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Chapter 1

Introduction

This dissertation focuses on Sparse Principal Component Analysis. In this chapter,
we introduce the background of Principal Component Analysis. Then, we present
the sparse Principal Component Analysis problem and state the aims and limitations
of the dissertation. Finally, we outline the dissertation by describing the content
per chapter.

1.1 Background

1.1.1 Principal Component Analysis

With the rise of digitalization, massive amounts of information are at the disposal of
many researchers and practitioners. Analyzing this information is challenging due to
the associated computational challenges and often the highly involved interpretation
of the results. Principal Component Analysis (PCA) is one of the most widely used
multivariate techniques to summarize variables in a much lower dimension with
minimal loss of information (Hotelling, 1933; I. Jolliffe, 2002; Wold, Esbensen, &
Geladi, 1987). There are many examples of PCA applications in many fields. In
neuroscience, a variant of PCA is used to characterize the response property of
a neuron in response to a time-varying stimulus (Brenner, Bialek, & De Ruyter
Van Steveninck, 2000). In quantitative finance, PCA can be applied to the risk
management of interest rate derivative portfolios (Alexander, 2008), and to perform
a market analysis or diversify the risk by finding the best direction to invest (Pasini,
2017). PCA has been incorporated with Artificial Intelligence (AI) techniques to
improve performance in applications such as anomaly detection, classification, image
processing, and pattern recognition (Mohammed, Khalid, Osman, & Helali, 2016).
A recent study applied PCA to the COVID-19 genome sequence to provide potential
virus mutations for further studies (B. Wang & Jiang, 2021). The purpose of using
PCA varies per application. This dissertation considers two purposes for PCA:
Exploratory Data Analysis (EDA) and Dimensionality Reduction (DR).
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PCA for Exploratory Data Analysis

Without loss of generality, let X ∈ RI×J be a data matrix centered and scaled to unit
variance. When the purpose is EDA, PCA can give insight into the data structure
by finding the correlation between the new reduced set of variables and X. This
purpose is associated with the following optimization problem:

min
W,P

∥∥X−XWP⊤∥∥2

F

s.t. P⊤P = I,
(1.1)

where ∥·∥F denotes the Frobenius norm, W ∈ RJ×K is a matrix used to project X to
build the new set of variables T = XW, and P ∈ RJ×K is the loadings matrix that
expresses the strength of association between new set variables T and the original
variables X. The solution of problem (1.1) is given by the k-first right singular
vectors of X.

PCA for Dimension Reduction

When the purpose is DR, PCA is a model-free technique that focuses only on finding
a set of orthonormal vectors W to form the new variables such that the variance is
maximized. This is done classically by solving the following optimization problem:

max
W

Tr(WX⊤XW)

s.t. W⊤W = I,
(1.2)

where Tr(·) denotes the trace matrix operator. W ∈ RJ×K is called weights matrix,
and it weighs the variables X to construct the new variables T. The solution of
problem (1.2) is given by the k-first eigenvectors of the matrix X⊤X. Therefore,
due to the mathematical relationship between the Singular Value Decomposition
(SVD) of X and the Eigenvector Decomposition (EVD) of X⊤X, the problems (1.1)
and (1.2) yield the same solutions for P and W.

Besides its easy implementation and availability in various software packages,
PCA methods generally do not provide interpretable solutions for the new set of
variables. It can be seen that the new set of variables T is formed as a linear
combination of all the original variables, where the coefficients of these linear com-
binations are given by W. This makes the new variables challenging to interpret.
Furthermore, in a high-dimensional setting (many more variables than observations,
I ≪ J), the solution for P and W presents inconsistency (Johnstone & Lu, 2009).
Solutions with many zero entries for P and W have been proposed to tackle the
interpretability and consistency problems. These solutions are discussed in the next
section.
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1.1.2 Sparse PCA

A sparse array (matrix or vector) is an array populated mainly with zero as ele-
ments (Yan, Wu, Liu, & Gao, 2018). Sparse solutions to the PCA problem have
been proposed in the literature to improve interpretability and consistency. For
example, in medical applications such as cancer research, when applying PCA to
reduce the dimension, extracting the relevant features is a critical challenge (Hsu,
Huang, & Chen, 2014). In finance, where trading strategies are based on PCA, fewer
assets represent fewer transaction costs. PCA methods that attain sparse solutions
are known as sparse PCA methods. A classical way to formulate a sparse PCA
problem is to limit the number of nonzero elements on the loadings and weights
by a constraint. This is called cardinality constraint. We refer to PCA models
with this type of constraint as cardinality-constrained PCA. However, due to their
combinatorial nature, the computational complexity of cardinality-constrained PCA
problems is NP-hard (Natarajan, 1995). Different classes of methods have been pro-
posed in the statistical and optimization literature to address relaxed versions of the
cardinality-constrained PCA problem via Mixed-Integer semidefinite optimization
(d’Aspremont, Bach, & Ghaoui, 2007; d’Aspremont, El Ghaoui, Jordan, & Lanckriet,
2004), branch-and-bound methods (Berk & Bertsimas, 2019; Moghaddam, Weiss, &
Avidan, 2005), a cutting-plane method to certifiable optimality (Bertsimas, Cory-
Wright, & Pauphilet, 2022), or penalized methods that add a sparsity-inducing
penalty to the objective function (Journée, Nesterov, Richtárik, & Sepulchre, 2010;
Zou, Hastie, & Tibshirani, 2006). A sparsity-inducing penalty is a function that
forces the solution associated with the penalized optimization problem to be sparse.
Examples of sparsity-inducing penalties include, but are not limited to, the l1-norm
(or LASSO) (Tibshirani, 1996), the l0-norm (Journée et al., 2010), and the Elastic
Net penalty (Zou et al., 2006). We refer to sparse PCA formulations with these
types of penalty as Penalized PCA. Table 1.1 summarizes some sparse PCA formu-
lations by combining PCA formulations with sparsity-inducing principles. It can be
observed that some of the formulations seek only one weight vector. It is a common
practice to find the subsequent weights by replacing the matrix X with a deflated
version (MacKey, 2009).

Table 1.1: Sparse PCA formulations

Sparsity inducing Feasible Region Objective

Cardinality-Constrained {w ∈ RJ : w⊤w ≤ 1, ∥w∥0 ≤ ρ} maxw{w⊤X⊤Xw}

l1 − norm Penalized {w ∈ RJ : w⊤w ≤ 1} maxw{w⊤X⊤Xw − λ∥w∥1}

l0 − norm Penalized {w ∈ RJ : w⊤w ≤ 1} maxw{w⊤X⊤Xw − λ∥w∥0}

Cardinality-Constrained {W,P ∈ RJ×K : P⊤P = I,w⊤
j wj ≤ 1, ∥W∥0 ≤ ρ} min{

∥∥X−XWP⊤∥∥2

F
}

l1 − norm Penalized {W,P ∈ RJ×K : P⊤P = I,w⊤
j wj ≤ 1} min{

∥∥X−XWP⊤
∥∥2

F
+
∑K

k=1 λ
l
k ∥wk∥1}

∥ · ∥0 denotes the number of nonzero elements, ∥ · ∥1 is the sum of the absolute values, and K is the number of components.

Given all the sparse PCA formulations and methods to attain sparse solutions,
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a natural question is: Which is the best sparse PCA formulation? This disserta-
tion aims to answer this question based on two perspectives: Data Analysis and
Optimization. This is elaborated on in the following section.

1.2 Research objectives and limitations
Most of the sparse PCA formulations are based on PCA formulations. This encour-
ages the misconception that some properties of PCA could be extended to the sparse
PCA version. For example, PCA problems (1.1) and (1.2) present equivalent solu-
tions for loadings or weights due to the relationship between the SVD and the EVD.
However, when sparsity is imposed, this equivalence is lost because neither SVD
nor EVD is a solution to the problem. Additionally, if sparsity is imposed on the
loadings (weights), it does not imply sparsity on the weights (loadings). Therefore,
each sparse PCA model presents a different objective and sparse structure. One of
this dissertation’s aims is to guide the use and implementation of sparse PCA meth-
ods by studying which combination of PCA formulation and sparse method best
serves data analysis purposes from the perspective of several existing approaches
and statistical measures.

Proposing methods that find optimal solutions remains one of the main topics
in the optimization literature of sparse PCA. In terms of computational complexity,
the cardinality-constrained PCA problem is an NP-hard problem. Recently, a few
new methods have been proposed such that they provided near optimal certifiable
solutions with proven better performance than other sparse PCA methods regarding
objective value (Berk & Bertsimas, 2019; Bertsimas et al., 2022; Li & Xie, 2020).
However, these methods can not handle data sets with many variables, which are
common in many scientific applications nowadays (e.g., genetics). The use of pe-
nalized PCA methods is motivated by the need to obtain sparse solutions rapidly,
their computational tractability, scaling, and their statistical properties of shrinkage.
Nevertheless, the benefits of penalized methods have been assessed only via numeri-
cal experiments. There are no theoretical guarantees of optimality; that is, existing
methods rely on heuristic solutions. This dissertation also aims to study, from a the-
oretical point of view, the optimality properties of two well-known penalized PCA
methods.

This dissertation focuses on solving different optimization problems associated
with sparse PCA. Focusing on these problems, we do not engage in some practical
implementation steps regarding the estimation or selection of hyperparameters, such
as the dimension of the new set of variables, the cardinality per loadings or weights,
or the penalization parameter estimation. All these values are unrealistically as-
sumed to be known when solving each optimization problem, although we suggest
some ways to estimate or select these values.
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1.3 Outline of the dissertation
This section summarizes the content of each chapter. Since some chapters were writ-
ten independently as journal articles, there may be some overlaps and inconsistencies
in terminology and notation between chapters.

Chapter 2 When implementing PCA methods for EDA or DR, weights and load-
ings converge to the same solution due to the mathematical relationship between
the SVD and the EVD (I. T. Jolliffe & Cadima, 2016). However, the weights and
loadings are no longer the same when cardinality constraints or sparsity-inducing
penalties are added to obtain sparse solutions. Chapter 2 clarifies this misconcep-
tion and offers guidelines for choosing among different sparse PCA methods. We
thoroughly discuss several sparse PCA formulations and methods regarding whether
sparsity is imposed on the loadings or the weights. Through an extensive numerical
experiment with synthetic data sets, we assess the performance of these methods on
measures such as the squared relative error, the misidentification rate, and the per-
centage of explained variance. Chapter 2 ends with two empirical implementations,
one using item scores on a questionnaire measuring the Big Five personality traits
(Dolan, Oort, Stoel, & Wicherts, 2009) and the other using gene expression profiles
of lymphoblastoid cells (Nishimura et al., 2007). The former is aimed at EDA, and
the latter is aimed at DR purposes.

Chapter 3 In the regression literature, obtaining the sparse optimal solution
through the cardinality constraint is an NP-hard problem (Natarajan, 1995). Penal-
ized regression methods have been put forward in the literature to obtain a sparse
solution due to their computational tractability and statistical shrinkage properties
that avoid inflation of the coefficients for a better trade-off between bias and vari-
ance. However, significant progress has been made in solving the sparse regression
problem via cardinality constraint for a large number of variables to global optima
(Bertsimas, King, & Mazumder, 2016; Bertsimas & Van Parys, 2020). Chapter 3
focuses on the least squares approach to PCA (Zou et al., 2006) and compares two
methods to achieve sparsity in the weights, using a sparsity-inducing penalty and
its cardinality-constrained counterpart. The performance of these two methods is
compared using different statistical measures, such as the recovery rate of the sparse
structure, mean absolute bias, mean variance, and mean squared error. Finally, both
methods are illustrated with an empirical application in a high-dimensional data set
that contains gene expression profiles.

Chapter 4 Penalized PCA has been used in the literature to obtain a sparse
solution to the PCA problem, as such methods are computationally tractable and
have good scaling and statistical properties (see Chapter 3). However, penalized
PCA methods rely on heuristic methods without guaranteeing optimality (Bertsimas
et al., 2022). Chapter 4 studies the necessary optimality conditions for a penalized
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PCA problem. Using an alternating scheme, we characterize the sparsity-inducing
penalties that lead to a solution given by a continuous thresholding rule. In addition,
a mathematical analysis is conducted, showing that the solution provided by this
method satisfies the necessary optimality condition when the minimum eigenvalue
of the covariance matrix is greater than one.

Chapter 5 As discussed in Chapter 4, penalized PCA methods are favorable
concerning computational tractability, scalability, and statistical properties. De-
spite their practical advantage, penalized PCA methods rely on heuristic solutions
without guaranteeing optimality. In Chapter 5, we study a penalized PCA problem
using cardinality as a sparsity-inducing penalty. To solve this problem, we propose a
minorization-maximization method and show that it achieves local optimality of the
original problem when the minimum eigenvalue of the covariance matrix is greater
than one.
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Chapter 2

A guide for sparse PCA: model
comparison and applications

Abstract
PCA is a popular tool for exploring and summarizing multivariate data, especially
those consisting of many variables. PCA, however, is often not simple to interpret,
as the components are a linear combination of the variables. To address this is-
sue, numerous methods have been proposed to sparsify the nonzero coefficients in
the components, including rotation-thresholding methods and, more recently, PCA
methods subject to sparsity-inducing penalties or constraints. Here, we offer guide-
lines on how to choose among the different sparse PCA methods. Current literature
misses clear guidance on the properties and performance of the different sparse PCA
methods, often relying on the misconception that the equivalence of the formulations
for ordinary PCA also holds for sparse PCA. To guide potential users of sparse PCA
methods, we first discuss several popular sparse PCA methods in terms of where the
sparseness is imposed on the loadings or on the weights, assumed model, and opti-
mization criterion used to impose sparseness. Second, using an extensive simulation
study, we assess each of these methods by means of performance measures such as
squared relative error, misidentification rate, and percentage of explained variance
for several data generating models and conditions for the population model. Finally,
two examples using empirical data are considered.

Keywords: dimension reduction, exploratory data analysis, high dimension-low
sample size, regularization, sparse principal component analysis

Guerra-Urzola, R., Van Deun, K., Vera, J.C., & Sijtsma, K. A Guide for Sparse
PCA: Model Comparison and Applications. Psychometrika 86, 893–919 (2021).
https://doi.org/10.1007/s11336-021-09773-2
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2.1 Introduction
Principal component analysis (PCA) is one of the oldest and most popular multivari-
ate analysis techniques used to summarize a (large) set of variables in low dimension
with minimum loss of information (I. T. Jolliffe & Cadima, 2016; Wold et al., 1987).
In particular, PCA is one of the most popular techniques used to analyze (ultra-)
high-dimensional data consisting of many more variables than observations, and its
use has become more widespread over recent years. PCA is mainly used to summa-
rize the individual variables’ scores by a few derived components based on a linear
combination of the individual variables. These new variables are known as compo-
nent scores and are often used as a data pre-processing step to deal with a large
number of variables, e.g., to reduce the number of predictor variables to account
for collinearity issues in regression analysis. The coefficients of the linear combina-
tion, used to derive the component scores, are known as component weights (Adachi
& Trendafilov, 2016). Additionally, PCA can give insight into the data structure
via the correlation between component scores and variables. These correlations are
known as component loadings.

In PCA, there is a long-standing tradition to look for sparse representations
where the variables are associated with only one or a few components (Kaiser, 1958).
The sparse structure facilitates interpretation, and the need for such a representation
is especially warranted in the case of an extensive collection of variables. Moreover,
sparse representations have been employed not only for interpretational issues but
also to deal with the inconsistency of the estimated component loadings or weights
in the high-dimensional setting (Johnstone & Lu, 2009).

There is a substantial volume of work in sparse PCA based on different formu-
lations of PCA and using different approaches to achieve sparsity. We categorize
sparse PCA methods by their estimation aim: sparse loadings or sparse weights.
To obtain sparse loadings, Kaiser (1958), I. T. Jolliffe (1995), Cadima and Jolliffe
(1995), and Kiers (1994) used a rotation of the PCA solution to obtain a simple
structure, and H. Shen and Huang (2008), and Papailiopoulos, Dimakis, and Ko-
rokythakis (2013) introduced a least-squares low-rank approximation with sparsity
inducing penalties such as the lasso (Tibshirani, 1996). For sparse weights, I. T. Jol-
liffe, Trendafilov, and Uddin (2003) modified the original PCA problem to satisfy
the lasso penalty (SCoTLASS) while Zou et al. (2006) used a lasso penalized least-
squares approach to obtain sparsity. d’Aspremont et al. (2004) and d’Aspremont et
al. (2007) established a sparse PCA method subject to a cardinality constraint based
on semidefinite programming (SDP), while Journée et al. (2010) and X. T. Yuan
and Zhang (2013) introduced variations of the well-known power method to achieve
sparse PCA solutions using sparsity inducing penalties.

Most of the formulations for sparse PCA are based on different formulations
of PCA; thus, the corresponding optimization problems solved are different and—
unlike ordinary PCA—do not yield equivalent solutions. Importantly, the different
methods result in sparse estimates for different model structures. Hence, the se-
lected method should depend on the objective of the analysis and the assumed
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model structure for which sparsity is desired. These differences in sparse PCA for-
mulations have remained mostly unnoticed in the literature, which highlights the
need for a thorough comparison of the methods under different data generating
models—imposing sparsity on different model structures—and concerning different
performance measures. The objective of our research is to provide a guide for using
sparse PCA, emphasizing the differences in purposes, objectives, and performance
among several sparse PCA approaches. We present a review of the most relevant
sparse PCA methods used for sparse loadings and sparse weights estimation. We
assess these methods by conducting an extensive simulation study using three types
of sparse data structures and performance measures such as squared relative error,
misidentification rate, and percentage of explained variance. Finally, we use two
empirical data sets to illustrate how to use these methods in practice. The data
sets consist of item scores on a questionnaire measuring the Big Five personality
(Dolan et al., 2009) and gene expression profiles of lymphoblastoid cells used to
distinguish different forms of autism (Nishimura et al., 2007). The former example
relies on questionnaire data for which researchers wish to understand the correlation
patterns in the data (e.g., knowing which items are highly correlating and hinting
at an underlying component or construct). In contrast, the latter example relies
on high-dimensional data collected in a classification setting where a reduction of
the large set of variables is performed as a pre-processing step1. Results from the
simulation study and empirical applications suggest that sparse loadings methods
are more suitable for exploratory data analysis, while sparse weights methods are
more suitable for summarization.

The paper is organized as follows. Sect. 2.2 describes different approaches and
drawbacks of PCA. In Sect. 2.3, the leading methods for sparse PCA are briefly
discussed. Simulation studies are presented in Sect. 2.4 and two examples using
empirical data sets are presented in Sect. 2.5. Concluding remarks are made in
section 2.6. Next, we collect our notation for our readers’ convenience.

Notation Matrices are denoted by bold uppercase, the transpose of a matrix
by the superscript ⊤ (e.g., A⊤), vectors by bold lowercase, and scalars by lowercase
italics, and we will use capital letters (of the letter used to run an index) to denote
cardinality (e.g., j running from 1 to J). Given a vector x ∈ RJ , its j-th entry
is denoted by xj. The l0-norm ∥x∥0 is the number of nonzero elements of x, the
l1-norm is defined by ∥x∥1 =

∑J
j=1 |xj|, and the Euclidean distance by ∥x∥ =

(
∑J

j=1 x
2
j)

1/2. Given a matrix X ∈ RI×J , its i-th row and j-th column entry is
denoted by xi,j, ∥X∥2F =

∑I
i=1

∑J
j=1 |xi,j|2 denotes the squared Frobenius norm,

and Tr(X) =
∑I

i=1 xi,i denotes the trace operator when X is square matrix (I = J).
We use the notation XK ∈ RI×K , with K < J , for the matrix whose columns are the
first K columns of X. Given a scalar δ ∈ R, [δ]+ = max(0, δ). The soft-thresholding
operator is defined as S(x, λ) = sign(x)[|x| − λ]+, where sign denotes the sign of x.
Finally, when formulating an optimization problem, s.t. means “subject to".

