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CHAPTER

INTRODUCTION TO RELATIONAL EVENT
NETWORKS, ENDOGENOUS NETWORK

DYNAMICS AND THE CONCEPT OF
MEMORY DECAY 1



Chapter 1

Statistical models for longitudinal social network data aim to understand which
factors and network dynamics trigger actors’ interactions and to investigate the
evolution of global level social structures starting from the analysis and quan-
tification of behavioral patterns observed at an actor level. Drivers of social
interaction can depend on the past event history or on actors’ attributes.

Until the first decades of the 2000s, network data were available in an aggre-
gated form at different time points and only in some case studies researchers
analyzed networks in which the timestamp of each interaction was inferred by
some means of communication such as e-mails (Kossinets & Watts, 2006) or
online messages (Panzarasa et al., 2009). However, the increasing availability
of such longitudinal network data stimulated researchers to develop model-
ing frameworks that account for the specific network structure. Models like
SAOM (Snijders, 2017b), TERGM (Hanneke et al., 2010) and software packages
like RSiena (Snijders, 2017a), tergm (Krivitsky & Handcock, 2022), btergm
(Leifeld et al., 2018), are known to have contributed to the analysis of such type
of aggregated data structures.

With the constant advancements of new technologies, such as internet of
things (IoT), radio-frequency identification (RFID), virtual reality (VR), the collec-
tion of longitudinal network data has become considerably easier on different
fields and with higher precision (such as the exact timing of relational observa-
tions) resulting in new challenges to properly deal with the analysis of such con-
tinuous streams of relational data with the goal to better understand (i.e., with
higher resolution) temporal social interaction dynamics. Such improvements
have led to the formulation of statistical models that were more appropriate to
capture the intrinsic dynamic nature of the data and to handle the presence of
a fine-grained time dimension.

A time-to-event sequence of social interactions among actors can be referred
to as a ”relational event network” where a relational event was defined by Butts
(2008) as a directed social interaction that is initiated by a sender and is targeted
to one or more receivers at a specific time point.

An example of a sequence of relational events is shown in Table 1.1, where
students of a classroom interact with one another. In the example, we do not
only know the exact time of an event, in addition to the sender and receiver,
but we also know the sentiment of each event which describes a characteristic
of the action that might be either the verb describing the action itself or some
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Introduction 1

time sender receiver sentiment

t1 Alice Peter positive
t2 Peter Alice positive
t3 Grace Alice negative
… … … …
… … … …
tM David Peter negative

Table 1.1: Example of hypothetical events in a network of students in a classroom.

adjective that qualifies the interaction, for instance, if a student is offending an-
other student we might classify that event as a ”negative” interaction, or if a
student is praising another student that event can be labeled as a ”positive” in-
teraction. We describe any event in the sequence via the 4-tuple (time, sender,
receiver, sentiment), for instance, the first event can be written as (t1, Alice, Pe-
ter, positive), the second event as (t2, Peter, Alice, positive). In the third event,
Grace joins the conversation with a negative remark to Alice (t3, Grace, Alice,
negative), which could trigger either a negative remark of Alice to Grace (as a
response) or a negative remark of Peter to Grace (because Peter had positive
communication with Alice who was the receiver of a negative remark by Grace).

Relational event networks can be observed in many other contexts in which
different behavioral patterns might be investigated as well as factors that are
related to the actors and to the social background in which they are embed-
ded. For instance, we might study a sequence of interactions occurring among
gangs that belong to different neighborhoods in the same metropolitan area,
a sequence of e-mails and in-person communications among employees in a
company, a network of digital and in-person interactions among freshmen in a
university and so forth.

In literature, there exist two statistical models for modeling relational event
data: a tie-orientedmodeling framework that is the relational eventmodel (REM)
introduced by Butts (2008), and an actor-orientedmodeling framework thatwas
formulated by Stadtfeld and Block (2017). The tie-oriented framework models
the event rate of any possible relational event, that is the speed at which rela-
tional events occur over a period of time. Whereas, the actor-oriented approach
models the dynamic process of a relational event by means of two separate
models: one model for the sender’s interaction rate and one choice model for
the selection of the receiver operated by the observed sender. By the choice

3



Chapter 1

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

(i, j)(j, i) (i, j) (l, i)(i, l) (i, j) (i, j)(j, i) (i, j) (j, l)

Figure 1.1: Example of relational event sequence of ten events where 3 actors (i, j and
l) interact one another.

i j

Figure 1.2: Graph of the pattern characterizing the statistic Inertia for the dyad (i, j).

of any of the two modeling approaches, social scientists aim to inquire which
actor or dyad level statistics and which measures of network dynamics play a
crucial role in the establishment and development or in the dissolution of net-
work structures.

In this dissertation we will distinguish statistics into two categories: exoge-
nous statistics and endogenous statistics, which serve as time-varying predictor
variables in a REM. The exogenous statistics are actor-level or dyad-level statis-
tics that are constant or time-varying and are not computed based on the net-
work of past relational events. The endogenous statistics, instead, summarize
network dynamics of different complexities and, their value is updated at each
observed time point (time-varying) with respect to the network of past occurred
events. We further classify endogenous statistics based on howmany actors de-
scribe the behavioral pattern that characterizes them: first-order endogenous
statistics quantify network dynamics in which only two actors are involved (one
directed dyadic event), second-order endogenous statistics in which three ac-
tors describe a triangular structure (two directed dyadic events) and, higher-
order statistics in which four or more actors describe more complex patterns
(three or more directed dyadic events). Furthermore, it would also be possible
to include interactions between endogenous and exogenous statistics.

To simplify the introduction and explanation of several concepts that estab-
lish the fundamentals of this dissertation, we consider a short relational event
sequence of ten events in Figure 1.1 where 3 actors i, j and l interact one an-
other andwe focus on the computation of inertia (first-order endogenous statis-
tic) for the dyad (i, j). In relational event networks, inertia quantifies the num-
ber of times in which a dyadic event is observed prior to a specific time point.
Therefore, the value of inertia is time-varying and different for every dyad in

4



Introduction 1

Inertia

tm dyad

(i, j) (j, i) (i, l) (l, i) (j, l) (l, j)
t1 0 0 0 0 0 0
t2 1 0 0 0 0 0
t3 1 1 0 0 0 0
t4 2 1 0 0 0 0
t5 2 1 0 1 0 0
t6 2 1 1 1 0 0
t7 3 1 1 1 0 0
t8 4 1 1 1 0 0
t9 4 2 1 1 0 0
t10 5 2 1 1 0 0

Table 1.2: Value of inertia over time and across the six possible dyads from the example
in Figure 1.1. At the first time point, t1, the value of inertia is set to 0 for all the dyads.

the network. In a relational event model, the estimated effect for the inertia
measures the tendency of actors to target their future interactions towards
recipients that have been their usual targets in the past. In other terms, the
estimated effect for the statistic inertia helps to understand the presence of
forms of routinizations between individuals in the network. An example of the
behavioral pattern of inertia is described by the graph in Figure 1.2 where it is
referred to the dyad (i, j) . Therefore, at each time point, the computation of
inertia consists of the volume of past events in which we observe the dyad of
interest. For the dyad (i, j) the value of inertia at any observed time point tm
withm = 1, . . . , 10 is calculated as

inertia(i, j, tm) =
∑

t<tm

I(set = i, ret = j) (1.1)

where the sum is extended to those events that occurred prior the time point
tm, set and ret are the sender and the receiver of the past event e observed at
time t, I(.) is an indicator function that assumes value 1 if the condition inside
the function is true, 0 otherwise. In this case, the indicator variable assumes
value one if both the sender and the receiver of the past event were respectively
i and j. The formula in (1.1) can be easily extended to the other dyads in the
network. Table 1.2 reports the value of inertia over time and for the six possible
dyads (i, j), (j, i), (i, l), (l, i), (j, l) and (l, j). The considerations that are made
here and for the rest of the introduction apply also to other network dynamics

5



Chapter 1

short-run Inertia

tm
timestamp
(dd-mm hh:mm) dyad

(i, j) (j, i) (i, l) (l, i) (j, l) (l, j)
t1 02-10 08:53 0 0 0 0 0 0
t2 02-10 11:01 1 0 0 0 0 0
t3 02-10 21:31 1 1 0 0 0 0
t4 03-10 09:47 2 1 0 0 0 0
t5 03-10 11:35 1 1 0 1 0 0
t6 03-10 19:18 1 0 1 1 0 0
t7 04-10 11:07 2 0 1 1 0 0
t8 04-10 13:06 2 0 1 0 0 0
t9 05-10 01:23 2 1 0 0 0 0
t10 05-10 05:14 2 1 0 0 0 0

Table 1.3: Value of short-run inertia defined by events occurred in the last 24 hours. The
time of occurrence of each event is provided as a timestamp (”dd-mm hh-mm”, that is day-
month hours-minutes). By column, the statistic is calculated for the six possible dyads
from the example in Figure 1.1. Two rectangles on the table highlight: (i) the value of the
short-run inertia at t10 for all the dyads (rectangle on the right) and, (ii) the set of events
that occurred in the last 24 hours before t9 and that are considered in the computation
of the short-run statistic (rectangle on the left).

like reciprocity, in-/out-degree of the sender (receiver), transitivity closure, cyclic
closure and so forth.

The computation of the network dynamics as a count inherently assumes that
long-passed events have the same influence asmore recent events, and thereby
contribute equally to the interaction rate between actors. In other terms, past
events would never change their influence as the time transpired since their
occurrence increases, even for events that have passed a very long time ago.
Therefore, this means that actors’ future interactions are influenced by long-
passed events as much as by events that occurred very recently (days or even
hours). This definition is not realistic, rather we expect that the influence of
events that happened in the remote past is lower than more recent events.

In the literature, several studies propose novel definitions of endogenous
statistics based on time intervals of the past history of events where, for in-
stance, they use a short-run and long-run definition of the statistics (Quintane
et al., 2013) exploring the differences between the effects of short-run and long-
run dynamics. In Table 1.3, we calculate the value of short-run inertia as the
count of the past events that occurred in the last 24 hours. We can rewrite the

6
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formula in (1.1), as

inertiashort-run(i, j, tm) =
∑

t:(tm−1−t)≤24h

I(set = i, ret = j) (1.2)

In order to provide an example of the short-run formula applied to the se-
quence of events in Figure 1.1, consider the last time point t10 and the two rect-
angles on the Table 1.3 which highlight: (i) the value of the short-run inertia at
t10 for all the dyads (rectangle on the right) and, (ii) the set of events that oc-
curred in the last 24hours before t9 and that are considered in the computation
of the short-run statistic (rectangle on the left).

A similar approach consists in dividing the past history of events inmultiple in-
tervals and compute the network dynamics of interest in each interval (Perry &
Wolfe, 2013), in this way obtaining a step-wise-like function of effects for each
endogenous statistics specified in the model. Other studies assume an expo-
nential decay of the event weight that is embedded in the computation of the
endogenous statistics (Brandenberger, 2018b; Brandes et al., 2009). Therefore,
the weight of every past event is updated at each time point according to the
assumed parametric decay and their contribute to any endogenous statistic de-
creases over time towards zero. Such methods explored to different extents
the concept that past behavioral patterns have a time-varying influence both
on the computation of endogenous statistics and on the resulting effect on the
rate of future social interactions.

Even though these contributions have been useful, and a fertile ground to fur-
ther develop and extend REMs to better understand temporal social interaction
dynamics, these methods are limited as the bounds for short-run and long-run
effects and the steepness of memory decay are prespecified, and therefore not
estimated from the data. This is limiting from a statistical point of view as spec-
ifying badly fitting values for these elements can result in bias and incorrect in-
ferences, but also substantively, as it would not allow us to better understand
how and how fast the importance of past events changes as a function of the
time that has transpired since observing the event. The main goal of this dis-
sertation is to address these shortcomings by developing time-sensitive model
extensions around the relational event network modeling framework. Given
these extensions, another aim is to contribute to our understanding to whether
memory retention is present in relational event networks.

7



Chapter 1

1.1 Outline of the dissertation

Themethods presented in this dissertation build upon the tie-oriented approach
(REM) but they can also easily be adapted and applied to an actor-orientedmod-
eling framework.

In Chapter 2, we present a real case study in which we analyze the sequence
of emails about innovation that were sent among employees in a multinational
service company. In this study we want to understand whether and how the
location of employees, the difference in hierarchy, the norms of reciprocity and
inertia defined in both short-run and long-run form explain the email rate of
employees and the level of information sharing about innovation.

In Chapter 3, we introduce a semi-parametricmethod for estimating the shape
of memory decay in relational event models. In the method, first we consider
a ”bag” of many step-wise relational event models where endogenous statistics
are calculated based on different interval configurations (one interval configu-
ration per each step-wise model), we fit each step-wise model and, finally, we
model the shape of the decay with an approach based on the Bayesian Model
Averaging theory. The semi-parametric approach is then applied to an empirical
event sequence of demands sent among socio-political actors in India.

In Chapter 4, we propose a method that assumes a parametrized function
for the memory decay (exponential, linear or step-wise) which depends on one
memory parameter that is optimized using the observed event sequence. We
also propose a Bayesian test to establish which decay function fits the data best.
Finally, we apply the methodology to two case studies: the first case study is
about the same network of demands analyzed in Chapter 3, the second case
study is about the time-ordered sequence of textmessages sent among a group
of freshmen university students.

In Chapter 5, we present the SentiREM formodeling the event rate of the next
dyadic event separately from the probability of the next event type. We focus
on the case of two discrete event types and we model the event sentiment via
Probit regression. We define sentiment-based endogenous statistics which as-
sume the same parametric decay function but the memory parameters differ
based on the sentiment. We optimize the sentiment-based memory parame-
ters along with the effects of the statistics using the observed event sequence
and we introduce some Bayesian test for the memory parameters as well as for

8
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the sentiment-based endogenous effects. Finally, we apply the method to a se-
quence of attacks and trades occurring among a group of players of an online
strategy game.

Themethods developed in Chapters 3, 4 and 5, are available in the R package
bremory . In Appendix C, we describe the aim and the usage of the R software
packages remify , remstimate and bremory .

9





CHAPTER

UNDERSTANDING EMPLOYEE
COMMUNICATION WITH LONGITUDINAL
SOCIAL NETWORK ANALYSIS OF EMAIL

FLOWS 2
Abstract

In modern society, innovation in organizations consists of team-based
activities where groups of individuals work together on projects and pro-
duce novel ideas from their interaction. In this chapter, we analyze a
real case study in which a multinational service company stimulated em-
ployees’ mind towards the generation of innovative ideas by different
means, such as: providing new stimulating resources to employees, send-
ing newsletters, organizing gatherings and events, throwing challenges
with prizes and other activities. The study focuses on the analysis of the
stream of e-mails about innovation ideas that were sent among the em-
ployees and aims to understand the influence of specific factors on the
e-mail rate. We estimate and compare relational eventmodels where net-
work dynamics were included with a short-run and a long-run definition.
We also discuss how the estimated short and long term effects highlight
the difference in importance on future communication between interac-
tions that happened recently and interactions that occurred in a remote
past.

This chapter is published as Schouten, G., Arena, G., van Leeuwen, F., Heck, P., Mulder, J., Aal-
bers, R., Leenders, R., Böing-Messing, F. (2023). Data analytics in action. In W. Liebregts, W.-J. van
den Heuvel, & A. van den Born (Eds.), Data science for entrepreneurship: Principles and methods
for data engineering, analytics, entrepreneurship, and the society (pp. 205–233). Cham: Springer
International Publishing. https://doi.org/10.1007/978-3-031-19554-9_10



Chapter 2

2.1 Introduction

Innovation is the spice of life for organizations and is generally seen as a re-
quirement for long-term survival and attaining and sustaining above-average
performance. Yet, innovation can be hard to accomplish.

In this case study, we consider the innovation struggle of a European branch
of amultinational service company (referred to in the case study as STRATSERV).
Innovation typically requires a company’s employees to change the way they do
their work, either by doing different things (such as providing a new service or
engaging in new procedures) or by doing things differently (such as using new
technology to do the work more efficiently). This means that, especially in ser-
vice organizations, innovation can hardly be successful without the willingness
of employees to change (theway they do) their work. This realization stimulated
STRATSERV’s management to attempt to open the minds of their employees to
innovation. Hence, they organized various events where employees could sug-
gest innovative ways of working, offered prizes for the best ideas, and provided
resources to employees to explore their ideas further. In sum, the approach
was to first open theminds of employees to the idea of innovation, stimulate the
employees to come up with innovative suggestions, and then build on that joint
openness to the innovation in order to implement new services and new pro-
cedures. Of course, this assumes that the minds of the STRATSERV employees
would respond favorably and long-lasting to the company’s innovative wishes.

Although the STRATSERV management believed in this approach, they also
realized that they needed a way to test whether their approach was working.
Did their efforts indeed create an innovation mindset in the heads of their em-
ployees and did thatmindset last? Moreover, theywondered if all employees re-
sponded alike orwhether the competitions, gatherings, newsletters, challenges,
and other activities organized by the company’s taskforce only affected certain
employees but not others.

In this situation, it makes little sense to send out a survey to the employees,
asking themwhether they were thinking about innovation regularly. This would
likely trigger socially acceptable answers and could not provide the detailed in-
sight into the effect of the activities that the company was looking for. In addi-
tion, surveys are poorly suited to monitor how employees respond over time,
including repeated surveys. The company reached out for help to an external

12
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2

team of researchers. Below, we will show part of the analysis that was per-
formed.

2.2 Digital innovation communication networks

When employees discuss innovation, an innovation communication network
emerges within the company. The structure and pervasiveness of this network
are key indicators whether STRATSERV’s approach is working. In addition, in-
novative activity is essentially a network activity (Aalbers et al., 2016; Kratzer
et al., 2006; R. T. Leenders et al., 2003). Innovation is, by necessity, a collabo-
rative effort. Existing knowledge and ideas merge into new combinations, and
as formerly separated knowledge comes together, new knowledge emerges. Al-
though the imagery of the lone inventor profoundly developing is appealing, it
is an image rarely found in modern times. Innovation is a ”team sport”, where
individuals work together in teams, teams work together in projects, organiza-
tions work together in alliances, and countries work together in international
technology agendas. In fact, even the mythical lone inventor probably rarely
operated in splendid isolation anyway, since it is likely that much of the inven-
tor’s inspiration came from interaction with other people or organizations, the
financial resources may have been granted by banks or friends, the actual de-
velopment of the product often involved the help of factories, and customers
had to become involved in order to test the product for feasibility. No matter
which (great) innovation one would look at, it is bound to be couched in net-
work interaction of some sort (R. T. A. J. Leenders & Dolfsma, 2016). In sum, an
ideal approach to see if innovation was catching on as a core topic and activity
inside STRATSERV was to measure how the innovation communication network
developed.

Networks can be measured in a number of ways. The most common ap-
proach is to administer surveys to ask who communicates with whom. Alterna-
tively, one could observe the interactions of employees throughout their work-
ing activities. These methods don’t work in our case, since we wanted to follow
the interactions of employees in real time for a full year. Alternative tools such
as using video to see who interacts with whom or collecting data from proximity
badges would not provide information on whether the conversation included
innovation as a topic. Hence, the choice was made to analyze the email interac-
tion between the employees over the course of a year.
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Digital communication, in particular email, has become one of the most im-
portantmeans of communication in organizations. As email leaves digital traces
about senders, receivers, and timing, these rich network data contain high- reso-
lution information to understand how communication structures change when
working teams reach deadlines, to understand new employee integration pro-
cesses (and how these are affected by cultural differences and team composi-
tions), or to understand how ideas spread through a network of employees (and
how this is affected by the actors’ hierarchical positions, for example). Besides
the academic/theoretical interest these insights are also useful from a practi-
cal point of view as they can be used to optimize communication structures in
deadline situations, they can be used to optimize the integration processes of
new employees, and they can be used to reach all employees regarding certain
working topics as fast as possible.

In this case study, we show one approach that can be used to study and un-
derstand how networks evolve over time, in real time, and how this knowledge
can be leveraged in practice.

2.3 The relational event modeling framework

2.3.1 Description of the data

Our analysis focuses on the innovation communication networks in a European
branch of STRATSERV. After developing and implementing procedures to en-
sure employee privacy and informed consent was received from the parties in-
volved, we used textmining techniques to score the emailmessages onwhether
the exchanged text addressed innovation-related topics. The empirical data in
this case study consist of a time-ordered sequence ofM = 1340 email messages
that were exchanged between 153 employees over the course of a year. An ex-
ample of the data is given in Table 2.1 where each row represents the 3-tuple
(tm, sm, rm), with respectively the time, the sender, and the receiver of them-th
email in the sequence of emails E = {(t1, s1, r1), . . . , (tM , sM , rM )}.

We assume that email interaction is regulated and driven by factors that can
dependeither onworkers’ characteristics (e.g., one’s status or outgoingness), on
the dyadic characteristics of sender and receiver (e.g., hierarchy differences, co-
location), on the history ofworkers’ past interactions (e.g., the exchange of email
that occurred in the past), or on theworkers’ location in the social structure (e.g.,
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time sender receiver

03 Jan 2010 08:21:33 Marco Jane
03 Jan 2010 08:43:09 Jane Marco

...
...

...
31 Dec 2010 18:39:22 Paul Jane

Table 2.1: Example of longitudinal network of emails

interaction with joint colleagues, norms of reciprocity). In particular, we will
focus on modeling whether and how this email stream depends on working in
the samebuilding, the difference in hierarchy level between sender and receiver
of the email, the tenure of the sender, the tendency of sender and receiver to
continue to exchange email messages among each other (i.e. persistence or
inertia) and the norms of reciprocity between employees. Moreover, we allow
a possiblememory effect where recent email activity may have a relatively large
effect on the future activity between actors.

2.3.2 The model

The novel modeling framework that is well suited to analyze time-to-event se-
quence data in networks is the so-called Relational Event Model (REM) (Butts,
2008; R. T. A. J. Leenders et al., 2016; Mulder & Leenders, 2019). This frame-
work aims to model the rate at which specific directed interaction (i.e. a given
email being sent) between two actors (here: employees) occurs; in other words,
we model the emailing rate among any pair of employees. In social network
terms, such a pair is called a dyad. Within this framework, each email message
constitutes a relational event characterized by the sender (s), who initiates the ac-
tion (i.e., who sends the email); the receiver (r), to whom the action is targeted
(i.e., who receives the email); and time (t), the exact time point at which the rela-
tional event occurs. At each time point in the sequence, 153 potential senders
can send an email to 152 potential receivers (excluding email messages people
send to themselves), which means that at any point in time 153 × 152 = 23256

email dyads that can potentially occur. The aim of the analysis is to model who
sends an emailmessage towhomatwhat point in time over the course of 1 year.
Mathematically, the joint probability to model the whole sequence of emails is
similar to thewell-known event historymodel or survivalmodel (Cox, 1972; Law-
less, 2002).
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Predictor variable Description

ShortInertia The number of messages a potential
sender sent to a potential receiver in the
last 30 days

LongInertia The number of messages a potential
sender sent to a potential receiver more
than 30 days ago

ShortReciprocity The number of messages a potential
sender received from a potential receiver
in the last 30 days

LongReciprocity The number of messages a potential
sender received from a potential receiver
more than 30 days ago

SameBuilding A binary variablewhich indicateswhether
potential sender and potential receiver
work in the same building (1) or not (0)

DiffHierarchy The hierarchical difference between the
sender and receiver on a scale from 1 to
9

LogSenderTenure The number of years a potential sender
works in the organization on a log scale

Table 2.2: Variables: predictor variables and their interpretations.

In the REM, wemodel the rate at which an email is sent from a given sender to
a given receiver at a given point in time as a log-linearmodel that (apart from the
exponent that occurs in the equation) resembles the well-known linear regres-
sion structure. The model then takes into account every possible sender, every
possible receiver, and every possible point in time, for the entire observation
period. One of our substantive interests in this study is whether the emailing
rates of employees depend only (or mainly) on the recent email interactions
of the employees or whether they also take into account email exchanges that
happened longer ago. This is important for STRATSERV, as it shows how long
the effects of interventions last. If it turns out that employeesmainly respond to
innovation-relatedmessages they received recently, andmuch less tomessages
received or exchanged longer ago, this is a sign that employees apparently need
to be ”reminded” of innovation constantly and that it has not become a routine
part of their conversations.

In particular, we will investigate this for inertia and reciprocity (see Table 2.2).
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Model 1 Model 2

Variable β̂ se(β̂) z-value p-value β̂ se(β̂) z-value p-value

Intercept -11.6322 0.0862 -134.914 0.000 -9.2559 0.0249 -371.323 0.000
ShortInertia 0.0831 0.0005 151.582 0.000 0.0869 0.0005 181.294 0.000
LongInertia 0.0058 0.0005 10.871 0.000 0.0065 0.0005 14.025 0.000
ShortReciprocity 0.0484 0.0104 4.628 0.000 0.0345 0.0101 3.406 0.0006
LongReciprocity -0.0070 0.0170 -0.409 0.682 -0.0094 0.0162 -0.579 0.563
SameBuilding 0.9854 0.0401 24.591 0.000
DiffHierarchy -0.3003 0.0096 -31.307 0.000
LogSenderTenure 0.9234 0.0378 24.413 0.000

AIC 16004.33 16981.15
BIC 16045.93 17007.15

Table 2.3: Model 1 and Model 2: maximum likelihood estimates, standard errors, z-
values, p-values, AIC and BIC.

In order to accomplish this, both the inertia and reciprocity statistics are cal-
culated according to two different event history lengths. For both statistics we
include into themodel a short-run versionwhere only past events that occurred
until 30 days before the time of the email are included (recent past) and a long-
run version that includes the past events that occurred more than 30 days be-
fore the email was sent (less recent past) (cf. Quintane et al. (2013)). A complete
description of the variables used in our analysis can be found in Table (2.2).

2.3.3 Model comparison

We estimate two models: in Model 1, all the variables in Table (2.2) are em-
bedded in the log-linear predictor; in Model 2, only the short-run and long-run
versions of inertia and reciprocity are included. Via this model comparison, we
can learn whether a simpler model without exogenous effects may be enough
for a good fit for the data. Considering the specification of Model 1, the email
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rate (λ) at time tm for the dyad (sender, receiver) = (Marco, Jane) is,

λ(tm,Marco, Jane) = exp { βIntercept+

+βShortInertiaShortInertia(tm,Marco, Jane)+

+βLongInertiaLongInertia(tm,Marco, Jane)+

+βShortReciprocityShortReciprocity(tm,Marco, Jane)+

+βLongReciprocityLongReciprocity(tm,Marco, Jane)+

+βSameBuildingSameBuilding(Marco, Jane)+

+βDiffHierarchyDiffHierarchy(Marco, Jane)+

+βLogSenderTenureLogSenderTenure(Marco) }

(2.1)

where

β =
{
βIntercept,βShortInertia,βLongInertia,βShortReciprocity,

βLongReciprocity,βSameBuilding,βDiffHierarchy,βLogSenderTenure
}

is the vector of effects describing the impact of statistics on the rate of occur-
rence of an email being sent from a sender to a receiver. Positive effects (nega-
tive effects) imply that as the statistic increases in value, it increases (decreases)
the email rate. As regards Model 2, the rate of an email sent fromMarco to Jane
at time tm becomes,

λ(tm,Marco, Jane) = exp { βIntercept+

+βShortInertiaShortInertia(tm,Marco, Jane)+

+βLongInertiaLongInertia(tm,Marco, Jane)+

+βShortReciprocityShortReciprocity(tm,Marco, Jane)+

+βLongReciprocityLongReciprocity(tm,Marco, Jane) }

(2.2)

The results of both models can be found in Table 2.3. Model 1 seems to be
better supported by data since the BIC and AIC for Model 1 are lower than for
Model 2. In addition to this, email rate is mainly affected by recent email his-
tory, i.e., by the short-run effects of inertia and reciprocity. Although the effect
of long-run inertia (LongInertia) is statistically significant, the effects of long-run
inertia and long-run reciprocity (LongReciprocity) are negligibly small and hence
barely affect the email rate. The results of Model 2 (which only includes inertia
and reciprocity) show that these effects are stable and unaffected by the other
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statistics. In other words, the employees tend to repeat their recent behavior
andmainly respond to innovation-relatedmessages received in the recent past,
while innovation messages that were sent or received more than 30 days ago
seem to no longer affect emailing behavior today. In other words, employees
appear to discuss innovation because it is what they recently discussed, not be-
cause it something that is on their minds in the long run. This is a sign that
STRATSERV has not been able to make innovation an integral part of their em-
ployees’ mindset.

FromModel, 1 we see that employees send emails at lower rates to other em-
ployees who are lower in the organizational hierarchy than they are themselves
and send their email messages at higher rates to those who have higher hier-
archy levels than they have themselves (β̂DiffHierarchy = −0.3003). In other words,
email messages about innovation are more readily sent up the organizational
hierarchy than down. This is consistent with the idea that the STRATSERV em-
ployees are willing to inform their superior about potential innovation but are
less likely to put their ideas into action themselves by discussing it with those
lower in the chain of command. Conversely, employees who enjoy higher hier-
archical positions are more popular targets for such email messages than are
those who occupy low status positions in the organization. Again, innovation
discussion is directed up the chain, but much less to the lower levels.

Except for DiffHierarchy, all other statistics in Model 1 have positive effects
on the emailing rates. For instance, the email rate of a sender to a receiver who
works in the same building (SameBuilding = 1) is around two and a half times
(exp

{
β̂SameBuilding

}
= 2.679) higher than the email rate from that same sender

to a colleague working in a different building, holding constant all the other
variables. This is an important finding, as it suggests that physical boundaries
(i.e. working in a different building) also appear to function as communication
boundaries: STRATSERV employees more intensely discuss innovation-related
topic with those whom they routinely meet at the coffee machine, and much
less with those they don’t run into that often.

We also observe that the rate at which employees send innovation-related
email increases with the time they have been at the organization. Conversely,
newcomers and juniors turn out less active in communicating about innovation
than are the seniors of the firm, which makes sense.
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2.4 Discussion and Conclusion

The relative importance of the different effects can be used to improve and op-
timize information sharing. For example, as there is a large positive (negative)
effect of interaction when employees work in the same (in different) buildings,
interaction may be greatly improved by setting up interventions in the organi-
zations that stimulate discussions across employees in different buildings. In
addition, it is important to know for managers that STRATSERV’s employees are
less likely to share innovation-related communication with colleagues they are
no co-located with. Although this can partly be addressed by strategically plac-
ing employees in their various locations, it is also important for managers to
realize where communication may flow more easily and where it is likely to be
hampered.

Furthermore, STRATSERV learns from this analysts that a temporary silence in
innovation-related activity tends to remove the topic from the active attention
of its employees. This could potentially be addressed by organizing activities
around innovation, but it also signals that the current activities haven’t been
successful inmaking innovation part of the normal conversation of STRATSERV’s
employees. This may be a reason to reevaluate the effectiveness of the current
strategy while, at the same time, taking into account that it may take a long time
to establish an innovation mindset.

Thanks to the relational eventmodel we are able to understand which factors
play regarding employee interaction. Specifically, the observed differences in
intensities and signs of the relative effects showed that certain characteristics
can impact the email rate to different degrees and in different directions. Using
targeted interventions, these insights can be used to reach more employees in
a shorter amount of time. For further reading on relational event models, we
refer interested readers to R. T. A. J. Leenders et al. (2016), Pilny et al. (2016),
and Schecter et al. (2018a).
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CHAPTER

A BAYESIAN SEMI-PARAMETRIC
APPROACH FOR MODELING MEMORY

DECAY IN DYNAMIC SOCIAL NETWORKS 3
Abstract

In relational event networks, the tendency for actors to interact with each
other depends greatly on the past interactions between the actors in a
social network. Both the volume of past interactions and the time that
has elapsed since the past interactions affect the actors’ decision-making
to interact with other actors in the network. Recently occurred events
may have a stronger influence on current interaction behavior than past
events that occurred a long time ago–a phenomenon known as “mem-
ory decay”. Previous studies either predefined a short-run and long-run
memory or fixed a parametric exponential memory decay using a prede-
fined half-life period. In real-life relational event networks, however, it is
generally unknown how the influence of past events fades as time goes
by. For this reason, it is not recommendable to fix memory decay in an
ad-hoc manner, but instead we should learn the shape of memory de-
cay from the observed data. In this chapter, a novel semi-parametric ap-
proach based on Bayesian Model Averaging is proposed for learning the
shape of the memory decay without requiring any parametric assump-
tions. Themethod is applied to relational event history data among socio-
political actors in India and a comparisonwith other relational eventmod-
els based on predefined memory decays is provided.

