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A B S T R A C T

This paper proposes a post-hoc explanation method for computing concept attribution in Fuzzy Cognitive
Map (FCM) models used for scenario analysis, based on SHapley Additive exPlanations (SHAP) values. The
proposal is inspired by the lack of approaches to exploit the often-claimed intrinsic interpretability of FCM
models while considering their dynamic properties. Our method uses the initial activation values of concepts
as input features, while the outputs are considered as the hidden states produced by the FCM model during
the recurrent reasoning process. Hence, the relevance of neural concepts is computed taking into account the
model’s dynamic properties and hidden states, which result from the interaction among the initial conditions,
the weight matrix, the activation function, and the selected reasoning rule. The proposed post-hoc method
can handle situations where the FCM model might not converge or converge to a unique fixed-point attractor
where the final activation values of neural concepts are invariant. The effectiveness of the proposed approach
is demonstrated through experiments conducted on real-world case studies.
1. Introduction

Fuzzy Cognitive Maps (FCMs) were introduced in [1] as a
knowledge-based approach for modeling complex systems and perform-
ing what-if simulations. From a neural network perspective, FCMs are
recurrent neural systems that consist of neural concepts and weighted
connections [2]. Neural concepts represent variables, entities, or states
related to the physical system under investigation and are intercon-
nected by directed edges or connections assigned signed weights. The
signed weight associated with each connection denotes the strength of
causality or correlation between the corresponding variables. Despite
their naming, FCMs do not involve any fuzzy characteristics as both
their knowledge representation, reasoning process and inner states have
crisp semantics [3].

FCMs have been widely recognized as being fairly interpretable,
transferable, causal and transparent, thus making them appealing for
decision-making processes [4,5]. Firstly, it is true that all components
in the networks have a well-defined meaning for the problem do-
main being modeled. This is the case with neural concepts and causal
relationships that are typically defined by human experts. Secondly,
the system can either be visualized as a whole [6] or conveniently
mined to extract useful from its knowledge structures. Finally, the
transparency of these neural reasoning systems allows determining the
most important concepts in the network from a static perspective where
only the weights connecting the concepts are analyzed. This is often

∗ Corresponding author.
E-mail address: g.r.napoles@uvt.nl (G. Nápoles).

accomplished by computing centrality measures such as the incoming-
weight and outgoing-weight degree measures (see Section 4 for further
details).

However, analyzing the centrality of concepts as a quantitative
measure of feature importance might be insufficient. On the one hand,
FCMs are recurrent systems that support feedback loops and produce
states with hidden patterns. While the static properties of FCM models
are given by their weights only [7], the dynamic properties are defined
by the weights, initial conditions, the activation function associated
with neural concepts, and the reasoning rule used to update neurons’
activation values. This fact challenges the traditional belief that FCM-
based models provide for intrinsic interpretability. On the other hand,
existing post-hoc approaches for computing feature importance such as
LIME (Local Interpretable Model-Agnostic Explanations) [8] or SHAP
(Shapley Additive Explanations) [9] might fail if directly applied to
FCM-based models devoted to scenario analysis. The reason for this
relies on the FCMs’ convergence issues.

Let us assume that we apply LIME or SHAP on an FCM model such
that we are concerned about the initial conditions and the outputs after
performing a fixed number of iterations. If the model fails to converge,
the feature importance values will change with the number of iterations
defined by the modeler. In contrast, if the network converges to a
unique fixed-point attractor, the outputs will be invariant w.r.t. initial
conditions, thus causing the failure of these post-hoc methods since
marginalizing a feature will not report any changes in the outputs.
vailable online 16 October 2023
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Fig. 1. Convergence of a neural concept to a unique fixed-point attractor for different
initial activation vectors.

Fig. 1 depicts the issues of computing concept importance using
SHAP or LIME in the presence of fixed-point attractors. This example
shows the activation values of a neural concept initialized with random
activation values. This neuron converges to a unique fixed point after
10 iterations. Note how variability in the neuron’s activation values
(visualized with the shadow) decreases until reaching the fixed-point
attractor. The ramification of this behavior is that the final neurons’
activation values will be the same regardless of the initial activation
values used for starting the recurrent reasoning process. As a result,
perturbation-based explanation methods will not be able to capture
any variability in the model’s outputs, thus failing to compute reliable
concept importance scores.

This paper proposes a SHAP-based post-hoc method for computing
concept attribution in FCM models devoted to scenario analysis. Unlike
centrality measures that only use the model’s static information to
derive concept importance, the proposed SHAP method focuses on
the model’s dynamic properties. The main motivation supporting our
method relies on the absence of post-hoc methods generating explana-
tions from the more obscure yet important component of FCM models:
their dynamic behavior. Therefore, such explanations will complement
the intrinsic interpretability of FCM models and the explanation derived
from their static information.