1The MATLAB and R codes used to perform the simulation study and applications are available
from https://github.com/RosemberGuerra/sparsePCA
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2.2 Principal Component Analysis Overview
This section aims to review different formulations for PCA and their relation to the
Singular Value Decomposition (SVD) and the Eigenvalue Decomposition (EVD).
PCA formulations are presented in Sect. 2.2.1. Sect. 2.2.2 discusses the lack of
consistency in the estimation of the component loadings/weights and the difficul-
ties to interpret the component scores—the main drawbacks of PCA found in the
literature. Let us define X ∈ RI×J as the data matrix (i.e., I observations and J
variables) and K < J as the number of desired components. Without loss of gener-
ality, we follow the common practice of assuming that all the data are centered and
scaled to unit variance, that is X⊤1I = 0J and Ω̂ = 1

I−1
X⊤X denotes the sample

correlation matrix (I. T. Jolliffe & Cadima, 2016).

2.2.1 PCA Formulations

Several disciplines rely on the following structure for the data set (Whittle, 1952),

X = TP⊤ + E, (2.1)

where T ∈ RI×K , P ∈ RJ×K , P⊤P = I ∈ RK×K , I denotes de identity matrix,
and E ∈ RI×J is the error matrix uncorrelated to TP⊤. P is called the component
loadings matrix, and pj,k are the component loadings, which express the strength of
the connection between the variables and the component scores T. In this model, the
component scores are linear combinations of the original variables; therefore, they
can be expressed as T = XW, where the elements wj,k express the weights used in
this combination. The elements of the matrix W ∈ RJ×K are named component
weights. For this approach, the goal of PCA is to minimize the squared Frobenius
norm of the error matrix E (also known as the least-squares approach). The problem
is formulated as:

(T̂, P̂) = argmin
T,P

∥∥X−TP⊤∥∥2

F
(2.2)

s.t. P⊤P = I.

A solution of problem (2.2) can be obtained from the truncated SVD of X = UDV⊤,
with U ∈ RI×K and V ∈ RJ×K semi-orthogonal matrices such that U⊤U = V⊤V = I ∈
RK×K and D ∈ RK×K a diagonal matrix (Eckart & Young, 1936). Thus, T̂ = UD

and P̂ = V provide the solution of problem (2.2).
In psychometrics, it is common to find PCA formulations where problem (2.2)

is modified as follows (ten Berge, 1986),

(T̂, P̂) = argmin
T,P

∥∥X−TP⊤∥∥2

F
(2.3)

s.t. T⊤T = (I − 1)I.
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The solution of problem (2.3) can be obtained using the SVD of X by taking T̂ =

(I − 1)1/2U and P̂ = (I − 1)−1/2VD2. Hence,

T̂ = (X− E)P(P⊤P)−1

= (I − 1)1/2XVD−1.

Therefore, the component weights matrix for problem (2.3) is Ŵ = (I−1)1/2VD−1.
Additionally, problem (2.3) is commonly formulated as an explicit combination of
the original variables (ten Berge, 2005), considering T = XW that is,

(Ŵ, P̂) = argmin
W,P

∥∥X−XWP⊤∥∥2

F

s.t. T⊤T = (I − 1)I.

The classical way to define PCA is to find the component weight matrix W ∈
RJ×K , having orthogonal vectors that maximize the variance of the components.
Formally, consider the following formulation:

Ŵ = argmax
W

Tr
(
W⊤Ω̂W

)
(2.4)

s.t. W⊤W = I.

A solution for problem (2.4) can be obtained from the EVD (Hotelling, 1933) of the
covariance matrix Ω̂ = VΛV⊤, taking Ŵ = V as the matrix formed by eigenvectors
corresponding the K largest eigenvalues.

The orthogonality constraints in PCA formulations (2.2) and (2.4) and principal
axes orientation imply their equivalence. More precisely, component loadings and
component weights are both equal to V. To see this, notice that using the SVD
of X = UDVT , the EVD for Ω = X⊤X = VD2V⊤ is obtained (I. T. Jolliffe &
Cadima, 2016). Thus, D2 is the diagonal matrix containing the eigenvalues of Ω
(the square of the singular values of X) in decreasing order: d211 ≥ d222 ≥ . . . ≥ d2JJ .
Then, the matrix of component weights Ŵ = V coincides with the matrix P̂ of
component loadings defined by PCA formulation (2.2). However, this equivalence
does not hold exactly for PCA formulation (2.3) because the orthogonality constraint
is imposed on the component scores. Instead, under formulation (2.3), Ŵ and P̂
are proportional to V.

2It can be shown that the element pj,k is the correlation between variable xj and component
score tk
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2.2.2 PCA Drawbacks

Interpretation and Non-uniqueness

Principal component scores are a linear combination of the original variables. That
makes them difficult to interpret. For instance, when using data containing measures
with different units, the linear combination does not have a definite meaning. A
common practice to tackle this problem is to use the correlation matrix instead of
the covariance matrix (I. T. Jolliffe & Cadima, 2016). That is to standardize the
variables so all of them are on the same scale.

Rotation techniques are commonly used to help practitioners interpret the com-
ponent loadings. The rotation is done to obtain component loadings values close
to either 0 or 1, such that only the most relevant variables are considered for in-
terpretation purposes (see Sect. 2.3.1 for further discussion). The rotation can be
implemented using an orthogonal rotation matrix Q, which does not modify the
amount of variance accounted by all components together but rather redistributes
the variance across the variables by choosing a different system of orthogonal axes.
However, because of the several possible choices for the rotation matrix Q, non-
unique solutions in problems (2.2) and (2.4) are achieved (Hastie et al., 2000).

Inconsistency in the High-Dimensional Setting

As mentioned above, the solution of the model-free PCA formulation (2.4) is the
leading eigenvector of the covariance matrix. The inconsistency of this leading eigen-
vector has been studied by analyzing the angle between its population and estimated
value under different asymptotical conditions for the dimensionality of the data set.
For instance, Johnstone and Lu (2009) show that

P
(
lim
I→∞

R2(v̂1,v1) = R2
∞(ω, c)

)
= 1,

where v1 is the leading population eigenvector, v̂1 its estimate, and R2(v̂1, v1) the
cosine of the angle between v̂1 and v1. ω > 0 stands for the limiting signal-to-noise
ratio, c = lim

I→∞
J/I, and R2

∞ = (ω2 − c)+/(ω
2 + cω). This result implies that v̂1 is

a consistent estimate of v1 if and only if c = 0. Therefore, in the high-dimensional
setting (J ≫ I), the estimator of the component weights in the PCA formulation
(2.4) is inconsistent. Similarly, the estimation of the leading eigenvalue is shown to
be inconsistent under random matrix theory (e.g., when I and J tend to infinity
and the ratio I/J converges to a constant) (Baik & Silverstein, 2006; Johnstone &
Lu, 2009; Nadler, 2008; Paul, 2007) and in the high-dimensional low sample (HDLS)
(e.g., J tends to infinity, and I is fixed) (Jung & Marron, 2009; D. Shen, Shen, &
Marron, 2016). On the other hand, Jung and Marron (2009) shows that when I
is fixed, the angle between v̂1 and v1 goes to 0 with probability 1 if the leading
eigenvalues are extremely large in comparison with the number of variables J , yet
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the components scores are shown to be inconsistent (D. Shen, Shen, Zhu, & Marron,
2016).

2.3 Sparse Principal Component Analysis Overview
Sparse PCA has been proposed as a solution to the difficulties encountered in in-
terpreting the component scores of ordinary PCA, non-uniqueness, and the incon-
sistency of the component loadings/weights (c.f. Sect. 2.2.2). Research efforts
have focused on reformulations for PCA, where component loadings or component
weights have as many zero elements as possible. In this section, we present six sparse
PCA methods that are well established in the literature and for which implementa-
tions are available. Our selection of methods was also chosen to reflect the different
PCA formulations (2.2), (2.3), and (2.4). This section aims to show the differences
in the purposes and objectives of sparse PCA methods. The emphasis is on the
fact that while the ordinary PCA formulations (2.2) and (2.4) are equivalent (see
Sect. 2.2.1), for sparse PCA the corresponding formulations are not equivalent, so
that the obtained results heavily depend on the chosen methodology. Sparse PCA
methods for estimating the loadings are presented in Section 2.3.1 while sparse PCA
methods for estimating the weights are presented in 2.3.2.3

2.3.1 Sparse Loadings

Principal component analysis, when used to explore structure and patterns in data,
relies on the model structure presented in Eq. (2.1). Interpreting the components
is based on inspecting the loadings because these reveal how strongly the variables
contribute to the components. More precisely, in problem (2.2), the component
loadings P represent the regression coefficients in the multiple regression of xj on
the k component scores tk.4 Note that with orthogonal component scores, this is
a regression problem with independent predictors, and with proper normalization
constraints, the loading is equal to the correlation. Then, having sparse compo-
nent loadings gives a clearer interpretation in the sense that variables are explained
only by one or a few components. In this section, we present two frequently used
methodologies for this purpose.

Sparse PCA Via Rotation and Thresholding: Varimax and Simplimax

The first attempts to achieve a component structure with variables being explained
by one component only while having zero loadings for the other components are
simple structure rotations followed by thresholding. Simple structure rotation,

3Ning-min and Jing (2015), Trendafilov (2014), Zou and Xue (2018) give a wide list of more
methods for both purposes

4Observe that from (2.1) it follows that xj =
∑

k tkpj,k + ej which is the linear regression
equation with dependent variable xj and predictor variables tk.
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which was adopted from factor analysis, (I. Jolliffe, 2002; I. T. Jolliffe, 1989, 1995,
Chap. 11), relies on the rotational freedom of Eq. (2.1):

X = TP⊤ + E = T(Q−1)⊤(PQ)⊤ + E

X = TrotatedP
⊤
rotated + E (2.5)

with Q a non-singular transformation matrix usually orthogonal (hence Q is a
rotation matrix) or oblique5 (Jennrich, 2004, 2006).

This approach is applied in two steps. First, the component scores and compo-
nent loadings are obtained from solving problem (2.2). Second, a rotation matrix
Q is found by optimizing a criterion that leads to a simple structure of PQ. In this
study, we consider two well-known methods: Varimax (Kaiser, 1958) that maximizes
the variance of the squared component loadings, hence encouraging loadings to be as
close to either 0 or 1 as possible, and Simplimax (Kiers, 1994) that finds an oblique
matrix such that the rotated loading matrix comes closest (in the least square sense)
to a matrix with (at least) a given number of zero values. Oblique rotation matrices
are often used when the component scores are expected to be correlated. The ro-
tated loadings will—in general—not be precisely zero, but in practice, small loadings
are neglected (including not printing the value of small loadings in leading software
packages such as SPSS), which boils down to treating them as having a zero value
(I. Jolliffe, 2002, p.269). This practice is called thresholding and is considered ad hoc.
Importantly, as discussed by Cadima and Jolliffe (1995), the thresholding approach
is misleading in the sense that another subset of variables may better approximate
the data as in Eq. (2.5).

Sparse PCA Via Regularized SVD: sPCA-rSVD

Taking the close connection between the SVD and PCA as a point of departure,
H. Shen and Huang (2008) proposed a sparse PCA method based on adding a
regularization penalty to the least-squares PCA criterion in problem (2.3). Their
so-called sparse PCA via regularized SVD (sPCA-rSVD) method solves the following
problem:

(̂t, p̂) = argmin
t,p

∥∥X− tp⊤∥∥2

F
+ Pλ(p) (2.6)

s.t. ∥t∥22 = 1,

where t̂p̂
⊤ is the best rank-one approximation of the data matrix X (Eckart &

Young, 1936), t is the first component score vector and p the corresponding loading
vector and Pλ a particular penalty term that imposes sparsity over the component
loadings. Three different sparsity inducing penalties are considered in H. Shen and

5A non-singular matrix Q ∈ RK×K is called oblique if Q⊤Q is a correlation matrix (Trendafilov,
2014).
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Huang (2008), including the l1-norm of the loadings, also known as the lasso. Prob-
lem (2.6) is used to find the first component score and component loading vectors,
the subsequent pairs (̂tk, p̂k) with k > 1 are obtained by solving problem (2.6) for
the residual matrix (i.e., X − t̂p̂

⊤). H. Shen and Huang (2008) solved the prob-
lem by alternating between the optimization of t given p̂ and p given t̂; they also
discuss that the conditional optimization problem of the loadings is separable in
the variables. Such separability has two major advantages. First, all loadings can
be optimized simultaneously using simple expressions (e.g., soft-thresholding of the
inner product of the observed variable and component scores), which implies very
efficient computation even in the high-dimensional setting; Second, it means that
the problem can be solved for a fixed number of zero coefficients. Trendafilov and
Adachi (2015) used this advantages to solve the least-squares PCA problem (2.3)
with orthogonal T for k > 1 subject to a cardinality constraint.

2.3.2 Sparse Weights

In this section, we present different methodologies to estimate the sparse component
weights matrix W. Given that the role of W is to weight the original variables to
form T = XW, sparsity is desired on W. In this way, the component scores T
would be summarized by a weighted linear combination of those variables in X with
nonzero elements in W.

Sparse PCA Via Elastic Net Regularization: SPCA

One of the most popular methods for PCA with sparse component weights was
proposed by Zou et al. (2006). They showed that the component weights6 are
proportional to the solution of the ridge regression, and sparsity can be attained by
adding a lasso penalty. Zou et al. (2006) proposed to solve the following problem

(Ŵ, P̂) = argmin
W,P

∥∥X−XWP⊤∥∥2

F
+

K∑
k=1

λ ∥wk∥2 +
K∑
k=1

λ1,k ∥wk∥1 (2.7)

s.t. P⊤P = I.

The terms
∑K

k=1 λ ∥wk∥2 and
∑K

k=1 λ1,k ∥wk∥1 are the ridge and lasso penalties, re-
spectively. To solve the problem (2.7) for given values of λ and λ1,k, Zou et al.
(2006) proposed an alternating minimization algorithm while updates W and P al-
ternately with the other variable is fixed to its current estimate until some stopping
criterion is reached. The update of P conditional upon fixed W is the orthogonal
Procrustes rotation problem with known optimal solution (S., Golub, & Loan, 1991).
The conditional update of the weights W can be written as an elastic net regression
problem that regresses the component scores tk on the J variables xj (Zou & Hastie,

6Referred as loadings in Zou et al. (2006).
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2005). Note that in the high-dimensional setting, this becomes a high-dimensional
regression problem with known numerical issues (Hastie, Tibshirani, & Friedman,
2009). Then, as the lasso penalty yields at most I nonzero coefficients, in the high-
dimensional setting, the ridge penalty is included. Efficient procedures have been
proposed for the elastic net regression problem, such as the LARS-EN algorithm
(Efron et al., 2004), cyclic coordinate descent (Friedman, Hastie, Höfling, & Tibshi-
rani, 2007), and proximal gradient techniques (Beck & Teboulle, 2009). However,
these algorithms remain subject to computational issues in the high-dimensional
setting (G. X. Yuan, Ho, & Lin, 2011). Furthermore, a major challenge when using
the elastic net method is proper tuning of the penalties. In this respect, the LARS-
EN algorithm has the benefit that it allows defining the number of nonzero values
a priori.

Sparse PCA Via Cardinality Penalty: pathSPCA

d’Aspremont et al. (2007) focused on the problem of maximizing the variance of the
components with a cardinality penalty,

ŵ = argmax
∥w∥≤1

∥Xw∥2 − ρ ∥w∥0 , (2.8)

with ρ a parameter controlling the sparsity. d’Aspremont et al. (2007) proposed a
greedy algorithm that provides candidate indexes Ir for r nonzero elements. Then
the sparse component weights vector is the solution of the problem (2.8) given Ir,
which is:

ŵ = argmax
{wIcr

=0, ∥w∥=1}
∥Xw∥2 − ρr,

where Icr is the complement set of Ir, e.g., the position with zero element in w. This
algorithm is called pathSPCA.

Sparse PCA Via Lasso Penalty: GPower

Journée et al. (2010) showed that the sparse PCA formulation based on maximizing
the (scaled) standard deviation of the component scores using a lasso penalty,

ŵ = argmax
∥w∥=1

∥Xw∥ − λ ∥w∥1 , (2.9)

is equivalent to solving initially:

ẑ = argmax
∥z∥≤1

∥∥S(X⊤z, λ)
∥∥2

, (2.10)

where the soft-thresholding function S(X⊤z, λ) is applied component wise. Once ẑ is
obtained, ŵ = S(X⊤ẑ, λ)/

∥∥S(X⊤ẑ, λ)
∥∥, which gives the sparsity pattern S(X⊤ẑ, λ)
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for w. Then, the component weights are obtained via the ordinary PCA (problem
(2.4)) by removing the corresponding zero variables from the original data set X.
Note that the problem of solving for the J-dimensional vector ŵ is reformulated in
terms of solving for a I-dimensional vector z. In the high-dimensional setting, this
avoids to search in a large space. A gradient scheme is used to solve problem (2.10).
Additionally to problem (2.9), Journée et al. (2010) also considered the problem of
maximizing the variance subject to a cardinality penalty.

2.3.3 Sparse PCA: Summary

PCA can be formulated as optimization problems with the solutions happening to
be equivalent (see Sect. 2.2.1). However, when having sparsity constraints in the
formulation, neither the SVD of the data set nor the EVD of the covariance matrix is
the solution to the sparse PCA problem. Given the lack of awareness of the different
formulations and goals of PCA, it is not clear whatsoever when to use which method.
In this section, we have discussed several methods for sparse PCA that all share the
principle of Ockham’s razor to represent the data in a reliable though simple way.
Table 2.1 summarizes the described methods: each of them imposes sparsity either
on the component loadings or on the component weights. The last column of Table
2.1, “Algorithm", indicates whether components are extracted one by one (deflation
approach) or all together (block approach).

To impose sparsity, PCA methods rely on one of three popular techniques: ro-
tation, the addition of a penalty, or a constraint (usually l0 or l1

7). Many of the
sparse PCA formulations are complex to solve, and a considerable amount of work
is of an algorithmic nature; proposed algorithms are often subject to local optima
and without guaranteed convergence. Moreover, some of the procedures also fail in
terms of memory or are very slow to compute. Such algorithmic issues are not the
focus here, yet they may affect the numerical performance of the methods.

Table 2.1: Summary of methods for sparse PCA

Method Estimated Objective Sparsity Algorithm
VARIMAX P Rotation Threshold Block
SIMPLIMAX P Rotation Threshold Block
sPCA-rSVD P low-rank l1 Deflating
SPCA W Max. variance l1 and l2 Block
pathSPCA W Max. variance l0 Deflating
GPower W Max. variance l1 Deflating

7Note that for l1 it is possible to find a dual representation though this is not always the case
for the l0 pseudo-norm; see, e.g., Bertsimas et al. (2016).
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2.4 Simulation Study
A crucial question that we want to address using simulated data is when to use
which sparse PCA method. As discussed throughout the paper, choosing the proper
approach depends on the assumed model (sparse component loadings, sparse com-
ponent weights, or both) and the performance of the method concerning various
criteria. Here, we will use four measures to assess the performance of the six sparse
PCA methods discussed in Sect. 3.2.2.

2.4.1 Design

An essential factor in any simulation is the assumed data-generating model. Most of
the reported simulation studies for sparse PCA are based on the spiked covariance
model for which data follow a multivariate distribution with zero mean, variance
Ω = VDV⊤, with sparse leading eigenvectors VK , and the K largest eigenvalues
much larger than the remaining ones. Papers using this model include Zou et al.
(2006), H. Shen and Huang (2008), Johnstone and Lu (2009). Another model that
has been considered is the sparse standard factor model that relies on Eq. (2.1),
that is, X = TP⊤ + E with P sparse, and noise E independent of the components
scores T; see Adachi and Trendafilov (2016) for an example of a simulation study
using this model. Also, more relaxed versions have been considered under the same
name.8 Here, we will rely on three versions of the ‘factor model’ set up such that
they correspond to the data model structure assumed by the sparse PCA methods
considered in this study. First, consider

X = TP⊤ + E (2.11)

with P sparse and T⊤T = I; note that the model in Eq. (2.11) corresponds to
the structure imposed by Adachi and Trendafilov (2016). Second, considering the
component scores explicitly as a function of the weights,

X = XWP⊤ + E (2.12)

with W sparse and, third, the same model in Eq. (2.12) but, with P and W being
sparse simultaneously.