This chapter is published as Arena, G., Mulder, J., & Leenders, R. Th. A. J. (2022). A Bayesian
Semi-Parametric Approach for Modeling Memory Decay in Dynamic Social Networks. Sociological
Methods & Research, 0(0). https://doi.org/10.1177/00491241221113875
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3.1 Introduction

As a result of the growing automated collection of information, fine-grained lon-
gitudinal network data are increasingly available in many disciplines, such as
sociology, psychology, and biology. These data have the potential to revolution-
ize our understanding about complex social network dynamics as we can learn
how the past affects the future, how interaction behavior changes in continuous
time, and how past social interactions lose their influence on the future away as
time progresses. This has inspired social network scientists to develop network
models that suit the inherent dynamic nature of these so-called relational event
data. A relational event is defined as an action initiated by a sender and tar-
geted to one or more receivers at a specific point in time. The relational event
modeling framework aims tomodel the event rate: the speed at which relational
events occur over a period of time between the actors in the model. The event
rate can be expressed as a function of characteristics that quantify endogenous
network patterns or exogenous characteristics that (jointly) determine how the
network unfolds at some point in time (Butts, 2008). In sociological and psycho-
logical research, the application of these relational event models aims to find
behavioral patterns and to shed light on the emergence of a global structure
from network dynamics occurring at a local (typically, dyadic) level (R. T. A. J.
Leenders et al., 2016; Pilny et al., 2016; Schecter et al., 2018b).

Of particular interest is to understand what triggers actors to interact with
each other. Actors might decide which mutual recipient to target their actions
to depending on various aspects such as homophily, norms of reciprocity, the
volume of past social interactions, triadic closuremechanisms, et cetera (Rivera
et al., 2010). Past relational events influence future events in different ways.
First, qualitative aspects of the past events play a role, such as whether the
interaction was positive or a negative or who was the sender of the past event.
For example, receiving a message from the company’s president might have a
greater effect than getting a message from a regular colleague. Similarly, the
valence of eventsmay play a role: events with a negative connotation have been
argued to have a greater effect than events with a positive connotation (Brass &
Labianca, 1999; Labianca & Brass, 2006; Moerbeek & Need, 2003; Offer, 2021).
Second, recent past events are generally expected to have a greater influence
on the present than events that occurred a long time ago (Brandes et al., 2009;
Butts, 2008; Mulder & Leenders, 2019; Quintane et al., 2013). Having recently
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received praise from a colleague is likely to affect current interactionmore than
if that praise dates back a year ago.

While studies using relational event data tend to focus on the effects of en-
dogenous statistics (e.g., to what extent actors repeat their past interactions,
do they reciprocate interactions aimed at them, or do they prefer to interact
with others with whom they sharemany other interaction partners with?) or ex-
ogenous statistics (e.g., does information sharing tend to go from lower-status
actors to higher status actors, do friends share information at higher rates than
non-friends, howmuchdoes co-locationmatter for communication in IT-enabled
teams?), much less attention has been paid to exactly how long past events re-
tain their influence on the present and future. This is the very subject of this
chapter. In particular, our aim is to derive a method that allows a researcher to
empirically derive the shape of the function by which past events lose their in-
fluence on the future. This shape can be linear, exponentially decaying, or have
any other shape. To unify our terminology, wewill use the term ”memory decay”
for this phenomenon, even though we do not aim to model cognitive functions
of the actors in the network. This terminology is not new. For example, Bran-
des et al. (2009) specify a half-life function that governs the decaying influence
of events ”motivated by the assumption that actors forget (or forgive)”. Similarly,
Mulder and Leenders (2019) and R. T. A. J. Leenders et al. (2016) explicitly refer to
this phenomenon as ”memory decay.” Within the context of Temporal ERGM’s,
Leifeld et al. (2018) and Leifeld and Cranmer (2019) include so-called ”memory
terms” and allow the researcher to specify time-based functions (”time trends”)
of how the time since a past tie affects the occurrence of later ties.

Our focus is on the way the influence of past events on the future changes,
that is akin to how long people ”remember” (or care about) the past actively
enough to still make it count towards the present and future. Because the effect
of the past will almost always decrease as time passes, we will use the term
”memory decay” throughout this chapter to refer to the shape of the function
that captures how the influence of a past event on future events changes as the
time since the event increases.

Already in Butts (2008) seminal paper and the accompanying software (Butts,
2021), the importance of memory retention of past relational events is high-
lighted. So-called ”participation shifts” were introduced that capture how the
interaction dynamics shifts between dyads depending on the very last event
that happened. These statistics assume that actors respond to the immediate
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past, regardless of what happened before that. In addition, a ”recency” statis-
tic is considered where the potential receivers for each potential sender are
ordered based on their recent activity and a power-law is used to create a pre-
dictor variable (i.e., the reciprocal of the rank). This mechanism captures the ex-
tent to which actors take into account the last events they had with every other
actor, discounting events from farther into the past. Finally, other endogenous
statistics (such as inertia and reciprocity) are computed as the total volume of
past interactions between actors and, hence, count all past events as equally
important to the future and assume that no past event, however distant in the
past, is ever forgotten. In sum, these statistics already capture three distinct
ways in which the past is (dis)counted towards the present and the future and
each reflect a different shape of memory decay.

More recently, other approaches have also been considered to better under-
stand how (long) past activity affects future events. One approach has been
to quantify a specific pattern of interactions according to specific predefined
time intervals, such as a short-run expression (calculated by considering recently
passed events) and a long-run expression (considering long-passed events in
the computation) (Kitts et al., 2017; Patison et al., 2015; Perry & Wolfe, 2013;
Quintane & Carnabuci, 2016; Quintane et al., 2013). The estimated effects for
these intervals describe how different the impact of the specific pattern is on
the event rate according to different recency of events constituting the pattern
itself. Another approach consists of estimating the model while using a moving
time window with a predefined fixed memory length with the result of a trend
of the effects over the windows (Mulder & Leenders, 2019). An alternative to
time-intervals-based methods weighs the influence of past events by an expo-
nentially decreasing function with a given half-life parameter that describes the
elapsed time beyond which the influence of an event in the calculation of the
statistic is halved (Brandes et al., 2009; R. T. A. J. Leenders et al., 2016; Lerner
et al., 2013).

In all of these approaches, a researcher needs to predefine thememory lengths
for the discretized model or predefine the steepness of the decay in the case of
the continuous half-life model. Typically, heuristic considerations are used to
specify this function. Notable exceptions include Brandenberger (2018a) and
Brandes et al. (2009) who explored the fit and robustness of the results by con-
sidering different choices for the half-life parameter. The question is, however,
whether a prespecified memory decay appropriately captures the dependence
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between the time that has passed since the event and the current event. De-
pending on the context, certain decay shapes may be more suitable in terms of
fit than other shapes. Model misfit may result in poor predictions and unreli-
able inferences.

Considering the dearth of time-sensitive theory to draw from (cf. Ancona et
al. (2001), Cronin et al. (2011), and R. T. A. J. Leenders et al. (2016)), there is lit-
tle theory (if any) to truly guide a researcher in the choice of an appropriate
memory decay function for a research project at hand. Researchers have dealt
with this by specifying choices for the decay function based on their experience
with the empirical context or based on their own assumptions regarding the
influence of time. Alternatively, an approach that we propose in this chapter is
to present a semi-parametric method for learning the actual shape of memory
decay in relational event models. The method is semi-parametric in the sense
that it does not make assumptions about a specific functional form for memory
decay. Indeed, parameters that potentially govern the memory process and,
in turn, determine its shape over time are often unknown and our intent is to
minimize the challenge that is involved in prespecifying amemory function by a
researcher. Ourmethod can be used for finding any functional form ofmemory
decay which could be an exponentially decreasing trend, a smoothed step-wise
function, or other, possibly more (or less) complex, functional trends. Our semi-
parametric method combines the relational event modeling framework (as in
Butts (2008)) with Bayesian inference in the context of a model selection prob-
lem (Bayesian Model Averaging) (Volinsky et al., 1999). The idea is to consider a
large “bag” of step-wise models with different interval configurations. Next, the
fit is computed for all step-wisemodels, and subsequently, wemodel the shape
as an average of these models weighted according to their respective fit to the
observed data.

The chapter is structured as follows. In Section 2, we introduce the relational
modeling framework along with the concept of memory decay. In Section 3, we
formulate a step-wise memory decay model. In Section 4, we present a contin-
uous memory decay model and highlight the potential use of step-wise models
in approximating the continuous shape of the decay. In Section 5, we present a
semi-parametric method based on a Bayesian Model Averaging along with two
weighting systems for generating randomdraws from the posteriormemory de-
cay. In Section 6 we apply the method to empirical data and we compare it to
other models that predefine parametric memory decays. Concluding the chap-
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ter, in Section 7 we discuss some considerations regarding the methodology
and potential further development.

3.2 Relational eventmodels that capturememory
decay

In the relational event framework (Butts, 2008), a relational event em is charac-
terized by the 3-tuple (sem , rem , tm), respectively sender, receiver, and time of
occurrence of the event. The joint probability of the realized ordered sequence
ofM relational events, EtM = (e1, . . . , eM ), can be modeled as

p(EtM ;β) =
M∏

m=1

[
λ(sem , rem , Xem , Etm−1 ,β)

∏

e′∈R
exp

{
−λ(se′ , re′ , Xe′ , Etm−1 ,β) (tm − tm−1)

}
] (3.1)

where t0 (at m = 1) is assumed to be equal to zero or to the starting time point
of the case study. Further, λ(sem , rem , Xem , Etm−1 ,β) is the rate of the event em
occurred at time tm and λ(se′ , re′ , Xe′ , Etm−1 ,β) represents the event rate of any
event e′ that could have happened at time tm (including em). Indeed, e′ belongs
to the risk set R consisting of all sender/receiver combinations S ×R: where S
and R are, respectively, sets of all possible senders and receivers for the entire
event sequence. If all actors can be senders aswell as receivers in an interaction,
then S ≡ R and the set of actors is simply referred to as S. Equation (3.1) can
be viewed as thewell-known survivalmodel with time-varying covariates, where
hazard and survival components form the likelihood in the same way (Lawless,
2002).

The rate of the specific dyadic event e′ ∈ R at a generic time tm is modeled as
a log-linear function of statistics as follows

λ(se′ , re′ , Xe′ , Etm−1 ,β) = exp

{
P∑

p=1

βpup(se′ , re′ , Xe′ , Etm−1)

}
(3.2)

where:

• βp with p = 1, . . . , P , are parameters describing the effects of statistics on
the logarithm of the event rate;
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• Xe′ is the set of covariates (exogenous attributes, possibly time-varying)
associated with event e′;

• Etm−1 refers to the collection of all of those events that occurred before
tm;

• up(se′ , re′ , Xe′ , Etm−1) with p = 1, . . . , P , are the statistics of interest and
each one can depend either on transpired events (endogenous statistics
calculated for all the dyads at each time point and given Etm−1 ) or on ex-
ogenous attributes (Xe′ ).

In the standard specification of themodel, endogenous statistics describe pat-
terns of interactions occurring in the network that are quantified at each time
point by considering the whole history of events that happened from the ini-
tial state of the network (i.e., the first observed relational event) until the time
point before the current one (i.e., tm−1 in (3.2)). For instance, consider the stan-
dard formulation of the inertia statistic, which is a dyadic endogenous statistic
that quantifies the volume of interactions of a specific dyad that occurred until
the current time point. Inertia quantifies the extent to which specific relational
events keep repeating over time. The corresponding formula at a generic time
point tm with history Etm−1 is

inertia(i, j, tm) =
∑

e∈Etm−1

Ie(i, j) (3.3)

where Ie(i, j) is the indicator variable that assumes value 1 if the event e ∈
Etm−1 has se = i and re = j, 0 otherwise. The event rate for any possible event
e′ ∈ R at time tm with only the inertia in the linear predictor can be written as

λ(se′ , re′ , Etm−1 ,β) = exp
{
βinertiainertia(se′ , re′ , Etm−1)

}
(3.4)

A positive estimate for βinertia reflects that actors interact at higher rates with
those actors who were often receivers of their past interactions. This is a sign
of social routinization: what happened in the past is bound to be repeated over
and over into the future. For instance, consider Figure 3.1 where a sequence
of events from t1 to t14 is represented on a time line. In order to calculate the
inertia at time t15 for the specific dyad (i, j) we need to count the number of
past events in the history Et14 where i targeted an action to j, which is six in the
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Et14

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15

(i, j) (j, i) (l, j) (i, j) (i, l) (j, i) (i, j) (j, i) (i, j) (j, l) (i, j) (l, j) (j, i) (i, j)

Et14,3 Et14,2 Et14,1

0secs30mins2hrs∞

Figure 3.1: Example of the calculation of Inertia for the dyadic event (i, j), given the his-
tory of eventsEt14 = {et1 , . . . , et14}.The event of interest in the calculation of the statistic
is written in black, others are gray. Without considering intervals, the value of inertia at
time t15 is 6: the total count of (i, j) events already occurred. When considering inter-
vals (time bounds of each interval of the event history are highlighted by upwards arrows
and labeled as Et14,1, Et14,2 and Et14,3), the value of inertia across the three intervals be-
comes inertia1(i, j, t15) = 1, inertia2(i, j, t15) = 3, and inertia3(i, j, t15) = 2, where each
one corresponds to the number of times that the event (i, j) is observed within each
interval.

example. Although this approach would give insights into how previous interac-
tions between actors have influence on the event rate, we would be assuming
long-passed events (such as those that happened 14 and 11 events ago, over
two hours ago) to be equally influential as recent ones (such as the events that
are only 1 or 4 events–or 45 minutes or so–old) in the computation of the statis-
tics as well as on the event rate itself. This assumption may not be realistic for
relational event data in practice as indicated earlier. Hence, our objective is
to specify a model that is capable of accounting for this mutable effect of past
events on the dyadic event rate.

3.3 A step-wise memory decay model

3.3.1 Step-wise decay for first-order endogenous effects

As a first step, we model the relative importance of past events as a function of
the transpired time since the event was observed using a discretized, step-wise
memory decaymodel (Perry &Wolfe, 2013). After the transpired time is divided
into fixed intervals, endogenous statistics are computed for each interval and
the corresponding endogenous effects are estimated. These effects quantify
the relative importance of past events in predicting future events. For instance,
considering the event sequence in Figure 3.1, we observe that at t15 more than
twohours have transpired since the starting timepoint andwedivide the history
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of events Et14 into three sub-histories according to a set γ of increasing time
lengths, for example, γ = (0secs, 30mins, 2hrs,∞)

Et14,1 = {e ∈ Et14 : (t15 − te) ∈ (0secs, 30mins]}

Et14,2 = {e ∈ Et14 : (t15 − te) ∈ (30mins, 2hrs]}

Et14,3 = {e ∈ Et14 : (t15 − te) ∈ (2hrs,∞)}

(3.5)

where the first sub-history Et14,1 contains all events transpired until 30 min-
utes before t15; the second, Et14,2, includes those events happened between
30 minutes and 2 hours before t15; lastly, the third sub-history, Et14,3, includes
all events happened more than 2 hours before t15 (the right bound is left un-
defined here). In Figure 3.1, the partition into sub-histories is shown by the
upwards arrows corresponding to the time lengths γ.

Therefore, three values of inertia can be calculated at any time point tm in the
observed sequence by considering the three different partitions of the event
history according to the increasing time lengths (γ).

inertiak(i, j, tm) =
∑

e∈Etm−1,k

Ie(i, j) with k = 1, 2, 3 (3.6)

Following the example in Figure 3.1, corresponding values of inertia accord-
ing to intervals at time point t15 are: inertia1(i, j, t15) = 1, inertia2(i, j, t15) = 3

and inertia3(i, j, t15) = 2. Wemay expect that events that occurred inEt14,1 have
a larger impact on the event rate than those occurring in Et14,2 and Et14,3. Al-
though we do not make this assumption (as the goal is to learn from the data),
the estimated effects relative to the three statistics will generally decrease in
actual data, making the regression coefficient for inertia based on the most re-
cent sub-history higher than that of inertia based on the most distant events,
that is βinertia1 > βinertia2 > βinertia3 .

In a more general case where K partitions of the current event history are
defined according to increasing time lengths, such as

γ = (γ0, γ1, . . . , γK) with 0 = γ0 < γ1 < . . . < γK = ∞ (3.7)
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we can partition the event history Etm−1 at time tm into subsets as

Etm−1,1 =
{
e ∈ Etm−1 : γe(tm) ∈ (0, γ1]

}

Etm−1,2 =
{
e ∈ Etm−1 : γe(tm) ∈ (γ1, γ2]

}

...

Etm−1,K =
{
e ∈ Etm−1 : γe(tm) ∈ (γK−1,∞)

}

(3.8)

where γe(tm) = tm − te represents the elapsed time at tm since the past event
e ∈ Etm−1 . The general formula for inertia relative to the dyadic event e with
(se = i, re = j) in the k-th partition of the Etm−1 at time tm is

inertiak(i, j, tm) =
∑

e∈Etm−1,k

Ie(i, j) with k = 1, . . . ,K (3.9)

The event rate for any possible event e′ ∈ R at time tm where inertia is defined
across K partitions is

λ(se′ , re′ , Etm−1 ,β) = exp

{
K∑

k=1

βinertiak inertiak(se′ , re′ , tm)

}
(3.10)

Once statistics are calculated across the K partitions, their corresponding
parameters βinertia,k, with k = 1, . . . ,K, can be estimated using the likelihood
function in (3.1). In the interval case for the inertia, parameters express how the
propensity of actors to target their actions to the same past receivers changes
as a function of the recency of past events.

The use of interval statistics according to K partitions of the event history
directly relates to the dynamic of the estimated effects and their evolution will
follow a step function as in Figure 3.2 with a mathematical function as in (3.11),
that is based on the time lengths γ used to create the partitions:

βinertia(γ) =






βinertia1 if γ ∈ (γ0, γ1]
...

βinertiaK if γ ∈ (γK−1, γK ]

0 otherwise

(3.11)
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Figure 3.2: step-wise function for the effect of Inertia on the event rate. The func-
tion defines three intervals of the elapsed time γ (on the x-axis): the first interval
γ ∈ (0secs, 30mins], the second interval γ ∈ (30mins, 2hrs] and the third interval
γ ∈ (2hrs,+∞). The y-axis shows the value of the effect βinertia for each interval.

Step-wise memory effects can also be modeled for other first-order endoge-
nous statistics such as reciprocity, sender/receiver-in/out-degree whose formu-
las can be found in Appendix A.1.

3.3.2 Step-wise decay for higher order endogenous effects

Besides statistics that are based only on past interactions within a given dyad,
the effects of higher order statistics involvingmore than two actors, can be used
as well within this approach. Higher order endogenous statistics are character-
ized by more than one dyadic relational event in their formula. As such, the
behavioral pattern of interest is more complex substantively as well as its com-
putation. Indeed, in the case of triadic statistics, as with transitivity, the com-
putation consists in the quantification of the number of times a dyad could po-
tentially close a particular triangular structure if it occurred as next interaction
after a specific sequence of past events.

Figure 3.3 describes the pattern of the transitivity closure (Schecter et al.,
2018b) in the context of relational event data where interactions are time- or-
dered. The search for specific behavioral patterns can be improved by intro-
ducing such time-ordering in the calculation of the statistics. Specifically for
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i

l

j

tm − δ1

(a) opening the triad: relational
event (i, l) ∈ Etm−1 observed
at time tm − δ1.

i

l

j

tm − δ2

(b) informationmediation stage
operated by l: relational event
(l, j) ∈ Etm−1 observed at
time tm − δ2.

i

l

j

tm

(c) closing the triad: relational
event (i, j) that can potentially
happen at time tm closing the
triangular structure.

Figure 3.3: Figures from left to right describe the pattern of the transitivity closure in
three time-framed steps. The time order of the three steps is described on the top of
each graph, and it goes from the left, where the event (i, l) opens the potential triad at
tm − δ1, to the right, where the last event (i, j) closes the triad at tm. Therefore, given
the event history Etm−1 , the possible event (i, j) occurring at tm (3.3c) can close a triad
already opened with a third actor (l in the example) who acts as a broker in the process
of information sharing/mediation. Events (i, l) (3.3a) and (l, j) (3.3b) occur by following
the time order in the example, with δ1 and δ2 at time tm being the transpired times since
the two events (i, l) and (l, j), such that tm − δ1 < tm − δ2 and 0 ≤ δ2 < δ1 < tm. There-
fore, in this formulation the time order of the occurrence of events characterizing the
triangular structure is taken into account. Gray nodes and dashed gray arrows indicate,
respectively, inactive actors and events already occurred, whereas active actors and the
occurring dyadic event are in black.

transitivity closure, the following formula computes the statistic for the dyad
(i, j) at time tm:

transitivity closure(i, j, tm) =
∑

l∈S\{i,j}

∑

e∈Etm−1

∑

e∗∈Etm−1 :

te∗∈[te−γe(tm),te)

Ie(l, j)Ie∗(i, l)

(3.12)
where:

• Ie(l, j) is the indicator variable that assumes value 1 if the event e ∈ Etm−1

has se = l and re = j, and value 0 otherwise (the same reasoning applies
to the other indicator variables in (3.12));

• e and e∗ are any pair of events belonging to the event history Etm−1 such
that te∗ < te;

• γe(tm) = tm − te is the time transpired at tm since the event e ∈ Etm−1 .

Figure 3.4 shows an example of the formula in (3.12) for just one l ∈ S \ {i, j}
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(j, k) (i, l) (k, l) (j, k) (i, l) (l, k) (l, j) (i, l) (j, k) (i, l) (l, i) (l, j)(l, k) (k, l)

ta te tm−1 tm

Etm−1

e∗ : te − γe(tm) ≤ te∗ < tea∗ : ta − γa(tm) ≤ ta∗ < ta

i

l j

Figure 3.4: Example of the calculation of transitivity at tm for the dyad (i, j) and informa-
tionmediator l: the event historyEtm−1 counts only two events (l, j), at time te and ta. In
order to quantify the contribute of l to the transitivity(i, j, tm)we : (i) find the second-last
event in the pattern, that is (l, j), two in the example at te and ta (in black); (ii) consider
the backward intervals [ta− γa(tm), ta) and [te− γe(tm), te)] (black squares in the figure);
(iii) for each interval quantify the number of (i, l) observed (in red). In the example, the
contribution of events a and e to the statistic is, respectively, 2 (because two events (i, l)
are observed in the backward interval of ta) and 1 (because one event (i, l) is observed
in the backward interval of te). Thus, the value of transitivity for (i, j) at tm with mediator
l is given by their sum, that is 3: if (i, j) is the next event to occur it is going to close three
potential triads where the information mediator was l.

at time tm, with a history of events Etm−1 . In the example, two dyadic events
(l, j), noted as e and a, occurred at te and ta before tm. For each of them we
seek backward for those events e∗ and a∗ that occurred within intervals based
on the transpired time of e (γe(tm) = tm − te) and a (γa(tm) = tm − ta) that are
respectively [te − γe(tm), te) and [ta(tm) − γa, ta). Hence, if any event e∗ or a∗ in
these intervals has sender i and receiver l then the product of the two indicator
variables in (3.12) will be one and so will be contribute to the sum, and is zero
otherwise. In the specific example, as to event a we observe two dyadic events
(i, l) that happened in [ta − γa(tm), ta), whereas for e we find just one event (i, l)
that occurred in [te−γe(tm), te). Therefore, if the dyad (i, j) is going to occur at tm
it would close at least three potential triangular structures (of the type described
in Figure 3.3) where the actor l is the information mediator. The quantification
in Figure 3.4 is just a simple example where the calculation of the transitivity
is performed only in the case where the specific actor l is the mediator (with
l being a different actor from i and j). To quantify the transitivity closure for
the dyad (i, j), which describes the total number of triangular structures closed
by the occurrence of (i, j) at tm, we have to sum all the potential triads that
could be closed considering all the possibleN−2 informationmediators. This is
described in formula (3.12) by the outer sum across all the actors in the network
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excluding i and j (S \ {i, j}) and indexed by l. The new formula for transitivity
closure accounts for the time order of events in the triadic behavioral pattern
and assumes that those events (i, l) happened earlier than an event (l, j) and
will count in the formula if and only if they transpired within the same time span
of the specific (l, j).

The event rate for any possible event e′ ∈ R at time tmwith only the transitivity
in the linear predictor is written as

λ(se′ , re′ , Etm−1 ,β) = exp
{
βtransitivitytransitivity(se′ , re′ , Etm−1)

}
(3.13)

A positive βtransitivity means that the more partners se′ and re′ had in common
in the past the more likely se′ will choose re′ as receiver of its next interaction.
Vice versa, when βtransitivity < 0, the rate of the event e′ lowers, meaning that
there is a tendency by actors to discourage closure and thus to engage in fewer
interactions with those actors they had shared a partner with. The statistic in
(3.12) refers to the event history Etm−1 , that is the entire sequence of events
since the onset until tm−1 (including etm−1 ). The βtransitivity may depend on how
recently the event (l, j) occurred. Thus, transitivity can be redefined across in-
tervals in the same way as inertia in Section 3.3.1.

Consider themore general case ofK partitions of the current event history (as
in (3.8)) according toK+1 increasing time lengths γ (as in (3.7)). The transitivity
as regards the k-th interval, for the dyad (i, j) at time tm will be,

transitivityk(i, j, tm) =
∑

l∈S\{i,j}

∑

e∈Etm−1,k

∑

e∗∈Etm−1 :

te∗∈[te−γe(tm),te)

Ie(l, j)Ie∗(i, l) (3.14)

where the quantification of potential triads is divided through the K intervals
of the history Etm−1 =

{
Etm−1,1, . . . , Etm−1,K

}
according to the time transpired

at tm since the event e, that is γe(tm). However, the seeking of the event e∗ still
considers the time interval as in (3.12). By using the interval formulation we are
interested in understanding whether there exists an evolution of the transitivity
effect on the event rate that depends on the recency of events constituting the
triadic pattern. According to the step-wise formulation of transitivity, we can
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Figure 3.5: step-wise function for the effect of Transitivity on the event rate. The
function defines three intervals of elapsed time γ (on the x-axis): the first interval
γ ∈ (0secs, 30mins], the second interval γ ∈ (30mins, 2hrs] and the third interval
γ ∈ (2hrs,+∞). The y-axis shows the value of the effect βtransitivity for each interval.

rewrite the rate in (3.13) as follows:

λ(se′ , re′ , Etm−1 ,β) = exp

{
K∑

k=1

βtransitivityk transitivityk(se′ , re′ , tm)

}
(3.15)

The effect of transitivity across intervals conveys more information than in
the case without intervals. Although, the interpretation of positive and negative
effects remains the same (i.e. positive effects still promote the closure of triads
as well as negative effects keep discouraging it), the intensity of such behaviors
that promote/discourage triadic closure can change over time and this is the
additional information we are after. For instance, if the effects from the first to
the last interval are positive and decreasing, that is βtransitivity1 > . . . > βtransitivityK ,
this means that the closer in time the events in the triad are to each other the
faster the third event in the pattern is likely to happen.
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The function in (3.11) can be written also in the case of triadic statistics:

βtransitivity(γ) =






βtransitivity1 if γ ∈ (γ0, γ1]
...

βtransitivityK if γ ∈ (γK−1, γK ]

0 otherwise

(3.16)

A simple example of step-wise effects for transitivity closure is shown in Figure
3.5: if we only consider transitivity closure in themodelwe can conclude that the
more triadic events occurred recently, the sooner the third event in the triadic
pattern is likely to happen. Formulas of further second-order statistics can be
found in Appendix A.1.

3.3.3 Estimation of a relational eventmodel with a step-wise
memory decay

The relational eventmodel with step-wisememory decay of endogenous effects
has the advantage that it can be easily estimated using existing software as
relevent (Butts, 2008), goldfish (Stadtfeld & Hollway, 2020), rem (Bran-
denberger, 2018a), or remverse (Mulder et al., 2020). This can be done as
follows. First, the transpired time needs to be divided into disjoint intervals
with bounds γ0, . . . , γK . The bounds should be determined such that the step-
wise function will be able to capture the expected memory; for periods where
a fast (slow) decay is expected narrow (wide) intervals should be chosen. Next,
each endogenous statistic (e.g., inertia, transitivity) is split in K separate statis-
tics that capture the volume of past interactions in theK intervals of transpired
time. The resulting set of relational event statistics can then be plugged into
existing functions for fitting relational event models.

Despite the computational advantage, the step-wise memory decay in (3.11)
and in (3.16) has two potential challenges: a substantive challenge is that it
may not always be realistic that memory decay occurs in a step-wise fashion
in real life; a methodological challenge is that it may be unclear howmany inter-
vals (K) should be chosen and where the boundaries γ = (γ0, . . . , γK) should
be placed. When a researcher aims to learn a more fine-grained, potentially
smoother continuous decay, it is of course possible to increase the number of
intervals. However, wewould still be constraining results to prespecified bound-
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aries (the choice for which may not be obvious) and estimates could lose accu-
racy as this would greatly increase the number of free parameters in the model
to be estimated and reduce the number of events per interval. Therefore, we
now take the following two steps. First, we develop a continuous memory de-
cay approach that solves these issues. Next, we show how the step-wise model
can be used as a building block for an approximation of this continuous decay
model.

3.4 The gradual nature of memory decay

Since past events often lose their effect gradually over time (rather than step-
wise), we propose an often more realistic form of the memory decay in (3.11)
and (3.16) where, instead of constraining effects to be constant within intervals
of γ, their change can be continuous over it and depends on a vector of param-
eters θ that define the resulting shape of the decay. The continuous effect for
statistic u can be written as

βu(γ, θ) (3.17)

where βu is a continuous function on γ, describing the trend of the effect of u
such that βu : D → R and D = R+ \ {γ > γK}, with γK being a time length
limit either due to the empirical data or simply justified by the researcher. The
set of parameters θ ∈ S(θ) defines the shape of the decay, where S(θ) is their
support.

We propose several monotonously decreasing functions βu(γ, θ) that might
reflect the actual underlying memory decay. The continuous trends in Figure
3.6 assume effects to be positive and decreasing towards zero as the time tran-
spired since the event increases.

• linear decrease (Figure 3.6a):

βu(γ, θ1, θ2) =





θ2 − θ2

θ1
γ for γ < θ1

0 otherwise
(3.18)

where θ = {θ1, θ2}, θ2 > 0 is the maximum value assumed by the function
and − θ2

θ1
(with θ1 > 0) is the slope of the line that describes the steepness

of the decrease;
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Figure 3.6: Possible trends of the effect β for any endogenous statistics. All four trends
develop over γ (x-axis), which is the elapsed time of the event characterizing the statistic.
In these specific examples, trends decrease towards zero with different shapes depend-
ing on a set of memory parameters θ: (a) linear, (b) exponential, (c) an initial step with a
smoothed decrease, (d) two smoothed and decreasing steps.

• exponential and one-smooth-step decrease (Figure 3.6b and Figure 3.6c):

βu(γ, θ1, θ2, θ3) = θ3 exp

{
−
(
γ

θ1

)θ2}
(3.19)

where the set of parameters θ = {θ1, θ2, θ3} consists of: θ1 > 0 and θ3 > 0

that are scale parameters (θ3 corresponds to themaximumvalue assumed
by the function), θ2 > 0 is a shape parameter. The survival function of a
Weibull distribution is a specific case of the function (3.19) where themaxi-
mumvalue is θ3 = 1. Moreover, where θ2 = 1, θ3 = 1

θ1
, the (3.19) reduces to
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the exponential decreasing weight in Brandes et al. (2009) and the half-life
parameter is then calculated as T1/2 = θ1 log 2. In most cases (except for
the exponential one) the trend starts evolving at an initial constant value
(one-smooth-step trend) that is themaximumvalue θ3 and then decreases
to zero as γ increases;

• smoothed multiple steps (Figure 3.6d): this is a combination of two or
more smoothed one-step trends.

The relative influence of past events on the dyadic event rate can follow other
more complex shapes than those presented in Figure 3.6. As a result of this
continuous definition of effects, inertia as well as other endogenous statistics
are no longer computed as the accumulated number of past events but now
consist of a sum of weights, where each weight changes according to the tran-
spired time γ of each event; this reflects the relative importance of past events
updated at tm. Therefore, the event rate in (3.10) where only inertia effect is
considered and inertia is divided in K intervals becomes:

λ(se′ , re′ , Etm−1 ,θ) = exp





∑

e∈Etm−1

Ie(i, j)βinertia(γe(tm),θ)




 (3.20)

where β(γe(tm),θ) is a continuous function that returns the relative effect as
to the event e contributing to the inertia statistics, γe(tm) = tm − te is the time
transpired at tm since te (and increases over time), and θ is the set of parameters
that describe the shape of the decay. A formal mathematical procedure about
moving from a step-wise effect function to a continuous effect function can be
found in the Appendix A.2.