The proposed SHAP method uses the concepts’ initial activation
values as inputs and temporal states produced during the recurrent
reasoning process as outputs. Hence, the relevance of neural concepts
is computed considering the model’s dynamic properties and hidden
states, which are obtained from the interaction between the initial
conditions, the weight matrix, the activation, and the reasoning rule.
More importantly, the method will not fail even if the FCM model
leads to chaos, cyclic patterns, or converges to a unique fixed-point
attractor. This happens because the relevance of concepts is based on
their hidden states rather than the final states produced by the model
after performing a fixed number of iterations.

The rest of this paper is organized as follows. Section 2 intro-
duces the theoretical foundations of cognitive mapping, while Section 3
revises existing approaches for determining concept importance in
FCM-based models. Section 4 presents classic measures based on the
degree centrality notion, while Section 5 describes the proposed SHAP-
based post-hoc method. The case studies and the numerical comparison
between centrality-based measures and the proposed SHAP method
are discussed in Section 6. Towards the end, Section 7 provides some
concluding remarks and future work directions to be explored.

2. Fuzzy cognitive maps

FCM models are graph-theoretic tools for modeling complex systems
composed of interconnected concepts and feedback loops [10]. A piv-
2

otal component when resenting knowledge is the weight matrix 𝐖𝑁×𝑁
where 𝑁 represents the number of neural concepts depicted as nodes
n the digraph. As such, the weight attached to the edge departing
rom the 𝑖th concept and arriving at the 𝑗th concept is represented as
𝑤𝑖𝑗 ∈ [−1, 1]. These causal weights can be viewed as measures of the
degree of influence that one concept has on another in the network.

Moreover, each neuronal concept 𝐶𝑖 in the network is attached with
an activation value 𝑎(𝑡)𝑖 denoting the extent to which that concept is
active in the 𝑡th iteration. The initial activation vector 𝑎(0)𝑖 is provided
by the modeler when performing what-if simulations. Hence, the acti-
vation vector 𝐀(𝑡) = (𝑎(𝑡)1 , … , 𝑎(𝑡)𝑖 , …, 𝑎(𝑡)𝑁 ) gives the state of the system in
the current iteration 𝑡 ∈ {1, 2,… , 𝑇 }, while the initial activation vector
𝐀(0) = (𝑎(0)1 ,… , 𝑎(0)𝑖 ,… , 𝑎(0)𝑁 ) encodes the scenario to be simulated.

Eq. (1) shows the generalized reasoning rule [11] used to compute
the activation value of the 𝑖th neural concept in the (𝑡 + 1)th iteration
given initial condition provided by the domain expert,

𝑎(𝑡+1)𝑖 = 𝜙 ⋅ 𝑓

( 𝑁
∑

𝑗=1
𝑎(𝑡)𝑗 𝑤𝑗𝑖

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
nonlinear component

+ (1 − 𝜙) ⋅ 𝑎(0)𝑖
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

linear component

, (1)

such that 𝑓 (⋅) is the activation function and 0 ≤ 𝜙 ≤ 1 is a parameter
used to control the nonlinearity degrees of the reasoning rule. When
𝜙 = 1, the model performs as a closed system where the activation value
of a neuron depends on the activation values of connected neurons in
the previous iteration. When 0 < 𝜙 < 1, we add a linear component to
the reasoning rule devoted to preserving the initial activation values of
neurons when updating their activation values in the current iteration.
When 𝜙 = 0, the model narrows down to a linear regression where the
initial activation values serve as regressors. The reasoning rule of FCM
models in Eq. (1) stops when either (i) the model converges to a fixed
point or (ii) a maximal number of iterations 𝑇 is reached. Overall, we
have three possible states:

• Fixed point (∃𝑡𝛼 ∈ {1,… , (𝑇 − 1)} ∶ 𝑎(𝑡+1)𝑖 = 𝑎(𝑡)𝑖 ,∀𝑖,∀𝑡 ≥ 𝑡𝛼): the
FCM produces the same state vector after 𝑡𝛼 , thus 𝑎(𝑡𝛼 )𝑖 = 𝑎(𝑡𝛼+1)𝑖 =
𝑎(𝑡𝛼+2)𝑖 = ⋯ = 𝑎(𝑇 )𝑖 . If the fixed point is unique, the FCM model will
produce invariant states (i.e., the same state vector regardless of
the initial conditions).

• Limit cycle (∃𝑡𝛼 , 𝑃 , 𝑗 ∈ {1,… , (𝑇 − 1)} ∶ 𝑎(𝑡+𝑃 )𝑖 = 𝑎(𝑡)𝑖 , ∀𝑖,∀𝑡 ≥ 𝑡𝛼):
the FCM produces the same state vector periodically after the
period 𝑃 , thus 𝑎(𝑡𝛼 )𝑖 = 𝑎(𝑡𝛼+𝑃 )𝑖 = ⋯ = 𝑎(𝑡𝛼+𝑗𝑃 )𝑖 , where 𝑡𝛼 + 𝑗𝑃 ≤ 𝑇 .

