISTABILITY IN SEMICONDUCTORS - GENERAL CONSIDERATIONS

As mentioned in Chapter One, two recent experiments have revealed
optical bistability in semiconductors: the experiments of Miller et.al.
(1979) using InSb, and that of Gibbs et.al. (1979a) involving GaAs.

The suggested mechanism for bistability is quite different for each
of these experiments. To aid the discussion of these differences we now

briefly review the theory of semiconductors.

§4.1 Elementary Theory of Semiconductors

According to the band theory of solids, semiconductors consist of a
valence band (completely filled with electrons) separated from the empty
conduction band by a small energy gap.

If such a solid is optically excited, electrons may move across the
energy gap, leaving behind an unoccupied state, known as a hole. Coulomb
attraction between electrons and holes leads to the formation of bound
electron-hole pairs, called excitons (Knox, 1963).

Excitons are the lowest energy excitations in weakly excited, pure
semiconductors. They are electrically neutral and do not contribute to
electrical conduction.

If the orbiting radius of electron and hole is of the order of the
lattice constant of the material, this tightly bound pair is called a
Frenkel exciton. Such excitons are found mainly in molecular solids and
are thought to provide a means of energy transfer in these systems.

At the other extreme, the exciton radius extends over many unit cells.

These weakly bound pairs are known as Wannier excitons and are the type

present in semiconductors.
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The Wannier exciton has the properties of a Hydrogen-like atom if
we neglect exchange effects. The exchange interaction arises because
of the identity between electrons in the conduction and valence bands.
However, such effects are relatively small in Wannier excitons, in which
the electron-hole distance is large.

We will show later that for low exciton concentrations, exciton
operators obey boson commutation relations. A great deal of research
has been performed assuming excitons are perfect bosons, leading to a
theory of Bose condensation in excitonic systems, (Hanamura and Haug, 1977;
Keldysh and Kozlov, 1968).

Present day lasers, however, generate sufficient excitation to
produce very high exciton concentrations. The boson approximation then
breaks down, because of effects associated with the Pauli exclusion
principle, as will be discussed later.

We are now in a position to consider in detail the two experiments
mentioned at the beginning of the chapter.

The semiconductor used in the experiments of Miller et.al. was InSb,
in which the presence of excitons may be ignored (Miller et.al., 1980).
The suggested bistability mechanism for this system involved interband
excitation; we will discuss this further and develop our own theory of
this effect in Chapter 8.

We now direct our attention to the experiments of Gibbs et.al., using
GaAs; in which it is suggested that interaction between the light field

and excitons comprising the semiconductor gives rise to bistability.
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§4.2 Excitonic Bistability - Experimental Evidence

To explain the results of their experiments, Gibbs et.al. suggest
that light just below the exciton frequency is absorbed, producing free
carriers which alter the exciton absorptivity. The refractive index of
the medium thus becomes intensity dependent and provides the necessary
mechanism for bistability.

Their assumptions are based on an experimental investigation of the
nonlinear spectroscopy of GaAs, (Gibbs et.al., 1979b). They find that
the absorption coefficient as a function of intensity is similar to a
Bloch-like saturation curve, apart from an unsaturable loss term. Although
this suggests that the excitons behave as two-level atoms, Gibbs et.al.
conclude only that the free exciton transition saturates like a homo-
geneously broadened line. Bistable behaviour is explained as follows:
absorption of light by excitons saturates because of,

(a) exciton-exciton collisions;
(b) screening of Coulombic interaction in electron-hole pairs by

free carriers, and
(c) depletion of electrons and holes necessary to produce new excitons.

They also point out that the unsaturable loss term prevents the
observation of purely absorptive bistability.

The explanation of the generation of a nonlinear intensity dependent
refractive index in GaAs is thus solely based on an experimental. determina-
tion of excitonic absorptivity. A microscopic theory, essential to the
understanding of underlying physical processes was not presented by
Gibbs et.al.

We now wish to develop such a theory. To this end we consider the

theory of excitons in greater detail.
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64.3 Theory of Wannier Excitons

¢4.3(a) Introduction

Conceptually, we view an exciton as an electron-hole pair. The
wavefunction for a many particle system consisting of electron and hole
states is symmetric to an exchange of excitons. BAs a symmetric wave-
fucntion is characteristic of bosons, this suégests excitons may obey
Bose statistics.

That excitons exhibit boson-like properties has been discussed
extensively (Haken, 1977; Hanamura, 1974a, Keldysh and Kozlov, 1968).

However, at the high exciton densities it is now possible to achieve;

N ~10 -10" cm 3 (N = exciton density), the average separation
between excitons, PJ-V is of the same order as the exciton's associated
Bohr radius, Qs . The fact that excitons consist of fermions now becomes
of great importance; as the Pauli exclusion principle prevents electrons
(or holes) of different excitons coming close together if they have
parallel spins. Thus, when PJ-V is of the order of Qo , deformation
of excitons occurs and we can no longer expect them to behave like bosons.

We formulate this more rigorously as follows: the creation operator

for a Wannier exciton can be expressed as a linear combination of electron-

hole pairs (Hanamura and Haug, 1977),

é , Op.pp, Y(p) O da

where CL?"Cng are fermlon operators for electron (momentum _P, )

(4.1)

and hole (momentum iﬁ ); Qﬂ(iﬂ is a normalised wavefunction of

the ground state of a Hydrogen-like atom;

- 3/ral
Y (p (v praty (4.2)

The expansion (4.l) describes the non-localised nature of the electrons

and holes comprising Wannier excitons. For small radius (Frenkel) excitons,
we may treat the fermion pair CL£|(i£h as a pseudo-spin operator - leading

to a theory very similar to that of a two-level atom (Haken, 1976, Egri, 1979).
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From Eq. (4.1) we form the commutation relation,

T 2 t
[(:E) (;p ] = 1 - éi;g;, QQBl ((i?;Chh + C{EJQF,) (4.3)

Taking matrix elements of Eq. (4.3), we find,

NILC,GlnY = 1 - o(Nad) @

Equation (4.4) indicates that excitons obey boson statistics if
Naz ~ 1 , as found earlier, from physical considerations.