However, the process of estimation of the set of parameters θ governing the
memory evolution results in a computationally complex maximization of the
likelihood in (3.1). The more realistic scenario that the influence of past events
changes as a continuous function of their elapsed time since the current time
comes at the expense of constantly changing values of the network statistics;
this increases the complexity of their estimation. Hence, in the next subsection
we revalue the step-wise approach and present a Bayesian approach to approx-
imate continuous memory decay with it.
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3.5 A semi-parametric approach to estimate a
smooth memory decay

In this section we propose a methodology that (i) builds on the computational
advantage of the step-wise model introduced in Section (3.3.1), (ii) avoids the
issue of arbitrarily choosing intervals, and (iii) results in an approximate contin-
uous estimate for memory decay. This is achieved by applying Bayesian Model
Averaging (BMA) (Volinsky et al., 1999) to model memory decay in endogenous
REM statistics. The idea is to randomly generate a bag of many step-wise mod-
els with different interval configurations for the transpired time. Next, the fit of
all these models is evaluated and a weighted average of all step-wise models
(weighted according to their relative fit) is achieved. This results in that approx-
imate smooth trend for the memory decay that best fits the data.

We start with a simple examplewherewe look at inertia. If we considerQ step-
wise models and denote a single step-wise model by Mq, then the Bayesian
model average of the posterior distribution of the decay of the inertia effect
βinertia as a function of the transpired time γ is defined by

p(βinertia(γ)|EtM ) =
Q∑

q=1

p(βinertia(γ)|EtM ,Mq)p(Mq|EtM ). (3.21)

Bayesian model averaging is, in fact, a direct application of the law of total
probability where wemarginalize over the discrete model space {M1, . . . ,MQ}.
Note that the law of total probability can be applied because a Bayesian frame-
work allows us to quantify the uncertainty about a statistical model using prob-
abilities. For other endogenous effects or other quantities of interest, Bayesian
model averaging can be used in a similar manner. The posterior probabilities,
p(Mq|EtM ), serve as relative weights in the Bayesian model average. Below, we
consider two approaches to quantify these probabilities: BIC and WAIC. Before
discussing these we explain how we can generate a bag of step-wise models to
approximate different memory decay functions.
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Figure 3.7: Examples of approximation of three different decays (red lines) by means
of three types of step-wise functions (black lines) defined according to three different
types of interval widths. The type of decay differs row-wise, from the top to the bottom:
exponential decay, one-smooth-step decay and linear decay. The type of interval widths
differs column-wise, from left to the right: increasing size, decreasing size and equal size
intervals. The maximum time width is fixed to γK = 7.5.

3.5.1 Generating a bag of step-wise relational event models

First, we define a bag of Q step-wise relational event models where the tran-
spired time is divided into interval configurations:

Mq : γq, with γq = (γq0, . . . , γqKq ),

whereKq denotes the number of intervals in modelMq. In order for the bag of
models to approximate a variety of possible shapes, we vary both the number
of intervals (K) and the widths of the intervals. The sequences of time widths
may be generated according to three features reflecting three possible changes
of the decay over time:
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(i) when memory change is likely to be stronger for the more recent events
and to change less for events that already are in the farther past (where
it is approximately constant) (e.g., an exponential decay), then intervals
with increasing size will better catch this behavior and their widths will
follow the inequality: γk − γk−1 < γk+1 − γk for k = 1, . . . ,K − 1. In other
words, memory is short such that events are ”forgotten” fairly fast and the
most recent events carry a much higher weight than less recent events,
and fairly distant events have as little effect on the future as events from
the far past. The increasing size intervals (i) are generated by means of an
algorithm based on the Dirichlet distribution and its pseudocode can be
found in Appendix A.3.

(ii) if the decay is expected to occur in the long term (close to γK ) whereas it
is steady during the more recent past (e.g., a one-smoothed step decay),
then intervals with decreasing size will be best capable of catching this be-
havior and their widths will satisfy the inequality: γk − γk−1 > γk+1 − γk

for k = 1, . . . ,K − 1. These widths can be generated by simply inverting
the increasing widths in (i). This represents the situation where the effect
of events decays only slowly for a while until they are far enough back in
time, which is when they lose their effect fast (e.g., where events from the
past week matter, but anything beyond that is quickly forgotten). The de-
creasing size intervals (ii) are generated by first drawing random intervals
using increasing intervals according to (i), and subsequently, the order of
the widths are inverted.

(iii) if the decay is likely to decrease at a constant pace (e.g., a linear decreasing
function), intervals of the same size will most easily emulate this behavior.

Figure 3.7 illustrates how different interval configurations can approximate
different possible shapes. The figure also shows that a single step-wise model
cannot approximate these smooth shapes accurately. Rather, an appropriate
approximation can be achieved by taking a weighted average ofmany step-wise
models. We discuss the computation of these weights next.
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3.5.2 Evaluating thefit of the step-wise relational eventmod-
els

In this section, we describe two weighting systems for the Q step-wise models
that were generated in the previous section. The first weighting system is based
on the BIC (capturing the probability of the observed data under each step-wise
model (Raftery, 1995; Schwarz, 1978)). The second weighting system is based
on the WAIC (which quantifies the predictive performance of each step-wise
model (Vehtari et al., 2017; Watanabe, 2013)).

BIC weights

In a Bayesian analysis, the posterior probability of a model is obtained using
Bayes’ theorem:

p(Mq|EtM ) =
p(EtM |Mq)p(Mq)

p(EtM )
,

where p(EtM |Mq) denotes the probability of the observed data under a given
model (also referred to as themarginal likelihood), p(Mq) is the prior probability
of themodel, and p(EtM ) is themarginal probability of the data. We assume that
all step-wisemodels are equally likely a priori, i.e., p(Mq) =

1
Q . The computation

of the marginal likelihood can be expensive (Kass & Raftery, 1995). For this
reason the Bayesian information criterion is used as an approximation (Raftery,
1995; Schwarz, 1978):

p(EtM |Mq) ≈ exp{−BICq/2},

where the BIC of modelMq is computed as

BICq = dq log(n)− 2p(EtM |β̂q),

where dq is the number of parameters under model Mq and p(EtM |β̂q) is the
maximized log likelihood underMq.

Thus, the normalized BIC weight for the q-th model is

wBIC
q =

exp {−BICq/2}∑Q
r=1 exp {−BICr/2}

(3.22)

Despite its theoretical and computational appeal, it has been shown that the
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marginal likelihood, and its approximation via the BIC, may not perform well in
Bayesian model averaging problems when the “true model” is not part of the
bag of models that is considered. This is also called aM-open model selection
problem (Yao et al., 2018). In the current setting this would be the case when
the true decay function is smooth, that is not part of the bag of models but it
could very well be the true shape of the decay in real-life networks. In this case,
the relativeweight in (3.22) converges to 1 for the step-wisemodel that is closest
to the truth as the sample size grows. However, a smooth function can better
be approximated by averaging over multiple step-wise models than by placing
all its weight on one step-wise model. In suchM-open problems it is preferable
to use weights that are based on the WAIC.

WAIC weights

WAIC weights build upon the Expected Log-pointwise Predictive Density (ELPD)
(Vehtari et al., 2017; Watanabe, 2013; Yao et al., 2018). In each step-wise model,
the ELPD quantifies the quality of the posterior predictions given the estimated
posterior distribution of the model parameters. Therefore, if the model per-
forms well in predicting new observations, then the predictive power quantified
by the ELPD will assume a high value on a log-density scale as well as on a den-
sity scale. The calculation of the Watanabe–Akaike Information Criterion (WAIC)
is based on an approximation of the ELPD as follows:

êlpd
waic
q = l̂pdq − p̂waicq for q = 1, . . . , Q (3.23)

where the Log-pointwise Predictive Density (l̂pdq) represents the predictive log-
density calculated on in-sample observations and typically overestimates the
actual ELPD. This can be corrected by subtracting p̂waicq , which quantifies the un-
certainty introduced by the posterior distribution of the model parameters (βq)
in predicting the in-sample observations and can be seen as a form of penaliza-
tion.

Hence, WAIC weights are computed as

wWAIC
q =

exp
{
êlpd

waic
q

}

∑Q
q=1 exp

{
êlpd

waic
q

} , q = 1, . . . , Q (3.24)
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Thus, the higher the estimated predictive power of a model (êlpd
waic
q ), the

higher its WAIC-based weight (wWAIC
q ).

3.5.3 Bayesian model averaging for approximating smooth
decay functions

By means of BMA one can elicit a posterior estimate of a quantity of interest as
well as its average posterior predictive distribution by finding the optimal linear
combination of a set of models, and accounting, in turn, for their uncertainty. A
crucial aspect of BMA is the use of model weights that quantify the relative im-
portance of themodels according to their posterior probability. In Section 3.5.2,
we considered two weighting systems that can be employed in the estimation
of the memory decay trend. Here we explain how to get posterior draws of
the decay function of an endogenous effect from the Bayesian model averaged
posterior.

In BMA, the posterior estimate of any parameter of interest can be calculated
as the weighted mean of the posterior estimates provided by each model in
the averaging. Considering (3.21), we can generate a posterior draw by first
randomly selecting a model from the bag of models according to their relative
weights, and then generate a trend from the posterior distribution of the se-
lected model. We achieve this last step by approximating the posterior of β
using a multivariate normal distribution where the mean is equal to the max-
imum likelihood estimates and the posterior covariance matrix is set equal to
the error covariance matrix. This is an application of large sample theory in a
Bayesian framework (Gelman et al., 2013). We consider the following steps to
get posterior draws:

1. Draw a model from Mq|EtM ∼ Multinomial(w), where the vector of nor-
malized weightsw = (w1, . . . , wQ) quantify the relative fit of the respective
step-wise models;

2. Generate a vector of posterior effects from β|Mq, EtM ∼ MVN(β̂q, Σ̂q).
The posterior distribution for the step-wise model Mq (the model drawn
at the first step) is approximated by amultivariate normal distributionwith
parameters given by maximum likelihood estimates under modelMq and
corresponding error covariance matrix;

3. Repeat steps 1 and 2 a sufficient number of times.
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(a) Result of the Bayesian Model Averaging: poste-
rior draws of (step-wise) β generated by repeat-
ing step 1. and 2.

(b) Estimating the posterior trend (first step): defin-
ing a dense grid of evenly spaced γ ’s (vertical
dashed red lines).

(c) Estimating the posterior trend (second step): for
each γ the corresponding interval effect in each
posterior step-wise draw is selected. The result-
ing density characterizes the posterior density at
the specific γ.

(d) Posterior trend of β: for each γ and given the
corresponding estimated posterior density (esti-
mated in (c)), the posterior mode as well as the
highest posterior density interval are estimated.

Figure 3.8: The estimate of the posterior decay is explained here in four plots: (a) BMA:
result of repeating step 1. and 2. in the approximation of the posterior distribution of β
over γ bymeans of step-wisemodels; (b) selecting a grid of γ ’s (vertical dashed red lines);
(c) posterior conditional densities at given γ ’s; (d) resulting posterior trend of β (the gray
region represents the highest posterior density interval at 95%).

After these three steps, the resulting posterior distribution of each endoge-
nous effect β over γ resembles Figure 3.8a. Then, we estimate the posterior
decay of the effect over γ as follows: (i) define a (dense) grid with evenly spaced
γ ∈ [0, γK ], where γK is usually based on the data (Figure 3.8b, first step); (ii)
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for each γ select the corresponding interval effect in each posterior draw (as
shown by the step-wise functions in (3.11) and (3.16)), this selection results in a
posterior density at a given γ (Figure 3.8c, second step); (iii) calculate the poste-
rior mode of these densities as well as their highest posterior density intervals
at each γ, resulting in a semi-continuous effect decay (Figure 3.8d). As a con-
sequence of this, the posterior estimate of those statistics that are not defined
in intervals (e.g, a baseline effect) is simply obtained with the draws generated
after the three initial steps.

3.5.4 Computational details of the BMA

The most expensive step before estimating the posterior decay with the BMA
is the estimation of all the Q step-wise models in the bag. This subsection fo-
cuses on computational complexity of step-wise models compared to paramet-
ric decay models (e.g., exponential decay). We describe two stages where such
models show differences in terms of their computational complexity: (1) the
computation of endogenous statistics and (2) the estimation stage.

Calculation of endogenous statistics: a comparison on the number of op-
erations performed in a single model

The computation of endogenous statistics is a time-consuming stage as it must
be carried out across all the observed time points (M ) and for all the dyads
that can occur over time. Without loss of generality we assume that at each
time point all dyads are at risk of occurring, thus we consider the complete
risk set as it is assumed in (3.1) where D = |R| = N × (N − 1), with N being
the number of actors and D the number of dyads in the risk set R. When a
parametric weight decay is used (e.g., exponential decay), the computation of
the endogenous statistics requires more operations than what is required in
a step-wise model: the weight of past events has to be updated at each time
point where an event is observed and according to the weight decay function.
Such update requires the numerical evaluation of the decay function and this
eventually increases the needed computational time.

The continuous update of the event weights is not required for the step-wise
decay model where past events are assumed to have a unitary weight in each
interval. Therefore, for a step-wise model the main steps for computing each
endogenous statistic consist of: (i) at each time point defining the partitions of
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the event history according to theK intervals describing the step-wisemodel, (ii)
computing each endogenous statistic within such intervals. We optimize these
two steps byminimizing the number of times that the algorithmhas to compute
the endogenous statistics according to each specific interval. Some time inter-
vals might appear more than once along the event sequence. Therefore, we
first find the time boundaries of theK intervals across all the time points, then
we consider the reduced set of intervals and calculate the endogenous statistics
according to this reduced set. Finally, for each interval of the reduced set, the
value of the endogenous statistics for all dyads is assigned to the correspondent
interval in the original data-structure for the statistics, which is used in the esti-
mation stage. This improvement makes the computation of the statistics faster
since we avoid to compute the same statistic more than once. This optimiza-
tion only works for endogenous statistics such as inertia, reciprocity, in-/out-
degree, and other first-order endogenous statistics as well as for second- or
higher-order endogenous statistics where the time order of the events doesn’t
affect the value of the statistic.

The number of operations required in the computation of a single endoge-
nous statistic can be quantified as follows:

• In a step-wise decay model without our optimization, the number of oper-
ations is (M − 1) × D × K + (M − 1) × (K + 1), where (M − 1) × D × K

consists of the number of times the statistic is computed, which is at each
time point for each interval and for all dyads. We considerM − 1 because
at time t1 all endogenous statistics assume value zero for all dyads. Fur-
thermore, (M − 1) × (K + 1) is the total number of updates of the time
boundaries characterizing theK intervals throughout the event sequence.
This step runs fast because it only requires simple subtractions between
numbers;

• In a step-wise decay model where our optimization is performed the num-
ber of operations isΨ (t,γ)×D+(M−1)×(K+1), whereΨ (t,γ) is the size
of the reduced set of intervals; this isΨ < (M−1)×K and it depends both
on the vector of observed time points t = (t1, . . . , tM ) and on the vector
of K + 1 increasing widths γ = (γ0, γ1, . . . , γK) that define the K intervals
over time. Furthermore, (M−1)× (K+1) again is the number of times we
have to update the time boundaries before finding the reduced risk set;

• In a parametric decaymodel (e.g., exponential, linear, or other decays) the
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Figure 3.9: Distributions of running times for the endogenous statistic Inertia (in sec-
onds). 3-steps, 4-steps and 5-steps models are compared to the parametric model with
exponential decay. For each type of model, the running time was measured 1000 times.

number of operations is (M − 1)×D+ M×(M−1)
2 , where (M − 1)×D is the

number of times the statistic is computed and M×(M−1)
2 is the number of

total updates for the weights of the already-occurred dyads.

Let us compare the optimized step-wise decay with the parametric decay
model. For this effort, we assume that: (i)K is set to a lownumber around3, 4 or
5 intervals; and (ii) the update of one single event weight requires as much com-
putational time as the update of one time bound. Then, the number of updates
in a parametric decay increases faster than in a step-wise decay. Indeed, the
(M − 1)× (K +1) operations for the computation of the time boundaries in the
optimized step-wisemodel follow a linear function of the number of events (M ),
whereas the M×(M−1)

2 operations for the update of the weights in the paramet-
ric model follow a quadratic function of the number of events. Unfortunately,
the optimized approach for the step-wise model cannot be performed on the
transitivity closure introduced in Section 3.3.2, because the order of events in
the triadic pattern matters. However, the optimization for the first-order statis-
tics already saves much computational time, because in the estimation of more
endogenous statistics the reduced set of intervals will be shared and calculated
only once. In Figure 3.9, we compare the running times for estimating inertia
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using four models: the optimized step-wise model with K = {3, 4, 5} and the
parametric decay model with exponential decay. Per each model, a set of in-
tervals or half-life values were chosen, and their running times for computing
inertia were repeatedly measured (each run of the algorithm was parallelized
on 8 threads). Finally, every model has a total number of 1000 samples of run-
ning times. We performed such analysis on the empirical data used in Section
3.6 where the number of actors is N = 10, the number of dyads is D = 90 and
the number of events isM = 7567.

Estimation stage: comparison on the number of parameters to be esti-
mated

Considering Uexo exogenous statistics (including the intercept) and Uendo en-
dogenous statistics, in the estimation stage the total number of parameters to
be estimated is

• Uexo + Uendo in REMs where endogenous statistics follow any parametric
weight decay (e.g., exponential, linear, one-step decay);

• Uexo + (Uendo ×K) in step-wise REMs where K is the number of intervals
(steps) and all the endogenous statistics follow the same step-wise model.

Therefore, a step-wisemodel has alwaysmore parameters than amodel with
any parametric decay. However, this disadvantage at the estimation stage is not
really an issue because it is not recommended to considermany intervals as the
uncertainty around estimates increases when intervals become narrower and
only a few events fall inside them.

3.6 Case study: investigating thepresenceofmem-
ory decay in the sequence of demands sent
among Indian socio-political actors

We have now introduced our modeling approach, starting from a purely step-
wise decay model to a continuous decay model based on model averaging of a
set of step-wise models. In this section, we illustrate the method by applying it
to empirical data. First, we describe the empirical application and dataset. Next,
we present analyses using different prespecified step-wise decay functions, fol-
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lowed by an application of the Bayesian model averaging estimated to obtain
approximate smooth decay functions. Finally, we compare the semi-parametric
model (that results from the Bayesian Model Averaging) with other relational
event models where the memory decay is fixed either to a step-wise or expo-
nential decay. In this comparison we focus on the predictive performance of
the models as well as their resulting fit.

3.6.1 Relational events between socio-political actors

We retrieved data from the ICEWS (Integrated Crisis Early Warning System)
(Boschee et al., 2015) repository, which is hosted in theHarvardDataverse repos-
itory. ICEWS consists of relational events interactions between socio-political
actors that were extracted from news articles. Information about the source ac-
tor, the target actor, and the event type is recorded alongwith geographical and
temporal data that are available within the same news article. Event types are
coded according to the CAMEO (Conflict and Mediation Event Observations) on-
tology. In this example analysis, we focus on the sequence of relational events
within the country of India. Each event represents a request from an actor tar-
geted to another actor. These requests range from humanitarian to military or
economic in nature and in this analysis this distinction is not made.

The event sequence includes M = 7567 dyadic events between June 2012 and
April 2020 among the ten most active actor types: citizens, government, police,
member of the Judiciary, India, IndianNational Congress Party, Bharatiya Janata
Party,ministry, education sector, and ”other authorities.” Since the time variable
is recorded at a daily level, we consider events that occurred on the same day
as evenly spaced throughout that day.

The network dynamics of interest are inertia, reciprocity, and transitivity clo-
sure. Given a generic step-wise model with K steps, the log-rate at any time
t ∈ [t1, tM ] and for any request e′ is:

logλ(se′ , re′ , Et,β) = β0 +
K∑

k=1

βinertiak inertiak(se′ , re′ , t)+

+
K∑

k=1

βreciprocitykreciprocityk(se′ , re′ , t)+

+
K∑

k=1

βtransitivity closurek transitivity closurek(se′ , re′ , t)

(3.25)
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Figure 3.10: MLE estimates of β̂ =
{
β̂inertia1 , . . . , β̂inertia4 , β̂reciprocity1 , . . . , β̂reciprocity4 ,

β̂transitivity1 , . . . , β̂transitivity4

}
according to three different step-wise models (with K = 4)

that are randomly chosen from the bag of the estimated models and each following
one of the three interval types (by column: increasing, equal and decreasing intervals).
The bold black line represents the step-wise function for each endogenous effect in the
model and the vertical dashed lines indicate the timebounds characterizing the intervals.

where β0 represents the logarithm of the baseline rate of requests and the re-
maining effects describe the estimated step-wise trends for the three network
statistics. Inertia quantifies the persistence of the sender in targeting its re-
quests to the same receiver, for instance because the receiver is an actor with
some socio-political relevance like a legal figure or authority. Reciprocity de-
scribes the level of reciprocation of the sender towards the receiver based on
the past volume of interactions that the receiver addressed to the sender. Tran-
sitivity closure quantifies the level of informationmediation bymeans of the vol-
ume of triads that can be potentially closed by the occurrence of event e′. We
assume that at every point in time, every possible dyad is at risk of occurring,
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hence the risk set consists of |R| = N × (N − 1) = 90 dyads.

3.6.2 Predefined step-wise decay models

As themaximum time (γK ) that past events may affect current relational events
we consider 180 days (roughly half an year). Furthermore, we consider three
different predefined step-wise memory decay functions by dividing the past
in K = 4 intervals with either increasing widths, equal widths, or decreasing
widths (as described in Section 3.5.1). Figure 3.10 shows the estimated step-
wise decay functions for inertia, reciprocity, and transitivity given the three dif-
ferent interval configurations.

As is to be expected, the threemodels result in different estimated (discretized)
shapes of memory decay. For instance, for Transitivity Closure we see that de-
creasing intervals and increasing intervals produce contrasting decays where
the decays not only follow different shapes, but the magnitudes of the effect
are different as well. The magnitudes of the effects are similar for the ”equal”
and ”decreasing” intervals, whereas for ”increasing” interval widths the magni-
tudes are quite different from the models with ”equal” and ”decreasing” widths.

In sum, step-wise models with predefined interval configurations provide us
with a very rough idea of how fast memory decays in a given relational event
network. However, predefined step-wise memory decay models provide only
limited insight into the full shape of memory decay along transpired time, or,
for example, whether an (approximated) exponential decay is more likely than
a (approximated) smooth one-step decrease. To learn this from an observed
relational event network, we need the proposed weighting system for a bag
of step-wise models together with a Bayesian model averaging approach. We
consider this next.

3.6.3 Approximately smooth memory decay models

For our bag of step-wise models, three sets of 501 intervals were generated
for K = {3, 4, 5} steps (250 intervals with increasing size, 250 intervals with de-
creasing size, 1 with equal size). Thus in total, 1503 step-wise models were con-
sidered. We chose to use around 500 models per K since we noticed that the
overall number of random intervals (1503) already provides stable final results.
The estimation of the whole bag of models required about 6.5 hours: for each
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Figure 3.11: Posterior estimates resulting from the BMA with BIC (left) and WAIC (right)
weights, from the top to the bottom: posterior distribution for the intercept (β0), poste-
rior trends for inertia, reciprocity and transitivity closure. The gray area (dashed lines for
the intercept) is generated by the posterior highest density intervals calculated until 20
days (maximum value plotted on the x-axis).

step-wise model the computation of the endogenous statistics as well as the
estimation of parameters was parallelized on 8 threads1.

Figure 3.11 shows the posterior trends resulting from two Bayesian Model
1The device used for running the whole-bag estimation had a CPU Intel(R) Core(TM) i7-8750H,

Processor Base Frequency 2.20GHz, 8Gb of RAM.
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Averaging approaches: one with BIC weights (left panels) and one with WAIC
weights (right panels). Becausemost of the decay occurs in the first twenty days,
only this period is plotted in the figure. The intercept β0 is the only parameter
without a decay by definition and the posterior point estimate of the baseline
event rate is exp

{
β̂0

}
≈ 0.0129 (similar for both BIC and WAIC weights; upper

panels).

Since the network consists of nodes that represent collectives of individuals,
it is important to interpret the estimated memory decay functions as referring
to the memory of groups, rather than of individuals. Focusing on the results for
the WAIC weights in Figure 3.11 (right panels), all the three trends show a clear
approximately exponential memory decay. The drastic decrease near zero sug-
gests that recent requests have a much higher impact on the event rate than
less recent ones. Therefore, the trend observed for inertia indicates a tendency
of actors to keep sending requests to the same recipient of their most recent re-
quests. This reflects ”short-lived inertia” (driven by the requests that happened
in a fairly recent past) rather than ”long-lived inertia” (where requests that have
occurred over a much longer time span continue to be repeated).

For reciprocity, we see that memory drops a bit faster than for inertia and
stabilizes around a low value that decreases further, indicating that actors re-
ciprocate on requests received in the very recent past, but requests that were
not responded to quickly are soon ”forgotten” and are unlikely to be responded
to. Norms of reciprocity are clearly not enduring and non-reciprocated requests
disappear fromsocialmemory very quickly. Finally, transitivity is similarly driven
by very recent interactions. Considering that dyadic requests only briefly trigger
the tendency to respond, it makes sense that having common past communi-
cation partners also mainly matters if those joint interactions date back to only
recent history rather than to a period somewhat longer ago.

Together, the results paint a picture of a ”delusion of the day” kind of politics.
Interactions between these institutional actors appears to be driven by current
events in the country, where response to actuality appears more predictive of
future interactions than long-term governed interaction. While this may be typ-
ical of governmental interactions, the effect may be strengthened by the fact
that the data come from news paper articles. News paper articles will generally
only report publicly visible interaction (hence, journalists may miss interaction
that occurs behind closed doors or interactions that are not made public) and
will tend to focus mainly on what is of interest ”today.” That said, it does make
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a lot of sense to find that governmental parties seem to base their interactions
mainly (but not exclusively) on what is going on in the present and the very re-
cent past, and focus less on what happened longer ago and may be less salient
in the public’s eye.

The resulting trends obtained from the BIC weights approximately follow the
same decays as the WAIC. However, we see that the BIC weights show an ap-
proximate step-wise trend because the BIC becomes increasingly large for that
step-wise model that is the closest to the true (smooth) model (in terms of
Kullback-Leibler distance (Grünwald & van Ommen, 2017)). Thus, the weight
of that step-wise model dominates the weights of all other step-wise models.
This illustrates that the BIC is useful for finding the best fitting step-wise model,
which, in this case, has increasing interval widths over the transpired time, form-
ing roughly an exponential decay. On the other hand, the BIC is less useful for
finding an approximate smooth decay trend. For this purpose we recommend
the WAIC.

3.6.4 Assessing the predictive performance: a comparison
with parametric memory decays

The results show thatmemory decays approximately exponentially in this dataset.
Next, we compare the performance of the fitted semi-parametric model with
other relational event models that either do not contemplate a memory decay
(REM without memory) or fix it to some predefined parametric trend (step-wise
or exponential):

• REM without memory: this is a basic relational event model where en-
dogenous statistics such as inertia, reciprocity, and transitivity closure are
embedded in the linear predictor as a function of the total volume of past
events without any memory decay. For the REM model without memory,
the log-rate at any time t ∈ [t1, tM ] and for any request e′ in the risk set R
is:

logλ(se′ , re′ , Et,β) = β0 + βinertiainertia(se′ , re′ , t)+

+βreciprocityreciprocity(se′ , re′ , t)+

+βtransitivity closuretransitivity closure(se′ , re′ , t)

(3.26)

• REMwith exponential decay: We specify threemodels with endogenous
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statistics such that events follow an exponential weight decay. The weight
decay at tm for any event occurred at te′ < tm is

ln (2)

θhalf-life
exp

{
−(tm − te′)

ln (2)

θhalf-life

}

(Brandes et al., 2009), where θhalf-life is fixed, respectively, to 7 days, 30
days, and 90 days. For these models, the log-rate at any time t ∈ [t1, tM ]

and for any request e′ in the risk set R is:

logλ(se′ , re′ , Et,β) = β0 + βinertiaweighted-inertia(se′ , re′ , t, θhalf-life)+

βreciprocityweighted-reciprocity(se′ , re′ , t, θhalf-life)+

+βtransitivity closureweighted-transitivity closure(se′ , re′ , t, θhalf-life)
(3.27)

These models are named Exp 7, Exp 30 and Exp 90 in Appendix A.4. The
idea is similar to the approach of Brandenberger (2018a) who also con-
siders exponential decay models and uses different predefined values for
the half-life parameter.

• REM with step-wise decay: We specify three step-wise models with the
following widths:

– γdays = {0, 90, 180} (two intervals with equal size);

– γdays = {0, 7, 30, 90, 180} (four intervals with increasing size);

– γdays = {0, 1.32, 14, 46.2, 180} (four intervals, using the widths of the
model with the best WAIC found with the semi-parametric approach).

The step-wise models above are named respectively StepEqual, StepIncr
and bestWAIC in Appendix A.4. The three models have γmax = 180days.
The log-rate at any time t ∈ [t1, tM ] and for any request e′ in the risk set R
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Figure 3.12: Probability of observing the rank of the occurring dyads being among the
first five most likely dyads (moving average with 100 terms, Exp 7 and Exp 30 performed
worse than the rest of the models and were removed from the plot).

is:

logλ(se′ , re′ , Et,β) = β0 +
K∑

k=1

βinertiak inertiak(se′ , re′ , t)+

+
K∑

k=1

βreciprocitykreciprocityk(se′ , re′ , t)+

+
K∑

k=1

βtransitivity closurek transitivity closurek(se′ , re′ , t)

(3.28)

whereK is the number of intervals in the model. Endogenous statistics in
step-wise models are calculated as explained in Section 3.3.

In Appendix A.4, we include a table with the maximum likelihood estimates
and standard errors for each model.

In Figures 3.12 and 3.13, we examine two plots that assess the predictive per-
formance of the models. Figure 3.12 displays the probability of the observed

58



A Bayesian semi-parametric approach to memory decay

3

Figure 3.13: ROC curve of each model in the comparison.

dyads having rank less or equal than five, calculated as

Z∑

m=1

I(rank(em) ≤ 5)/Z with Z = 2, . . . ,M

where rank(em) returns the rank of the predicted probability for event em and
M = 7567 is the number of events in the sequence. Thus, at each time point,
given the sequence of already occurred events (including the occurring event
at tm), the count of predicted ranks being less or equal than five (out of the 90
dyads that were at risk at each time point) is divided by the number of events
in the partial event sequence. We calculate this probability for all models under
comparison. We consider a moving average with 100 events to better visualize
the overall predictive trends. We excluded models Exp 7 and Exp 30 from the
figure because they performed clearly worse than the rest of the models (this
keeps the figure more readable).
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The plotted trends show how well the models perform over time. The solid
line represents the performance of the BMA model resulting from the semi-
parametric approach introduced in this chapter. In comparison to the other de-
cay models, its performance maintains a level that is, on average, higher than
most of the models in the comparison. This illustrates that a model where the
shape of the decay is learned from the data on average results in better predic-
tions and better model fit than competing models where the decay is prespeci-
fied based on rough heuristic arguments. Finally it is interesting to observe that
the REM without memory also performs quite competitively.

We note that the aim of our approach is not to generate a model that neces-
sarily outperforms other models in predictive accuracy. Although the model is
expected to generally do equally well or better than most competing models,
an important aspect of the approach is that it allows a researcher to get a good
idea of how long past events maintain their influence. This allows a researcher
to then specify better further inferential models (informed by the decay shape
that is found from the semi-parametric model). Perhaps more importantly, em-
pirical results of exactly how the past keeps influencing the present and the
future are essential for theory development. Considering the dearth of time-
sensitive social theory, approaches that can uncover the empirical pattern of
time can be highly informative for theorists to develop truly time-sensitive so-
cial theories upon. Of course, this requires the application of the model to a
wider set of data than just our illustrative data set.

We plot the ROC curves in Figure 3.13; again we see that the BMA model
on average performs best. Here, the REM without memory performs relatively
poorly. The no-memory REM under-predicts actually occurring events and can
only achieve high accuracy by predicting a relatively large number of events
that actually do not occur. The memory-based models have a better overall
trade-off between incorrectly and correctly predicted events, even considering
the simplicity (the models are fully based on only inertia, reciprocity, transitivity
closure, and an intercept) of the model for such complex interaction patterns
among governmental actors in India.