• Chaos: the FCM produces different state vectors for successive
iterations with no clear pattern.

The activation function 𝑓 (⋅) deserves further discussion since it
rovides the FCM model with its nonlinear capabilities [12]. This
ounded function transforms the raw activation values that a neuron
eceives during the reasoning process and outputs activation values
hat belong to a pre-defined interval, usually [0, 1] or [−1, 1]. In this
aper, we will focus on activation functions that produce values in the
−1, 1] intervals as these functions do not lead to misleading activation
alues. For example, neural concepts having no incoming connections
ill become active if we use a sigmoid activation function, which might
ffect the reliability of the system being modeled.

Eq. (2) shows a straightforward continuous activation function re-
erred to as saturation,

(�̄�(𝑡+1)𝑖 ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−1, if �̄�(𝑡+1)𝑖 < −1

�̄�(𝑡+1)𝑖 , if − 1 ≤ �̄�(𝑡+1)𝑖 ≤ 1

1, if �̄�(𝑡+1)𝑖 > 1

(2)

uch that �̄�(𝑡+1)𝑖 is the raw activation value of the 𝑖th concept in the
teration being processed.
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The hyperbolic tangent function shown in Eq. (3) is quite popular in
real-world FCM applications and produces values in the (−1, 1) interval,

𝑓ℎ
(

�̄�(𝑡+1)𝑖

)

= 𝑒�̄�
(𝑡+1)
𝑖 − 𝑒−�̄�

(𝑡+1)
𝑖

𝑒�̄�
(𝑡+1)
𝑖 + 𝑒−�̄�

(𝑡+1)
𝑖

. (3)

The continuous activation functions usually pose some challenges
hat might affect the reliability of simulations. On the one hand, these
unctions often cause the neurons to saturate towards the endpoints
f the activation intervals. If that happens, the neural concept will
ardly capture any variations in its raw activation values. On the other
and, these functions are closely linked to the convergence properties
f the network [13–15] while providing modelers little controllability
ptions.

To tackle these issues, Nápoles et al. [11] introduced the re-scaled
ctivation function,

𝑟

(

�̄�(𝑡+1)𝑖

)

=
�̄�(𝑡+1)𝑖

‖

‖

�̄�(𝑡+1)‖
‖2

, ‖‖
‖

�̄�(𝑡+1)‖
‖

‖2
≠ 0 (4)

where �̄�(𝑡) = (�̄�(𝑡)1 , … , �̄�(𝑡)𝑖 , … , �̄�(𝑡)𝑁 ) is the raw activation vector given
by �̄�(𝑡) = 𝐀(𝑡)𝐖. The authors in [11] derived analytical conditions for
convergence, which are related to the 𝜙 parameter in Eq. (1) and the
eigenvalues of 𝐖. For example, if 0 ≤ 𝜙 < 1, then we can ensure that
the fixed point will not be unique, although cycles might appear under
special circumstances. In contrast, if 𝜙 = 1, then the fixed point will be
unique provided that 𝐖 is diagonalizable and contains an eigenvalue
that is strictly greater in magnitude than other eigenvalues, and that
the initial vector must have a nonzero component in the direction of
the dominant eigenvector. Moreover, if the initial vector is orthogonal
to the dominant eigenvector, then the FCM model will not converge.

3. Related work

This section will delve into two primary methodologies to de-
termine relevant concepts in FCM models - network reduction and
centrality-based approaches.

3.1. Network reduction approach

Next, we provide an overview of relevant network reduction ap-
proaches in previous research to determine the most important con-
cepts in FCM models. By understanding the methods used in previous
studies, decision-makers can leverage this approach to gain insights
into complex systems and make informed decisions.

The authors in [16] explain how FCMs can quickly become un-
wieldy and difficult to interpret as the number of concepts and rela-
tionships increases, hindering their practical usefulness. They propose
a network reduction method that analyzes the relationship strength
between concepts and their neighbors while removing those with weak
impact. The method reduces the number of concepts while maintaining
accuracy for real-world decision-making. Another study [17] presents
a reduction approach based on a combination of two-step learning
and conceptual reduction techniques. First, a learning method creates
an initial FCM model, and then a conceptual reduction technique re-
duces its dimensionality. Testing on various datasets demonstrated that
this approach effectively reduces the dimensionality while maintaining
accuracy by adapting the FCM model to the system’s requirements.

