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Bias-Corrected Instrumental Variable Estimation
in Linear Dynamic Panel Data Models

Weihao Chen∗ and Pavel Čížek†

Abstract This paper introduces a new estimation method for linear dynamic panel
data models with endogenous explanatory variables. The proposed approach adapts
the estimation methods based on bias corrections of the least-squares dummy-variable or
maximum-likelihood estimators to a common situation, where some explanatory variables
are endogenous. The estimation approach relies on combining several simple instrumental
variable estimators and correcting their biases using the analytically-derived bias expres-
sions. We prove the consistency and asymptotic normality of the proposed bias-corrected
instrumental-variable estimator under weak assumptions. The finite sample performance
is compared with existing estimators by means of Monte Carlo simulations, which demon-
strate good performance with the simplest choice of instrumental variables.
Keywords: bias correction, dynamic panel data model, endogeneity, instrumental vari-
ables

JEL Classification Numbers: C13, C23

1 Introduction

The linear dynamic panel data models play an important role in applied economics.
Their flexible specification with fixed effects allows modeling of dynamic behavior (e.g.,
economic growth, health labor supply, wages and returns to schooling), but poses estima-
tion challenges especially for the data with a small fixed number of time periods. In short
panels, standard methods such as the maximum likelihood estimator (MLE) and least
square dummy variable (LSDV) estimator are inconsistent (Lancaster, 2000). There-
fore, instrumental variable (IV) and generalized-method-of-moments (GMM) methods
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have been extensively studied; important contributions include Holtz-Eakin et al. (1988),
Arellano and Bond (1991), Ahn and Schmidt (1995), Hahn (1997), Blundell and Bond
(1998), Alvarez and Arellano (2003), and Hahn et al. (2007). The complexity of more ad-
vanced GMM estimators in terms of IVs and weight choices as well as varying performance
depending on data characteristics (e.g., on the ratio of variance of individual-specific ef-
fects and the variance of the general error term, see Kitazawa, 2001, and Bun and Kiviet,
2002, or on the strength of data persistence, see Bun and Windmeijer, 2010) however led
to development of alternative methods.

The main alternative approach relies on combining the traditional LSDV or MLE
estimators with a procedure correcting their bias. Their bias can be estimated using an
asymptotic-bias expression (Hahn and Kuersteiner, 2002; Bun and Carree, 2005), boot-
strap (Gonçalves and Kaffo, 2015), jackknife (Dhaene and Jochmans, 2015; Chudik et al.,
2018), or indirect inference (Gouriéroux et al., 2010; Bao and Yu, 2023). These methods
are relatively easy to use and have been found to provide performance superior to the stan-
dard GMM estimators for panels with moderate numbers of time periods (e.g., more than
5 or 6 time periods; see Flannery and Hankins, 2013, and Dang et al., 2015). Contrary to
the GMM estimators, the existing bias-correction methods do not allow for endogenous
explanatory variables, which limits their empirical applicability. Therefore, we extend
the bias-correction methodology to linear dynamic fixed-effects panel-data models with
endogenous regressors and a finite number of time periods.

The key difference between estimating a panel model with only exogenous variables
and with endogenous variables is that, in the latter case, the biases of simple LS, MLE, or
IV estimators do not decrease to zero with an increasing number of time periods. Hence,
the results of Hahn and Kuersteiner (2002) or Dhaene and Jochmans (2015), for instance,
do not directly extend to the case of endogeneity. Therefore, we proceed similarly to the
approaches of Bun and Carree (2005), Breitung et al. (2022), and Bao and Yu (2023),
which apply to estimators with non-zero asymptotic biases in panels with a fixed num-
ber of time periods, but contrary to these works, we allow for endogenous explanatory
variables. More specifically, we consider simple IV estimators of dynamic panel models
that employ one IV for each endogenous explanatory variable, but no IV for the lagged
dependent variable, which is treated as if it was exogenous. Although such IV estimators
will exhibit bias and are thus inconsistent, they can exhibit a smaller variance than an
estimator instrumenting the lagged dependent variable. To make use of this property,
we will derive the bias of the moment conditions of the simple IV estimators and cor-
rect it similarly to existing studies of the bias-corrected LSDV estimation in models with
exogenous explanatory variables (e.g, Breitung et al., 2022).

The contribution of this paper is threefold. First, we propose a bias-correction pro-
cedure relying on a set of simple IV estimators, for which we prove the identification of
the model parameters after the bias correction. The key result is that, contrary to the
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existing methods based on a single LSDV estimator with exogenous variables, the iden-
tification under endogeneity requires a set of at least two different but readily available
IV estimators. These derived results also demonstrate that the bias-correction estima-
tion of short dynamic panel-data models (e.g., Bao, 2021, Breitung et al., 2022, and
Bao and Yu, 2023) can be extended to models with endogenous covariates. Second, we
show how to estimate parameters of interest by combining several bias-corrected esti-
mates based on different IVs and characterize their asymptotic behavior. This is done
under weak assumptions and the proposed method thus provides a practical alternative
to the existing GMM estimators: it is easy to use as it performs well with the simplest
choice of instruments and offers better finite-sample performance than commonly used
GMM estimators. Third, we demonstrate that the proposed method allows us to combine
moment conditions based on different data transformation such as the short differences
of Arellano and Bond (1991) and the long differences in the spirit of Hahn et al. (2007).
Although these transformations naturally complement each other due to their different
properties for different data generating processes, they cannot be easily combined and
used jointly within a GMM estimator due to their linear dependence given the same IVs.

This paper is organized as follows. For simplicity of presentation, we only consider the
first-order dynamic panel-data model under homoskedasticity in the main text; an exten-
sion to heteroskedasticity is straightforward as discussed in Appendix C. In next Section
2, we first propose a simple bias-correction methods applicable under endogeneity, in
which only one endogenous explanatory variable is present and only one specific trans-
formation – the first-difference transformation – is considered. In this section, we also
present the key identification result. In Section 3, we generalize the results to multiple
endogenous explanatory variables and other panel-data transformations and present the
identification conditions as well as the general theorems for consistency and asymptotic
normality. Section 4 then presents a simulation study to investigate the performance of
the proposed bias-corrected IV method in comparison to some existing GMM estimators.
Section 5 concludes. All the proofs and derivations are collected in the Appendices.

Through out the paper, the following notations are used. Let ιT = (1, . . . , 1)′ be
the T × 1 vector of ones, IT denote the T × T identity matrix, and for any T × T

matrix, ||A|| = (
∑T

j,k=1 a
2
jk)

1

2 be the Euclidean norm of A. Further for the time index
t from 1 to a finite T and for a random variable or vector xt, x̃t will denote its first-
difference transformation xt−xt−1. For any two random variables xt and zt, we also denote
σ2
x = E(

∑T
t=2 x

2
t ), σxz = E(

∑T
t=2 xtzt), σx−1z = E(

∑T
t=2 xt−1zt), σxz−1

= E(
∑T

t=2 xtzt−1),
and σx−1z−1

= E(
∑T

t=2 xt−1zt−1). Additionally, let
p−→ denote convergence in probability

and d−→ denote convergence in distribution, where all limits are always taken for N → ∞
with a finite T and where N → ∞ is therefore kept implicit. Hence, we label a finite-
sample estimates of any quantity c by ĉ, leaving the dependence on the cross-sectional
sample size N and the number of time periods T omitted for notational convenience.
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2 Bias-corrected IV estimation in dynamic panel model

In this section, we introduce the basic concepts of the bias-corrected IV estimation in
dynamic panel data models. For simplicity, we initially consider the first-order dynamic
model with only one endogenous time-varying explanatory variable and balanced data
with N independent cross-sectional units and a fixed number T of time periods.

Consider the first-order dynamic panel data model with parameters β0 and γ0:

yit = γ0yit−1 + β0xit + ηi + εit, i = 1, . . . , N, t = 1, . . . , T, (1)

where yit denotes the dependent variable, yit−1 is its one-period lag, xit represents a
scalar explanatory variable, ηi is the unobserved individual-specific effect, and εit is the
general idiosyncratic shock. The error terms εit are assumed to be independently and
identically distributed with zero means and finite fourth moments, and as usual, errors εit
are not correlated with ηi and initial observations yi0: E(εit) = E(εitηi) = E(εityi0) = 0

for any i = 1, . . . , N ; t = 1, . . . , T . Although we assume identically distributed and
thus homoskedastic errors for simplicity, an extension to heteroskedastic errors and more
generally non-identically distributed errors can be designed similarly to Juodis (2013);
see Appendix C for details.

Contrary to the standard setting in the bias-correction literature (e.g., Kiviet, 1995;
Bun and Carree, 2005; Dhaene and Jochmans, 2015; Breitung et al., 2022; Bao and Yu,
2023), the regressor xit is allowed to be endogeneous and thus can be correlated both with
the unobserved individual-specific effect ηi and errors εit. More specifically, we assume
that E(xitεis) 6= 0 for t ≥ s, while E(xitεis) = 0 for t < s. Hence, only future errors are
assumed to be independent of current and past values of explanatory variables.

Given a finite number T of time periods, the individual-specific effects have to be
eliminated to consistently estimate the parameters θ = (γ, β)′ of interest. To facilitate the
use of instrumental variables, the unknown individual-specific effects ηi in (1) are usually
eliminated by applying the first-difference transformation. Recalling that ỹit = yit−yit−1,
x̃it = xit − xit−1 and ε̃it = εit − εit−1, model (1) can be transformed for t ≥ 2 to

ỹit = γ0ỹit−1 + β0x̃it + ε̃it. (2)

Since the explanatory variable x̃it is endogenous, we further assume there is a suitable
instrument zit (see Section 3 for the case of multiple IVs). The instrument zit is assumed
to satisfy the exogeneity assumption E(zitε̃it) = 0 for i = 1, . . . , N ; t = 2, . . . , T .

In the rest of this section, we first define the simple IV estimator and derive its
bias in Section 2.1. Then we discuss the identification conditions in Section 2.2 and the
relationship to the existing methods in Section 2.3.
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2.1 Bias-corrected IV estimator

Let us now consider the following simple IV estimator using zit as the instrument for x̃it

and treating ỹit−1 as if it was exogenous and could thus serve as an IV itself. This simple
IV estimator (γ̂IV , β̂IV ) is defined as the solution of the following moment conditions:

N−1

N
∑

i=1

T
∑

t=2

ỹit−1ẽit(γ, β) = N−1

N
∑

i=1

T
∑

t=2

ỹit−1(ỹit − γỹit−1 − βx̃it) = AsBiasγ(γ, β) (3)

N−1

N
∑

i=1

T
∑

t=2

z̃itẽit(γ, β) = N−1

N
∑

i=1

T
∑

t=2

z̃it(ỹit − γỹit−1 − βx̃it) = AsBiasβ(γ, β), (4)

where ẽit(γ, β) = ỹit − γỹit−1 − βx̃it represents the regression residual in model (2).
Contrary to the moment conditions with valid instruments and the right-hand sides equal
to 0, the left-hand sides of the moment conditions (3)–(4) have limits AsBiasγ(γ, β) and
AsBiasβ(γ, β) for N → ∞ that are not all zero even at the true parameter values
γ = γ0, β = β0 since ỹit−1 is not a valid instrument. Given the assumptions of model
(1), if the products of variables in (3)–(4) have finite expectations, AsBiasβ(γ0, β0) =
∑T

t=2 E(zitε̃it) = 0 and AsBiasγ(γ0, β0) =
∑T

t=2 E(ỹit−1ε̃it). The last expectation is
generally non-zero because of the correlation between ỹit−1 and ε̃it:

E(ỹit−1ε̃it) = E[(yit−1 − yit−2)(εit − εit−1)] = −E(yit−1εit−1). (5)

Further from model (1), yit−1 can be expressed by repeated substitution as

yit−1 = γt−1
0 yi0 + β0(xit−1 + · · ·+ γt−2

0 xi1) +
1− γt−1

0

1− γ0
ηi + εit−1 + · · ·+ γt−2

0 εi1. (6)

Since errors εt are independent of the past values of all random variables, we obtain by
combining the above two equations that E(ỹit−1ε̃it) = E[(εit−1 + β0xit−1)ε̃it] equals

−1

2
E(ε̃2it)+β0E(xit−1ε̃it) = −1

2
E[(ỹit−γ0ỹit−1−β0x̃it)

2]+β0E(xit−1(ỹit−γ0ỹit−1−β0x̃it)).

(7)
With this result, the bias of the moment conditions (3)–(4) and of the simple IV estimator
can be directly derived and stated.

Theorem 1. Suppose that random sample of time series (yit, xit, zit)
T
t=1 follows the model

(1) with its specified assumptions and the following expectations exist: σ2
ỹ−1

, σx̃ỹ−1
, σzỹ−1

,

σzx̃, σỹ−1ỹ, σzỹ, σx−1ỹ, σx−1ỹ−1
, σx−1x̃, σ2

ỹ , and σx̃2. Then

AsBiasγ(γ0, β0) = λ0 − σ2
0 , AsBiasβ(γ0, β0) = 0.

If the full-rank conditions σzx̃ 6= 0 and σ2
ỹ−1

σzx̃− σzỹ−1
σx̃ỹ−1

6= 0 hold, the asymptotic bias
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(γ∗, β∗)′ = plimN→∞
(γ̂IV − γ0, β̂IV − β0)

′ of the IV estimator (γ̂IV , β̂IV )
′ equals

γ∗ =
λ0 − σ2

0

σ2
ỹ−1

− σx̃ỹ−1
σ−1
zx̃ σzỹ−1

, β∗ = −ζγ∗, (8)

where λ0 = β0σx−1ỹ − β0γ0σx−1ỹ−1
− β2

0σx−1x̃, σ
2
0 = σ2

ε̃/2, and finally, ζ = σzỹ−1
/σzx̃.

Although the case of endogenous regressor xit in (1) has not been studied in the
literature, even if the explanatory variable xit is strictly exogenous and thus zit = x̃it and
λ0 = 0, the results in Theorem 1 complement the existing results on the bias-corrected
estimation based on the within-group transformation. The moment conditions (3)–(4) are
the first-difference alternative to those in Breitung et al. (2022) and the bias-equations
(8) in Theorem 1 is the first-difference analog of Bun and Carree (2005, equation (12)).