3.7 Discussion

In this chapter, we presented different methods for learning how past interac-
tions between social actors affect future interactions in the network. We first
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considered a K-step-wise model that approximated memory decay with a dis-
crete step-wise trend. This model can be estimated using existing software
functions for relational event analysis. The proposed Bayesian model averaged
memory decay estimator will be made available in a new R package2.

The next key contribution is a novel Bayesian model averaging approach to
estimatingmemory decay in a relational modeling framework where events are
assumed to continuously change in importance as the time since the event
increases. The promising aspect of this semi-parametric approach lies in its
ability to learn the shape of the memory decay without making any paramet-
ric assumption about it. Furthermore, by building on the step-wise model, the
proposed method is computationally feasible. We considered two weighting
systems for Bayesian model averaging of a bag of step-wise models: the BIC
and the WAIC. As was illustrated, the BIC is useful for finding the one best fitting
step-wisemodel for a given empirical relational event history. The BIC, however,
is not suitable for finding an approximate smooth trend of the memory decay,
as all weight is placed on the single step-wise model that is closest to the true
smooth decay model. This issue does not occur for the WAIC as the Bayesian
model average of many step-wise models results in a smooth trend.

The semi-parametric approach on average provided better predictive perfor-
mance than other approacheswhere theweight decaywas set using predefined
parameters. This illustrates the usefulness of relaxing the assumption of pre-
defined decay functions when making predictions and doing inferences. More-
over, the semi-parametric approach can uncover exactly how and for how long
past eventsmatter and can show if this is perhaps different between reciprocity
and transitivity (or other statistics). A researcher can use the semi-parametric
approach to first run several relatively simple models that can inform the re-
searcher about the memory decay shapes that are present in the data at hand.
Following that, the researcher can then specify further, more complex, mod-
els that utilize some predefined memory structure that is based on the shape
found by the semi-parametric approach. This allows a researcher to run quite
complex relational event models, without the computational burden of repeat-
ing thememory decaymodel several times for each newmodel that is specified,
while, at the same time, taking into account the empirically extracted memory
decay function for the dataset at hand.

2R package bremory (Arena, 2022a).
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In addition, researchers can use themethodology to uncover empirical trends
of how past events matter as time passes by. Once this has been applied to
enough datasets, these findings can inform solid theory development on how
the past matters for the future. There is barely any social theory that is able to
systematically explain and predict how present social interaction affect future
social interactions and for how long exactly, whether the effects are linear or
non-linear (and, in which case: following which shape?), and which conditions
have an effect on that. Although social scientists acknowledge that time and
timingmatters for social reality (e.g., Ancona et al. (2001), Kozlowski et al. (2016),
R. T. A. J. Leenders et al. (2016), Mitchell and James (2001), and Monge (1990)),
the empirical means to uncover actual memory shapes or the empirical means
to test potential theoretical expectations about the course of time has lacked.
We believe that our approach has the ability to support these efforts.

In this chapter, we assume that all events are random, in the sense of having
some probability of occurrence at any time. Some events, however, are not ran-
dom and follow a fixed deterministic pattern. Marcum and Butts (2015) refer
to these events as “clock events”. Examples include standardized lunch times
(“every day we eat together in the cafeteria between 1200h and 1230h”), fixed
office hours, the end of the workday at 1700h, et cetera. These deterministic
events can affect interaction rates directly, but can also affect memory decay.
For example, consider a workplace where work ends strictly at 1700h. If it hap-
pens to be the norm to follow up on a request from a colleague within half
an hour (and older requests “drop from the radar”), requests that come in at
1645h should be handled within fifteen minutes and may be forgotten as the
clock turns 1700h. In this case, the deterministic end-of-workday event directly
affects the memory decay. In situations where clock events occur, it would be
interesting to incorporate them into the modeling approach. At the very least,
the researcher should be aware of them, so as to not have the memory shapes
be affected by the clock events without the researcher realizing it.

The empirical example presented in this chapter involves a relatively small
network. It is important to note however that the methodology can be used for
larger networks as well, even though the computation can be expensive in that
case. We leave computational optimization of the approach for larger networks
for future work.

Another important direction for future researchwould be to apply themethod
to different event types or sentiments. For instance, one expects negative events
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(e.g., a country threatening another country, a pupil insulting a peer, a teacher
rebuking a student) to have a memory decay that is slower and more persis-
tent than for positive events (e.g., a teacher praising a student, a country coop-
erating with another country) (Brass and Labianca, 1999; Labianca and Brass,
2006). This difference may apply as well to other event types from which possi-
ble differentmemory shapesmight emerge. For example, it might be that email
interaction is more fleeting than face-to-face interaction. This is especially rel-
evant in the understanding of projects where some project members may be
co-located and have ample face-to-face interaction, while othermembers of the
project teammay reside in different locations whichmakes technology-enabled
communication with them more pertinent. The team leader may give a similar
message to a co-located project member (using face-to-face interaction) as to
a physically-distant project member (sending an email), where the two commu-
nication media may have differential memory effects. Having a modeling ap-
proach like the semi-parametric model from this chapter allows researchers to
study conditions that affect memory decay patterns differently.

Furthermore, in the case of more dynamic situations, e.g., when the network
switches between different states or regimes, memory decay may also change
accordingly. For example, in emergency situations, recently past events may
play an even larger role on interaction dynamics than long past events com-
pared to the period of time before the emergency happened. Consequently,
we would want to learn the change of the shape (and length) of memory decay
across different states in dynamic environments.

In our approach, we do not prespecify the shape of the memory decay. How-
ever, with the choice for BIC orWAIC andwith the choice for increasing / decreas-
ing / equal intervals, some shapes are more likely to be found than others. We
have illustrated how a researcher can compare these various choices against
each other and pick that specification that fits the data best (according to pre-
dictive fit or some other criterion). However, a substantively very meaningful
next step would be to examine when it is more plausible for memory decay to
follow a step-wise or a continuous shape. It is worth it to systematically exam-
ine which social mechanisms are likely to lead to step-wise temporal effects and
which mechanisms are not. This would both assist further model building and
the further development of time-sensitive social theory.

We expect that the acquired ability of both estimating social memory decay
processes and testing for the various conditions that might shape them can
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be a crucial step towards a more accurate understanding of network dynamics
developing at a local as well as at a global level.
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CHAPTER

HOW FAST DO WE FORGET OUR PAST
SOCIAL INTERACTIONS?

UNDERSTANDING MEMORY RETENTION
WITH PARAMETRIC DECAYS IN
RELATIONAL EVENT MODELS 4

Abstract

In relational event networks, endogenous statistics are used to summa-
rize the past activity between actors. Typically it is assumed that past
events have equal weight on the social interaction rate in the (near) future
regardless of the time that has transpired since observing them. Gener-
ally, it is unrealistic to assume that recently past events affect the current
event rate to an equal degree as long-past events. Alternatively one may
consider using a prespecified decay function with a prespecified rate of
decay. A problem then is that the chosen decay function could be mis-
specified yielding biased results and incorrect conclusions. In this chap-
ter, we introduce three parametric weight decay functions (exponential,
linear, and one-step) that can be embedded in a relational event model.
A statistical method is presented to decide which memory decay func-
tion and memory parameter best fit the observed sequence of events.
We present simulation studies that show the presence of bias in the esti-
mates of effects of the statistics whenever the decay, as well as the mem-
ory parameter, are not properly estimated, and the ability to test different
memorymodels against each other using the Bayes factor. Finally, we ap-
ply the methodology to two empirical case studies.

This chapter is published as Arena, G., Mulder, J., & Leenders, R. (2023). How fast do we forget
our past social interactions? Understanding memory retention with parametric decays in relational
event models. Network Science, 11(2), 267-294. https://doi.org/10.1017/nws.2023.5



Chapter 4

4.1 Introduction

In relational event networks, the past relational event history between the ac-
tors can have an enormous impact on future relational events (Butts, 2008).
Research has shown that the past can generally be well-summarized using so-
called endogenous statistics to model the events to be observed. These en-
dogenous statistics typically quantify the activity between actors in the past. For
example, the endogenous statistic Inertia of actor i towards j for eventm is gen-
erally computed as the total volume of past events from i to j until the previous
event, i.e.,

inertia(i, j, tm) =
∑

e′∈Etm−1

I(s(e′) = i, r(e′) = j), (4.1)

where Etm−1 denotes the event history until event m − 1, s(e′) is the sender
of event e′, and r(e′) is the receiver of event e′. Thereby the assumption is that
the (logarithm of the) relational event rate between two actors depends propor-
tionally on the number of past events between these actors. Other examples
of endogenous statistics include reciprocity, transitivity or even more complex
higher-order dynamic patterns.

By defining the endogenous statistics as the total number of past events the
assumption is that all past events equally contribute to the event rate of the
dyads in the subsequent period. This however may not be likely in real-life so-
cial networks. As an example let us consider a group of friends who send text
messages to each other. At some point let us assume that James sent about 24
messages to Keira, and that Vicky also sent about 24messages to Roberto (since
the observational period). Out of the 24 messages sent by James to Keira, let
us assume that 22 were send more than one month ago, and 2 messages were
send two weeks ago. Out of the 24 messages sent by Vicky to Roberto, all 24
messages were send in the last 5 days. Now the question is whether it is more
likely that James will send amessage to Keira next, or that Vicky will send ames-
sage to Roberto next? Under the assumption that sending messages is mainly
driven by inertia, and inertia is computed as the total volume of past messages
between actors (which is equal for both dyads), there would be an equal proba-
bility that for James to send a message to Keira, as for Vicky to send a message
to Roberto. Given the fact that Vicky has been much more active to send mes-
sage to Roberto in the recent past however it may be much more plausible that
Vicky will send a message to Robert next than James to Keira. This would imply

66



A parametric approach to memory decay

4

that recently past relational events have a stronger impact on what happens
next than long-past events. Thus one could say that recently past social events
are fresh in the memory of actors while long past events may not.

Alternatively it can be assumed that the weight of past events decays accord-
ing to an exponential function of the transpired time of the past event (Brandes
et al., 2009). Indeed, it is likely that over time actors differentlyweigh past events
according to their time recency. The time recency of an event is defined as the
time transpired at the present time point since its occurrence. This measure
increases over time after the event happens and can be a crucial information in
understanding whether and how the weights of events decay as time goes by
and their time recency decreases. This would provide value insight to learn how
the past affects the future in relational event networks. As proposed in Brandes
et al. (2009) the formula for inertia is the following,

exponential-inertia(i, j, tm) =
∑

e′∈Etm−1 :

s(e′)=i∧r(e′)=j

ln (2)

θhalf-life
exp

{
−(tm − te′)

ln (2)

θhalf-life

}
(4.2)

where the weight of each event (s(e′), r(e′)) = (i, j) in the current history of
events (Etm−1 ) follows an exponential decay governed by the half-life parame-
ter θhalf-life, which is assumed to be known. The transpired time of the event e′,
measured as tm − te′ , is updated at each time point. Because it increases over
time, the transpired time decreases the event weight over time. The speed of
such decrease depends on the value of the half-life parameter (θhalf-life) that de-
scribes the waiting time before the weight of the past event (i, j) halves. Thus,
the larger the θhalf-life, the slower will be the decrease in weight and, in turn,
long-passed events will keep having a high contribution in the calculation of the
statistic, reflecting a long-lastingmemory of actors. When a researcher changes
the parameters governing the decay, the model statistics (such as the value of
inertia) change with it and, in turn, their effect on the event rate changes as
well. For this reason, the use of such prespecified half-life parameters should
be used with care. This is evenmore the case because the weight of past events
may evendecreasewith a different shape thanwith an exponential shape in real
life networks. The change of effects due to a change in the memory parameter
was already explored by Brandenberger (2018b), where the author shows the
different estimatedmodel effects resulting fromprespecifying different half-life
values.
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Another approach to modeling weight decay in relational event data was pro-
posed by Perry and Wolfe (2013), where the past history of events at each time
point is divided according to a set ofK+1 increasing timewidths γ = (γ0, γ1, . . . ,

γK) and endogenous statistics are calculated within each of the K resulting in-
tervals. For instance, inertia for the k-th interval is calculated as,

interval-inertia(i, j, tm, k) =
∑

e′∈Etm−1 :

(tm−te′ )∈(γk−1,γk]

I(s(e′) = i, r(e′) = j) for k = 1, . . . ,K (4.3)

Therefore, the effect of inertia in each interval is estimated and finally de-
scribed by the vector of effects βinertia = (βinertia1 , . . . ,βinertiaK ). No assumptions
are made about the steps (which may either decrease, increase, etc.) and the
estimation can be done relatively easy using existing software. Note that there
is a clear relation between this step-wise approach and the above weighted ap-
proach according to the following equation





βinertia1
...

βinertiaK



 =





βinertiaw1

...
βinertiawK



 (4.4)

where on the right side: (w1, . . . , wK) is the step-wise function of the weights of
the events which is based on the widths (γ0, . . . , γK) and assumes that events
belonging to the same interval have the same weight, βinertia is the effect of the
network dynamic on the event rate. For an extended description of the relation
in (4.4) see Appendix B.1. Also the step-wise approach has potential limitations.
First, in some applications it may not be natural to assume that the relative im-
portance of a past event is relatively high and one second later (say) its impor-
tance drops considerably which is the case in such step-wise models. Second, it
is generally unclear how the intervals should be chosen such that the memory
(decay) in the data is accurately captured (see also Arena, Mulder, and Leenders
(2022) for a related discussion). Finally note that by considering many different
intervals for all endogenous effects, the number of unknown parameters can
unduly blow up resulting in a tremendous increase of our uncertainty about the
model parameters.

In this chapter an alternative methodology is proposed to better learn about
past events affecting future events. We assume a continuous, parameterized
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decay function which can either be exponential, linear, or step-wise. Each of
these functions has a single memory parameter that is optimized using the ob-
served data. A Bayesian test is proposed to determine which decay function
(exponential, linear, or step-wise) fits the data best. Thereby, the methodol-
ogy builds on previous approaches by (i) allowing the weight of past events to
decrease in continuous time (as in Brandes et al. (2009)) but at the same time es-
timate the rate of the decay from the data, and (ii) finding the best fitting shape
of the weight decay (as in Perry and Wolfe (2013)) without overparameterizing
the model.

Related to the current work, the time sensitivity in relational event modeling
has also been discussed in various other studies. The effect of time recency
of past interactions was discussed by Tranmer et al. (2015), and a weekend ef-
fect was investigated by Amati et al. (2019) in a network of health care orga-
nizations, in which authors show the different network mechanisms that can
be observed between week days and weekends. In another work, Bianchi and
Lomi (2022) study short-term and long-term effects in network dynamics and
provide examples on a high-frequency network (financial markets) as well as
on a low-frequency network (patient-sharing relations among health care orga-
nizations). Furthermore, methods for estimating time-varying networks effects
were proposed by Mulder and Leenders (2019), Meijerink-Bosman, Back, et al.
(2022) and Meijerink-Bosman, Leenders, et al. (2022) using moving window ap-
proaches, and by Fritz et al. (2021) using B-splines.

Furthermore, some work has been done on external decays and on the pres-
ence of right-censoring. Stadtfeld and Geyer-Schulz (2011) discussed the prob-
lem of using external decay functions in a discrete state space and examined
the use of exponential decays combined with an arbitrary threshold on the de-
cay. They observed that despite external decays as well as events of other types
might affect the network of events under study, if the Markov process transi-
tion rates are defined over very short time spans, the impact of such factors
would only be marginal. In another work, Stadtfeld and Block (2017) discussed
about the hurdle of right-censoring in relational event networks and proposed
a discrete time window approach that overcomes the issues generated from
right-censored events.

The remainder of this chapter is organized as follows: in Section 4.2 we intro-
duce parametric memory decay functions and define three potential decays: (i)
the one-step decay, (ii) the exponential decay and (iii) the linear decay. Then, in
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Section 4.3, we look into themethodological consequences of treating themem-
ory parameters as parameters to be estimated from the data, introduce the use
of the profile log-likelihood in relational eventmodels, and finally propose some
possible optimization methods which aim to find the maximum likelihood esti-
mate for the memory parameter. In Section 4.4 and 4.5 we show the results on
simulated relational event histories as well as on two real case studies.

4.2 Parametric functions formodelingmemoryde-
cay

Recently-occurred events generally have a larger impact on the next relational
event that will occur in a social network than long-past events. To model this
we define a weighting function, which is denoted by w(γe(t), θ) where:

1. γe(t) = t− te is the transpired time of event e at time t with t > te;

2. θ is a memory parameter with support S(θ) ∈ R, which determine the
resulting shape of the decay;

3. the outcome of the weight is a non-negative real number, that is
w(γe(t), θ) ∈ R+

0 .

The weight of a past event can reflect to what degree a past event is remem-
bered, and thus, the weighting function can be viewed as an operationalization
of the memory decay of actors about past events. For this reason we shall use
the termweighting function andmemory decay function interchangeably in this
chapter.

The above weighting function is then used for computing the endogenous
statistics which summarize the past event history at time t. For example, inertia,
which is normally computed as the total count (volume) of past events between
two actors (i, j), is now computed as a weighted count of past events weighted
according to the chosen weighting function with memory parameter θ, i.e.,

weighted-inertia(i, j, tm, θ) =
∑

e′∈Etm−1

I(s(e′) = i, r(e′) = j)w(γe′(tm−1), θ) (4.5)

Note that the transpired time is computed from the timeof the previous event
tm−1, which is when the waiting time starts for observing them-th event. During
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the waiting time, the weight is assumed to stay constant so that the assumption
of constant hazards between events is not violated.

In contrast to previous approaches we assume the memory parameter to be
unknown. Regarding thememory function, many possible shapes could be con-
sidered. To keep themodel computationally feasible however, three parametric
functions of thememory decay are considered in this chapter: a one-step decay
function, an exponential decay function, and a linear decay function.

γe(t)

w

1

θmax
4m

0

(a) One-step decay.

γe(t)

w

0.5

1

θhalf-life
2m 4m

0

(b) Exponential decay.

γe(t)

w

0.5

1

θhalf-life
4m

0

(c) Linear decay.

Figure 4.1: Three examples ofmemory decay: (a) one-step decaywhere θmax ≈ 2months
and the height of the step is fixed to 1; (b) exponential decay where θhalf-life ≈ 7 days; (c)
linear decay where θhalf-life ≈ 2 months.

One-Step decay

The one-step decay is defined as

wstep(γe(t), θmax) =





1 if γe(t) ≤ θmax

0 otherwise
(4.6)

where θmax ∈ (0,+∞) is the memory parameter and the decay describes a one-
step function. Thus, events will contribute to the statistic only if their transpired
time is less than the threshold θmax. Moreover, the model is simplified to the
case where the weight is unitary. Note that the interpretation of a coefficient of
an endogenous statistic that is computed using a one-step memory function is
similar to the interpretation of coefficients of count statistics which ignoremem-
ory decay. The only difference is that in the step-wise model only the events
with transpired time that do not exceed the threshold value θmax contribute to
the rate with a value equal to the corresponding coefficient of the parameter.
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An example of the shape of the one-step decay is shown in Figure 4.1a where
θmax ≈ 2months. In this case, weighted inertia between actors i and j would be
equal to the total number of past events between i and j in the last 2 months.

Substantively a one-step decay may be appropriate in social networks where
actors only have a relatively short-term memory. It may then be reasonable to
assume that only the past events within this short window affect the endoge-
nous statistics, and that the past events in this window affect the endogenous
variables (approximately) equal. Computationally the one-step model is conve-
nient as we would only need to look back until θmax to compute the endogenous
statistics.

The one-step function was used by Mulder and Leenders (2019) using a pre-
specified memory length. Mulder and Leenders (2019) also assumed that net-
work parameters may change over time. This was achieved by estimating the
network parameters within a time window which was set equal to the chosen
memory length while moving the window over the observed event history. In
the current chapter we do not consider amodel where network parameters can
change over time. Instead we assume that the network parameters are homo-
geneous over time but, in the case of a one-step decay, we do assume that the
past events affect the endogenous statistics until a certain threshold value (i.e.,
θmax), which is assumed unknown.

Exponential decay

The functional form for the exponential decay is

wexp(γe(t), θhalf-life) = exp
{
−γe(t)

ln (2)

θhalf-life

}
(4.7)

for γe(t) ∈ (0,+∞) where θhalf-life ∈ (0,+∞) is the memory parameter that mea-
sures the minimum elapsed time after which the event weight is halved. In this
formulation we let the weights start decaying from 1 instead of ln (2)

θhalf-life
as it is de-

fined in Brandes et al. (2009) and this will only affect the scaling of the effects
β. One of the possible shapes of an exponential decay is shown in Figure 4.1b
where θhalf-life ≈ 7 days.

The interpretation of a coefficient of an endogenous statistic that is computed
using an exponential decay function is slightly more complicated than for a reg-
ular count statistic because the contribution of each past event to the rate (and
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the hazard) depends on the transpired time since the event was observed. For
example, when the coefficient of inertia is equal to 3 and the decay function in
Figure 4.1b is consideredwith a half-life of 7 dayswhich starts at 1, the last event
that was observed has a maximal contribution to the rate (and hazard) equal to
3. Furthermore, the contribution of events that were observed approximately
7 days ago contribute with approximately 1.5, and events that were observed
approximately 14 days ago contribute with approximately .75 to the rate and
hazard.

Theoretically an exponential memory decay implies that the weight reduces
to half its value in a fixed amount of time, regardless of the current weight. Fur-
thermore the model assumes that past events are never “forgotten” as in the
one-step model. Depending on the context this may be realistic. Computation-
ally the exponential decay is somewhat demanding as it requires one to look
back at the entire past history for computing endogenous statistics. However
eventually the weights become negligible, and thus, can be approximated as
zero.

The exponential model was proposed by Brandes et al. (2009) to model rela-
tional events between political actors (e.g., countries) during conflicts. Instead
of estimating the half-life parameter from the observed data, the model was
fitted using different prespecified half-life parameters. This yielded fairly con-
sistent results in their empirical applications. It is yet unknown whether this
result holds in general. This will be explored later in this chapter when fitting
the model using misspecified memory parameters.

Linear decay

The linear decay function is defined as

wlinear(γe(t), θhalf-life) =

(
1− 1

2θhalf-life
γe(t)

)
I(γe(t) ≤ 2θhalf-life) (4.8)

for γe(t) ∈ (0,+∞) and with θhalf-life ∈ (0,+∞), which quantifies the time until
the weight is halved, similar as in the exponential decay in (4.7). Unlike the
exponential decay on the other hand the weight becomes 0 after the transpired
time reaches 2θhalf-life, similar as the one-step model. In this sense the linear
decay model can be seen as a middle ground between the one-step decay and
the exponential decay function. An example of a linear weight decay is shown
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in Figure 4.1c for θhalf-life = 2months.

The interpretation of a coefficient of an endogenous statistic that is computed
using a linear decay function may be slightly more complicated than for a regu-
lar count statistic (because we need to take the transpired time of past events
into account) but possibly the interpretation is easier than for statistics with
the exponential decay function because linear trends are relatively easy to un-
derstand. For example, if inertia would be equal to 3 and the decay function
in Figure 4.1c is considered having a half-life of 2 months, the last event that
was observed has a maximal contribution to the rate (and hazard) equal to 3,
and events that occurred approximately 1 month, 2 months, 3 months and 4
months or more contribute to the event rate with 2.25, 1.5, 0.75, and 0.

The linear decay model may be appropriate where the contribution of past
events to the endogenous statistics (and thus to the logarithm of the event rate)
is an approximately linear function of the transpired time, which, at some point,
becomes approximately zero. Similar as the one-step model, the model is com-
putationally convenient because one would not need to take the entire past
history into account in the computation of the endogenous statistics. It may be
somewhat less realistic however that the decay is assumed to be exactly 0. To
our knowledge a linear decay model has not yet been considered for relational
event modeling.

Normalizing decay functions and updating statistics

All the three weight decays start at 1, decay towards zero but are not normal-
ized. However, they can be normalized by multiplying them with a normalizing
constant of log (2)

θ for the exponential decay and 1
θ for the one-step and the linear

decay. The effect of the normalization of the weights directly translates into a
re-scaling of the effect β of each endogenous statistic on the event rate, without
changing nor re-scaling the estimate of the memory parameter. Normalization
is recommended whenever it is needed to compare effects β across different
parametrizations or across network dynamics with different memory parame-
ter but following the same parametrization.

When endogenous statistics at each time point are updated according to one
of the weight decays introduced in this section, the transpired time of events in
the history is updated with respect to the time point that precedes the present
one. For instance, if we need to update statistics at time tm, the history of events
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that we are going to consider will be Etm−1 , that is the collection of events from
the onset until and including the event occurred at tm−1 and the time we con-
sider to compute the time transpired of each event in the history will be the time
of the last event inEtm−1 , that is tm−1. Therefore, since statistics are assumed to
be updated at the last observed time point and not during the waiting time be-
tween two subsequent events, no right-censoring has to be taken into account
in our analysis and the assumption of constant hazards during waiting times is
not violated.

4.3 The Profile log-likelihood in REM

The functions to model memory decay presented in Section 4.2 are three ex-
amples of univariate decays that can be embedded in the likelihood function
of a Relational Event Model (REM; Butts (2008)) as well as in an Actor-oriented
Model (DyNAM; Stadtfeld and Block (2017)). In these decay functions the mem-
ory parameter has support in (0,+∞). Thus, with the purpose of avoiding a
constrained optimization for the memory parameter, we can reparametrize it
as θ = exp {ψ}, where ψ ∈ R is the natural logarithm of the memory parameter
θ.

We now consider a sequence EtM ofM relational events occurring among N

actors where the likelihood function of a REM, which depends on the memory
decay parameter ψ, is written as

L(β,ψ;EtM ) =
M∏

m=1

[
λ(sem , rem , Xem , Etm−1 ,β,ψ)

∏

e′∈R
exp

{
−λ(se′ , re′ , Xe′ , Etm−1 ,β,ψ) (tm − tm−1)

}
] (4.9)

where at each time point a vector of endogenous and exogenous statistics in
Xem is available for every possible dyad in the risk set (R). Although we as-
sume a time-invariant risk set the method can straightforwardly be applied to
dynamic risk sets. Parametersβ describe the effect of the statistics on the event
rate and ψ represents the logarithm of the memory parameter under a specific
memory decay, which is assumed to be the same for all the endogenous statis-
tics. In the context of maximization of the likelihood function we are interested
in finding the vector of parameters (β,ψ) that maximizes the likelihood given
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the observed sequence of events which is equivalent to minimizing the nega-
tive log-likelihood:

argmin
(β,ψ)

{− lnL(β,ψ;EtM )} (4.10)

Theoptimizationproblem in (4.10) is generally solvedby calculating thederiva-
tives of the function up to and including the second order. In the case of a REM
with an unknown memory parameter, endogenous statistics are no more suffi-
cient for the estimation of the corresponding vector of effects β, because their
value changes depending on the value of the memory parameter ψ. Thus, only
the sequence of events can be referred to as sufficient statistic both for the en-
dogenous effects in β and for ψ. Moreover, derivatives for the memory param-
eter can either increase the computational burden or fail to exist (for instance,
in the one-step decay function). In light of this, we can take advantage of the
negative profile log-likelihood for a given memory parameter and investigate
whether the memory decay assumption is supported from the data and where
the minimum potentially lies in. The profile negative log-likelihood for ψ can be
written as,

− lnLp(ψ) = min
β

{− lnL(β,ψ;EtM )} (4.11)

where the value of − lnLp(ψ) is obtained as the minimum value of the nega-
tive log-likelihood where the memory parameter is fixed and the optimization
is carried over β (as in a regular REM). Equation (4.11) comes down to one opti-
mization for each fixed value of ψ ∈ R. If there exists a minimum for − lnLp(ψ),
that value will correspond to the global minimum of both ψ and the optimized
vector β, thus they will be a solution for the optimization of the negative log-
likelihood − lnL(β,ψ;EtM ).

An example of the negative profile log-likelihood based on one randomly sim-
ulated relational event history with an exponential memory decay is shown in
Figure 4.2 where the function reaches its minimum close to the true value of
the log-half-life parameter (ψ = ln (4) ≈ 1.386, indicated by the dashed vertical
line). The slight deviation from the true value can be explained from random
sampling (explored in more detail in the next section).

A drawback of the optimization of the negative Profile log-likelihood is that
such methods do not provide a measure for the standard error of the memory
parameter nor its covariances with the vector of effectsβ. A way to estimate the
accuracy of the estimate for thememory parameter and the related covariances
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Figure 4.2: Negative profile log-likelihood for the log-half-life parameter (exponential
memory decay with true value ψ = ln (4) ≈ 1.386, dashed vertical line) for one randomly
simulated event history.

consists in embedding the weight decay function in themodel and in optimizing
the complete log-likelihood in (4.9). However, this approach requires theweight
decay function to be differentiable at least twice.

Even though we cannot obtain standard errors for the memory parameters
in a straightforward manner, the profile log-likelihood can be used to quantify
our relative uncertainty (from a Bayesian perspective) about different models
that assume different values for thememory parameter as in a model selection
problem. For example, when looking at the example data that was used in Fig-
ure 4.2, we could think of a set of models M1 : ψ = −5.0, M2 : ψ = −4.9, M3 :

ψ = −4.8, . . . ,M101 : ψ = 5. The Bayesian information criterion for model Mt

(BIC; Schwarz (1978)) is then defined by

BIC(Mt) = k log(M)− 2 lnL(β̂,ψ;EtM ), (4.12)

where β̂ is the MLE assuming the memory parameter of length k, and ψ is given
under model Mt. Thus, this BIC is directly available using standard statistical
software. Consequently the Bayes factor between one model, say,Mt1 assum-
ing a certain value for the memory parameter against another model, say,Mt2 ,
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assuming another value (possibly assuming another memory function as well),
is then given by

BF (Mt1 ,Mt2) = exp{BIC(Mt2)/2−BIC(Mt1)/2}, (4.13)

which quantifies the relative evidence in the data in favor of Mt1 against Mt2 .
Thus, via this route we can even test non-nested models having different mem-
ory functions and assuming different memory parameters.

4.4 Simulations: synthetic relational event histo-
ries with memory decay

Numerical simulations were conducted to explore the bias and the change in
fit observed whenmemory decay values and/or decay parametrization are mis-
specified. Furthermore, we explored the performance of the Bayes factor to
test between models with different memory decays. Finally, a simulation was
carried out to investigate the behavior of the estimates in the scenario were
the assumption of piece-wise-constant hazard is no longer met. The simula-
tions studies under four different populations will be referred to as Simulation
1, 2 3 and 4.

Simulation 1: Exponential memory decay

In Simulation 1, 100 relational event histories are generated, each with M =

5, 000 events occurring among N = 20 actors. The log event rate for any dyad
(i, j) ∈ R at time t is specified as follows:

lnλ(i, j, t) = βIntercept + βDyadic1Dyadic1(i, j)+

+βDyadic2Dyadic2(i, j) + βInertiaweighted-Inertia(i, j, t, θhalf-life)+

+βReciprocityweighted-Reciprocity(i, j, t, θhalf-life)+

βTClosureweighted-TClosure(i, j, t, θhalf-life)+

+βABAYABAY(i, j, t)

(4.14)

where Dyadic1 and Dyadic2 are two exogenous variables that are time-invariant
and asymmetric (i.e. Dyadic1(i, j) *= Dyadic1(j, i)). Weighted inertia, weighted
reciprocity, and weighted transitivity closure (TClosure, based on the definition
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presented in Arena, Mulder, and Leenders (2022)) are endogenous statistics
based on a weighted count using an exponential memory decay with θhalf-life = 4

(with ψ = ln (θhalf-life) ≈ 1.386). ABAY is an endogenous turn-continuing partici-
pation shift (Butts, 2008) which does not follow any memory decay. The vector
of true parameters is (βIntercept = −3.5,βDyadic1 = 0.5,βDyadic2 = −0.3,βInertia =

0.2,βReciprocity = 0.3,βTClosure = 0.1,βABAY = 0.2).

Simulation 2: Linear memory decay

In Simulation 2, 100 relational event histories are generated, each with M =

5, 000 events occurring among N = 20 actors. The log event rate for any dyad
(i, j) ∈ R at time t is specified as in (4.14). However, in this simulation the mem-
ory decay for weighted inertia, weighted reciprocity, and weighted transitivity
closure follows a linear decay with θhalf-life = 4 (with ψ = ln (θhalf-life) ≈ 1.386).
The vector of true parameters is the same as the one used in Simulation 1 ex-
cept for the Intercept which is βIntercept = −3.

