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Meta-Analyzing the Multiverse: A Peek Under the
Hood of Selective Reporting

Anton Olsson-Collentine, Robbie C. M. van Aert, Marjan Bakker, and Jelte Wicherts
Department of Methodology and Statistics, Tilburg School of Social and Behavioral Sciences, Tilburg University

Abstract
Researcher degrees of freedom refer to arbitrary decisions in the execution and reporting of hypothesis-testing
research that allow for many possible outcomes from a single study. Selective reporting of results ( p-hacking)
from this “multiverse” of outcomes can inflate effect size estimates and false positive rates. We studied the
effects of researcher degrees of freedom and selective reporting using empirical data from extensive multistudy
projects in psychology (Registered Replication Reports) featuring 211 samples and 14 dependent variables. We
used a counterfactual design to examine what biases could have emerged if the studies (and ensuing meta-anal-
yses) had not been preregistered and could have been subjected to selective reporting based on the significance
of the outcomes in the primary studies. Our results show the substantial variability in effect sizes that researcher
degrees of freedom can create in relatively standard psychological studies, and how selective reporting of out-
comes can alter conclusions and introduce bias in meta-analysis. Despite the typically thousands of outcomes
appearing in themultiverses of the 294 included studies, only in about 30% of studies did significant effect sizes
in the hypothesized direction emerge. We also observed that the effect of a particular researcher degree of free-
dom was inconsistent across replication studies using the same protocol, meaning multiverse analyses often fail
to replicate across samples. We recommend hypothesis-testing researchers to preregister their preferred analysis
and openly report multiverse analysis. We propose a descriptive index (underlying multiverse variability) that
quantifies the robustness of results across alternative ways to analyze the data.

Translational Abstract
Researcher degrees of freedom refer to arbitrary decisions in the execution and reporting of research that could
createmany possible outcomes in a single study, sometimes called amultiverse of outcomes. If researchers com-
pute several outcomes but selectively choose to report only some based on statistical significance, this can lead
to bias in reported outcomes as they appear in publications and later meta-analyses that summarize results across
many studies on the same topic.We used data from strictly controlled large-scale studies in social and cognitive
psychology to examine what biases might have emerged had they not been strictly controlled, which is the case
withmost research in the literature. In the 211 samples we studied, we find large variations in potential outcomes
depending on analytic decisions and demonstrate that selective reporting among outcomes could severely bias
meta-analytic summaries, despite meta-analysis being considered a “gold-standard” of evidence. Hence, our
results call for a need for meta-analyses to evaluate primary studies for risk of bias due to selective reporting
and for original studies to lower the risk of bias by careful registration of analytic choices before studies are
conducted.
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Researcher Degrees of Freedom (DFs; Simmons et al., 2011) refer
to the many arbitrary decisions that need to be made in designing, col-
lecting, analyzing, and reporting research. In the analysis of
hypothesis-testing research, the focus of this article, researcher DFs
involve decisions such as choosing between different approaches for
dealing with missing observations, excluding participants from the
analysis depending on different criteria, and a range of other data pro-
cessing and modeling decisions (for more examples, see Wicherts
et al., 2016). Researcher DFs allow for many possible outcomes in
a single study where the reported result depends on the specific com-
bination of decisions made. This was illustrated recently by Silberzahn
et al. (2018): when 29 independent teams examined the same datawith
the same research question, the teams’ estimated effect sizes (mea-
sured as odds ratios) varied from 0.89 to 2.93, with 20 teams finding
a statistically significant effect in the expected direction. That different
independent teams of researchers reached different estimates shows
that there often is no clearly preferable analysis in hypothesis-testing
research (see also Botvinik-Nezer et al., 2020; Breznau et al., 2021;
Huntington-Klein et al., 2021; Wagenmakers et al., 2022).
The many possible statistical results that are enabled by researcher

DFs have been referred to as a “multiverse” of statistical results
(Steegen et al., 2016), “vibration of effects” (Patel et al., 2015), or a
“specification curve analysis” (Simonsohn et al., 2020). These multi-
verse style analyses entail (sensitivity) analyses of the robustness of
results to researcher DFs and offer insights into potential biases that
might emerge if researchers selectively report outcomes from them to
present more convincing evidence in favor of a hypothesized effect.
The proponents of multiverse style analyses are careful to define “rea-
sonable” or “arbitrary” decisions in light of substantive, statistical, meth-
odological, and psychometric grounds (DelGiudice&Gangestad, 2021;
Patel et al., 2015; Simonsohn et al., 2020; Steegen et al., 2016). In the
current study, we use multiverse analysis based on arbitrary choices to
demonstrate the potential impact of selective reporting on study-level
effects and subsequent meta-analyses of resulting effect sizes. To ensure
arbitrariness in our researcher DFs, we consider the effect size computa-
tions to be given. That is, we apply researcher DFs that we consider to
not change the independent or dependent variables, and we do not
add covariates or change the statistical model or constructs of interest.
From the perspective of the broader literature, the principal concern

with researcher DFs is not that they allow multiple statistical results to
be computed, but rather that they allow for selective reporting of pos-
sibly desirable outcomes. Throughout this article, we use “selective
reporting” to refer to cases where multiple statistical results are exam-
ined in a study, but some go unreported (Page et al., 2020). We do not
include in this definition the special case where no study results are
reported and hence do not focus on publication bias of entire studies.
Selective reporting is often focused on the significance of outcomes
and can be intentional (“p-hacking”) or happen unintentionally due
to hindsight and confirmation biases (Nickerson, 1998; Roese &
Vohs, 2012). Selective reporting from the multiverse of statistical
results is problematic as it can allow researchers to present statistical
evidence even for incredible phenomena (Simmons et al., 2011).
Numerous formal approaches and simulation studies have been
used to show that selective reporting leads to an overrepresentation
of false positive findings (Ioannidis, 2005) and inflated effect size esti-
mates (Ioannidis, 2008) in the literature.
Unfortunately, selective reporting appears common among

researchers. In psychology, about 50% to 60% of researchers admit
to not reporting all dependent measures in a study (Agnoli et al.,

2017; John et al., 2012), and in a study registry comparison 70% of
studies did not report all outcome variables (Franco et al., 2016).
Moreover, there is extensive literature on selective reporting in the
fields of biomedicine, with evidence from, for example, neurology
(Fusar-Poli et al., 2014), hematology (Wayant et al., 2017), pediatrics
(Rosati et al., 2016), orthopedics (Rongen & Hannink, 2016), obesity
(Rankin et al., 2017), and cancer research (Kyzas et al., 2005). A recent
study examining results in 67 trials published between October and
November 2015 in five top journals from general medicine found
that 42% of prespecified outcomes went unreported (Goldacre et al.,
2019). Further evidence from the fields of education (Pigott et al.,
2013) and studies on partner violence (Madden et al., 2019) suggests
the problem of selective reporting is widespread indeed.

The biases created by selective reporting in primary studies are
inherited by meta-analyses that seek to quantitatively review effects
or associations across many studies. Each of the studies included in
a meta-analysis has its own multiverse. Since the results used for
meta-analysis are subsets from these multiverses, meta-analytic
result(s) also represent a subset from the multiverse of possible meta-
analyses. To avoid that this subset is biased, meta-analytic reporting
guidelines such as PRISMA (Moher et al., 2009) and MARS
(Appelbaum et al., 2018) recommend meta-analysts to evaluate pri-
mary studies for selective reporting. We do not consider arbitrary
choices made in the context of meta-analyses themselves (i.e., multi-
verse meta-analysis: Palpacuer et al., 2019; Voracek et al., 2019), but
rather vary the analyses in the primary studies while keeping the meta-
analytic inclusion criteria and analysis constant (i.e., we meta-analyze
multiverses) to study the biasing effects of selective reporting based
on researcher DFs in primary studies on meta-analytic outcomes.

Such biasing effects have been studied in simulated data for meta-
analysis (e.g., Botella et al., 2021; Carter et al., 2019; Friese &
Frankenbach, 2020), but simulated data from known distributions
may not be representative of actual psychological data that feature
unknown (distributional) complexities. Also, the effects of researcher
DFs have been studied in observed data of individual studies
(Botvinik-Nezer et al., 2020; Breznau et al., 2021; Huntington-
Klein et al., 2021; e.g., Silberzahn et al., 2018), but not in meta-
analytic context to inform how they might affect cumulative knowl-
edge. We combine these streams of research and study the effects
of researcher DFs and selective reporting in observed meta-analytic
data, taking advantage of the unique opportunity offered by the
open data of 10 recent multilab direct replication projects in psychol-
ogy (Registered Replication Reports [RRRs]) that featured a total of
211 samples studying 14 different outcome variables.

RRRs each consist of a set of studies (labs) that collected data on
an effect in psychology using the same prespecified research design,
decision plan, and materials, collectively known as a “preregistra-
tion.” Each RRR can be seen as making up one (or more) meta-
analysis of direct (also called “exact”) replications, where the only
difference between included studies is where they collected their
data. Even though the preregistrations used in the actual RRRs lim-
ited the effect of researcher DFs in the original analyses, the open
data from these extensive studies enable us to use a counterfactual
design to see what biases could have emerged if the studies (and
ensuing meta-analyses) had not been preregistered and could have
been subjected to selective reporting based on the significance of
the outcomes in the primary studies. In doing so, we demonstrate
the variability in results that may arise in meta-analytic data in the
absence of preregistration, the limitations of multiverse analysis
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when applied to a single study, and illustrate the entire process of
selective reporting, from the researcher DFs in primary studies that
enable the practice to the consequences for meta-analysis.