To facilitate the analysis and interpretation of models, the study [18]
is devoted to building hybrid FCM-based models with learning capa-
bilities. The contributions comprise a scheme for constructing hybrid
FCMs where experts are requested to identify the interaction among
the input concepts. The weights connecting the inputs and outputs are
computed from data using a rapid learning rule based on the Moore–
Penrose inverse. A network reduction approach discards superfluous
concepts and relationships, considering the expected activation values
of concepts and the absolute values of weights. Furthermore, the
3

authors presented two calibration methods to fine-tune the model after
eliminating potentially redundant weights. While one of these methods
focuses on recomputing the retained weights, the other modifies the
non-linear parameters associated with the sigmoid function.

Developing a model that is both precise and straightforward is often
a difficult task for experts. The authors in [19] compared established
techniques with novel FCM reduction methods based on k-means and
fuzzy c-means clustering. The goal was to create simpler models capa-
ble of mimicking the behavior of the original model better than existing
methods. By reducing the complexity of the model while maintaining
its accuracy, these new methods could provide a more efficient and
effective approach to modeling complex systems. Ultimately, the pro-
posed reduction techniques could significantly contribute to advancing
our understanding of complex systems by providing more accurate and
straightforward models.

3.2. Centrality-based approach

Next, we will elaborate on the centrality-based approach used for
concept importance, firstly introduced in [1]. It is important to mention
that contrary to the network reduction approach, the centrality-based
approach allows quantifying concept importance.

The authors in [20] examined the effects of various policy scenarios
on identified influential variables by using betweenness, closeness, and
degree centrality measures. The study aims to suggest recommenda-
tions or solutions for decision-makers to address the problems identified
and shift the system towards a more desirable outcome than the status
quo. Closeness and betweenness centrality measurements consider the
indirect links of a concept and highlight the shortest routes between
that concept and others [21]. This approach reveals how a concept can
have a global impact on the entire network rather than just a local
impact. Overall, these measures are used during the condensation and
aggregation of FCM models.

Several other studies [22–26] have applied in-degree, out-degree
or degree centrality measures to obtain concept relevance scores in
FCM-based models. These measures can be used to calculate either the
overall influence of concepts on the whole model or the influence of
individual concepts on others. For the entire model, the calculations
consider both the positive and negative relationships, indicating the
total influence of all components in the system. For individual concepts,
the centrality scores measure their conceptual weight or importance by
accounting for the magnitude of their positive and negative connec-
tions. To identify concepts that require special attention and determine
the centrality of each factor in relation to others, the study [27] used
absolute values for in-degree and out-degree measures.

The review paper in [7] elaborates on the comparative analysis
of FCM models based on the structure of their underlying cognitive
models. It aims to extract which neural concepts strongly influence
the overall perspective of each FCM model. Within the metrics used
to perform such a structural comparison, we can find network density,
link-node ratio and centrality-based measures such as degree centrality,
betweenness, and closeness.

Developing models with inherent explainability and self-generated
justifications remains a persistent challenge. The model in [28] presents
a novel classifier based on Long-term Cognitive Networks (LTCNs) with
such characteristics. This model is rooted in the FCM formalism and
uses a recurrence-aware decision model to avoid the issues associated
with the unique fixed-point attractors. This classifier incorporates an
intrinsic interpretability mechanism by assessing the relevance of each
feature in the decision-making process. Such a mechanism scores the
features according to the absolute centrality of neural concepts, which
can be reasonably mapped to problem features.

Based on the revised literature, it has become evident that exist-
ing concept importance methods do not fully leverage the intrinsic
interpretability of FCM models while also accounting for their dynamic
properties.
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4. Centrality-based measures

In this section, we formalize three centrality-based measures [29] to
determine the relevance of each concept using the static information
describing the relationships in the network. Such measures are not a
contribution of this paper but will be employed as baselines.

The degree centrality of a node in a weighted digraph can be
calculated by summing the absolute weights of the edges that arrive
at or depart from the node. Hence, the degree centrality of a node
indicates its overall connectivity within the causal network. In an FCM
model, this measure can easily be computed as follows:

𝛤 (𝐶𝑖) =
∑

𝑗
|𝑤𝑗𝑖| +

∑

𝑙
|𝑤𝑖𝑙|. (5)

The degree of a node in a digraph can be classified into two types:
in-degree and out-degree. In a weighted directed digraph, the in-degree
of a node is defined as the sum of the (absolute) weights of the incoming
edges to the node being analyzed. This measure is useful in identifying
important nodes in terms of receiving information from other nodes in
the network. In an FCM model with signed weights, this measure can
be computed as follows:

𝛤−(𝐶𝑖) =
∑

𝑗
|𝑤𝑗𝑖|. (6)

The out-degree centrality is defined as the sum of the (absolute)
weights of the outgoing edges from the node. It provides a measure
of the total weight of outgoing edges from the node, so it is useful
in identifying important nodes in terms of providing information to
other nodes in the network. Similarly to the in-degree centrality, we can
adapt this measure to FCM models where the network involves signed
weights as shown below,

𝛤+(𝐶𝑖) =
∑

𝑗
𝑤𝑖𝑗 . (7)

Although these measures provide insights into the relevance of
concepts, they neither consider their activation values nor the activa-
tion function used in the reasoning process. As such, centrality-based
measures fail to capture the network’s dynamic behavior, which is
probably the most distinctive feature of FCM models.