If the values of the terms λ0 and σ2
0 in Theorem 1 can be estimated, the term

AsBiasγ(γ0, β0) in the moment equation (3) can be estimated, and the bias-corrected
IV estimator of model (1) can be simply defined as the solution of the moment equations
(3)–(4). Since difference λ0 − σ2

0 written down explicitly in (7) depends on the unknown
parameters γ0 and β0, we define for some values γ and β estimators of σ2

0 and λ0 by

σ̂2(γ, β) =

∑N
i=1

∑T
t=2(ỹit − γỹit−1 − βx̃it)

2

2N
(9)

λ̂(γ, β) =
β
∑N

i=1

∑T
t=2 xit−1(ỹit − γỹit−1 − βx̃it)

N
. (10)

By Theorem 1, the difference of these two estimators forms an estimator of the right-hand
side of the moment conditions (3)–(4). This results in the following moment equations:

N−1

N
∑

i=1

T
∑

t=2

ỹit−1(ỹit − γỹit−1 − βx̃it) = λ̂(γ, β)− σ̂2(γ, β) (11)

N−1
N
∑

i=1

T
∑

t=2

z̃it(ỹit − γỹit−1 − βx̃it) = 0. (12)

A solution (γ, β) of these equations corresponds to the bias-corrected IV (BCIV) esti-
mates γ̂BCIV and β̂BCIV . Given that equations (11)–(12) as well as their population
counterparts are quadratic functions of γ and β, the equations (11)–(12) have two so-
lutions. If xit is strictly exogenous and z = x̃it, it holds similarly to Bun and Carree
(2005) and Breitung et al. (2022) that only one solution of equations (11)–(12) corre-
sponds to γ ∈ (−1, 1). This is however not the case in general: the equations (11)–(12)
do not uniquely define estimates and their population counterparts do not identify the
true parameter values (γ0, β0). Hence to guarantee consistency and identification, more
equations are needed as discussed in the following Section 2.2.
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2.2 Identification

To discuss identification, let us define the population counterparts to equations (11)–(12)
using σ(γ, β) = 1

2
E[(ỹit − γ0ỹit−1 − β0x̃it)

2] and λ(γ, β) = βE[xit−1(ỹit − γ0ỹit−1 − β0x̃it)].
The population equation system can be then written as

gzγ(γ, β) =
T
∑

t=2

E[ỹit−1(ỹit − γỹit−1 − βx̃it)]− λ(γ, β) + σ2(γ, β) = 0 (13)

gzβ(γ, β) =

T
∑

t=2

E[zit(ỹit − γỹit−1 − βx̃it)] = 0. (14)

While the equations (13)–(14) are satisfied at (γ, β)′ = (γ0, β0)
′ by Theorem 1, they do

not generally have a unique solution since they are quadratic.
Now, suppose that there are two valid instruments z1it and z2it, and therefore, two

corresponding sets of equations (13)–(14): gz1γ (γ, β) = 0, gz1β (γ, β) = 0 and gz
2

γ (γ, β) = 0,
gz

2

β (γ, β) = 0. The two instruments defining equations (13)–(14) can be characterized
by the ratios ζ1 = σz1ỹ−1

/σz1x̃ and ζ2 = σz2ỹ−1
/σz2x̃, which capture their relations to

the explanatory variables. We now show that having two instruments z1it and z2it with
different values ζ1 6= ζ2 is a sufficient condition for the identification of the parameters
(γ0, β0)

′ by the corresponding sets of equations (13)–(14). Later, we discuss why this
condition is satisfied in practically all applications.

Theorem 2. Let z1it and z2it be two valid instruments, E(z1itε̃it) = E(z2itε̃it) = 0 for
i = 1, . . . , N, t = 2, . . . , T , and σz1x̃ 6= 0, σz2x̃ 6= 0, such that the assumptions of Theorem
1 hold for both z1it and z2it. If ζ1 6= ζ2, then the system of equations gz

1

γ (γ, β) = 0,
gz

1

β (γ, β) = 0, gz2γ (γ, β) = 0, gz2β (γ, β) = 0 has a unique solution at (γ0, β0)
′.

Although the bias-correction based on moment conditions for only one IV fails to
identify the parameters (see Section 2.1), Theorem 2 indicates that having moment con-
ditions based on two or more different IVs can be sufficient to identify the parameters.
To show that the identification is achieved in most empirical situations, let us consider
the two IVs that are always available in model (2) due to the model assumptions: the
lagged value of the dependent variable z1it = yit−2 and the lagged value of the explanatory
variable z2it = xit−2. For comparison, we also include an external IV z3it specified below
that is independent of the second lags of xit and yit. In all three cases, we derive the
values of ζ1, ζ2, and ζ3 and show that they are different.
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Figure 1: ζ(xi2), ζ(yi2), ζ(ui3) values for β = 0 (left panel) and β = 1 (right panel) as
functions of autoregressive coefficient γ (horizontal axes) and of the first-order autocor-
relation of xit (the black, red, and blue lines correspond to ρ = 0.125, 0.25, and 0.50).

To provide here specific values and a comparison, let us consider the simple case of
xit following an AR(1) process

xit = ρxit−1 + τηi + vit = ρt(xi0 −
τηi
1− ρ

) +
τηi
1− ρ

+
t−1
∑

s=0

ρsvi,t−s, (15)

where vit = uit + φεit with uit being independent and identically distributed with zero
mean and variance σ2

u and independent of ηi and εit in (1). If τ 6= 0 and φ 6= 0, xit is en-
dogenous and correlated both with the idiosyncratic shocks εit and the individual-specific
effects ηi in model (1). In this setting, z3it = uit−1 can represent an externally available
IV, which is not a part of original data set (yit, xit)

N, T
i=1,t=1. Assuming the stationary initial

condition, the fraction ζ(zit) for a particular IV zit used for x̃it can be expressed as

ζ(zit) =
E[
∑T

t=2 zit(yit−1 − yit−2)]

E[
∑T

t=2 zit(xit − xit−1)]
=

E[zit(yit−1 − yit−2)]

E[zit(xit − xit−1)]
. (16)

Given the stationarity, we derive the values ζ1 = ζ(yit−2), ζ
2 = ζ(xit−2), and ζ3 = ζ(uit−1)

in Appendix D, and for any parameter values, show that they are different even at
γ = 1, where the differences are generally smallest. To demonstrate this using β = 0

and β = 1 with all other model parameters set as in Section 4, we plot the dependence
ζ1 = ζ(yit−2), ζ

2 = ζ(xit−2), and ζ3 = ζ(uit−1) on the autoregressive parameter γ in Figure
1. While we can see clearly that the three lines for any given β and ρ do not intersect at
any point γ ∈ (−1, 1), the distances between the ζ1, ζ2, and ζ3 values become smaller as
γ approaches 1; this is not specific to the chosen parameter values. As ζ2 and ζ3 become
very close as γ increases and are equal at γ = 1, they alone are not a suitable pair of IVs
for identification by Theorem 2 unless it is known a priori that γ0 ≪ 1. On the other

8



hand, values ζ1 and ζ2 are clearly separated for any γ ∈ [−1, 1] and thus yit−2 and xit−2

are suitable IVs in the sense that they satisfy the identification assumption in Theorem
2 everywhere. We formally prove in Appendix D that ζ1 = ζ(yit−2) and ζ2 = ζ(xit−2)

for these two IVs, which are always available in model (2) with (15), are different for all
values of γ including γ = 1. Hence, the identification result in Theorem 2 is satisfied in
most empirical settings.

The implication of this identification result for the estimation of model (1) is that the
bias-corrected IV estimator (γ̂BCIV , β̂BCIV )

′ can be defined as the solution of the system
of bias-corrected equations (11)–(12) constructed for two or more IVs with different rela-
tionships to explanatory variables. This system of equations can be easily solved jointly
or sequentially in two steps by expressing β as a function of γ from the linear moment
equations (12) and substituting this expression for β in the quadratic equations (11).
The system of these equations, one for each IV, contains only one unknown parameter
γ ∈ (−1, 1) and it can be thus solved using the standard root finding methods. At the
same time, one can empirically check whether the identification condition imposed on the
IVs is satisfied by checking whether there is more than one root in (−1, 1).

2.3 Comparison with other methods

The bias-corrected IV estimation described in the previous Sections 2.1–2.2 is based on the
first-difference transformation, one lag of each variable as an instrument, and an explicit
bias expression for a finite number T of time periods. In this respect, it is an analog of
Anderson and Hsiao (1981) from the GMM-estimation perspective and of Breitung et al.
(2022) in the bias-correction literature. Here we discuss the relationships of the proposed
BCIV estimator to newer GMM and bias-correction methods.

First, there are various data transformations used in the dynamic panel-data esti-
mation, for example, longer differences than the first differences. They were consid-
ered by Hahn et al. (2007) in the form of long differencing, by Han et al. (2014) for the
X-differencing, and by Sasaki and Xin (2017) for unequally-spaced differencing. When
introducing the general bias-corrected IV estimator in Section 3, we demonstrate that
the estimator accommodates longer than first differencing and that multiple lengths of
differencing can be used at the same time.

Second, various GMM estimators employ different types of instruments. Given that
we focus here on the differenced models, the IVs used by the GMM methods relying of
the differenced model can be also used by the proposed bias-corrected IV estimation.
This includes for example higher lags of the dependent and explanatory variables as in
Arellano and Bond (1991) and the lagged regression residuals as in Hahn et al. (2007).
While this is straightforward, we will demonstrate that including a larger number of IVs
is not necessary (see Theorem 2) and it does not result in a substantial improvement if
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multiple lengths of differencing are employed (see Section 4).
Finally, there are various types of bias-correction procedures designed for dynamic

panel-data models. The approach proposed in Sections 2.1–2.2 is similar to Breitung et al.
(2022) and can be applied also to other bias-correction methods that derive and cor-
rect bias that is not asymptotically negligible (e.g, Bun and Carree, 2005; Bao, 2021;
Bao and Yu, 2023) without additional assumptions. On the other hand, many existing
bias-correction methods rely on the fact that the bias of a particular estimator is de-
creasing towards zero as the number of time periods grows (e.g., Hahn and Kuersteiner,
2002, Gouriéroux et al., 2010, Dhaene and Jochmans, 2015, Gonçalves and Kaffo, 2015).
Since the estimation biases of LS or MLE in the presence of endogenous variables do
not decrease to zero, these approaches cannot be directly adapted to estimation without
additional restrictive assumptions. More specifically, the asymptotic bias-correction ap-
proaches (e.g., Gouriéroux et al., 2010, Dhaene and Jochmans, 2015) would require under
endogeneity at least that the bias of the employed LS or IV estimators does not change
over time, that is, that the joint weak stationarity of (yit, xit, zit) can be imposed.

3 General bias-corrected IV estimation

In this section, we analyze the asymptotic properties of the bias-corrected IV estimation
in a more general case that includes multiple endogenous variables, multiple instruments,
and multiple lengths of differencing. Therefore, we first define the bias-corrected IV
estimator in this general setting in Section 3.1 and then establish its consistency and
asymptotic normality in Section 3.2. Finally, the selection of data transformations, in-
strumental variables, and weights is discussed in Section 3.3.

For a finite number T of time periods and a large number N of cross-sectional units,
we consider from now on the following generalization of model (1):

yit = γ0yit−1 + x
′

itβ0 + ηi + εit, i = 1, . . . , N, t = 1, . . . , T, (17)

where xit is a vector of K explanatory variables with its kth element denoted xitk, β =

(β1, · · · , βK)
′ ∈ R

K is a vector of parameters with true value β0, and all other elements in
the model remain the same as in (1). To rewrite the model in the matrix notation, let yi =
(yi1, . . . , yiT )

′, yi,−1 = (yi0, . . . , yi,T−1)
′, Xi = (xi1, . . . xiT )

′, εi = (εi1, · · · , εiT )′, and simi-
larly, y = (y

′

1, . . . , y
′

N)
′,y−1 = (y

′

1,−1, . . . , y
′

N,−1)
′, X = (X

′

1, . . . , X
′

N)
′, ε = (ε

′

1, . . . , ε
′

N)
′,and

η = (η1, . . . , ηN)
′. Stacking the model (17) then results in

y = γy−1 +Xβ + (IN ⊗ ιT )η + ε

= X̄θ + (IN ⊗ ιT )η + ε, (18)
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where X̄ = (y−1, X), X̄i = (yi,−1, Xi), and θ = (γ, β ′)′.

3.1 Bias-corrected IV estimator

As discussed in Section 2, the proposed bias-corrected IV estimator of the model (18)
relies on data transformations eliminating the fixed effects along with P > 1 instrumental
variables. We therefore assume there are P > 1 transformation matrices Ap = IN ⊗ Ap

T

with Ap
T ∈ R

Tp×T , one for each IV p = 1, . . . , P , such that model (18) multiplied from
the left by Ap does not contain η: for any p, the transformed model can be written as

Apy = ApX̄θ + Apε = γApy−1 + ApXβ + Apε. (19)

Although the presented results apply to more general transformations, we focus here
on the first and longer differences: the transformations based on a (T − 1) × T matrix
AT = (0, IT−1) − (IT−1, 0) corresponding to the first differences, a (T − 2) × T matrix
AT = (0, 0, IT−2) − (IT−2, 0, 0) corresponding to the differences of length 2, and so on.
Finally to define P simple IV estimators, we assume for each p that there is a set of
K instrumental variables for variables ApX in model (19). Their values are denoted
Zp = (Zp′

1 , . . . , Z
p′

N ) with Zp
i = (zpi1, . . . , z

p
iTp

)′ and zpit = (zpit1, . . . , z
p
itK)

′ for p = 1, . . . , P ,
and after extending them by the lagged dependent variable treated as if it was exogenous,
Z̄p = (Apy−1, Z

p) and Z̄p
i = (Ap

Tyi,−1, Z
p
i ). These P sets of IVs have to differ from each

other in the following sense: for any two sets of IVs, at least one of the K IVs is different
between the two sets; the other IVs can be the same. The choice of data transformations
and instrumental variables is discussed later in Section 3.3.

For this model (19) and the corresponding IVs, we now formalize the assumptions
introduced in Section 2 for model (2) and Theorems 1–2.

Assumption 1. The random variables in model (17) satisfy the following assumptions.

1. {(yi, Xi, Zi)}Ni=1 form a random sample;

2. The errors {εit}N T
i=1,t=1 are independent and identically distributed with E(εit) = 0

and E(ε2it) ∈ (0,∞);

3. Explanatory variables satisfy E(xitkεis) 6= 0 for t ≥ s and E(xitkεis) = 0 for t < s

and k ∈ {1, . . . , K};

4. The instrumental variables are valid: E((Ap
T εi)tz

p
it) = 0 for all i = 1, . . . , N, t =

1, . . . , Tp, p = 1, . . . , P ;

5. It holds for the initial values that E(y2i0) < ∞ and E(yi0εit) = 0 for all i =

1, . . . , N, t = 1, . . . , T ;
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6. Parameter values θ0 = (γ0, β
′

0)
′ lie in the interior of the parameter space Θ = (G,B),

which is a compact convex subset of (−1, 1)× R
K;

7. A weighting matrix Ŵ is a P (K+1)×P (K+1) matrix such that Ŵ
p−→ W , W > 0.

Assumption 1.1 imposes the cross-sectional independence. As mentioned earlier, we
also assume for simplicity identically distributed errors in Assumption 1.2, but this can
be easily relaxed as discussed in Appendix C. Further, Assumption 1.3 is the sequential
endogeneity assumption, which implies that the covariates are correlated with contempo-
rary and past errors but uncorrelated with future errors. This assumption distinguishes
this framework from the existing bias-correction literature (e.g., Bun and Carree, 2005,
Breitung et al., 2022), where the explanatory variables are assumed to be strongly exoge-
nous. For this reason, we require the existence of P sets of valid IVs in Assumption 1.4.
Further note that we place no restrictions on the individual effects ηi and their relation
to explanatory variables, and there are no additional restrictions on the data generating
process such as stationarity. The only limitation is imposed by Assumption 1.5 and later
by Assumption 2, which require that all variables have finite second moments. Finally,
note that the true parameter values are denoted by θ0 = (γ0, β

′

0)
′ and have to lie inside of

the parameter space (Assumptions 1.6), and additionally, we also introduce a weighting
matrix for equations (19) in Assumptions 1.7 since the K + 1 parameters are estimated
using P (K + 1) equations and are thus overidentified.