Method

Figure 1 summarizes the design of this study. We identify deci-
sion points in each RRR where reasonable alternative decisions
could have been made (absent any preregistration) and compute all
resulting outcomes (create a multiverse) for each included lab. We
then combine effect sizes from the lab multiverses in meta-analysis
within each RRR. This design allows us to explore the effects of
researcher DFs on research output by (a) examining the underlying
multiverse variability (UMV) in effect size estimates at the primary
study level, (b) examining the resulting multiverse variability at the
meta-analytic level, and (c) examining different mechanisms for
selecting effect sizes from primary study multiverses for inclusion
in the meta-analysis. We refer to the variability due to researcher
DFs as the UMV(statistically defined in “The Multiverses” section).

Transparency and Openness

All our code and data for this project are available on the Open
Science Framework (OSF) at http://osf.io/j8yg2/ (Olsson-Collentine

et al., 2019), and permanently archived at Zenodo at doi.org/10
.5281/zenodo.7341292 (Olsson-Collentine et al., 2022). We refer
directly to relevant files on the OSF using brackets and links in
the sections below. We registered the data cleaning code and the
researcher DFs available in each RRR before proceeding to analy-
sis (http://osf.io/h397y/). We only made minor code corrections
and clarifications of researcher DFs after registration, fully detailed
in Supplement A (in the online supplemental material; http://osf.io/
xem2y/). We handled all data in R version 4.0.2 (R Core Team,
2020), and cite used packages in the reference list (Henry &
Wickham, 2020; Revelle, 2020; van Aert, 2020; Wickham,
2016; Wickham & Bryan, 2019; Wickham et al., 2020;
Wickham & Miller, 2020; Zhu, 2019).

Data Collection

We included all 10 RRRs available at the time of data collection
(i.e., published up until May 15, 2019) available in the journals
“Perspectives on Psychological Science” and “Advances in Methods
and Practices in Psychological Science” (see also Olsson-Collentine
et al., 2020). Three RRRs (RRR3, RRR5, and RRR9) hadmultiple pri-
mary outcome variables (as explicitly identified in the accompanying
publications). In total, we included 10 projects containing 14 primary

Figure 1
Summary of the Study Design

Note. RRR=Registered Replication Report; ES= effect size; DF= degree of freedom. For each lab
in an RRR, multiverses were computed, analyzed, and used for meta-analysis. Each RRR consists of K
labs, lab i= 1, 2, 3, …K. Each lab has E effect size estimates in its multiverse. There are M possible
combinations of the E effect sizes across labs, resulting in a meta-analytic multiverse of size M. We
approximate the meta-analytic multiverse by randomly sampling 105 meta-analyses from the meta-
analytic multiverse. For details on how we selected researcher DFs, see Methods under the header
“Selection and justification of researcher DFs.” This figure was created using the website draw.io.
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outcome variables that could be meta-analyzed, consisting of 211
unique lab samples and 34,357 participants (Table 1). These values
correspond to the sum of the labs and participants of RRR1—
RRR9, as RRR9 and RRR10 used the same sample.
We use the RRRs because the meta-analyses they offer allow us to

consider the effects of (selective reporting from) multiverse analyses
in relation to a benchmark based onmeticulously collected data from
multiple labs (and different samples) using the same protocol. We

selected the RRRs for our study over other multilab replication ini-
tiatives for two reasons. First, we wished to examine researcher DFs
within a meta-analytic structure, which is what the RRRs nicely pro-
vide. The RRRs have the additional advantage that most of them
report average results not significantly different from zero, allowing
us to examine the bias from selective reporting under the most prob-
lematic circumstances (i.e., when there is no genuine effect) and the
percentage of significant outcomes appearing across multiverses

Table 1
Preregistered Multilab Replication Projects

RP Paper Countries Labs Effects N Sample and settings Description of effects

RRR1 Alogna et al.
(2014)

10 31 1 4,832 31 out of 32 samples were undergraduate
students aged 18–25, 1 general
population which was also the only
online sample.

Verbal overshadowing 1; independent two-group
experiment. Participants either described a
robber after watching a video or listed
countries/capitals and after a filler task
attempted to identify the robber in a lineup.

RRR2 Alogna et al.
(2014)

8 26 1 2,932 22 out of 23 samples were undergraduate
students aged 18–25, 1 general
population which was also the only
online sample.

Verbal overshadowing 2; different from 1 only in
that the filler task took place before the
descriptive task instead of after.

RRR3 Eerland et al.
(2016)

2 10 3 1,210 11 out of 12 samples were undergraduate
students mostly aged 18–25, one of
which was online. One sample was a
broader online sample.

Grammar’s effect on interpretation; independent
two-group vignette experiment with three
outcome variables. Participants read about
actions either described in the imperfect or
perfect tense and then ratedthe protagonist’s
intentions (intentionality/intention attribution/
detailed processing).

RRR4 Hagger et al.
(2016)

10 24 1 3,127 All samples consisted of in-lab
undergraduate students

Ego depletion; independent two-group
experiment. Participants were either assigned to
a cognitively demanding or a neutral task, and
performance was then measured in a
subsequent cognitive task.

RRR5 Cheung et al.
(2016)

5 16 2 2,279 All samples consisted of in-lab
undergraduate students aged 18–25

Commitment on neglect/exit; independent
two-group experiment with two outcome
variables. Participants were either primed to
think about commitment to or independence
from their partner.

RRR6 Wagenmakers
et al. (2016)

8 17 1 2,542 All but one sample explicitly consisted of
students and all took place in-lab. The
last sample was recruited on university
grounds.

Facial feedback hypothesis; independent
two-group experiment. Participants were either
induced to “smile” or “pout” by holding a pen
in their mouth differently and simultaneously
rated the funniness of cartoons.

RRR7 Bouwmeester
et al. (2017)

12 21 1 3,669 All samples consisted of in-lab
undergraduate students aged 18–34.

Intuitive cooperation; independent two-group
experiment. Economic game with money
contributed to a common pool either under time
pressure or time delay.

RRR8 O’Donnell et al.
(2018)

13 40 1 7,041 All samples consisted of in-lab
undergraduate students aged 18–25

Professor priming; independent two-group
experiment. Participants were primed with
either a “professor” or “hooligan” stimuli. The
outcome was percentage correct trivia answers.

RRR9 McCarthy et al.
(2018)

13 26 2 6,720 All samples consisted of in-lab students
aged 18–25

Hostility priming; independent two-group
experiment with two outcome variables.
Participants descrambled sentences, either 20%
or 80% were hostile, then rated an individual
and a list of ambiguous behaviors on perceived
hostility.

RRR10 Verschuere et al.
(2018)

12 25 1 3,245 All samples consisted of in-lab students
aged 18–25

Moral reminder; independent two-group
experiment. Participants either recalled the 10
Commandments or books they had read. The
outcome was a degree of cheating when
reporting results.

Note. All RRRs published up until May 15, 2019, in the journals Perspectives on Psychological Science and Advances in Methods and Practices in
Psychological Science.’ RP=Replication Project; Countries= number of lab country locations; Effects= number of primary effects studied; N=
participants before exclusions; RRR=Registered Replication Report. Adapted from “Heterogeneity in Direct Replications in Psychology and its
Association With Effect Size,” by A. Olsson-Collentine, J. M. Wicherts, and M. A. L. M. van Assen, 2020, Psychological Bulletin, 146(10), 922–940
(https://doi.org/10.1037/bul0000294). Copyright 2020 by the American Psychological Association. Code to reproduce table available at: https://osf.io/jehpy/.

OLSSON-COLLENTINE, VAN AERT, BAKKER, AND WICHERTS4

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al
A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

C
on
te
nt

m
ay

be
sh
ar
ed

at
no

co
st
,b

ut
an
y
re
qu
es
ts
to

re
us
e
th
is
co
nt
en
ti
n
pa
rt
or

w
ho
le
m
us
tg

o
th
ro
ug
h
th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al
A
ss
oc
ia
tio

n.

https://doi.org/10.1037/bul0000294
https://doi.org/10.1037/bul0000294
https://doi.org/10.1037/bul0000294
https://osf.io/jehpy/
https://osf.io/jehpy/


(Type I error rate). Second, we wished to allow for researcher DFs to
depend on the study design. The Many Labs series of replication
projects (which we have worked with previously in Olsson-
Collentine et al., 2020) consists of many effects studied at the
same time in the same samples, meaning (almost) all researcher
DFs will be identical across all studied effects. Hence the RRRs
allow us to delve deep into the generalizability of the multiverse var-
iability across labs and effects.
We downloaded individual-level data for all RRRs in Table 1.

Summary data of all RRRs were available on the OSF. When the
raw lab data were not publicly available via the OSF we contacted
authors by email to request them. Only for one lab in RRR1 and
RRR2 and two labs in RRR3 were we unable to acquire their
individual-level raw data.
For each RRR, we standardized data formatting across labs, fixed

minor mistakes (e.g., mislabeled columns in RRR8), and prepared
the datasets for multiverse analysis (http://osf.io/cf86y/). We prepared
the data in the same way as the original RRRs to the extent possible.
However, we largely had towrite our own code, because the alternative
decisions needed to create our multiverses (e.g., exclusion criteria)
could not be taken in the code by the original authors. In preparing
the datasets for analysis, we only excluded participants due to reported
experimenter error or when participants were reported to not have fol-
lowed instructions or completed the experiment. Note that exclusions
based on “not following instructions” are usuallyad hoc, and hence are
distinct from formalized exclusions based on attention checks.