For generating the synthetic data sets, besides the data-generating model, we
also considered the following factors and levels: sample size with levels I = 100, 500,
number of variables with levels J = 10, 100, 1000, number of components with
levels K = 2, 3, percentage of variance accounted for the data set with levels
VAF = 80%, 95%, 100%, and proportion of sparsity with levels PS = 0.0, 0.5, 0.8
or PS = 0.7, 0.8, 0.9 when data are generated with component loadings and com-
ponent weights being equal, sparse, and orthogonal. These higher levels of sparsity

8Note that outside psychology, the least-squares model with component scores and loadings is
often wrongly named factor model.
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allow for avoiding overlap of the nonzero values, making it possible to have sparse
structures that are orthogonal. For each of the three types of models, a fully crossed
design was used, resulting in 2× 3× 2× 3× 3 = 108 conditions. For each condition,
100 data sets were generated, ending up with a total of 10, 800 data sets in each
of the three data generating regimes. The data generation design is summarized in
Table 2.2.

Table 2.2: Simulation design factors and their levels

Model sparse I J K V AF PS Repetions

X = TP⊤ + E P 100, 500 10, 100, 1000 2, 3 80%, 95%, 100% 0.0, 0.5, 0.8 100
X = XWP⊤ + E W 100, 500 10, 100, 1000 2, 3 80%, 95%, 100% 0.0, 0.5, 0.8 100
X = XWP⊤ + E P and W 100, 500 10, 100, 1000 2, 3 80%, 95%, 100% 0.7, 0.8, 0.9 100

I sample size, J N. of variables, K N. of components, VAF variance accounted, PS proportion of sparsity.

Data were generated using one of three algorithms: Algorithm 1 is used for gener-
ating data with a sparse component loadings structure, Algorithm 2 generates data
with a sparse component weights structure, and Algorithm 3 generates data with
orthogonal and equal sparse component loadings and weights. Every algorithm be-
gins with a rank-K decomposition obtained from the compact SVD decomposition
of data generated from a multivariate normal distribution. Algorithm 1 then im-
poses sparsity on the component loadings P = VD and has orthogonal component
scores T = U; Algorithm 2 imposes sparsity on the component weights W = V.
For Algorithm 3, there are two scenarios: (1) For the model that assumes P sparse,
W = VD−1, and (2) for the models that assume W sparse, P = V. Additionally,
every algorithm considers additive noise E distributed according to a multivariate
normal distribution with mean 0 and variance proportional to the identity matrix,
such that the final data set has the desired VAF. This error structure has also been
considered in leading sparse PCA papers (e.g., Johnstone & Lu, 2009; H. Shen &
Huang, 2008; Zou et al., 2006) while Van Deun et al. (2019) considers generalizations
of sparse PCA to data with non-additive noise. Each data set was analyzed using
the six sparse PCA methods previously discussed: PCA with simple thresholding
of the rotated loadings using either Varimax or Simplimax rotation, sPCA-rSVD,
SPCA, pathSPCA, and GPower. Also, the performance of each method on each data
set was assessed using the following performance measures: the squared relative er-
ror (SRE) of the model parameters, the misidentification rate (MR) of zero versus
the nonzero status of the sparse coefficients, the percentage of explained variance
(PEV), and the cosine similarity (also known as Tucker’s coefficient of congruence).
The performance measures are defined as follows.

• The SRE is used to assess how well each method estimates the model compo-
nent scores, component loadings, and/or component weights. For a matrix A,
the SRE is defined by

SRE(A) =

∥∥∥Â−A
∥∥∥
2

F

∥A∥2F
,
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Algorithm 1: Data generation: Sparse Component loadings.
Input : I, J , K, PS, and VAF
Output: X ∈ RI×J

1 Generate Xinitial by sampling I vectors from N (0J , IJ);
2 Obtain U, D, and V via the truncated SVD: Xinitial = UDV⊤;
3 Replace by zero the PS proportion of elements of V having the smallest

absolute value;
4 Normalize each column of V to a unit vector;
5 P ← VD;
6 T ← U;
7 X ← TP⊤ + fE with E having I vectors drawn from N (0J , IJ) and f

such that VAF = ∥TP⊤∥2/(∥TP⊤∥2 + f 2∥E∥2).

Algorithm 2: Data generation: Sparse Component Weights.
Input : I, J , K, PS, and VAF
Output: X ∈ RI×J

1 Generate Xinitial by sampling I vectors from N (0J , IJ);
2 Obtain U, D, and V via the truncated SVD: Xinitial = UDV⊤;
3 Replace the elements of V with the smallest absolute value by 0,

according to the level of sparsity;
4 Normalize each column of V to a unit vector;
5 T = XinitialV;
6 P is the solution of Xinitial = TP⊤;
7 X ← XinitialVP⊤ + fE with E having I vectors drawn from N (0J , IJ)

and f such that VAF = ∥TP⊤∥2/(∥TP⊤∥2 + f 2∥E∥2).
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Algorithm 3: Data generation: Sparse Component Weights and load-
ings.

Input : I, J , K, PS, and VAF
Output: X ∈ RI×J

1 Generate Xinitial by sampling I vectors from N (0J , IJ);
2 Obtain U, D, and V via the truncated SVD: Xinitial = UDV⊤;
3 Replace by zero the PS proportion of elements of V having the smallest

absolute value;
4 Normalize and orthogonalize V, preserving the zero elements;
5 if model relies on X = TP⊤ + E, then
6 T ← U;
7 W ← VD−1;
8 P ← VD;
9 end

10 if model relies on maximization of the variance, then
11 W ← V;
12 P = W;
13 T = XinitialW;
14 P is the solution of Xinitial = TP⊤;
15 end
16 X ← TP⊤ + fE with E having I vectors drawn from N (0J , IJ) and f

such that VAF = ∥TP⊤∥2/(∥TP⊤∥2 + f 2∥E∥2).
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with Â representing the estimated matrix. Values close to zero indicate good
recovery of the original model matrix by the method, while values close to or
higher than one indicate bad recovery. The SRE is calculated for the compo-
nent scores T, component loadings P, and component weights W. The cosine
similarity (or Tucker congruence) between matrices A and B with dimension
I ×K is defined as

CosSim(A,B) =
1

K

K∑
k=1

a⊤
k bk

∥ak∥ ∥bk∥
(2.13)

with ak and bk the k-th column of matrix A and B, respectively. This value
is calculated between the estimated component loadings and the population
component weights CosSim(P̂,W), the estimated component weights and the
population component loadings CosSim(Ŵ,P), and the estimated and pop-
ulation component scores CosSim(T̂,T). The CosSim is only calculated for
the simulation settings representing a mismatch between the sparse constraints
imposed by the data generating model and those imposed by the method.

• The misidentification rate assesses how badly each model captures the sparse
structure of the data set. MR is defined as the percentage of zero values that
are not recovered; that is,

MR = 1− # of correctly classified zero elements
# of zero-elements

.

MR is a value in the interval [0, 1]. When MR = 0, all zeros in the generated
model structure have been estimated as a zero by the sparse PCA method,
while MR = 1 means that none of the zeros in the model structure has been
estimated as a zero by the method. Hence, methods set up to identify the
underlying sparse structure should have MR values close to zero. Note that
in simulation conditions with the proportion of sparsity set to zero, the MR is
not calculated.

• The percentage of explained variance was implemented to assess how well the
sparse component solution explains the variance in the generated data. PEV
is defined as

PEV = 1−

∥∥∥X̂−X
∥∥∥
2

F

∥X∥2F
.

where X̂ represents the recovered data set and it is defined as X̂ = T̂P̂⊤.
PEV is a value in the interval [0, 1] and is desired to be close to the variance
accounted by the generated data (VAF); a PEV value greater than VAF means
that the model extracts some of the residual variation (i.e. the noise), which
is a sign of overfitting.
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Note that—except for PEV—all performance measures are sensitive to order per-
mutations and changing of the sign of the component scores, loadings, or weights.
However, the methods considered here have sign invariance, and some of them also
have permutational invariance. Therefore, to make our measurement robust, we
considered all possible permutations of the component loadings/weights—including
changes in their sign—and calculated all measurements with the combination that
produces the minimum SRE (or CosSim when used).

2.4.2 Results

Overview

We present the results for three different types of conditions. In condition type I, the
sparse structure of the generated data matches the sparse structure of the methods.
In condition type II, the data have been generated with more constraints than those
set by the methods. Finally, in condition type III, we assume a mismatch between
generated and estimated sparse structures (that is, analyzing data generated with
sparse loadings using a method that yields sparse weights and vice versa, see Table
2.3). In Figs. 2.1, 2.2, and 2.3, we report results for the settings that include two
components, a PS equal to 50% and 80% for condition types I and III, and VAF
equal to 80%. Each panel contains a boxplot of a performance measure. Within each
panel, a dashed line divides the boxplots for sparse loadings methods (at the left
side of the dashed line) from those for sparse weights methods. For condition type-
II, the settings with two components scores and VAF equal to 80% were included.9
All analyses were performed using the actual values of the number of components
and the sparsity level available in the simulation setting. Therefore, differences in
performance are not the result of an improper tuning of the meta-parameters by the
methods.

Table 2.3: Simulation description summary.

Condition Sparse structure Algorithm Measurements

Type I P Alg-I SRE MR PEV
W Alg-II SRE MR PEV

Type II P and W Alg-III SRE MR PEV
P and W Alg-III SRE MR PEV

Type III W Alg-II CosSim MR PEV
P Alg-I CosSim MR PEV

9Settings with three components and with the PS equal to 0% are available as Online Resource
1.
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Condition Type I: Matching Sparsity

The first type of conditions that we discuss are those with data generated using the
same model structures as the corresponding methods. Therefore, data generated
by Algorithm 1 were analyzed with thresholding of rotated loadings and sPCA-
rSVD, while data generated by Algorithm 2 were analyzed with SPCA, pahSPCA,
and GPower. Figure 2.1 shows the results of the different performance measures
for the simulation setting with two components and VAF equal to 80%. It can be
observed that among the methods with sparse loadings, both thresholded Varimax
and sPCA-rSVD perform reasonably well on all performance measures and in all
settings. Thresholded Simplimax, on the other hand, only performs well with respect
to explaining the variance. Comparing Varimax with sPCA-rSVD, we found that
sPCA-rSVD has the lowest MR in all conditions and has a better recovery of the
loadings and component scores in situations with many variables (J > 10). We
found a strong effect of the level of sparsity on the MR. MR is lower when the PS
is higher: This is mainly an artefact as the maximal MR is 1 − .6/.8 = 0.25 when
the sparsity is 80% and 1 when it is 50%. For Varimax and sPCA-rSVD (and in
some conditions also for Simplimax), some effect of the number of variables can
be observed: Better results were obtained when the number of variables increased.
This is contrary to expectations, given reported issues for high-dimensional data
(see Sect. 2.2.2). However, as explained previously in Sect. 3.2.2, the estimation of
the loadings with the sPCA-rSVD method boils down to univariate regressions.

Among the methods imposing sparsity on the weights, GPower shows the best
performance in general. For the SRE on the component weights and component
scores (first and second row), it always had the lowest values when the proportion
of sparsity was 80%. For different parameter settings, GPower and SPCA presented
similar results. Related to the PEV and MR, GPower and SPCA showed favor-
able performance, although GPower obtained the best performance on the latter.
Both for SPCA and GPower, it holds that their SRE performance decreased with
an increasing number of variables; the estimation problem, with sparse component
weights, suffers from the high dimensionality as the estimation of the weights stream-
lines to a high-dimensional regression problem. Finally, pathSPCA had the worst
performance on every measure. For the MR, pathSPCA obtained values close to the
maximum possible, and the SRE was always close to or greater than 1.

Condition Type II: Double Sparsity

In condition type II, the data were generated with the component loadings and
component weights simultaneously sparse, relying on Algorithm 3. Figure 2.2 shows
the results for the performance measures in the conditions with two components
and VAF equal to 80%. We found that sPCA-rSVD and GPower maintained good
performance and showed the best performance for sparse loadings and sparse weights
methods, respectively. Both rotation techniques and sPCA-rSVD performed better
in general, with a reduction of the SRE of the component loadings and scores, a
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Figure 2.1: Matching sparsity: Boxplots of the performance measures
in conditions with 80% of variance accounted by the model in the data and
two components. Within each panel, a dashed line divides the boxplots for
sparse loadings methods (at the left side of the dashed line) from those for
sparse weights methods. The top row summarizes the squared relative error
(SRE-LW) for the loadings (at the left of the dashed line) and weights (at
the right of the dashed line), the second row the SRE-S for the component
scores, the third row (PEV) the proportion of variance in the data explained
by the estimated model, and the bottom row the misidentification rate

(MR).
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reduction of the MR, and a slight increment of the PEV. The performance of SPCA
is much worse in the settings with 100 and 1, 000 variables for all measures but the
PEV, which remains around 80%. PathSPCA still performs badly, especially with
respect to MR, where it almost attains the maximum possible value.

Besides comparisons within each purpose (P and W), comparisons between the
two purposes can also be made (P vs W). In condition types I and II, sPCA-
rSVD outperformed GPower on all measures but PEV, where they showed similar
performance. This indicates that methods for sparse component loadings recover
better the sparse component loading structure than those methods for sparse com-
ponent weights recover the sparse component weight structure. The comparison also
indicates that sparse component weights methods have higher PEV.

Condition Type III: Mismatching Sparsity

In condition type III, the sparse structures were mismatched between generated and
estimated structures; that is, data generated with sparse component weights were
analyzed with sparse loadings methods, while data with sparse component loadings
were analyzed with methods for sparse weights. This implies that sparse loadings
methods were assessed using data generated with Algorithm 2, and sparse weights
methods were assessed using data generated with Algorithm 1. Additionally, the
similarity measure described in Eq. (2.13) was used to assess the recovery of the
component loadings/weights and scores instead of SRE.

Figure 2.3 summarizes the results for the setting with two components and VAF
equal to 80%. Note that for the sparse loadings methods, the recovery of the com-
ponent weights is calculated (and thus not of the component loadings), while for
sparse weights methods, the recovery of the component loadings is calculated. All
methods for sparse loadings—thus imposing sparse component loadings—recover
the component weights and component scores well; Simplimax even obtains better
results than Varimax in the conditions with 50% of sparsity and in some conditions
also than sPCA-rSVD. Compared to condition types I and II, when 80% sparsity
is imposed and J > I the PEV drops. This can be understood by the fact that
data were generated with sparse component weights while they were estimated with
sparse component loadings, the latter having a more direct impact on the recovered
data x̂ij than the former.

Methods for sparse weights show the same pattern of results as in condition type
I and notably maintain the same PEV as in condition types I and II. GPower outper-
formed SPCA in most of the settings and measures, although the latter still shows
reasonably good results except with respect to MR in the high-dimensional settings.
Compared to condition type I, GPower also outperformed SPCA on the MR in
conditions with 50% of sparsity; its performance improved in this condition with
mismatched sparsity. PathSPCA performed badly on every measure. Additionally,
GPower outperformed sPCA-rSVD on all measures and in almost all conditions ex-
cept for those with J = 10. Taken together, these results suggest that an underlying
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Figure 2.2: Double sparsity: Boxplots of the performance measures in
conditions with 80% of variance accounted by the model in the data and
two components. Within each panel, a dashed line divides the boxplots for
sparse loadings methods (at the left side of the dashed line) from those for
sparse weights methods. The top row summarizes the squared relative error
(SRE-LW) for the loadings (at the left of the dashed line) and weights (at
the right of the dashed line), the second row the SRE-S for the component
scores, the third row (PEV) the proportion of variance in the data explained
by the estimated model, and the bottom row the misidentification rate

(MR).



28 Chapter 2. A guide for sparse PCA: model comparison and applications

sparse component loading structure can be recovered better by a sparse component
weight method and with higher PEV than vice versa.

We used Figs. 2.4 and 2.5 to summarize the MR and PEV of the three condition
types. First we discuss MR. The robustness of the methods in capturing the sparse
structure under varying data generation schemes can be observed in Fig. 2.4. We
can see, for example, that Simplimax showed its best MR in the conditions where
sparseness is imposed on the component weights (condition types II and III). On the
other hand, Varimax and sPCA-rSVD showed their best results in condition type-I.
SPCA presented only good results when the I = 10 in the three condition types and
poor performance in the other ones. GPower, although being a method that imposes
sparseness on the weights, has a better recovery of the sparse structure when data are
generated with sparse loadings (condition types II and III). Second, regarding the
PEV (see Fig. 2.5), GPower and SPCA showed the best PEV under each condition
type, and methods for sparse loadings only had a comparable PEV when data were
generated with sparseness both on loadings and weights (condition type II). On
both measures, MR and PEV, pathSPCA consistently showed poor performance
across every condition type. Additionally, comparing the MR of GPower (sPCA-
rSVD) in condition type I with sPCA-rSVD (GPower) performance in condition
type III, we see that the sparse loading structure of that sPCA-rSVD does a better
job in finding back the sparse component weight structure for data generated with
a sparse component weight structure. GPower, however, is not better in finding the
underlying sparse loading structure than sPCA-rSVD.

The different results in condition types I and II that we observe in Fig. 2.4
further support the hypothesis that sparse component loadings and sparse compo-
nent weights should be treated differently. If sparse component loadings and sparse
component weights were the same, we would have observed the same results in con-
ditions type I and III, which is not the case. In condition type II, it is assumed that
both component loadings and weights have the same spare structure, and methods
for sparse loadings showed a better performance recovering the sparse structure in
the data sets.

2.4.3 Summary

Here we focus on two essential aims of a sparse PCA analysis, namely recovering
the sparseness structure (which variables are associated with the components and
which ones are not) and explaining maximal variance in a parsimonious way. (This
is using components that are a linear combination of a few variables only.) When
recovery of the sparseness structure is the aim, a sparse loading approach (prefer-
ably sPCA-rSVD) should be used unless the data have an underlying sparse weight
structure (in the latter case, the GPower approach with sparse weights should be
used). When summarizing the variables with a few derived variables that explain
maximal variance and are based on a linear combination of a few variables only is
the goal, a sparse weight approach should be used, preferably GPower.
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Figure 2.3: Mismatching sparsity: Boxplots of the performance measures
in conditions with 80% of variance accounted by the model in the data and
two components. Within each panel, a dashed line divides the boxplots for
sparse loadings methods (at the left side of the dashed line) from those for
sparse weights methods. The top row summarizes the squared relative error
(SRE-LW) for the loadings (at the left of the dashed line) and weights (at
the right of the dashed line), the second row the SRE-S for the component
scores, the third row (PEV) the proportion of variance in the data explained
by the estimated model, and the bottom row the misidentification rate

(MR).
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Figure 2.4: Misidentification rate (MR): boxplots of the MR in condi-
tions with 80% of variance accounted by the model in the data, a proportion
of sparsity of 0.8, and two components. Within each panel, a dashed line is
used to divide the boxplots for sparse loadings methods (at the left side of

the dashed line) from those for sparse weights methods.

Although the present results convincingly favor sPCA-rSVD and GPower, we
should acknowledge that we unrealistically used knowledge about the number of
components and the level of sparseness to implement the methodologies. These fac-
tors’ actual values are only available in simulation studies and not when using empir-
ical data sets. Then, parameters such as the proportion of sparsity and the number
of components require additional techniques to select them. Those techniques are
out of the scope of this study. The following section illustrates the implementation
of sparse PCA methodologies using empirical data sets.