For low density systems then, we may adopt the so-called harmonic
approximation in which excitons are treated as non-interacting harmonic
oscillators, obeying Bose statistics.

It has been suggested that nonlinear interaction between such boson-
like excitons and other particles comprising semiconductors could lead to

laser action. Of the proposed schemes, those most likely to produce laser

action are:

1) (eX) + (eX) — (hy)P\\o{'on + (e)() (Benoit a la Guli.laume et.al.,
1969; Haken, 1977)

2) (ex) + electron /hole -—)(HV)P;,,{-M + excited eleckron /hole
(Benoit a la Guillame et.al., 1973)

3) (QX) - (h-y)Ph"'l"" +(\‘\v3 Pl—aonon (Haken, 1977; Haug, 1968)

where (ex) refers to an exciton; ( h\') to emitted quanta.

Haken et.al.(1975) develop a theory of laser action due to such processes.

A theory of laser action in CdS involving such processes was proposed

by Haug (1968). In this substance,
(3 .
N ~ [0 cm-3 , Qo = 30:8\
=  Nai = 107% « 1

and the exciton-boson limit is valid.
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Returning now to the optical bistability experiments concerning

GaAs,
N ~ 10*® to 10** m2 | q, = 140 R
> Nas ~ 107" tol
Clearly the harmonic approximation breaks down in this case and we

cannot assume excitons behave as bosons. An alternative approach is thus

required.

A quantum theory of excitonic optical bistability, incorporating high

density effects, has been developed by Goll and Haken (1980).

§4.3(b) Excitonic Bistability: Theory of Goll and Haken

Writing the Hamiltonian for the system in terms of fermion operators,

Goll and Haken derive Heisenberg equations of motion for the operators:
+ £ L 4 gt
Bl = &,y Gy aydy ———(4.5a)

(4.5Db)

e L ¥ ) h _ L +
N = éu' (ﬂu' a1 Qyp s N -£1¢' (ﬂ,zg'd:dz’

N. = :‘7_' (Ne-\- N‘") ————(4.5¢)

The B+'$ and their hermitian conjugates define creation and
destruction of excitons at the discrete lattice sites L- , and the
operators, Pd , define inversion; Cﬂpz' is a wavefunction describing
the relative motion of electrons and holes.

The commutation relation,

% L1
(B Bl = Sua = &,y Wttt Ui dut di

wly La +
- /Li!l’l; (plll\l wf&l{ a}t al. ———(4.6)

indicates that the algebra of these operators is not closed, as Eq. (4.6)

+
involves terms that cannot be expressed in terms of B, B or N .
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Deterministic equations of motion are obtained by averaging the
Heisenberg equations and assuming complete factorisation of expectation

values. Including phenomenological damping terms, the following equations

are found:

Bl s (v Bl 4 ivi(Dur0@) Bl -gR BB
1:51. = .23 (z\t E: + B A:) - ¥u (DL + Cﬂ(o)) (4.7b)

.
~

Al - . lHl:ah{' - G B} (4.7¢)
where gl., FJ'L are C - numbers and,
5,_, = 2 ﬁ\. - C/(O)
Y is the resonance frequency of the excitons; YI describes the
strength of interparticle interactions (e-e ,h-h,e-h ).

Al and ;&\: are the negative and positive frequency parts of
the vector potential of the light field; and 9 is the coupling constant
for the light field-exciton interaction ( G is a similar constant).

The first term in Eq. (4.7c) stems from the Hamiltonian of the free
light field in the crystal, Hl.‘shi’

X and Xn are the damping coefficients.

Equations (4.7) bear a strong resemblance to the optical Bloch
equations. Bistability is thus expected to follow as in the case of
two-level atoms.

Goll and Haken solve Egs. (4.7) in the steady state and predict
bistable behaviour in output intensity, dependent on input intensity.

Such a theory thus provides a simple model of optical bistability in

semiconductors, due to excitonic interaction with the light field.
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However, it has some limitations: Firstly, damping is included in
a phenomenological manner only. Secondly, we cannot formulate the system's
Hamiltonian in terms of the exciton operators described by Egs. (4.5). As
a result, we cannot derive the corresponding master equation and Fokker-
Planck equation. Hence the statistical properties of the exciton variables
cannot. be easily calculated.

We thus wish to develop an alternative theory in which the system
Hamiltonian is constructed entirely out of exciton operators. To enable
the straightforward calculation of statistical averages, we also require
such operators to have a well defined, closed algebra.

Once our Hamiltonian is constructed, we can derive the master equation
and hence include damping in a systematic fashion.

The approach necessary to formulate such a microscopic theory is

discussed in the next chapter.
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CHAPTER 5

BOSON EXPANSIONS OF FERMION OPERATORS

§5.l Introduction

In a second quantised formalism, we derive a Hamiltonian for the
semiconductor system by defining the field operators as an expansion
of fermion operators.

As well as the boson operators describing the light field, such a
Hamiltonian would thus consist of electron and hole operators, each
obeying separate anticommutation relations.