The Multiverses

Although multiverse type analyses have been suggested by mul-
tiple authors under somewhat different names (Patel et al., 2015;
Simonsohn et al., 2020; Steegen et al., 2016) all multiverse analyses
consist of identifying points in the research process where multiple
reasonable decisions could have been made, identifying what these
decisions might be, and examining the impact of these decisions on
the study results. A core assumption of multiverse type analysis is
that the alternative decisions are all (approximately) equally reason-
able (Simonsohn et al., 2020; Steegen et al., 2016; see also Del
Giudice & Gangestad, 2021).
It is important that researcher DFs are defined such that these

choices are indeed “reasonable” or “arbitrary” on a priori substantive
and methodological grounds (Patel et al., 2015; Simonsohn et al.,
2020; Steegen et al., 2016; ?) rightly pointed out that many decisions
implemented in published multiverse analyses were not truly arbi-
trary (are “nonequivalent”) because they can a priori be expected
to result in different (a) measurement reliability/validity, (b) studied
psychological effects (e.g., when including a covariate that changes
the prediction), or (c) power/precision. Only decisions for which this
does not hold (i.e., we are either confident they are equivalent or
uncertain) should according to Del Giudice & Gangestad (2021)
be included in a multiverse analysis.
We agree with Del Giudice & Gangestad (2021) that such sub-

stantive and methodological issues should be considered when per-
forming multiverse analysis as a sensitivity analysis. Hence, we
carefully selected our researcher DFs to reflect choices for which
we saw no prior substantive or methodological grounds to expect
them to affect the true effect sizes tapped by the different labs.
However, we could imagine that others might object to some of
those choices and hence we offer a range of supplementary results

to assess how alternative choices in designing the multiverse affect
our results. We also make our data and code available for reanalysis
using alternative multiverse setups.

Selection and Justification of Researcher DFs

We selected our researcher DFs to correspond to normative
researcher behavior that is at risk of selective reporting in the fields
of the RRRs that make up our data. These RRRs belong to the fields
of social and cognitive psychology (Olsson-Collentine et al., 2020).
Although there are many researcher DFs before analyzing the data
(Wicherts et al., 2016), due to using already collected data we
were only able to vary post-data collection decisions. Moreover,
because our focus was on researcher DFs in primary studies and
their consequences for downstream meta-analysis, we only varied
decisions in data processing (the data multiverse, Steegen et al.,
2016) and not the statistical models used in data analysis (the
model multiverse). Consequently, several chosen researcher DFs
concerned with using different exclusion criteria (which we prepend
with “E”), although we also varied how the composite score was
computed from multiple indicators (researcher DFs prepended
with “S”).

When creating our list of researcher DFs, we proceeded in two
steps: we (a) set up a list of “common” researcher DFs, and then
(b) set up a list of researcher DFs unique to each RRR. These
were then combined to create our final list of researcher DFs for
each RRR, which we registered before analyzing any data
(Supplement B in the online supplemental material; http://osf.io/
wj38n/). Because all labs in an RRR used the same design, it was
only necessary to identify decisions and create associated options
once for each RRR and not for each lab/study separately. Our
coded researcher DFs each consisted of a decision that needs to be
made and several associated potential options for that decision.
When defining the researcher DFs, we explored the data in the
sense of examining whether potential DFs could be applied (i.e.,
whether the variables existed and how they were defined) but did
not examine what effect applying them would have.

We created our list of common researcher DFs based on recom-
mendations in statistical textbooks, common decisions by applied
researchers as reported in the research literature, data analytic deci-
sions made by the included RRRs, and our own experience of deci-
sions encountered in the literature. Table 2 provides an overview of
all common researcher DFs. We considered option (a) across deci-
sions to be the default option, corresponding to no scale adjustments
or participant exclusions (although for some researcher DFs, an
active decision must be made; S2, E1 Table 2). In Supplement C
in the online supplemental material, we detail how we selected
each researcher DF and its options.We acknowledge that many addi-
tional multiverses could be run in these and other studies, but we
consider our setup typical of researcher DFs that could be used in
practice across a range of psychological studies, and as such useful
to study the influence of selective reporting. Researchers instead
interested in using multiverse analysis as a sensitivity analysis for
a particular effect should carefully consider the advice of Del
Giudice & Gangestad (2021) on equivalent pathways before apply-
ing any of the researcher DFs in Table 2.

In addition to the list of common researcher DFs, which we
applied to all RRRs, each RRR had several unique researcher
DFs. These arise from the uniqueness of each research topic and
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design and consist of different exclusion criteria. We coded between
2 (RRR3) and 10 (RRR7) unique researcher DFs for each RRR, each
decision with 2 to 6 associated options. Due to the large number of
unique researcher DFs, we do not describe them all in detail here, but
provide only a broad overview and refer interested readers to
Supplement B in the online supplemental material.

We can separate between two types of “unique” researcher DFs:
either (a) the RRRs excluded participants based on some variable
that was not defined in our list of common decisions or (b) an
RRR measured variables (not in our list of common decisions)
that they could have used for exclusions. As an example of the
first case, in RRR4 (ego-depletion) participants with, 80% correct
on the main task were excluded. However, 80% is a largely arbitrary
number, and someonemight also consider values such as 75%, 85%,
90%, or many others, in addition to no exclusions. In cases like
these, when there are an infinite number of possible values to choose
from, we have elected only a maximum of six possible values that we
believe an applied researcher would reasonably pick.

As an example of where an RRR measured variables they could
have used for exclusions: RRR5 (commitment to romantic partner),
amongst other things, asked participants whether they lived within
60 miles of their partner (yes/no) but did not use this variable in
their analysis. However, another researcher might have found it rel-
evant to only consider participants (not) living close to each other
and use this variable for exclusions. Collecting data on a variable
with no clear purpose thus adds researcher DFs and increases the
risk of selective reporting, which we in this case used to create our
multiverses.

Applying Researcher DFs to the RRRs

After registering the coding protocol for “common” researcher
DFs, we coded the applicability of each common researcher DFs
to each RRR, which differed depending on, for example, how the
outcome variable was measured (binary vs. continuous, one item
vs. a scale) and how projects coded their data. Because some labs
within RRRs prescreened their participants for the original RRR
exclusion criteria, it was not always possible to apply all exclusion
criteria to all labs in an RRR. Nonetheless, we still included such
labs, prioritizing the inclusion of more labs over the possibility of
less multiverse variation. The coded common and unique researcher
DFs for all RRRs are available in Supplement B (in the online sup-
plemental material; http://osf.io/wj38n/).

We computed resulting effect sizes from all possible combina-
tions of decisions for each lab in an RRR (http://osf.io/zhdrx/).
Incompatible decision combinations were not applied. For example,
if we wished to drop two items from a scale (Table 2; S1c) but
required at least three items in the scale for principal component
analysis (Table 2; S2c), this decision combination was inapplicable
to scales with fewer than 5 items. We standardized mean differ-
ences (Cohen’s d, Borenstein, 2009, p. 226) and computed log
odds ratios for RRR1 and RRR2. Effect sizes were originally ana-
lyzed unstandardized in all RRRs except for RRR4, and if certain
researcher DF lowers the within-sample variance, as is highly
likely, then standardized effect sizes will appear larger. However,
because certain of our researcher DFs change the dependent vari-
able, and we wanted to draw conclusions across RRRs, it was nec-
essary to standardize effect sizes. As most meta-analyses use
standardized effect sizes and we are interested here in the biasingE
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effects of selective reporting on typical unregistered meta-analyses,
we do not consider standardization of effect sizes a major concern
for our analysis.
To prevent including lab multiverses with an unrealistically small

number of participants, we only included lab multiverses with at
least 24 participants per experimental group, the median sample
size in psychology (Bakker et al., 2012), in our primary analyses.
Three labs in RRR2 (L09, L17, and L26) and one lab in RRR8
(L24) had smaller sample sizes than required in all conditions and
were excluded from these analyses. We present the results of our
analyses also without this sample size restriction in Supplement D
in the online supplemental material.

Analysis

A consequence of assuming that the alternative decisions in the
multiverse are equally reasonable is that under the null hypothesis
that no researcher DF has a systematic effect (i.e., is an actual mod-
erator of the effect) we can consider the distribution of effect sizes in
the multiverse as random variability around a true score. We refer to
the variability underlying a given set of researcher DFs as the UMV
and define it as the standard deviation (SD) in effect size estimates
that are in the multiverse of the same study. A different set of
researcher DFs will reveal different UMVs. Other researchers have
focused on the distribution of p-values (Simonsohn et al., 2020;
Steegen et al., 2016) or on the range of effect sizes in the multiverse
(e.g., Patel et al., 2015), but we consider it more useful to treat mul-
tiverse variability in terms of the standard deviation of effect size
estimates, in line with how sampling error is defined. The UMV
should be seen as a descriptive tool that highlights some degree of
variability that might have a relation with bias due to selective
reporting over and beyond sampling error, rather than a well-defined
statistic.
To demonstrate the effects of researcher DFs on research output,

we (a) examined the variance in effect size estimates at the lab level
(lab multiverses) and (b) compared meta-analytic average effect size
estimates based on how lab outcomes were selected from their mul-
tiverses. To examine the variance in effect size estimates at the lab
level, we created funnel plots, computed UMV, and standard devia-
tions in effect size resulting from variation across the options within
a single researcher DF. For the funnel plots, we plotted all effect size
estimates at the lab level using either the standard error (for log odds
ratios; RRR1/RRR2) or sample size as the y-axis (for standardized
mean difference effect sizes; RRR3–RRR10). We used total sample
size (N ) on the y-axis for all standardized mean difference (SMD)
effect types since most of our coded researcher DFs affected sample
size.
To examine how large the effects of applying a single researcher

DF can be and the relative impact of our different researcher DFs, we
computed the standard deviation in a lab’s estimated effect size
across the options associated with each decision. For each researcher
DF, we computed the standard deviation in effect size when all other
researcher DFs were set to their default value (corresponding to
option “a” for each researcher DF, see Table 2 and Supplement B
in the online supplemental material). In addition to examining stan-
dard deviations for labs within RRRs, we also disaggregated these
lab estimates across RRRs and then aggregated them across common
and unique researcher DF categories. In doing so, we treated all
unique researcher DFs as one category.

