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1 Introduction

This dissertation focuses on the mathematical analysis of projects involving decisions
by multiple actors. Projects involve a set of different parties, firms, or stakeholders,
often referred to as players. These players all have their own capabilities, require-
ments, and incentives, but their (monetary) outcome is dependent on the decisions of
other players as well. Game theory is a mathematical tool to analyze the interactive
decision-making process, generally paired with a method to ‘resolve’ the conflict sit-
uation. The way in which players interact in such a situation is commonly divided in
two categories, distinguishing between cooperative and competitive (non-cooperative)
behavior. The different models in this dissertation follow a similar division between
collaborative projects and problems with strategic individual behavior, or a combi-
nation thereof. Though in most chapters of this dissertation games are not explicitly
considered, all models are in some way related to game theory.

Models within a cooperative framework study situations in which groups of players
can cooperate by reaching a mutual agreement on a joint plan of action to maximize
their joint payoff (see, e.g., Peleg and Sudhölter (2007)). This is generally paired with
a specification of how to allocate this payoff. Cooperative games with transferable
utility assign a (joint) value to every possible subset of players (called ‘coalitions’),
not only to the group of players as a whole (the ‘grand’ coalition). In principle, this
game serves as a conservative and consistent benchmark to properly address the allo-
cation problem for the grand coalition, taking into account coalitional incentives. By
‘solving’ the game, one finds allocations of the total joint value of the grand coalition
to the players.

1
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This stands in contrast to non-cooperative models, in which strategic players are
interested in maximizing their individual payoffs, taking into account the strategic be-
havior of other players based on individual incentives only (see, e.g., Fujiwara-Greve
(2015)). Regarding solutions, (variants of) Nash equilibria (Nash, 1951) are the main
topic of interest.

Chapters 2 and 3 are written within a cooperative framework. Specifically, Chap-
ter 2 considers projects consisting of a number of tasks to be carried out by a set
of players. Each task can only be carried out by a subset of all players, so players
may have to cooperate to complete a project. In this context, a solution represents a
measure of influence each player has on the completion of the project. In Chapter 3,
players cooperate on the construction of a new infrastructure. Collaborating on a
joint infrastructure that meets the requirements of all players, rather than construct-
ing a separate infrastructure for each individual player, leads to cost savings. Then,
a solution provides a way to allocate the joint construction costs to the players.

Chapter 4 considers two-stage models, in which a non-cooperative first stage is
followed by a cooperative second stage. Conceptually, the specific format of the
cooperative stage is determined by strategic decisions in the first stage. An example
of such a ‘biform’ model is given in Example 1.2.3.

Chapters 5 and 6 analyze non-cooperative models. The former is concerned with
auctions, in which players compete by strategically submitting their (sealed) bids to
obtain items. The solution considered is that of a Nash equilibrium, with a specific
focus on the efficiency of an equilibrium in utilitarian welfare terms, i.e., comparing
the total valuation of the bidders in an equilibrium with their maximal total valuation
in an optimal assignment of items to players. Finally, Chapter 6 analyzes a general
class of non-cooperative games, called bimatrix games, focusing on a new solution
concept that refines the notion of Nash equilibria.

Societal relevance is clear from numerous practical situations with multi-actor decision-
making corresponding to the (theoretical) models developed in the different chapters
of this dissertation, both in a cooperative and a non-cooperative setting.

For example, Chapter 3 presents a model for collaborative infrastructure construc-
tion projects, developed primarily with a practically relevant application in mind:
CO2 transport infrastructure for industrial decarbonization. We extensively study a
concrete case of a prospective CO2 transport infrastructure for carbon capture, uti-
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Chapter 1. Introduction 3

lization and storage in the port of Rotterdam and the adjoining industry area. An
important element of this model is the way in which it incorporates heterogeneity in
the requirements of potential users of this infrastructure. Through this, and using a
model inspired by cooperative game theory, we propose a well-substantiated method
to allocate the total infrastructure construction costs to the users. Appropriate cost
allocation, such that all players can only benefit from collaboration on the infrastruc-
ture construction project, can be a key enabler for the successful realization of such
projects.

As another example, in a non-cooperative setting, Chapter 5 considers auctions
with a corrupt auctioneer. Corruption in auctions, where auctioneers manipulate the
submitted bids (referred to as ‘bid rigging’) to their own benefit, occurs in practice,
especially in the public sector. However, even though this bid rigging has been studied
and observed in practice, its impact on social welfare is still poorly understood. We
contribute to this understanding by initiating the study of social welfare loss caused
by corrupt auctioneers in fundamental auction settings.

1.1 Overview

This section briefly summarizes the five main chapters of the dissertation, each of
which is based on a separate research article.