Simulation 3: One-step memory decay

The same configuration is considered as for Simulation 2 but with a one-step
memory decay for weighted inertia, weighted reciprocity and weighted transi-
tivity closure using threshold θmax = 4 (with ψ = ln (θmax) ≈ 1.386).

Simulation 4: Exponential memory decay and decreasing hazard

In this simulation, 100 relational event histories are generated, each with M =

5, 000 events occurring amongN = 20 actors. To explore the effect of violations
of the piece-wise constant hazard assumption, the waiting times are generated
from aWeibull distribution where the shape parameter is assumed equal to 0.5.
With such value of the shape parameter, hazards decrease over the waiting
times. The scale parameter of the Weibull is still a function of the rates and the
log event rate for any dyad (i, j) ∈ R at time t is specified as in (4.14) with the
exception of the Intercept that is assumed βIntercept = −10. The weight decay of
the endogenous statistics follows the same exponential decay as in Simulation
1 with a half-life parameter θhalf-life = 4 (with ψ = ln (θhalf-life) ≈ 1.386).
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4.4.1 Exploring bias based on a misspecified memory decay

The first purpose of the first three simulations studies is to understand whether
and towhat degreemaximum likelihood estimates of the effects of the statistics
in a REM are affected by the value of the memory parameter. This is important
as memory decay is often prespecified in an ad hoc manner.

In Figures 4.3, 4.5 and 4.7, the trend for each estimated effect over the loga-
rithm of the memory parameter, ψ, is shown under the three memory decays
(exponential, linear and one-step). The shaded areas delimit the first and the
third quartile of the distribution (based on the 100 simulations) of the estimated
effect at any given value of ψ. The black lines show the trend of the median of
each effect over the 100 simulations, and they have a different line type accord-
ing to each parametrization. The diamond-shaped point marks the coordinates
of the true memory parameter (ln (4) ≈ 1.386) and the true value of each spe-
cific effect. In all the simulations we see that all the endogenous variables which
were assumed to follow a memory decay (Inertia, Reciprocity and Transitivity
Closure) as well as the Intercept are considerably affected by bias in the case
of a misspecified memory parameter. Only if (i) the memory model assumed
is the correct one and (ii) the memory parameter is around its maximum likeli-
hood estimate, the distribution of the estimates across the simulations tend to
concentrate around the true β. As a consequence of this, it is evident that by
not accounting for thememory parameter in themaximum likelihood optimiza-
tion of a REM as well as not investigating different memory decays will likely
lead the researcher to biased estimates.

Furthermore, Figure 4.4, 4.6 and 4.8 show a comparison between rescaled
negative profile log-likelihoods across 100 simulations within each simulation
study (Simulation 1, 2 and 3). In each simulation study, each of the 100 sim-
ulated event sequences were optimized under each of the three parametriza-
tions of the memory decay (Exponential, Linear and One-Step). Therefore, for
each event sequence a negative profile log-likelihood is found for each param-
eterization.

The set of negative profile log-likelihoods under each parametrization and per
each event sequence are then rescaled based on the globalminimumacross the
three parametrizations and the local minimumwithin each parametrization, re-
sulting in the new scale on the y-axis (− ln (Lp)rescaled). Each Figure shows three
regions with different line types, one per each parametrization. Each region
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represents the (rescaled) value assumed by the 95% of the simulations in one
parametrization across different values of the log-memory parameter (on the
x-axis). The vertical dashed bold line marks the true value for the logarithm of
the memory parameter (ψ = ln (4) ≈ 1.386).

The results suggest that the proposedmethod using the profile log likelihood
results in accurate estimates of thememory parameter in awell-specifiedmodel.
Moreover, the true data generating model results in the best fit overall. Finally
we see that in all three simulation studies, the three parametrizations result in
roughly the same fit when towards small values of thememory parameter (neg-
ative values on the logarithmic scale) as well as towards larger values (greater
than 3.0 on the logarithmic scale). This implies that in the case of a complete
mismatch of the true decay parameter and the decay parameter that is used
for model fitting, it does not matter which decay function would be used.

When including memory decay parameters in Relational Event Models it is
also important to verify whether the assumption of proportional hazards is vio-
lated or not. In order to accomplish this, we analyzed the Schoenfeld’s residu-
als (Schoenfeld, 1982) calculated for those endogenous statistics which are as-
sumed to follow a weight decay (Inertia, Reciprocity and Transitivity Closure). In
each of the three simulations, residuals in the 100 replicates distributed around
zero and showed no trend over time, which implies that the assumption of pro-
portional hazard was not violated.

4.4.2 Testing different decay functions via the Bayes Factor

The second purpose of simulation studies 1, 2 and 3 is to explore the perfor-
mance of the Bayes Factor (BF) to test different memory models. Wemeasured
the relative evidence in favor of the true model given the simulated relational
event sequence. In each of the three simulations, for every generated event
sequence, we computed the Bayes Factor of the model of the true weight de-
cay function against the bestmodel under the remaining other twodecays using
Equation (4.13) for each simulated dataset. The formulation of the Bayes Factor
is such that BF (M1,M2) > 1 (< 1) implies evidence for M1 (M2). If the Bayes
factor is on the log scale the cut-off value equals 0. By investigating the distribu-
tion of the Bayes Factor across the 100 sequences for all the simulations we get
insights how well the Bayes factor can distinguish between different memory
models. Figure 4.9 plots the distribution of the Bayes factors.
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(a) (b)

(c)

Figure 4.9: Distribution of ln (BF ) (where ln (BF ) > 0 translates to as evidence in
favor of the true model) : (a) in Simulation 1 the true weight decay is exponential,
thus the two Bayes Factors are BF (MExponential,MLinear) and BF (MExponential,MOne-Step)
and the number of simulations where ln (BF ) > 0 is respectively 80 and 98 out of
100; (b) in Simulation 2 the true weight decay is linear, thus the two Bayes Factors
are BF (MLinear,MExponential) and BF (MLinear,MOne-Step) and the number of simulations
where ln (BF ) > 0 is respectively 95 and 98 out of 100; (c) in Simulation 3 the true
weight decay is one-step, thus the two Bayes Factors are BF (MOne-Step,MLinear) and
BF (MOne-Step,MExponential) and the number of simulations where ln (BF ) > 0 is respec-
tively 99 and 100 out of 100.

In each of the three simulations, the distributions of the ln (BF ) concentrates
on positive values (> 0), with at least the 95% of the generated sequences sup-
porting the true memory decay and values of the Bayes Factor (on its logarith-
mic scale) show a somewhat strong evidence as well. The worst performance
was observed in the case of Simulation 1 (exponential decay) when it was com-
pared with a linear decay, where the Bayes factor pointed towards the linear
model in 20% of the simulated data sets. This result shows that the linear de-
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Figure 4.10: Simulation 4 (the true waiting time in the 100 simulated event sequences
is distributed as a Weibull with shape parameter equal to 0.5). Distribution of the maxi-
mum likelihood estimates of the effects of the statistics aswell as thememory parameter
in a REM (with piece-wise constant hazard assumption). Each vertical dashed line corre-
sponds to the true value of each effect.

cay can potentially mimic an underlying exponential decay. Of course note that
because the Bayes factor is consistent, the error probability would go to 0 when
increasing the sample size of the simulated event history and the evidence for
the true model would go to infinity.

4.4.3 Exploring estimation errors due to a misspecified haz-
ard function

In Simulation 4, we explore the potential estimation error of the proposed re-
lational event model with an exponential memory decay while the data were
generated using Weibull waiting times (which violate the piece-wise-constant
hazard assumption). Figure 4.10 shows the distribution of the endogenous and
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exogenous REMparametersβ based on the optimizedmemory parameterψ for
each generated dataset. The Figure shows that the distribution of themaximum
likelihood estimate of each effect is generally centered around its true value
which suggests practically no clear estimation error, except for the intercept
which roughly ranges between −4.95 and −4.70 while the true value was −10.0.
This suggests that the decreasing hazard under the data generating model is
mainly picked up by the intercept of the fitted model while leaving the other
model parameters generally unchanged on average. This suggests that the es-
timated network parameters are safe to interpret in the case of a misspecified
model due to a decreasing hazard underlying the data.

4.5 Investigate memory decay in empirical
relational event networks

In this section we apply themethodology to the following two real-life case stud-
ies:

• A network of Indian socio-political actors sending demands to one another;

• A network of students sending text messages among each other.

The goal was to learnwhichmemory decay function best describes theweight
decrease of past events when modeling future events using endogenous net-
work statistics. We also illustrate the impact of misspecified memory parame-
ters on the network coefficients. Moreover, the fit and predictive performance
of the best fitting memory decay model was compared with a model which ig-
nores memory decay to study the importance of memory decay in empirical
relational event networks. Finally we provide insights about the computational
costs of the approach for relational events with different numbers of actors and
different numbers of events.

4.5.1 Demands among Indian socio-political actors

The Indian data were retrieved from the ICEWS (Integrated Crisis Early Warn-
ing System) (Boschee et al., 2015). This database is available in the Harvard
Dataverse repository and it collects relational events that describe interactions
(found in news articles) occurring between socio-political actors all over the
world. We focus our analysis on the sequence of requests that were recorded
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Decay w/o
memoryExponential Linear One-Step

BIC 56753.55 56775.5 56870.08 60659.31

ln (BF ) - 10.97 58.27 1952.88

Table 4.1: (Indian data) BIC of the best model (where the memory parameter is
optimized) under each of the three memory decays (exponential, linear and one-
step) and for the model w/o memory. The lowest BIC is the one of the exponen-
tial model (56753.55), and the two log-Bayes-Factor are calculated based on the fol-
lowing model comparisons: BF (MExponential,MLinear), BF (MExponential,MOne-Step) and
BF (MExponential,Mw/o memory).

within the Indian territory. In the original data, such requests were further clas-
sified in humanitarian, military or economic ones but we avoid such distinction
in our analysis.

The relational event sequence consists of M = 7567 demands recorded be-
tween June 2012 and April 2020 and sent among the tenmost active actor types:
citizens, government, police, member of the Judiciary, India, Indian National
Congress Party, Bharatiya Janata Party, ministry, education sector, and ”other
authorities”. The time variable is recorded at a daily level, therefore events that
co-occurred are considered evenly spaced throughout a day and the memory
parameter is measured in days. The logarithm of the rate (λ) for the demand
sent by actor i to actor j at time t is modeled as

lnλ(i, j, t) = βIntercept + βInertiaweighted-Inertia(i, j, t,ψ)+

+βReciprocityweighted-Reciprocity(i, j, t,ψ)+

+βTClosureweighted-TClosure(i, j, t,ψ) + βABAYABAY(i, j, t)

(4.15)

whereweighted-Inertia, weighted-Reciprocity andweighted-Transitivity Closure
(TClosure) are assumed to follow a weight decay governed by ψ, the logarithm
of the memory parameter.

We first investigated the three weight decays presented in Section 4.2 (expo-
nential, linear and one-step decay) by optimizing the negative log-likelihood for
each model (a plot of the − lnLp(ψ) is shown in Figure 4.11). Finally we chose
the best fitting model among the three models, that is the one with the lowest
BIC. In Table 4.1 the BIC’s of the three best models are reported along with the

91



Chapter 4

Figure 4.11: (Indian data) negative profile log-likelihood (− lnLp(ψ)) under each of the
three memory decays (exponential, linear and one-step).

BIC of a model in which no memory decay was specified. In the same table, the
log-Bayes-Factor is calculated by considering as reference the model with the
lowest BIC among the three, that is the exponential one. We see that there is
convincing evidence in the data in favor of the exponential decay model as the
data were approximately exp(10.97), exp(58.27), and exp(1952.88) times more
likely under the exponential model than under the linear decay model, the one-
step model, and the model without memory, respectively. Thus, we choose to
continue the analysis with the exponential decaymodel. In Figure 4.12 the trend
of the MLEs is plotted over the logarithm of the memory parameter (ψ) for the
exponential decay model. Again, we see a considerable impact of the choice of
the memory parameter which suggests that choosing the memory parameter
in an ad hoc manner is not advised. For example, we see that transitivity clo-
sure can vary from approximate 0 to more than 1 within the considered range
of the memory parameter.
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Figure 4.12: (Indian data) trend of the maximum likelihood estimates (MLEs) for the
exponential decay over ψ (logarithm of the memory parameter). The dashed black lines
in each plot mark the estimate for the log-memory-parameter ψ̂MLE (vertical lines) and
the estimates of the effects β (horizontal lines) at the corresponding ψ̂MLE. The shaded
regions are the 95% confidence intervals for the effects β estimated at any value of ψ.

The estimated half-life of the exponential memory decay in this network is
exp (ψ̂) ≈ 64 days. Thus the weight of past requests tends to halve after about
2 months. This case study has been already shown in Arena, Mulder, and Leen-
ders (2022) where a semi-parametric strategy was applied to model memory
decay by means of an ensemble of many step-wise decay models. In that anal-
ysis, which does not make parametric assumptions about memory decay func-
tion (and is therefore computationally much more expensive), the shape of the
decay also followed an approximate exponential shape, which is the same as
we find here using the parametric approaches presented in this chapter.

In Table 4.2, the estimates of the effects β at the optimized memory param-
eter are reported. When interpreting these coefficients it is important to note
that thememory functionwas normalized such that the surface underneath the
line equals 1. Given the half-life parameter of 64 days, this implies that the func-
tion in Figure 4.1b would be multiplied with ln (2)/64. Thus, given the estimated
inertia effect of 6.9, the contribution of the last observed event to the last ob-
served dyad is equal to a factor of exp(6.9× (ln (2)/64)) ≈ 1.08, i.e., an increase
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Exponential decay
ψ̂ Intercept Inertia Reciprocity TClosure ABAY

β̂ 4.156 -4.373 6.912 2.888 0.146 0.229

se(β̂) - 0.018 0.074 0.111 0.005 0.033

Table 4.2: (Indian data) Maximum likelihood estimates for the exponential decay. The
estimate of the logarithm of the memory parameter is 4.156, that is an half-life of
exp (4.156) ≈ 64days. Estimates of effects β are all significant.

Figure 4.13: (Indian data) ROC curve of model with exponential memory decay and
model without memory

of 8% (which is the maximal contribution), and if an event was observed for this
dyad approximately 64 days ago, this would have resulted in a contribution to
the rate with a factor of exp(6.9× (ln (2)/64)×0.5) ≈ 1.04, i.e., an increase of 4%.

To illustrate the importance of modeling memory decay, we evaluated the
predictive performance of the best fitting relational event model with an ex-
ponential decay function and compared it with a relational event model which
ignores memory decay by giving all past events an equal weight. The plot in Fig-
ure 4.13 shows the ROC curves of bothmodels which clearly shows the superior
performance of the model with an exponential memory decay function.
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Network of sms # Actors # Events

1 cluster 23 3678

2 clusters 53 7311

8 clusters 199 13943

Table 4.3: (Sms data) Dimensions of the three sub-networks used in the example.

4.5.2 Text messages among students

The sms data consist of a sequence of text messages sent among a group of
university students (freshmen) during a period of four weeks. The original event
sequence is part of the interaction data collected in the Copenhagen Networks
Study (Sapiezynski et al., 2019) and it consists of 568 students and 24333 events
(number of text messages).

We ran the same analysis on three sub-sequences of events (increasing in
both number of actors and number of events) so as to have a better under-
standing of the computational complexity of themethodology presented in this
chapter as well as to explore the method for networks of different sizes, both
in terms of the number of actors and the number of events. For the selection
of the three sub-sequences: (i) we ran a clustering algorithm that works on the
optimization of a modularity score (Clauset et al., 2004; Csardi & Nepusz, 2006),
(ii) we sorted the clusters based on the length of the event sequences, from the
longest to the shortest, and (iii) we considered three sub-networks where the
first was based on the first cluster of actors, the second was based on the first
two clusters and, finally, the third was based on the first eight clusters. Each
sub-sequence of events also includes the interactions between actors belong-
ing to a different cluster. In Table 4.3, we show the size of each network in terms
of number of students (# Actors) and text messages sent (# Events).

In all the three selected relational event sequences, the time variable is avail-
able as timestampwhich is converted to hours transpired since the beginning of
the observation time. Thus thememory parameterwill bemeasured in hours as
well. In addition to the event sequence we also know the gender of the students
and whether they are friends on Facebook or not. With these two information
we specified two dyadic variables: (1) SameGender which assumes the value 1 if
the two actors interacting have the same gender, 0 otherwise; (2) FBfriends that
assumes the value 1 where the sender and the receiver of the text message are
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Figure 4.14: (Sms data) negative profile log-likelihood (− lnLp(ψ)) under each of the
three memory decays (exponential, linear and one-step) and for each sub-network (1
cluster, 2 clusters and 8 clusters).

Decay w/o
memoryExponential Linear One-Step

1 cluster BIC 12882.49 13408.32 14004.85 16092.17

ln (BF ) - 262.92 561.18 1604.84

2 clusters BIC 38178.28 39332.40 40810.29 44540.81

ln (BF ) - 577.06 1316.01 3181.26

8 clusters BIC 118548.10 120438.30 122899.70 128520.70

ln (BF ) - 945.12 2175.85 4986.32

Table 4.4: (Sms data) Per each sub-network (1 cluster, 2 clusters, 8 clusters) the BIC
of the best model (where the memory parameter is optimized) under each of the
three memory decays (exponential, linear and one-step) and for the model w/o mem-
ory. In all the sub-networks, The lowest BIC is the one of the exponential model, and
the two log-Bayes-Factor are calculated based on the following model comparisons:
BF (MExponential,MLinear), BF (MExponential,MOne-Step) and BF (MExponential,Mw/o memory).

friends on Facebook, 0 otherwise.

We specify the same model for the three sub-networks; thus, the logarithm
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Figure 4.15: Sms data (8 clusters): trend of the maximum likelihood estimates (MLEs)
for the exponential decay over ψ (logarithm of the memory parameter). The dashed
black lines in each plot mark the estimate for the log-memory-parameter ψ̂MLE (vertical
lines) and the estimates of the effects β (horizontal lines) at the corresponding ψ̂MLE. The
shaded regions are the confidence intervals at 0.95 for the effects β estimated at any
value of ψ. For the Transitivity Closure (TClosure) estimates are plotted for an interval of
ψ to make the trend much more readable.

of the rate (λ) for a text message sent by actor i to actor j at time t is modeled
as

lnλ(i, j, t) = βIntercept + βSameGenderSameGender(i, j)+

+βFBfriendsFBfriends(i, j) + βInertiaweighted-Inertia(i, j, t,ψ)+

+βReciprocityweighted-Reciprocity(i, j, t,ψ) + βABAYABAY(i, j, t)

(4.16)

Also in this application weighted-Inertia and weighted-Reciprocity are assumed
to follow a weight decay governed by ψ and the three parametrizations were
examined, in the same fashion as with the Indian data.

In Figure 4.14, we see that for all three networks the negative profile log-
likelihood for the exponential model is lowest, suggesting the best fit for an ex-
ponential decay. This is also confirmed by comparing the three optima, thus by
the BIC’s and the Bayes Factors shown in Table 4.4. For the exponential model,
the trend of the estimates β over ψ for the model with eight clusters are shown
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Exponential decay

ψ̂ Intercept SameGender FBfriends Inertia Reciprocity ABAY

1 cluster β̂ 4.438 -8.706 -1.357 5.745 0.662 0.984 -0.665

se(β̂) - 0.214 0.056 0.215 0.175 0.175 0.139

2 clusters β̂ 4.491 -9.214 -1.392 5.691 1.228 0.852 -0.407

se(β̂) - 0.109 0.036 0.110 0.134 0.134 0.110

8 clusters β̂ 4.519 -11.015 -0.714 6.536 1.423 1.152 0.894

se(β̂) - 0.059 0.020 0.059 0.135 0.135 0.072

Table 4.5: (Sms data) Maximum likelihood estimates for the exponential decay in each
of the three sub-networks (1 cluster, 2 clusters, 8 clusters). The estimate of the logarithm
of the memory parameter (exp (ψ̂)) ranges approximately between 84hrs and 92hrs in
the three networks. Estimates of effects β are overall significant.

in Figure 4.15, where the dot marks the maximum likelihood for each effect at
the ψ̂MLE. The trends of the other two networks (1 cluster and 2 clusters) are
shown in Appendix B.2. The optimal half-life ranges between approximately 84
hours and 92 hours, which implies that textmessages becomehalf as important
to predict future observations after a little bit more than 3.5 days.

The maximum likelihood estimates for the exponential model regarding the
three networks are shown in Table 4.5 using normalized decay functions, which
should be taken into account when interpreting the endogenous effects. For
example, for the network based on 8 clusters, inertia was estimated to be equal
to 1.423, which implies that the rate of the last observed dyad is multiplied with
exp(1.423 × (ln (2)/exp (4.519))) ≈ 1.011, which implies an increase of about
1.1%, and if an event was observed, say, exp (4.519) ≈ 92 hours ago, this would
have resulted in an increase of about 0.5% of the rate. Furthermore, both the
variables SameGender and FBfriends show clear effects on the event rate. A
negative effect for SameGender suggests that the textmessages aremore likely
to be exchangedbetween students of a different gender. Indeed, the parameter
β̂SameGender = −0.714 suggests that the hazard (sms) rate for a dyad where both
actors have the same gender will be (exp (−0.714) − 1) ≈ −51% lower than the
rate inwhich the two actors have different gender (holding all the other statistics
constant). The effect for the variable FBfriends shows that the sequence of sms
is strongly represented by students that are also friends on Facebook, since
such variable results to have a large positive effect on the sms rate.

To getmore insights about the predictive performance of the best fitting expo-
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Figure 4.17: (Sms data): Median running time of one iteration in the optimization stage.
The model that is estimated in the optimization stage is the same one introduced in
the data example in Section 4.5.2. The time is reported in seconds (on the y-axis), the
sequence length is the number of events considered (on the x-axis). The first and the
second sub-sequence (networks with one and two clusters) do not show running times
for larger lengths because they reach their maximum length (see Table 4.3).

nential decaymodel in comparison to amodel which ignoresmemory decay, we
checked the ROC curves. These are displayed in Figure 4.16. Again we see that
there is an improvement in predictive performance of the exponential decay
model over the model without memory decay. The improvement is relatively
small for the data based on 8 clusters.

The final objective of this study was to provide insights about the computa-
tional time of the methodology by considering the needed time for one itera-
tion in the estimation stage. We ran one iteration for the optimization of the
parameter β by fixing the log-memory parameter ψ to the maximum likelihood
estimate from the sub-sequence with 8 clusters. We considered the three sub-
sequences and for each sub-sequence, we run the estimation of the effects β
over an increasing sequence length of 1800, 3600, 7200 and, 13000 events. Per
each sequence length, we run the estimation 100 times. In Figure 4.17 the me-
dian (over 100 repetitions) running time for one iteration in the optimization
stage is shown across both sub-networks (one, two and eight clusters) and se-
quence lengths. The model that is estimated in the optimization stage is the
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same one introduced in the data example in Section 4.5.2. The time is reported
in seconds on the y-axis. The sequence length on the x-axis is the number of
events for the specific sub-network. The first and the second sub-sequence
(networks with one and two clusters) do not show running times for lengths
larger than their maximum length (see Table 4.3). We observe that the median
running time of one iteration follows a linear increasing trend with a slope that
becomes larger for the networks with a higher number of actors. This shows
that the computation is feasible for small networks of 23 actors to fairly large
networks of 199 actors.

4.6 Discussion

In the literature on relational event networks, weight decay functions have been
used to capture the decreasing importance of past events to compute endoge-
nous network statistics as a function of the transpired time. To achieve this, a
parametric function can be chosen to model the decay of the weight of past
events together with a chosen memory parameter that describes the speed of
the decay or memory length. In previous studies both the decay function and
the memory parameter governing have often been prespecified in a fairly ad
hoc manner. As an alternative, the method presented in this chapter allows
one to find the best fitting decay function and memory parameter using the
observed sequence of relational events by inspecting several parametric decay
functions.

The simulation studies and empirical applications in this chapter showed that
a misspecification of the shape of the memory decay and/or a misspecification
of the memory parameter lead to biased estimates of the effects of (endoge-
nous) statistics, and consequently thismay result in incorrect conclusions about
the temporal interaction behavior in the network. This was shown by visualiz-
ing the trends of the estimated effects as a function of the memory parameter.
For this reason, it is not recommended to use memory functions or memory
parameters that are arbitrarily specified. Instead we recommend to optimize
the decay using the observed data as our studies revealed that such biases are
generally avoided in that case. Hence, we recommend network researchers
who are interested to learn how the past affects the future in relational event
networks to estimate the memory decay in the endogenous statistics using the
proposed methodology.
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Of course, this chapter only considered three possible parametric functions
to capture memory decay, all using one memory parameter. Many more single-
parameter functions could be considered.
Moreover, the methodology could be extended to functions with two or more
unknown parameters (e.g., smoothed-one step decay, negative power decay,
hyperbolic-like decay which also allows for a long-term memory plateau). We
leave this for future research. Decays depending on a multiple parameters of
course add complexity both to the optimization stage and to the interpretation
of the parameters. For this reason, the use of univariate memory models may
be preferred as a first step to study memory decay in empirical relational event
networks.

Another important direction for future research is to improve the estimation
of the memory parameter that allows a quantification of its uncertainty, and
how this transcends to the network parameters. Both classical likelihood meth-
ods as well as full Bayesian approaches could be considered for this purpose.
Furthermore, even though our simulation revealed that the model is fairly ro-
bust against violations of the piece-wise constant hazard assumption, the poten-
tial impact of such misspecifications would be useful to explore in more depth
in future research.

Finally we note that the code for the processing of the original data along
with the application of the methodology presented in this chapter are available
in the OSF repository with identifier DOI: 10.17605/OSF.IO/FD9QX (also reach-
able at https://doi.org/10.17605/OSF.IO/FD9QX).
The software developed to run the method discussed in this work will be avail-
able in the R package bremory Arena (2022a).
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CHAPTER

WEIGHTING THE PAST: AN EXTENDED
RELATIONAL EVENT MODEL FOR
NEGATIVE AND POSITIVE EVENTS 5

Abstract

In a time-ordered sequence of relational events, the sentiment of each
interaction describes a qualitative characteristic of the relational event.
The additional information about the sentiment of an event allows the
researcher to learn better and interpret the dynamics governing the ac-
tors’ decision-making process. For instance, at school, if ”child A annoys
child B,” the act of A annoying B is labeled as a hostile action (negative
sentiment). In a future event, if ”child A hugs child B,” the act of A hug-
ging B will be labeled as a positive action (positive sentiment). In this
example, both relational events have the same sender A and receiver B,
but the sentiment of each interaction is different. For social network re-
searchers, accounting for the two sentiments in the modeling framework
is essential for a thorough understanding of the dynamics between ac-
tors in social networks and for theory development. In this chapter, we
introduce a novel modeling framework where the probability of the next
event sentiment is modeled separately from the next dyadic event and
sentiment-driven parametricmemory decays are embedded. We provide
tools for estimating and testing model parameters and for learning how
much longer (or shorter) negative past events influence the future rela-
tive to positive past events. Finally, we discuss the application of the new
modeling framework on a real event sequence of attacks and trades be-
tween players of an online strategy game.

This chapter will be submitted to a scientific journal in a similar form as Arena, G., Mulder, J.,
& Leenders, R. Th. A. J. Weighting the past: An extended relational event model for negative and
positive events.



Chapter 5

5.1 Introduction

Understanding, explaining, and predicting social interaction behavior of actors
in a temporal network has been an important focus for social network research.
Time-stamped relational observations between actors in a network, also called
relational events, are an increasingly popular source of data for this purpose
(Butts, 2008; R. T. A. J. Leenders et al., 2016; Perry & Wolfe, 2013). These data
sequences are chronologically ordered observations stating who is interacting
withwhom in the network andwhen. These data sources capture valuable infor-
mation to study how social interaction dynamics unfolds over time and how the
past affects the future. Empirical examples of such data include the relational
events between countries using digital news reports (Brandes et al., 2009), email
messages between colleagues in organizations (Mulder & Leenders, 2019), dig-
ital and in-person interactions between university students (Sapiezynski et al.,
2019), social interactions betweenplayers in anonline strategy game (Hajibagheri
et al., 2018), face-to-face interactions between freshmen students (Meijerink-
Bosman, Back, et al., 2022), radio communication between astronauts and the
mission control center during the Apollo 13 mission (Karimova et al., 2022), to
name a few.

Relational event data can naturally be analyzed using relational event models
(Butts, 2008). These types of models summarize the past relational event his-
tory between actors in so-called endogenous statistics, such as inertia between
actor i and j (quantifying the volume of past events from actor i to j), reciprocity
between actor i and j (quantifying the volume of past events from j to i), or tran-
sitivity closure (quantifying the number of 2-paths between actors in the past),
and exogenous statistics (such as actors’ attributes). Because past events that
recently occurred are likely to have a larger impact on future interactions than
events that have long passed, it is common to weigh the importance of past
events when computing the endogenous statistics according to the time that
has transpired since the events were observed (Brandenberger, 2018b; Bran-
des et al., 2009). A relational event model can then be used to estimate the
relative importance of these statistics to explain the observed relational event
sequence and to better understand social interaction dynamics in a temporal
network.

Dyadic events characterizing endogenous statistics can be assumed to follow
an exponential weight decay. Studies in literature usually set the half-life pa-
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rameter of the weight decay to an a priori value and the choice of such value is
a result of some theory related to the field of study or has a mere exploratory
purpose (Brandenberger, 2018b; Brandes et al., 2009).
Arena et al. (2023) showed that predefining half-lifes might be valuable for gath-
ering initial insights on whether and how much the effect of statistics on the
event rate changes as the influence of past events becomes more (less) persis-
tent by defining a larger (smaller) half-life. However, they show that an incorrect
specification of thememory parametermight result in biased effects of endoge-
nous statistics on the event rate. The solution they propose is to optimize the
effects of the statistics along with the memory parameter for a given paramet-
ric weight decay. This way, the estimate of the memory parameter will describe
the best weight decay under the observed data and allow for testing on the
memory parameter itself.

In addition to information about the actors who are involved in the observed
relational events and the time the events were observed, relational event data
also often contains a type or sentiment of each event, be it the verb describ-
ing the interaction itself or some adjective or noun connoting the action. For
example, the relational events between countries analyzed by Brandes et al.,
2009 contained both negative (e.g., a boycott) and positive events (e.g., a trade).
Similarly, the social interactions between players in an online strategy game
analyzed by Hajibagheri et al., 2018 allowed for each player to attack or do-
nate resources to other players. The sentiment of past events can play an im-
portant role in social interaction behavior because a boycott of a country by
another country or a player attacking another player’s resource fields is likely
to yield very different subsequent interaction dynamics than if these countries
had started a new trade or the player had donated resources to the other. The
type of an event doesn’t solely describe the sentiment of an interaction but it
also gives more room to both theory building and new modeling frameworks
that account for it. A central question for social network research is then how
relational events of different sentiments affect the social interaction behavior
between actors in the future? The literature has shown that hostile past events
usually have a negative impact on the hazard rate than positive past events
(Brandes et al., 2009) but it is generally unclear how long exactly negative and
positive past events affect future social interaction. This chapter presents a re-
lational event model that can be used to address this research question.

The contribution of the current chapter is two-fold. First, we extend the re-
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lational event model by redefining the endogenous statistics such that past
events are weighted according to the time that has transpired and its senti-
ment. The weight of past events decays using an exponential function with
an unknown half-life parameter that is different for negative and positive past
events to study how long past events are “remembered” depending on their sen-
timent. Consequently endogenous statistic are split into multiple statistics for
different sentiments. For instance, if the event types are dichotomized in ”nega-
tive” and ”positive”, the transitivity closure might be described by four different
patterns: (i) where all events are positive, (ii) where all events are negative, (iii)
where the first event is positive and the second is negative, (iv) where the first
event is negative and the second is positive. Second, we extend the relational
event model with a Probit regression model for the sentiment of the observed
relational events conditionally on the actors that are involved in the event and
the time of the event. Thus, the joint model can be used to explain social inter-
action dynamics between actors by appropriately weighting the past negative
and positive events and for predicting when the next event is likely to be ob-
served, which actors are likely to be involved, and whether the sentiment of the
next event is positive or negative. Furthermore, we can understandwhether the
weight decay of past events differs based on the sentiment (type) of the event
and, how differently the next dyad and the next event type are influenced by a
set of network dynamics and/or exogenous characteristics of the network.