Due to computational limitations, and because it is often the case
that some researcher DF must be applied before another (e.g., outli-
ers cannot be removed before the composite score has been com-
puted), we only applied the researcher DFs in a single fixed order.
That is, if we have three researcher DFs (1, 2, and 3) then we always
applied them in the order 1, 2, and 3 regardless of the chosen option,
rather than also varying the order (e.g., 2, 1, and 3). This fixed order
may affect results when removing items with the lowest item-rest
correlation from a scale or excluding participants based on outlier
criteria, although we see no reason to expect a systematic interaction
between these two and any other researcher DFs. The fixed order
also makes it impossible to compute the impact of a single researcher
DF across all possible researcher DF combinations, although it
remains possible to compute its impact when not applying any
other researcher DFs (see previous paragraph).

When comparing meta-analytic average estimates, we compared
(a) the original (preregistered) RRR estimates, with (b) an estimate
of the distribution of all possible meta-analytic combinations, (c)
randomly selected lab effect sizes, and (d) lab effect sizes selected
by one of four biased selection mechanisms (see below). We ran
all meta-analyses as random-effects models with the restricted max-
imum likelihood estimator for estimating the between-study variance
using the R-package “metafor” (Viechtbauer, 2010).

The huge number of possible effect size combinations across labs
for each RRR, the smallest consisting of 697× 1033 possible meta-
analyses, made it impossible to compute the full distributions of pos-
sible meta-analytic outcomes. Instead, we drew large random sam-
ples to approximate the distributions. For each RRR (or outcome
variable when an RRR contained multiple primary outcomes), we
proceeded as follows: we drew one random effect size from all pos-
sible effect sizes from Lab 1, one random effect size from all possi-
ble effect sizes from Lab 2, one from Lab 3, one from Lab 4, and so
on until we had drawn one effect size from all labs in an RRR. The
drawn effect sizes across labs were then combined using a meta-
analysis. We repeated this procedure, sampling with replacement
from each lab’s multiverse of effect sizes, until we had sampled
100,000 effect sizes from each lab, and consequently computed
100,000 meta-analyses for each RRR. These samples of meta-
analyses constituted our approximation of the distribution of possi-
ble meta-analyses for each RRR (or outcome variable when an RRR
contained multiple primary outcomes). The means of these distribu-
tions (and the means of the estimated lower/upper 95% confidence
intervals [CIs]) constituted our random sample of estimates.

When selectively reporting results, researchers may exhibit differ-
ent behavior. We included four types of biased selection mecha-
nisms (Table 3: “Most significant,” “Below α,” “Random
significant,” and “Bounded significant”) with different motivations.
All selection mechanisms focused on statistical significance, and we
used a two-tailed test with α= .05 for hypothesis testing. First, we
selected the effect size with the lowest p-value in each lab. This
allowed us to examine the most extreme selection of results possible
due to p-hacking (“most significant”). We included this scenario as a
worst-case scenario. Second, selective reporting may sometimes
result in a “bump” just below p= .05 when aggregating p-values
across selectively reported studies (“below α”). This is most likely
in the case of incremental p-hacking approaches such as optional
stopping (e.g., Hartgerink, 2017). To compare what a meta-analysis
of such data might look like, in the “below α” condition, we selected,
for each lab in an RRR, the outcomewith a p-value closest below .05
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(or, if there were no p-values below .05, the lowest value). These two
approaches (“most significant” and “below α”) attempted to select a
single result from the multiverse, but it may be that several effect
sizes have equivalent p-values due to being based on exactly the
same sample. If so, we picked the effect size with the fewest
researcher DFs deviating from their default option a.
Third, we represent a p-hacker who is satisfied with any signifi-

cant effect size they encounter (in the expected direction), by picking
a random effect size out of those that were statistically significant
(“random significant”). If no effect sizes were significant, the effect
size with the lowest p-value was picked. Fourth and finally, when a
p-hacking researcher tries multiple analyses, they might choose to
report the analysis that resulted in the smallest p-value. However,
selecting the result with the smallest p-value across the full multi-
verse suggests that the p-hacker systematically explored the full mul-
tiverse to find the strongest possible effect, whereas reality probably
consists of a more ad hoc and limited search. Hence, we represent a
“bounded” search by (a) randomly drawing 100 possible outcomes
and (b) out of these 100 outcomes selecting the onewith the smallest
p-value.
With all our biased selection mechanisms (i.e., excluding the ran-

dom draw and original meta-analytic results, see Table 3), we
applied a “hypothesized direction filter.” That is, when selecting
an effect size at the lab level, we excluded all effect sizes that
were in the opposite direction of the originally predicted effect
(http://osf.io/r2dum). If there were no effect sizes in the predicted
direction, we excluded all significant effect sizes in the “wrong”
direction and selected outcomes from the remainder. We added
this filter because we believe researchers who apply selective report-
ing, in reality, are unlikely to be agnostic about the direction of their
effect, and our focus in this study is on selective reporting, not
Hypothesizing After Results are Known (HARKing, Kerr, 1998)
Publication bias, the complete suppression of a study being pub-

lished, and selective reporting (selection of reported results amongst
multiple possibilities) are closely related, and it is intuitively appeal-
ing to believe correcting for publication bias may be sufficient for
generally removing biases in the meta-analytic data (e.g., Kvarven
et al., 2019). We applied three publication bias correction methods
to examine their applicability to selective reporting in the absence

of publication bias. These were the “precision-effect test and preci-
sion-effect estimate with standard errors” (PET-PEESE; Stanley &
Doucouliagos, 2014), p-uniform* (van Aert & van Assen, 2020),
and Vevea and Hedge’s 3-Parameter Selection Model (3PSM;
Vevea & Hedges, 1995) implemented using the R-package
“weightr” (Coburn and Vevea, 2019).

Results

After excluding conditions that resulted in fewer than 24 partici-
pants per experimental group, 8 out of 14 RRR multiverses
decreased in size, as can be seen in Table 4. The absolute decrease
was largest for the largest multiverses (RRR05 and RRR07), with
RRR07 showing the largest absolute decrease and decreasing from
2,621,440 to 525,680 (an 80% decrease) potential outcomes.
However, the proportionally largest decrease was seen in RRR08,
which decreased from 115,200 to 19,200 (83% decrease) potential
outcomes. More importantly, as evidenced by the median number
of multiverses per lab, even in the RRRs with relatively few
researcher DFs, the researcher DFs jointly created thousands of alter-
native outcomes per lab. Nonetheless, many labs found zero signifi-
cant (at p= .05) effect sizes within their multiverses. Across all
studies (counting labs with multiple dependent variables (DVs) as
separate studies), 205 out of 294 (70%) encountered no significant
effect sizes in the hypothesized direction in their multiverses and
134 out of 294 (46%) found no significant effect sizes in any direc-
tion. The size of the multiverse was strongly correlated with the
number of studies that encountered significant effect sizes in the
hypothesized direction within their multiverses (Pearson’s r=
0.63, 95% CI [0.14, 0.87]).

Lab Multiverses

There can be substantial variation in effect sizes within labs due to
researcher DFs. Figure 2 shows effect sizes across the multiverses for
16 out of 24 labs in RRR04. Similar plots for all RRRs (or outcome
variables when an RRR contains multiple), including for all labs in
RRR04, can be found in Supplement E (in the online supplemental
material; http://osf.io/2htc6/).

Table 3
Summary of Outcome Selection Mechanisms

Selection mechanism Hypothesized direction filter Single outcome Description

Pre-registered No Yes
The original RRR meta-analytic average effect size with preregistered

decisions.

Random draw No No
The average point estimate and upper/lower 95% CI from 105 meta-analyses

randomly sampled from all possible meta-analyses.
Most significant Yes Yes Select the effect size in the multiverse with the smallest p-value.

Below α Yes Yes
Select the effect size in the multiverse with a p-value closest below p= 0.05.

If no p value is below the cutoff, pick the smallest.

Random significant Yes No
Identical to the random draw, but with effect sizes first limited to only

significant effect sizes.

Bounded significant Yes No

We drew 100 effect sizes from a lab’s multiverse, and selected the effect size
with the lowest p-value. This was repeated 105 times, resulting in 105

values per lab. These were then meta-analyzed and summarized as above
for the random draw.