Instead of deriving statistical averages of the electron and
hole variables, we would prefer to obtain information about the excitons
formed from the electrons and holes; as in this thesis we are concerned
with excitonic optical bistability. We thus wish to express the
Hamiltonian in terms of exciton operators and remove all explicit
reference to individual electrons and holes. Also, the discussion of the
previous chapter showed that a sound treatment of the light-exciton
system follows only if the Hamiltonian is constructed from exciton
operators which have a well defined algebra.

We have seen that exciton operators, expressed as bilinear
combinations of fermion operators, obey boson commutation relations
in the low exciton density limit. This suggests that a suitable approach
is to treat our fermion system as a boson system. As bosons obey much
simpler commutation relations than the anticommutation relations of
fermions, this would be a favourable step.

However, in the experiments of Gibbs et.al. (1979), in which

bistability was observed, high exciton densities invalidated the low

density boson approximation.
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To develop a suitable model to describe high exciton density
systems, we follow in essence a method adopted by Hanamura (1970). This
involves the direct transcription from the fermion space to a boson
space. Interactions between fermions then become corresponding inter-
actions between bosons, thus all physical effects (e.g. Pauli effects)
are consistently included.

Hanamura's work on Wannier excitons was confined mainly to the
development of a theory of Bose-condensation (Hanamura, 1974a).

He also discussed the optical properties of these excitons, with

emphasis on transient effects such as self induced transparency, (Hanamura,
1974b), but did not consider optical bistability. Thus, using a
bosonisation transformation to consider optical bistability is a new
approach in this field.

The method of boson expansions of many-fermion systems has been
used in the development of a quantum theory of several quite different
phenomena (Garbaczewski, 1978).

For example, Holstein and Primakoff (1940) introduced a low-
temperature theory of the Heisenberg ferromagnet described in terms
of a boson representation of spin waves. Another such bosonised theory
of spin waves was presented by Dyson (1956).

More recently, bosonisation of fermion operators has been extensively
used in the study of the weak excitation limit of atomic nuclei
(Belyaev and Zelevinski, 1962 ; Marumori, 1960; Marumori et.al., 1964;
Janssen et.al. 1971; Sorensen, 1967, 1970; Usui, 1960).

The first such transformation was developed by Usui (1960), to
formulate a theory of diamagnetism of metals. This transformation
unfortunately generated non-hermitian boson Hamiltonians and non-normalisable
basis vectors in the boson subspace. However, these defects were removed

by Marumori et.al. (1964), who further modified Usui's transformation.
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In the nuclear models discussed by these authors, the Hamiltonian
for the system was written entirely in terms of pairs of electron operators.
Thus these theories were concerned with bosonisation of electron-electron
pair operators. We refer to such a transformation as bosonisation of
generalised bifermion operators.

Our semiconductor system, however, is characterised by electron-hole
pairs. To transform our Hamiltonian we thus need to adapt the existing
theories of generalised bifermion ttansférmations.

In §5.2 we present a brief summary of the generalised theory of
bosonisation of bifermion operators (electron-electron pairs). We extend
these ideas to develop a theory of bosonisation of electron-hole pair

operators in §5.3.

65.2 Transformation of General Bifermion Operators

The idea that one could replace a fermion space with a corresponding
hypothetical boson space was first introduced by Sawada (1957) and
Wentzel (1957), in the theory of the high density electron gas.

In the so-called harmonic approximation, Sawada showed that fermion-
pair operators obeyed approximate boson commutation relations in the
high density limit. However, this apparent correspondence leads to an
incorrect physical model, as we now show.

In all following discussion, let us designate the boson and fermion
spaces by \/B and \/F respectively. If the system Hamiltonian is
constructed only in terms of pairs of electron operators such as,

ofa. , a'ad’, aa,
the fermion space is characterised by the antisymmetrised basis vectors,
n
Im) = Of.'ee.O:rp. Qs O‘*.Fi ... Guan O.+P.-. lo) = Uq";‘.a};;|0> (5.1)
=1
where C;p is a fermion creation operator for an electron in state /L(;

and ,O> is the fermion vacuum state.
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We note that the operator pairs a”a", a0 anda Q'aq
when applied to the basis state (5.1), will create or destroy an electron
pair, or conserve total electron pair number (clearly the state (5.1)
could not describe the semiconductor system).

The most general element of a boson space corresponding to this

fermion space is,

Im) = (bd.pY’ (ba, Fz),v, . (l;dnpn)//" |10) —_(5.2)

where bdgpi = boson creation operator and | O) is the boson vacuum
state. Let us now restrict discussion to the case ./V. = ./1/1 = .. ’JVn =1

In the harmonic approximation we replace fermion-pair operators by
boson operators; thus the fermion state described by Egq. (5.1) is

assumed to correspond to the boson state,

+
m) = bd.p. b-l.,,z,_F1 gdnpn lo) = -I_l- bd.,P 10) —-3
We know, from the theory of Jordon and Wigner (see for example,
Schiff (1968), Chapter 14), that the postulate that fermions obey
anticommutation relations is sufficient to ensure that a dynamical state
can be occupied by only one particle at a time. This is, of course,
the traditional expression of the Pauli principle. The anticommutation

relations imply the equivalence,

n
+
Im) = Odla}; o) & ("‘) P-I_l- ah: Op., 10 _—(5.4)
where P’ means a permutation of any two indices of the set (ds P.. )- dupn}

However, no such relationship exists in the corresponding boson

state, Eq. (5.3). That is,

+
lm) = I | bd;F;_ lO) is linearly independent to the state,
[5-11

Iy = 1) P TT Basg: 10)

b'l
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Thus we cannot assume a strict equivalence between the fermion state,
Eq. (5.2) and the boson state, Eq. (5.3). 1In fact, this simple replacement
of a pair of fermion operators with a boson operator only follows if we
neglect the effects of the Pauli principle on particles.