5. SHAP-based feature importance

Aiming to tackle the limitations of centrality-based concept im-
portance measures, we will modify the traditional SHAP method to
deal with FCM models devoted to scenario simulation. More explicitly,
the method is aimed to derive concept importance from the model’s
dynamic properties, which are materialized through its temporal states.
To do that, we will rely on two main assumptions. Firstly, all concepts
could be deemed as inputs and outputs, so there is no distinction
between them in that regard. Secondly, the method should be robust to
the activation function, the nonlinearity parameter and the network’s
convergence status. The latter is particularly problematic when having
cyclic or chaotic behaviors since the method’s output will depend
on the number of iterations 𝑇 , affecting the method’s reliability. The
convergence to a unique fixed point is even more problematic since
the SHAP method could not derive any relevance scores from invariant
outputs that are independent from the inputs.

To overcome these convergence issues, our method attributes the
prediction of the FCM model to its initial activation values of neural
concepts, while the outputs are regarded as the hidden states produced
by the model during the inference process. This means that an FCM
model with 𝑁 concepts will have the same number of inputs given
by 𝐀(0) = (𝑎(0)1 ,… , 𝑎(0)𝑖 ,… , 𝑎(0)𝑁 ) whereas the outputs associated is given
y the temporal state vector 𝐇(𝑇 )

𝑖 obtained with the recursive relation
𝐇(𝑡) = (𝐇(𝑡−1)

|𝐀(𝑡)) where 𝐇(0) = 𝐀(0). In this formulation, the (⋅|⋅)
4

Fig. 2. Perturbation in the trajectory of a concept to a fixed point after inducing a
perturbation in the network.

Fig. 3. FCM model concerning the ‘‘crime and punishment’’ case study described by
seven neural concepts.

operation stands for the horizontal concatenation operator of vectors.
Therefore, it holds that

𝐇(𝑇 ) =
(

𝐀(0)
|𝐀(1)

|𝐀(2)
|… |𝐀(𝑇−2)

|𝐀(𝑇−1)
|𝐀(𝑇 )) . (8)

Eq. (9) shows how to compute the Shapley value denoting the
mportance of the neural concept 𝐶𝑖 in an FCM model for scenario
nalysis,

(𝐶𝑖) =
∑

�̃�⊆𝐶⧵{𝐶𝑖}

𝛺 ⋅
[

𝐇(𝑇 )
𝑗 (�̃� ∪ {𝐶𝑖}) −𝐇(𝑇 )

𝑗 (�̃�)
]

(9)

here

=
|�̃�|!(|𝐶| − |�̃�| − 1)!

|𝐶|!
(10)

uch that 𝐶 is the concept set, �̃� is a subset of 𝐶 ⧵ {𝐶𝑖}, while
𝐇𝑗 (�̃� ∪ {𝐶𝑖}) gives a concept’s activation value assuming that all con-
epts are used in the calculation. Similarly, 𝐇𝑗 (�̃�) gives a concept’s

activation value after excluding 𝐶𝑖 from the reasoning process. While
marginalizing a feature in pattern classification is obtained by replacing
its values with the mean, in the FCM context, suppressing a concept
means that its incoming and outgoing connections are zeroed. In that
way, the removed concept will not influence others during the reason-
ing process since the activation functions used in this paper do not
arbitrarily activate a concept when its raw activation value is zero, as
happens with the sigmoid activation function.

The Shapley value approach satisfies the efficiency property, which

states that the sum of the individual contributions should be equivalent
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Fig. 4. Reasoning process of the FCM model concerning the ‘‘crime and punishment’’ case study for 100 randomly generated initial activation vectors and 𝑇 = 20 iterations. The
network does not converge to a fixed-point attractor for any of the activation functions used to perform the reasoning process. The re-scaled model does not converge since the
transposed weight matrix does not have an eigenvalue that is strictly greater in magnitude than other eigenvalues.
Fig. 5. Concept relevance scores produced by the degree centrality measures and the proposed SHAP method for the ‘‘crime and punishment’’ case study. In the case of the SHAP
method, we also report the relevance scores for the activation functions adopted in the study (saturation, hyperbolic tangent and re-scaled).
to the discrepancy between the concepts’ activation values across itera-
tions and the average activation value. This means that the attribution
values can be aggregated in order to obtain a single ranking about
concept relevance in FCM models.