2.5 Empirical Applications
In this section, we use two empirical data sets to illustrate the application of sparse
PCA in practice. We used a highly structured data set with variables designed
to measure one of five underlying psychological constructs. Here, the aim of the
sparse PCA analysis is to reveal the sparse structure that underlies the data: each
variable is expected to be associated with one component only. A second data set
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Figure 2.5: Percentage of explained variance (PEV): boxplots of the PEV
in conditions with 80% of variance accounted by the model in the data, a
proportion of sparsity of 0.8, and two components. Within each panel, a
dashed line is used to divide the boxplots for sparse loadings methods (at

the left side of the dashed line) from those for sparse weights methods.

was selected to show the use of sparse PCA as a summarization tool in the high-
dimensional setting. For this purpose, we analyze an ultra-high dimensional genetic
data set with the aim of finding a limited set of genes that allows us to classify
subjects into one of three groups (two autism related groups and a control group).

An important issue that needs to be addressed for these empirical applications,
and that was not addressed in the simulation study, is the choice of the number of
components and the level of sparsity. For the number of components, we rely on the
literature and substantive arguments made therein. For the proportion of sparsity,
we rely on a data driven method, namely the Index of Sparseness (IS) introduced
by Trendafilov (2014), that was shown to outperform other methods such as cross-
validation and the BIC in estimating the true proportion of sparsity (Gu & Van
Deun, 2019). The IS is defined as

IS = PEVsparse × PEVpca × PS

with PEVsparse, PEVpca, and PS denoting the PEV using a sparse method, PEV us-
ing ordinary PCA, and the proportion of sparsity (loadings or weights), respectively.
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The IS value increases with the goodness-of-fit PEVsparse, the higher adjusted vari-
ance PEVpca, and the sparseness: the level of sparsity is determined by maximizing
IS.

2.5.1 Big Five Data

We used data on the Big Five personality dimensions publicly available from the
R-package qgraph (Epskamp, Cramer, Waldorp, Schmittmann, & Borsboom, 2012),
henceforth called Big Five data. The data set contains the scores of 500 individuals
on the NEO-PI-R questionnaire (McCrae & John, 1992) consisting of five sets of
48 items (i.e., 240 items in total), each set measuring one of the Big Five personal-
ity traits (Neuroticism, Extraversion, Openness to Experience, Agreeableness, and
Conscientiousness) (Dolan et al., 2009). For this kind of data, interest is usually in
the correlation patterns in the data (component loadings); therefore, each variable
was mean-centered and scaled to unit variance. Following the design of the ques-
tionnaire, we chose K = 5 five components. Ordinary PCA explained 24% of the
total variance; this is the maximal amount of variance that can be explained with 5
components. We will analyze these data with six sparse PCA methods. Yet, before
doing so, we first need to tune the level of sparseness. As sPCA-rSVD showed the
best performance in the simulation study, we use this method in combination with
IS to determine the level of sparseness. Figure 2.6 shows the values for the IS and
PEV as a function of the proportion of sparsity for sPCA-rSVD, calculated as the
proportion of the 5× 240 loadings that are zero. The maximum IS for sPCA-rSVD
is attained at a sparsity proportion of 0.73 having 18% explained variance. This
proportion of sparsity corresponds to a sparse model having only 64 non-zero out of
240 loadings for each component; this is reasonably close to the 48 non-zero loadings
that may be expected on the basis of the design of the questionnaire.

The biplot representation of the first two components after running PCA and
SPCA-rSVD are shown in Figure 2.7. Each variable is represented by an oriented
vector and each subject by a dot. Figure 2.7a depicts the first two PCA components.
Each item loads on both components and the solution is hard to interpret; sparseness
has been introduced to improve interpretability. The biplot representation of the
two first sPCA-rSVD components is shown in Figure 2.7b. Most of the items load
just on one component; this makes interpretation of the components easy.

Table 2.4 presents a summary of the number of items in each set that have a
non-zero loading for the five components. Using sPCA-rSVD, except for the fourth
component, most non-zero loadings belong to one particular item set. For instance,
from the 64 items that load on component 1, 34 belong to Neuroticism and 17 to
Extraversion; on the other hand, items having a non-zero loading on component 2,
mainly belong to Agreeableness (29 items), and Extraversion (19 items). Hence, the
components are strongly associated with one specific trait; this is especially true
for the third component (mainly Conscientiousness items) and the fifth component
(mostly Openness items). On the fourth component, relatively many items from
both Extraversion and Agreeableness load. The prior expectation may be that the
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Figure 2.6: Index of Sparseness (IS) and Percentage of explained vari-
ance (PEV) against the proportion of sparsity (PS).

items of one set load only on one particular component, and thus, it invalidates the
sPCA-rSVD method. Yet, many studies have shown the type of pattern found here,
for example, high cross-loadings for Extraversion and Agreeableness after Procrustes
rotation to the predefined structure (McCrae, Costa, & Martin, 2005).

To illustrate the comparative performance on the same empirical data, we im-
plemented the other methods using the Big Five data set with the total number of
non-zero coefficients fixed to the one found for sPCA-rSVD. As can be seen from
Table 2.4, the Varimax results largely reflect the design underlying the questionnaire
with items designed to measure a particular trait loading only on one particular com-
ponent. Simplimax, on the other hand, does not recover the underlying structure;
it has no component that is clearly dominated by the extraversion items, and the
conscientiousness trait does not show up as a single component but rather as two
(components 2 and 3). Using methods with sparse weights, the zero/non-zero pat-
tern of the SPCA weights is very similar to the pattern of the Simplimax loadings.
However, SPCA explains only 13% of the variance. PathSPCA showed no particular
structure, each component is a weighted combination of variables related to all traits,
and these components explain only 9% of the variance. Finally, by using GPower,
22% of the variance can be explained. However, the summary representations by
the GPower components do not include the variables related to Neuroticism; this
trait practically disappeared. Only two and one variable of the Neuroticism set of
items have a non-zero weight for components 1 and 2, respectively. Additionally,
items designed to measure the Openness trait underlie three of the five components
(namely, components 2, 3, and 5).

Overall, the results presented in Table 2.4 highlight the importance of taking the
purpose of analysis into account when choosing the sparse PCA method. We observe
that methods imposing sparseness on the loadings are more suitable for the purpose
of exploratory data analysis than methods imposing sparseness on the component
weights. The sparsity pattern of the sPCA-rSVD and Varimax loadings reflected the
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questionnaire design underlying the data best, even though the latter showed poor
performance on every performance measure in the simulation study. On the other
hand, GPower explained the most variance but could not recover the personality
traits from the data. Finally, in line with the simulation study, pathSPCA failed to
explain a reasonable amount of variance and to recover the underlying traits.
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Figure 2.7: Biplot: the dots in each subplot represent the component
scores, the arrows the component loadings.

Table 2.4: Sparse loading and weights composition by trait (OCEAN).

sPCArSVD Varimax Simplimax

p1 p2 p3 p4 p5 p1 p2 p3 p4 p5 p1 p2 p3 p4 p5

Openness 0 9 1 4 41 1 0 8 5 42 0 17 9 4 30
Concientiousness 9 3 11 43 2 7 7 3 44 4 15 0 23 31 7
Extraversion 17 19 21 6 9 16 15 30 5 7 15 10 6 7 11
Agreeableness 4 29 23 2 5 3 33 16 4 4 6 33 13 14 5
Neuroticism 34 4 8 9 7 37 9 7 6 7 28 4 13 8 11
Total non-zero 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64

SPCA pathSPCA Gpower

w1 w2 w3 w4 w5 w1 w2 w3 w4 w5 w1 w2 w3 w4 w5

Openness 0 17 4 13 25 16 12 14 12 10 27 4 12 41 33
Concientiousness 15 0 26 24 8 15 15 11 10 13 11 3 42 11 15
Extraversion 15 10 15 6 16 16 10 14 14 10 3 34 5 10 12
Agreeableness 6 27 13 10 3 15 9 11 17 12 39 4 1 5 5
Neuroticism 28 10 6 11 12 17 10 12 9 16 1 2 0 0 0

Total non-zero 64 64 64 64 64 79 56 62 62 61 81 47 60 67 65

Note. Each column represent the number of items in each loading/weight that have a non-zero value in each trait. The
components were ordered such that the number of non-zero loading/weights on the diagonal is maximized.
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2.5.2 Gene Expression Data

To illustrate sparse PCA used as a summarization tool, we rely on publicly avail-
able gene expression data comparing 14 male control subjects to 13 male autistic
subjects10. The autism subjects were further subdivided into two groups: a group
of six with autism caused by a fragile X mutation (FMR1-FM ) and a group of seven
with autism caused by a 15q11–q13 duplication (dup15q). For each subject, the
transcription rates of 43, 893 probes, corresponding to 18, 498 unique genes, were
obtained; hence, the number of variables is much larger than the number of obser-
vations, with known numerical issues for generalized linear models (Hastie et al.,
2009). Often the approach followed to account for such high-dimensionality is to
first reduce the large set of variables to a few components. Because it showed the
best performance in the simulation study, we will use the GPower method to select
the relevant genes that summarize the component scores.

Prior to analyzing the data, we centered and scaled them to unit variance; in
this way, we focused on the correlation between the expression values. Following
the original publication, we select K = 3 three components (Nishimura et al., 2007).
Figure 2.8 shows the IS and PEV as a function of the proportion of sparsity. The
maximal PEV with three components, obtained with ordinary PCA, accounts for
32% of the total variance. The maximum value of IS is reached at a proportion
of sparsity of 0.97 with a PEV of 31%. This corresponds to 3% or 4, 323 non-zero
component weights, spread over 4, 323 different variables, each having exactly one
non-zero weight. Therefore, we found an efficient reduction of the high-dimensional
data to just three derived variables (the component score vectors) using approxi-
mately 10% of the original variables while losing only 1% of the variance accounted
compared to when all variables are used in constructing the components via ordinary
PCA.

When using the other sparse PCA methods, only sPCA-rSVD can handle the
dimension of the data set computationally. However, if sPCA-rSVD had been used
as a summarization tool with the same optimal proportion of sparseness found for
GPower (PS = 0.97), virtually 0% of the variance would have been explained, evi-
dencing that methods imposing sparsity in the weights are more suitable for sum-
marization purpose.

Figure 2.9 shows the scatter plot of the three component scores. From Figure
2.9a, we observe that the first component separates the individuals with autism from
the control group; this could be expected as the largest source of variation in the
data is the distinction between control and autistic subjects. One may notice that
Nishimura et al. (2007) constructed component scores using a subset of 293 probes
with significant differences in expression between the three groups in an analysis

10The data can be accessed from the NCBI GEO database (Nishimura et al., 2007), using acces-
sion number GSE7329. After personally contacting the corresponding author, we were informed
that the data for the individuals GSM176586 (autism with FMR1FM, AU046707), GSM176589
(autism with FMR1FM, AU046708), and GSM176615 (control, AU1165305) were not correctly
stored in the database. Therefore, the data for these individuals were not used in our analyses.
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Figure 2.8: Index of sparseness and Percentage of explained vari-
ance against the proportion of sparsity when applying GPower to the

gene expression data set.

of variance (ANOVA). In other words, the authors used an informed approach to
select the relevant genes while sparse PCA methods (here GPower) do not rely on
such external information; still, a separation between the two large groups can be
observed from Figure 2.9b.

(a) GPower view 1 (b) GPower view 2

Figure 2.9: Scatter plot of component scores.

2.6 Concluding Remarks
As explained in this study, different PCA formulations give the same estimated
scores and lead to estimates of the model coefficients that are the same or only
differ up to scaling or rotation. Not surprisingly, little attention has been given to
existing differences between the PCA methods, which is exemplified by the different
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meanings given to the term ‘loadings’ in the literature. Based on these different
formulations of PCA, different methods for sparse PCA have been proposed, where
most of the attention has been given to the different ways of imposing sparsity
and the numerical procedures used to solve the optimization problems. But, the
sparse PCA methods are different on a more fundamental level, and this is seldomly
discussed; the (implicitly) assumed data-generating model is often overlooked while
sparsity is imposed on different model structures (either the component weights
or the component loadings). Also, sparse PCA may serve different purposes in
which some methods may be better than others. For instance, for exploratory data
analysis, finding structure in the data and attaching meaning to the components
is of primary importance. Then, a good recovery of the relevant variables and
the structure therein is required. For summarization, the primary focus is to find
component scores that maximally account for the variance in the data. Here, the
focus is on the proportion of explained variance and, sometimes, on recovering the
component scores.

To offer users of sparse PCA guidance on which method to use and under what
circumstances, in a simulation study, we compared six popular methods under three
data-generating schemes and four performance measures. Assuming matching spar-
sity (e.g., generating data with a sparse loading model and estimating them back
with a method for sparse loadings), sPCA-rSVD was the preferred method based
on every performance criterion for sparse loadings methods, and GPower was the
best method among the sparse weights methods. In psychology, a common prac-
tice is to threshold the loadings obtained after rotation to a simple structure. In
our simulation study, thresholding sometimes gave good results but sometimes also
produced much worse results than the sPCA-rSVD approach. Considering that the
data generating model may be unknown and that there may be a mismatch in spar-
sity, sPCA-rSVD is overall the best method for recovering the relevant variables,
and GPower performs best in terms of explained variance.

Finally, from a practical point of view, the availability of software is of utmost
importance for the use of data analysis methods. Unfortunately, sPCA-rSVD and
GPower have not been (yet) implemented in major software packages such as SPSS.
GPower, to our knowledge, is currently only available in Matlab. sPCA-rSVD with
a cardinality constraint is available in the ClusterSSCA R-package (S. Yuan, De
Roover, Dufner, Denissen, & Van Deun, 2021) while a penalized approach is part of
the RegularizedSCA R-package (Gu, de Schipper, & Van Deun, 2019).
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Chapter 3

Sparsifying the least-squares
approach to PCA: comparison of
lasso and cardinality constraint

Abstract
Sparse PCA methods are used to overcome the difficulty of interpreting the solution
obtained from PCA. However, constraining PCA to obtain sparse solutions is an in-
tractable problem, especially in a high-dimensional setting. Penalized methods are
used to obtain sparse solutions due to their computational tractability. Neverthe-
less, recent developments permit efficiently obtaining good solutions of cardinality-
constrained PCA problems allowing comparison between these approaches. Here,
we conduct a comparison between a penalized PCA method with its cardinality-
constrained counterpart for the least-squares formulation of PCA imposing sparse-
ness on the component weights. We compare the penalized and cardinality-constrained
methods through a simulation study that estimates the sparse structure’s recovery,
mean absolute bias, mean variance, and mean squared error. Additionally, we use
a high-dimensional data set to illustrate the methods in practice. Results suggest
that using cardinality-constrained methods leads to better recovery of the sparse
structure.

Keywords: Cardinality constraint, Sparse PCA, Penalized linear regression
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3.1 Introduction
Principal component analysis (PCA) is a widely used analysis technique for di-
mension reduction and exploratory data analysis. PCA can be formulated as a
variance maximization problem or a residual sum of squares minimization problem
with both formulations yielding the same solution (see, e.g., Adachi & Trendafilov,
2016; I. T. Jolliffe, 1986). The component scores resulting from PCA are linear
combinations of all variables, making their interpretation difficult, especially in the
high-dimensional setting. Therefore, obtaining component scores that are based on
a linear combination of a few variables only while still retaining most of the infor-
mation in the original data is attractive. Such methods are categorized as sparse
PCA.

Sparse PCA problems are usually formulated either as an extension of the PCA
formulations by adding a cardinality constraint or as a convex relaxation of the
constrained PCA formulation by adding penalties. Sparsity is attained either on the
weights or loadigns, and unlike in PCA, their solution is not longer equivalent (see,
e.g., Guerra-Urzola, Van Deun, Vera, & Sijtsma, 2021). In the context of the variance
maximization PCA formulation, d’Aspremont et al. (2004), Yang, Ma, and Buja
(2014), and Berk and Bertsimas (2019) added cardinality constraints on the weights,
while d’Aspremont et al. (2007), and Journée et al. (2010) formulated the problem
as a convex relaxation thereof adding different penalties. Additionally, Richtárik,
Jahani, Ahipaşaoğlu, and Takáč (2021) presented eight different formulations based
on either cardinality constraints or sparseness-inducing penalties. For the least-
squares formulation of PCA, most sparse PCA methods rely on the use of different
penalties (Gu & Van Deun, 2016; H. Shen & Huang, 2008; Van Deun, Smilde, van der
Werf, Kiers, & Van Mechelen, 2009; Zou et al., 2006). Adachi and Trendafilov (2016)
considered the sparse PCA problem in this least-squares context by imposing a
cardinality constraint on the loadings. In this paper, we consider the sparse version of
the least-squares formulation of PCA, where the sparsity is imposed on the weights.

Penalized methods for sparse PCA rely on alternating optimization procedures
where the update of the sparse structure (weights or loadings) usually boils down to
a penalized regression problem. Penalized regressions, such as LASSO (Tibshirani,
1996), have been put forward in the literature to obtain sparse solutions due to their
computational tractability (Tibshirani, 2011) and their statistical nature of shrinking
the nonzero coefficients. This shrinkage avoids inflation of the coefficients resulting
in a better bias-variance trade-off of the estimators. However, penalized methods
are heuristics that, although they provide feasible solutions, are not able to find the
best subset of coefficients unless stringent conditions on the data hold (Tibshirani,
2011, p. 277). Finding the optimal subset of coefficients is an NP-hard problem
(Natarajan, 1995). Nevertheless, significant progress has been recently made in
solving the sparse linear regression problem via cardinality constraints for a large
number of variables to optimality (Bertsimas et al., 2016; Bertsimas & Van Parys,
2020). This work is the departing point for our study. First, it shows that due to the
advances in optimization, it is natural to reconsider the solvability/quality relation
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between cardinality based and convex penalized relaxations of sparse formulations.
Second, it opens the venue to use procedures for solving the cardinality-constrained
linear regression as a subroutine to solve cardinality-constrained versions of sparse
PCA.

In this paper, we compare the well-known sparse PCA method proposed by
Zou et al. (2006) to its cardinality-constrained counterpart (problem (3.2)). Both
methods rely on sparsifying the weights in the least-squares formulation of PCA. To
our knowledge, the cardinality-constrained approach for this formulation has not yet
been proposed in the literature; Therefore, we introduce it in Section 3.2.2. Both
methods use an alternating scheme where sparsity is achieved via a penalized or
cardinality-constrained linear regression step. We compare the performance of the
methods in a simulation study using different measures such as the recovery rate of
the sparse structure, mean absolute bias, mean variance, and mean squared error.
Additionally, we illustrate the use of the methods in practice with an empirical data
set containing gene expression profiles of lymphoblastoid cells used to distinguish
different forms of autism (Nishimura et al., 2007). The results from the simulation
study suggest that cardinality-constrained PCA has a better recovery of the sparse
structure yet a similar bias-variance trade-off as the penalized counterpart.

The remainder of this paper is structured as follows: First, Sect. 3.2 introduces
PCA, sparse PCA, and penalized PCA. In Sect. 3.3, we present the simulation study
comparing the performance of the methods on different measures. Sect. 3.4 presents
an example using a real high-dimensional data set. Finally, in Sect. 3.5, conclusions
are presented.

3.2 Methods
We first present the notation used in the remainder of the paper. Matrices are
denoted by bold uppercase, the transpose of a matrix by the superscript ⊤ (e.g., A⊤),
vectors by bold lowercase, and scalars by lowercase italics, and we use capital letters
for the last value of a running index (e.g., j running from 1 to J). Given a vector
x ∈ RJ , its j-th entry is denoted by xj. The l1-norm is defined by ∥x∥1 =

∑J
j=1 |xj|,

and the Euclidean distance by ∥x∥2 = (
∑J

j=1 x
2
j)

1/2. Given a matrix X ∈ RI×J , its
i-th row and j-th column entry is denoted by xi,j, and ∥X∥2F =

∑I
i=1

∑J
j=1 |xi,j|2

denotes the squared Frobenius norm.
In this section, we introduce the PCA formulation on which the paper focuses.