We see then, that implicit in both the low density boson approximation
(see §4.3a) and Sawada's high density harmonic approximation is the
assumption of negligible Pauli effects.

These problems are overcome if we define a suitable unitary trans-
formation to map the fermion space to a correctly antisymmetrised

boson space.

¢5.2(a) Antisymmetrisation of the Boson Space

We define boson operators, gdp satisfying
r_ bdp, b*;’l] = édx 5[31 - 50!’\5(38 (5.5)
+ ¥
i batp, bx«l] = [ bq’p, bm]] =0

/
and introduce a subspace of Vg , VB spanned by the antisymmetrised

boson states:

7
_ P F ¥ +
’m) = \/VéP' (— ') P bd.Pg bdaF; e bdv\Fn IO) (5.6)
7
where JV is a normalisation constant and the permutation operator P
results in the state lm) changing sign when any two indices of

the set (d'P‘) Ce dnpn) are interchanged.

This boson state can also be represented as, (Janssen et.al., 1971),

(5.7)

= 1 + + & + &
To find the normalisation factor ‘/V , we must form (mlm) = 1
and thus need to consider the number of distinct permutations of the term
$ ¥
gel.p. bd;?; bdnpn with respect to the indices (d.p‘, d"ﬁ")-

Firstly, there are (ln\', different arrangements of these indices.
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However, as ¥ + + +
ba(\el bd:_?:l = bOb.FI LOLP)
we find that T\‘. of these arrangements are equivalent, so we must

divide the total number of arrangements by n' . Also, for each of

the N paj:rs (of\f’n, .. dn?n} there are two ways of arranging each one.
As this is equivalent to having T objects and two containers to put
them in (container 1l: pairs in order ¢\ ?J ; container 2: pairs in
order p i A ), there are 2,“ ways of arranging the pairs amongst

each other. As a result, we must divide the total number of arrangements

n
by 2 . Thus, the number of distinct permutations is,
(2n)! - ‘
2" nit (2n-)t!

|
= A = /(_,Z__T)_‘T —(5.8)

where (20-0)1) = (2n-1)(2m-3)2n-5). . .

Following Janssen et.al., (1971) we introduce the operator,

t + + +
- —(5.9)
Bd@ = bdp - é‘zé bay bgs bys
which generates the required permutations when acting on the ground state.

We can then write:

! +
fm) = fanonl Ba.p. B:'npn o))

+
We prove these properties of the operator Bc(P in 955.3(0) and

(5.10)

the Appendix, in the case of the electron-hole pair transformation.
Thus, we have defined a set of antisymmetrised boson states i)

(Eg. (5.10)) in one-to-one correspondence with the fermion states |m>

(Eg. (5.1)). We now consider the explicit form of the operator which

will effect such a 'Pauli-principle-conserving' transformation.
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§5.2(b) Usui's Transformation

The first transformation developed to map from a fermion to a boson

space was that due to Usui (1960), taking the general form,

L +
Ui = 10540l exp { 2 édp bag O‘gad} lod (ol —_—(5.11)
This operator has the desired property that it maps I0)®VF — Véelo)
but the corresponding basis vectors are not normalised, as one may show

from Eq. (5.1), (5.7) and (5.11),

Uiio)Imd =/ (2n-1'! Imyiod —(5.12a)

and
olml U = /@n- <ml (ol (5.12b)
= (o|<M|UTU.lm> 10) = (2n-1)11<o) (mim)IoY (5.12¢)

This defect in the normalisation properties may be rectified by

introducing a modified Usui operator (Janssen et.al., 1971),

Dl = ,O)<O| z‘r:’:o &L-n)! [éa{ﬁ ai;la} bdﬁ] |O><Ol .13

From Egs. (5.1), (5.7) and (5.13), we find,

U 1m)10y =/ an-11 Imd 10)
_ |
(ol <m\ Ui = fan-nt ol (ml

Equations (5.12a), (5.12b), (5.14a) and (5.14b) yield,

(5.14a)

(5.14b)

<I’Y\la|U-‘M'> = 5m,m' ; (mlu.a.\m') = ém,m' —{(5.15)
showing that D-U behaves as unity in the fermion space |0> ® VF
and u,a. behaves as unity in the boson subspace VBI ® ‘O>
One may also show that the matrix elements of any operator are

unchanged under such a transformation between fermion and boson spaces.
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Janssen et.al. (1971) derives the relationships associated with

this transformation

Ui dudy 0 = Bag P
U apa,l D. = bazp /fs. (5.16)

Uakag U = £y Baybes P

where Fi is a projection operator, projecting out the nonantisymmetrised

components from each boson state,

o

00 |
P - ﬁm ImY(m| = f =0 @M1 (2n DT </‘, Ba:.p. Banpnlo)(ol&f.p. B,
(5.17)
ﬁ F"'

The relationships described by Egs. (5.16) have the advantage that

they generate finite expressions for the transformed pair operators.

One drawback of this transformation, however, concerns the non-
hermiticity of the resulting operators. That is, if

ﬁ}‘ = WF Ejt

is the boson image of the fermion operator F , then because [].#(Jr,
it F = F.:,+ it is not the case that '}u = 3": . This is also
apparent from Egs. (5.16).

Thus any boson Hamiltonian formed using this transformation will not
be hermitian.

This problem is not encountered in a modified version of Usui's

transformation, developed by Marumori et.al. (1964).

§5.2(c) Transformation of Marumori et.al.