The proposedmodel builds on previously proposedmodels. Butts (2008) pro-
posed a model for modeling relational event with sentiments by modeling the
rate parameter for each specific dyad and each sentiment. The current model
captures the sentiment conditionally on the observed dyad, following Brandes
et al. (2009). An advantage of considering a conditional approach is that the
size of the risk set does not increase which is useful as large risk sets and large
samples (which are common in practice) can easily result in computational and
memory problems. Furthermore, it was noted by Lerner et al. (2013) that this
approachmay result in more natural social interaction dynamics. An important
difference with the current model and Brandes et al. (2009)’s approach is that
we use different memory decay parameters for different sentiments (to be able
to study whether the length of the impact of negative past events differs from
that of positive events) and we propose a methodology for estimating and test-
ing different decay parameters given the observed data. Furthermore, optimiz-
ing the memory decay from the observed data was considered by Arena et al.

106



A modeling framework for sentiment-driven relational events

5

(2023) with the exception that here we consider events of different sentiments
having different memory parameters to estimate and test.

The chapter is organized as follows: in Section 2, we introduce the SentiREM
and discuss about modeling the next event sentiment separately from the next
dyad. We continue in the same section with assuming a Probit regression for
modeling dichotomized positive and negative events, discussing the optimiza-
tion of the model parameters and presenting different possible tests on model
parameters in a Bayesian fashion. In Section 3, we present simulation studies
and show the behavior of the estimated parameters over different proportions
for the two event types in the network and across different lengths of the event
sequence. In Section 4, we estimate the SentiREM on an observed sequence of
attacks and trades among players of a real-time strategy online game. We dis-
cuss the testing on model parameters, the bias of effects after misspecification
of memory parameters and, finally, the interpretation of the effects of the two
models. Finally, we discuss the key features of the methodology presented in
this chapter, a possible limitation due to the assumption of dichotomized senti-
ments in the network of events and we also propose some idea about possible
future works around the topic of memory decay in relational event data with
sentiment.

5.2 SentiREM: A model for relational events with
sentiments

Consider a time-ordered sequence ofM relational events, any event e′ thatmay
happen is described by the triple (se′ , re′ , ce′), respectively sender, receiver, and
sentiment (type) of the event which we assume here to be either positive (ce′ =
p) or negative (ce′ = n). Thus, the likelihood function for the observed sequence
of events EtM is written as,

L(β,ψ;EtM ,X) =
M∏

m=1

[
λ(sem , rem , cem , Xem , Etm−1 ,β,ψ)

∏

e′∈R
exp

{
−λ(se′ , re′ , ce′ , Xe′ , Etm−1 ,β,ψ) (tm − tm−1)

}
] (5.1)

where, at any time point tm, the log-rate of every possible event e′ in the risk
set (R) is a linear function of a vector of endogenous and exogenous statistics,
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ue′,tm and parameters β that describe the effect of such statistics on the event
rate,

lnλ(se′ , re′ , ce′ , Xe′ , Etm−1 ,β,ψ) = ue′,tm(ψ, Etm−1 ,X)β (5.2)

tm−1 − te′

w

Figure 5.1: Example of exponential decay at different values of the half-life parame-
ter: the dashed line has half-life exp (ψ) = 0.5, the solid line has half-life exp (ψ) = 1,
the dotted line has half-life exp (ψ) = 2. As the half-life value increases, the trend de-
creases slowly and the maximum weight lowers (because of the normalizing constant
ln (2)/ exp (ψ) that makes the area under the decay sum 1).

The exogenous statistics in ue′,tm can be time-varying or constant and are
based on information provided by X. Whereas, the endogenous statistics quan-
tify network dynamics over time and are based on the history of previous events,
Etm−1 , whose weights change based on the time elapsed since their occurrence.
The weight of a past dyadic event e′ transpired before tm−1 is assumed to follow
an exponential decay function

w(tm−1 − te′ ,ψ) =
ln (2)

exp (ψ)
exp

{
−(tm−1 − te′)

ln (2)

exp (ψ)

}
(5.3)

where tm−1 − te′ is the time elapsed at tm−1 since the occurrence of the event
e′ at te′ and the steepness of the decay is governed by the log-memory param-
eter ψ, with exp (ψ) being the value of the half-life which describes at which
value of the transpired time the weight of an event is halved. An example on
what the exponential decay looks like is shown in Figure 5.1, where the shape
of the decay is represented at three (increasing) values of the half-life, that are
exp (ψ) = (0.5, 1, 2). As the half-life value increases, we observe that the trend
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decreases its steepness becoming slower and the maximum weight adjusts to
lower values. Such adjustment is due to the normalizing constant ln (2)/exp (ψ)

that makes the area under the decay sum 1. We assumed that the shape of the
decay is exponential for all the sentimentsmodeled in the network but themem-
ory parameter is different across sentiments, that is ψp *= ψn in a network with
only two discrete sentiments. We therefore refer to the vector of log-memory
parameters as ψ =

(
ψp,ψn

)
, with ψ ∈ R2. The anti-logarithm of such vector is

the vector of memory parameters and we consider their reparametrization on
the logarithmic scale so as to carry the optimization of the likelihood without
constraints on any parameter.

In (5.1), the presence of event types increases the size of the risk set by a factor
equal to the number of observed types. In order to explain why this happens,
we consider the definition of a relational event e′ as a triple (se′ , re′ , ce′). When-
ever there is only one event type (i.e. ce′ is not measured or it is the same for all
the events in the network), then the risk setR consists of all the sender/receiver
combinations and its size is generally calculated as N(N − 1), where N is the
number of actors that can be the sender or the receiver of an interaction. In
this case, we model the hazard rate of the directed dyad (se′ , re′) at time t, that
is λ(se′ , re′ , t). Whereas, if two or more event types (sentiments) are observed,
then the risk setR consists of all the sender/receiver/type combinations and its
size is N(N − 1)C, where C is the number of observed types. This boils down
to defining an hazard rate function for the sentiment-based dyad (se′ , re′ , ce′) at
time t, namely λ(se′ , re′ , ce′ , t). A significant disadvantage of such model is given
by the increasing size of the risk set which causes a higher computational bur-
den for both the calculation of the statistics, their storage in memory, and the
estimation of the model parameters.

The likelihood in (5.1) can be read as the product of the conditional probabili-
ties of observing each event em at its time tm of occurrence, given the sequence
of already observed events Etm−1 ,

M∏

m=1

p(sem , rem , cem , tem |Etm−1 ;β,ψ,X) (5.4)
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The conditional probability of a specific event at tm can be re-written as

p(sem , rem , cem , tem |Etm−1 ;β,ψ,X) =

= p(cem |sem , rem , tem , Etm−1 ;β
(c),ψ(c),X)p(sem , rem , tem |Etm−1 ;β

(sr),ψ(sr),X)
(5.5)

in which the next event sentiment is modeled after conditioning to the next
observed dyad. As a result of the conditional probabilities in (5.5), the set of
parametersβ aswell as thememory parametersψ divide into two different sets
each for the specific probability and we distinguish them with the superscripts:
(c) for the parameters describing the probability of the next event sentiment,
(sr) for those parameters describing the probability of the next dyad.

With the formula (5.5), the product of conditional probabilities in (5.4) be-
comes

M∏

m=1

p(sem , rem , cem , tem |Etm−1 ;β,ψ,X) =

=
M∏

m=1

p(cem |sem , rem , tem , Etm−1 ;β
(c),ψ(c),X)

︸ ︷︷ ︸
Sentiment

p(sem , rem , tem |Etm−1 ;β
(sr),ψ(sr),X)

︸ ︷︷ ︸
REM

(5.6)

where

• p(cem |sem , rem , tem , Etm−1 ;β
(c),ψ(c),X) is the probability of the sentiment

of events. Following the initial assumption of the sentiment measured
on a categorical scale with two categories, positive and negative, we can
model the first element of the product (sentiment model) in (5.6) as a Pro-
bit model. In the next Section, we discuss the Probit model as sentiment
model in more detail. However, the sentiment model can be specified as
anymodel for the response variable c ∈ C (withC being the set of possible
sentiments), that can be measured on any scale, ranging from a categor-
ical to a continuous scale, for instance: the ordered Logit model in the
case of a sentiment measured in an ordinal categorical scale with more
than two event types, the Normal model in the case of a continuous scale,
the Poisson model in the case of counts and so forth (Agresti, 2015).

• p(sem , rem , tem |Etm−1 ;β
(sr),ψ(sr),X) can bemodeled as a REM (Butts, 2008)

where the log-event rate for the event e′ is modeled as in (5.2) but this time
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only defined on dyad (se′ , re′),

lnλ(se′ , re′ , Xe′ , Etm−1 ,β
(sr),ψ(sr)) = ue′,tm(ψ(sr), Etm−1 ,X)β

(sr) (5.7)

The dimension of the risk set for the REM becomes N(N − 1), meaning
that the set considers only the dyadic events defined by any possible com-
bination of sender and receiver, excluding the sentiment. However, the
endogenous statistics in (5.7) can still be based on the sentiment of past
events.

Therefore, we can write the likelihood function of the SentiREM (Sentiment
Relational Event Model) as

LSentiREM(β,ψ;EtM ,X) = LSentiment(β
(c),ψ(c);EtM ,X) · LREM(β

(sr),ψ(sr);EtM ,X)
(5.8)

where LSentiment(β
(c),ψ(c);EtM ,X) is the likelihood of the sentiment model, in

this case of a Probit model and, LREM(β(sr),ψ(sr);EtM ,X) refers to the likelihood
of the REMmodel. Our interest focuses on finding the set of model parameters
(β,ψ) that optimizes the likelihood of the SentiREM in (5.8).

The sentiment model: modeling the next event sentiment via Probit re-
gression

Given that the possible sentiments are two (p,n) and that the probability that
we want to model is the one of observing cem = n (negative sentiment), we can
write

p(cem = n|sem , rem , tem , Etm−1 ;β
(c),ψ(c),X) = Φ(ηm(β(c),ψ(c), Etm−1 ,X)) (5.9)

where, Φ(.) is the cumulative distribution function of the Normal distribution
and ηm(.) describes the linear predictor at time tm for the observed event em.

Then, the likelihood of the sentiment model LSentiment(β
(c),ψ(c);EtM ,X)mod-

eled via Probit regression becomes

LSentiment(β
(c),ψ(c);EtM ,X) =

M∏

m=1

[
Φ(ηm(β(c),ψ(c), Etm−1 ,X))

δm

(
1− Φ(ηm(β(c),ψ(c), Etm−1 ,X))

)1−δm
] (5.10)
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with

δm =





1 if cem = n

0 if cem = p
(5.11)

The linear predictor at time tm is a function of endogenous and exogenous
statistics and can be written as

ηm(β(c),ψ(c), Etm−1 ,X) = zm(ψ(c), Etm−1 ,X)β
(c)

with zm being the row-vector of the statistics for the dyad (sem , rem) observed
at tm, which are either based on exogenous information (X) or on the history of
previous events,Etm−1 , and can depend on thememory parameters

(
ψ(c)
p ,ψ(c)

n

)
.

Parametersβ(c) describe the log-linear effect of statistics on the probability that
the next event type is negative (n): positive (negative) values of such parameters
indicate a higher probability of the next event to be negative (positive). Hence,
the Probit model can be described by two data structures: (i) a matrix of statis-
tics, Z, with as many rows as the number of events (M ) and as many columns
as the number of statistics in the linear predictor, (ii) a vector cobs of length M

with the time-ordered sequence of observed event types, which is the response
variable of the Probit model.

5.2.1 The estimation of the model parameters

Weare now interested in finding the set of parameters (β,ψ) thatmaximizes the
likelihood function of the SentiREMpresented in (5.8), which is the same set that
minimizes the negative log-likelihood. Given the separability on a parameter-
level of the two models, we can carry out two separate optimizations to find
the best set of parameters: one optimization of the sentiment model as to the
parameters

(
β(c),ψ(c)

)
and one optimization of the REM as to the parameters

(
β(sr),ψ(sr)

)
. Indeed, considering the separation of the two likelihoods, the

minimization of the negative log-likelihood can be written as

argmin
β,ψ

{− lnLSentiREM(β,ψ;EtM ,X)} =

{
argmin
β(c),ψ(c)

{
− lnLSentiment(β

(c),ψ(c);EtM ,X)
}
,

argmin
β(sr),ψ(sr)

{
− lnLREM(β

(sr),ψ(sr);EtM ,X)
}}

(5.12)

The maximum likelihood estimates of each set of parameters can be found
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with two different approaches: via the optimization of the bivariate negative
profile log-likelihood or via the trust region optimization algorithm. Below we
describe each of these approaches in detail.

(a) Sentiment model negative profile log-
likelihood

(b) REM negative profile loglikelihood

Figure 5.2: Example of negative profile log-likelihood for each model in the SentiREM

The bivariate negative profile log-likelihood

We define the bivariate negative profile log-likelihood for both sentiment and
REM model as a two-dimensional function given the presence of two memory
parameters,

− lnLprofile Sentiment

(
ψ(c)
p ,ψ(c)

n

)
= min

β(c)

{
− lnLSentiment

(
β(c),ψ(c)

p ,ψ(c)
n ;EtM ,X

)}

with (ψ(c)
p ,ψ(c)

n ) ∈ R2

− lnLprofile REM

(
ψ(sr)
p ,ψ(sr)

n

)
= min

β(sr)

{
− lnLREM

(
β(sr),ψ(sr)

p ,ψ(sr)
n ;EtM ,X

)}

with (ψ(sr)
p ,ψ(sr)

n ) ∈ R2

(5.13)

The value of each negative profile log-likelihood is obtained as the minimum
value of the negative log-likelihoodwhere thememory parameters are fixed and
the optimization is carried over the vector of effects of the statistics. This trans-
lates to two different model optimizations: if we fix the memory parameters in
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the sentiment likelihoodmodeled via Probit and carry the optimization over the
β(c) we optimize the negative log-likelihood of a Probit regression (which can be
done using existing software like the stats::glm() function in R). Whereas, if
we fix thememory parameters in the REM likelihood and carry the optimization
over the β(sr) we are optimizing the negative log-likelihood of a REM and this
can be also carried out by using existing software like the R packages relevent
(Butts, 2023), and, survival (Therneau, 2022). Therefore, if we define a two-
dimensional grid of values inR2 and for each pair of values we compute the two
optimizations in (5.13) we will be able to represent a mesh surface plot of the
negative profile log-likelihood for each model and an example of it is shown in
Figure (5.2). Plotting the profile log-likelihood is still feasible on two dimensions
and it helps us to understand the possible presence of local minima. If there
exists a minimum for each negative profile log-likelihood, that value will corre-
spond to the globalminimum for both the optimized log-memory parametersψ
and the optimized vector of effects β. The sets of parameters of the sentiment
and the REMmodel will then be a solution for the optimization of the complete
negative log-likelihood − lnLSentiREM(β,ψ;EtM ,X).

The trust region optimization

Optimization via trust region algorithm is widely used in non-constrained prob-
lems. The general idea of the trust region algorithm is to optimize an objective
function starting by the definition of a region of trust per each parameter which
will expand or shrink at each iteration until the convergence. The quantities of
interest in a trust region optimization are the values that the objective function,
its gradient, and its hessian assume at specific values of the model parameters.
Such quantities are updated at each iteration and regulate the relative expan-
sion (or contraction) of the region, resulting in the change of the value of the
parameters for the next iteration. The minimum and maximum radius of the
region can be defined by the researcher as well as other parameters like the
maximum number of iterations. We omit here the explanation of the optimiza-
tion and we refer to Fletcher (1987) and Nocedal and Wright (2006) for a more
detailed explanation of the algorithm used in the R package trust (Geyer,
2015).

The trust region optimization requires the objective function to be differen-
tiable at least twice with respect to all the model parameters. The negative
log-likelihood of both the sentiment model and the REM is twice differentiable
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with respect to the vector of effects of statistics β(c) and β(sr). However, this
is not necessarily possible for the memory parameters because the memory
decay can be specified by the researcher and can assume several parametric
functions some of which are not twice differentiable (e.g., the one-step mem-
ory model proposed in Arena et al. (2023)). In order to avoid complications
with the derivatives on the memory parameters, we maintain the assumption
of exponential weight decay for both event types, which is a twice differentiable
function. In the case where the chosen function for the weight decay is not
twice differentiable, the preferred approach is to optimize the negative profile
log-likelihood. The calculation of gradient and hessian can become complex de-
pending on the set of statistics included in the linear predictor of sentiment and
REM model.

5.2.2 Testing of model parameters

In this section, we present various hypothesis tests that can be executed under
the proposed statistical framework; please note that many more hypotheses
can be formulated in addition. In order to be able to test whether events with
different sentiments differ in how long they impact future social interaction, we
first propose a test on the memory parameters of the two sentiments. Subse-
quently, in order to test whether events of different sentiments have a differ-
ent substantive impact on social interaction dynamics, we propose testing the
effects of the endogenous statistics corresponding to different sentiments.

First, we test of whether events of different sentiments differ in how long they
affect the interaction rate between actors:





H0 : ψ(sr)

p = ψ(sr)
n

H1 : ψ(sr)
p *= ψ(sr)

n

(5.14)

These hypotheses can be tested using the Bayes factor, which quantifies the
relative evidence of one model (hypothesis) compared to another. Therefore,
following the hypothesis in (5.14), we can define two models: (i) model M0

where, in the estimation stage, we constrain the two memory parameters to
be equal (i.e. only one memory parameter is assumed in the model, and it is
the same for any sentiment-related weight decay) and (ii) modelM1 where we
estimate the model parameters without any constraint on the memory param-
eters. The general formula of the Bayesian information criterion for any model
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M (BIC; Schwarz (1978)) is given by

BIC(M) = k log(M)− 2 lnL, (5.15)

where k is the number of parameters in the model of interest, M is the num-
ber of events in the event sequence and, − lnL is the optimized negative log-
likelihood of the model of interest. Since the hypotheses in (5.14) refer only
to the memory parameters in the model for the dyad (REM), the negative log-
likelihoodused in the computation of theBIC will be− lnLREM

(
β̂(sr), ψ̂(sr);EtM ,

X). The Bayes factor between the two models is given by

BF (M0,M1) = exp{BIC(M1)/2−BIC(M0)/2}, (5.16)

which quantifies the relative evidence in the data in favor of M0 against M1.
Hypothesis H1 in (5.14) might be further divided into two one-sided hypothe-
ses, a left one-sided hypothesis ψ(sr)

p < ψ(sr)
n and a right one-sided hypothesis

ψ(sr)
p > ψ(sr)

n . Further, Bayes Factors can also be calculated to quantify the rela-
tive evidence of the three hypotheses against each other. Alternatively, the test
in (5.14) could be executed using a classical Wald test, but that requires either a
one-sided (with prespecified direction) or a two-sided test, and this test would
not be statistically consistent (as there would be a strictly positive probability
(typically .05) to incorrectly reject a correct null hypothesis). Finally, note that
similar hypotheses could be formulated for the memory parameters under the
sentiment model, i.e., ψ(c)

p and ψ(c)
n .

We now consider the hypothesis tests on the strength of the effect of past
events with different sentiments via the effects of the corresponding endoge-
nous statistics. Suppose we want to test the strengths of positive and negative
inertia; we then consider the following hypothesis test:






H0 : βInertiap = βInertian

H1 : βInertiap < βInertian

H2 : βInertiap > βInertian

(5.17)

In (5.17), a Bayes Factor can be calculated for testing the relative evidence of
the hypotheses, one against another one. Wemay instead want to test whether
the effects of endogenous statistics are the same regardless the event type they
refer to, and for this reason consider the hypothesis H1 and H2 as one single
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hypothesis that is βInertiap *= βInertian and calculate the Bayes Factor of suchmodel
against H0.

The Bayes Factor can also be used when testing hypotheses on more com-
plex network dynamics, such as with second-order endogenous statistics. Such
statistics are based on the time-ordered sequence of two dyads, with the third
dyad closing the triangular pattern. If two or more sentiments are observed,
they can generate different endogenous statistics of the same triadic pattern
where the sequence of dyadic events is described by a different sequence of
sentiments. For instance, in the case of two sentiments, positive and negative,
the transitivity closure (tc) can assume four definitions: (i) when the two dyadic
events are positive, (ii) when both the dyadic events are negative, (iii) when the
first event is positive and the second is negative, (iv) when the first event is nega-
tive and the second is positive. A hypothesis test on the transitivity can be then
written as,





H0 : βtcpp = βtcnn = βtcnp = βtcpn

H1 : at least one βtci *= βtcj i, j ∈ {pp,nn,np,pn} with i *= j
(5.18)

Based on what the researcher aims to examine, both hypotheses H0 and H1

can be further divided into more specific hypotheses to test (e.g., one-sided
hypotheses as discussed for Inertia).

Other hypotheses can be defined on higher order network dynamics or on
non-nested models. In the former case, the network dynamics are described
by three or more dyadic events and the testing can follow the examples in 5.17
and in 5.18. In the latter case, we want to compare two models whose linear
predictors are different and neither of the two models can be obtained by im-
posing parametric restrictions on the other. Finally, the Bayes Factor remains a
valid tool to test these hypotheses and provide a reliable answer to them.

5.3 Numerical performance of the SentiREM

In this section, we perform a simulation study to analyze the behavior of the
maximum likelihood estimates of the SentiREM in simulated networks, varying
the sequence length and the distribution of the sentiments across the events.
We generate 600 event sequences of 2000 events and involving 10 actors. We
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specify the same set of exogenous and endogenous statistics in the linear pre-
dictors of both models but with different set of effects β and memory parame-
ters ψ. The specification of the linear predictor for both models can be written
as,

β0 + βDyadic1Dyadic1(sem , rem) + βDyadic2Dyadic2(sem , rem)+

βInertiap Inertiap(sem , rem , cem = p, Etm−1 ,ψp)+

βReciprocitypReciprocityp(sem , rem , cem = p, Etm−1 ,ψp)+

βidsp idsp(sem , rem , cem = p, Etm−1 ,ψp)+

βInertian Inertian(sem , rem , cem = n, Etm−1 ,ψn)+

βReciprocitynReciprocityn(sem , rem , cem = n, Etm−1 ,ψn)+

βidsn idsn(sem , rem , cem = n, Etm−1 ,ψn)

(5.19)

where β0 is the intercept, the statistics Dyadic1 and Dyadic2 are two dyad-level
exogenous statistics that are constant over time. The endogenous statistics
inertia, reciprocity, and in-degree of the sender (ids) are computed per senti-
ment and weighted by an exponential memory decay that allows for a differ-
ent memory parameter per event sentiment. The model parameters (β,ψ) of
the SentiREM will be described by the two sets

(
β(sr),ψ(sr)

)
for the REM and

(
β(c),ψ(c)

)
for the sentiment model. The vector of effects and memory param-

eters used in the linear predictor of the REM is (β,ψ)(sr) =
(
β0,βDyadic1,βDyadic2,

βInertiap ,βReciprocityp ,βidsp ,βInertian ,βReciprocityn ,βidsn ,ψp,ψn
)(sr)

= (−7, 0.1,−0.2, 7, 16,

4, 10,−17,−4, ln (12), ln (30)). The vector of effects for the sentimentmodel (Pro-
bit) is (β,ψ)(c) =

(
β0,βDyadic1,βDyadic2,βInertiap ,βReciprocityp ,βidsp ,βInertian ,βReciprocityn ,

βidsn ,ψp,ψn
)(c)

=
(
β(c)
0 ,−0.3, 1.5,−5,−18,−3, 5, 15, 7, ln (6), ln (20)

)
, wherewe set

the intercept of the sentimentmodel to different values β(c)
0 = (−3,−2.5,−2,−1.5,

−1,−0.5). We generate 100 relational event sequences for each value, resulting
in networks with different proportions of the two event types: the proportions
of positive (p) range between the 20% and 80%.

For each simulated network, we estimate a SentiREM on the sub-networks
that are defined on the first 250, 500, 1000 events and on the whole network
of 2000 events. The proportions of the two event types vary across the sub-
networks. The optimization of thememory parameters is carried over their nat-
ural logarithm, thus we refer to their transformed true values

(
ψ(sr)
p ,ψ(sr)

n

)
=

(ln (12), ln (30)) ≈ (2.48, 3.40) for the relational event model and
(
ψ(c)
p ,ψ(c)

n

)
=

118



A modeling framework for sentiment-driven relational events

5

Figure 5.3: (Simulation study: modeling the next dyadic event) The distribution of
the maximum likelihood estimates of the REM across different proportions of negative
events (on the x-axis). True values of each model parameter are marked by the horizon-
tal bold line.

(ln (6), ln (20)) ≈ (1.79, 2.99) for the sentiment model. For each model, we carry
out the estimation of the whole set of model parameters via trust region opti-
mization. Figure 5.3 and 5.4 show the trend of the estimates for each model
parameter at different lengths of the event sequence (250, 500, 1000 and, 2000
events) and over different proportions of each the event types. For clarity of ex-
position, we divide the proportion of the negative sentiment along four classes
on the x-axes.

The results coming from the REM show a general improvement of the esti-
mation of the model parameters as the length of the event sequence increases
and the proportion of events becomes less extreme. When modeling the next
event sentiment with the Probit regression we observe the same behavior of
the maximum likelihood estimates as in the REM estimates and we also notice
a higher volatility of the estimates when the sequence becomes shorter. The
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Figure 5.4: (Simulation study: modeling the next sentiment) The distribution of the
maximum likelihood estimates of the sentiment model (Probit) across different propor-
tions of negative events (on the x-axis). True values of eachmodel parameter aremarked
by the horizontal bold line.

trend of the intercept in the sentiment model is expected since we estimated
networks with six different intercepts ranging from -3 to -0.5 by a step of 0.5
and, also in this case we observe the increasing variability of the estimates as
the network of events shortens. Overall, we can conclude that the estimation
procedure works as intended.

5.4 Case study: modeling memory decay of trades
and attacks betweenplayers in an online strat-
egy game

We applied the SentiREM to a sequence of interactions observed in an online
real-time strategy game (Hajibagheri et al., 2018). In terms of predictive per-
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formance, the proposed model outperforms other existing approaches that
set the memory parameters to fixed predefined constants. In this section, we
present the empirical data and formulate the research questions, we discuss
model specification and results of the SentiREM and, finally, we compare the
predictive performance of the SentiREM to several fixed memory models and
to a model without memory decay.

5.4.1 Data and research questions

In the strategy game under study, each player is the leader of her own village
and focuses on developing and expanding her territory by building construc-
tions or upgrading existing ones, developing resource fields, conquering side
villages, and recruiting military troops with an offensive or defensive aim. Fur-
thermore, each player can trade resources with other players via the market-
place, can attack other player’s side villages (aiming to loot their resources or
take over their lands) and can join or abandon alliances with other players.

The available network data consist of a time-ordered sequence of attacks and
trades that are collected over the period of a month. In addition to the se-
quence of events, we also know when alliances formed by players. We focus
on the relational event sequence of 7535 attacks (17%) or trades (83%) , oc-
curring among 269 actors of four alliances. The time variable is available as a
timestamp (”yyyy-dd-mm hh:mm:ss”) in the original data and we re-scaled the
waiting time between events to hours. Therefore, in the estimation stage the
natural logarithm of the memory parameters corresponds to the natural loga-
rithm of hours. We are interested in (i) testing whether the memory decay of
past attack events differs from the one of past trade events, (ii) testing whether
past attacks have a stronger impact on social interaction dynamics than past
trades, and (iii) understanding how accurate the model is in predicting the time,
the dyad, and the sentiment of events.
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Statistic Formula Description

SameCommunity
(i, j, tm)

I(community(i, tm) = community(j, tm))

SameCommunity is a time-
varying statistic that assumes
value 1 if sender and receiver
of the interaction belong to
the same community at the
time of the interaction, 0
otherwise. The value assumed
is the same for both directed
dyads (se = i, re = j) and
(se = j, re = i).

Inertiatrade
(i, j, tm,ψtrade)

i j
trade

∑

e∈Etm−1

Ie(i, j, trade)w(tm−1 − te,ψtrade)

Inertia for the trades quanti-
fies the weighted volume of
already occurred events in
which the sender i initiated a
trade with the receiver j.

Inertiaattack
(i, j, tm,ψattack)

i j
attack

∑

e∈Etm−1

Ie(i, j, attack)w(tm−1 − te,ψattack)

Inertia for the attacks quan-
tifies the weighted volume
of past events in which the
sender i attacked receiver j ’s
side village.

Reciprocitytrade
(i, j, tm,ψtrade)

i j
trade

∑

e∈Etm−1

Ie(j, i, trade)w(tm−1 − te,ψtrade)

Reciprocity for the trades
quantifies the weighted vol-
ume of past trades that i
received from j.

Reciprocityattack
(i, j, tm,ψattack)

i j
attack

∑

e∈Etm−1

Ie(j, i, attack)w(tm−1 − te,ψattack)

Reciprocity for the attacks
quantifies the weighted vol-
ume of past events in which i
was attacked by j.

EoF
(i, j, tm,ψattack)

i

l

j

trade

attack

∑

l∈S\{i,j}

∑

e∈Etm−1

∑

e∗∈Etm−1 :

te∗∈[te−(tm−1−te),te)

Ie∗(i, l, trade)Ie(l, j, attack)w(tm−1 − te,ψattack)

Enemy-of-Friend (EoF) calcu-
lates the weighted volume of
past trades generated from i
to l and that happened be-
fore any attack initiated by l to-
wards j. The weight is the one
of the past attack (l, j). In this
triadic structure i and l are po-
tential allies and j is a possible
adversary (at least for l).

FoF
(i, j, tm,ψtrade)

i

l

j

trade

trade

∑

l∈S\{i,j}

∑

e∈Etm−1

∑

e∗∈Etm−1 :

te∗∈[te−(tm−1−te),te)

Ie∗(i, l, trade)Ie(l, j, trade)w(tm−1 − te,ψtrade)

Friend-of-Friend (FoF) quanti-
fies the number of past trades
generated from i to l and that
happened before any trade
from l to j. The sum is
weighted with the weight of
the trade (l, j). In this triadic
structure i, l and j are all po-
tential allies.

Table 5.1: Graph, formula, and description of each statistic specified in both linear predictors of
the SentiREM. In the graphs, the dashed gray arrows represent past events (trades or attacks), the
bold black arrows represent the event which the statistic is computed for. The indicator variables
are written in a compact form to be read as, for instance, Ie(i, j, trade) = Ie(se = i, re = j, ce =
trade). Each event contributing to any of the statistics isweighted via the exponential decay function
wtrade(tm−1 − te,ψtrade) for the trades and wattack(tm−1 − te,ψattack) for the attacks.
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5.4.2 Model specification and results

We assume that the shape of the memory decay in the SentiREM follows a para-
metric exponential decay and per event type can be written as,

wtrade(tm−1 − te,ψtrade) =
ln (2)

exp (ψtrade)
exp

{
−(tm−1 − te)

ln (2)

exp (ψtrade)

}

wattack(tm−1 − te,ψattack) =
ln (2)

exp (ψattack)
exp

{
−(tm−1 − te)

ln (2)

exp (ψattack)

}

(5.20)

where tm−1 − te is the time elapsed at the time point tm−1 since the time of oc-
currence te of the event e, the parameters ψtrade and ψattack are the natural loga-
rithmof thememory parameters for each event type; therefore, exp (ψtrade) and
exp (ψattack) are the half-life parameters for the trades and the attacks and ex-
plain after howmany hours a past trade and a past attack will halve their weight
in the computation of the endogenous statistics. We assume that the risk set of
the REM is characterized only by the observed 1469 dyads, reducing the compu-
tational burden for the update of the endogenous statistics at different values
of the memory parameter. We define a set of statistics that might explain the
dynamics of trades and attacks: intercept, SameCommunity (1 is both actors at
the time of the interaction belong to the same community and 0 otherwise), In-
ertia and Reciprocity for both sentiments ”attack” and ”trade”, Enemy-of-Friend
and Friend-of-Friend (describing triadic patterns in the fashion of the transitiv-
ity closure where the first two events events in the triad assume specific event
types (Brandes et al., 2009)). For both Enemy-of-Friend and Friend-of-Friend we
take the temporal order of the two events in the triad into account as defined
for transitivity closure in Arena, Mulder, and Leenders (2022).