Sparse PCA variants of the formulation are then obtained by either adding a cardi-
nality constraint or a convex penalty to the PCA objective.
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3.2.1 PCA

Given a data matrix X ∈ RI×J that contains I observations on J variables, in PCA,
it is assumed that the data can be decomposed as,

X = XWP⊤ + E,

where W ∈ RJ×K is the weights matrix, P ∈ RJ×K is the loadings matrix, E ∈ RI×J

is the residual matrix, and P⊤P = I. Ordinary PCA can be formulated as the
following least squares optimization problem:

Ŵ, P̂ = argmin
W,P

∥∥X−XWP⊤∥∥2

F

s.t. P⊤P = I.
(3.1)

The solution to the PCA formulation in (3.1) can be obtained using the truncated
Singular Value Decomposition (SVD) of the data matrix X = UDV⊤ (I. Jolliffe,
2002), with U ∈ RI×K and V ∈ RJ×K semi-orthogonal matrices, and Ŵ = P̂ = V.
The linear combinations T = XW represent the component scores. In general, the
estimated weights matrix resulting from the truncated SVD contains all nonzero
elements making the interpretation of the component scores difficult when J is large.

3.2.2 Cardinality-Constrained PCA

Starting from PCA formulation (3.1), the sparse PCA problem can be formulated
as a best subset selection problem for a subset of size ρ (where ρ between 0 and
J ·K is given) as follows,

Ŵ, P̂ = argmin
W,P

∥∥X−XWP⊤∥∥2

F

s.t. P⊤P = I,

∥W∥0 ≤ ρ,

(3.2)

with ∥W∥0 denoting the number of nonzero coefficients in W. Sparse PCA methods
based on the least squares criterion in (3.1) have been only considered by adding
penalties (see Sect. 3.2.3 for details). A solution to the cardinality-constrained prob-
lem (3.2) has not been proposed yet. Here, we propose an alternating optimization
procedure to obtain feasible solutions of good quality. That is, fix W and obtain
P̂ by the well-known reduced rank Procrustes rotation (ten Berge, 2005; Zou et al.,
2006),

P̂ = argmin
P

∥∥X−XWP⊤∥∥2

F

s.t. P⊤P = I.
(3.3)
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Also, fix P and obtain Ŵ via the cardinality-constrained linear regression problem,

Ŵ = argmin
W

∥vec(X)− (P⊗X)vec(W)∥22

s.t. ∥vec(W)∥0 = ρ,
(3.4)

where ⊗ denotes the Kronecker product, and vec(·) the vectorization of a matrix
which converts the matrix into a column vector. A numerical procedure that solves
problem (3.4) was proposed by Adachi and Kiers (2017) as a special case of a
majorize-minimize (Hunter & Lange, 2004) or iterative majorization (Kiers, 2002)
procedure. The update for Ŵ in each iteration is given by:

vec(Wnew) = Tρ

(
vec(Wold − α−1X⊤X[Wold −P])

)
, (3.5)

where α is the maximum eigenvalue of X⊤X and, for a vector x ∈ Rn, the thresh-
olding operator Tρ(x) ∈ Rn denotes the vector obtained from x keeping the values
of the ρ elements of x having the largest absolute value, and setting the remaining
ones equal to zero. Notice that the updating step for W in Eq. (3.5) is equal to
the update of a projected gradient scheme with fixed step size α−1. The use of
majorization ensures that the resulting sequence of loss values is non-increasing. At
each iteration, to obtain an approximate solution to (3.4), our algorithm relies on
a procedure where the main complexity is to sort a matrix of dimension J × K,
and thus, this procedure can be applied even for large values of J . We call the full
alternating procedure cardinality-constrained PCA (CCPCA). In Appendix A.1, the
CCPCA algorithm is presented in detail.

It is important to mention that the proposed algorithm does not guarantee find-
ing a global optimum of problem (3.4). Instead, with each conditional update of
either the component weights or loadings, the loss function is monotonically decreas-
ing. For alternating algorithms of the type considered here, obtaining a stationary
point is guaranteed under some compactness assumptions on the feasible set of the
subproblems (Huang, Sidiropoulos, & Liavas, 2016; Tseng, 2001). Such compact
structure can be obtained by adding the constraint ∥wk∥2 ≤ 1 for k = 1, . . . , K.
However, this type of regularization constraint does not appear in the least square
error formulation of PCA (see problem (3.1)) and therefore has not been added to
the cardinality-constrained version of the sparse formulation either.

Defining sparse PCA as a best subset problem has not been the method of choice
in the statistical literature, given that it belongs to the class of NP-hard problems.
Another reason to find sparse solutions by adding convex penalties, such as the
LASSO, is the belief that these have a better bias-variance tradeoff resulting in better
predictive accuracy in the context of regression. Recently, given the algorithmic
and computational-power progress in the last few decades, it has been shown that
the cardinality-constrained regression problem can be solved for a large number of
variables (in the 100,000s) (Bertsimas & Van Parys, 2020). For instance, Bertsimas
et al. (2016) found the cardinality-constrained regression approach to be superior to
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LASSO regression not only in terms of recovering the correct subset of variables but
also in terms of predictive performance, which is contrary to expectations based on
the bias-variance trade-off. However, Hastie, Tibshirani, and Tibshirani (2017) have
extended the simulations of (Bertsimas et al., 2016) focusing on prediction accuracy
and found that the cardinality-constrained regression approach outperformed the
LASSO regression only when there was a high signal-to-noise ratio.

3.2.3 Penalized PCA

A well-known sparse PCA method based on penalizing (3.1) was proposed by Zou
et al. (2006). The method, named SPCA, is based on the following formulation,

Ŵ, P̂ = argmin
W,P

∥∥X−XWP⊤∥∥2

F
+ λ

K∑
k=1

∥wk∥22 +
K∑
k=1

λl
k ∥wk∥1

s.t. P⊤P = I,

with
∑K

k=1 ∥wk∥1 the LASSO penalty (tuned using λl
k ≥ 0) and

∑K
k=1 ∥wk∥22 the

ridge penalty (tuned using λ ≥ 0). For fixed values of λl
k and λ, SPCA is an alter-

nating minimization algorithm that updates W given P and vice-versa. Obtaining
P̂ given a fixed value for W is also done via the reduced rank Procrustes Rotation
problem (ten Berge, 2005). And obtaining Ŵ given a fixed value for P is achieved
using the elastic net penalized regression problem(Zou & Hastie, 2005) that is de-
fined by adding the LASSO and ridge penalties to the ordinary regression problem.
The LASSO penalty sets some of the coefficients to exactly zero, while the ridge
penalty shrinks the coefficients and regularizes the problem in the high-dimensional
setting (J > I); i.e., it allows for more nonzero coefficients than the number of
observations, see also Zou et al. (2006).

Using a penalized regression as one of the alternating steps presents some ad-
vantages and disadvantages. On the one hand, shrinkage of all coefficients reduces
the variance of the estimated coefficients; hence the coefficients estimated under
a penalized regime may be more accurate than those obtained via cardinality con-
straints (Hastie et al., 2017). On the other hand, although penalized regressions find
sparse feasible solutions, the correct subset of nonzero variables is only recovered
under stringent conditions (see Bertsimas et al. (2016) and references therein). In
the next section, we assess and compare the performance of CCPCA and SPCA in a
simulation study. We focus on sparse structure recovery (zero and nonzero weights)
and the accuracy of the estimated weights.

3.3 Simulation Study
To compare the statistical properties of the penalized and the cardinality-constrained
sparse PCA methods described in Section 3.2 above, we conducted a simulation
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study where two types of measures are of interest: the recovery of the weights
support matrix (correctly identifying the set of non-zero weights) and the accuracy
of the estimates in terms of bias and variance. To measure the former, we use the
total sparse structure recovery rate (TSS%), and for the latter, we use the mean
absolute bias (MAB), mean variance (MVAR), and mean squared error (MSE)1.

3.3.1 Design

We set the number of observations to I = 100, the number of variables to J =
50, 100, 500, and the number of components to K = 3. We have also set the level of
sparsity to 20% and 80% (i.e., when J ·K = 300, we have 60 and 240 weights that
are equal to zero, respectively), and the noise level to 5%, 20%, and 80%. The design
results in 3 · 2 · 3 = 18 different design conditions. For each condition, R = 100 data
sets were generated. The data generation procedure is detailed in Appendix A.2.
The resulting data sets were analyzed using the CCPCA algorithm programmed in
the R software for statistical computing (R: The R Project for Statistical Computing ,
n.d.), and SPCA with LARS using the elastic net R-package (R: Elastic-Net for
Sparse Estimation and Sparse PCA, n.d.). Both algorithms were run with one
initial value based on the SVD decomposition of the data. We supplied the analysis
with the actual number of components. The tuning parameter of the ridge penalty
for SPCA was left at the default value of 10−6; this is a small value such that the
focus remains on comparing the cardinality constraint to the LASSO penalty as a
means to sparsify the PCA problem in (3.1).

The analysis is divided into two cases depending on whether the cardinality of
W is known or not. When the cardinality is known, we supply the analysis with
the true cardinality. When the cardinality is unknown, we rely on a data-driven
method, namely the Index-of-sparseness (IS) introduced by Trendafilov (2014). The
IS has been shown to outperform other methods, such as cross-validation and the
BIC, in estimating the actual proportion of sparsity (Gu et al., 2019). The IS is
defined as

IS = PEVsparse · PEVpca · (1− ρ
J ·K )

with PEVsparse and PEVpca denoting the proportion of explained variance using a
sparse method and ordinary PCA, respectively. The IS value increases with the
goodness-of-fit PEVsparse, the higher adjusted variance PEVpca, and the sparseness.
The cardinality of the weights is determined by maximizing the IS.

To assess the recovery of the weights matrix, we calculate the total sparse struc-
ture recovery rate, defined as:

TSS% =

∑
j,k supp(W,Ŵ)j,k

J ·K
(3.6)

1Computational diagnostic are outside the scope of this study. These diagnostics mainly depend
on the selected method for estimating, and more computationally efficient methods have been
proposed for SPCA (Erichson et al., 2020)
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where

supp(W, W)j,k =




1, wj,k = 0 and wj,k = 0
1, wj,k ̸= 0 and wj,k ̸= 0
0, Otherwise.

Therefore, TSS% takes into account both correct identification of the zero and
nonzero values. To assess the accuracy of the actual value of the estimates, we
calculate the MAB, MVAR, and MSE. These measures are defined as,

MAB =
1

J ·K ·R

j


k


r

| wj,k − w
(r)
j,k |,

MVAR =
1

J ·K ·R

j


k


r

( wj,k − w(r)
j,k)

2,

MSE =
1

J ·K ·R

j


k


r

(wj,k − w(r)
j,k)

2,

where wj,k =
1
R


r w(r)

j,k and r = 1 . . . R a running index for the generated data sets.
As CCPCA and SPCA solutions are indeterminate with respect to the sign and
order of the component weight vectors wk, we matched wk to the true wk based on
the highest proportion of total recovery in Eq. (3.6).

3.3.2 Results

Figures 3.1 and 3.2 show the total recovery rate with cardinality either set to the
cardinality used to generate the sparse weights or to the value that maximizes the
IS, respectively. From Figure 3.1, it can be observed that in almost all conditions,
CCPCA has a higher proportion of correctly identified weights than SPCA. Only
when the noise level is 80% and the proportion of sparsity 20%, both methods present
similar results on average. When the cardinality of the component weights is treated
as unknown and tuned using the IS, we observe in Figure 3.2 that the recovery rate
mainly depends on the proportion of sparsity. When PS = 20%, SPCA has a higher
recovery rate, and when PS = 80%, CCPCA has a higher recovery rate. This result
may be explained by the fact that CCPCA can achieve more variance with less
variables than SPCA (see Figure A.1). Therefore, the cardinality of CCPCA is
always lower than SPCA’s cardinality and the cardinality used to generate the data
sets (see Figure A.2) The MAB, MVAR, and MSE of the estimators from CCPCA
and SPCA are reported in Tables 3.1 and 3.2 when the cardinality is set equal to
the cardinality used to generate the weights and as tuned with the IS, respectively.
It can be observed in Table 3.1 that the MAB of CCPCA is higher than the SPCA’s
MAB, although by a small margin only. The MVAR of the CCPCA weights is
approximately equal to the MVAR of SPCA weights when there is little noise in the
data (5%). In the case of a higher noise level (20% and 80%), the MVAR of SPCA
is lower than that of CCPCA; this can be attributed to the shrinkage effect of the
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Figure 3.1: Proportion of correctly identified weights with the same
cardinality as used to generate the data. The dashed line at 0.6
indicates the minimum recovery rate that can be obtained given 20%

or 80% of sparsity.

penalties in SPCA. The MSE in case of little noise in the data and 20% of sparsity
is slightly lower for CCPCA than SPCA, while the MSE is lower for SPCA in case
of 20% noise and 80% sparsity. If we turn to the case where the cardinality was
tuned using the IS (Table 3.2), in all conditions, the MAB is smaller for CCPCA
than for SPCA while the MVAR and MSE are higher for CCPCA than for SPCA:
here, we clearly see the beneficial effect of the shrinkage penalties that introduce a
higher bias though resulting in a much lower variance.

Overall, these results suggest that CCPCA recovers better the sparse structure,
especially under high levels of sparsity and noise. When the cardinality of the
component weights is known, the recovery rates are, in general, satisfactory to good.
When the cardinality is not known, and the IS is used to tune the cardinality, SPCA
performs reasonably well on data with low levels of sparsity while CCPCA performs
reasonably well on data with high levels of sparsity. Additionally, as mentioned in
the statistical literature, the penalized method (SPCA) has higher bias though lower
variance, while the cardinality-constrained method (CCPA) has less bias but higher
variance.
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Figure 3.2: Proportion of correctly identified weights with cardinal-
ity tuned using the index of sparseness.

3.4 Empirical Application
In this section, we use an empirical data set to illustrate how the methods described
in this study can be used in practice as a pre-processing step to reduce a large
set of variables in the context of classification. We use a publicly available gene
expression data set comparing 14 male control subjects to 13 male autistic subjects.2
The autism subjects were further subdivided into two groups: a group of six with
autism caused by a fragile X mutation (FMR1-FM) and seven with autism caused
by a 15q11–q13 duplication (dup15q). The transcription rates of 43, 893 probes,
corresponding to 18, 498 unique genes, were obtained for each subject.

2The data set can be accessed from the NCBI GEO database (Nishimura et al., 2007), using ac-
cession number GSE7329. After personally contacting the corresponding author, we were informed
that the data for the individuals GSM176586 (autism with FMR1FM, AU046707), GSM176589
(autism with FMR1FM, AU046708), and GSM176615 (control, AU1165305) were not correctly
stored in the database. Therefore, those observations were not included in our analyses. In the
supporting code, code is included that allows to download and pre-processing of the data set
automatically.
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Table 3.1: MAB, MVAR, and MSE of the estimators from CCPCA
and SPCA

Noise Level = 5%

Sparsity = 20% Sparsity = 80%

J=50 J=100 J=500 J=50 J=100 J=500

MAB
CCPCA 0.1082 0.0760 0.0339 0.0669 0.0474 0.0211
SPCA 0.0999 0.0701 0.0314 0.0571 0.0401 0.0171

MVAR CCPCA 0.0198 0.0099 0.0020 0.0214 0.0105 0.0021
SPCA 0.0198 0.0099 0.0020 0.0198 0.0099 0.0020

MSE
CCPCA 0.0410 0.0200 0.0037 0.0408 0.0212 0.0041
SPCA 0.0427 0.0196 0.0040 0.0386 0.0205 0.0041

Noise Level = 20%

MAB
CCPCA 0.1084 0.0762 0.0341 0.0663 0.0480 0.0212
SPCA 0.1005 0.0702 0.0315 0.0539 0.0399 0.0171

MVAR CCPCA 0.0198 0.0099 0.0020 0.0211 0.0106 0.0021
SPCA 0.0198 0.0099 0.0020 0.0198 0.0099 0.0020

MSE
CCPCA 0.0422 0.0206 0.0041 0.0417 0.0214 0.0043
SPCA 0.0411 0.0206 0.0042 0.0392 0.0208 0.0041

Noise Level = 80%

MAB
CCPCA 0.1108 0.0783 0.0345 0.0828 0.0573 0.0220
SPCA 0.1018 0.0717 0.0315 0.0569 0.0396 0.0172

MVAR CCPCA 0.0198 0.0099 0.0020 0.0279 0.0134 0.0022
SPCA 0.0198 0.0099 0.0020 0.0198 0.0099 0.0020

MSE
CCPCA 0.0403 0.0204 0.0038 0.0489 0.0236 0.0041
SPCA 0.0403 0.0202 0.0039 0.0400 0.0200 0.0039

Note. The estimates are based on 100 replicated data sets.

Prior to analyzing the data, we centered and scaled each column to unit variance
and followed Nishimura et al. (2007) to choose the number of components K = 3.
Therefore, the total cardinality of the component weights is 131, 679. To select the
cardinality, we rely on the IS. Figure 3.3 shows the IS and PEV as a function of
the cardinality of the weights using CCPCA and SPCA.3 The maximal PEV with
three components, obtained with ordinary PCA, accounts for 32% of the variance.
The maximum value of IS for CCPCA is reached at a cardinality of 23, 499 with a
PEV of 30% while the maximal IS for SPCA is reached at a cardinality of 42, 283
with a PEV of 22%. This is also in accordance with our earlier observation in the

3To handle these ultra-high dimensional data, we use the SPCA model with λ = ∞, see Zou et
al. (2006) for further details.
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Table 3.2: MAB, MVAR, and MSE of the estimators from CCPCA
and SPCA with cardinality tuned using the index-of-sparseness.

Noise Level = 5%

Sparsity = 20% Sparsity = 80%

J=50 J=100 J=500 J=50 J=100 J=500

MAB CCPCA 0.0764 0.0533 0.0234 0.0526 0.0365 0.0160
SPCA 0.1016 0.0710 0.0295 0.0681 0.0495 0.0221

MVAR CCPCA 0.0536 0.0321 0.0077 0.0345 0.0176 0.0047
SPCA 0.0198 0.0099 0.0020 0.0198 0.0099 0.0020

MSE CCPCA 0.0468 0.0263 0.0064 0.0173 0.0090 0.0030
SPCA 0.0104 0.0050 0.0008 0.0091 0.0045 0.0008

Noise level = 20%

MAB CCPCA 0.0769 0.0532 0.0242 0.0529 0.0375 0.0162
SPCA 0.1019 0.0715 0.0297 0.0560 0.0483 0.0218

MVAR CCPCA 0.0377 0.0220 0.0045 0.0275 0.0151 0.0035
SPCA 0.0198 0.0099 0.0020 0.0198 0.0099 0.0020

MSE CCPCA 0.0267 0.0167 0.0033 0.0107 0.0070 0.0018
SPCA 0.0118 0.0053 0.0009 0.0050 0.0048 0.0008

Noise level = 80%

MAB CCPCA 0.0820 0.0577 0.0260 0.0824 0.0574 0.0210
SPCA 0.1053 0.0747 0.0300 0.1053 0.0729 0.0242

MVAR CCPCA 0.0279 0.0141 0.0028 0.0282 0.0135 0.0023
SPCA 0.0198 0.0099 0.0020 0.0198 0.0099 0.0020

MSE CCPCA 0.0439 0.0189 0.0018 0.0435 0.0167 0.0009
SPCA 0.0369 0.0152 0.0011 0.0368 0.0152 0.0011

Note. The estimates are based on 100 replicated data sets.

simulation study, which showed that CCPCA can explain more variance with less
variables than SPCA.