Overall, our method uses a holistic concept importance approach
since the model’s dynamic properties depend on the (a) initial activa-
tion values, (b) the activation function, (3) the reasoning rule, and (4)
the weight matrix. Therefore, it also uses the network’s static properties
to derive the concept relevance scores. For example, marginalizing a
concept with no outgoing connections will not bring any variability in
the activation values of retained concepts. As such, it will pushed to the
bottom of the concept relevance ranking. The same reasoning applies
to concepts with near-zero incoming connections.
5

Fig. 2 portrays the algorithm’s intuition using a functional example.
Firstly, we assume that we have several neural concepts in the network.
Secondly, we assume that one of these concepts will be used to monitor
the alterations in the reasoning process after removing one or several
neurons. Thirdly, we assume that all neurons converge to a unique
fixed-point attractor. The example shows that removing a neuronal
concept causes a significant disruption (visualized with the gray area)
in the trajectory of the sensing concept to the fixed point. Therefore,
the bigger the area, the more relevant the concept being analyzed. Note
that the SHAP algorithm would fail if it focused on the sensing concept’s
outcome only rather than the concept’s trajectory to the fixed point.

It is worth mentioning that our SHAP method works in two different
settings that can be defined by the user. In the first setting, all concepts
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Fig. 6. Average norm of the activation vector across iterations when suppressing the concepts in the same order as determined by each post-hoc method for the ‘‘crime and
punishment’’ case study. The gray area is defined by the best-performing value reported by these methods after removing the concept ranked in the 𝑖th position of the relevance
ranking.
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Fig. 7. FCM model concerning the ‘‘public health’’ case study described by seven neural
concepts.

are regarded as inputs and outputs, which means that all concepts are
used to quantify perturbations in the network. In the second setting,
we can distinguish between inputs and outputs such that only sensing
concepts are used to determine the relevance of those concepts deemed
as inputs.

The last aspect to be discussed is the method’s computational com-
plexity. Predictably, the proposed SHAP method will be slower than
any centrality-based measure since it needs to explore several coali-
tions (concept combinations) across several initial conditions. For each
combination, the FCM’s recurrent reasoning process needs to be exe-
cuted using a pre-defined set of initial conditions. A recommendation
to improve the method’s efficiency includes stopping the reasoning
process as soon a fixed point (not necessarily unique) is found or
a clear cycle is observed. In addition, we can sample the temporal
states produced by concepts in odd and even cycles since a few states
could capture well the changes induced by concept marginalization.
Concerning the number of features and samples, FCM models used for
simulation purposes typically involve a low number of concepts and
representative samples defined by domain experts.

6. Numerical simulations

To evaluate the performance of the propose method, we will rely on
three real-world case studies for scenario analysis with FCM models.
The experimental methodology can be briefly described as follows.
Firstly, we build the FCM model for each problem and randomly gener-
ate 100 initial activation vectors. Secondly, we perform the reasoning
rule depicted in Eq. (1) using the saturation, hyperbolic tangent, and
re-scaled activation functions. In these simulations, the nonlinearity
6

parameter is arbitrarily set to 𝜙 = 1.0 while the number of iterations
is set to 𝑇 = 20. Thirdly, we compute the centrality-based metrics
and the proposed SHAP method for each parametric setting and assess
the agreement among these concept relevance approaches. Finally,
we conduct a ‘‘pixel-flipping’’ experiment to determine which method
accurately determines the importance of concepts in the investigated
FCM models. The intuition of this experiment is that removing the most
relevant concepts causes a significant drop in the activation values of
retained concepts.

6.1. Case study 1: Crime and punishment

The first case study concerns the ‘‘crime and punishment’’ cognitive
network, as described in [30], which is used to model the relationship
between various factors that influence crime and the criminal justice
system. The concepts in this model are presence of property (𝐶1),
pportunity (𝐶2), theft (𝐶3), community intervention (𝐶4), criminal
ntention (𝐶5), punishment (𝐶6), and police presence (𝐶7). Fig. 3 shows
he causal network such that positive relationships are depicted as solid
ines while negative ones are represented with dashed lines.

Firstly, it seems convenient to inspect the convergence behavior
f the FCM model for the three activation functions (see Fig. 4). The
eader can notice that the network fails to converge for the specified
umber of iterations, which means that the network produces state
ectors that continue to change from one iteration to another. In the
ase of the model using the re-scaled activation function, this result
rings no surprise since the transposed weight matrix does not have an
igenvalue that is strictly greater in magnitude than other eigenvalues.

Fig. 5 reports the normalized concept relevance scores as computed
y the centrality-based measures and the proposed SHAP method. It can
e noted that 𝐶3 reports the largest centrality values overall and that
he concept rankings differ in the remaining positions. These rankings
ill not change if we use other initial activation vectors, activation

unctions or reasoning rules, as they depend on the weights only. The
HAP method also detected 𝐶3 as the most important concept in all
ases. However, the rankings barely change despite using the model’s
ynamic components to elicit concept importance.