Next, to define a well-behaved simple IV estimator and the corresponding bias-
corrected moment equations, we also impose a multivariate equivalent of the assumptions
in Theorem 2, which requires the existence of various second moments and the full-rank
condition. Recall that Ap

T X̄i represents the explanatory variable in model (19), while Z̄p
i

corresponds to the employed instruments.

Assumption 2. For a given value fixed T and p = 1, . . . , P , assume that

1. the matrix (yi, X̄i)
′Ap

T (yi, X̄i) has a finite expectation;

2. the matrices Zp′

i A
p
TXi and Z̄p′

i A
p
T X̄i have finite expectations and their expected val-

ues are non-singular.

Finally, we have shown in Theorem 2 that a specific identification condition is required.
Noting that, for the pth set of IVs, the multivariate analog of ζ in (19) is equal to
ζp = [E(Zp′

i A
p
Tyi,−1)][E(Zp′

i A
p
TXi)]

−1, the identification requires to have at least two sets
of IVs with different values of ζ-vectors.

Assumption 3. There are at least two values j, k ∈ {1, . . . , P} such that ζj 6= ζk.

Let us now define the P simple IV estimators corresponding to the P sets of trans-
formations and IVs. Recalling that X̄ = (y−1, X) and Z̄p = (Apy−1, Z

p), the simple IV

12



estimator of θ for the transformed model (19) based on transformationAp, p ∈ {1, . . . , P},
is based on the moment conditions

E[Z̄i
p′
(Ap

Tyi −ApX̄iθ0)] = AsBias(θ0). (20)

If the bias of the moment conditions is not corrected, that is, AsBias(θ0) is set to 0, the
resulting biased population estimator equals

θpIV = E(Z̄p′

i A
p
T X̄i)

−1E(Z̄p′

i A
p
Tyi). (21)

In this context, note that Assumption 2 guarantees the existance and uniqueness of this
biased IV estimator and of the identification values ζp. Analogously to Section 2 and
given Assumptions 1–2, the moment equations (20) are biased in the sense that generally
AsBias(θ0) 6= 0. This bias AsBias(θ0) is the multivariate analog of Theorem 1 and is
derived in Theorem 6 in Appendix A. Denoting the (K+1) vector e1 = (1, 0, . . . , 0)′, this
bias is given for p = 1, . . . , P by

AsBias(θ0) = e1(λ
p
0 − σ2p

0 ), (22)

where λp
0 = λp(θ0) = λp(γ0, β0) and σ2p

0 = σ2p(θ0) = σ2p(γ0, β0) are defined using the
matrix Lp

T (γ) = {γj−kI(T − Tp > j − k ≥ 0)}T−1, T
j=T−Tp,k=1 by

λp(θ) = λp(γ, β) = E[(Lp
T (γ)Xiβ)

′(Ap
Tyi −Ap

T X̄iθ)] (23)

σ2p(θ) = σ2p(γ, β) = E[(Lp
T (γ)(yi − X̄iθ))

′(Ap
Tyi − Ap

T X̄iθ)]. (24)

As the values λp
0 and σ2p

0 are unknown, we consider λp(γ, β) and σ2p(γ, β) as functions of
the parameter values. For a given value of θ = (γ, β)′, we can then estimate the quanti-
ties λp

0 and σ2p
0 by taking the corresponding cross-sectional sample averages λ̂p(γ, β) and

σ̂2p(γ, β). As in Section 2.1, these estimates can be substituted in (22) to obtain bias
estimates for given values γ and β. Next, using these bias estimates in the moment equa-
tions for each transformation and instrument p = 1, . . . , P , we can obtain the following
the (K + 1) equations:

ĝp(γ, β) =







N−1
∑N

i=1[(A
p
Tyi,−1)

′(Ap
Tyi − Ap

T X̄iθ)]− λ̂p(γ, β) + σ̂2p(γ, β) = 0

N−1
∑N

i=1[Z
p′

i (A
p
Tyi − Ap

T X̄iθ)] = 0,
(25)

which can be concisely written as the sample analog of (20):

ĝp(θ) = ĝp(γ, β) = N−1
N
∑

i=1

[Z̄p′

i (A
p
T yi − Ap

T X̄iθ)]− e1λ̂
p(γ, β) + e1σ̂

2p(γ, β) = 0. (26)
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Given the definitions (23) and (24), these equations (25) are sample moment equations,
and in general for P > 1, they form an overidentified system of P (K + 1) moment
equations for γ and β. Using the weighting matrix introduced in Assumption 1.7, we can
finally define the bias-corrected IV (BCIV) estimator based on P transformations and
IVs as the following generalized method of moments estimator:

θ̂BCIV = argmin
θ∈Θ

Q̂(θ) = ĝ(θ)′Ŵ ĝ(θ), (27)

where ĝ(θ) = ĝ(γ, β) = (ĝ1(γ, β)′, . . . , ĝP (γ, β)′)′.

3.2 Asymptotic properties of the BCIV estimator

Let us now analyze the asymptotic properties of the BCIV estimator defined in (27).
Assumptions 1–3 introduced in Section 3.1 are sufficient for deriving the asymptotic bias
of the simple IV estimators and for the indentification of the BCIV estimator as discussed
in Section 2 for the simple model (1) and as verified in Appendix A for the general model
(17). These results lay foundation for establishing the consistency of the BCIV estimator.

Theorem 3. Under Assumption 1–3, θ̂BCIV
p−→ θ0.

To complement this consistency results by finding the asymptotic distribution of the
BCIV estimator, we need to introduce an additional assumption that guarantees that
higher moments of the explanatory, instrumental, and unobservable variables in model
(19) exist.

Assumption 4. Let E|xitk|4 < ∞, E|zpitk|4 < ∞, and E|εit|4 < ∞ for all i = 1, . . . , N ,
t = 1, . . . , T , k = 1, . . . , K, and p = 1, . . . , P .

Before deriving the asymptotic distribution of BCIV estimator, let us define some
notation for the population counterparts of the equations (25), which are jointly de-
scribed by function ĝ(θ). Since we assume random sampling across individuals (As-
sumption 1), definitions (23) and (24) imply that the expected value of ĝp(γ, β) equals
gp(θ) = E{µp

i (θ)} = 0, where

µp
i (θ) = µp

i (γ, β) = [Z̄p′

i (A
p
Tyi −Ap

T X̄iθ)]− [(Lp
T (γ)Xiβ)

′(Ap
Tyi −Ap

T X̄iθ)]e1

+ [(Lp
T (γ)(yi − X̄iθ))

′(Ap
Tyi −Ap

T X̄iθ)]e1 = 0.

Then the system of all population equations g(θ) = 0 is based on g(θ) = (g1(θ), . . . , gP (θ))′,
where g(θ) = E[µi(θ)] with µi(θ) = (µ1

i (θ), . . . , µ
P
i (θ))

′. The corresponding variance of
the moment equations is denoted Ω(θ) = var[µi(θ)], and at the true parameter values θ0,
this variance matrix is labelled Ω = Ω(θ0).
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Theorem 4. Under Assumptions 1–4, the limiting distribution of the BCIV estimator
defined in (27) is given by

√
N(θ̂BCIV − θ0)

d−→ N (0, (G′WG)−1G′WΩW ′G(G′WG)−1), (28)

where G = G(θ0) and G(θ) = [∂g1(θ)/∂θ′; . . . ; ∂gP (θ)/∂θ′]′ with

∂gp(θ)

∂θ′
=

[

E(Z̄p′

i A
p
T X̄i)− e1

∂λp(γ, β)

∂θ′
+ e1

∂σ2p(γ, β)

∂θ′

]

.

and

∂λp(θ)

∂θ′
=

∂λp(γ, β)

∂(γ, β ′)
=

(

E[(
∂Lp

T (γ)

∂γ
Xiβ)

′(Ap
Tyi −Ap

T X̄iθ)], E[(Lp
T (γ)Xi)

′(Ap
Tyi − Ap

T X̄iθ)]
′

)

− E[(Lp
T (γ)Xiβ)

′(Ap
T X̄i)]

∂σ2p(θ)

∂θ′
=

∂σ2p(γ, β)

∂(γ, β ′)
= E[(

∂Lp
T (γ)

∂γ
(yi − X̄iθ))

′(Ap
T yi − Ap

T X̄iθ)]e
′

1

− E[(Lp
T (γ)X̄i)

′(Ap
Tyi −Ap

T X̄iθ)]
′ − E[(Lp

T (γ)(yi − X̄iθ))
′(Ap

T X̄i)].

Matrices G(θ0) and Ω(θ0) can be estimated for a given or estimated value of θ0 by the
replacing the expectations by the corresponding sample averages. Denoting the sample
analogs of G(θ) and Ω(θ) by Ĝ(θ) and Ω̂(θ), respectively, the consistency of the variance
matrix estimator can be verified.

Theorem 5. Under Assumptions 1–4, it holds for Ĝ = Ĝ(θ̂BCIV ) and Ω̂ = Ω̂(θ̂BCIV )

that
(Ĝ′Ŵ Ĝ)−1Ĝ′Ŵ Ω̂Ŵ Ĝ(Ĝ′Ŵ Ĝ)−1 p−→ (G′WG)−1G′WΩWG(G′WG)−1.

3.3 Feasible BCIV estimation

Similarly to the existing GMM estimators of dynamic panel-data models, application
of the proposed BCIV estimator depends on the choice of the instrumental variables,
data transformation, and weight matrix selection. To reach the best performance, these
choices depend on the parameters of the data generating process, which makes the optimal
choice in the case of the existing GMM estimators and the proposed BCIV estimator a
complex task. We will however discuss here and demonstrate in Section 4 that there are
universal choices independent of the data generating process that deliver close-to-optimal
performance of the proposed BCIV estimator in a wide range of scenarios.

The first choice concerns the instrumental variables that, in the case of no external
instruments, are primarily the lags of the dependent and explanatory variables. Although
the first lags that can be used as valid IVs are sufficient for identification (Theorem 2),
employing higher lags can possibly improve the precision of estimation at least if the
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autoregressive parameter in model (17) or the autocorrelation of the explanatory variables
are sufficiently high. Analogously to the panel-data GMM estimators, the optimal number
of lags used as IVs is data dependent and can be selected by moment selection criteria
(e.g., Hall et al., 2007). We however demonstrate in Section 4 that the BCIV estimator
using only the first valid lags of each variable as IVs delivers either the best performance
or the loss of estimation precision due to using only one lag is small.

The second choice concerns the data transformation that are limited here to the dif-
ferences of length p for p = 1, . . . , T − 1. Different lengths of differences result generally
in the simple IV estimators with different variances depending on the magnitude of the
autoregressive parameter in model (17) and the strength of autocorrelation of the ex-
planatory variables (e.g., longer differences can result in more precise estimates for high
values of the autoregressive parameter and vice versa). Since the additional moment con-
ditions constructed for longer differences generally improve the precision of estimation,
we suggest to use all available lengths of differencing and we demonstrate by simulations
in Section 4 that this generally leads to the most precise estimates given the choice of
IVs and weighting matrix discussed in this section.

Finally, the choice of the weighting matrix naturally influences the performance of the
BCIV estimator as well. Although we use the identity weighting matrix W = IP (K+1)

to obtain the initial BCIV estimate, this choice is far from being optimal. Similarly to
GMM estimators, the variance-minimizing weight matrix in Theorem 4 equals W = Ω−1,
which can be consistently estimated using the initial BCIV estimate (see Theorem 5).
Given the described choices of IVs and data transformations, the proposed estimator
relies on a relatively large number of moment conditions: T (K + 1). While for smaller
numbers T of time periods relative to the cross-sectional dimension N , the standard two-
step GMM estimation can be applied, larger values of T/N (e.g., 0.1–0.4 in Section 4)
lead to less precise estimates of the T 2(K +1)2 elements of the weight matrix and have a
negative impact on the precision of GMM estimates. This general problem of GMM can
be addressed by finite-sample corrections of the weight matrix as in Windmeijer (2005),
for instance, or by using a block-diagonal weighting matrix; we follow here the latter
strategy. More specifically, matrix Ω consists of P 2 blocks Ωps of size (K + 1)× (K + 1),
p, s = 1, . . . , P , and the diagonal blocks Ωpp of Ω represent the variance matrices of the
equations (25) for p = 1, . . . , P . Given diagonal blocks Ω̂pp of Ω̂ defined in Theorem 5,
we suggest the weighting matrices Ŵ = [diag{Ω̂pp}Pp=1]

−1 or Ŵ = [diag{Ω̂}]−1, which are
consistent estimators of diag{Ωpp}Pp=1 or diag{Ω} by Theorem 5; see Section 4 for results.

4 Monte Carlo simulations

In this section, we evaluate the performance of the BCIV estimator of dynamic panel
data models. As discussed in Section 3, we consider the data tranformation based on the
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first and longer differences: BCIV(P ) will refer to the estimation based on the differences
of lengths 1, . . . , P and the two-step estimation with weights described in Section 3.3.
Given that the results obtained for P > 8 barely differ from P = 8, we report here
results for P = 1, 2, 4, 8. By default, BCIV(P ) uses only one lag of the lagged dependent
variable and one lag of the endogenous regressors as IVs; if k > 1 lags are used as a
robustness check, we denote the corresponding estimator BCIV(P, k). To demonstrate
that a fixed choice of P and k such as P ∗ = min{T −1, 8} and k = 1 provides overall best
performance, we report for comparison the estimation results labelled BCIV-S, where
values P ∈ {1, . . . , T − 1} and k ∈ {1, 2, 3} are selected for each simulated sample by the
moment selection criterion of Hall et al. (2007).

The proposed method is compared with the first-difference GMM (AB) estimator
of Arellano and Bond (1991) and system GMM estimator (BB) of Blundell and Bond
(1998). In the case of the GMM estimators, we report two-step GMM estimates using the
optimal weighting matrix. The employed instruments are again the lags of the dependent
variable and endogenous regressor and we report results for two choices of IVs. First, the
infeasible choices labelled AB-I and BB-I represent the results for the IVs minimizing the
total mean squared error of the regression coefficients for a given data generating process.
Second, the feasible choice labelled AB-S and BB-S reports the results for the IVs chosen
for each sample by the moment selection criterion of Hall et al. (2007).