When plotting the second component score against the third one (Figures 3.4a
and 3.4b), we observe a separation of the individuals with autism from the control
group and between the individuals with autism caused by the fragile X mutation
and by the 15q11-q13 duplication. The former could be expected as the largest
source of variation in the data is the distinction between control and autistic sub-
jects. One may notice that in Nishimura et al. (2007), this classification of the three
groups is observed as well. However, Nishimura et al. (2007) constructed compo-
nent scores using a subset of 293 probes with a significant difference in expression
between the three groups in an analysis of variance (ANOVA). This means that an
informed approach was used to select the relevant genes while CCPCA and SPCA
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Figure 3.3: Index of sparseness (IS) and proportion of explained
variance (PEV) against Cardinality

do not construct component scores with the aim of discrimination; still, a separation
between the three groups can be observed from Figures 3.4a and 3.4b.
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Figure 3.4: Scatter plot of the component scores of component 2 against
component 3.

3.5 Conclusion
We introduce a cardinality-constraint based method (CCPCA) and compare its per-
formance with the performance of a penalty based method (SPCA). Both methods
are designed to attain sparse weights in PCA. Both follow an alternating optimiza-
tion procedure where sparsity is achieved via either a penalized or a cardinality-
constrained linear regression problem. Penalized regressions have been propounded
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in the statistical literature for reasons of computational and statistical efficiency.
Recently, significant progress has been made in solving cardinality-constrained re-
gression problems finding feasible solutions in the case of many variables.

We compared the CCPCA and SPCA methods through a simulation study as-
sessing the recovery of the sparse structure (zero and nonzero) and the accuracy
of the estimates. Regarding the recovery rate, CCPCA showed better results than
SPCA in almost all conditions when both methods were supplied with actual car-
dinality. When the cardinality needed to be estimated, CCPCA presented a better
solution when the cardinality was set to a small number of variables. For the accu-
racy of the estimates, both presented similar performance with known cardinality,
while SPCA shows more bias and less variance with unknown cardinality. Addi-
tionally, we used real, high-dimensional data to evaluate these methods in practice.
CCPCA and SPCA efficiently reduced the dimension without losing much of the
explained variance using only a fraction of the original variables in the data. From
the simulation and the real example, CCPCA can explain more variance with fewer
variables than SPCA.

CCPCA and SPCA are freely available to be used in R-software. When using
them, it is essential to consider that both methods are subject to local minima. It
is a common practice to implement a multi-start procedure and select the solution
with the smallest objective function, but the obtained solutions will still be subject
to local optima. For future work, it would be interesting to analyse the conditions
for optimality for sparse PCA methods.
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Chapter 4

Penalized PCA framework:
thresholding operators and
optimality conditions

Abstract
Penalized PCA methods are widely used to find sparse solutions to the PCA prob-
lem due to their computational tractability and scalability. These benefits have
been assessed via numerical experiments without theoretical justification. This pa-
per presents a theoretical analysis of a penalized PCA method used to find sparse
solutions to the PCA problem. The paper derives a necessary optimality condition
for penalized PCA problems and characterizes penalties that lead to a thresholding
operator as the solutions to the optimization problem. An alternating threshold-
ing method is proposed to solve the penalized PCA problem, and it is shown that
the method converges to a solution that satisfies the necessary optimality condi-
tion when the minimum eigenvalue of the covariance matrix is greater than one.
Additionally, the paper applies the framework to a family of l1-norm penalties and
proposes two new penalized PCA formulations.

Keywords: Sparse PCA, penalties, optimality conditions, thresholding operators
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4.1 Introduction
Principal Component Analysis (PCA) is one of the oldest and most used data anal-
ysis tools to summarize a data set with a few new variables or scores. PCA has
applications in many fields, such as medicine, biology, Artificial Intelligence (AI),
and finance (Mohammed et al., 2016; Pasini, 2017). Given that the new scores
are a weighted combination of all variables in the data, scores lack interpretability
most of the time. To improve interpretability, having scores formed by only a few
of the most representative variables is a desired property when applying PCA to
gain interpretation. For example, a critical challenge in cancer research is to reduce
dimension and extract the relevant features when analyzing high-dimensional data
sets (Hsu et al., 2014). Besides interpretation, analyzing fewer variables helps to
reduce transactional and operations costs in financial applications and speeds up
computation in AI, among other benefits. PCA solutions that consider only a few
variables are known as sparse PCA.

A direct approach to formulating the sparse PCA problem is to add a cardinality
constraint. However, this results in an NP-hard problem (Natarajan, 1995). As an
alternative, sparsity-inducing penalties are broadly used to obtain sparse solutions to
the PCA problem. We refer to these types of formulations as Penalized PCA. Penal-
ized formulations are motivated by their computational tractability, scalability, and
statistical property of shrinkage (Guerra-Urzola et al., 2022). Despite their practi-
cal benefits, methods proposed in the literature for solving penalized PCA problems
have no guarantee of optimality (locally or globally) as they rely on heuristic solu-
tions (Berk & Bertsimas, 2019; Bertsimas & Van Parys, 2020). In addition, there
are no verifiable necessary and/or sufficient local or global optimality conditions for
the penalized PCA problems studied in the literature. Consequently, reported nu-
merical experiments that compare the performance of different penalized methods
miss a theoretical underpinning. We focus on establishing a necessary optimality
condition for the following penalized PCA formulation:

max
w∈B

∥Xw∥ − δ(|w|), (4.1)

where X ∈ RI×J a data set, δ(·) is a sparsity-inducing penalty, and B = {x ∈ RJ |
∥x∥ ≤ 1} is the unit Euclidean ball in RJ .

Several sparsity-inducing penalties δ(·) have been proposed in the PCA context.
The Elastic Net penalty is the first sparsity-inducing penalty used to formulate
a penalized PCA problem (Zou et al., 2006). The Elastic Net penalty combines
the well-known Lasso (l1-norm) and Ridge (l0-norm) penalties allowing for a greater
number of nonzero coefficients than using only the Lasso penalty. H. Shen and Huang
(2008) proposed a formulation with three sparsity-inducing penalties: l1-norm, l0-
norm, and SCAD penalty. The SCAD penalty leads to unbiased estimates when the
coefficients are large enough (Fan & Li, 2001). Leng and Wang (2009) considered
the adaptive l1-norm to take into account the estimated relative importance of each
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parameter. The above mentioned methods used an alternating optimization scheme
to solve each proposed problem.

Problem (4.1) was first introduced by Journée et al. (2010) with the l1 and l0
norms as penalties δ(·). Journée et al. (2010) solved the problem by introducing
a gradient method to maximize a convex function known as the generalized power
method (GPower). The GPower method has proven advantageous performance re-
garding recovering the sparse structure, explained variance, and scalability (Guerra-
Urzola et al., 2021). Sriperumbudur, Torres, and Lanckriet (2011) also used the
l0-norm as a sparsity-inducing penalty and solved the problem using a majorization-
maximization algorithm. Finally, Richtárik et al. (2021) used the l1 and l0 norms as
sparsity-inducing penalties and proposed an alternating optimization method with
proven equivalence to the GPower method1.

In this paper, we use an alternating optimization scheme similar to Richtárik
et al. (2021) to solve problem (4.1). The main contributions of this paper are
twofold. First, we consider a necessary optimality condition stating that there are
no feasible directions for the function value of problem (4.1) to be improved at a given
point. We conduct a numerical analysis of the alternating scheme showing that the
solution satisfies this necessary optimality condition under a suitable condition for
X. Necessary optimality conditions have been studied in the cardinality-constrained
PCA context (Beck & Vaisbourd, 2016) but not for the penalized PCA problem
(4.1). Second, the alternating optimization scheme allows us to characterize the
sparsity-inducing penalties δ that lead to a continuous thresholding operator as the
solution to the optimization problem. We prove that penalties with a singularity
at the origin lead to a solution given by a continuous thresholding rule. Then, we
propose two new penalized PCA formulations using the SCAD penalty and adaptive
l1-norm in model (4.1) as sparsity-inducing penalties.

The remainder of the paper proceeds as follows. Section 4.2 presents the al-
gorithm, convergence analysis, and the necessary optimality conditions of problem
(4.1). Section 4.3 will present examples of sparsity-inducing penalties and intro-
duce model (4.1) with the SCAD penalty and adaptive l1-norm. Finally, Section 4.4
presents some concluding remarks.

Notation. Matrices are denoted by bold uppercase, the transpose of a matrix
by the superscript ⊤ (e.g., A⊤), vectors by bold lowercase and scalars by lowercase
italics, and we use capital letters for the last value of a running index (e.g., j running
from 1 to J). Given a vector x ∈ RJ , its j-th entry is denoted by xj. The l0-norm is
denoted by ∥x∥0 and represents the number of nonzero elements in x. The l1-norm
is defined by ∥x∥1 =

∑J
j=1 |xj|, and the Euclidean distance by ∥x∥ = (

∑J
j=1 x

2
j)

1/2.
By B = {x ∈ RJ | ∥x∥ ≤ 1} we refer to the unit Euclidean ball in RJ . We also
define the support of w as the set of indexes with a non-zero element, and we denote
it by supp(w) ≡ {j|wj ̸= 0}.

1There are several more sparse PCA methods proposed in the literature. Here, we mention
the most relevant methods to solve a penalized PCA problem. See Chapter 2 for a comprehensive
overview of sparse PCA methods.
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4.2 Theoretical Framework
In this section, we introduce a numerical method to solve problem (4.1) (Sect. 4.2.1).
Then we study the provided solution (Sect. 4.2.2) and show under which condition
it satisfies the necessary optimality condition (Sect. 4.2.3).

4.2.1 Alternating Thresholding Method

Because ∥a∥ = maxb∈B b
⊤a, problem (4.1) can be equivalently reformulated as:

(w∗, z∗) = argmax
w,z∈B

z⊤Xw − δ(|w|). (4.2)

where δ(·) is applied element-wise to w.
We solve problem (4.2) via an alternating optimization scheme. First, z is ob-

tained as z∗ = Xw/∥Xw∥ for a given value w. Second, for a given value of z, w is
obtained as w∗ = Tδ(X

⊤z) where

Tδ(h) := argmax
w∈B

h⊤w − δ(|w|), (4.3)

for any h. Then, we use Algorithm 4 to solve problem (4.2).

Algorithm 4: Alternating Thresholding Method
Input : X,w0

Output: w∗

1 repeat
2 From t = 0, in iteration t,
3 zt = Xwt

∥Xwt∥
4 wt+1 = Tδ(X

⊤zt)

5 until a stopping criterion is satisfied ;

The next result states the condition for δ(·) such that the solution to problem
(4.3) is a continuous threshold rule.

Proposition 4.2.1. Consider problem (4.3). Suppose the penalty δ(·) is separable
in each component j, and it has a singularity at the origin. In that case, the optimal
solution to the problem (4.3) is given by a continuous threshold rule denoted by
Tδ(h), i.e., δ(·) is a sparsity-inducing penalty.
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Proof. The Lagrangian of problem (4.3) is L = h⊤w− δ(|w|)−µ(∥w∥2 − 1). Then,
the first-order conditions of problem (4.3) are:

hj − sign(wj)(δ
′(|wj|) + 2µ|wj|) = 0, for j ∈ [J ] (4.4)

∥w∥2 ≤ 1

µ ≥ 0

µ(∥w∥2 − 1) = 0.

Taking into account that 0 ≤ δ′(|wj|) + 2µ|wj|, we analyze two cases: |hj| <
minwj ̸=0{δ′(|wj|) + 2λ|wj|} and |hj| > minwj ̸=0{δ′(|wj|) + 2λ|wj|}, for j ∈ [J ].
When |hj| < minwj ̸=0{δ′(|wj|) + 2λ|wj|} the partial derivative of the Lagrangian
is negative for all positive wj’s and positive for all negative wj’s. Therefore, there
must be a maximum at wj = 0 for |hj| < minwj ̸=0{δ′(|wj|) + 2λ|wj|} leading
to a threshold rule that depends on the value of hj. In the other case, when
|hj| > minwj ̸=0{δ′(|wj|) + 2λ|wj|}, and if the minimum of {δ′(|wj|) + 2λ|wj|} is
reached at 0, there exists wj that satisfies the equation (4.4) so that the solution
is continuous in hj. Figure 4.1 provides further insight into these two cases. We
conclude that a sparsity-inducing penalty that is sparse and continuous must be
singular at the origin.
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Figure 4.1: Sufficient condition of the penalties for having sparsity
and continuity of the thresholding: |h1| < minwj ̸=0{δ′(|wj |)+2λ|wj |}

and |h2| > minwj ̸=0{δ′(|wj |) + 2λ|wj |}, for some j ∈ [J ].

From now on, we assume that the penalty δ(·) has a singularity at the origin.
Fan and Li (2001) also studied this assumption in the context of a penalized linear
regression problem.

4.2.2 Convergence Analysis

For clarity, let us define the objective of problem (4.1) as Q(w) = ∥Xw∥ − δ(|w|),
σmin and σmax denote the minimum and maximum eigenvalues of the covariance
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matrix X⊤X, respectively. We start the convergence analysis by showing that the
sequence generated by Algorithm 4 converges in value.

Proposition 4.2.2. Let w0 ∈ B. Let {wt}t≥1 be the sequence generated using
Algorithm 4 starting at w0. Then, {Q(wt)}t≥1 is increasing and limt→∞ Q(wt)
exists.

Proof. In iterate t+ 1, Algorithm 4 is equivalent to

wt+1 = argmax

{
wt⊤X⊤Xw

∥Xwt∥
− δ(|w|) : w ∈ B

}
. (4.5)

By the definition of Q(·),

Q(wt+1)−Q(wt) =
∥∥Xwt+1

∥∥− δ(|wt+1|)−
∥∥Xwt

∥∥+ δ(|wt|)

≥
∥∥Xwt+1

∥∥− wt⊤X⊤Xw
t+1

∥∥Xwt
∥∥

≥0.

The first inequality comes from Eq. (4.5), and the last inequality follows by applying
the Cauchy-Schwarz inequality. Furthermore, Q(·) is bounded above by σmax in the
feasible set B. Therefore, the sequence {Q(wt)}t≥1 increases and is bounded above,
which implies that limt→∞ Q(wt) exists.

Given that the feasible set B is a compact set, we can conclude that the sequence
generated using Algorithm 4 possesses accumulation points. In the Lemma 4.2.1, we
show that the sequence generated by Algorithm 4 converges under the assumption
that σmin > 1. This implies that supp(wt) stabilizes; that is, the support is the
same for all t > N for some N .

Lemma 4.2.1. Let w0 ∈ B. Let {wt}t≥1 be the sequence generated using Algorithm
4 starting at w0. For all ϵ > 0, if the minimum eigenvalue of the matrix X⊤X is
greater than 1, there exists N ∈ N such that ∥wt+1 −wt∥2 < ϵ for all t > N .

Proof. Let us denote Q∗ = limt→∞ Q(wt). We show that
∑∞

t=0 ∥wt+1 − wt∥2 con-
verges, which implies the desired result. This is done by showing that the sequence
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of partial sums
∑N

t=0 ∥wt+1 −wt∥2 is bounded. It follows from Proposition 4.2.2:

Q(wt+1)−Q(wt) ≥ ∥Xwt+1∥∥Xwt∥ − 1 + (1−wt⊤Σwt+1)

∥Xwt∥

≥ ∥Xwt+1∥∥Xwt∥ − 1 + ∥X(wt+1 −wt)∥2

σ
1/2
max

≥ ∥Xwt+1∥∥Xwt∥ − 1

σ
1/2
max

+
σmin

σ
1/2
max

∥wt+1 −wt∥2

≥ σmin − 1

σ
1/2
max

+
σmin

σ
1/2
max

∥wt+1 −wt∥2

Q(wt+1)−Q(wt) +
1− σmin

σ
1/2
max

≥ σmin

σ
1/2
max

∥wt+1 −wt∥2.

When σmin > 1, the quantity 1− σmin < 0, which implies that

∥wt+1 −wt∥2 ≤ σ
1/2
max

σmin

[Q(wt+1)−Q(wt)].

Therefore, summing up both sides of the last inequality,

∞∑
t=1

∥wt+1 −wt∥2 ≤ σ
1/2
max

σmin

[Q∗ −Q(w0)].

Proposition 4.2.3. Let w0 ∈ B. Let {wt}t≤1 be the sequence generated using
Algorithm 4 starting at w0. Assuming that the minimum eigenvalue of the matrix
X⊤X is greater than 1, there exists N ∈ N such that for all t > N , supp(wt+1) =
supp(wt).

Proof. Without loss of generality, let us define λδ as the threshold rule in operator
Tδ (see proposition 4.2.1). Taking any 0 < ϵ < λδ, if wt

j > λδ and wt+1
j = 0, then

∥wt+1−wt∥2 > ϵ, which is impossible for t > N for some N due to Lemma 4.2.1.

Lemma 4.2.1 and Proposition 4.2.3 give an upper bound on the number of it-
erations t∗ it takes for Algorithm 4 to produce a small step size and therefore the
stability of the support. In fact,

t∗ ≥ σ
1/2
max[Q∗ −Q(w0)]

σminϵ2
− 1 ⇒ min

0≤t≤t∗
∥wt+1 −wt∥ < ϵ.

Lemma 4.2.2. Let w0 ∈ B. Let {wt}t≤1 be the sequence generated by Algo-
rithm 4 starting at w0. Let w∗ be an accumulation point of {wt}t≤1. Then w∗ =

Tδ

(
X⊤Xw∗

∥Xw∗∥

)
.
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Proof. Consider a convergent subsequence {wts}ts≥1 of the sequence {wt}t≤1 such
that w∗ = lims→∞ wts . Given that δ(·) has a singularity at the origin, Tδ a contin-
uous operator (see Proposition 4.2.1). Thus,

Tδ

(
X⊤Xw∗

∥Xw∗∥

)
= Tδ

(
lim
s→∞

X⊤Xwts

∥Xwts∥

)
= lim

s→∞
wts+1 = lim

s→∞
wts = w∗.

The last two equalities hold by Lemma 4.2.1.

4.2.3 Necessary Optimality Conditions

We show below that the solution from Algorithm 4 converges to a point at which
there is no feasible ascent direction for problem (4.1). Before we state this result,
we define a feasible ascent direction.

Definition 1 (Feasible Ascent Direction, Beck (2014)). Consider the problem

max
x∈Ω

G(x). (P)

A vector d is called a feasible ascent direction in ω at x for (P) if ∇G(x)⊤d > 0,
and there exists ϵ > 0 such that x+ µd ∈ ω for all µ ∈ [0, ϵ].

Proposition 4.2.4 (Necessary Optimality Condition For Local Optimizer). Let w∗

be a local optimizer of the problem (4.1), then there exits no feasible ascent direction
at w∗.

Proof. Following Lemma 11.2 in Beck (2014) with −G(x) and feasible descent di-
rection, we obtain the desired result.

We consider the absence of feasible ascent directions as a necessary optimality
condition for the problem (4.1). Now, we move forward to show that the accumu-
lation point w∗ satisfies the necessary optimality conditions stated in Proposition
4.2.4.

Proposition 4.2.5 (Necessary Optimality Conditions). Let w0 ∈ B. Let {wt}t≤1 be
the sequence generated using Algorithm 4 starting at w0. Let w∗ be an accumulation
point of {wt}t≤1. If the minimum eigenvalue of the matrix X⊤X is greater than 1
and δ(·) has a singularity at the origin, then there is no feasible ascent direction at
w∗ for problem (4.1).