Note. Description of different implemented selection mechanisms for selecting effect sizes at the lab level to meta-analyze. “Hypothesized Direction Filter”=
exclude effect sizes not in the predicted direction (yes/no); “Single outcome”= selection mechanism resulting in a single meta-analytic result (yes/no). Code to
reproduce the table is available at: http://osf.io/jehpy/.
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Overall in Figure 2, statistically significant observations (indi-
cated by observations falling outside the funnel lines) were rare
(median= 0.87%, interquartile range= 0%–3%). There were labs
with a higher proportion of significant outcomes (L14= 25%,
L04= 24%, L16= 17%), but in only one case were these in the
hypothesized direction (L04). The median UMV across labs in
Figure 2 was 0.1 SD, interquartile range (IQR)= 0.09–0.15. Effect
sizes could change by as much as d= 0.97 (L08). Pearson’s corre-
lation based on the 16 labs in Figure 2 between UMV and sample
size before applying researcher DFs was r=−0.51.
Across RRRs, the median lab UMV was 0.11 SD (IQR= .08–

0.14) for SMD effect sizes and 0.07 SD (IQR= 0.04–0.12) for
log odds ratio (OR), but researcher DFs could change effect sizes
in a lab by as much as d= 1.27 (RRR05 Neglect, L10) and log
OR= 1.31 (RRR01, L05). We expected the lab UMV, just as the
standard error, to be generally negatively correlated with the (origi-
nal) sample size. However, the median correlation between lab
UMV and sample size (before applying researcher DFs) within
RRRs was r= 0.09 (IQR=− 0.11 to 0.37). Hence, a large sample
size does not ensure a small UMV.
There can be substantial variation between labs also in which

researcher DF leads to variability in effect sizes (Figure 3). Figure 3
shows the standard deviation (SD) in effect size within the labs
from Figure 2 when applying a single researcher DF. Despite identical
study designs across labs and the same researcher DF being applied,
no two bar plots look identical and labs differ in which researcher DF
creates the most variation. For example, in Lab 7 (L07) excluding par-
ticipants based on different accuracy criteria for the main DV (U1)
resulted in the largest SD, whereas in Lab 6 (L06) using different

criteria for defining and excluding outliers (E6) led to the most varia-
tion in estimated effect size. Figures 2 & 3 together demonstrate that
multiverse analyses should not necessarily be expected to be replica-
ble in new data, because across labs the same researcher DFs can yield
different degrees of effect size variance (Figure 2) and this variance
can be primarily caused by different researcher DFs (Figure 3).
Note that the effect sizes in Figure 2 arose from all possible combina-
tions of the researcher DFs and not by applying them separately as in
Figure 3 (see “Analysis” in the Methods section), which explains the
larger range of effect sizes in Figure 2.

Some researcher DFs generally contribute more to the UMV than
others and thus constitute larger risk factors when considering selec-
tive reporting. Figure 4 shows the SDs in estimated effect sizes in
labs resulting from applying each researcher DF individually, disag-
gregated across RRRs, and then aggregated into their respective cat-
egories. How the composite score was computed from a scale with
multiple items had the largest median effect amongst SMD effects
(d= 0.04, lower panel top row, Figure 4), and in Supplement F in
the online supplemental material, we demonstrate how removing
(the source of variation in) this researcher DF (S2.c; computing
the composite score based on principal component analysis
[PCA]) decreases overall UMV, showing how the removal of
sources of variation effectively decreases the risk of selective report-
ing. Figure 4 also shows that excluding participants on age had a rel-
atively strong effect (median upper panel, log OR= 0.05, lower
panel, d= 0.03. In Supplement G in the online supplemental mate-
rial, we show that this effect is driven by the large degree of exclu-
sions across the options of the age researcher DF (E3), by comparing
it with a version with more broad inclusion criteria. That is, when

Table 4
Multiverse Sizes Before and After Filtering Out Outcomes with ,24 Participants Per Experimental Group

Meta-analysis
Common

DFs
Unique
DFs N [lq, uq]

Multiverse size before
exclusion

Multiverse size after
exclusion

Labs after
exclusion

Labs with
any sig.

Labs with
hyp. sig.

RRR01 5 5
116 [107,

125] 3,840 3,840 (100%) 31 4 (13%) 4 (13%)
RRR02 5 5 88 [84, 98] 3,840 3,840 (100%) 23 10 (43%) 10 (43%)
RRR03

Attribution 6 2 84 [82, 84] 3,840 3,816 (99%) 10 5 (50%) 3 (30%)
RRR03 Intention 6 2 84 [82, 84] 3,840 3,840 (100%) 10 3 (30%) 1 (10%)
RRR03 Process 7 2 84 [83, 85] 7,680 7,680 (100%) 10 2 (20%) 0 (0%)

RRR04 5 3 76 [68, 90] 23,040 20,160 (88%) 24 14 (58%) 7 (29%)
RRR05 Exit 6 9 82 [70, 94] 2,488,320 1,503,904 (60%) 16 12 (75%) 7 (44%)

RRR05 Neglect 6 9 82 [70, 94] 2,488,320 1,540,176 (62%) 16 15 (94%) 10 (62%)

RRR06 7 5
96 [77,
111] 122,880 61,440 (50%) 17 9 (53%) 5 (29%)

RRR07 3 10 74 [63, 95] 2,621,440 525,680 (20%) 21 18 (86%) 10 (48%)

RRR08 8 4
79 [65,
102] 115,200 19,204 (17%) 39 31 (79%) 16 (41%)

RRR09 Behavior 8 4
169 [114,

218] 46,080 46,080 (100%) 26 16 (62%) 5 (19%)

RRR09 Hostility 8 4
168 [114,

218] 46,080 46,080 (100%) 26 13 (50%) 10 (38%)

RRR10 5 5
90 [77,
107] 11,520 3,808 (33%) 25 8 (32%) 1 (4%)

Note. Meta-analytic distributions and estimates after excluding analytic choices that resulted in ,24 participants per experimental group at the study level.
Three labs in RRR2 (L09, L17, and L26) and one lab in RRR8 (L24) always had fewer than 24 participants and were excluded. “Labs with any sig.”=
number of labs (%) with any significant (at p= .05) effect size in their multiverse; “Labs with hyp. sig.”= number of labs (%) with any significant (at
p= .05) effect size in the hypothesized direction in their multiverse; DFs= degrees of freedom; “Common DFs”=DF from a common list of potential
DFs; “Unique DFs”= study-unique DFs; M=median study multiverse size; N [lower quartile, upper quartile]=median study sample sizes across their
multiverses. Code to reproduce table available at: http://osf.io/jehpy/.
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researcher DFs result in datasets with less overlap (i.e., that are less
correlated), the UMV increases. Hence, we can predict that certain
researcher DFs are of more serious concern under selective report-
ing, although the observed effect in any given sample will depend
on random fluctuations in the sample.
Unique researcher DFs only had the fifth highest median SD (d=

0.02) for SMD effects (lower panel Figure 4), likely due to many
unique researcher DFs having little effect. However, they also
show the largest range in possible outcomes. For example, within
RRR07, choosing to exclude participants based on whether they

complied with the set time limit or not (U2) resulted in the largest
median effect size SD of all researcher DFs for that RRR (SD=
0.21, see also Supplement E in the online supplemental material).
This same researcher DF in RRR07 resulted in 4 out of the 5 highest
effect size SDs in Figure 4. The remaining observation (third from
the right) belonging to RRR09 Hostility, Lab 1, and resulted from
choosing whether to exclude participants based on their study
major. Unique researcher DFs show less impact in the log odds
ratio effects (upper panel Figure 4), which may be due to fewer
labs/researcher DFs, and most unique researcher DFs in RRR01/

Figure 2
Arbitrary Decisions in Research Cause Underlying Multiverse Variability (UMV) in Effect
Size Estimates

Note. Funnel plots showing the effect sizes based on the multiverses in 16 labs for RRR04, after
removing cases where n, 24 in either experimental group. Values in the upper left corner of each
facet are UMV for each lab. For legibility, 16 out of 24 RRR04 labs are shown; the figure including
all labs is available in Supplement E (in the online supplemental material; http://osf.io/2htc6/). L01–
L16 are lab indicators. Solid lines are funnel lines based on the t distribution. Effect sizes falling outside
the funnel lines are statistically significant at α= .05 using a two-tailed test. Dotted lines indicate zero
effect size. Colors in the funnel plots indicate the frequency of occurrence of an effect size. Brighter col-
ors indicate that an effect size occurredmore often.N= total sample size. Code to reproduce figure avail-
able at: http://osf.io/thuyk/. See the online article for the color version of this figure.
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02 only being applicable to a few of the constituent labs (see
Supplement B in the online supplemental material). For example,
only three labs included a comprehension check (U1), and only
three (different) labs coded “familiarity with effect” (U2).

Meta-Analytic Multiverses

Variability in effect sizes within labs due to researcher DFs
implies that many different meta-analytic outcomes are possible.
How and which effect sizes were selected in labs will change meta-
analytic results. Figure 5 shows multiple meta-analytic average

effect size estimates for all outcome variables, depending on how
effect sizes were selected in the constituent labs. The grey density
curves indicate the empirical distributions of meta-analytic point
estimates across multiverses for each outcome. UMV in point esti-
mates ranged from 0.02 SD (RRR09 Hostility) to 0.04 SD
(RRR03 Intention) for standardized mean differences and for log
odds ratios rounded to 0.02 SD for both RRR01 and RRR02.
When outcomes were selected through a preregistered decision pro-
cedure (purple squares, Figure 5), meta-analytic mean estimates
were generally close to the mean of the estimated multiverse distri-
butions and matched the random draw estimates well (pink crosses,

Figure 3
The Same Arbitrary Decisions have a Different Effect in Comparable Studies

Note. Standard deviation (SD) in effect size estimates in 16 labs in RRR04 resulting from applying different
researcher DFs individually, after removing cases where n, 24 in either experimental group. For legibility, 16
out of 24 RRR04 labs are shown; the figure including all labs is available in Supplement E (in the online
supplemental material; http://osf.io/2htc6/). L01–L16 are lab indicators. Indicators in parentheses on the
Y-axis (E2, E3, E4_1, E4_2, E6, U1, U2, U3) refer to DF codes for each coded DF (Supplement B in the online
supplemental material: http://osf.io/wj38n/). The Y-axis is ordered by median SD across labs. Code to reproduce
figure is available at: http://osf.io/thuyk/.
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Figure 5). The point estimate of the random draws is by definition
identical to the mean of the multiverse distribution, whereas the
lower/upper bounds are the average 95% CIs of these draws.
When researcher DFs were combined with a biased selection of

effect sizes in labs ( p-hacking), meta-analytic mean estimates
were also more extreme in the predicted direction (Figure 5). As
expected, selecting the most significant effect size in each lab (yel-
low stars) and then meta-analyzing resulted in the most extreme
mean estimates. Other p-hacking approaches (in Figure 5: turquoise
triangles, red circles, and green squares) resulted in similar estimates.
This similarity in outcome between biased selection mechanisms
can be mostly attributed to the low number of significant results
across labs and our biased selection procedures resulting in the
same results if there were no significant outcomes in a lab (205
out of 294 studies across all RRRs, counting labs with multiple
DVs as separate studies).