To compare these methods, we simulate data from the following dynamic panel model
with one lag of the dependent variable and one endogenous regressor,

yit = γyit−1 + βxit + ηi + εit, i = 1, . . . , N, t = 1, . . . , T, (29)

where endogenous variable xit follows

xit = ρxit−1 + τηi + φεit + uit (30)

with the individual specific effects ηi ∼ N(0, σ2
η) and idiosyncratic shocks εit ∼ N(0, σ2

ε ),

uit ∼ N(0, σ2
u), where all variances equal 1 unless stated otherwise. The autoregressive

parameter takes values γ = 0.1, 0.5, 0.9 and β = 1. The endogenous xit is defined by
the autoregressive coefficient ρ = 0.125, 0.25, 0.5, its dependence on the individual spe-
cific effect by τ = 0.25, and its degree of endogeneity by φ = −0.25,−0.5,−1.0, which
corresponds to the correlations −0.24,−0.45,−0.71 between idiosyncratic shocks εit and
φεit+uit. Finally, the simulated data rely either on the stationary initial condition (SIC)
or non-stationary initial condition (NIC):

SIC xi0 ∼ N( τηi
1−ρ

, σ2
v

1−ρ2
), yi0 ∼ N( (1−ρ+βτ)ηi

(1−γ)(1−ρ)
, σ2

ε

1−γ2 +
β2σ2

v(ργ+1)
(1−ρ2)(1−γ2)(1−ργ)

+ 2βσve

(1−γρ)(1−γ2)
),

NIC xi0 ∼ N( τηi
0.1+ρ

, σ2
v

0.1+ρ2
), yi0 ∼ N( (1−ρ+βτ)ηi

(0.1+γ)(0.1+ρ)
, σ2

ε

0.1+γ2+
β2σ2

v(ργ+1)
(0.1+ρ2)(0.1+γ2)(1−ργ)

+ 2βσve

(1−γρ)(0.1+γ2)
).
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Table 1: The bias of all estimators for sample sizes (N, T ) = (50, 20), (100, 10), and
(200, 5) for the autoregressive parameter γ = 0.1, 0.5, 0.9 and β = 1. The two biases
for each estimator correspond to γ (top cell) and β (bottom cell), where the bold and
underscored entries represent the best and second best total absolute bias of (γ̂, β̂).

Bias N = 50, T = 20 N = 100, T = 10 N = 200, T = 5

γ: 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

AB-I 0.019 0.013 -0.113 0.014 0.004 -0.136 0.006 -0.018 -0.293
-0.263 -0.234 -0.284 -0.178 -0.170 -0.329 -0.132 -0.140 -0.370

AB-S
0.026 0.004 -0.093 0.023 0.003 -0.152 0.007 -0.019 -0.294
-0.342 -0.331 -0.360 -0.277 -0.270 -0.330 -0.162 -0.170 -0.370

BB-I 0.077 0.114 0.070 0.047 0.065 0.064 0.024 0.033 0.056
-0.227 -0.238 -0.218 -0.177 -0.210 -0.198 -0.130 -0.139 -0.129

BB-S 0.075 0.108 0.069 0.047 0.067 0.066 0.025 0.036 0.057
-0.243 -0.249 -0.227 -0.182 -0.198 -0.197 -0.149 -0.158 -0.149

BCIV(1) 0.001 0.002 -0.005 0.004 0.008 -0.008 0.007 0.011 -0.020
-0.013 0.000 -0.002 -0.012 -0.011 -0.018 -0.020 -0.011 -0.027

BCIV(2) 0.005 0.004 -0.003 0.006 0.008 -0.003 0.008 0.015 -0.017
-0.035 -0.015 -0.015 -0.027 -0.026 -0.032 -0.036 -0.032 -0.043

BCIV(4) 0.005 0.003 0.006 0.006 0.006 0.000 0.007 0.015 -0.018
-0.037 -0.020 -0.024 -0.032 -0.032 -0.043 -0.044 -0.048 -0.064

BCIV(8) 0.005 0.003 0.015 0.007 0.005 0.003
-0.041 -0.026 -0.040 -0.050 -0.047 -0.059

BCIV-S 0.009 0.006 0.016 0.009 0.004 -0.011 0.009 0.008 -0.048
-0.087 -0.074 -0.080 -0.077 -0.075 -0.083 -0.086 -0.084 -0.113

Based on these values, we use three different simulation designs summarized in the fol-
lowing paragraphs. All results are based on 1000 Monte Carlo simulations, and for each
estimator, contain both the biases and root mean squared errors (RMSE) of γ and β.

First, we analyze the performance for different sample sizes using γ = 0.1, 0.5, 0.9, the
default parameter values β = 1, ρ = 0.25, φ = −0.5, τ = 0.25, ση = 1,σε = 1, σv = 1, and
SIC. There are three sample sizes (N, T ): (50, 20), (100, 10) and (200, 5). The biases and
RMSEs are presented in Tables 1 and 2, respectively.

Consider first biases in Table 1. Although it is expected that AB and BB exhibit
some biases in the estimates of the autoregressive parameter, which are visible especially
for γ = 0.9 for AB and for T = 20 for BB, we observe larger biases in the estimates of the
coefficient β for both AB and BB. The biases of the β estimates generally increase with
the number of time periods although the number of lags selected by AB-I and BB-I does
not grow with T except for AB-I and γ = 0.9. On the other hand, the proposed BCIV
exhibits in all cases rather small biases, which are at least 3–4 times smaller than those of
AB and BB irrespective of the numbers and lengths of differences P . Moving to RMSEs
in Table 2, we can observe for the existing GMM estimators that BB performs generally
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Table 2: The RMSE of all estimators for sample sizes (N, T ) = (50, 20), (100, 10), and
(200, 5) for the autoregressive parameter γ = 0.1, 0.5, 0.9 and β = 1. The two RMSEs
for each estimator correspond to γ (top cell) and β (bottom cell), where the bold and
underscored entries represent the best and second best total MSE of (γ̂, β̂).

RMSE N = 50, T = 20 N = 100, T = 10 N = 200, T = 5

γ: 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

AB-I 0.047 0.051 0.168 0.052 0.062 0.155 0.056 0.084 0.343
0.288 0.261 0.313 0.234 0.226 0.339 0.201 0.202 0.416

AB-S 0.042 0.033 0.101 0.047 0.046 0.173 0.052 0.076 0.342
0.346 0.336 0.364 0.289 0.282 0.341 0.211 0.215 0.413

BB-I 0.089 0.122 0.071 0.068 0.080 0.067 0.049 0.060 0.063
0.255 0.262 0.239 0.230 0.243 0.224 0.195 0.195 0.181

BB-S 0.086 0.116 0.070 0.068 0.085 0.069 0.049 0.061 0.063
0.265 0.268 0.244 0.233 0.244 0.230 0.202 0.204 0.189

BCIV(1) 0.055 0.069 0.074 0.059 0.075 0.078 0.060 0.092 0.084
0.234 0.208 0.196 0.217 0.212 0.200 0.232 0.226 0.213

BCIV(2) 0.047 0.053 0.061 0.050 0.062 0.065 0.052 0.080 0.073
0.187 0.173 0.165 0.185 0.174 0.160 0.184 0.182 0.178

BCIV(4)
0.043 0.044 0.052 0.046 0.051 0.055 0.050 0.078 0.070
0.163 0.158 0.138 0.169 0.159 0.143 0.175 0.175 0.175

BCIV(8) 0.041 0.040 0.049 0.045 0.049 0.051
0.154 0.150 0.130 0.159 0.155 0.145

BCIV-S 0.040 0.039 0.056 0.044 0.047 0.060 0.048 0.076 0.085
0.159 0.151 0.144 0.162 0.158 0.148 0.178 0.177 0.187

better than AB, especially for γ = 0.9. The RMSEs of the proposed BCIV(P ) decrease
with the maximum length P of differences, and for P ∗ = min{T−1, 8}, BCIV(P ∗) delivers
the best precision of all estimates (including BCIV-S) with the exception of the shortest
panel with T = 5 for γ = 0.9. While BCIV(P ∗) provides similar performance as BB and
better than AB for T = 5, BCIV(P ∗) becomes much more precise that the AB and BB
estimators as the number T of time periods increases. Interestingly, the key contribution
to the better performance of BCIV lies in the precision of the β estimates.

Next, we focus on panel data generated under NIC, under which BB can be inconsis-
tent (contrary to AB and BCIV). This time, the sample size is fixed to (N, T ) = (100, 10)

and the ratio of the variances between the individual-specific effects and idiosyncratic
shocks varies: σ2

η/σ
2
ε = 4, 1, 1/4; the remaining parameters are not changed. The RMSEs

are presented in Table 3, whereas biases can be found in Appendix E, Table 5. The re-
sults are rather similar to the previous simulation results in the sense that BCIV including
also long differences delivers generally the most precise estimates with the exception of
σ2
η/σ

2
ε = 1/4. For σ2

η/σ
2
ε = 1/4, AB-I, AB-S, and BB-S generally exhibit large RMSEs,

especially for β, and are outperformed by BCIV. Contrary to BB-S, the infeasible BB-I
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Table 3: The RMSE of all estimators for sample size (N, T ) =(100, 10) for the autore-
gressive parameter γ = 0.1, 0.5, 0.9 and β = 1 with variance ratios 4, 1, and 1/4. The
two RMSEs for each estimator correspond to γ (top cell) and β (bottom cell), where the
bold and underscored entries represent the best and second best total MSE of (γ̂, β̂).

RMSE σ2
η/σ

2
ε = 4 σ2

η/σ
2
ε = 1 σ2

η/σ
2
ε = 1/4

γ: 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

AB-I 0.010 0.018 0.024 0.012 0.031 0.035 0.011 0.031 0.025
0.046 0.046 0.059 0.171 0.174 0.207 0.437 0.437 0.486

AB-S 0.010 0.017 0.028 0.010 0.023 0.033 0.009 0.024 0.030
0.048 0.047 0.061 0.220 0.224 0.255 0.645 0.661 0.708

BB-I 0.015 0.021 0.071 0.021 0.037 0.113 0.024 0.044 0.122
0.049 0.051 0.044 0.132 0.162 0.097 0.228 0.354 0.191

BB-S
0.021 0.024 0.074 0.028 0.037 0.112 0.031 0.043 0.120
0.053 0.051 0.071 0.151 0.165 0.204 0.299 0.369 0.461

BCIV(1) 0.013 0.026 0.039 0.014 0.036 0.031 0.014 0.039 0.029
0.053 0.054 0.078 0.154 0.158 0.186 0.293 0.318 0.347

BCIV(2)
0.011 0.021 0.028 0.012 0.029 0.022 0.012 0.031 0.022
0.046 0.047 0.059 0.134 0.134 0.146 0.259 0.259 0.268

BCIV(4) 0.010 0.018 0.020 0.011 0.024 0.018 0.011 0.026 0.017
0.041 0.043 0.046 0.119 0.121 0.126 0.254 0.235 0.248

BCIV(8) 0.010 0.018 0.018 0.010 0.022 0.016 0.010 0.023 0.016
0.038 0.040 0.043 0.111 0.116 0.119 0.256 0.240 0.240

BCIV-S 0.010 0.018 0.015 0.010 0.022 0.016 0.010 0.022 0.014
0.038 0.040 0.040 0.112 0.116 0.114 0.315 0.256 0.246

is however characterized by a small variance along with a substantial downward bias in
β for γ ≤ 0.5 and a strong upward bias in γ for γ = 0.9. This combination of a larger
bias and a smaller variance of inconsistent BB results in slightly smaller RMSEs than the
BCIV estimator, which exhibits no bias in γ and smaller biases in β in all cases.

Lastly, we investigate how the strength of instruments and the severity of endogeneity
affects the performance of all estimation methods. Using (N, T ) = (100, 10), SIC, and the
default parameter values β = 1, ρ = 0.25, φ = −0.5, τ = 0.25, ση = 1,σε = 1, σv = 1, we
vary the strength of autocorrelation of explanatory variable xit using ρ = 0.125, 0.25, 0.5

and the severity of endogeneity using values φ = 0.25, 0.5, 1. In addition to this, we report
the proposed BCIV estimator only for P = 8, but with different numbers of lags used
as IVs in order to demonstrate the lack of BCIV sensitivity to the number of employed
instruments. Given the large number of results and the fact that BB is consistent and
performs better than AB in this case, we limit results only to BB-I and BB-S. The RMSEs
are summarized in Table 4; the biases are reported in Appendix E, Table 6.

First, let us observe that BCIV(8, 1) performs either better or approximately the
same as BCIV(8, k) with a higher number k of instruments or BCIV-S. This is because
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each individual bias-corrected equation relies only on one instrumental variable, which
might be weak at higher lags. The results in Tables 2, 3, and 4 thus support the claim
that BCIV(∞,1) provides overall the best performance within these simulation settings,
eliminating the need to select the order of differencing or the number of lags used as
instruments.

Further, there are two different sets of results. When the severity of endogeneity
is stronger, φ = 0.5 or 1.0, the results are similar to those in the first two simulation
settings and the proposed BCIV is the best performing method in all cases and BCIV(8,1)
is preferable to BCIV-S. On the other hand, when the severity of endogeneity is weak,
φ = 0.25, the ranking of estimation methods depends on the correlation ρ between the
explanatory variable and its lags. We refer to φ = 0.25 and ρ = 0.125 informally as weak
endogeneity and weak IVs as they result in the situation when the (unreported) bias-
corrected estimation assuming exogeneity of variables by Breitung et al. (2022) results in
RMSEs smaller than BCIV and BB-S. In this situation, the BB estimator is preferable to
BCIV, although differences between for example BB-S and BCIV-S are rather small. As
the correlation ρ increases, all methods perform better and they all have similar RMSEs,
although BCIV becomes preferable to BB as ρ increases.

Altogether, the BCIV method exhibits the smallest estimation biases in all cases and
performs similarly or better than the existing GMM estimators in terms of RMSE. This
is achieved even though BCIV does not employ any stronger assumptions on the data
generating process such as the stationary initial condition required by BB and BCIV is
thus applicable also in non-stationary panel data.