Proof. Let Q2(w) = w∗⊤X⊤Xw
∥Xw∗⊤∥ − δ(|w|). From Lemma 4.2.2, it holds that w∗ =

Tδ

(
X⊤Xw∗

∥Xw∗∥

)
:= argmax {Q2(w) : ∥w∥ ≤ 1}. Thus, there is no feasible ascent di-

rection in B at w∗ for Q2. But, ∇Q(w∗) = ∇Q2(w
∗). Then, there is no feasible

direction in B at w∗ for problem (4.1) either.
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In this section, we showed that the sequence generated using Algorithm 4 con-
verges in value, that supp(wt) stabilizes for t > N , for some N . We also proved
that an accumulation point of the sequence generated by Algorithm 4 satisfies the
necessary optimality condition for the problem (4.1). In Sect. 4.3, we introduce
some sparsity-inducing penalties that fit the theoretical framework presented in this
section.

4.3 Sparsity-Inducing Penalties and Operators
In Sect. 4.2, we showed that if the minimum eigenvalue of the covariance matrix is
greater than 1 and the sparsity-inducing penalty has a singularity at the origin, then
Algorithm 4 converges to a solution that satisfies the necessary optimality condition
for problem (4.1). This section introduces some sparsity-inducing penalties that
satisfy these conditions. Particularly in Sect. 4.3.1, we consider problem (4.1) with
the l1-norm as penalty. Also, we introduce the SCAD and adaptive l1 penalties.
Additionally, in Sect. 4.3.2, we consider the special case of problem (4.1) with the l0-
norm penalty. This one does not entirely satisfy the theoretical framework presented
in Sect. 4.2, but it can be applied in some cases. We consider it relevant to include
the l0-norm penalty in this study due to its use in finding sparse PCA solutions
(Journée et al., 2010; Sriperumbudur et al., 2011).

4.3.1 l1-norm Penalties

From proposition 4.2.1, when the sparsity-inducing penalty δ(·) has a singularity at
the origin, it leads to a solution defined by a continuous threshold rule. This desired
property is satisfied when considering l1-norm as a sparsity-inducing penalty or
combinations of it (Fan & Li, 2001). This section introduces the l1-norm and SCAD
penalties. As can be observed in Figure 4.2, these penalties have a singularity at
the origin.
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Figure 4.2: Norm l1 and SCAD sparsity-inducing penalties.
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l1-norm

The l1-norm is introduced as a sparsity-inducing penalty in the linear regression
context for variable selection (Tibshirani, 1996) and extended to the PCA problem
(Journée et al., 2010; H. Shen & Huang, 2008). The l1-norm is defined as ∥w∥1 =∑J

j=1 |wj|. Under this penalty problem (4.2) becomes

(w∗, z∗) = argmax
w,z∈B

z⊤Xw − λ
J∑

j=1

|wj|. (4.6)

Then, for a given value of z, the Lagrangian of problem (4.6) is given by:

L(w, λ2) = (X⊤z)w − λ
∑
j∈J

|wj| − λ2(∥w∥2 − 1),

and the KKT-conditions are:

X⊤
j z− λ sign(wj)− 2λ2wj = 0 ∀j ∈ [J ]

w⊤w ≤ 1

λ2 ≥ 0

λ2(w
⊤w − 1) = 1.

Solving the KKT equations, we have that:

wj =
sign(X⊤

j z)[|X⊤
j z| − λ]+

∥[|X⊤z| − λ]+∥
.

Then, at iteration t+ 1, the updated of w is given by,

wt+1 =
Sλ(X

⊤zt)

∥Sλ(X⊤zt)∥
,

where Sλ is the soft-thresholding defined component-wise as Sλ(u) = sign(u)[|u| −
λ]+. In Figure 4.3a, we observe that the soft-thresholding operator is a continuous
operator that shrinks small values to zero and large values towards the threshold
(bias).

SCAD Penalty

The Smoothly Clipped Absolute Deviation (SCAD) was introduced by Fan and Li
(2001) to mitigate the shrinkage effect when using the l1-norm as a penalty. SCAD
penalty is a continuous piecewise function that presents a smooth transition between
the soft-thresholding and the identity operator. Then, it eliminates the shrinkage
effect of the soft thresholding on large values. The SCAD penalty, denoted by P(·),
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is defined as

P(|wi|) =




λ|wi|, if |wi| ≤ λ
2aλ|wi|−w2

i−λ2

2(a−1)
, if λ < |wi| ≤ aλ

(a+1)λ2

2
, otherwise

(4.7)

for some a > 2 and λ > 0. When using SCAD as penalty, problem (4.2) becomes,

(w∗, z∗) = argmax
w,z∈B

z⊤Xw −
J

j=1

P(|wj|).

Then, at iteration t+ 1, the updated of w is given by,

wt+1 =
TSCAD(X

⊤zt)

∥TSCAD(X⊤zt)∥
,

where TSCAD is called the SCAD operator, and it is defined component-wise by,

TSCAD(u) =




Sλ(u), if |u| ≤ 2λ
sign(u)[(a−1)|u|−aλ]

a−2
, if 2λ < |u| ≤ aλ

u, if |u| > aλ

. (4.8)

In Figure 4.3b, we observe that the SCAD operator is a continuous operator that
leaves unpenalized values larger than aλ.

Adaptive l1-norm

The adaptive l1-norm penalty was introduced by Zou (2006) to penalize each coeffi-
cient independently in the linear regression context. The adaptive l1-norm is defined
as

J
j=1 λj|wj|, with λj > for all j ∈ [J ]. When using adaptive l1-norm as penalty,

problem (4.2) becomes,

(w∗, z∗) = argmax
w,z∈B

z⊤Xw −
J

j=1

λj|wj|.

Then, in iteration t+ 1, Algorithm 4 updates w is given by,

wt+1 =
Sλ(X

⊤zt)

∥Sλ(X⊤zt)∥
,

with Sλ defined component-wise by Sλ(u)j = Sλj
(uj).

4.3.2 l0-norm

The l0-norm of u ∈ RJ is defined as the number of nonzero elements in u. Often, it is
used to relax the cardinality constraint. The l0-norm can be defined as


j∈J �wj ̸=0,
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Figure 4.3: Soft-Thresholding and SCAD Operators

with �wj ̸=0 is an indicator operator that assigns 1 if wj ̸= 0 and 0 otherwise. When
using the l0-norm as penalty, problem (4.3) becomes,

(w∗, z∗) = argmax
w,z∈B

z⊤Xw − λ

j∈J

�wj ̸=0. (4.9)

Then the Lagrangian of problem (4.9) for a given value of z is:

L(w, λ2) = (X⊤z)w − λ

j∈J

1wj ̸=0 − λ2(∥w∥2 − 1),

and the KKT conditions by:

X⊤
j z− 2λ2wj = 0 ∀j ∈ [J ]

w⊤w ≤ 1

λ2 ≥ 0

λ2(w
⊤w − 1) = 1

Solving the KKT system, in iteration t+ 1, Algorithm 4 updates w is given by,

wt+1 =
Uλ(X

⊤zt)

∥Uλ(X⊤zt)∥
.

Where Uλ(·) is the hard-thresholding operator defined component-wise by

Uλ(u)j =



0, if u2

j

∥u∥ ≤ λ

uj if u2
j

∥u∥ ≥ λ.
(4.10)

For the results in Sect. 4.2 to hold, the solution should be given by a continuous
thresholding rule. The hard-thresholding operator presents a discontinuity only
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at the threshold (see Figure 4.4). Notice that if the wt
j does not converge to the

threshold, then Algorithm 4 does not see this discontinuity, and the theoretical
framework in Sect. 4.2 can be applied.
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Figure 4.4: Hard-Thresholding Operator

4.4 Conclusion
The benefits and performance of the penalized PCA problem (4.1) have been studied
in the literature based on numerical experiments without a theoretical explanation
of their advantages. We analyzed an alternating thresholding method and showed
that the solution satisfies the necessary conditions for optimality when the minimum
eigenvalue of the covariance matrix is greater than one. Additionally, we character-
ized penalties that lead to a solution given by a continuous thresholding rule. We
considered the l1-norm as a sparsity-inducing penalty and proposed two new formu-
lations of the penalized PCA problem (4.1) under the SCAD and adaptive l1-norm
penalties.

Having the minimum eigenvalue of the covariance matrix greater than one is a
restrictive assumption to work with in practice. For instance, when dealing with
high-dimensional data sets, the covariance matrix is known to be positive semidefi-
nite with some eigenvalues equal to zero. For future work, it would be interesting to
explore ways to relax this assumption so that the alternating thresholding method
in Algorithm 4 can be shown to work for a broader range of empirical applications.
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Chapter 5

Optimal penalized PCA using
cardinality as sparsity-inducing
penalty

Abstract
Methods for solving penalized principal component analysis (PCA) are widely used
to find sparse solutions due to their computational tractability and scalability. One
of the main criticisms of penalized methods in the literature is that their performance
is assessed via numerical experiments without a theoretical guarantee of obtaining
optimal solutions. This paper considers a penalized PCA problem with cardinality
as a sparsity-inducing penalty. A minorization-maximization scheme is proposed
to solve the problem, and it is shown theoretically that the resulting solution is
a local optimum. While local optimality is guaranteed under the condition that
the smallest eigenvalue of the covariance matrix is greater than 1. We provide a
simple procedure that safeguards the condition for any data set, including those in
high dimensionality. Numerical experiments involving a synthetic data set and an
empirical data set are conducted to demonstrate the implication of this condition in
practice.

Keywords: Sparsity-inducing penalty, optimality conditions, PCA
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5.1 Introduction
Sparse PCA methods have been proposed in the literature to gain interpretability
and consistency in PCA solutions. Adding a cardinality constraint to the PCA prob-
lem seems to be a natural choice for achieving a sparse solution. However, it results
in an NP-hard problem (Natarajan, 1995). To address this impracticality, relax-
ations that consider sparsity-inducing penalties have been used to achieve sparsity
in the PCA solution. We call this kind of method Penalized PCA. Penalized meth-
ods are favorable regarding computational tractability, scalability, and statistical
properties (Guerra-Urzola et al., 2022). Despite their practical advantage, penal-
ized PCA methods in the literature rely on heuristic solutions without a theoretical
guarantee of optimality.

Several penalties have been proposed to induce specific sparse structures in the
solution. The most common of these penalties are the l0 and l1 norms. Representa-
tive work to solve the penalized PCA problem, using the norms l0 and l1, includes
the well-known iterative GPower algorithm (Journée et al., 2010) and the alternat-
ing optimization scheme presented by Richtárik et al. (2021). On the other hand,
Sriperumbudur et al. (2011) proposed a broad majorization-minimization approach
to the sparse generalized eigenvalue problem considering an approximation of the
l0-norm as a sparsity-inducing penalty1.

This paper studies a penalized PCA problem based on variance maximization
and cardinality as a sparsity-inducing penalty. We consider the problem

max
w∈B

w⊤Σw − α∥w∥0, (5.1)

with α > 0 denoting the penalty parameter, Σ = X⊤X is the covariance matrix
with X ∈ RI×J is the data set, ∥w∥0 denotes the number of nonzero elements in w,
and B = {x ∈ RJ : ∥x∥ ≤ 1} is the unit Euclidean ball. We use a minorization-
maximization (MM) method to solve problem 5.1, and show that it achieves a locally
optimal solution to problem (5.1). Local optimality is attained by our method under
the condition that the smallest eigenvalue of Σ is greater than 1. We show that this
condition can be met for any data set by employing a simple procedure to transform
the Σ matrix. The procedure can also ensure the condition to be met for high-
dimensional data sets where Σ is positive semidefinite. To our knowledge, there are
a few methods that studied the necessary optimality conditions (Sriperumbudur et
al. (2011) and Chapter 4), but none have been able to prove optimality.

The remainder of the paper is as follows. Section 5.2 presents the minorization-
maximization method and convergence analysis. In Section 5.3, we illustrate our
method in a numerical setting using synthetic and real data sets. Finally, Section
5.4 provides a conclusion. Next, we collect our notation for the convenience of our
readers.

1For a comprehensive review of penalized PCA method see Chapters 2, 3, and 4.
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Notation. Matrices are denoted by bold uppercase, the transpose of a matrix by
the superscript ⊤ (e.g., A⊤), vectors by bold lowercase and scalars by lowercase
italics, and we use capital letters for the last value of a running index (e.g., j
running from 1 to J). Given a vector x ∈ RJ , its j-th entry is denoted by xj.
The ∥x∥0 denotes the number of non-zero elements in x. The Euclidean distance
by ∥x∥ = (

∑J
j=1 x

2
j)

1/2. Given a matrix X ∈ RI×J , its rows i and columns j are
indicated by xi,j, and ∥X∥2F =

∑I
i=1

∑J
j=1 |xi,j|2 denotes the squared Frobenius

norm.

5.2 Theoretical Framework
We use a minorization-maximization (MM) scheme in Sect. 5.2.1, the solution of
which is given by an iterative thresholding algorithm in Sect. 5.2.2. We present
some convergence analysis in Sect. 5.2.3 and show that our method converges to a
local optimum solution of the problem (5.1).

5.2.1 Minorization-Maximization (MM)

Suppose that we want to maximize the function F . The MM principle involves
minorizing F by a surrogate function G. Consider an iterative algorithm that leads
to a sequence {xt}t≥0 by the following:

xt+1 ∈ argmax
x

G(x,xt). (5.2)

The function G minorizes the objective function F if it satisfies the following two
conditions (Lange, Hunter, & Yang, 2000):

F (xt) = G(xt,xt)

F (x) ≥ G(x,xt),

which are known as the tangency condition and the domination condition, respec-
tively.

The MM principle entails iteratively maximizing the minorizing function G(x,xt+1)
instead of the objective function F (x). The solution xt+1 that maximizes G(x,xt)
increases the objective: F (xt+1) ≥ F (xt). This is the result of the following inequal-
ities.

F (xt+1) ≥ G(xt+1,xt) ≥ G(xt,xt) = F (xt), (5.3)

where the first inequality is the result of the domination condition, and the second
inequality holds since G(x,xt) is maximized at x = xt+1.

The MM principle has seen success in various domains (see Nguyen (2017)). It is
also relevant in the PCA setting. Whereas Sriperumbudur et al. (2011) used an MM
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algorithm for the penalized PCA problem, and the classical power method to solve
the largest eigenvalue of a positive semidefinite matrix can also be derived from the
MM perspective (Lange, 2016).

5.2.2 MM implementation for Problem (5.1)
For clarity, let us define the objective of problem (5.1) as C(w) = w⊤Σw−α∥w∥0.
We propose the following minorizing function S over B × B as

S(w, z) = w⊤Σw − α∥w∥0 − (w − z)⊤(Σ− I)(w − z) (5.4)

Observe that S(w, z) ≤ C(w) and S(w,w) = C(w) for all w, z ∈ B. Then, the
update of w, in iteration t+ 1, is given by

wt+1 ∈ argmax
w∈B

S(w,wt), (5.5)

and stopping when wt+1 = wt.

Iterative Hard Thresholding

We now show that the update presented in Eq. (5.5) is equivalent to an iterative
hard-thresholding rule. Let us consider the lagrangian of problem (5.5) as

L(w, µ) =S(w,wt)− µ(w⊤w − 1)

=w⊤Σw − α∥w∥0 − (w −wt)⊤(Σ− I)(w −wt)− µ(w⊤w − 1)

− µ(∥w∥2 − 1)

=w⊤w + 2w⊤(Σ− I)wt − α∥w∥0 − µ(w⊤w − 1)−wt⊤(Σ− I)wt

Then, the KKT-conditions conditions are given by:

wj(Σjw
t − wt

j)− (µ− 1)wj = 0, ∀j ∈ [J ]

w⊤w ≤ 1

µ > 0

µ(w⊤w − 1) = 0

its a solution
ŵ =

(Σ− I)wt

∥(Σ− I)wt∥
. (5.6)

It can be observed, by replacing ŵ back in the Lagrangian and analyzing it component-
wise, that the maximum is attained at ŵ = Uα([Σ−I]wt)

∥Uα([Σ−I]wt)∥ , where Uλ is defined
component-wise as
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Uα(y)j =



0 if y2j

∥y∥ < α

yj if y2j
∥y∥ ≥ α

. (5.7)

We propose the algorithm 5 to find an optimal solution to problem (5.1).

Algorithm 5: Iterative threshold rule
Input : Σ,w0

Output: w∗

1 begin
2 repeat
3 In iteratation t+ 1,
4 wt+1 = Uα([Σ−I]wt)

∥Uα([Σ−I]wt)∥
5 until wt+1 = wt;
6 end

5.2.3 Convergence Analysis

We now conduct a convergence analysis of the solution achieved using the MM
scheme in Eq. (5.5). We begin by showing in Lemma 5.2.1 that the sequence gener-
ated by Algorithm 5 increases and converges in value.

Lemma 5.2.1. Let w0 ∈ B. Let {wt}t≥1 be the sequence generated using the MM
scheme in Eq. (5.5) starting at w0. Then limt→∞ S(wt,wt−1) and limt→∞ C(wt)
exist.

Proof. By the definition of C and S, we have the following:

C(wt+1) ≥C(wt+1)− ∥(Σ− I)1/2(wt+1 −wt)∥2

=S(wt+1,wt)

≥S(wt,wt)

=C(wt)

≥S(wt,wt−1),

where the second inequality is due to the update formula in Eq. (5.5), and the last
inequality follows the same reasoning as the first equality. Therefore, the sequences
{S(wt+1,wt)}t≥1 and {C(wt)}t≥1 do not decrease. Additionally, these sequences
are bounded above by {max w⊤Σw s.t. w ∈ B}, the maximum eigenvalue of the
matrix Σ. This implies the desired result.

Given the relation S(w,w) = C(w), it is natural in the proposed MM scheme
to stop when wt+1 = wt. In Lemma 5.2.2, we show the sufficient condition to
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guarantee that the use of the MM scheme in Eq. (5.5) converges and meets this
stopping criterion wt+1 = wt.

Lemma 5.2.2. Let Σ be such that its minimum eigenvalue is greater than 1. Let
w0 ∈ B and {wt}t≥1 be the sequence generated using the MM scheme in Eq. (5.5)
starting at w0. Then, limt→∞ ∥wt+1 −wt∥2 = 0.

Proof. Let σmin > 1 be the minimum eigenvalue of the matrix Σ, and C∗ =
limt→∞ C(wt). To show this Lemma, we show that the series

∑∞
t=1 ∥wt+1 −wt∥2 is

bounded. To show boundedness, we use that 0 < σmin − 1 ≤ ∥(Σ−I)1/2(wt+1−wt)∥2
∥(wt+1−wt)∥2 for

all t. This implies that

∥(wt+1 −wt)∥2 ≤ 1

σmin − 1
∥(Σ− I)1/2(wt+1 −wt)∥2 ≤ C(wt+1)− C(wt).

The last inequality comes from the inequalities in the proof of Lemma 5.2.1. Sum-
ming up both sides of the previous inequality over t, we have

∞∑
t=1

∥wt+1 −wt∥2 ≤ 1

σmin − 1
[C∗ − C(w0)]

which proves the desired result.

The main assumption on Lemma 5.2.2 is that σmin > 1. This assumption seems
unrealistic in practice, especially when dealing with high-dimensional data where the
matrix Σ is positive semidefinite and thus σmin = 0. Nevertheless, this complication
can be circumvented by implementing Algorithm 5 using Σ̂ = Σ + τI instead of
Σ, which has always σ̂min > 1 when τ > 1. It can be easily observed that when
w⊤w = 1, solving problem (5.1) using Σ̂ is equivalent to use Σ as follows.

w∗ ∈ argmax
w∈B

w⊤Σw − α∥w∥0 + τ1

⇔ argmax
w∈B

w⊤Σw − α∥w∥0 + τw⊤w

⇔ argmax
w∈B

w⊤(Σ+ τI)w − α∥w∥0. (5.8)

This ‘trick’ is frequently used to guarantee that Σ is convex by shifting the eigen-
values to be positive (Journée et al., 2010; G. X. Yuan et al., 2011).

Let the support supp(w) ≡ {j|wj ̸= 0} be the set of indexes with a nonzero
element in w. Lemma 5.2.2 implies that the support of the sequence generated
using Algorithm 5 stabilizes, that is, it is the same after some N . This is stated in
Corollary 5.2.1.