This transformation is based on the use of the unitary operator,

» 1 N n
165401 Enze @t AZan 0 [f,q; bag G‘Pad] 10)(0) ——(5.18)
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It generates the required mapping,

Uw :10) @ Ve — Vg & |0)

and maps to properly normalised states:

Um 10X Im) = Im) |0 (5.19)

yielding, as in the modified Usui transformation
<m' lUM UM ImMY = S o
Calculating the matrix element of any fermion operator F ’

we find,
CmiFlm) = {miUnUm F UmUm Imy = (m) Fim?)
where 3- = UmF u:‘ , indicating that the value of matrix elements
is preserved under the transformation UM .

In contrast to Usui's transformation, we find that hermitian

conjugation of operators is valid under UM :

+

F=F = '3~T='3*,.

Janssen et.al(1971) derived compact formulae for this transformation:

Um o O} Utw

B:p \/TTI\T P

| a (5.20)

Um Qg G UM

u
+
4

o

R
-»

Um 0% Op Urt\ = é‘x b+dx \Dpz /Pn
o +
N N = iatp ba(p bd{&
where P: is the projection operator defined by Eg. (5.17).
The term V| + ﬁ occurring in relations (5.20) generates infinite
boson expansions. Thus although we avoid the non-hermicity of transformed
operators encountered in Usui's approach, we now have to deal with infinite

sums of bosons.

In practice we can only use the transformation UM in certain

limits, when truncation of the infinite expansion is possible.
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65.2(d) Other Transformations

Another such transformation was introduced by Belyaev and
Zelevinski (1962 ) and further developed by Sorensen (1967). 1In this
formalism, pairs of fermion operators are replaced by a boson expansion,
the expansion coefficients of which are chosen to preserve the commutation
relations of the fermion-pair operators. Unfortunately, the wavefunction
so formed contains unphysical components which violate the Pauli principle.

A completely different means of deriving a boson representation for
a fermion space was presented by Janovici and Schiff (1964): the generator-
coordinate method. As shown by Janssen et.al. (1971) such a method yields
the same results as the algebraic method of Marumori et.al.

We now extend the ideas of ¢5.2 to the special case of the transformation

of electron-hole pair operators.

§5.3 Bosonisation of Electron-Hole Pair Operators

In §5.2 we considered the bosonisation of a general fermion system,
characterised by bifermion operators.

Such a theory cannot be applied to our semiconductor system, as the
fermion state (5.1) has no reference to hole states which are necessary
to describe a semiconductor.

In fermion space, the semiconductor Hamiltonian can be written
entirely in terms of the pairs of operators,

da., od" ad, dd
thus the general fermion state describing the semiconductor system is

given by,

4’-
ImY) = O dE.a*;,dE, ... Odn dgn 1O) (5.21)

where Qdi and C!FL are electron and hole operators respectively,

for the single particle states o, Fi .
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Hence we wish to develop a transformation that will map electron-
hole pair operators to boson operators.
Following the work of Marumori, we expect the desired transformation
will have the form:
0 ¥ n
U = 10540l £y $m) [ £ (bap dp 0] 1000
where ;(YQ is determined from normalisation considerations. We discuss
this further in §5.3(b).
Mappings of interest are:
Uata U’ , UddU
UadU' | Uad'u’
However, mappings of the type
Uatdu® , Uata* U
are not considered in our theory, as the application of such pairs of
fermion operators to the basis state (5.21), produce states which lie

outside the vector space spanning the semiconductor system.

§§.3(a) Boson Subspace

We wish to construct a boson state equivalent to the fermion state

(5.21), as

I'm) = g«.g. B'dzpa ga,‘pn To)) —_—(5.22)
where gg;?; is a boson operator: the of{ refer to electron states
and the ﬁi refer to hole states.
From anticommutation relations
Im> = TT, ab d)é; 0y = (-\)P PTT; Oj-dzd.;c Xo)/
where the operator P generates all possible permutations of electron

indices (hole indices) for fixed hole indices (electron indices).
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However, as mentioned in ¢5.2, such a correspondence does not exist
for the boson state (5.22). In fact, the operator P will produce n!
linearly independent states. (There are actually (11!)1 different
permutations of the indices (d.p|,... Jinpn) describing all possible states,
but only n! of these give rise to distinct boson states).

The required antisymmetrised boson state corresponding to the

fermion state (5.21), is,

L P ot ¥
IM) = m ép (-') P bd-fu .. bdnpn lO) —(5.23)
where the factor jéﬁ is included for normalisation purposes and the
mn.

summation is over permutations of electron (hole) indices with hole

(electron) indices fixed.

§5.3(b) Transformation of Electron-Hole Pair Operators

We now wish to construct an operator U  such that,

Uim>io) = 1m)1od —————(5.24a)
and
N = 10)
Wim)loy = 1m) ——(5.24D)
The discussion of section 5.2 suggests we choose an operator of the
form:

U = 1o><ol g::o -,C(n) [£‘F g«p dfz Qu }n lo)(ol ———(5.25)

where ;(70 is to be determined.
Applying such an operator to a fermion state, as in Eq. (5.24a),

we find

Uimy10) = 105<01 Ento §my [ £ag (Bp dp )] 10)C01 Gl ..
.. O'sn dpa 10710)
2103 $r £ Bug. .. Buage 10) <Ol dgn e . dpau v ..
BB . O+¥n df’n 10> (5.26)



102

We have included the nth term only of the summation over n,
as the fermion state |‘YY\> contains exactly n terms.