There is a tendency for projects with larger multiverses (e.g.
RRR05, RRR06, and RRR07, as can be seen in Figure 5) to have
more extreme estimated effect sizes when p-hacked. The difference
between the average random draw (pink crosses) and the estimates
based on the most significant effect sizes (yellow stars) ranged
from 0.1 to 0.48 for SMDs and was about 0.1 for log OR. The cor-
relation between effect size inflation and multiverse size was r=
0.77 for SMD effect sizes. The most extreme case corresponded to
RRR07 (Figure 5), where the difference in meta-analytic average
effect size estimate between the average random draw (pink cross,
d=−0.03, 95% CI [−0.13, 0.07]) and the estimate based on the
most significant effect sizes (yellow star, d= 0.45, 95% CI [0.34,
0.56]) was an increase of almost 0.5SD in the predicted direction.
Applying publication bias correction methods (PET-PEESE,
3PSM and p-uniform*) did not lead to improvements in estimated
average effect size estimates (Supplement H in the online supple-
mental material), in line with other research that has shown publica-
tion bias correction methods as unlikely to be useful in correcting for
selective reporting (Carter et al., 2019; van Aert et al., 2016).

Discussion

In this article, we performed multiverse analysis across multiple
direct replication studies, using empirical data from 10 RRRs.
Even though the preregistrations used in the actual RRRs limited
the effect of researcher DFs in the original analyses, the open data
from these extensive studies enabled us to use a counter-factual
design to see what biases could have emerged if the studies (and
ensuing meta-analyses that included them) had not been preregis-
tered and could have been subjected to selective reporting based
on the significance of the outcomes in the primary studies
( p-hacking). We identified researcher DFs based on common deci-
sions in the associated literature for each outcome variable, com-
puted all possible outcomes across direct replications, and
examined the variance in these so-called multiverses. We then com-
bined effect sizes from the multiverses of each direct replication in
meta-analysis and examined the consequences of different mecha-
nisms for selecting effect sizes for inclusion. Our analyses highlight
that multiverse analyses typically yielded thousands of different out-
comes within single studies, that multiverse patterns of variation dif-
fered across labs using the same protocol, and that selective reporting
of outcomes in primary studies could bias meta-analytic results,
despite their status as a “gold-standard” of evidence. We also
found that the original sample size correlates at most weakly with
the potential for selective reporting (as measured by UMV), suggest-
ing a larger sample size does not protect against selective reporting.
Yet interestingly, 205 out of the 294 studies (counting labs with mul-
tiple DVs as separate studies) did not contain any significant (mea-
sured as p≤ .05) results in their multiverses, suggesting p-hacking
null results into significance may be more difficult than expected
considering the sheer number of potential outcomes per study. We
discuss these results and the limitations of our own study in the
remainder of the discussion.

Defining the Multiverse

Creating a multiverse is an inherently subjective endeavor given
that researchers might disagree about which decisions are (approxi-
mately) equally reasonable (Steegen et al., 2016). For example,

Figure 4
Some Arbitrary Decisions Tend to Create More Effect Size
Variability Than Others

Note. SD= standard deviation; DF= degree of freedom; RRR=
Registered Replication Report. SD in effect size estimates in labs resulting
from different researcher DFs applied individually. The top panel shows
results for RRRs with an outcome measured as log odds ratio, and the
lower panel for RRRs measured as standardized mean differences. The
Y-axis is ordered by median effect size SD. Data are after removing cases
where n, 24 in either experimental group, disaggregating DFs across
RRRs, and aggregating into categories. Indicators in parentheses on the
Y-axis (S1, S2, E1, E2, E3, E4, E5, E6) refer to DF codes in Table 2 or
(U) to DFs coded as unique for each research project. The Unique (U) cat-
egory was aggregated across all distinct unique DF. Code to reproduce fig-
ure available at: http://osf.io/thuyk/.
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although we created our researcher DFs based on common practice
in the associated literature, there are methodological arguments to
carefully consider the meaning and impact of outliers, or use outlier
robust statistics (e.g., Rousseeuw & Hubert, 2011) rather than
excluding them based on rules of thumb. In the same vein, it may
often be preferable to perform multiple or maximum likelihood
imputation (e.g., Jakobsen et al., 2017) of missing data points rather
than excluding them. For this reason, we have endeavored to struc-
ture our data such that a disagreeing reader familiar with R can
explore the consequence of only including those of our researcher

DFs they consider reasonable, as demonstrated in Supplement F in
the online supplemental material.

Del Giudice & Gangestad (2021) critically discussed what it
means for a researcher DF to be “reasonable.” They rightly argued
why some of the researcher DFs as used in previously published
multiverse analyses might not be equivalent on prior grounds or
might not show equivalence for reasons yet unknown. We admit
that our researcher DF S1, which deletes items in measurement
scales based on the lowest item-rest correlations, could perhaps be
nonequivalent on psychometric grounds. On the one hand, deletion

Figure 5
Selective Reporting in Labs Results in Overestimates in Meta-Analysis

Note. Meta-analytic distributions and estimates after excluding analytic decisions that resulted in n,
24 participants per experimental group at the study level. Selection mechanism= how effect sizes were
selected at the study level, either by p-hacking (“Most significant,” “Bounded significant,” “Random
significant,” “Below α,”), preregistered decisions (“preregistered”), or random selection (“Random
draw”). “Random draw” and “Random significant” are averages across 105 draws from the meta-analytic
multiverse, whereas other selection mechanisms are a single outcome. M=median study multiverse
size, N [lower quartile, upper quartile]=median study sample sizes across their multiverses, *= effect
size sign changed (RRR01, RRR02, RRR05 Exit, RRR05 Neglect, RRR10) so that hypothesized effect
size (and p-hacking direction) was positive for all meta-analyses. Code to reproduce the figure is avail-
able at http://osf.io/thuyk/. See the online article for the color version of this figure.
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of the item with the lowest item-rest correlation could heighten the
reliability of the scale, and hence increase genuine effects, if the
deleted item were poorly performing. On the other hand, deletion
would have little effect on the reliability and hence on actual effects
if the item performed as well as other items in the scale. Hence, if
there were some item(s) consistently performing poorly (in the psy-
chometric sense) across labs in an RRR, this researcher DF could
increase true effects and be of principled nonequivalence, at least
for that RRR. Similarly, the researcher DF related to composite
scores (S2) could create genuinely different effects under some con-
ditions. In Supplement F in the online supplemental material, we
repeated our analyses without the PCA option of this researcher
DF, which showed less variation in outcomes, as expected if indeed
the way composite scores are computed makes a difference.
However, like all our DFs, we included this researcher’s DF because
we feel that it might be used in practice in unregistered studies.
One could also argue that multiverses with varying sample sizes

are nonequivalent in the statistical sense of sampling variability
(Del Giudice & Gangestad, 2021). Smaller sample sizes generally
result in less statistical power to detect effects and hence larger
p-values, which makes it more difficult to directly compare p-values
across multiverses differing in sample size. We do not consider the
issue of power to be a major concern for our study, as many of our
analyses focus on effect size estimates and variability, and because
most RRRs in our sample (apart from RRR1/RRR2, based on our
reading of the original articles) appear to study null effects. In addi-
tion, although researcher DFs that lead to smaller sample sizes would
increase the variability of outcomes regardless of true effect size, the
strong sample overlap between multiverse samples in a given study
creates covariation between multiverses that diminishes total sam-
pling variability. In the end, which multiverses are considered rea-
sonable will depend not only on individual researchers’ beliefs,
but also on which decisions their research community considers
acceptable in terms of theoretical, methodological, and empirical
standards (Del Giudice & Gangestad, 2021).
Notwithstanding selective reporting, researchers should recognize

that researcher DFs, or decisions treated as if they were researcher
DFs, by themselves create another layer of uncertainty in study esti-
mates; we found a median UMV of 0.1SD in our SMD data,
although this will differ depending on the research field and which
DFs researchers find reasonable. As such, we advise researchers
doing hypothesis-testing research to (a) preregister the (single) anal-
ysis they believe is optimal for testing their hypothesis, motivate
why this is the case and report uncertainty estimates (e.g., confidence
or credibility interval), and (b) include a multiverse analysis as a sen-
sitivity analysis (following the advice of Del Giudice & Gangestad,
2021) and report their UMV. Although some may argue that prereg-
istering a preferred analysis is contradictory if the options in the mul-
tiverse analysis are considered equivalent, pragmatically, we believe
that most researcher DFs will not be exactly equivalent and that most
researchers will have a preferred analysis that it would be useful to
accompany with a sensitivity analysis. The goal of these recommen-
dations is for the research process to be transparent so that results act
as credible evidence despite the potential effect of researcher DFs on
outcomes.
More generally, multilab collaboration, or regular, projects may

wish to consider incorporating the multiverse perspective already
in the design of their studies, identifying which of their decisions
are largely arbitrary and collecting data on alternatives.