5 Conclusions

We adapt the bias-correction estimation of dynamic panel-data models to models con-
taining endogenous explanatory variables. The asymptotic bias and identification results
indicate that the bias-correction in the presence of endogenous variables requires multiple
instrumental variables and has to be based on the methods that can eliminate biases not
diminishing with the number of time periods. Hence, we have adapted the approach of
Breitung et al. (2022) to the case of endogenous variables, which allows estimation with
a finite number of time periods and weak identification assumptions; other methods such
as Bao and Yu (2023) could be adapted in a similar manner. An additional benefit is that
the proposed BCIV estimator does not require careful selection of instrumental variables
depending on the data size and data generating process. The simulation results indicate
it might be beneficial to explore how to combine and weight the bias-corrected estimation
assuming exogeneity or endogeneity of the explanatory variables since the traditional LS-
based bias correction might perform better under weak endogeneity with only weak IV
available.
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Table 4: The RMSE for (N, T ) = (100, 10); γ = 0.1, 0.5, 0.9; β = 1; ρ = 0.125, 0.25, 0.5;
and φ = 0.25, 0.5, 1. The top and bottom RMSEs of each method correspond to γ and β.
RMSE ρ = 0.125 ρ = 0.25 ρ = 0.50

γ: 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

φ0 = −0.25

BB-I 0.041 0.052 0.058 0.046 0.056 0.056 0.047 0.054 0.045
0.209 0.213 0.221 0.166 0.174 0.163 0.095 0.100 0.075

BB-S
0.052 0.066 0.068 0.054 0.069 0.064 0.053 0.063 0.051
0.238 0.248 0.256 0.187 0.198 0.184 0.114 0.117 0.091

BCIV(8,1) 0.038 0.042 0.067 0.039 0.042 0.061 0.038 0.041 0.047
0.284 0.273 0.256 0.173 0.169 0.152 0.090 0.087 0.090

BCIV(8,2)
0.036 0.039 0.063 0.036 0.039 0.059 0.035 0.037 0.045
0.261 0.260 0.246 0.165 0.166 0.151 0.089 0.087 0.089

BCIV(8,3) 0.035 0.038 0.061 0.036 0.038 0.057 0.035 0.036 0.045
0.252 0.254 0.242 0.164 0.166 0.152 0.089 0.088 0.091

BCIV-S 0.036 0.040 0.074 0.038 0.041 0.068 0.037 0.041 0.050
0.256 0.252 0.236 0.166 0.161 0.146 0.089 0.087 0.092

φ0 = −0.50

BB-I 0.064 0.074 0.071 0.068 0.080 0.067 0.059 0.067 0.050
0.323 0.342 0.349 0.230 0.243 0.224 0.117 0.115 0.087

BB-S
0.063 0.082 0.074 0.067 0.085 0.068 0.063 0.070 0.053
0.325 0.342 0.356 0.237 0.247 0.230 0.122 0.119 0.092

BCIV(8,1) 0.043 0.048 0.069 0.045 0.049 0.051 0.043 0.046 0.041
0.298 0.286 0.261 0.159 0.155 0.145 0.080 0.078 0.083

BCIV(8,2)
0.040 0.043 0.065 0.044 0.045 0.050 0.042 0.042 0.040
0.300 0.301 0.283 0.167 0.162 0.156 0.082 0.079 0.085

BCIV(8,3) 0.039 0.042 0.064 0.044 0.044 0.050 0.042 0.042 0.040
0.309 0.310 0.301 0.175 0.171 0.166 0.083 0.082 0.089

BCIV-S 0.041 0.045 0.077 0.044 0.047 0.060 0.042 0.046 0.045
0.306 0.299 0.265 0.162 0.158 0.148 0.081 0.080 0.091

φ0 = −1.00

BB-I 0.085 0.109 0.077 0.095 0.108 0.071 0.078 0.071 0.050
0.412 0.418 0.410 0.282 0.270 0.235 0.124 0.106 0.076

BB-S 0.085 0.108 0.078 0.097 0.109 0.070 0.081 0.073 0.050
0.417 0.421 0.411 0.290 0.279 0.242 0.133 0.112 0.080

BCIV(8,1) 0.053 0.063 0.055 0.059 0.066 0.049 0.053 0.050 0.036
0.305 0.285 0.249 0.133 0.124 0.123 0.064 0.061 0.067

BCIV(8,2) 0.051 0.052 0.052 0.056 0.057 0.048 0.050 0.044 0.036
0.349 0.328 0.295 0.156 0.144 0.148 0.067 0.062 0.072

BCIV(8,3) 0.052 0.052 0.051 0.058 0.056 0.048 0.050 0.043 0.035
0.375 0.357 0.323 0.178 0.165 0.171 0.071 0.066 0.078

BCIV-S 0.051 0.056 0.058 0.074 0.061 0.058 0.051 0.049 0.040
0.356 0.339 0.287 0.171 0.144 0.146 0.067 0.063 0.080
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A Proofs of identification results

Let us recall that
p−→ denote convergence in probability and d−→ denote convergence in

distribution, where all limits are always taken for N → ∞ with a finite T and where
N → ∞ is kept implicit. The same convention applies to symbols Op(·) and op(1).

Proof of Theorem 1. The assumptions of Theorem 1 are the univariate equivalent of As-
sumptions 1 and 2 and the claim of Theorem 1 thus follows from Theorem 6 below as it
is the univariate form of the result derived in Theorem 6 below.

Theorem 6. Under Assumptions 1–2, the asymptotic bias of moment equations (20) is

E[Z̄i
p′
(Ap

Tyi −ApX̄iθ0)] = AsBias(θ0) = e1(λ
p
0 − σ2p

0 ),

and the asymptotic bias θ∗p = (γ∗

p , β
∗
′

p )
′ of IV estimator (21) is

γ∗

p =
λp
0 − σ2p

0

Sp
, β∗

p = −ζpγ∗

p , (31)

where λp
0 = λp(θ0) = λp(γ0, β0) = E[(Lp

T (γ0)Xiβ)
′(Ap

Tyi − Ap
T X̄iθ0)], σ2p

0 = σ2p(θ0) =

σ2p(γ0, β0) = E[(Lp
T (γ0)(yi−X̄iθ0))

′(Ap
Tyi−Ap

T X̄iθ0)], ζ
p = [E(Zp′

i A
p
Tyi,−1)][E(Zp′

i A
p
TXi)]

−1.

Proof. To introduce the notation, recall the IV estimator (21) is defined by

θ̂pIV = (N−1Z̄p′ApX̄)−1(N−1Z̄p′Apy).

By Khinchin’s law of large numbers and continuous mapping theorem, we will now show
under Assumptions 1 and 2 that θ̂pIV

p−→ θpIV = (γp
IV , β

p′

IV )
′ with γ̂p

IV

p→ γp
IV and β̂p

IV

p→ βp
IV ,

and we will find the corresponding values γ∗

p = γp
IV − γ0 and β∗

p = βp
IV − β0.

First, substituting Apy = ApX̄θ0 + Apε in the moment conditions results in

E[Z̄i
p′
Ap

T εi] = AsBias(θ0),

and in the case of the above formula for the simple IV estimator, we obtain

θ̂pIV − θ0 = (N−1Z̄p′ApX̄)−1(N−1Z̄p′Apε). (32)

Under Assumptions 1 and 2, Khinchin’s law of large numbers implies that N−1Z̄p′ApX̄
p→

E(Z̄p′

i A
p
T X̄i).

Therefore, we have to analyze N−1Z̄p′Apε and its limit E[Z̄i
p′
Ap

T εi], where Z̄p =

(Apy−1, Z
p
i ) and Z̄p

i = (Ap
Tyi,−1, Z

p
i ). Here Zp

i represents valid IVs by Assumptions 4,
while Ap

Tyi,−1 is not a valid IV and is correlated with Ap
T εi. To derive this correlation,

recall that transformation Ap
T represents the differences of length s for some 1 ≤ s < T .
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It follows by repeated substitution from model (17) that

(Ap
Tyi,−1)

′Ap
T εi =

T
∑

t=s+1

(yit−1 − yi,t−1−s)(εit − εit−s)

=

T
∑

t=s+1

(γ0yi,t−2 + x
′

it−1β0 + ηi + εit−1 − yi,t−1−s)(εit − εit−s)

=
T
∑

t=s+1

(εit − εit−s)(γ
t−1
0 yi,0 + x

′

it−1β0 + . . .+ x
′

i1γ
t−3β0+

ηi(1 + . . .+ γt−3
0 ) + εit−1 + . . .+ γt−3

0 εi1 − yi,t−1−s).

Under Assumption 1, the expectation of this expression can be written as

E[(Ap
T yi,−1)

′Ap
T εi] = λp

0 − σ2p
0 ,

where Lp
T (γ) = {γj−kI(T − Tp > j − k ≥ 0)}T−1, T

j=T−Tp,k=1, λ
p
0 = β

′

0E[(Lp
T (γ0)Xi)

′(Ap
T εi)],

and σ2p
0 = E[(Lp

T (γ0)εi)
′(Ap

T εi)] is used. (Note that these values λ
p
0 and σ2p

0 are equivalent
to the expressions defined in the theorem since yi − X̄iθ0 = εi + ηi and εi and ηi are
independent of each other.) Therefore, the law of large numbers implies N−1Z̄p′Apε

p→
E[Z̄i

p′
Ap

T εi] = (λp
0 − σ2p

0 , 0, . . . , 0)′ = e1(λ
p
0 − σ2p

0 ).

Combining above two results and noting that E(Z̄p′

i A
p
T X̄i) is invertible by Assump-

tion 2 yields

θ∗p = plimN→∞
θ̂pIV − θ0 = E(Z̄p′

i A
p
T X̄i)

−1

(

λp
0 − σ2p

0

0

)

. (33)

Applying the blockwise matrix inverse rules to E(Z̄p′

i A
p
T X̄i)

−1, consisting of blocks with
dimensions 1 and K, leads finally to

γ∗

p =
λp
0 − σ2p

0

Sp
, β∗

p = −[E(Zp′

i A
p
Tyi,−1)][E(Zp′

i A
p
TXi)]

−1λ
p
0 − σ2p

0

Sp
= −ζpγ∗

p , (34)

because the Schur complement Sp = E(Z̄p′

i A
p
T X̄i)/E(Zp′

i A
p
TXi) exists and is invertible by

Assumption 2.

Proof of Theorem 2. Let us rewrite the equations (13)–(14) by substituting for ỹit from
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model (2):

gz
1

γ (γ, β) =
T
∑

t=2

E[ỹit−1(ε̃it − (γ − γ0)ỹit−1 − (β − β0)x̃it)]− λ(γ, β) + σ2(γ, β) = 0

gz
1

β (γ, β) =

T
∑

t=2

E[z1it(ε̃it − (γ − γ0)ỹit−1 − (β − β0)x̃it)] = 0,

gz
2

γ (γ, β) =

T
∑

t=2

E[ỹit−1(ε̃it − (γ − γ0)ỹit−1 − (β − β0)x̃it)]− λ(γ, β) + σ2(γ, β) = 0

gz
2

β (γ, β) =
T
∑

t=2

E[z2it(ε̃it − (γ − γ0)ỹit−1 − (β − β0)x̃it)] = 0.

This set of equations has a solution at (γ0, β0)
′ by Theorem 1.

Suppose now that there exists (γa, βa)
′ 6= (γ0, β0)

′ such that all four equations are
satisfied. Due to the validity of the instruments z1it and z2it, this implies that

(γ0 − γ0)

T
∑

t=2

E(z1itỹit−1)− (β0 − β0)

T
∑

t=2

E(z1itx̃it) = 0

(γ0 − γ0)

T
∑

t=2

E(z2itỹit−1)− (β0 − β0)

T
∑

t=2

E(z2itx̃it) = 0

(γa − γ0)

T
∑

t=2

E(z1itỹit−1)− (βa − β0)

T
∑

t=2

E(z1itx̃it) = 0

(γa − γ0)
T
∑

t=2

E(z2itỹit−1)− (βa − β0)
T
∑

t=2

E(z2itx̃it) = 0.

Although the first two equations are trivially satisfied, the other two equations imply
βa − β0 + ζ1(γa − γ0) = 0, βa − β0 + ζ2(γa − γ0) = 0 since both σz1x̃ =

∑T
t=2 E(z1itx̃it) 6= 0

and σz2x̃ =
∑T

t=2E(z2itx̃it) 6= 0. Therefore, (ζ2−ζ1)(γa−γ0) = 0. Since ζ2−ζ1 6= 0 by the
theorem assumptions, this implies that γa = γ0. If γa = γ0, then βa−β0+ ζ2(γa−γ0) = 0

can hold only if βa = β0 and thus (γa, βa)
′ = (γ0, β0)

′. This however contradicts the claim
that (γa, βa)

′ 6= (γ0, β0)
′ . Therefore, there exists only one solution equal to (γ0, β0)

′.

Theorem 7. Under Assumptions 1–3, let g(θ) =[g1(θ), . . . , gP (θ)]′ with

gp(θ) = E[Z̄p′

i (A
p
Tyi − Ap

T X̄iθ)]− e1λ
p(θ) + e1σ

2p(θ),

where λp(γ, β) and σ2p(γ, β) are defined in (23) and (24), respectively. Then Q(θ) =

g(θ)′Wg(θ) has a unique minimum at θ0.

Proof. Since W is non-singular by Assumption 1, it is sufficient to prove that g(θ) = 0
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only at θ = θ0. This claim can however be verified by following the exactly same steps
as in the proof of Theorem 2.

B Proofs of asymptotic results

B.1 Auxiliary lemmas

Lemma 1. Under Assumptions 1–2, let g(θ) = [g1(θ)′, . . . , gP (θ)′]′ with

gp(θ) = E[Z̄p′

i (A
p
Tyi −Ap

T X̄iθ)]− e1λ
p(γ, β) + e1σ

2p(γ, β), (35)

where functions λp(γ, β) and σ2p(γ, β) are defined in (23) and (24), respectively. Then
ĝ(θ) and g(θ) are continuous in θ ∈ Θ, and for each θ ∈ Θ, ĝ(θ)

p−→ g(θ).

Proof. The continuity of ĝ(θ) and g(θ) follows from their definitions since they are poly-
nomials in θ. The second claim about the pointwise convergence of ĝ(θ)

p−→ g(θ) follows
from the continuous mapping theorem since Khinchin’s law of large numbers implies
that the products of dependent, explanatory, and instrumental variables converge to the
corresponding expectations under Assumption 2.

Lemma 2. Under Assumptions 1–2, let G(θ) = G(θ0) = [∂g1(θ0)/∂θ
′; . . . ; ∂gP (θ0)/∂θ

′]′

with g(θ) defined in (35). Then both G(θ) and its sample analog Ĝ(θ) are continuously
differentiable in θ ∈ Θ◦, and for each θ ∈ Θ◦, Ĝ(θ)

p−→ G(θ).