We note that

£ <ol dpn Qaa ... dp- Q« A%, d;o. ... Q'%n d;;n [0)3 gd.F. gd“F" |10)

o) odn
&'“F"

_ P t ¥

= n! ép(-‘) P bx- Ve banan |O) (5.27a)
( P = permutation of electron indices, for fixed hole indices), as:

<Oldpn0.d. ...dp,ad,d}, d}. e 03..&;.\ o) = 5)6-\,0.\ 5dnxn-~(5p.f.5d.x. —(5.27b)
and the summation over (Olu,-- dn,F.,.- Fn) generates N! such
expectation values (for fixed hole indices), with a corresponding sign
change whenever the order of the fermion operators is inverted.

From Egs. (5.23), (5.26) and (5.27) we find,

Uimdy10) = 10> f(m) /At nt 1m)

(5.28)

As we require the transformation U  to have the property described

by Eq. (5.24a), we obtain the result,
fny = |
n. /ni

and thus find the necessary transformation,

o0 | n
U = 10> <ol én:o —'rlx—" ‘/'?_T [Zd‘s B’qu dFOd] 10) (ol (5.29)

We also require Eqg. (5.24b) to be satisfied: Egs. (5.23) and (5.29)
yvield,

|
u+l’YY\)IO> = ‘O) ihl_)l g a*el. d;. ...a*'dnd%n l0> ép(-’)PPbﬁb\Fh---

ody...0ln
Buov fin b, S}.f. ...gxnf,. 1) ———5.30)
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The summation over the permutations in Eq. (5.30) generates n!
terms. Also, the summation over (Oh “"d"’P”"F") yields another Tn!
terms for each of the permutations generated by P , and the fermion

P
operators produce a sign change to cancel the effect of G“) . Thus,

éd O‘:’u dg' .. ai-dn d?n |O> él’(- | )P P (Ol bann .o bdtpl b+3|ft -‘-S—ann \0)
alie- An
B pn = (n')* g% dp. ... % d;n lo)} —_—(5.31)

Equations (5.30), (5.31) and (5.1) imply,

L1+[7Y{)‘()> = ‘<3) Cf}l‘i;l"‘ Cf%nld;n MD) = |m) RD)
= Eq. (5.24b) as required.
We have thus derived an operator producing the desired transformation
between a fermion space, characterised by electrons and holes, and an

antisymmetrised boson space:-

u: IO)g ® Vg — 10), ® \/Bl —_— (5.32)

§5.3(c) Antisymmetrised Boson Operators

Following the discussion of §5.2, we introduce the operator

B:@ = goz@ - ﬁu gd‘& gép bsy ——(5.33)

then we may write the antisymmetrised boson state, Eg. (5.23) as,

| . |
Im) = & 2,(-')?P bd.F....ganu\O) = AT B:.p....B:,p.. lo) —(5.34)

In all such terms & refers to electron states and @ to hole
states.
Expression (5.34) is proved by induction in the Appendix.

From this definition we find

é B:.@. B:z.\p,, 10Y(0| Betngn ... Bag,
R

i...a.. él’ (-')P p B}‘p, B—d.\pﬂ 10)(o| Bann... Bd.F.

) o
8| .. pn
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Any even permutation of the boson state can be written as,

£ bd.F - B-ann 10) (ol Beatngn... .Ba.p. — (5.35a)

and any odd permutatlon as,

_déda b+°n€x b+dxFa b+°[nFn IO)COl Bd"?""‘ Bd,F|

f/\ bae.p bd:gx B'ct..g.. 10) (ol Belnpn ... Botyg, Baigs

Hiee ol
Brepn

= ¢t déa.. Gd.p, S’dxpx B'd,p,. 10) (ol Baz.\pn ...de‘g, Bd.F. ——(5.35b)
B Bn
as the Bcl.-‘g;_ are antisymmetrical with respect to the indices (d.,...,el..)
with (ﬁu, o, ﬁ,\) fixed (or vice versa).
Equations (5.35a) and (5.35b) indicate that the odd and even
permutations generate the same terms, and as there are n! such

permutations,

éd‘ B:(.F. e B:ln pn lO)<Ol Bdﬂpn .. Blel
@....Pn

éd” b:(.p, gd..pn lO)(Ol de\Fn Bdnpi

= n! é,,, Bi;l-ﬁ- B:(.\pn 10)(0! betngn ... bty ——(5.362)
B fn

Similarly

(01 Bynsn ... Byis, | Bugp, ... Baapn 10)

(O‘ bXnEn bX.é. ‘ B‘:l.p. B:(apn \O)

(01 Bynga... Buis 1Bt ... Batupn10)  ——(5.36m)
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@.3(d) Projection Operator

P

In analogy to Eq. (5.17) we form a projection operator P , which

projects out the unphysical components from each boson state:

A~ ~ o0 )
P: 4. P = Eoim)(mi = £rco f,do«_‘)? B:,F....BZHP.\ 10)Co]

fr-pn X Boingn ... Baips
= S édn (r:g)l B::‘F....Btznp..IO)(Olba.pn...ba.p. ——(5.37a)
(using Ez.:ﬁ(ns‘%a) ).
Clearly,
P=7" -7 (5.37b)

~ ~~
We now derive some useful relations involving P , de and N

where
e +
N = éap ba‘s bazp
Firstly, consider

~ A o0 ~ |
N P = 2:1\:0 N g,é"/%" (m)?* gd\P. .. gd.,p,. joY(o Boz,,{;,,...Boz.p.
o Nt
én:o ;‘é";‘(ﬁ‘*ﬁ de bdp\ (,n,.\)z bd.F, e gdnpn lO)(OlBa..pn ... Ba, Bi
© mn_ é‘/ + +
Z-n:o (.-nl):. & bd'P','" bann ‘O)(O\ Bdnﬁn.. . Bq’,p.
Bl gn

1]

o~ ~
and similarly,
~ oA ~
PN = én Pn m (5. 38b)
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Thus, from Egs. (5. 37a), (5.38b),
/ﬁ N g«p = :o (m)n. Z/‘, Boz.p Bd.‘p.. 10)(o} bap, - -
p" .. bag, N beqs
g'r\-o Ty ({ Bol B Bd“g,. 1030l bangn ... barg, de

(nY) aI....
Pn

- €7 B £ Bag . Blawga, Bup 1030 bunpo . g,

A (D R

g....p,,
- de n=o [(.n_.).]l ({ Bd. .. B:.‘-‘pn-» lO)(Olbd-...pn-....baz,g.