The graph of the dynamic pattern, the formula, and a further description of
the statistics are reported in Table 5.1. In light of the chosen set of variables, in
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REM
(dyadic event rate)

Sentiment model
(probability of attack)

Parameter (β,ψ) Estimate
(Std. Error) Pr(>|z|) Pr(=0) Estimate

(Std. Error) Pr(>|z|) Pr(= 0)

Intercept -13.715
(0.023) < 2.2e-16 < 2.2e-16 -0.229

(0.080) 0.004 0.591

SameCommunity 0.607
(0.028) < 2.2e-16 < 2.2e-16 -1.378

(0.094) < 2e-16 < 2.2e-16

Inertia (trade) 2.030
(0.025) < 2.2e-16 < 2.2e-16 -10.170

(1.252) 4.44e-16 4.08e-13

Reciprocity (trade) 1.440
(0.037) < 2.2e-16 < 2.2e-16 -16.360

(2.649) 6.55e-10 4.53e-07

Inertia (attack) 7.184
(0.133) < 2.2e-16 < 2.2e-16 24.176

(3.689) 5.65e-11 4.1e-08

Reciprocity (attack) 18.941
(3.759) 4.68e-07 2.66e-04 1.445

(1.380) 0.295 0.980

Enemy-of-Friend 36.816
(1.246) < 2.2e-16 < 2.2e-16 4.492

(3.858) 0.244 0.978

Friend-of-Friend 2.438
(0.077) < 2.2e-16 < 2.2e-16 -124.377

(79.569) 0.118 0.962

ψ̂trade
1.316
(0.023) < 2.2e-16 < 2.2e-16 1.859

(0.125) < 2e-16 < 2.2e-16

ψ̂attack
3.779
(0.045) < 2.2e-16 < 2.2e-16 1.724

(0.184) < 2e-16 < 2.2e-16

Table 5.2: (Case study) Maximum likelihood estimates and standard errors (between
brackets) for the parameters of both the relational eventmodel (REM) and the sentiment
model (Probit model). The columns named ”Pr(>|z|)” and ”Pr(=0)” report, respectively,
p-value and posterior probability of each parameter being zero.

both models the linear predictor for a generic event e can be written as follows,

β0 + βSameCommunitySameCommunity(se, re)+

βInertiatrade Inertiatrade(se, re, ce = trade, Etm−1 ,ψtrade)+

βReciprocitytradeReciprocitytrade(se, re, ce = trade, Etm−1 ,ψtrade)+

βInertiaattack Inertiaattack(se, re, ce = attack, Etm−1 ,ψattack)+

βReciprocityattackReciprocityattack(se, re, ce = attack, Etm−1 ,ψattack)+

βEoFEoF(se, re, Etm−1 ,ψattack)+

βFoFFoF(se, re, Etm−1 ,ψtrade)

(5.21)

where we define a set of parameters (β,ψ) for both the sentiment model and
the REM, with ψ being the vector of the natural logarithm of the memory pa-
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Figure 5.5: (Case study) Negative profile log-Likelihood for REM and sentiment model
(Probit) over a grid of memory parameters.

rameters. We model the probability of the next event type to be an attack in
the sentiment model and the hazard rate for the next dyad in the relational
event model.

For both models, we optimize the negative log-Likelihoods and the contour
plots of the two negative profile log-Likelihoods are shown in Figure 5.5.

The maximum likelihood estimates with their standard errors for the Sen-
tiREMunder the assumption thatmemory parameters are different across event
types are reported in Table 5.2. In order to test whether past attack events have
a different weight decay than past trade events we compare themodel from Ta-
ble 5.2 with amodel wherememory parameters are constrained to be the same
across the event types. We describe the two hypotheses as





H0 : ψtrade = ψattack

H1 : ψtrade *= ψattack
(5.22)

and, to simplify the notation, we refer to themodel inH0 asM0 and to themodel
inH1 asM1. The two negative profile log-Likelihoods forM0 are shown in Figure
5.6. In Table 5.3 we show the BIC of the REM and the sentiment model under
each of the two conditions on the memory parameters are reported along with
the Bayes Factor on its logarithmic scale (Kass & Raftery, 1995). From Figure
5.6 we can confirm that for both REM and the sentiment model there exists a
model that is the best under H0 (i.e., both functions show to have a minimum).
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Figure 5.6: (Case study) Negative profile log-Likelihood for the model M0, where for
both REM and sentiment model (Probit) the memory parameters are assumed to be the
same across event types, that is ψtrade = ψattack.

M0 M1 log10BFM1 vs. M0

BIC BIC

REM
(dyadic event rate) 195904.30 195498.60 88.1

Sentiment model
(probability of attack) 1320.65 1320.13 0.11

Table 5.3: (Case study) BIC and Bayes Factor (on the logarithmic scale of base 10) be-
tween the two models, M0 and M1.

The Bayes Factor in Table 5.3 communicates two different results. Indeed, given
that the Bayes Factor quantifies the evidence that is in favor ofM1 relative toM0,
we find such evidence to be much stronger in the relational event model rather
than in the sentiment model. In the REM, we find that the weight of attacks
generally lastsmuch longer (exp (ψattack) ≈ 44hrs, almost 2 days) than theweight
of trades (exp (ψtrade) ≈ 4hrs), resulting in a much slower weight decay for the
attacks than for the trades. In the sentiment model under M1, both memory
parameters are already somewhat close to each other (between 5 and 6 hours)
and the evidence in favor of the model M1 against M0 is negligible.
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Bias of estimates β̂ after misspecification of memory parameters

The optimization of themodel parameters in a SentiREM is carried out consider-
ing both effects β and log-memory parameters ψ in the optimization algorithm.
Several studies in the literature have estimated relational event models that
have a memory decay by fixing the memory parameters to a predefined value
and considered only the effects β as parameters of interest (Brandenberger,
2018b; Brandes et al., 2009). Even though such an approach can be theory-
driven and the results can be insightful on an exploratory level, it might lead to
study models in which, given that the memory parameters are fixed to a priori
values and not optimized, the resulting estimates β̂might be biased and do not
describe the real values of the effects (Arena et al., 2023).

Next, we explore the bias of the estimated effects β̂ in the SentiREM for the
empirical data under study. In Figures 5.8 and 5.7, we show the trend of the
maximum likelihood estimates of the effects of the statistics for both the REM
and the sentiment model across a grid of values of the memory parameters
(ψtrade,ψattack).
The contour plots show that at different fixed values of (ψtrade,ψattack) the re-
sulting estimated effects β̂ change value as well. This is the case for almost
all of the statistics specified in the linear predictor and it happens for both the
REM and the sentiment model. For instance, event weights in the endogenous
statistic Enemy-of-Friend are based on thememory decay of the attack (l, j) (see
Table 5.1), therefore the estimate of the effect βEoF is more likely to change in
response to changes of ψattack than to changes of ψtrade. However, this doesn’t
happen, for instance, for the Inertia (trade) statistic in the sentiment model or
Reciprocity (attack) in the relational event model; the estimated effects of the
two statistics show a trend that depends on changes in both memory parame-
ters.

The effects of statistics: interpretation of β̂ in the SentiREM

In a SentiREM the two sets of effects
(
β̂(sr), β̂(c)

)
assume a different interpre-

tation given the different nature of dyad and sentiment model. In this section
we aim to provide an interpretation of endogenous and exogenous statistics for
both models defining a SentiREM.

The interpretation of the effects for the exogenous statistics follows the usual
interpretation in a REM or in a Probit regression. Therefore, SameCommunity
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has a positive effect of 0.607 in the REM model, indicating that if sender and
receiver belong to the same alliance, the rate of occurrence of their interaction
is the 83% higher than the case in which they belong to different alliances and
holding all the other statistics constant (exp (.604) = 1.83). Hence, being in the
same alliance (SameCommunity) in the REM promotes the interaction between
players. Alternatively, in the Probitmodelwe aremodeling the probability of the
next event sentiment being an attack (rather than being a cooperative event).
In this model, the SameCommunity effect is negative effect: players are more
likely to attack players of other alliances and not their allies; belonging to the
same alliance decreases the probability of a future attack.

In both models, the interpretation of the effects of the endogenous statistics
(β̂) might not be as straightforward as it is for the exogenous statistics due to the
presence of the memory decay functions that are normalized (i.e., the weights
for all the possible values of the transpired time add to 1). For example, con-
sider Inertia (trade). In the REM, the estimate for Inertia (trade) is 2.030: the
higher the volume of past trades from i to j the higher the future rate by which
i targets some form of interaction (either a trade or an attack) to j. If the trade
(i, j) is the last occurred event, we multiply the maximum weight for the trades
(i.e., ln (2)/exp (ψ̂trade) = ln (2)/exp (1.316) ≈ 0.186) with the estimate for Inertia
(trade) (exp (2.030× 0.186) ≈ 1.459): an increase of about 45.9%of the event rate.
If the last trade (i, j) occurred around 4 hours earlier, the event contributes to
the future interaction rate with a factor of exp (2.030× 0.186× 0.5) ≈ 1.210, in-
creasing the event rate for the dyad (i, j) with 21%. For the sentiment model,
the estimate for statistic Inertia (trade) is -10.170 and the maximum weight for
a past trade event is ln (2)/exp (ψ̂trade) = ln (2)/exp (1.859) ≈ 0.108. The effect
of the statistic is negative: the more trades i sent to j in the recent past the less
likely is that i will attack j in the future. Note that the estimated memory decay
is very fast, trades have their weight halved in about 6-7 hours. Thus, if the last
trade from i to j is the last occurred event, it will decrease the probability of i
attacking j by a factor of (−10.170 × 0.108) ≈ −1.098 (on the Z-score scale, of
a standard normal distribution). Alternatively, if the last trade (i, j) occurred
about 6-7 hours ago, the probability of i attacking j in the next interaction de-
creases by a factor (−10.170 × 0.108 × 0.5) ≈ −0.549 (on the Z-score scale, of a
standard normal distribution). In other words, the more recent trades (i, j) are,
the lower the probability of i attacking j.

130



A modeling framework for sentiment-driven relational events

5

BIC

fixed memory

MLE w/o memory 1 2 3 4

REM
(dyadic event rate) 195498.6 202274.8 197096.7 199552.9 198182.3 200623.8

Sentiment model
(probability of attack) 1320.13 1587.79 1349.09 1452.40 1424.07 1563.57

Table 5.4: (Case study) Table with BIC’s of the SentiREMs in the comparison: ”MLE” is the
SentiREM in which memory parameters were estimated by optimization, ”w/o memory”
is the SentiREM in which no weight decay affects the computation of the endogenous
statistics, ”fixed memory” (1,2,3 and 4) are the four models in which the memory param-
eters are fixed to predefined values.

Next, we define three hypotheses of interest:





H0 : βtrade = βattack

H1 : βtrade > βattack

H2 : βtrade < βattack

(5.23)

where we write βtrade and βattack as a more general notation without specifying
statistic and model. The hypotheses can refer to the two Inertia effects or the
two Reciprocity effects. Alternatively, we can investigatewhether each pair of ef-
fects for each dynamic is equal or different across sentiments. Computationally,
we use themethodof the adjusted fractional Bayes factorwithGaussian approx-
imation (Mulder et al., 2021). Consider the effects of Inertia for trades and at-
tacks: in the sentimentmodelH2 shows strong evidence againstH0 (log10BF ≈
1.29) andH1 (BF is∞). In the REM,H2 also shows a very strong evidence against
the other two hypotheses (both Bayes Factors are ∞). For Reciprocity, in the
sentiment model H2 has a strong evidence against H0 (log10BF ≈ 6.24) and H1

(log10BF ≈ 9.07). The REM model shows similar results: the evidence supports
H2 against H0 (log10BF ≈ 3.07) and H1 (log10BF ≈ 5.79). In sum, the results
suggest that persistence and reciprocity of past attacks generally have a signifi-
cantly larger effect on the hazard rate and on the probability of attack than past
trades.
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5.4.3 A comparison of SentiREMs with fixed memory decays
or without memory decay

In the literature, the most common approach when embedding event weight
decay in a relational event model consists of predefining the decay function by
setting its memory parameter to a specific value (Brandenberger, 2018b; Bran-
des et al., 2009). The result of this approach is that the estimates show the
effects of the statistics conditional on the specific value of the memory param-
eter set by the researcher. Unfortunately, there is no substantive literature to
guide researchers in the specification of these values, so the modeling results
are based on the value of the memory decay parameters that the researcher
is interested in specifically or that we guessed by the researcher (and, as a re-
sult, will often be quite arbitrary). In Figures 5.8 and 5.7 we showed that fixing
the memory parameters a priori may lead to estimates that are not the most
likely for the observed data. Indeed, there will be models where the fixed mem-
ory parameters will be very close to their maximum likelihood estimates, and
other models where the fixed memory parameters will be far from their best
estimates and, in turn, the estimated effects for the statistics will likely not cor-
rectly describe the network dynamics in the observed data.

To illustrate what this means for our data, we compare the SentiREM with op-
timized memory parameters against a set of SentiREMs where the memory pa-
rameters for both trades and attacks are fixed to predefined values and against
a SentiREM in which no memory decay is assumed. We will refer to the model
with optimized memory parameters as ”MLE”, and to the model without mem-
ory as ”w/o memory.” We define four models by varying the set of memory pa-
rameters (ψtrade,ψattack) to 12 hrs and 336 hrs (14 days) as follows: {(ln (12), ln (12)),

(ln (336), ln (12)), (ln (12), ln (336)), (ln (336), ln (336))} (in logarithmic scale). We
refer to these four models as, respectively, ”fixed memory 1,” ”fixed memory 2,”
”fixedmemory 3,” and ”fixedmemory 4.” In Table 5.4we show theBIC’s and show
the predictive performance of the models for both the REM and the sentiment
model in Figures 5.9 and 5.10. The predictive performance of the SentiREMs
under comparison are described by the ROC curve for each model. We use
solid gray lines for the four fixedmemory models, black solid lines for the ”MLE”
model, and a red dashed line for the model without memory. We can observe
how the BIC of the ”MLE” model is the lowest in both REM and sentiment model
and also among the ROC curve it performs overall better than all other models.
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The information provided by the BIC in Table 5.4, by the ROC curves in Fig-
ure 5.9 and 5.10 and by the trend of maximum likelihood estimates in Figure
5.7 and 5.8 confirm that: (i) fitting and predictive performance increase when
the memory parameters in a SentiREM are estimated from the data, (ii) every
timememory parameters are fixed to a priori values the model loses predictive
power, the estimates may suffer from bias with resulting loss of fit, (iii) a model
withoutmemory tends to perform better thanmodels withmemory decay fixed
a priori (this happens so long as the fixed value of the memory parameters is
not the same as their maximum likelihood estimates).

5.5 Discussion

In this chapter, we introduced the SentiREM: a model for temporal networks of
relational events with sentiment where the next dyadic event is modeled along
with the next sentiment. We specified sentiment-based parametric memory de-
cays that are embedded in the likelihood of the model and are estimated along
with the effects of the statistics of interest. The proposed model consists of
two separable models: the model for the next dyadic event (which is a tradi-
tional relational event model) and the model of the next sentiment (which can
be modeled via different regression models). In our specific implementation,
we assumed the sentiment of the events to be measured on discrete values
that can be either positive or negative and modeled the probability of the next
sentiment being negative via Probit regression.

We proposed two optimization methods for the likelihood of the SentiREM
and discussed meaningful tests on parameters such as testing on memory pa-
rameters for different sentiments (so as to understandwhether negative events
have a differently lasting effect than positive events) and testing on differences
between effects of the same network dynamic but calculated on different sen-
timents (e.g., positive inertia and negative inertia). We provided numerical sim-
ulations and an application of the SentiREM to a real case study in which we
showed the key features of the model, interpreted and tested model parame-
ters. We also showed that the proposed model results in better performance
and fit to empirical data than existing approaches that either fix the memory
parameters or do not assume any memory decay. The SentiREM can provide
researchers with substantive insights about complex temporal interaction dy-
namics in real-life social networks, about how long negative and positive events
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affect social interactions, or how the past affects future negative and positive
events.

Future work can contribute with sentimentmodels that are different from the
Probit. For instance, if the sentiment is measured on three or more categorical
levels, one might use an ordered Logit model. If the event type is measured
in counts, one might prefer a Poisson regression where a zero-inflated model
extension could be used to easily handle scenarios in which the lowest event
type dominates the network of events. If the sentiment lies on a continuous
scale, one could either dichotomize this scale and use the outlined Probit model
or define another regression model that suits the scale of measurement of the
sentiment.

Other future directions might focus on other shapes of memory decay. For
instance, we could define a smoothed-one-step memory decay that maintains
a constant weight until some elapsed time after which the weight drops expo-
nentially according to some half-life parameter; the decay function might then
be described by two memory parameters. Finally, we could also assume that
the memory decay differs across senders. This is a realistic assumption in the
context of directed interactions and we believe that it can be easily explored.
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The work presented in this dissertation supports the theory around the pres-
ence of memory retention in networks of relational events. The concept of
memory retention is measured by means of a memory decay function that de-
scribes the trend of the weight of past events based on the time that is elapsed
since their occurrence. The value of these weights is used in the computation
of the endogenous statistics. The results indicate that the more recent a past
event is, the higher its weight is expected to be. The longer-passed the event
the lower its weight becomes. Therefore, the memory decay function is a de-
creasing function and its shape may differ across networks of relational events.
In this dissertation, we introduced methods for estimating and testing memory
decay functions from an observed sequence of relational events.

In order to approximate the memory decay function without any paramet-
ric assumption, in Chapter 3 we first defined a discrete K-step-wise function
and then proposed a Bayesian model averaging approach. The approach cal-
culates the weighted average of the step-wise memory decay estimator across
a set of step-wise models each one having a different number and size of the
steps. In this way, the researcher can understand whether the importance of
past events follows some form of decay or not. We introduced two weighting
systems, a first one defined on the posterior probabilities of the step-wise mod-
els and a second one based on the predictive performance of the step-wise
models. This Bayesian semi-parametric approach provided insights around the
average most likely shape of memory decay underlying a relational event se-
quence. The results indicated that the memory decay can be different than a
predefined step-wise function (Perry & Wolfe, 2013; Quintane et al., 2013). In-
deed, we found that memory decay followed a smooth decreasing function and
this was a first insight on the continuous decrease of the effect of past events
as the time transpired since their occurrence increases. However, had the real
shape of the decay followed any K-step-wise function, the Bayesian model av-
eraging approach would have still been able to estimate a decay close to the
step-wise one by resulting in a large posterior probability for a step-wise model.
Thereby the methodology would also still be suitable for learning step-wise de-
cay functions if present. In the analysis of a real case study, the researcher can
explore the memory shapes of the different network dynamics by first estimat-
ing the shape of the decay using simple memory models and then running the
methodology on a more complex set of memory models that improve the esti-
mation.
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The shape of the memory decay can be also described by smooth parametric
functions, such as an exponential decay, a linear decay or other more or less
complex parametric functions. For this reason, in Chapter 4 we introduced a
relational event model with memory parameters embedded in the likelihood
which were estimated along with the effects of the statistics in the hazard rate.
We provided amethod to estimate thememory parameter given a specific para-
metric decay and then we proposed a Bayesian approach to compare models
with different parametric decays and to find which decay function best fits the
observed sequence of relational events. The parametric method showed that a
misspecification of the memory parameter brings to incorrect estimates of the
other effects in the model, in turn, leading to wrong interpretations about the
influence of the statistics in the network.

The memory decay function can also follow a different shape according to
the sentiment of the relational event. Indeed, the weight of a negative inter-
action (e.g., rebuke, intimidation) may decrease slower than the weight of any
other positive relational event (e.g., praise, trade). In Chapter 5, we therefore
explored this aspect by introducing the SentiREM, that is a newmodeling frame-
work where the next dyadic event is modeled separately from the next senti-
ment. The SentiREM offers several advantages. First, the effect of sentiment-
driven network dynamics is estimated separately for two characteristics of the
network: in a relational event model where it describes the influence of the
dynamic on the rate of any dyadic interaction and in a Probit model where it
describes the influence of the past on the probability of observing a negative
sentiment. Second, the inclusion of memory decay functions in the likelihood
function allows the model to account for the changing influence of past events
as time goes by. Third, new network dynamics can be defined by different com-
binations of the sentiment of the dyadic events. Furthermore, as the parametric
model introduced in Chapter 4, also the SentiREM showed the potential bias of
the estimates of the effects due to a misspecification of the memory parame-
ters.

The novel methods introduced in this dissertation improved the analyses of
relational event sequences on different aspects. From a statistical point of view,
they resulted in improved model fitting and improved predictive performance
in comparison to other models where the memory decay was either fixed to
a prespecified decay function or it was not assumed at all. From a substantive
point of view, they resulted in amore detailed understanding of howpast events
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affects future social interactions in relational event networks . Indeed, given
the event weight of the specific past events characterizing the network statistic
and the estimated effect of the statistic, a researcher can quantify the effect
that a single occurrence of a behavioral pattern has on the event rate or on the
probability of the next event sentiment.

However, the threemethods also suffer froma few limitationswhich establish
the ground for future research. In the semi-parametric approach, the compu-
tation and the estimation of the step-wise models can be expensive with larger
networks or when more network dynamics are included in the linear predictor,
the number of step-wise models can be insufficient to obtain a good estimate
of the memory decay, the weighting systems introduced for the averaging are
only two and this can result in a limited comparison between results. Future
research can develop new methods and algorithms for: optimizing the com-
putation of step-wise-defined statistics in presence of a larger set of network
dynamics as well a larger network of events, estimating the number of step-
wise models that is sufficient for the averaging, defining techniques based on
bootstrap aggregation of the step-wise models which can improve the model
performances, formulating new weighting systems based on the predictive per-
formances of the step-wise models.

Likewise, the two parametric methods presented in this dissertation show
several aspects that can be improved in future research. First, three paramet-
ric decay functions were introduced having only one memory parameter. Sec-
ond, the computational burden for the calculation of the endogenous statistics
as well as the estimation of the model parameters can dramatically increase
with the number of actors and events. Third, the parametric memory decay is
assumed to be the same across all the actors. Fourth, the sentiment model is
specified only for a discrete and dichotomized sentiment.

We suggest different paths that can help to overcome such limitations. New
shapes of parametric decays can be formulated and the computation of endoge-
nous statistics with weight decay functions as well as the estimation algorithms
can be improved by means of innovative algorithms that run in parallel on the
GPU rather than on the CPU of a computer. The memory decay can be de-
fined on an actor-level, more precisely, on a sender-level. Then the researcher
can define methods of hierarchical modeling where the memory parameter
is assumed to differ across actors in the network. Finally, the model for the
event sentiment can be expanded to other statistical models than the Probit.
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Different models can be defined according to the measurement scale of the
sentiment, for instance, if the sentiment is measured in counts the researcher
can model the sentiment via a Poisson model, if it is measured on an ordinal
scale, the researcher can model the sentiment via ordered Logit (or ordered
Probit). The sentiment may be also measured on a continuous scale, thus the
researcher may either simplify the model by dichotomizing the scale into pos-
itive and negative sentiments and use a Probit model or define a continuous
model that suits the scale of the sentiment.

Semi-parametric and parametric methods show, each one in their own way,
that: (i) there exists some form of memory retention in any observed relational
event sequence, (ii) it can differ according to the sentiment of the relational
event. The introduction of such methods for relational event models allows re-
searchers to reveal the speed and shape ofmemory decay about past relational
events, improvemodel fit, predictive performance and avoid potential bias. The
results drive the research tomore theory building about time-sensitive social in-
teraction dynamics. The evidence on the memory parameters that is collected
from similar case studies can form a solid base for the formulation of a unified
theory around the concept of memory retention. Different theories may be de-
rived across and within fields of study where relational event sequences are the
object of research.
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Appendix A

A.1 Endogenous statistics

In Table A.1 the indicator variable for any event e where (se = i, re = j) follows
the short notation Ie(i, j) and the same applies to any other dyad. Given each
statistic, the formula in the first row shows the interval definition of the statistic
as regards dyad (i, j) in the k-th interval; whereas, the formula in the second
row shows the continuous definition where β(γ, θ) is the trend function that
follows one of the decays discussed in Section 3.4 or another more complex
evolution. Note how in the continuous formulas the event history at tm, that is
Etm−1 , doesn’t depend on any interval.

Endogenous Statistic Formula

Fi
rs
t
O
rd
er

Inertia

i j

inertiak(i, j, tm) =
∑

e∈Etm−1,k
Ie(i, j)

inertia(i, j, tm,β(γ, θ)) =
∑

e∈Etm−1
Ie(i, j)β(γe(tm),θ)

Reciprocity

i j

reciprocityk(i, j, tm) =
∑

e∈Etm−1,k
Ie(j, i)

reciprocity(i, j, tm,β(γ, θ)) =
∑

e∈Etm−1
Ie(j, i)β(γe(tm),θ)

Sender in-degree

i j

a

b

...

z

indegreesndk (i, j, tm) =
∑

l∈S\{i}
∑

e∈Etm−1,k
Ie(l, i)

indegreesnd(i, j, tm,β(γ, θ)) =
∑

l∈S\{i}
∑

e∈Etm−1
Ie(l, i)β(γe(tm),θ)

Sender out-degree

i j

a

b

...

z

outdegreesndk (i, j, tm) =
∑

l∈S\{i}
∑

e∈Etm−1,k
Ie(i, l)

outdegreesnd(i, j, tm,β(γ, θ)) =
∑

l∈S\{i}
∑

e∈Etm−1
Ie(i, l)β(γe(tm),θ)

Table A.1: First and second order endogenous statistics: the formula in the first row is
the interval definition of the statistic, whereas the formula in the second row represents
the continuous definition of the statistic where the function β(γ,θ) describes the decay
of the effect.
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Endogenous Statistic Formula
Fi
rs
t
O
rd
er

Receiver in-degree

i j

a

b

...

z

indegreereck (i, j, tm) =
∑

l∈S\{j}
∑

e∈Etm−1,k
Ie(l, j)

indegreerec(i, j, tm,β(γ, θ)) =
∑

l∈S\{j}
∑

e∈Etm−1
Ie(l, j)β(γe(tm),θ)

Receiver out-degree

i j

a

b

...

z

outdegreereck (i, j, tm) =
∑

l∈S\{j}
∑

e∈Etm−1,k
Ie(j, l)

outdegreerec(i, j, tm,β(γ, θ)) =
∑

l∈S\{j}
∑

e∈Etm−1
Ie(j, l)β(γe(tm),θ)

Se
co
nd

O
rd
er

Transitivity closure

i

l

j

transitivity closurek(i, j, tm) =∑
l∈S\{i,j}

∑
e∈Etm−1,k

∑
e∗∈Etm−1 :

te∗∈[te−γe(tm),te)

Ie(l, j)Ie∗(i, l)

transitivity closure(i, j, tm,β(γ, θ)) =∑
l∈S\{i,j}

∑
e∈Etm−1

∑
e∗∈Etm−1 :

te∗∈[te−γe(tm),te)

Ie(l, j)Ie∗(i, l)β(γe(tm),θ)

Cyclic closure

i

l

j

cyclic closurek(i, j, tm) =∑
l∈S\{i,j}

∑
e∈Etm−1,k

∑
e∗∈Etm−1 :

te∗∈[te−γe(tm),te)

Ie(l, i)Ie∗(j, l)

cyclic closure(i, j, tm,β(γ, θ)) =∑
l∈S\{i,j}

∑
e∈Etm−1

∑
e∗∈Etm−1 :

te∗∈[te−γe(tm),te)

Ie(l, i)Ie∗(j, l)β(γe(tm),θ)

Table A.1: First and second order endogenous statistics: the formula in the first row is
the interval definition of the statistic, whereas the formula in the second row represents
the continuous definition of the statistic where the function β(γ,θ) describes the decay
of the effect. (continued)

A.2 From step-wise to continuous effects

Consider an increasing sequence ofK+1 time widths γ = (γ0, γ1, . . . , γK), such
that γk − γk−1 = ∆ for k = 1, . . . ,K (i.e., evenly spaced intervals). A graphical
representation of intervals at tm is presented below in Figure A.1.
In the context of endogenous statistics that are defined on intervals (see Sec-

tion 3.3.1), one could already apply the formulas in Appendix A.1 and then esti-
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tm
tm − γ0tm − γ1tm − γK tm − γK−1

• • •

I1

∆ = γ1 − γ0

IK

∆ = γK − γK−1

Figure A.1: K evenly spaced intervals, with time widths γ = (γ0, γ1, . . . , γK) such that
γk − γk−1 = ∆ for k = 1, . . . ,K.

mate the step-wise trend for each network statistic of interest. In general, when
intervals are evenly spaced, we could write γk = k · γKK for k = 0, . . . ,K, where
γK is the largest observable width (it can be the length of the study itself). If
the number of intervals (K) increases, their size (∆), in turn, shrinks. Indeed,
considering the size of an interval that is calculated as the difference between
two adjacent widths, ∆ = (γk − γk−1).

lim
K→∞

(γk − γk−1) = lim
K→∞

[
k · γmax

K
− (k − 1) · γmax

K

]
= lim

K→∞

γmax

K
= 0

This result holds for k = 1, . . . ,K. Therefore, an extreme scenario consists in a
large number of intervals whose sizes are so small that at tm each of them con-
tains only one or no relational event. As a consequence of this, one would esti-
mate a step-wise trend where each step is defined approximately on a value of
the transpired time and it represents the relative effect based on those events
that assumed that specific value throughout the event histories (Et, with t =

t1, . . . , tM ). Indeed, any event since its occurrence assumes a value reflecting its
recency that is updated at every time point onward and, thus, it increases over
time (from t1 to tM if considering the time points where events were observed).
Every value of transpired time calculated at each time point can be observed at
least once in the network and when it is observed multiple times this happens
at different time points. For instance, two different events could both occur
33 minutes earlier than the present time point but with the condition that the
present time point they refer to is different for both of them (because events
are assumed not to occur at the same time point). Finally, the estimation of
the effects over such a large number of intervals is impractical and it serves
only to convey insights about the possibility of continuously changing effects in
contrast to step-wise decays.
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A.3 Interval generator (the algorithm)

Algorithm 1: Generating S intervals with K steps (having either increasing
or decreasing size).
set (inputs and memory allocation for the output):

K ← number of steps for each sequence

S ← number of sequences to generate

s = 1← starting with generating the first sequence

min_size←minimum size intervals

γK ←maximum time width that each sequence can reach

decreasing ← logical TRUE/FALSE whether to generate either decreasing size or
increasing size intervals

W ← empty matrix of dimensions [S ×K] where to store the generated
sequences of widths γ = (γ1, . . . , γK) (excluding γ0 that is equal to zero by
default)

while s ≤ S do

generate ξ ∼ Dir(K,α) with α = 1K ;

sort ascending ξ;

whilemin {ξ} < min_size

generate ξ ∼ Dir(K,α) with α = 1K ;

sort ascending ξ;

if decreasing = TRUE then sort descending ξ;

γ ← cumulative sum of ξ;

update γ = γ ∗ γK ;

save γ in the s-th row ofW ;
update s = s+ 1;

returnW ;
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A.4 Maximum likelihood estimates for themodels
specified in the model comparison

In Table A.2 the maximum likelihood estimates for the models specified in Sec-
tion 3.6.4. In the calculation of the BIC, the penalization accounts for the num-
ber of parameters in each model (# parameters). In the step-wise models (Ste-
pEqual, StepIncr and bestWAIC) the effect of each statistic in each interval is
reported (e.g., in model StepEqual, inertia has two effects βinertia1 = 0.05 and
βinertia2 = 0.03, and so the other statistics).
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Appendix B

B.1 Weights following a step-wise function

In Perry and Wolfe (2013) endogenous statistics are calculated based on a set
of intervals of the transpired time of past events. Consider a vector of K + 1

increasing widths γ = (γ0, . . . , γK) width γ0 < . . . < γK and a network dynamic
like inertia. After we calculate inertia in the intervals at all the time points, the
estimated effects define a step-wise function for the effect of the specific net-
work dynamic at any time point in the event sequence. The step-wise effect
function is described by βinertia = (βinertia1 , . . . ,βinertiaK )

βinertia1
∑

e′∈Etm−1 :

(tm−te′ )∈(γ0,γ1]

I(s(e′) = i, r(e′) = j) + . . .+ βinertiaK
∑

e′∈Etm−1 :

(tm−te′ )∈(γK−1,γK]

I(s(e′) = i, r(e′) = j)
(B.1)

where per each interval in k = 1, . . . ,K the effect βinertiak multiplies by the
value of the inertia computed in the k-th interval at time tm. The (B.1) can be
rewritten in a way similar to (4.2) where the weight decay this time follows a
step-wise function defined on the vector of increasing widths γ. Indeed, by
considering the same vector of widths and associating a vector of K weights
w = (w1, . . . , wK) to each interval the step-wise weight decay becomes

w(γ) =






w1 if γ ∈ (γ0, γ1]
...

wK if γ ∈ (γK−1, γK ]

0 otherwise

(B.2)

Hence, the statistic can be written as a weighted sum as in (4.2) but in this case
following a step-wise decay for the weights,

βinertiainertia(i, j, tm) = βinertia
∑

e′∈Etm−1

I(s(e′) = i, r(e′) = j)w(tm − te′) (B.3)

wherew(tm−te′) follows the step-wise function in (B.2). Considering thatweights
are the samewithin each interval, the sum in (B.3) can be re-arranged as follows
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βinertiainertia(i, j, tm) =βinertia




∑

e′∈Etm−1 :

(tm−te′ )∈(γ0,γ1]

I(s(e′)=i,r(e′)=j)w1 + . . .