Proof. From the definition (35) of g(θ), it follows that

∂gp(θ)

∂θ′
=

[

E(Z̄p′

i A
p
T X̄i)− e1

∂λp(γ, β)

∂θ′
+ e1

∂σ2p(γ, β)

∂θ′

]

,

where

∂λp(θ)

∂θ′
=

∂λp(γ, β)

∂(γ, β)
= E[(

∂(Lp
T (γ)Xiβ)

∂θ
)′(Ap

Tyi −Ap
T X̄iθ)]− β ′E[(Lp

T (γ)Xi)
′(Ap

T X̄i)]

∂σ2p(θ)

∂θ′
=

∂σ2p(γ, β)

∂(γ, β)
= E[(

∂Lp
T (γ)

∂γ
(yi − X̄iθ))

′(Ap
Tyi −Ap

T X̄iθ)]e
′

1

−E[(Lp
T (γ)X̄i)

′(Ap
Tyi −Ap

T X̄iθ)]− E[(Lp
T (γ)(yi − X̄iθ))

′(Ap
T X̄i)]

The continuity and differentiability of Ĝ(θ) and G(θ) follows from that fact that ĝ(θ) and
g(θ) are polynomials in θ and the same thus holds for their derivatives. Then the point-
wise convergence of Ĝ(θ) to G(θ) from the continuous mapping theorem and Khinchin’s
law of large numbers, which implies that the products of dependent, explanatory, and in-
strumental variables converge to the corresponding expectations under Assumption 2.
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Lemma 3. Under Assumptions 1–2, supθ∈Θ ||ĝ(θ) − g(θ)|| p−→ 0 and supθ∈Θ ||Ĝ(θ) −
G(θ)|| p−→ 0, where g(θ) and G(θ) are defined Lemmas 1 and 2, respectively. If additionally
Assumption 4 holds, then supθ∈Θ ||Ω̂(θ)− Ω(θ)|| p−→ 0.

Proof. In order to establish this result, we will use Corollary 2.2 of Newey (1991) to prove
the uniform convergence of each element of the vector function ĝ(θ) to the corresponding
element in g(θ); the proofs for Ĝ(θ) and Ω̂(θ) follow exactly the same steps. The claims
then follow from the equivalence of the L1 and L2 norms.

Let ĝj(θ) denote the jth element of ĝ(θ). Corollary 2.2 of Newey (1991) requires (i)
the compactness of the parameter space, which is satisfied by Assumption 1, (ii) the
pointwise convergence of ĝj(θ), which follows from Lemma 1, (iii) the equicontinuity of
gj(θ), which follows Lemma 1 and compactness of the parameter space, and finally, (iv)
the condition |ĝj(θ̃) − ĝj(θ)| ≤ B̂N(j) · ||θ̃ − θ|| has to hold for all θ̃, θ ∈ Θ and some
B̂N(j) = Op(1). We will now verify this last condition.

By of Lemma 2, ĝj(θ) is continuously differentiable at each point of Θ almost surely.
The mean value theorem yields for θ̃, θ ∈ Θ

ĝj(θ̃)− ĝj(θ) =
K+1
∑

k=1

Ĝjk(θ̄)(θ̃k − θk),

where θ̄ ∈ Θ is a value on the line segment joining θ and θ̃ and Ĝji(θ̄) = ∂gj(θ̄)/∂θi. By
the triangle inequality,

|ĝj(θ̃)− ĝj(θ)| ≤
K+1
∑

k=1

|Ĝjk(θ̄)| · |θ̃k − θk| ≤ max
k

|Ĝjk(θ̄)| ·
K+1
∑

k=1

|θ̃k − θk|.

Then setting B̂N (j) =
√
K + 1 supθ̄∈Θ{maxk |Ĝjk(θ̄)|} and using the Cauchy-Schwarz

inequality will yield |ĝj(θ̃)− ĝj(θ)| ≤ B̂N(j) · ||θ̃− θ||. Since Ĝjk(θ̄) is polynomial in θ̄ and
Θ is compact, the uniform L1 boundedness of B̂N(j, l) follows from Assumption 2. The
Markov inequality then implies B̂N(j, l) = Op(1), and hence, it follows from Corollary
2.2 of Newey (1991) that supθ∈Θ |ĝj(θ) − gj(θ)| p−→ 0. Since the equivalence of L1 and
L2 norms implies that there exists a real number C > 0 such that ||ĝ(θ) − g(θ)|| ≤
C||ĝ(θ)−g(θ)||1 = C

∑

j |ĝj(θ)−gj(θ)|, it also follows that supθ∈Θ ||ĝ(θ)−g(θ)|| p−→ 0.

Lemma 4. Under Assumptions 1–3, G′WG is nonsingular, where G = G(θ0).

Proof. By Assumption 1.7, there exists nonsingular R such that W = R′R and G′WG =

(RG)′(RG). Thus, G′WG is non-singular if RG has the full column rank, and since R is
non-singular, if G has the full column rank.

The submatrix of matrixG formed by the rows corresponding to the moment equations
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defined by transformation Ap
T and instrumental variables zpit, p = 1, . . . , P , is given by

[

E(Zp′

i A
p
T X̄i)

]P

p=1
=
[

E(Zp′

i A
p
T yi,−1) E(Zp′

i A
p
TXi)

]P

p=1
.

Given that E(Zp′

i A
p
TXi) is full rank by Assumption 2, the above submatrix has the same

rank as
[

E(Zp′

i A
p
Tyi,−1)E(Zp′

i A
p
TXi)

−1 IK

]P

p=1
= [ζp IK ]

P
p=1 .

This matrix is however full rank by Assumption 3 since it has K + 1 columns and PK

rows with P > 1.

B.2 Deriving the asymptotic distribution

The proof of Theorem 3. The proof proceeds by verifying the following conditions for
Theorem 2.1 of Newey and McFadden (1994) that are sufficient for the consistency of an
estimator: (i)Q(θ) is uniquely minimized at θ0 ; (ii)Θ is compact; (iii)Q(θ) is continuous;
(iv) Q̂(θ) converges uniformly in probability to Q(θ).

Condition (i) follows from the Theorem 7. Condition (ii) holds by Assumption 1.
Condition (iii) follows from the continuity of g(θ) by Lemma 1. To verify condition (iv),
we apply first the triangle and Cauchy-Schwartz inequalities:

|Q̂(θ)−Q(θ)|
≤|[ĝ(θ)− g(θ)]′Ŵ [ĝ(θ)− g(θ)]|+ |g(θ)′(Ŵ + Ŵ ′)[ĝ(θ)− g(θ)]|+ |g(θ)′(Ŵ −W )g(θ)|
≤||ĝ(θ)− g(θ)||2||Ŵ ||+ 2||g(θ)|| · ||ĝ(θ)− g(θ)|| · ||Ŵ ||+ ||g(θ)||2||Ŵ −W ||.

Since g(θ) is continuous by Lemma 2 and the parameter space Θ is compact by Assump-
tion 1, g(θ) is uniformly continuous on Θ and ||g(θ)|| is bounded. Further by Assumption
1.7, ||Ŵ || p−→ ||W ||, and therefore, ||Ŵ || is uniformly bounded in probability. Hence,
supθ∈Θ |Q̂(θ)−Q(θ)| p−→ 0 directly follows from Lemma 3.

The proof of Theorem 4. Recall that θ̂BCIV
p→ θ0 by Theorem 3. This implies that for a

sufficiently large N, θ̂BCIV is contained in a small open neighborhood N ⊆ Θ of θ0 with
a probability arbitrarily close to 1. By Lemma 2, Q̂(θ) is continuously differentiable in
θ ∈ N , and therefore, the first-order conditions hold at the maximum attained at θ̂BCIV :
Ĝ(θ̂BCIV )

′Ŵ ĝ(θ̂BCIV ) = 0.
By Lemma 2, expanding ĝ(θ̂BCIV ) around θ0 using the mean value theorem leads to

ĝ(θ̂BCIV )− ĝ(θ0) = Ĝ(θ̄)(θ̂BCIV − θ0),

where θ̄ is a convex combination of θ̂BCIV and θ0. Premultiplying both sides of the
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equation by Ĝ(θ̂BCIV )
′Ŵ and noting that Ĝ(θ̂BCIV )

′Ŵ ĝ(θ̂BCIV ) = 0 results in

Ĝ(θ̂BCIV )
′Ŵ Ĝ(θ̄)(θ̂BCIV − θ0) = −Ĝ(θ̂BCIV )

′Ŵ ĝ(θ0).

Since Theorem 3 implies θ̄
p−→ θ0, the uniform convergence of Ĝ(θ̄) verified in Lemma

3 implies Ĝ(θ̄)
p−→ G(θ0) and Ĝ(θ̂BCIV )

p−→ G(θ0). Denoting G = G(θ0), it thus holds
Ĝ(θ̂BCIV )

′Ŵ Ĝ(θ̄)
p−→ G′WG. Then for a sufficiently large N , Ĝ(θ̂BCIV )

′Ŵ Ĝ(θ̄) is in-
vertible with an arbitrarily high probability by Lemma 4. Therefore, it follows with a
probability arbitrarily close to 1 for any sufficiently large N that

√
N(θ̂BCIV − θ0) = −[Ĝ(θ̂BCIV )

′Ŵ Ĝ(θ̄)]−1Ĝ(θ̂BCIV )
′Ŵ

√
Nĝ(θ0).

Since Ŵ
p−→ W by Assumption 1 and Ĝ(θ̂BCIV )

p−→ G(θ0) as shown above, Slutzky’s
theorem implies −[Ĝ(θ̂BCIV )

′Ŵ Ĝ(θ̄)]−1Ĝ(θ̂BCIV )
′Ŵ

p−→ −(G′WG)−1G′W . At the same
time,

√
Nĝ(θ0) =

√
N(ĝ(θ0) − g(θ0)) = N−1/2

∑N
i=1(µi(θ0) − Eµi(θ0)) since g(θ0) =

Eµi(θ0) = 0. Therefore, it holds by the central limit theorem that
√
Nĝ(θ0)

d→ N(0,Ω)

under Assumptions 1, 2, and 4. Hence,
√
N(θ̂BCIV − θ0) = op(1) − (G′WG)−1G′W ·√

Nĝ(θ0)
d→ N(0, (G′WG)−1G′WΩWG(G′WG)−1).

The proof of Theorem 4. Under Assumptions 1–4, the consistency of θ̂BCIV and Lemma
3 imply that Ĝ = Ĝ(θ̂BCIV )

p→ G(θ0) = G and Ω̂ = Ω̂(θ̂BCIV )
p→ Ω(θ0) = Ω. Under

the same assumptions, Ŵ p→ W . The claim of the theorem thus follows from Slutsky’s
theorem since G′WG is a non-singular matrix due to Lemma 4.

C Heteroskedasticity

Similarly to Bun and Carree (2006), the proposed method and results can be extended
to allow for both time-series and cross-section heteroscedasticity in the following way.
For simplicity of exposition, we do so in the context of the simple model (1) of Sec-
tion 2. Let us assume that the disturbances εit are independently distributed but not
identifically distributed across individuals and heteroscedastic in time: E(ε2it) = σ2

it,
Σi = diagt=1,...,T (σ

2
it), and limN→∞N−1

∑N
i=1Σi = ΣT = diag(σ2

t ).
The bias of the simple IV estimator derived in Theorem 1 depends on λ0 − σ2

0 =

N−1
∑N

i=1

∑T
t=2E(ỹit−1ε̃it). Under the heteroskedasticity, it follows from equations (5)

and (6) that

N−1
N
∑

i=1

E(ỹit−1ε̃it) = N−1
N
∑

i=1

βE(xit−1ε̃it)− E(ε2it−1) = λt−1 − σ2
t−1,

where λt−1 = N−1
∑N

i=1 βE(xit−1ε̃it), σ2
t−1 = N−1

∑N
i=1E(ε2it−1). Although λ0 =

∑T
t=2 λt
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can be estimated analogously to the homoskedastic case in Section 2 by evaluating (10),
this is not possible in the case of σ2

0 =
∑T

t=2 σ
2
t since the estimator (9) was based on the ho-

moskedasticity assumption. In particular, expression (9) estimatesN−1
∑N

i=1

∑T
t=2 E(ε̃2it)/2 =

∑T
t=2(σ

2
t−1 + σ2

t )/2 = σ2
0 + (σ2

T − σ2
1)/2 6= σ2

0 .
While this indicates that the bias estimate relying on (10) and (9) is incorrect under

heteroskedasticity, it also hints how to design a correct bias estimator. Noting that
(σ2

T − σ2
1)/2 = N−1

∑N
i=1{E[(εiT − εi2)

2]− E[(εi2 − εi1)
2]}/2, it follows that

σ2
0 =

1

2

N
∑

i=1

{
T
∑

t=2

E(ε̃2it)− E(εiT − εi2)
2 + E(ε̃2i2)},

and of course, λ0 = N−1
∑N

i=1

∑T
t=2 βE(xit−1ε̃it). Given these quantities defining the

asymptotic bias under heteroskedasticity, it directly follows that the BCIV estimator
applicable under heteroskedasticity can be defined by equations (11)–(12) if the sample
estimates of σ̂2(γ, β) and λ̂(γ, β) are replaced by

σ̂2(γ, β) =
1

2N

N
∑

i=1

{
T
∑

t=2

(ỹit − γỹit−1 − βx̃it)
2

− ([yiT − yi2]− γ[yiT−1 − yi1]− β[xiT − xi2])
2 + (ỹi2 − γỹi1 − βx̃i2)

2}

λ̂(γ, β) =
β

N

N
∑

i=1

T
∑

t=2

xit−1(ỹit − γỹit−1 − βx̃it).

This estimator of course applies both under homoskedasticity and heteroskedascity.

D Identification and types of instruments

The identification of the BCIV estimator is based on the ζ-values of different instruments
as discussed in Section 2.2; some specific values are displayed there on Figure 1. In
this appendix, we derive the ζ-values of different instruments for instrumental variables
based on an external instrument, on the lagged explanatory variable, and on the lagged
dependent variable. To facilitate this derivation, we first introduce a stationary dynamic
model in Section D.1. Later, we derive some auxiliary results for specific covariances of
random variables (Section D.2), and finally, the ζ-values in Section D.3.

D.1 Data generating process

In many of the empirical applications, we do not have external instruments for endogenous
xit in model (1) and need to apply an internal instruments such as the lagged level of xit
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or the lagged difference of xit. To proceed further, we consider the simple case with xit

being scalar and assume that xit follows the following AR(1) process:

xit = ρxit−1 + τηi + vit = ρt(xi0 −
τηi
1− ρ

) +
τηi
1− ρ

+
t−1
∑

s=0

ρsvi,t−s,

where errors vit = uit + φ0εit, εit are the errors defined in model (1), uit are independent
of εit and identically distributed with zero mean and variance σ2

u, τ ∈ R, and φ0 6= 0

since xit is endogenous.
Further, we assume here that (yit, xit)

T
t=0 are stationary time series for every individual

i. Given the assumption of stationarity, xit can be rewritten as

xit =
τηi
1− ρ

+
∞
∑

s=0

ρsvi,t−s.

Similarly, we can express yit by recursive substitution as

yit = γt(yi0 −
ηi

1− γ
) + β(

t−1
∑

s=0

γsxi,t−s) +
ηi

1− γ
+

t−1
∑

s=0

γsεi,t−s

= β(

∞
∑

s=0

γsxi,t−s) +
ηi

1− γ
+

∞
∑

s=0

γsεi,t−s

= β(

∞
∑

s=0

γs(
τηi
1− ρ

+

∞
∑

k=0

ρkvi,t−s−k)) +
ηi

1− γ
+

∞
∑

s=0

γsεi,t−s

= β(
∞
∑

s=0

γs
∞
∑

k=0

ρkvi,t−s−k) + β
∞
∑

s=0

γs(
τηi
1− ρ

) +
ηi

1− γ
+

∞
∑

s=0

γsεi,t−s

= β(
∞
∑

s=0

γs
∞
∑

k=0

ρkvi,t−s−k) +
1− ρ+ βτ

(1− γ)(1− ρ)
ηi +

∞
∑

s=0

γsεi,t−s.