Preregistration of research is likely to be helpful from this perspec-
tive, in addition to its transparency-enhancing properties, which
are helpful when evaluating a study for selective reporting.

Exploring the Multiverse

The unique design of our project enabled us to examine the effect
of researcher DFs (i.e., perform multiverse analysis) across multiple
direct replication studies. We observed that (a) the same researcher
DFs applied to direct replication studies resulted in widely varying
distributions of effect sizes and (b) which researcher DF caused
the variability within a study differed between direct replications.
That is, the effect of researcher DFs both within and across direct
replication studies appeared unsystematic. These results demonstrate
that results of multiverse analysis in any single study, like other
exploratory analyses, are not necessarily replicable in new data.
We believe this point is underappreciated among many multiverse
analysts. In addition, some researchers may be tempted to directly
interpret the existence of researcher DFs and resulting UMV as evi-
dence of “hidden moderators” (Van Bavel et al., 2016); currently
unknown moderators that explain why effect sizes differ between
studies. However, the existence of the multiverse does not by itself
imply moderators as substantial variability and apparent moderating
effects may be found through sampling variance alone.

That the effect of researcher DFs both within and across direct rep-
lication studies was generally nonsystematic also corroborates previ-
ous findings of ours (Olsson-Collentine et al., 2020) that differences
in study results in social and cognitive psychology show little to no
between-study heterogeneity, and supports the conclusion that the
best explanation for differences between effect sizes in (direct) rep-
lication studies is typically the joint effect of sampling error and
researcher DFs, possibly in combination with selective reporting.

When we have a substantive researcher DF that we suspect of
being a moderator, it may be most useful to examine it from an
empirical meta-analytic perspective. If we have a researcher DF at
the study level (e.g., measurement scale) with sufficient variation
between primary studies, it is possible to examine it as a moderator
using meta-regression (e.g., Houwelingen et al., 2002. However,
individual-level researcher DFs (e.g., age) are preferably examined
in individual participant data (IPD) meta-analysis to avoid the eco-
logical fallacy (e.g., Stewart & Tierney, 2002. In the case of multiple
dependent variables, which might also be a researcher’s DF, poten-
tial systematic differences could be examined in a multivariate meta-
analysis (e.g., Jackson et al., 2011). As with multiverse analysis,
such moderator analyses should primarily be considered exploratory
and hypothesis-generating.

Researcher DFs in primary studies also add a layer of uncertainty
to meta-analysis when those studies are meta-analyzed. Researcher
DFs in primary studies can change both point estimates and the asso-
ciated standard errors and can do so across multiple studies.
Consequently, in a meta-analysis, they can influence not only the
meta-analytic point estimate but also the between-study variance.
That said, the standard deviations in point estimates over the meta-
analytic multiverses in our meta-analyses were quite small, with
an UMVof at most 0.04 SD amongst SMD effects. This is unsurpris-
ing: when researchers’ decisions are truly random and in the absence
of selective reporting and publication bias, researcher DFs in pri-
mary studies can be expected to cancel out across a sufficiently
large number of studies. As such, researcher DFs in primary studies
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(and resulting multiverses) are not a major concern for meta-analysts
in the absence of selective reporting. Unfortunately, the availability
of such ideal data is not expected in most meta-analyses. Even with
ideal data, in a meta-analysis with a small number of primary studies,
as is common in medicine (Davey et al., 2011), researcher DFs are
less likely to balance each other out and meta-analytic UMV may
be a larger concern.
Encouragingly, in our data, the meta-analytic point estimates

based on preregistered studies often fell close to the center of the
meta-analytic distributions. Preregistration may generally lead to
less effect size inflation (Schäfer & Schwarz, 2019) by decreasing
the risk of selective reporting through increased transparency
(although preregistrations are of varying quality or not always suit-
able, Bakker et al., 2020; Pham & Oh, 2021). However, the connec-
tion between multiverse analysis and preregistration may have been
enhanced by the nature of our data: large collaborative projects,
including researchers with adversary hypotheses, which may have
resulted in a “wisdom of the crowd” selection of decisions amongst
researchers DFs. Alternatively, if no decision within a multiverse has
a systematic effect, results from any preregistered set of decisions
from that multiverse would also be expected to coincide approxi-
mately with the mean of the multiverse distribution when analyzed
across samples. Regardless, to account for UMV preregistered multi-
lab collaborations (e.g., Moshontz et al., 2018) may offer a way for-
ward in the absence of more concrete theory (Fried, 2020), although
as we saw in our results even such data is not a guarantee for a point
estimate at the center of the meta-analytic multiverse distribution. It
is important to be aware that a preregistered set of decisions nonethe-
less only represents a single universe from the multiverse.
The extent of UMV in any given field depends on the multiverse

created, and our estimates in this study may only apply to our non-
random sample of social and cognitive psychology research. UMV
in other fields could be either larger or smaller, but is unlikely to
be nonexistent, and it may be worthwhile to study the UMV in dif-
ferent subfields to examine their susceptibility to selective reporting
given normative research behavior. Generally, the extent of bias
introduced by selective reporting will depend on the multiverse
size and the UMV, and researcher DFs that affect these two factors
to a larger extent will hence contribute more risk of bias to a study.

Selecting From the Multiverse

We do not mean to imply that exploration of researcher DFs is
problematic per se. We view it as important to study the robustness
of conclusions in the context of a sensitivity analysis, of which a
multiverse analysis can be seen as an extensive (systematic) variant.
Exploring factors that truly moderate an effect or association can be
valuable as long as the exploration is transparently reported and
employs rigorous statistical controls to guard against overfitting.
What is problematic is the selective or incomplete reporting from
the multiverse of statistical results. Hence, it is important to evaluate
studies for risk of selective reporting when using them to make deci-
sions (e.g., about setting up future research), or including them in
systematic reviews (Appelbaum et al., 2018; as recommended by
e.g., PRISMA andMARS:Moher et al., 2009). Both preregistrations
and multiverse analyses will facilitate evaluation of a study’s selec-
tive reporting risk by making research decisions more transparent,
and there are many selective reporting protocols available (e.g.,
Page et al., 2018) that may assist in the evaluation.

There is a risk that researchers exploit (intentionally or not)
researcher DFs to selectively report those results from the multiverse
that most strongly support their hypothesis. In extreme cases,
researcher DFs and p-hacking can provide evidence for any desired
conclusion; in one lab, the effect size estimate changed by as much
as d= 1.27. More realistically, we found a median UMV of 0.1 SD
amongst 294 studies (counting labs with multiple DVs as separate
studies). Nonetheless, a median UMV of 0.1 SD in a field still
implies that selective reporting can turn a statistically nonsignificant
effect into a significant effect.

For many studies in our data, this was not a concern. We found
that in our data and given our researcher DFs, about 70% of study
multiverses did not contain a single significant result (measured as
p, .05) in the hypothesized direction. As most RRRs that made
up our data had overall effect size estimates (based on preregistered
outcomes) not significantly different from zero, this coincides with
previous findings of ours that on average null results also tend to
have very little heterogeneity (Olsson-Collentine et al., 2020).
This suggests that it may be more difficult to p-hack null results
into significance than many expect. We caution that this observation
may no longer hold when applying other types of researcher DFs
than we were able to do (e.g., this may not apply when researcher
DF options are less correlated, as in the case of outcome switching),
and that 30% of labs did contain multiverses with a mix of signifi-
cant and nonsignificant effect size estimates.

Relatedly, we found a correlation not significantly different from
zero between sample size and potential for selective reporting (as
measured by UMV). This implies that sample size should not be
taken to be protective against selective reporting, as also corrobo-
rated by a simulation study by Stefan & Schnbrodt (2022). We do
note, however, that for genuine effects, larger sample sizes would
increase power thereby lowering the need to selectively report out-
comes based on the multiverse and hence less ensuing bias in esti-
mated effects (?).

Our counter-factual design allowed us to see what biases could
have emerged if the studies (and ensuing meta-analyses) had not
been preregistered and could have been subjected to selective report-
ing based on the significance of the outcomes in the primary studies,
as is the case for most meta-analyses. Our analyses demonstrate the
substantial bias in the hypothesized direction that may be incorpo-
rated into meta-analytic effect size estimates due to selective report-
ing in primary studies. The possible inflation of average effect size
will depend on the proportion of meta-analyzed studies at risk of
bias and the strength of this bias. Evidence from Kvarven et al.
(2019) based on social and cognitive psychology research suggests
meta-analyses may sometimes estimate effect sizes to be as much as
a third larger than in comparable multilab projects, although this also
includes publication bias. Larger or smaller differences may be more
typical in other fields.