In Chapter 2, based on Van Beek et al. (2021), we define and axiomatically char-
acterize a new proportional influence measure for sequential projects with imperfect
reliability. We consider a model in which a finite set of players aims to complete a
project, consisting of a finite number of tasks, which can only be carried out by certain
specific players. Moreover, we assume the players to be imperfectly reliable, i.e., play-
ers are not guaranteed to carry out a task successfully. To determine which players
are most important for the completion of a project, we use a proportional influence
measure, where players’ influence on the completion of each task within the project
is measured in proportion to the likelihood that they complete it successfully. This
chapter provides two characterizations of this influence measure. The most prominent
property in the first characterization is task decomposability. This property describes
the relationship between the influence measure of a project and the measures of influ-
ence one would obtain if one divides the tasks of the project over multiple independent
smaller projects. Invariance under replacement is the most prominent property of the
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4 1.1. Overview

second characterization. If in a certain task group a specific player is replaced by a
new player who was not in the original player set, this property states that this should
have no effect on the allocated measure of influence of any other original player.

Chapter 3, based on Van Beek et al. (2023a), provides a multi-actor perspective on
the realization of new infrastructures, motivated by the necessity for infrastructures
to support the ongoing climate and energy transition in general, and CO2 transport
infrastructures for carbon capture, utilization and storage in particular. We develop a
general model to represent infrastructures that allows for a unique decomposition into
‘elementary infrastructure components’ based on heterogeneous user requirements.
Notably, it incorporates a cost function with a very generic and adaptable structure,
for which we can still explicitly determine the costs of each individual component. As
a direct consequence an intuitive cost allocation rule is obtained: equal component
cost sharing. This allocation rule is in line with existing game-theoretic concepts and
satisfies the desirable properties of advantageous scaling and coalitional rationality.
Advantageous scaling guarantees that the costs allocated to each existing user do not
increase if the number of users grows larger and coalitional rationality ensures that
there is no subgroup of infrastructure users that would have a financial reason to
object to the cost allocation. Additionally, we examine the application of our model
to a prospective CO2 transport infrastructure for CCUS in the port of Rotterdam
and the adjoining industry area.

Chapter 4, based on Van Beek et al. (2023b), analyzes applications of biform games to
linear production (LP) and sequencing processes. Biform games apply to problems in
which strategic decisions are followed by a cooperative stage, where the specific format
of the cooperative stage is determined by these strategic decisions. The cooperative
stage corresponding to a strategy combination is then ‘solved’, leading to a unique
payoff allocation vector. By associating a payoff vector with each possible strategy
combination, the induced strategic game is determined. In biform LP-processes, we
allow firms to compete for resources, rather than assuming the resource bundles are
simply given. With strategy dependent resource bundles that can be obtained from
two locations, we show that the induced strategic game has a pure Nash equilibrium,
using the Owen set or any game-theoretic solution concept that satisfies anonymity to
solve the second-stage cooperative LP-game. In biform sequencing processes, we no
longer assume an initial processing order is given. Instead, this initial order is strate-
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Chapter 1. Introduction 5

gically determined by allowing players to request their preferred position in the initial
order. Solving the second-stage cooperative sequencing game using a gain splitting
rule, we fully determine the set of pure Nash equilibria of the induced strategic game.

In Chapter 5, based on Van Beek et al. (2022), we initiate the study of the so-
cial welfare loss (in utilitarian welfare terms) caused by corrupt auctioneers, both
in single-item and multi-unit auctions. In our model, the auctioneer may collude
with the winning bidders by letting them lower their bids in exchange for a (possibly
bidder-dependent) fraction γ ∈ [0, 1] of the surplus: the difference between their bid
and the highest losing bid. We consider different corruption schemes. In the most
basic one, all winning bidders lower their bid to the highest losing bid. We show that
this setting is equivalent to a γ-hybrid auction in which the payments are a convex
combination of first-price and second-price auction payments. More generally, we
consider corruption schemes that can be related to γ-approximate first-price auctions
(γ-FPA), where the payments recover at least a γ-fraction of the first-price payments.
Our goal is to obtain a precise understanding of the robust price of anarchy of such
auctions. If no restrictions are imposed on the bids, we establish a bound on the
robust price of anarchy of γ-FPA which is tight for the single-item and the multi-unit
auction setting. On the other hand, if bidders cannot overbid, a more fine-grained
landscape of the price of anarchy emerges, depending on the auction setting and the
equilibrium notion. Interestingly, we derive (almost) tight bounds for both auction
settings and both pure Nash equilibria and coarse correlated equilibria.