For the described data-generating process, let us rewrite the definition of ζ-function de-
fined in Section 2 for a general instrumental variable zit specifically for the first-difference
transformation and the endogenous variable xit − xit−1 in model (2):

ζ(zit) =
E[
∑

t zit(yit−1 − yit−2)]

E[
∑

t zit(xit − xit−1)]
=

E[zit(yit−1 − yit−2)]

E[zit(xit − xit−1)]
,

where the last equality follows from the stationarity of xit and yit. In what follows, we
derive ζ(zit)-values for different instrumental variables zit. Because of stationarity, we
can consider a specific time t = 4 and the following ζ-values: ζ(xi2), ζ(xi1), ζ(x̃i2), ζ(yi2),
ζ(ỹi2), ζ(ui4), and ζ(ũi4).
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D.2 Auxiliary calculations

To derive the mentioned ζ-values ζ(xi2), ζ(xi1), ζ(x̃i2), ζ(yi2), ζ(ỹi2), ζ(ui4), and ζ(ũi4),
we perform auxiliary calculations of several covariances.

We first write out all the elements explicitly out for calculating different ζ values:

xi4 − xi3 = (ρ4 − ρ3)(xi0 −
τηi
1− ρ

)

+ vi4 + ρvi3 + ρ2vi2 + ρ3vi1 − vi3 − ρvi2 − ρ2vi1

=

∞
∑

s=0

ρsvi,4−s −
∞
∑

s=0

ρsvi,3−s,

xi2 =
τηi
1− ρ

+
∞
∑

s=0

ρsvi,2−s,

xi1 =
τηi
1− ρ

+
∞
∑

s=0

ρsvi,1−s,

yi3 − yi2 = β(

∞
∑

s=0

γs
∞
∑

k=0

ρkvi,3−s−k) +

∞
∑

s=0

γsεi,3−s − β(

∞
∑

s=0

γs
∞
∑

k=0

ρkvi,2−s−k)−
∞
∑

s=0

γsεi,2−s.

With the additional definitions σ2
v = E(v2it), σvε = E(vitεit) = φ0σ

2
ε , we have

E[xi2(xi4 − xi3)] = E[(

∞
∑

s=0

ρsvi,4−s −
∞
∑

s=0

ρsvi,3−s)(
τηi
1− ρ

+
∞
∑

s=0

ρsvi,2−s)]

= E[((vi4 + ρvi3 + · · · )− (vi3 + ρvi2 + · · · ))(vi2 + ρvi1 + · · · )]

=
−ρ

1 + ρ
σ2
v ,

E[xi1(xi4 − xi3)] = E[(
∞
∑

s=0

ρsvi,4−s −
∞
∑

s=0

ρsvi,3−s)(
τηi
1− ρ

+
∞
∑

s=0

ρsvi,1−s)]

= E[(vi4 + ρvi3 + · · · )− (vi3 + ρvi2 + · · · )(vi1 + ρvi0 + · · · )]

=
−ρ2

1 + ρ
σ2
v ,
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E[xi2(yi3 − yi2)] = E[(
τηi
1− ρ

+

∞
∑

s=0

ρsvi,2−s)(β(

∞
∑

s=0

γs

∞
∑

k=0

ρkvi,3−s−k)

+
∞
∑

s=0

γsεi,3−s − β(
∞
∑

s=0

γs
∞
∑

k=0

ρkvi,2−s−k)−
∞
∑

s=0

γsεi,2−s)]

= E[
∞
∑

s=0

ρsvi,2−s(
∞
∑

s=0

γsεi,3−s −
∞
∑

s=0

γsεi,2−s)]

+ E[
∞
∑

s=0

ρsvi,2−s(β(
∞
∑

s=0

γs
∞
∑

k=0

ρkvi,3−s−k)− β(
∞
∑

s=0

γs
∞
∑

k=0

ρkvi,2−s−k))]

=
γ − 1

1− ργ
σvε + β[

∞
∑

s=0

(ρs
∑

m+n=1+s

γmρn)−
∞
∑

s=0

(ρs
∑

m+n=s

γmρn)]σ2
v

=
γ − 1

1− ργ
σvε + β[

∞
∑

s=0

(ρs × ρs+2 − γs+2

ρ− γ
)−

∞
∑

s=0

(ρs × ρs+1 − γs+1

ρ− γ
)]σ2

v

=
γ − 1

1− ργ
σvε +

β

ρ− γ
[

ρ2

1− ρ2
− γ2

1− ργ
− ρ

1− ρ2
+

γ

1− ργ
]σ2

v

=
γ − 1

1− ργ
σvε +

β

ρ− γ
(− ρ

1 + ρ
+

γ − γ2

1− ργ
)σ2

v

=
γ − 1

1− ργ
σvε +

β

ρ− γ
× (ρ− γ)(ργ + γ − 1)

(1 + ρ)(1− ργ)
σ2
v

=
γ − 1

1− ργ
σvε +

β(ργ + γ − 1)

(1 + ρ)(1− ργ)
σ2
v ,
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E[xi1(yi3 − yi2)] = E[(
τηi
1− ρ

+
∞
∑

s=0

ρsvi,1−s)(β(
∞
∑

s=0

γs
∞
∑

k=0

ρkvi,3−s−k)

+

∞
∑

s=0

γsεi,3−s − β(

∞
∑

s=0

γs

∞
∑

k=0

ρkvi,2−s−k)−
∞
∑

s=0

γsεi,2−s)]

= E[

∞
∑

s=0

ρsvi,1−s(

∞
∑

s=0

γsεi,3−s −
∞
∑

s=0

γsεi,2−s)]

+ E[

∞
∑

s=0

ρsvi,1−s(β(

∞
∑

s=0

γs
∞
∑

k=0

ρkvi,3−s−k)− β(

∞
∑

s=0

γs
∞
∑

k=0

ρkvi,2−s−k))]

=
γ2 − γ

1− ργ
σvε + β[

∞
∑

s=0

(ρs
∑

m+n=2+s

γmρn)−
∞
∑

s=0

(ρs
∑

m+n=1+s

γmρn)]σ2
v

=
γ2 − γ

1− ργ
σvε + β[

∞
∑

s=0

(ρs × ρs+3 − γs+3

ρ− γ
)−

∞
∑

s=0

(ρs × ρs+2 − γs+2

ρ− γ
)]σ2

v

=
γ2 − γ

1− ργ
σvε +

β

ρ− γ
[

ρ3

1− ρ2
− γ3

1− ργ
− ρ2

1− ρ2
+

γ2

1− ργ
]σ2

v

=
γ2 − γ

1− ργ
σvε +

β

ρ− γ
(− ρ2

1 + ρ
+

γ2 − γ3

1− ργ
)σ2

v

=
γ2 − γ

1− ργ
σvε +

β

ρ− γ
(− ρ2

1 + ρ
+

γ2 − γ3

1− ργ
)σ2

v

=
γ2 − γ

1− ργ
σvε +

β

ρ− γ
× (ρ− γ)(γ2 + ργ(ρ+ γ)− γ − ρ)

(1 + ρ)(1− ργ)
σ2
v

=
γ2 − γ

1− ργ
σvε +

β(γ2 + ργ(ρ+ γ)− γ − ρ)

(1 + ρ)(1 − ργ)
σ2
v ,

E[ui3(yi3 − yi2)] = E[(β(

∞
∑

s=0

γs

∞
∑

k=0

ρkvi,3−s−k) +

∞
∑

s=0

γsεi,3−s

− β(

∞
∑

s=0

γs
∞
∑

k=0

ρkvi,2−s−k)−
∞
∑

s=0

γsεi,2−s)(ui4)]

= βσvu,

E[ui3(xi4 − xi3)] = E[(ui3)(

∞
∑

s=0

ρsvi,4−s −
∞
∑

s=0

ρsvi,3−s)

= (ρσvu − σvu),
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E[(ui3 − ui2)(yi3 − yi2)] = E[(β(

∞
∑

s=0

γs

∞
∑

k=0

ρkvi,3−s−k) +

∞
∑

s=0

γsεi,3−s

− β(
∞
∑

s=0

γs
∞
∑

k=0

ρkvi,2−s−k)−
∞
∑

s=0

γsεi,2−s)(ui3 − ui2)]

= βσvu(1− ρ− γ + 1) = βσvu(2− ρ− γ), (36)

E[ui3(xi4 − xi3)] = E[(ui3 − ui2)(

∞
∑

s=0

ρsvi,4−s −
∞
∑

s=0

ρsvi,3−s)

= (ρσvu − σvu)− (ρ2σvu − ρσvu) = −(1− ρ)2σvu.

D.3 Different ζ values

With above results, we can obtain the following explicit ζ expressions for different instru-
ments, that is, ζ(xi2), ζ(xi1), ζ(x̃i2), ζ(yi2), ζ(yi1), ζ(ui3), ζ(ũi3) :

ζ(xi2) =
E(xi2(yi3 − yi2))

E(xi2(xi4 − xi3))

=

γ−1
1−ργ

σvε +
β(ργ+γ−1)
(1+ρ)(1−ργ)

σ2
v

−ρ
1+ρ

σ2
v

= −(γ − 1)(1 + ρ)σvε + β(ργ + γ − 1)σ2
v

ρ(1− ργ)σ2
v

,

ζ(xi1) =
E(xi1(yi3 − yi2))

E(xi1(xi4 − xi3))

=

γ2
−γ

1−ργ
σvε +

β(γ2+ργ(ρ+γ)−γ−ρ)
(1+ρ)(1−ργ)

σ2
v

−ρ2

1+ρ
σ2
v

= −(γ2 − γ)(1 + ρ)σvε + β(γ2 + ργ(ρ+ γ)− γ − ρ)σ2
v

ρ2(1− ργ)σ2
v

,
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ζ(x̃i2) =
E[(xi2 − xi1)(yi3 − yi2)]

E[(xi2 − xi1)(xi4 − xi3−1)]

=

γ−1
1−ργ

σvε +
β(ργ+γ−1)
(1+ρ)(1−ργ)

σ2
v − γ2

−γ
1−ργ

σvε − β(γ2+ργ(ρ+γ)−γ−ρ)
(1+ρ)(1−ργ)

σ2
v

−ρ
1+ρ

σ2
v +

ρ2

1+ρ
σ2
v

=
(γ − 1)(1 + ρ)σvε + β(ργ + γ − 1)σ2

v − (γ2 − γ)(1 + ρ)σvε − β(γ2 + ργ(ρ+ γ)− γ − ρ)σ2
v

(ρ2 − ρ)(1− ργ)σ2
v

=
−(γ − 1)2(1 + ρ)σvε + β(ργ + γ − 1− γ2 − ρ2γ − ργ2 + γ + ρ)σ2

v

(ρ2 − ρ)(1− ργ)σ2
v

,

ζ(yi2) =
E[yi2(yi3 − yi2)]

E[yi2(xi4 − xi3)]

with
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E[yi2(yi3 − yi2)] = E[(β(

∞
∑

s=0

γs

∞
∑

k=0

ρkvi,2−s−k) +
1− ρ+ βτ

(1− γ)(1− ρ)
ηi +

∞
∑

s=0

γsεi,2−s)

(β(
∞
∑

s=0

γs
∞
∑

k=0

ρkvi,3−s−k) +
∞
∑

s=0

γsεi,3−s − β(
∞
∑

s=0

γs
∞
∑

k=0

ρkvi,2−s−k)−
∞
∑

s=0

γsεi,2−s)]

= β2E[(vi2 +
ρ2 − γ2

ρ− γ
vi1 + · · · )(ρ

2 − γ2

ρ− γ
vi2 +

ρ3 − γ3

ρ− γ
vi1 + · · · )]

+ βE[(vi2 +
ρ2 − γ2

ρ− γ
vi1 + · · · )(γεi2 + γ2εi1 + · · · )]

− β2E[(vi2 +
ρ2 − γ2

ρ− γ
vi1 + · · · )(vi2 +

ρ2 − γ2

ρ− γ
vi1 + · · · )]

− βE[(vi2 +
ρ2 − γ2

ρ− γ
vi1 + · · · )(εi2 + γεi1 + γ2εi0 · · · )]

+ βE[(
ρ2 − γ2

ρ− γ
vi2 +

ρ3 − γ3

ρ− γ
vi1 + · · · )(εi2 + γεi1 + · · · )]

+
γ

1− γ2
σ2
ε − βE[(vi2 +

ρ2 − γ2

ρ− γ
vi1 + · · · )(εi2 + γεi1 + · · · )]

− 1

1− γ2
σ2
ε

=β2[
1

(ρ− γ)2
(

ρ3

1− ρ2
+

γ3

1− γ2
− γ2ρ

1− γρ
− γρ2

1− γρ
)]σ2

v

+ β[
1

ρ− γ
(

ργ

1− γρ
− γ2

1− γ2
)]σvε

− β2[
1

(ρ− γ)2
(

ρ2

1− ρ2
+

γ2

1− γ2
− 2γρ

1− γρ
)]σ2

v

− β[
1

ρ− γ
(

ρ

1− γρ
− γ

1− γ2
]σvε

+ β[
1

ρ− γ
(

ρ2

1− γρ
− γ2

1− γ2
)]σvε

− β[
1

ρ− γ
(

ρ

1− γρ
− γ

1− γ2
)]σvε

− 1

1 + γ
σ2
ε

=
β2

(ρ− γ)2
[
−ρ2

1 + ρ
+

−γ2

1 + γ
+

2γρ− γ2ρ− γρ2

1− γρ
]σ2

v

+
β

ρ− γ
[
ργ − ρ+ ρ2 − ρ

1− γρ
+

−γ2 + γ − γ2 + γ

1− γ2
]σvε

− 1

1 + γ
σ2
ε

=
β2

(ρ− γ)2
[
−ρ2

1 + ρ
+

−γ2

1 + γ
+

2γρ− γ2ρ− γρ2

1− γρ
]σ2

v

+
β

ρ− γ
[
ργ − 2ρ+ ρ2

1− γρ
+

2γ

1 + γ
]σvε −

1

1 + γ
σ2
ε ,
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and

E[yi2(xi4 − xi3)] =E[(β(
∞
∑

s=0

γs
∞
∑

k=0

ρkvi,2−s−k) +
1− ρ+ βτ

(1− γ)(1− ρ)
ηi +

∞
∑

s=0

γsεi,2−s)

(

∞
∑

s=0

ρsvi,4−s −
∞
∑

s=0

ρsvi,3−s)]

=βE[(vi2 +
ρ2 − γ2

ρ− γ
vi1 + · · · )((ρ2vi2 + ρ3vi1 + · · · )− (ρvi2 + ρ2vi1 + · · · )]

+ E[((ρ2vi2 + ρ3vi1 + · · · )− (ρvi2 + ρ2vi1 + · · · ))(εi2 + γεi1 + · · · )]

=
β

ρ− γ
(

ρ3

1− ρ2
− ρ2γ

1− ργ
− ρ2

1− ρ2
+

ργ

1− ργ
)σ2

v +
ρ2 − ρ

1− ργ
σvε.