+ =~
= Bdﬁ P (5.39a)
+ -~ t
Also, as C bdp, N] = "b.zp , Eq. (5.39a) becomes,
~ ~ 1t ~ .t ~ + o
PN ba = P bag (O +N) = Batp P (5.39b)
Another important relationship follows from,

P bdp £m, rim) () balp\m)(ml = é‘mlm[aa,p])(m —(5.40)

where IMEd7F]) = the state ‘T\‘\) with the particular pair («, @) removed

and bqp /]5 = ém bapl'm)(ml = g,mlm\:a,g))(ml (5.41)

eqgs. (5.40) and (5.41) yield

a

Pbdp/p = de/P (5.42)

Finally, consider

£3 b;x b'fx/P\ = én-" 1‘\‘3" (4‘/ C{‘ b/ux ‘Dvx bd.p.. bdnp..!O>(Ol
9 5" de.p. Ba.g

@ n* + ,
= én:o (‘n‘)" o{éd-\ b/“ Y (é‘Vdn 5)’?;) bo(aF. v gdn-;pn-—l IO>(O' Bc{n pn cee
Browpn ... By
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9.

o +
= é n=o (‘n')" ‘n é B/up,. Bol. Bdn-‘ﬁnn IO)(OI BVFn
3 F" Bd.P. (using Egq. (5.36a))
= a:, [Cn i ]1 é Bd‘ ‘e B:(,‘_. F"_, B:“ F“ |O>(OI B)l/@n Bdn-tﬁn-c ..
prn Bo/,P, (5.43a)
Also,

53 b/ux bvy = gn-o (7\')" é Ba{. . BLNF, lo)(ol ba..pn
ﬁ' F" bd\?. éy byx

o nNn*
£n=o (m)* aéa“ B:‘F' B:a‘p.. IO)(Olba..-.pn-. bd.g.(éd./.«éxpn)bvx
B B

bmto G & Biupe ... Bupn10X0] b g bemnpan - b
Br..- Bn

o 1

+ + +
[( ‘)|] hl_l) <o BchP, 8dn-an-l B/JFn IO)COl Byﬂnedﬂ"ﬁ"""
Br--

e Bd.p‘ (5.43b)
(using (5.36a)

Comparing (5.43a) and (5.43b) we find,

/FS éz I:;/u! va = éb’ g/ux bvx /P\ (5.44)

Frequent use of Egs. (5.39), (5.42) and (5.44) will be made in the

derivation of fermion-pair operator transformations.

565.3(e) Properties of U

~
Having defined the transformation |l and projection operator P , we

can now consider the explicit nature of the mapping.

Equations (5.24a) and (5.24b) yield,

n

(rlutUuIm) = I <m Tutu Imd1o) = <ol (mIimHI0)  (5.45a)

6m’,m

4]
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ol (m'Tu Urim)loY = (ol<m |m)10)

S’ m (5.45b)

=9 (e LUUT M)

indicating that U"U behaves as unity in the fermion space, and Uu+
as unity in the boson subspace.

The matrix element of an arbitrary operator, F between fermion
states is then given by,

(mIFImMYy = {mlUWUF U UMY = (ml Fim)
where
o= UFUT ——(5.46)

is the boson image of F . Thus the matrix element of any operator
is unchanged under the action of the operator U

Also, as in the transformation of Marumori et.al., the hermiticity
of transformed operators is preserved.

Furthermore, Eg. (5.29) implies

UUT = 105401 Emto 7 i [ &g Bap dpae] 10)(010) (ol
x 8o, [ £,,0% db b 10><ol

oo |
= TS + f
= oy fm inl)3 5 Lol dg.Qa. ... dBnQonQ¥ndim .. . (5.47a)
. S
t + +
‘e a.lz}. déa IO> bd(F| ‘..bann ‘O)(OIbUnSn b3\6| <Ol
(where _(}. denotes the summation indices {d-,...oln,Fn,..,Fn,Xn,..B'n,&,..5.«}).
+ T ,

The operators dp.a.z, - d?n Qan and Ct+x,,d3,,...a§.ds, are antisymmetric.
with respect to the indices (le;, .. Fno’n\ and (Knén,- . ,\535‘>
respectively. The sums in expression (5.47) will thus contain the

ul +
antisymmetrised components of the states bol.ﬁ‘ .. bdnﬁn IO)

¥ +

and COlenSn... bX.S. only, and we may replace bd.ﬁ. . ba(nPn IO)

L\ ot *
by the antisymmetrised state (W) Bd.g. e Bdnpn lO),

o | t
= Uu+ = lO) g'n:o (7\{)5 é—n- <O| dp, Qa - -« dpnadn a.g'n dén .
dYt d’bt lo> B:I-p. ...BL-\Fn'O)CO‘BXnSn--- B¥.s$, <OI

1
= \O> é‘n Wdéas‘:"?' B:(np-\ lO)(OinnFn Bd-P-<O\ (using Eq. (5.27a)).

e DN
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In the boson subspace we may replace ‘O) \O><O| (O\ by |0)(0O)

whence,
+ ~
U U = P ———(5.47Db)

Equations (5.45b) and (5.47b) indicate that the projection operator
acts like the unity operator in the boson subspace.