Finally, Chapter 6 proposes a new refinement of Nash equilibria for bimatrix games.
Most existing refinements are based on a thought experiment which imposes a certain
‘imperfection’ on the choices or payoffs of individual players. The equilibrium refine-
ment proposed in this chapter deviates from the existing refinements by considering
a thought experiment in which the imperfections occur on a ‘system’ level, instead of
those corresponding (directly) to individual players. Imperfections are interpreted as
the blocking of actions. If an imperfection occurs, the chosen actions are blocked for
all players simultaneously, rather than for individual players. The idea behind this is
that, after players submit their strategies, some entity converts these strategies into
actions leading to payoffs. In this new thought experiment, with small probability, this
entity makes an error that blocks the chosen actions instead of implementing them,
and chooses a random combination of the remaining actions. Put differently, either
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the chosen actions are executed for all players, or no player actually plays their chosen
action. In this way, there is an entanglement in the errors. We therefore refer to an
equilibrium based on this thought experiment as an entangled equilibrium. Focusing
on bimatrix games, we show that the set of entangled equilibria is a non-empty subset
of the set of (mixed) Nash equilibria. Further, we discuss a geometric-combinatorial
approach to determine all entangled equilibria of 2 × n bimatrix games. Importantly,
solving a 2 × n bimatrix game for entangled equilibria requires relatively little extra
work compared to finding Nash equilibria for the bimatrix game.

1.2 Preliminaries

This section introduces some of the basic notation and fundamental concepts used
throughout this dissertation, distinguishing between cooperative and non-cooperative
models, and restricting to preliminaries required in more than one chapter. Further
chapter-specific preliminaries are provided in the corresponding chapters.

1.2.1 Cooperative models

Let N denote a finite and non-empty set of players. Then, x ∈ RN denotes a (col-
umn) vector of |N | real numbers, specifying for each player i ∈ N a real number xi.
Further, ei with i ∈ N denotes the unit vector in RN of which the i-th element equals
one and all other elements are equal to zero.

Within the framework of cooperative models, a common goal is to determine an
allocation of the joint value of the player set N as a whole to the individual players,
for which some solution concept, or simply ‘solution’, is used. In Chapters 2, 3, and
4, solution concepts will be defined on different domains.

A prominent example of such a domain is the class of (cooperative) transferable
utility games. For this, let 2N denote the collection of subsets of N . The non-empty
subsets of N are referred to as coalitions, and N is called the grand coalition. A
transferable utility game (TU-game) is a tuple (N, v), where v : 2N → R is referred to
as the characteristic function. The characteristic function is typically based on specific
modeling assumptions. By convention, v(∅) = 0. The number v(S) in principle
provides the highest total value (often monetary, e.g., payoff or net profit) a coalition
S ∈ 2N \ {∅} can jointly generate without the help of the players in N \ S. The class
of TU-games with player set N is denoted by TUN .
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On this domain, the Shapley value (Shapley, 1953) is a one-point solution concept that
assigns to each TU-game (N, v) with some fixed player set N a unique (payoff) vector
Φ(v) ∈ RN . The Shapley value is defined as the average of the so-called marginal
vectors. To find these marginal vectors, we consider all possible orders in which
cooperation between the players is established. Formally, such an order is described
by a bijection σ : {1, 2, . . . , |N |} → N , where σ(k) is the player in position k in the
order. The collection of all orders is denoted by Π(N).

Let σ ∈ Π(N) and let v ∈ TUN . Then, the corresponding marginal vector,
mσ(v) ∈ RN , is defined by

mσ
σ(k)(v) = v({σ(1), ..., σ(k − 1), σ(k)}) − v({σ(1), ..., σ(k − 1)})

for any k ∈ {1, ..., |N |}. The Shapley value Φ : TUN → RN is defined as the average
of all marginal vectors. Formally,

Φ(v) = 1
|N |!

∑
σ∈Π(N)

mσ(v)

for all v ∈ TUN .

As a special case, let v ∈ TUN with N = {1, 2}. Then, we have

Φi(v) = v({i}) + v(N) − v({1}) − v({2})
2 (1.1)

for any i ∈ N .

To illustrate the Shapley value, consider an example of so-called glove games.

Example 1.2.1
The concept of glove games is simple: players have a number of left-hand and right-
hand gloves, and each pair of gloves (i.e., one left-hand and one right-hand glove) has
a certain value. An individual glove does not have value. By cooperating, players can
form pairs of gloves together and share the joint payoff. Concretely, let N = {1, 2, 3}
and suppose players 1 and 2 both have three left-hand gloves and six right-hand
gloves, where player 3 has eighteen left-hand gloves and six right-hand gloves. Each
pair of gloves is worth 1. Then, the corresponding glove game v is determined by the
number of pairs of gloves a coalition can generate, as given in Table 1.1.
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S {1} {2} {3} {1,2} {1,3} {2,3} N

v(S) 3 3 6 6 12 12 18

Table 1.1 The glove game v of Example 1.2.1

Suppose the total joint payoff of 18 for the grand coalition is allocated to the players
using the Shapley value of v. Note that there are 3! = 6 possible orders in Π(N).