For meta-analysts using retrospective data, minimizing the risk of
bias in their included data (i.e., by only including preregistered data
and evaluating it for selective reporting) may be the best option until
the practices of multiverse analysis or the sharing of raw data
become widespread. Our results corroborate recommendations
from meta-analysis reporting protocols such as PRISMA and
MARS (Appelbaum et al., 2018; Moher et al., 2009) to always eval-
uate primary studies for risk of bias (here, selective reporting), and
we advise meta-analysts to study differences in outcome between
studies identified as at high risk of selective reporting bias and
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those at low risk. In linewith previous research on the topic (Carter et
al., 2019; van Aert et al., 2016), our supplemental results show that
existing publication bias methods should not be relied on to correct
for p-hacking.
The large variance in the impact of researcher DFs across direct

replication studies demonstrates that the study-specific effect of a
researcher DF, and related bias induced by selective reporting, is dif-
ficult to predict and dependent on sampling error. Stefan &
Schnbrodt (2022), who simulated the effects of many different
p-hacking methods in single studies, reach a similar conclusion in
their simulations: “Apart from the aggressiveness of p-hacking itself,
our simulations showed that across all strategies, the severity of
p-hacking also depends on the environment in which p-hacking
takes place, for example, the correlation structure in the data”
(p. 46). Our results using the RRR data indeed show that the corre-
lations between multiverses create a variation that is generally
smaller than the sampling variation one would expect under inde-
pendent sampling.
That is not to say that we cannot draw some conclusions about the

expected (average) impact of p-hacking different researcher DFs.
The potential for effect size bias is larger when studies allow more
analyses to be run and when more variance is created by included
researcher DFs. Supplement G in the online supplemental material
demonstrates that more overlapping (sub)samples created using
alternative exclusions based on age created less subsequent UMV,
which is expected given that more overlap creates higher correlations
between alternative outcomes. As such, when considering effect size
bias, we should (typically) be more concerned about researcher DFs
in which the options are less correlated, although high false positive
rates are possible in either case (see discussion by Friese &
Frankenbach, 2020).
It may be insightful to do more complex modeling of selective

reporting from a multiverse perspective, including nonintentional
selective reporting, and we hope our data will also be useful to
other researchers interested in more complex modeling of research
bias. Our modeling of it in this study was relatively straightforward
and we only attempted to model the outcomes of intentional selec-
tive reporting ( p-hacking). Nonetheless, our biased selection meth-
ods applied to empirical RRR data are similar to those used in the
simulations of a recent compendium of p-hacking methods Stefan
& Schnbrodt (2022) and are on par with other recent simulation stud-
ies of p-hacking in a meta-analysis (Botella et al., 2021; Friese &
Frankenbach, 2020).
Contrary to these two simulation studies (Botella et al., 2021;

Friese & Frankenbach, 2020), we found that p-hacking with actual
data and using fairly generic researcher DFs could cause substantial
inflation of meta-analytic average effect sizes also when the average
effect appears to be null. Both Friese & Frankenbach (2020) and
Botella et al. (2021) run extensive simulation studies of the effect
of p-hacking across many conditions and Friese & Frankenbach
(2020) consider how it interacts with publication bias, something
we did not do. We believe the difference in results is due to the
choice in both of these simulation studies to p-hack results based
on the common assumption that p-hacking leads to a peak of
p-values below 0.05 (Hartgerink, 2017). In the case of Friese &
Frankenbach (2020), results were p-hacked to a distribution with a
mode of p = .049, and Botella et al. (2021), similarly p-hacked stud-
ies into the region .025, p≤ .05. We know from previous studies
that the type of p-hacking matters; incremental methods such as

optional stopping that result in a peak below p= .05 have little effect
on effect size inflation, whereas methods such as outcome reporting
bias have a large effect and do not result in a peak (Francis, 2012;
Kirkham et al., 2010; Stefan & Schnbrodt, 2022). As such, differ-
ences between our results and these simulation studies are likely
explained by the incremental p-hacking methods used in these sim-
ulation studies as compared to our methods of selecting the lowest
p-values or randomly selecting one of the significant outcomes.

Unfortunately, there exists little evidence on which method of
selection researchers use in practice. Incremental p-hacking can
still lead to concerning numbers of false positive results, as dis-
cussed by both Friese & Frankenbach (2020) and Botella et al.
(2021), and it is important to discuss that not all types of p-hacking
lead to concerning levels of effect size inflation. Nonetheless, our
results show that suggesting selective reporting is not a concern
for meta-analytic results is inaccurate when considering nonincre-
mental p-hacking based on researcher DFs that we consider to be
widely applicable across a range of empirical studies.

Under some assumptions related to the correlational structure of
the overlapping data across multiverses, we can be confident that
the UMV and hence the potential bias due to selective reporting in
a study is less than the reported standard error. The effect sizes in
a multiverse are dependent because they are based on the same sam-
ple. Due to this dependence, the UMVwill normally be smaller than
the standard error in a study for a fixed sample size and statistical
model, since the variability based on independent data is larger
than that of dependent data. In other words, if we know that the stat-
istical model and sample size have not changed in a study and that
there is no publication bias, then we can be confident that the
UMV in that study is less than its standard error estimate.

Consequently, at a fixed standard error, the possible bias is always
larger with publication bias than with selective reporting due to the
dependency between effect sizes in the multiverse. This suggests
that while p-hacking is likely more common than publication bias
in the literature, being more resource efficient, the distortion in the
literature may be larger from publication bias when it does occur.
Finally, we note that the correlation between effect sizes within a
multiverse also means that the independent sample false positive
rate (typically .05) should be expected to be lower when sampling
effect sizes within a dataset. We can observe this in our funnel
plots, where substantially fewer than 1 out of the 20 effect sizes
are significant for most labs (i.e., fall outside the funnel lines).

Limitations and Constraints on Generality

Although we have attempted to accompany all our claims and
findings in this article together with their caveats, we wish to
make explicit the limits of generalizability of claims based on the
data and design of our study. The included effects are neither a rep-
resentative nor a random sample of effects from psychology. We
expect our conclusions to be robust for effects in social and cognitive
psychology, but specific values that we report (e.g., median UMV of
0.1 among SMD effect sizes) may not generalize beyond our sample.
The RRRs in our data overwhelmingly reported average results not
significantly different from zero (the exception being RRR1/RRR2).
This allowed us to examine selective reporting in its most critical
context (i.e., in the likely absence of genuine effects), but means it
would be good to focus future research efforts on studying multi-
verses with nonnull effects, as these likely create more heterogeneity
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in results across labs (see Olsson-Collentine et al., 2020), and hence
we would also expect larger overall variability and UMV due to
researcher DFs (see also Friese & Frankenbach, 2020). During the
process of this project, new RRRs have been published some of
which report nonnull effects and could be used for such further anal-
yses (e.g., Elliott et al., 2021). In addition, we are aware of several
projects currently in progress with similar designs that will collect
new data and provide additional evidence on the impact of standard
researcher DFs in different fields.
Researchers interested in the theoretical implications of the spe-

cific effects studied here should carefully consider which researcher
DFs they find reasonable (see Del Giudice & Gangestad, 2021)
before drawing conclusions. Our researcher DFs were chosen to
match standard decisions in social and cognitive psychology and
treated as researcher DFs, meaning they were not guided by the sub-
stantive theory of the studied effects, except as reflected by decisions
made by the RRRs in data collection and analysis. Moreover, if for
instance age is theoretically expected to moderate an effect it should
preferably be tested formally instead of being used in a multiverse
analysis. van Aert (2022) demonstrated how this can be done by
looking at the effect of age across labs in RRR9 (McCarthy et al.,
2018) using IPD meta-analysis, finding a small positive interaction
( p= .038). Individual studies often do not have the power to detect
moderating effects, which also affects multiverse analyses.
We found that in only about 30% of studies did significant effect

sizes in the hypothesized direction emerge in their multiverses,
despite the typically thousands of analyses in every study. This find-
ing suggests it is more difficult to turn apparent null results into sig-
nificant results than might be expected but is dependent on our
selection of researcher DFs. Although we implemented an extensive
number of researcher DFs that we consider representative of
researcher DFs that could be used in practice across a range of social
and cognitive psychological studies, our use of secondary (real) data
means there were many researcher DFs (e.g., Wicherts et al., 2016)
that we could not apply but that might be applied in real situations
(e.g., outcome switching, which is known to have a large impact,
or changing the analytic model). As such, our selection of DFs
and the resulting multiverse variances are unlikely to represent a
worst-case scenario. It is feasible that in real life more extreme stat-
istical results are found. Generally, we can expect researcher DFs
with a lower correlation between options, because of less sample
overlap and/or weaker correlations between (in)dependent variables,
to result in larger multiverse variance.
Finally, it may be informative to analyze other multilab replica-

tions studies than those we included in our study such as Many
Labs 1 to 5 (e.g., Klein et al., 2018). The studies in our sample
(mostly) studied a single effect across multiple labs, whereas the
Many Labs projects study many effects at the same time across mul-
tiple labs. We examined the RRRs to be able to apply study-unique
researcher DFs, but the Many Labs design would allow examining
the impact of applying a single set of researcher DFs on a large sam-
ple of effects from social and cognitive psychology.

Conclusion

We have shown that researcher DFs offer a wide array of potential
outcomes in relatively standard psychological studies and demon-
strated how selective reporting based on these researcher DFs creates
a bias in meta-analytic effect size estimates that may undermine the

credibility of many meta-analyses. Preregistration is a methodolog-
ical solution to researcher DFs enabling selective reporting, whereas
a statistical solution is to perform multiverse analysis of results.
These two transparency-enhancing practices can also be applied
together, although our analyses of multiverses across direct replica-
tions highlight that multiverse analyses in single studies should not
necessarily be expected to replicate in new data. Due to dependen-
cies between effect sizes within multiverses, exploring multivariate
approaches to multiverse analysis may be a useful next step in help-
ing to address uncertainties and biases in primary studies due to
researcher DFs.
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