From Egs. (5.29) and (5.37) we also fing,

P U étn =0 ('Y\') C{ BO(- . BO‘RF-\ IO)COI bd-\Fn . bd.Fa 'O><O,
‘3« X ém 0 ’m‘ f_' [2‘66 bxé daax] lo)(ol

= 10)<ol {: ‘/—' ('“')3 ({\ Bd. . BO('\Fn IO)(Olbd.\p,....ba.g.gx.‘s,,,.
b"tét 'O) d&nax,, d&a‘, CO‘ (5.48a)

We note that,
+ *
COI bdﬂgn bd;ﬁu bXnén bx:s. lo) = 6dn‘6n 6Fn5n e éd.x.ép-é.
and as the summation over _{L generates 7! such terms for fixed
{Ungn, ‘6.8'} we find
é: T
P u = ‘O><Ol én-—o ‘/"'\' (1-\')" ,g BX;S: ... Bandn o) ds.ax‘...d&\arn(ol

Following the discussion of the derivation of Eq. (5.47b) we replace

+ t
the antisymmetrised boson state By, ...B¥w8n10) by the boson state

+ +
('T\l.) quSun . b Inén 10) , leading to

o 1 _
PU = 107¢0! Emo 7l Zf Bt s 10)dssam .. dsnaisn (O

8.
2 /{SU = |O><O\£n-° /_| 'nl [Zxa bxé dbax‘} ‘O)(O\ (5.48b)
Similarly,
U+/‘S = U+ (5.48c)

As a consequence of Egs. (5.46), (5.47b), (5.48b) and (5.48c),

7~

31=/§'3‘=3‘P (5.49)

implying that the application of an arbitrary transformed (boson)

operator to any boson state projects out the non-antisymmetrised states.



110

We have thus successfully extended the ideas of the generalised

transformation derived by Marumori et.al. to the case of electron-hole

pair operators. Let us now derive the explicit transformations.

§5.3(£)

Derivation of Electron-hcle Pair Operator Transformations

Firstly, consider

o I n
Uauav U" = 105401 { o 7T /i [ﬁap btep olpcu] lo)(ola;a,

% 10X0! §meo 1/ L& 45 A i bws | 10><O] (5.50)

Expression (5.50) will be non-zero only for those terms in which the

summation over {d‘,.--dn, ﬁ‘,... Pn} generates the same number of electron

and hole operators as the summation over {‘61, .8, 6;,... 6-\“} .
+ ¥ *° "—"'3 é‘ +
7 Uduas U™ = 107 f,‘mo ) Ca 01 dpQu ... dBnOdmQuay

X a’f;, dTSn ... Q% d;. 10) Bd.p....gd.,gn 10)(0 bxnsn... bys O]
where L

again denotes summation over all indices.

As in the derivation of expression (5.47b), we replace the boson

state gdcﬁl e gdnpn \O)
(:,l.‘T) B.:l.(_).. ... B.:’nFn 10)

the fermion operators in the summation).

by the antisymmetrised state

(because of the antisymmetrical nature of

w |
% Uduay Ut = 10) Lo iy § adoVdp.aa ..dpnaan af0y O dia
...Jx\a'z. 10 B:"F' B*o/.pnlo)(olﬁx.‘sn...Bx.&(ol (5.51)

Consider the summation over L : By construction, all the subscripts

in any given term are different (otherwise the fermion operators generate

a zero result). The fermion operators a}'. and (y can be moved as follows:

é_a > ([:,n. 2,.,5 ol (-a,'i.ad, + @ud.-)[T[;,#r (dfscadg)] dprd;

x LT 45 (dy: d5))(84s, - O 0y )10? BZ.p....BZ.pn 10)(01 BnSn...Bx5,
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> & Span Ovin <Ol dpaa - dgn-i Q- dgn Ao O4ns s

..a+X| dgu IO> 8:(-?. B+dnpn 'O)(O‘ anSn ... BKnél

(5.52)

The matrix elements in Eq. (5.52) produce Kronecker delta functions
as described by Eq. (5.27b). As the sum over N yields nn-N!such

matrix elements for fixed {o?n-a, -2, Ba, .. g.-} we obtain,

Equ 5.52 > £ w(nnint Bug . Bplo)01 Bysa. Bys, .5
Br-Bn

We note that in all further discussion, we include the fermion

ground states in the boson states as,

10% B:l.p. B:(.\pn 10)(O1 Batngn ... Batg, LO1 = Bté.p.... Bann 10)lo><o1 (ol
X Botngn ... Bel::

B:(.g. B:npn 10)(o! Bd.‘pn.-- Bd'[a.

= (5.54)
Bepn.

Thus, substituting (5.53) in (5.51) and using (5.54), we find,

o0

(n\)*
Uaj;ay Uf = £n=o n(‘r\;S élo B/:/o { é Bd. "'6:""p"" jo0)(ol

'l J'\-t

B xed.,..p,....ao,. .} Bvp

(letting N> N+l )

é B/u/o 21\ 21 (|+»n)= (n')3 f’ Ba. ...B:lr\ﬁn‘O)(O‘Bdnﬁn---sd\ﬁ;-BVf

Replacing N by the correspondlng operator N acting on the boson state,

=4 UO;CL/ 2/’ B/u/o 2,\-. (HN)" (~n')3 é Bd, - Bd..p.. lO)(O\Bd..p..
p' F" Bdlp Byf
y 4 s
élo B,u/n (1 +R)? P Bv/o (using the definition of P , Egq. (5.37a)