Corollary 5.2.1. Let Σ be such that its minimum eigenvalue is greater than 1. Let
w0 ∈ B and {wt}t≥1 be the sequence generated using the MM scheme in Eq. (5.5)
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starting at w0. Then there exists N ∈ N such that, for all t > N , supp(wt+1) =
supp(wt).

Proof. Let σmax > 1 be the maximum eigenvalues of the matrix Σ. If wt
j ̸= 0, we

have from Eq. (5.7) that

wt
j
2
=

(Uα([Σ− I]⊤j w
t−1))2

∥Uα([Σ− I]wt−1)∥2
=

([Σ− I]⊤wt−1)2j
∥Uα([Σ− I]wt−1)∥2

≥
([Σ− I]⊤wt−1)2j
∥[Σ− I]wt−1∥2

wt
j
2∥[Σ− I]wt−1∥ ≥

([Σ− I]⊤wt−1)2j
∥[Σ− I]wt−1∥

≥ α

wt
j
2
(σmax − 1) ≥α

wt
j
2 ≥ α

σmax − 1

(5.9)

Now, let consider any ϵ such that 0 < ϵ < α/(σmax − 1). From Lemma 5.2.2, it
exists N ∈ N such that for any t > N , ∥wt+1−wt∥2 < ϵ. If supp(wt+1) ̸= supp(wt),
there exists j ∈ supp(wt \ supp(wt+1)), which implies that ∥wt+1 −wt∥2 ≥ α

σmax−1

from Eq. (5.9). This is a contradiction.
From Corollary 5.2.1 and Eq. (5.6), it can be observed that when the support

stabilizes, algorithm 5 is equivalent to applying the Power method on the matrix
Σ − I. Then, the desired result follows. We use this to show that the solution
provided by Algorithm 5 is a local optimum of problem (5.1). This is stated in
Theorem 5.2.1.

Local Optimizer

To finalize this section, we show that any solution obtained from Algorithm 5 is a
local optimum of problem (5.1).

Proposition 5.2.1. Let Σ be such that its minimum eigenvalue is greater than 1.
Let w0 ∈ B and {wt}t≥1 be the sequence generated using the MM scheme in Eq. (5.5)
starting at w0 and ending at w∗. Let d ∈ B be a feasible direction of problem (5.1).
Then supp(w∗) ⊆ supp(w∗ + δd) for any 0 < δ <

√
α/(σmax − 1) with σmax the

maximum eigenvalue of Σ.

Proof. Let consider j ∈ supp(w∗)\supp(w∗+δd). Let take any 0 < δ <
√
α/(σmax − 1).

Then, it follows that

δ2 = ∥w∗ + δd−w∗∥2 ≥ |w∗
j + δdj − w∗

j |2 = |w∗
j |2 ≥ α/(σmax − 1).

The second equality comes from the assumption that j ∈ supp(w∗) \ supp(w∗ + δd)
and the last inequality from Eq. (5.9). Therefore, there is no j ∈ supp(w∗) \
supp(w∗ + δd), which implies the desired result.
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Theorem 5.2.1. Let Σ be such that its minimum eigenvalue is greater than 1. Let
w0 ∈ B and {wt}t≥1 be the sequence generated using the MM scheme in Eq. (5.5)
starting at w0 and ending at w∗. There exists δ > 0 such that

C(w∗) ≥ C(w∗ + δd)

for any feasible direction d ∈ B.

Proof. Let σmax be the maximum eigenvalue of the matrix Σ. Let consider any δ
such that 0 < δ <

√
α/(σmax − 1). From Proposition 5.2.1, it holds that supp(w∗) ⊆

supp(w∗+δd). If supp(w∗) = supp(w∗+δd), w∗ is the solution of the Power method
when the support stabilizes (see Corollary 5.2.1). Then, it is a global optimum, and
the result follows.

Now, if supp(w∗) ⊂ supp(w∗ + δd), it holds that ∥w∗ + δd∥0 > ∥w∗∥0. Then,
taking

δ2σmax + 2δσmax ≤ c and c = α(∥w∗ + δd∥0 − ∥w∗∥0), we have that

α(∥w∗ + δd∥0 − ∥w∗∥0) ≥δ2d⊤Σd+ 2δd⊤Σw∗

w∗⊤Σw∗ + α(∥w∗ + δd∥0 − ∥w∗∥0) ≥w∗⊤Σw∗ + δ2d⊤Σd+ 2δd⊤Σw∗

w∗⊤Σw∗ − α∥w∗∥0 ≥w∗⊤Σw∗ + δ2d⊤Σd+ 2δd⊤Σw∗ − α∥w∗ + δd∥0
w∗⊤Σw∗ − α∥w∗∥0 ≥(w∗ + δI)⊤Σ(w∗ + δI)− α∥w∗ + δd∥0

C(w∗) ≥C(w∗ + δd)

The second inequality is due to the Cauchy–Schwarz inequality:

d⊤Σw∗ = (Xd)⊤(Xw∗) ≤ ∥Xd∥∥Xw∗∥ ≤ σmax,

In both cases, we show that δ exists.

5.3 Numerical Examples
In Lemma 5.2.2, we showed that the step size in Algorithm 5 convergences when the
minimum eigenvalue (σmin) of the matrix Σ is larger than 1. Here we illustrate this
finding by administering our method on simulated and empirical data sets for which
the condition is not satisfied. We illustrate that Algorithm 5 does not converge
for these specific data sets and how this can be overcome by the aforementioned
transformation of data in Eq. (5.8).

5.3.1 Synthetic Data Set

By relying on the eigenvalue decomposition, we generated a Σ matrix from one
eigenvector with a defined sparse structure:
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Σ

(5.10)

By defining only the first eigenvalue (σ1 = 5), the remaining four eigenvalues
are defined as zero. Therefore, the smallest eigenvalue of the matrix Σ would be
σmin = 0. Then, implementing Algorithm 5, with penalty parameter α = 0.7, in
this particular setting, the sequence diverges; see Figure 5.3. Now, we illustrate that
with a transformed matrix Σ̂ = Σ+ τI, with τ > 1, Algorithm 5 converges (Figure
5.4) under the same set of parameters. Note that the accumulation point w∗, in this
case, is also identical to the defined eigenvector v1 (Figure 5.5).
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Figure 5.3: Divergence for the simulated Σ. The objective function
is displayed in (a), while (b) shows the l2 norm of the difference

between the iterates.

5.3.2 Empirical Data Set

We imported the ‘16S data’, which relates to microbiomes in the human body. It
refers to measurements from three different regions of the body (namely, oral, skin,
and stool) that present the greatest diversity in the microbial community. The
data set is characterized by 1674 measurements from 162 observation units. We
imported the data set from the R-package ‘mixOmics’ (Rohart, Gautier, Singh, &
Lê Cao, 2017).
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Figure 5.4: Convergence with the transformation on the simulated
data
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We perform the eigenvalue decomposition on the Σ matrix, which results in
σmax = 0.603 < 0. This implies σmin < 1. With the penalty parameter α = 0.001,
we found that Algorithm 5 did not converge in 100000 iterations, see Figure 5.6c.
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(c) Divergence for the 16S data

We observe in Figure 5.6c that the objective C(w) continues to increase and
that the norm l2 between two consecutive points does not decrease over iterations.
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However, the sequence converges successfully when administered to the transformed
matrix Σ̂, with the same initial vector and penalty parameter. Figure 5.7 shows
that convergence is achieved in 96 iterations.
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Figure 5.7: Convergence with the transformation on the 16S data

5.4 Conclusion
This paper considers the penalized PCA based on variance maximization and the
l0-norm as a sparsity-inducing penalty. We proposed a minorization-maximization
(MM) scheme that achieves a locally optimal solution to the penalized PCA prob-
lem. Although some previous work has proposed methods that meet the necessary
optimality conditions (Sriperumbudur et al. (2011) and Chapter 4), this is the first
account to prove optimality in the context of penalized PCA. Based on the MM
principle, we derived an iterative method with convergence guarantees under the
condition that the minimum eigenvalue of the covariance matrix is greater than one.
We also proposed a simple transformation of the covariance matrix that ensures the
condition, illustrating the practical implications of the condition using a synthetic
and an empirical data set.

For future work, it would be worth studying the optimality conditions using other
types of penalties. It would be along the lines of the work in Chapter 4 that pro-
vided the optimal conditions necessary for specific penalties within penalized PCA.
Additionally, the condition regarding the covariance matrix’s minimum eigenvalue
would be an interesting research topic. The same condition was also found for an
alternating method in Chapter 4, which differs from our approach. It appears that
the condition may apply to penalized PCA problems in general.
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Chapter 6

Epilogue

This dissertation was conducted as a joint project between the Methodology and
Statistics Department and the Operations Research Department at Tilburg Univer-
sity. We focus on the sparse Principal Component Analysis problem, addressing
questions of interest in both disciplines. This dissertation aims to guide the use and
implementation of sparse PCA methods that serve the data analysis purpose and
study the optimality properties of some penalized PCA methods. For data analy-
sis purposes, Chapter 2 provided a guide on using and implementing sparse PCA
methods compared to several popular sparse PCA methods. Chapter 3 compared
two ways of achieving sparse solutions. Chapter 4 moved into the theoretical aspect
by developing a framework for the necessary optimality conditions of a penalized
PCA method. Chapter 5 proposed a method with local optima solutions.

We clarified the misconception that PCA properties could be extended to sparse
PCA problems, mainly that loadings and weights are the same. One of the main
conclusions is that sparse PCA methods differ more fundamentally in their param-
eters and objectives and may better serve different purposes, such as Exploratory
Data Analysis and Dimension Reduction. It was shown through extensive numer-
ical experiments and real-life data sets that sPCA-rSVD offers the best results for
Exploratory Data Analysis, finding structure in the data set, and assigning meaning
to the scores. GPower is the best method for Dimension Reduction, finding new
variables that maximally account for the variance in the data set. Regarding the
sparsity-inducing scheme, this study indicates that cardinality-constrained methods
can achieve more accounted variance with fewer variables than penalized methods.
Then, using cardinality constraints results in more variance and less bias than using
a penalty counterpart.

Penalized PCA methods have been mainly introduced and studied in the statis-
tical literature. From the optimization point of view, one of the main criticisms is
that the benefits of using a penalized PCA method have been shown only through
numerical experiments without theoretical results on their optimality. We theoreti-
cally proved that an equivalent method to the well-known GPower satisfies necessary
optimality conditions. Considering the l0-norm as the sparsity-inducing penalty and
minorization-maximization method, we show that the solution is a local optimum.

In conclusion, while it may be difficult to declare a single Sparse PCA method
as the best, it is essential to recognize that different methods are better suited to
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serve diverse purposes and objectives. Researchers should carefully consider their
specific objectives when selecting a method for their analysis.

6.1 A Note on Statistics and Optimization
Which is the best sparse PCA method? We started this joint project thinking
about solving this question of common interest in the statistics and optimization
fields. Although statistics and optimization fields are interested in sparse PCA
methods that enjoy computational tractability and scalability, they differ in other
fundamental aspects. In statistics, there is great interest in sparse PCA methods
with advantageous data analysis properties such as support recovery, estimation,
and interpretation. Optimization concerns are directed to methods to find locally
or globally optimal solutions efficiently.

6.1.1 Statistics

Formulations of most statistical models for sparse PCA, such as penalized PCA,
are based on the least square or likelihood principle, which involves an optimization
problem. Nevertheless, methods to solve penalized PCA models are not assessed
based on the optimality of their solutions but using numerical experiments to mea-
sure their statistical properties. This raises some fundamental questions about the
role of optimality in these models and whether they should be formulated and esti-
mated differently based on statistical principles. An example that can be used as a
departure point for such characterization is the Bayes Matrix factorization proposed
by W. Wang and Stephens (2021), which assumes that the data can be factorized
as:

X = TP⊤ + E.

W. Wang and Stephens (2021) used Bayesian estimation with prior distributions
for T and P that induce sparsity on the final posterior distribution. Additionally,
the number of columns of P is automatically selected by the number of components
with probability mass 0 in the prior distribution.

6.1.2 Optimization

The optimization literature of sparse PCA has mainly focused on solving the cardinality-
constrained PCA problem. Mix Integer Optimization (MIO) techniques have been
recently used to solve this problem to certifiable optimality. This is partly due to
the speedup factor of MIO solvers in the past decades by incorporating theoretical
and practical advances with the exponentially increasing speed of supercomputers
(Bixby, 2012). However, MIO methods for cardinality-constrained PCA are still not
highly used by practitioners due to their scalability limitations and their computa-
tional tractability. So far, MIO can solve to certifiable optimality the cardinality-
constrained PCA problem up to 1000’s variables. Yet, those methods should be
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designed for greater use by practitioners and researchers in fields different than op-
timization.

6.2 Future Directions

6.2.1 Bridge between statistics and optimization

Statistics and optimization fields have focused on formulating and solving the sparse
PCA models that serve a particular interest of each discipline. For example, more
methods with desirable data analysis properties have been proposed in statistics, and
in optimization, more methods that attain specific optimal criteria have been pro-
posed. However, the potential benefits of cross-disciplinary collaborations have not
been fully explored yet. A promising direction would be to investigate techniques
to assess the optimality properties of any sparse solution obtained from a penal-
ized PCA method. Such a method would provide a valuable tool for researchers
in statistics and optimization to analyze and interpret high-dimensional data sets
efficiently.

6.2.2 How important is optimality in statistics?

Penalized PCA methods were introduced in the statistical literature about two
decades ago. Since then, many methods have been proposed to solve the sparse
PCA problem considering different sparse structures. The main criticism of penal-
ized methods from the optimization point of view is that they rely on solutions
without guaranteeing optimality, that is, heuristic solutions. Future research should
investigate the implications of not having optimal solutions in penalized PCA meth-
ods. Specifically, the study should focus on understanding the trade-off between the
quality of the heuristic solutions obtained and the optimality of the solutions. This
could involve developing new theoretical frameworks for evaluating the performance
of penalized PCA methods, including bounds on the optimality gap and character-
izing the conditions under which heuristic solutions are likely to be close to optimal
solutions. Such research could provide valuable insights into the limitations and
strengths of penalized PCA methods and guide the development of more effective
and reliable sparse PCA algorithms.

6.2.3 Self-Contained method

The current sparse PCA literature assumes that essential parameters such as the
number of components, the proportion of sparsity, or the penalty parameter are
known a priori. However, these parameters are unknown in many real-world ap-
plications and must be estimated. A promising direction for future research is to
develop a self-contained data-driven method that can estimate these parameters and
incorporate them into the optimization problem. Specifically, the research should
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focus on developing new optimization algorithms that can estimate optimal val-
ues of these hyper-parameters simultaneously with the sparse loadings or weights.
This could involve using techniques such as machine learning algorithms to learn
the optimal values of the parameters from data. Such research could provide valu-
able insights into the optimal design of sparse PCA algorithms and facilitate their
widespread use in various applications and fields.
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Appendix A

A.1 Algorithm: CCPCA
We present a detailed description of the algorithm used to solve formulation (3.2).
We have implemented an alternating procedure fixing one variable at a time. To
estimate P with W fixed (see problem (3.3)), Procruste rotation has been used (ten
Berge, 2005; Zou et al., 2006). That is, the solution to (3.3) is P̂ = UV⊤, where U
and V are the left and right singular vectors of X⊤XW, respectively. To estimate
W with P fixed (see problem (3.4)), the cardinality-constrained regression algorithm
in Adachi and Kiers (2017) is implemented, which uses a majorization minimization
approach (for a short overview see Hunter and Lange (2004)).

Following Kiers (2002), we can majorize (3.4) as follows,

∥vec(X)− (P⊗X)vec(W)∥22 ≤ c+ α∥b− vec(W)∥22, (A.1)

where c is a constant with respect to W, α is the maximum eigenvalue of X⊤X
and b is given by b = vec(W) − α−1vec

(
X⊤X(W −P)

)
. The right hand side in

(A.1) is minimized when b = Tρ (vec(W)). In fact, the same updating formula of
the weights appears in the proximal gradient algorithm presented in Bertsimas et
al. (2016) (Eq 3.8 in Algorithm 1).

In some instances, it can be more useful to specify the cardinality constraint per
column of W. This leads to more control over the sparsity level in the weights per-
taining to specific components. This can be done by adding a cardinality constraints
per wk as follows,

Ŵ = argmin
W

∥vec(X)− (P⊗X)vec(W)∥22

s.t. ∥wk∥0 = ρk ∀k = 1, 2, 3, . . . , K,

where ρk denotes the number of nonzero per component weight. In this case, the
updating formula in each iteration becomes,

wk,new := Tρk

(
wk,old − α−1X⊤X(wk,old − pk)

)
.

An implementation of Algorithm (6) is freely available in R-software (R: The R
Project for Statistical Computing , n.d.) and downloadable from the corresponding
author’s github page. As discussed in Section 3.2, This algorithm does not guarantee
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Algorithm 6: CCPCA algorithm for sparse PCA
Input : X, K,ρρρ,W0

Output: Ŵ
1 while ∆ lossfunction value > ϵ do
2 in iteration i

3 P̂ ← Procruste rotation(X,Ŵ)
4 for k ← 1 to K do
5 wk,i := Tρk

(
wk,i−1 − α−1X⊤X(wk,i−1 − pk)

)
6 end
7 end
8 return Ŵ;

finding a global optimum of problem (3.4). A way of improving the solution is by
initializing W with the estimates Ŵ from PCA. This “warm” start will nudge the
algorithm in the right direction, minimizing the risk that the algorithm will end up
in a local minimum of large value, far from optimal. Another way to improve the
solution is by using multiple starts. The procedure can be started multiple times
with different values for W0, and the result with the smallest loss function value is
retained. Multiple starts are more costly, which especially adds up when K and ρ
still need to be determined using model selection.

A.2 Data Generation
The data for the simulation study was generated from the following decomposition,

X = XWP⊤,

where W ∈ RJ×K , W⊤W = I and P = W. The orthogonality condition on W links
to the PCA identification constraints and it has been considered before in simulation
studies by Camacho, Smilde, Saccenti, and Westerhuis (2020); Camacho, Smilde,
Saccenti, Westerhuis, and Bro (2021); Guerra-Urzola et al. (2021). The matrix W
is constructed such that it contains a given level of sparsity. To achieve this, we
used the following iterative procedure. First, a random matrix W is generated
with zero weights in the desired places. Then, the orthogonality of the columns is
attempted by applying the Gram-Schmidt orthogonalization procedure only in the
intersection of the nonzero weights between two columns of W. When W only has
sets of columns that contain non-overlapping sparsity patterns, this immediately
results into orthogonal columns, but when the columns in W have overlapping
sparsity patterns the procedure will not always lead to W⊤W = I on the first
pass. In such cases, multiple passes are needed in order to achieve orthogonality
(additional coefficients might need to be set equal to zero). Some sparsity patterns
are impossible, for example, an initialization where W does not have full column
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rank or an initial set that degenerates to a linearly dependent set after multiple
passes. In those cases, the algorithm fails to converge.

After a suitable W has been obtained, Σ is constructed by taking Σ = WΛW⊤.
Here, Λ is a diagonal matrix with eigenvalues of the J components underlying the
full decomposition. We specify these eigenvalues such that the first K components
account for a set amount of structural variance and the remaining eigenvalues for
a set amount of noise variance. The data matrices X having a desired underlying
sparse structure and noise level can then be obtained by sampling from the multi-
variate normal distribution with zero mean vector and variance-covariance Σ. Note
that the generation scheme used here is very restrictive and may not be applicable to
empirical data. Additionally, in our experiments, generating non-orthogonal weights
did not change the results in any noticeable way. This code is publicly available at
the author’s github page.

A.3 Additional Plots
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Figure A.1: Proportion of explained variance (PEV) with cardinal-
ity tuned using the index of sparseness.
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