In order to determine which method computed the most accurate
oncept relevance results, we will resort to a version of the ‘‘pixel flip-
ing’’ experiment [31,32]. This procedure is widely used to understand
he impact of individual pixels on the predictions made by a machine
earning model. While the term ‘‘pixel flipping’’ refers specifically to
mage data, a similar reasoning can be applied to other types of data
ith feature-based representations. The adapted variant implemented

n this study consists of systematically removing the concepts from the
ognitive network in the same order they were ranked by a given post-
oc method. The intuition of this experiment is that removing relevant
oncepts causes a significant drop in the activation values of retained
oncepts.
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c
i
d

Fig. 8. Reasoning process of the FCM model concerning the ‘‘public health’’ case study for 100 randomly generated initial activation vectors and 𝑇 = 20 iterations. This model
onverges to a fixed point when using the saturation and the hyperbolic tangent function. The fixed point seems to be unique since all final activation vectors are the same, which
s visualized with the absence of a shadow (standard deviation). In the case of the re-scaled transfer function, the network fails to converge since the transposed weight matrix
oes not have an eigenvalue that is strictly greater in magnitude than other eigenvalues.
Fig. 9. Concept relevance scores produced by the degree centrality measures and the proposed SHAP method for the ‘‘public health’’ case study. In the case of the SHAP method,
we also report the relevance scores for the activation functions adopted in the study (saturation, hyperbolic tangent and re-scaled).
Fig. 6 shows the average norm of the activation vector across
iterations when suppressing the concepts in the same order as ranked
by the post-hoc method. Therefore, the 𝑥-axis gives the concept ranking
while the 𝑦-axis gives the average norm value. The gray area is defined
by the best-performing value after removing the concept ranked in
the 𝑖th position of the relevance ranking. Notice that a zero-norm
activation vector (after performing a fixed number of iterations) means
that concepts are no longer connected with each other. As such, the
faster we approach this extreme case, the more reliable the relevance
scores used to build the concept ranking.

The simulation results indicate that the in-degree centrality measure
7

is the best-performing post-hoc method. The proposed method performs
similarly to the in-degree centrality measure in the most and least
important concepts, which is a positive outcome. In contrast, the out-
degree measure reports the worst results since it fails to quantify a large
drop when removing the most relevant concept from the network.

6.2. Case study 2: Public health

The second case study concerns civil engineering and studies the
consequences of the increase of a city’s population and modernization
to the city’s public health (see Fig. 7). This FCM was used in [14] to
compare the inference capabilities of binary, trivalent and sigmoid FCM

models. The concepts in this model are people in a city (𝐶1), migration
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Fig. 10. Average norm of the activation vector across iterations when suppressing the concepts in the same order as determined by each post-hoc method for the ‘‘public health’’
case study. The gray area is defined by the best-performing value reported by these methods after removing the concept ranked in the 𝑖th position of the relevance ranking.
into city (𝐶2), modernization (𝐶3), amount of garbage (𝐶4), sanitation
facilities (𝐶5), diseases per 1000 residents (𝐶6), and bacteria per area
𝐶7).

A closer inspection of the dynamic behavior of this FCM model
see Fig. 8) shows that it converges to a fixed point when using the
aturation and hyperbolic tangent functions. The fixed point seems to
e unique since the FCM model produces the same state vector for
ll initial activation vectors after performing 𝑇 = 20 iterations. In

the case of the re-scaled transfer function, the network unsurprisingly
fails to converge since the transposed weight matrix does not have an
eigenvalue that is strictly greater in magnitude than other eigenvalues.

Fig. 9 reports the normalized concept relevance scores computed
by the centrality-based measures and the proposed SHAP post-hoc
method. The simulation results show that 𝐶5 reports the largest in-
degree centrality and degree centrality scores, while 𝐶7 is the concept

ith the largest out-degree centrality. The SHAP method indicates that
3, 𝐶5 and 𝐶4 are the most relevant concepts when using the satura-

ion, hyperbolic tangent, and re-scaled activation function, respectively.
ote how differences in the activation values (what is the information
aptured by the proposed SHAP method to derive concept importance)
hange from one setting to another.

To determine which method computed the most accurate concept
elevance results, we will again rely on the ‘‘pixel flipping’’ experiment.
ig. 10 shows the average norm of the activation vector across itera-
ions when suppressing the concepts in the same order as ranked by
he post-hoc method. As before, the gray area is defined by the best-
erforming value after removing the concept ranked in the 𝑖th position
f the relevance ranking. It should be recalled that the rankings asso-
iated with each method are visualized in Fig. 9. The results indicate
he proposed SHAP method is clearly superior to the centrality-based
easures, which becomes more evident for the saturation and re-scaled

ctivation functions. In other words, it reports the smallest area under
he curve while approaching zero faster than the other methods.