. . .+
∑

e′∈Etm−1 :

(tm−te′ )∈(γK−1,γK ]

I(s(e′)=i,r(e′)=j)wK




=

= βinertiaw1

∑

e′∈Etm−1 :

(tm−te′ )∈(γ0,γ1]

I(s(e′) = i, r(e′) = j) + . . .

. . .+ βinertiawK

∑

e′∈Etm−1 :

(tm−te′ )∈(γK−1,γK]

I(s(e′) = i, r(e′) = j)

(B.4)

The (B.4) is exactly the same formula in (B.1) with the only difference that
here the step-wise function of weights is explicitly written. Therefore, the equiv-
alence between the two vectors of effects can be written as follows





βinertia1
...

βinertiaK



 =





βinertiaw1

...
βinertiawK



 (B.5)

The same idea of a changing weight of events according to their time recency is
also here but it is proposed from a different perspective. In the specific case of
a step-wise function, the number of steps and their widths are the parameters
describing the function.
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B.2 Sms data (sub-networks with 1 cluster and 2
clusters): trend of MLEs when the weight de-
cay is exponential

Figure B.1: Sms data (1 cluster): trend of the maximum likelihood estimates (MLEs)
for the exponential decay over ψ (logarithm of the memory parameter). The dashed
black lines in each plot mark the estimate for the log-memory-parameter ψ̂MLE (vertical
lines) and the estimates of the effects β (horizontal lines) at the corresponding ψ̂MLE. The
shaded regions are the confidence intervals at 0.95 for the effects β estimated at any
value of ψ.
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Figure B.2: Sms data (2 clusters): trend of the maximum likelihood estimates (MLEs)
for the exponential decay over ψ (logarithm of the memory parameter). The dashed
black lines in each plot mark the estimate for the log-memory-parameter ψ̂MLE (vertical
lines) and the estimates of the effects β (horizontal lines) at the corresponding ψ̂MLE. The
shaded regions are the confidence intervals at 0.95 for the effects β estimated at any
value of ψ.
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Appendix C

The methods and analysis presented in this dissertation were carried out by
means of software packages developed in R (R Core Team, 2022) with algo-
rithms and functions written in R or C/C++. In this appendix, we present three
software packages :

• remify (Arena, 2022b): a package for pre-processing raw relational event
sequences

• remstimate (Arena, Lakdawala, et al., 2022): a package for the optimiza-
tion of tie-oriented or actor-oriented models

• bremory (Arena, 2022a): a package for modeling the influence of past
social interactions in relational event networks. This package contains the
functions to perform the methods presented in this dissertation

C.1 remify : pre-processing raw relational event
sequences

In the processing of relational event history (REH) data, the remify package
(Arena, 2022b) aims to:

1. process REH data and arrange them in a new structure of class reh ;
2. transform relational event history data fromother formats or other sources

to a reh structure (or vice versa).
The twomain functions reh() and rehshape() perform respectively the pro-
cessing and the conversion of the REH data. We discuss the two functions ac-
cording to the latest version 2.0.0 of the package.

C.1.1 A function for processing raw data

The function reh() prepares the raw data along with other inputs that charac-
terize the relational event sequence (actors’ names, event types’ names, starting
time point of the event sequence, set of interactions to be excluded from the
risk set at specific time points, etc.). The internal routines will transform the
structure of the input event sequence into a new one where actors and event
types will have assigned unique identification numbers (IDs). Furthermore, the
output object of the functionwill provide other information that will be required
by remstimate , bremory and remstats (Meijerink-Bosman et al., 2023).
As example, the list randomREH available inside the package will be used

(documentation available via ?randomREH )
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library(remify) # loading library
data(randomREH) # loading data
names(randomREH) # objects inside the list 'randomREH'

## [1] "edgelist" "actors" "types" "origin" "omit_dyad"

Input arguments

We discuss each input argument that can be supplied to remify::reh() :
edgelist The edgelist must be a data.frame or a matrix and column

names must be: "time" , "actor1" , "actor2" , "type" and
"weight" . The compulsory columns are time , actor1 and
actor2 whereas it is not mandatory to supply a column for type
or weight . However, any column in the edgelist has to follow the
naming as defined above and the order of the columns can vary.

head(randomREH$edgelist)

## time actor1 actor2 type
## 1 2020-03-05 02:47:08 Kayla Kiffani competition
## 2 2020-03-05 02:50:18 Colton Justin conflict
## 3 2020-03-05 03:30:26 Kelsey Maya cooperation
## 4 2020-03-05 03:38:50 Alexander Colton competition
## 5 2020-03-05 03:56:16 Wyatt Kelsey conflict
## 6 2020-03-05 04:06:45 Derek Breanna competition

actors The vector of actor names (if left unspecified, names will be taken
from the input edgelist). Their data type can be either numeric or
character . In the randomREH data, a vector of actor names is
provided.

randomREH$actors

## [1] "Crystal" "Colton" "Lexy" "Kelsey"
"Michaela"↪→

## [6] "Zackary" "Richard" "Maya" "Wyatt"
"Kiffani"↪→

## [11] "Alexander" "Kayla" "Derek" "Justin" "Andrey"
## [16] "Francesca" "Megan" "Mckenna" "Charles" "Breanna"
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types The vector of type names (if left unspecified, names will be taken
from the input edgelist ). The data type can be either numeric
or character . In the randomREH data a vector of types is pro-
vided.

randomREH$types

## [1] "conflict" "competition" "cooperation"

directed A logical value indicating whether events are directed ( TRUE
) or not ( FALSE ). If dyadic events are undirected, the names of
the actors of any observed event will be sorted by following their
alphanumerical order (e.g. [actor1,actor2] = ["Maya","Lexy"]
will become [actor1,actor2] = ["Lexy","Maya"] ).

ordinal A logical value indicating whether we want to model only the
sequence of events like in a Coxmodel ( TRUE ) or wewant tomodel
the event sequence along with the waiting times between events
( FALSE ).

origin If the initial time point of the event sequence, t0, is known it can
be supplied to the argument origin and it must have the same
class of the time variable specified in the column time of the edge-
list. In the case the argument origin is left unspecified ( NULL ),
it is set by default to one time unit earlier than t1 (time of occur-
rence of the first relational event). For instance, when time is mea-
sured in seconds then t0 = t1−1sec, when measured in minutes
then t0 = t1−1min, whenmeasured in hours then t0 = t1−1hr, when
measured in days then t0 = t1−1day and so forth. In the randomREH
data a origin t0 is provided.

randomREH$origin

## [1] "2020-03-05 02:32:53 CET"

omit_dyad This argument is useful when certain dyadsmust be removed from
the risk set in specific time windows (e.g. an actor drops out of the
network, specific groups of actors cannot interact anymore starting
from some time point). Therefore, the processing of such informa-
tion makes the risk set represent better the real data. omit_dyad
consists of a list of lists, and each list must have two objects named:
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dyad , that is a data.frame where to specify the dyads to be
removed from the risk set, and time which is a vector of two
values defining the first and last time point of the time window
in which such dyads couldn’t occur. Consider the example on the
randomREH data. For instance, we want to modify the risk set ac-
cording to two changes that apply on different time intervals:
1. a first change that excludes events with type = "conflict"

from the risk set since a specific time point until the end of the
event sequence

# start and stop time point defining the time window
randomREH$omit_dyad[[1]]$time
## [1] "2020-05-07 22:42:38 CEST" "2020-05-23 23:46:41

CEST"↪→

# dyads to be removed from the risk set during the time
window↪→

randomREH$omit_dyad[[1]]$dyad
## actor1 actor2 type
## 1 NA NA conflict

2. a second change in which two actors "Michaela" and
"Zackary" couldn’t interact with anybody else after a specific
time point and until the end of the observation period

# start and stop time point defining the time window
randomREH$omit_dyad[[2]]$time
## [1] "2020-05-20 01:30:09 CEST" "2020-05-23 23:46:41

CEST"↪→

# dyads to be removed from the risk set during the time
window↪→

randomREH$omit_dyad[[2]]$dyad
## actor1 actor2 type
## 1 Michaela <NA> NA
## 2 <NA> Michaela NA
## 3 Zackary <NA> NA
## 4 <NA> Zackary NA

The object dyad will give instructions such that the function
will remove from the risk set at the indicated time windows all
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the events where: (1) type = "conflict" , (2) "Michaela"
and "Zackary" are senders or receivers.
Every time one field among actor1 , actor2 , type is left
undefined ( <NA> ), the omission from the risk set applies to
all the possible values of that field. Indeed, in the first change
where we needed to remove all the events where conflict was
the type, wedid it by leaving both columns actor1 and actor2
unspecified ( <NA> ). In the second change, the first row of
the dyad object is Michaela <NA> NA and it describes all
the dyadic events in which the sender is "Michaela" , the re-
ceiver is any possible receiver and the event type is any of the
possible types ( "conflict" and "cooperation" ).

model Whether themodeling framework of interest is tie or actor oriented,
the argument model can assume either value "tie" or "actor"
.

Structure of the output object

We run the processing function on the data randomREH ,

edgelist_reh <- reh(edgelist = randomREH$edgelist,
actors = randomREH$actors,
types = randomREH$types,
directed = TRUE, # events are directed
ordinal = FALSE, # REM with waiting times
origin = randomREH$origin,
omit_dyad = randomREH$omit_dyad,
model = "tie") # tie-oriented modeling

The output saved in edgelist_reh is an S3 object of class reh and contains
the following objects:
M The number of observed relational events (also referred to as

the length of the event sequence)

edgelist_reh$M
## [1] 9915

N The total number of actors that could interact in the network
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edgelist_reh$N

## [1] 20

C The number of event types (also referred to as the sentiment
of the event) that could be observed in the network.

edgelist_reh$C

## [1] 3

D The number of possible dyads that can be observed in the
network and accounts for the event types:

• if the network is directed, then D = N(N−1)C
• if the network is undirected, then D = (N(N−1)/2)C

D also represents the largest observable size of the risk set.

edgelist_reh$D

## [1] 1140 # that is 20*19*3

IntereventTime A numeric vector of waiting times between two subsequent
events, that is 



t1 − t0

t2 − t1

· · ·
tM − tM−1





head(edgelist_reh$intereventTime)

## [,1]
## [1,] 854.6961
## [2,] 189.9698
## [3,] 2408.3461
## [4,] 504.0680
## [5,] 1046.0560
## [6,] 628.0785

edgelist A data.matrix that consists of the converted input edgelist,
with columns named "time" , "dyad" , "weight" . From
the input edgelist, the columns "actor1" , "actor2" and
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"type" are converted into a numeric ID value ranging in
{0, . . . , D − 1} and it is the value of the column "dyad" . This
choice is made because internal routines in other packages
like remstimate and bremory are written in C++.

head(edgelist_reh$edgelist)
## time dyad weight
## [1,] 1583372829 181 1
## [2,] 1583373019 463 1
## [3,] 1583375427 962 1
## [4,] 1583375931 3 1
## [5,] 1583376977 732 1
## [6,] 1583377605 116 1

If "weight" is not supplied as input, then its corresponding
column in the output edgelist will be a vector of 1’s.

omit_dyad If the argument omit_dyad is supplied to the processing
function, then the output object will contain the processed
list under the same name. In the case of tie-oriented model-
ing, the list contains two objects:

• a matrix named "riskset" that assumes value 1 if
the dyad is at risk, 0 otherwise.
All the possible risk set modifications occurring in the
event sequence are described by row, thus the number
of rows is potentially variable across different specifica-
tions of the input omit_dyad . The columns identify all
the possible the dyads in the sequence (D columns).

• a vector named "time" that for each time point indi-
cates which modification of the risk set (row index of the
matrix "risket" ) is observed.

edgelist_reh$omit_dyad$riskset[,1:10] # printing out the risk set
# modifications of only the first 10 columns (dyads).
# Two modifications of the risk set are observed (by row)
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,] 1 1 1 1 1 1 1 1 1 1
## [2,] 1 1 1 1 1 1 1 1 1 1

The processed object "omit_dyad" will be required by other
packages like remstimate and bremory to handle time-
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varying risk sets. Given that such packages have algorithms
written in C++, the values of the vector "time" start at 0 (in-
dicating the first row of the object "riskset" ) and they as-
sume value −1 when no risk set alteration is observed at a
specific time point.

edgelist_reh$omit_dyad$time[1:10] # printing out the
# first 10 time points. We can see that in none of
# the 10 time points any modification takes place (-1)

## [1] -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

In the case of actor-oriented modeling with dynamic risk set,
the output list "omit_dyad" consists of three objects: a vec-
tor named "time" (same vector as explained above) and two
risk set matrices named
"senderRiskset" and "riskset" ,describing, respectively,
the time-varying risk set for the sender activity model and the
time-varying risk set for the receiver choice model. Both risk
set matrices follow the same structure as the "riskset" ob-
ject in the tie-oriented modeling. Whenever the argument
omit_dyad is not supplied to the function remify::reh()
, then its processed output in the reh object will consist of
an empty list.

Attributes

The attributes of the output reh object are

names(attributes(edgelist_reh))

## [1] "names" "class" "with_type" "weighted" "directed"
## [6] "ordinal" "model" "riskset" "dictionary" "time"

names The vector of the names of the output objects which are discussed
in the previous section.

attr(edgelist_reh, "names")
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## [1] "M" "N" "C" "D"
## [5] "intereventTime" "edgelist" "omit_dyad"

class The class name of the output object, that is "reh"

attr(edgelist_reh, "class")

## [1] "reh"

with_type A logical value indicating whether more than one event type is
observed in the network ( TRUE ) or not ( FALSE ).

attr(edgelist_reh, "with_type")

## [1] TRUE

weighted A logical value indicatingwhether relational events haveweights
( TRUE ) or not ( FALSE ).

attr(edgelist_reh, "weighted")

## [1] FALSE

directed A logical value indicating whether we know ( TRUE ) for each
event whom originated the action (sender) and whom was the tar-
get (receiver) of the interaction, or we don’t know ( FALSE ) the
source and the target of an event but only the actors that were in-
volved in it.

attr(edgelist_reh, "directed")

## [1] TRUE

ordinal A logical value indicating whether in the model we want to con-
sider the waiting times between events ( FALSE ) or consider only
the time order of the relational events ( TRUE ).

attr(edgelist_reh, "ordinal")

## [1] FALSE
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model A character value that describeswhether the output object is suit-
able for the actor-orientedmodel ( "actor" ) or for the tie-oriented
model ( "tie" ).

attr(edgelist_reh, "model")
## [1] "tie"

riskset A character value that describes the type of risk set that resulted
from the processing of the data. If omit_dyad is provided as in-
put, this means that the risk set is going to change for certain time
windows and then the argument value is "dynamic" . Otherwise,
when omit_dyad = NULL , the risk set is assumed to be the largest
observable one (of dimension D ) and it maintains the same struc-
ture throughout the network the argument is "static" .

attr(edgelist_reh, "riskset")
## [1] "dynamic"

dictionary A list of two data.frame named "actors" and "types" :
• the data.frame "actors" has two columns: the first col-
umn with actor names ( "actorName" ) sorted according to
their alphanumerical order, the second column with their cor-
responding ID’s ( "actorID" ), ranging in {0,…, N−1}

• the data.frame "types" has two columns: the first column
with type names ( "typeName" ) sorted according to their al-
phanumerical order, the second columnwith their correspond-
ing ID’s ( "typeID" ), ranging in {0,…, C−1}

attr(edgelist_reh, "dictionary")
## $actors
## actorName actorID
## 1 Alexander 0
## 2 Andrey 1
## 3 Breanna 2
## 4 Charles 3
## 5 Colton 4
## 6 Crystal 5
## 7 Derek 6
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## 8 Francesca 7
## 9 Justin 8
## 10 Kayla 9
## 11 Kelsey 10
## 12 Kiffani 11
## 13 Lexy 12
## 14 Maya 13
## 15 Mckenna 14
## 16 Megan 15
## 17 Michaela 16
## 18 Richard 17
## 19 Wyatt 18
## 20 Zackary 19
##
## $types
## typeName typeID
## 1 competition 0
## 2 conflict 1
## 3 cooperation 2

time A list of three objects that are named "class" , "value" and
"origin" :
• "class" is a character value that returns the class of the
column "time" provided in the input edgelist

• "value" is a data.frame of size [M×2] where the first col-
umn is the variable "time" supplied in the input edgelist
and the second column is the object "intereventTime" in-
side the output reh object.

• "origin" is the input argument already discussed in the pre-

vious section about input arguments of the function reh() .

str(attr(edgelist_reh, "time")) # printing out only the str()
# of the attribute since the data.frame `value` is large

## List of 3
## $ class : chr [1:2] "POSIXct" "POSIXt"
## $ value :'data.frame': 9915 obs. of 2 variables:
## ..$ time : POSIXct[1:9915], format: "2020-03-05

02:47:08" "2020-03-05 02:50:18" ...↪→
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## ..$ intereventTime: num [1:9915] 855 190 2408 504 1046 ...
## $ origin: POSIXct[1:1], format: "2020-03-05 02:32:53"

Methods

The methods available for an reh object are:

summary Prints out a brief summary of the relational network data.

summary(edgelist_reh)
## Relational Event Network
## (processed for tie-oriented modeling):
## > events = 9915
## > actors = 20
## > (event) types = 3
## > riskset = dynamic
## > directed = TRUE
## > ordinal = FALSE
## > weighted = FALSE
## > time length ~ 80 days
## > interevent time
## >> minimum ~ 0.0011 seconds
## >> maximum ~ 5811.4011 seconds

dim Returns some useful dimensions characterizing the net-
work, such as: number of events, number of actors, num-
ber of event types, number of dyads.

dim(edgelist_reh)
## events actors types dyads
## 9915 20 3 1140

getDynamicRiskset If the input argument omit_dyad is supplied to the pro-
cessing function, then the method returns the processed
dynamic risk set matrix (or the two dynamic risk sets if
actor-oriented modeling), the same that are explained in
the previous section about the output.
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getDynamicRiskset(edgelist_reh)$riskset[,1:9]
# printing out the risk set modifications of
# only the first 9 columns (dyads).

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
## [1,] 1 1 1 1 1 1 1 1 1
## [2,] 1 1 1 1 1 1 1 1 1

actorName After supplying one ormore actorID’s themethod returns
the corresponding (input) names.

actorName(reh = edgelist_reh, actorID = c(0,12,19))

## [1] "Alexander" "Lexy" "Zackary"

typeName After supplying one or more typeID’s to typeName() , the
method returns the corresponding (input) names.

typeName(reh = edgelist_reh, typeID = c(0,2))

## [1] "competition" "cooperation"

actorID Returns the corresponding ID’s given a set of actorName’s.

actorID(reh = edgelist_reh, actorName =
c("Michaela","Alexander","Lexy"))↪→

## [1] 16 0 12

typeID Returns the corresponding ID’s given a set of typeName’s.

typeID(reh = edgelist_reh, typeName = "cooperation")

## [1] 2

C.1.2 A function for transforming processed event histories
into different formats

The function rehshape() aims to transform the structure of a relational event
history object from a format to another one, e.g., from a reh structure to a
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new structure suitable for other packages that also estimate tie or actor ori-
ented models (and vice versa). At the current package version, the function
rehshape() can convert data used as input for the function relevent::rem()
(Butts, 2023) to an reh object and vice versa.
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C.2 remstimate : optimization tools for relational
event history data

The remstimate package (Arena, Lakdawala, et al., 2022) aims to provide op-
timization tools for the likelihood of both tie-oriented (REM, Butts (2008)) and
actor-oriented (DyNAM, Stadtfeld and Block (2017)) modeling frameworks.
We discuss the input required by the main function remstimate() and the

output of a remstimate object along with its attributes and methods. The
content presented in this appendix refers to the latest version of the package
which is the 2.0.0 .

Input arguments

The input arguments in remstimate() are:
reh A reh object, namely an output object from the processing function

remify::reh() .
stats A remstats object (Meijerink-Bosman et al., 2023): when the input

model="tie" , then stats is an array of statistics with dimensions
[M × D × P ]: where M is the number of events, D is the number of
possible dyads (the largest risk set), P is the number of statistics; if
the input model="actor" , then stats is a list of two arrays named
"rate" and "choice" with dimensions [M × N × P ], where N is
the number of actors (treated as senders in the array "rate" , as
receivers in the array "choice" .

method The optimization method to use, which can be: maximum likelihood
estimation ( "MLE" ), gradient descent optimization algorithmwith op-
timized adaptivemovement estimation ( "GDADAMAX" ), Bayesian Sam-
pling Importance Resampling ( "BSIR" ), Hamiltonian Monte Carlo
( "HMC" ).

ncores The number of threads for the parallelization (default is 1, namely, no
parallelization).

prior A prior distribution over the model parameters when using Bayesian
methods ( "BSIR" , or "HMC" ).

nsim If method = "HMC" , then nsim is the number of simulations (itera-
tions) in each chain. If method = "BSIR" , then nsim is the number
of samples from the proposal distribution.
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nchains The number of chains to generate (used for the method "HMC" ).
burnin The number of initial iterations to be added as burn-in (used for the

method "HMC" ).
thin The number of steps to skip in the posterior draws of the HMC (used

for the method "HMC" ).
init A vector of initial values if model = "tie" , or a list of two vectors,

named "rate" and 'choice' if model = "actor" . This argument
is used for the methods "GDADAMAX" and "HMC" .

epochs The number of iterations used in the methods "GDADAMAX" .
epsilon The inter-iteration difference of the loss function used in the method

"GDADAMAX" and it is used as stop-rule within the algorithm.
seed Seed for the reproducibility of results based on the Bayesian optimiza-

tion methods ( "BSIR" and "HMC" ).
silent A logical value, if silent = FALSE the progress of optimization

status will be printed out.

Structure of the output object

The output of the function remstimate() is an S3 object of class remstimate
and for any optimization method it contains a list of objects such as:
coefficients A numeric vector of estimates of the model parameters.

Each element of the vector is named after the variable or
interaction name.

loglik The value that the log-likelihood function assumes at the
values of the estimates ( coefficients ). By default, The
optimization methods minimize the negative log-likelihood
(− lnL) but the loglik value return is its opposite. In the
Bayesian optimization methods it is the value that the pos-
terior log-likelihood assumes at the posterior modes.

gradient The value of the gradient vector calculated at the values of
the estimates ( coefficients ).

hessian The values of the Hessian matrix calculated at the values of
the estimates ( coefficients ).

vcov The estimated variance and covariance matrix of the pa-
rameters (in the case of Bayesianmethods like "BSIR" and
"HMC" it is estimated from the posterior distribution).

se The estimated standard errors of the estimates (in the case
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of Bayesian methods like "BSIR" and "HMC" it is esti-
mated from the posterior distribution).

residual.deviance The value of the residual deviance, that is−2 lnLwhere lnL
is the value of the log-likelihood function calculated at the
values of the estimates (namely, the output loglik ).

null.deviance The null deviance of the relational event model explains
howmuchwell themodel fits and predict the data with only
the intercept specified in the linear predictor.

model.deviance The model deviance quantifies the distance in terms of de-
viance between the null model and the model of interest
specified by the user and it is calculated as
null.deviance - residual.deviance .

df.null The degrees of freedom for the null model.
df.model The degrees of freedom for the model of interest.
AIC TheAkaike’s InformationCriterion (AIC)measuring the good-

ness of fit of the model.
AICC The small sample corrected AIC.
BIC TheBayesian InformationCriterion (BIC)measuring the good-

ness of fit of the model.
converged A logical value indicating whether the optimization con-

verged ( TRUE ) or not ( FALSE ).
iterations The number of iterations of the optimization algorithm be-

fore convergence.

If the optimization method is Bayesian ( "BSIR" or "HMC" ), the output ob-
ject contains the following additional information:

draws The matrix of draws from the posterior distribution of the pa-
rameters.

post.mode Vector of posterior modes estimated from the posterior distri-
bution of the parameters.

post.mean Vector of posteriormeans estimated from the posterior distribu-
tion of the parameters.

log_posterior Vector of values of the logarithmic posterior density calculated
at the values of the posterior draws.

174



Software package: remstimate

C

Attributes

The attributes available for a remstimate object can be listed via the following
function

names(attributes(remstimate_object))

When a remstimate object is created, the attributes available are:
formula The formula object specified as the linear predictor and provided

by the input stats .
model A character value indicating themodeling framework used (whether

it was tie-oriented, "tie" , or actor-oriented, "actor" ).
ordinal A logical value indicating the type of likelihood function used

whether it is for ordinal ( TRUE ) or continuous time modeling
( FALSE ).

method A character value indicating the optimizationmethod used (”MLE”,
”GDADAMAX”, ”BSIR” or ”HMC”).

approach A character value indicating the approach to which the optimiza-
tion method corresponds (for "MLE" and "GDADAMAX" the value
of the attribute "approach" is "Frequentist" , for "BSIR" and
"HMC" the value of the attribute
"approach" is "Bayesian" ).

statistics A character vector of namesof the statistics specified in themodel.

Depending on the optimization method used, further attributes are present.
For instance, if method = "GDADAMAX" , then the output object will also contain
information about the number of "epochs" and the value of the parameter
"epsilon" . If the method is a Bayesian approach then the output will con-
tain the attribute "prior" that returns the prior specified as input and the
attribute "nsim" that is the number of simulations (draws). Furthermore, if
method = "HMC" then the output will also contain information about the num-
ber of chains generated (attribute "nchains" ), the parameters "burnin" and
"thin" .

Methods

The methods available for a remstimate object are:
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print Short summary containing a few lines such as the estimated param-
eters, names of statistics, modeling framework and the chosen op-
timization method

summary An extended summary with more detailed information about the
model.

aic Returns the Akaike’s Information Criterion (AIC).
aicc Returns the small sample corrected AIC.
bic Returns Bayesian Information Criterion (BIC).

Other methods that are under development and will be available in future
versions of remstimate are:

predict Thismethod generates a set of predictions under specific requirements
that are provided as input arguments in the method function (for in-
stance, how many time points a-head to predict).

plot The plot method will return several plots as to diagnostics on the esti-
mated model.

waic This method returns the Watanabe-Akaike’s Information Criterion that
measure the predictive performance of a model and can be used for
model comparison.

C.3 bremory : modeling the influence of past so-
cial interactions in relational event networks

The methods presented in this dissertation are available in the bremory pack-
age (Arena, 2022a). We summarily discuss the main functions of the package.
The functions smm() and bma() perform the Bayesian semi-parametric

approach presented in Chapter 3, the function pmm() performs the parametric
methods presented in Chapters 4 and 5.
smm() (Fitting step-wise memorymodels) A function that fits one or more K-

step-wise models on the same specified linear predictor. The user can:
(i) supply one or more predefined K-steps functions, (ii) make the func-
tion smm() generate a set of K-steps functions via the algorithm pre-
sented in Appendix A.3. The output is an S3 object of class smm and it
either returns a simple summary of the estimates and standard errors
about the only step-wisemodel estimated or, in the case of a set of two
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or more K-step-wise models, it will have a more complex structure col-
lecting all the necessary information from each fitted step-wise model
whichwill be used for the Bayesianmodel averaging stage. The K-steps
functions given as input or internally generated can differ in number
of steps andmaximum time length (γmax). The internal routines for the
computation of endogenous statistics on time intervals are optimized
and both computation and model estimation can be parallelized on
multiple threads.

bma() (Performing bayesian model averaging) A function that performs the
Bayesian Model Averaging on a set of K-step-wise models. The user
must supply a smm object as input, containing the set of estimated
step-wise models. There are two default weighting systems available
for the averaging, which are "BIC" and "WAIC" . Furthermore, the
user can set the number of draws from the posterior distribution and
the size of the grid of γ ’s where to approximate the posterior trend of
the effects β.

pmm() (Fitting parametric memory models) A function that fits a parametric
memorymodel. The parametric model can be either a relational event
model with onememory parameter or a SentiREM. The available mem-
ory decay functions are "exponential" , "linear" and, "one-step"
. The regression model available for the event sentiment is the Probit
model. The estimation of the model parameters can be run either via
themaximization of the profile log-likelihood or via the optimization of
the log-likelihood based on trust region algorithms.
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SUMMARY

A relational event network consists of a time-ordered sequence of social inter-
actions (relational events) in which we know the time of occurrence for each
event and the actors involved in the interaction. Such network data is increas-
ingly available and can be observed in a multitude of scenarios, for instance:
in-person interactions among citizens of a rural area, email communication
among employees in a firm, text messages sent among university students,
socio-political interactions occurring among countries, interactions among play-
ers in an online strategy game, to mention a few.

Past interactions with peers, friends, colleagues, and more can affect our de-
cisions about whom to interact with in the imminent future and how. What
happened in the past can influence our future interactions to a certain extent
depending on how recently past events occurred, the sentiment of such events,
the form of interaction (e.g., be it an in-person or a digital one) and possibly
other factors. It comes naturally to attribute large weights to recently occurred
events and to weigh less those events that happened long ago and of which our
perception may have faded. However, there can be further differences in the
speed and shape of the memory decay depending on the sentiment of the past
event that we consider. For instance, If we had an argument with a friend and
this happened recently, we may attribute to such an event a weight larger than
the weight of a positive event, be it a compliment or any other positive social
interaction with that friend. In other words, memory decay describes how fast
we forget about past relational events, and its study is crucial to understand
better the impact of actor-level or group-level network dynamics in a network
of social interactions.



Summary

Researchers have devotedmarginal focus to developingmethods for the anal-
ysis of memory decay in relational event networks. Most studies assume an
equal weight across all the past events, making recently occurred events weigh
as much as long-passed ones on the actor’s decision-making process. Other
studies consider a short-run and a long-run definition of network dynamics to
compare the effects between dynamics based on recent events and dynamics
based on long-passed events. Alternatively, some studies calculate network dy-
namics in multiple time intervals to investigate the presence of a possible trend
of the effects of the network dynamics from the most recent to the less recent
events in a step-function fashion. Furthermore, some studies introduce the use
of a parametric form of memory decay, where the weight of past events follows
an exponential decay, and its speed is defined by a memory parameter that re-
searchers usually fix a priori to a specific value. Even though researchers have
been conducting a theory-based choice of the time intervals or the memory pa-
rameter, such an approachmay be limiting, potentially hindering aspects of the
data that could instead present insights on social phenomena and their dynam-
ics, supporting new theory development. However, their contributions have
been helpful and have stimulated the development of time-sensitive model ex-
tensions around the relational event network modeling framework.

In this dissertation, we introduce time-sensitive methods for modeling the in-
fluence of past social interactions in relational event networks. First, we present
a real case study in which we focus on analysing a sequence of emails about
innovation sent among employees in a company. We introduce norms of reci-
procity and inertia defined in short-run and long-run forms in order to under-
stand whether and how they explain the email rate of employees along with
other variables available with the data (Chapter 2). Then, we introduce a semi-
parametric method for estimating the shape of memory decay by applying a
Bayesian model averaging approach to a ”bag” of step-wise relational event
modelswhere network dynamics are calculated onmultiple time intervals (Chap-
ter 3). Next, we propose a method that assumes a parametric memory decay,
provides a way to estimate such a memory parameter from the observed se-
quence of events and a Bayesian test to establish which decay function fits
the data best (Chapter 4). Finally, we present the SentiREM for modeling the
event rate of the next dyadic event separately from the probability of the next
event type (sentiment). We focus on the scenario where we observe two event
types in the network and model the next event sentiment via Probit regres-
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sion. We provide a sentiment-based definition of the network dynamics, intro-
duce themethodology for estimating the sentiment-basedmemory parameters
and some Bayesian tests for both the memory parameters and the effects of
sentiment-based network dynamics (Chapter 5).

The methodology presented in this dissertation is made available in the R
package bremory (Appendix C).
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