ζ(yi1) =
E[yi1(yi3 − yi2)]

E[yi1(xi4 − xi3)]

with
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E[yi1(yi3 − yi2)] = E[(β(

∞
∑

s=0

γs

∞
∑

k=0

ρkvi,1−s−k) +
1− ρ+ βτ

(1− γ)(1− ρ)
ηi +

∞
∑

s=0

γsεi,1−s)

(β(
∞
∑

s=0

γs
∞
∑

k=0

ρkvi,3−s−k) +
∞
∑

s=0

γsεi,3−s − β(
∞
∑

s=0

γs
∞
∑

k=0

ρkvi,2−s−k)−
∞
∑

s=0

γsεi,2−s)]

= β2E[(vi1 +
ρ2 − γ2

ρ− γ
vi0 +

ρ3 − γ3

ρ− γ
vi,−1 + · · · )(ρ

3 − γ3

ρ− γ
vi1 +

ρ4 − γ4

ρ− γ
vi0 + · · · )]

+ βE[(vi1 +
ρ2 − γ2

ρ− γ
vi0 + · · · )(γ2εi1 + γ3εi0 + · · · )]

− β2E[(vi1 +
ρ2 − γ2

ρ− γ
vi0 +

ρ3 − γ3

ρ− γ
vi,−1 + · · · )(ρ

2 − γ2

ρ− γ
vi1 +

ρ3 − γ3

ρ− γ
vi0 + · · · )]

− βE[(vi1 +
ρ2 − γ2

ρ− γ
vi0 +

ρ3 − γ3

ρ− γ
vi,−1 + · · · )(γεi1 + γ2εi0 + · · · )]

+ βE[(
ρ3 − γ3

ρ− γ
vi1 +

ρ4 − γ4

ρ− γ
vi2 + · · · )(γεi1 + γ2εi0 + · · · )]

+
γ2

1− γ2
σ2
ε − βE[(

ρ2 − γ2

ρ− γ
vi1 +

ρ3 − γ3

ρ− γ
vi0 + · · · )(εi1 + γεi0 + · · · )]

− γ

1− γ2
σ2
ε

=β2[
1

(ρ− γ)2
(

ρ4

1− ρ2
+

γ4

1− γ2
− γ3ρ

1− γρ
− γρ3

1− γρ
)]σ2

v

+ β[
1

ρ− γ
(

ργ2

1− γρ
− γ3

1− γ2
)]σvε

− β2[
1

(ρ− γ)2
(

ρ3

1− ρ2
+

γ3

1− γ2
− γρ2

1− γρ
− γ2ρ

1− γρ
)]σ2

v

− β[
1

ρ− γ
(

ργ

1− γρ
− γ2

1− γ2
]σvε

+ β[
1

ρ− γ
(

ρ3γ

1− γρ
− γ4

1− γ2
)]σvε

− β[
1

ρ− γ
(

ρ2

1− γρ
− γ2

1− γ2
)]σvε

− γ

1 + γ
σ2
ε

=
β2

(ρ− γ)2
[
−ρ3

1 + ρ
+

−γ3

1 + γ
+

γ2ρ+ γρ2 − γ3ρ− γρ3

1− γρ
]σ2

v

+
β

ρ− γ
[
ργ2 − ργ + ρ3γ − ρ2

1− γρ
+

−γ3 + 2γ2 − γ4

1− γ2
]σvε

− γ

1 + γ
σ2
ε

=
β2

(ρ− γ)2
[
−ρ3

1 + ρ
+

−γ3

1 + γ
+

γ2ρ+ γρ2 − γ3ρ− γρ3

1− γρ
]σ2

v

+
β

ρ− γ
[
ργ2 − ργ + ρ3γ − ρ2

1− γρ
+

γ2(2 + γ)

1 + γ
]σvε −

γ

1 + γ
σ2
ε
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and

E[yi1(xi4 − xi3)] =E[(β(
∞
∑

s=0

γs
∞
∑

k=0

ρkvi,1−s−k) +
1− ρ+ βτ

(1− γ)(1− ρ)
ηi +

∞
∑

s=0

γsεi,1−s)

(

∞
∑

s=0

ρsvi,4−s −
∞
∑

s=0

ρsvi,3−s)]

=βE[(vi1 +
ρ2 − γ2

ρ− γ
vi0 +

ρ3 − γ3

ρ− γ
vi,−1 + · · · )

× ((ρ3vi1 + ρ4vi0 + · · · )− (ρ2vi1 + ρ3vi0 + · · · )]
+ E[(εi1 + γεi0 + · · · )((ρ3vi1 + ρ4vi0 + · · · )− (ρ2vi1 + ρ3vi0 + · · · ))]

=
β

ρ− γ
(

ρ4

1− ρ2
− γρ3

1− ργ
− ρ3

1− ρ2
+

γρ2

1− ργ
)σ2

v +
ρ3 − ρ2

1− ργ
σvε,

ζ(ui3) =
E[ui3(yi3 − yi2)]

E[ui3(xi4 − xi3)]

=
βσvu

ρσvu − σvu

=
β

ρ− 1
,

ζ(ũi3) =
E[(ui3 − ui2)(yi3 − yi2)]

E[(ui3 − ui2)(xi4 − xi3)]

=
β(2− ρ− γ)

−(1 − ρ)2
.

As discussed in Section 2.2 and demonstrated in Figure 1, the differences between
the ζ-values are smallest at γ = 1. Therefore, we now focus specifically on the case of
γ = 1, which is the most challenging one from the perspective of finding instrumental
variables with different ζ-values. Using the above results, we know for γ = 1 that it holds
ζ(xi2) = ζ(xi1) = ζ(x̃i2) = ζ(ui3) = ζ(ũi3) = β/(ρ− 1) even though these values differ for
γ < 1. Hence, the ζ-values for the lagged x instruments and external instruments will be
the same for γ = 1. To compare this to the ζ-values for lagged dependent variable used
as an instrument, note that

ζ(yi2, γ = 1) =
E[yi2(yi3 − yi2)]

E[yi2(xi4 − xi3)]
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with

E[yi2(yi3 − yi2)] =
β2

(ρ− 1)2
[
−ρ2

1 + ρ
− 1

2
+

2ρ− ρ− ρ2

1− ρ
]σ2

v

+
β

ρ− 1
(
ρ− 2ρ+ ρ2

1− ρ
+ 1)σvε −

1

2
σ2
ε

=
β2

(ρ− 1)2
(

ρ

1 + ρ
− 1

2
)σ2

v − βσvε −
1

2
σ2
ε

and

E[yi2(xi4 − xi3)] =
β

ρ− 1
(

ρ3

1− ρ2
− ρ2

1− ρ
− ρ2

1− ρ2
+

ρ

1− ρ
)σ2

v +
ρ2 − ρ

1− ρ
σvε,

ζ(yi1, γ = 1) =
E[yi1(yi3 − yi2)]

E[yi1(xi4 − xi3)]

with

E[yi1(yi3 − yi2)] =
β2

(ρ− 1)
(
−ρ3

1 + ρ
− 1

2
+ ρ2)σ2

v +
β

ρ− 1
(−ρ2 +

3

2
)σvε −

1

2
σ2
ε

=
β2

(ρ− 1)
(

ρ2

1 + ρ
− 1

2
)σ2

v −
β

ρ− 1
(−ρ2 +

3

2
)σvε −

1

2
σ2
ε

and

E[yi1(xi4 − xi3)] =
β

ρ− 1
(

ρ4

1− ρ2
− ρ3

1− ρ
− ρ3

1− ρ2
+

ρ

1− ρ
)σ2

v − ρ2σvε.

These values are generally different from β/(ρ − 1) and also from each other and thus
facilitate the identification result even at the extreme case of γ = 1.
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E Additional simulation results

Table 5: The bias of all estimators for sample size (N, T ) =(100, 10) for the autoregressive
parameter γ = 0.1, 0.5, 0.9 and β = 1 with variance ratios 4, 1, and 1/4. The two biases
for each estimator correspond to γ (top cell) and β (bottom cell), where the bold and
underscored entries represent the best and second best total MSE of (γ̂, β̂).

Bias σ2
η/σ

2
ε = 4 σ2

η/σ
2
ε = 1 σ2

η/σ
2
ε = 1/4

γ: 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

AB-I 0.001 -0.001 -0.015 0.002 0.001 -0.019 0.003 -0.004 -0.016
-0.023 -0.028 -0.049 -0.118 -0.119 -0.160 -0.392 -0.390 -0.443

AB-S 0.001 -0.001 -0.019 0.003 -0.002 -0.026 0.003 -0.014 -0.027
-0.033 -0.033 -0.050 -0.206 -0.210 -0.243 -0.636 -0.652 -0.699

BB-I
0.010 0.010 0.070 0.018 0.023 0.112 0.021 0.032 0.121
-0.031 -0.034 0.028 -0.067 -0.104 0.033 -0.104 -0.282 0.088

BB-S 0.017 0.010 0.073 0.024 0.022 0.111 0.027 0.032 0.119
-0.016 -0.021 0.057 -0.001 -0.108 0.157 0.093 -0.297 0.374

BCIV(1)
0.001 0.001 0.008 0.001 0.002 0.004 0.001 0.002 0.003
-0.001 -0.001 0.014 -0.010 -0.006 0.016 -0.018 -0.011 0.018

BCIV(2) 0.001 0.001 0.005 0.001 0.001 0.002 0.001 0.001 0.002
-0.001 -0.002 0.008 -0.015 -0.014 0.000 -0.044 -0.044 -0.026

BCIV(4) 0.000 0.000 0.003 0.001 0.001 0.001 0.001 0.000 0.000
-0.002 -0.001 0.004 -0.018 -0.015 -0.004 -0.049 -0.061 -0.047

BCIV(8) 0.000 0.000 0.002 0.001 0.000 0.001 0.001 -0.001 -0.001
-0.002 -0.001 0.002 -0.026 -0.021 -0.011 -0.091 -0.094 -0.085

BCIV-S
0.000 0.000 0.000 0.001 0.000 -0.001 0.001 -0.002 -0.003
-0.004 -0.003 -0.002 -0.038 -0.030 -0.029 -0.208 -0.156 -0.163
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Table 6: The bias for (N, T ) = (100, 10); γ = 0.1, 0.5, 0.9; β = 1; ρ = 0.125, 0.25, 0.5; and
φ = 0.25, 0.5, 1. The top and bottom RMSEs of each method correspond to γ and β.

RMSE ρ = 0.125 ρ = 0.25 ρ = 0.50

γ: 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

φ0 = −0.25

BB-I 0.021 0.034 0.055 0.028 0.040 0.053 0.028 0.038 0.042
-0.178 -0.181 -0.197 -0.131 -0.141 -0.136 -0.060 -0.067 -0.044

BB-S 0.026 0.044 0.064 0.030 0.046 0.060 0.028 0.040 0.047
-0.124 -0.157 -0.195 -0.087 -0.112 -0.126 -0.033 -0.047 -0.039

BCIV(8,1) 0.007 0.005 0.025 0.005 0.003 0.021 0.003 0.003 0.015
-0.115 -0.097 -0.103 -0.033 -0.029 -0.029 -0.005 -0.006 0.006

BCIV(8,2) 0.008 0.005 0.017 0.006 0.004 0.015 0.003 0.002 0.010
-0.130 -0.129 -0.132 -0.048 -0.050 -0.051 -0.010 -0.011 -0.006

BCIV(8,3)
0.008 0.006 0.011 0.007 0.004 0.009 0.004 0.002 0.007
-0.149 -0.147 -0.147 -0.064 -0.064 -0.066 -0.016 -0.016 -0.015

BCIV-S 0.008 0.005 0.022 0.006 0.002 0.014 0.002 0.000 0.007
-0.147 -0.140 -0.130 -0.052 -0.048 -0.043 -0.010 -0.011 -0.007

φ0 = −0.50

BB-I 0.042 0.060 0.068 0.047 0.065 0.064 0.041 0.051 0.047
-0.266 -0.316 -0.329 -0.177 -0.210 -0.198 -0.083 -0.082 -0.063

BB-S
0.042 0.064 0.071 0.047 0.067 0.065 0.042 0.051 0.049
-0.272 -0.298 -0.326 -0.189 -0.202 -0.199 -0.076 -0.077 -0.058

BCIV(8,1) 0.012 0.009 0.025 0.007 0.005 0.003 0.004 0.004 0.005
-0.182 -0.168 -0.166 -0.050 -0.047 -0.059 -0.009 -0.010 -0.010

BCIV(8,2) 0.013 0.010 0.019 0.010 0.007 -0.001 0.006 0.004 0.002
-0.223 -0.223 -0.220 -0.087 -0.081 -0.093 -0.020 -0.019 -0.026

BCIV(8,3) 0.014 0.011 0.015 0.013 0.008 -0.004 0.008 0.005 0.001
-0.250 -0.251 -0.248 -0.110 -0.105 -0.115 -0.028 -0.027 -0.037

BCIV-S 0.014 0.010 0.021 0.009 0.004 -0.011 0.004 0.001 -0.005
-0.239 -0.232 -0.205 -0.077 -0.075 -0.083 -0.016 -0.018 -0.031

φ0 = −1.00

BB-I 0.072 0.097 0.076 0.082 0.096 0.068 0.061 0.056 0.046
-0.392 -0.401 -0.401 -0.264 -0.251 -0.221 -0.104 -0.083 -0.056

BB-S
0.073 0.097 0.077 0.085 0.097 0.068 0.065 0.058 0.046
-0.399 -0.404 -0.400 -0.273 -0.261 -0.228 -0.113 -0.091 -0.060

BCIV(8,1) 0.027 0.025 0.006 0.017 0.013 -0.003 0.009 0.006 0.003
-0.245 -0.226 -0.206 -0.066 -0.059 -0.075 -0.014 -0.012 -0.015

BCIV(8,2)
0.033 0.026 0.006 0.027 0.018 -0.004 0.013 0.006 0.001
-0.316 -0.294 -0.269 -0.116 -0.103 -0.117 -0.027 -0.023 -0.032

BCIV(8,3) 0.036 0.029 0.005 0.034 0.022 -0.005 0.017 0.007 -0.001
-0.349 -0.331 -0.303 -0.148 -0.134 -0.147 -0.038 -0.033 -0.047

BCIV-S 0.033 0.027 -0.006 0.028 0.015 -0.021 0.010 0.001 -0.012
-0.325 -0.308 -0.261 -0.117 -0.104 -0.115 -0.023 -0.023 -0.043
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