.3. Case study 3: Car industry

The third case study refers to a complex system representing a car
ndustry, which was taken from [33]. The neural concepts describing
his system are high profits (𝐶1), customer satisfaction (𝐶2), high sales
𝐶3), union raises (𝐶4), safer cars (𝐶5), foreign competition (𝐶6), and
ower prices (𝐶7). Fig. 11 visualizes the network such that positive
elationships are shown as solid lines while negative ones are depicted
ith dashed lines.

By inspecting the model’s convergence, we notice that the network
oes not converge for any of the activation functions (see Fig. 12).
s in the previous case studies, the model using the re-scaled transfer

unction was not expected to converge since the transposed weight
atrix does not have an eigenvalue that is strictly greater in magnitude

han other eigenvalues.
8

Fig. 11. FCM model concerning the ‘‘car industry’’ case study described by seven neural
concepts.

Fig. 13 shows the normalized concept relevance scores computed
with the centrality-based measures and the proposed SHAP post-hoc
method. While 𝐶7 has the largest in-degree centrality, 𝐶2 and 𝐶6 report
the largest out-degree and degree centrality scores, respectively. When
considering the initial activation values, neurons’ activation values and
the activation function besides the edge weights, the concept rankings
further change. For example, it can be noticed that 𝐶2 is no longer an
important concept as indicated by the out-degree centrality measure,
but 𝐶6 and 𝐶7. This result further supports the superiority of the SHAP
method for determining concept importance in FCM models used for
scenario analysis.

Fig. 14 displays the average norm of the activation vector across
iterations when suppressing the concepts in the same order as ranked
by the post-hoc method. The rankings for each post-hoc method are
visualized in Fig. 13. The curves obtained using the saturation and hy-
perbolic tangent activation functions indicate that all methods perform
comparably, with SHAP being slightly better since it does not report
any peaks. The results concerning the re-scaled activation function
indicate that the SHAP method is the winner. Note that all curves have
a plateau that involves the top-3 relevant concepts in the network,
meaning they are equally relevant.

7. Concluding remarks

The lack of approaches to exploit the interpretability of FCM models
while considering their dynamic properties inspired the proposal of a
new method. Although centrality-based feature importance approaches
provide insights into the relevance of concepts, they fail to capture
the network’s dynamic behavior. As such, the paper proposed a SHAP-
based approach for computing concept attribution in FCM models for
scenario analysis.
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Fig. 12. Reasoning process of the FCM model concerning the ‘‘car industry’’ case study for 100 randomly generated initial activation vectors and 𝑇 = 20 iterations. This model
fails to converge to a fixed point for all activation functions used in the study since the concepts’ activation values continue to change from one iteration to another. In the case
of the re-scaled transfer function, this convergence behavior was predicted since the transposed weight matrix does not have an eigenvalue that is strictly greater in magnitude
than other eigenvalues, thus indicating the presence of cycles or a chaotic behavior.
Fig. 13. Concept relevance scores produced by the degree centrality measures and the proposed SHAP method for the ‘‘car industry’’ case study. In the case of the SHAP method,
we also report the relevance scores for the activation functions adopted in the study (saturation, hyperbolic tangent and re-scaled).
The proposed method operates under the assumption that all con-
cepts are inputs and outputs and should be robust to factors such as the
activation function, nonlinearity parameters, and network convergence
status. As stated before, convergence poses difficulties when dealing
with cyclic or chaotic behavior, which can impact the method’s reliabil-
ity. Additionally, invariant outputs independent of inputs pose a bigger
challenge since existing feature importance methods cannot derive
relevance scores from them. To overcome these issues, the proposed
method attributes the FCM model’s prediction to its initial activation
values of concepts while considering the hidden states produced by
the model during inference as outputs. Using the Shapley value ap-
9

proach satisfies the efficiency property, allowing attribution values to
be aggregated to obtain a single ranking of concept relevance in FCM
models.

It is important to mention that existing centrality-based measures
and the proposed SHAP method induce different types of knowledge
characterizing concept importance. Centrality-based measures give in-
formation about the strength of incoming and outgoing weights as-
sociated with each neural concept, however, such static knowledge
is insufficient to conclude the concepts’ relevance. In contrast, the
proposed SHAP method effectively captures situations that are missed
by centrality-based measures since it uses all pieces of information
produced by the network when performing the reasoning process. More

explicitly, the numerical simulations showed that concept attribution
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c

Fig. 14. Average norm of the activation vector across iterations when suppressing the concepts in the same order as determined by each post-hoc method for the ‘‘car industry’’
ase study. The gray area is defined by the best-performing value reported by these methods after removing the concept ranked in the 𝑖th position of the relevance ranking.
:

scores often vary when changing the activation function, the initial con-
ditions and the inference rule used to update the concept’s activation
values.
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