For example, consider σ = (2 3 1). Player 2 is first in the order, and re-
ceives mσ

2 (v) = v({2}) − v(∅) = 3 − 0 = 3. Then, player 3 joins and is as-
signed mσ

3 (v) = v({2, 3}) − v({2}) = 12 − 3 = 9. Finally, for player 1 we have
mσ

1 (v) = v(N) − v({2, 3}) = 18 − 12 = 6.
In this way, one can determine all six marginal vectors, as given in Table 1.2.

σ mσ
1 (v) mσ

2 (v) mσ
3 (v)

(1 2 3) 3 3 12
(1 3 2) 3 6 9
(2 1 3) 3 3 12
(2 3 1) 6 3 9
(3 1 2) 6 6 6
(3 2 1) 6 6 6

Table 1.2 Marginal vectors for all orderings corresponding to the
glove game v of Example 1.2.1

Determining the average of these marginals vectors, we obtain that

Φ(v) = 1
6(27, 27, 54) = (4.5, 4.5, 9). �

1.2.2 Non-cooperative models

This section focuses on strategic games in normal form. Such games are denoted by
G = ({Xi}i∈N , {πi}i∈N ), where N (again) represents a finite set of players and the
strategy set of player i is denoted by Xi for all i ∈ N . The set of all strategy com-
binations is X = Πi∈N Xi. Let x ∈ X and let i ∈ N . The strategy player i chooses
is denoted by xi ∈ Xi and the strategy combination chosen by all other players in
N \ {i} is denoted by x−i ∈ X−i, with X−i = Πj∈N\{i}Xj . For any player i ∈ N ,
πi : X → R is the payoff function of this player.



610416-L-sub01-bw-van Beek610416-L-sub01-bw-van Beek610416-L-sub01-bw-van Beek610416-L-sub01-bw-van Beek
Processed on: 31-8-2023Processed on: 31-8-2023Processed on: 31-8-2023Processed on: 31-8-2023 PDF page: 15PDF page: 15PDF page: 15PDF page: 15

Chapter 1. Introduction 9

The most prominent solution concept for such strategic games is the concept of Nash
equilibria (Nash, 1951). A strategy combination x ∈ X is a Nash equilibrium of a
strategic game G = ({Xi}i∈N , {πi}i∈N ) if

πi(x) ≥ πi(yi, x−i)

for all i ∈ N and all yi ∈ Xi. In words, a strategy combination is a Nash equilibrium
if no player has an incentive to unilaterally deviate (i.e., change strategy, given the
strategies of all other players). The set of all Nash equilibria of G is denoted by E(G).

Example 1.2.2
Consider a situation in which two different stores give away gloves. Let N = {1, 2, 3}
and suppose these players compete to obtain gloves at these stores. At store 1, there
are six left-hand gloves and twelve right-hand gloves. At store 2, there are eighteen
left-hand gloves and six right-hand gloves. However, the stores are far apart, so
players can only visit one of the two. Hence, Xi = {1, 2} for all i ∈ N . If multiple
players choose to visit the same store, the owner divides the gloves available at this
store over these players, giving an equal number of left-hand and right-hand gloves
to each player.

For example, consider x = (1, 1, 2), i.e., players 1 and 2 both go to the first
store and obtain three left-hand gloves and six right-hand gloves each, while player
3 visits the second store and obtains eighteen left-hand gloves and six right-hand
gloves. Players 1 and 2 can both form three pairs of gloves, while player 3 can form
six pairs of gloves. Since each pair of gloves is worth 1, the resulting payoff vector is
π(x) = (3, 3, 6). In this way, the payoffs corresponding to each strategy combination
are readily determined, as presented in Table 1.3. For such tables, the row always
represents the strategy of player 1, where player 2 chooses a column, and the matrix
is determined by the choice of player 3.

1 2
1 (2,2,2) (3,6,3)
2 (6,3,3) (3,3,6)

1

1 2
1 (3,3,6) (6,3,3)
2 (3,6,3) (2,2,2)

2

Table 1.3 The strategic game G of Example 1.2.2

Clearly, (1, 1, 1) /∈ E(G), since, e.g., π1(1, 1, 1) < π1(2, 1, 1) implies that player 1 has
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an incentive to unilaterally deviate. Similarly, (2, 2, 2) /∈ E(G). All other strategy
combinations are Nash equilibria of the strategic game G, i.e.,

E(G) = {(1, 1, 2), (1, 2, 1), (1, 2, 2), (2, 1, 1), (2, 1, 2), (2, 2, 1)}. �

The following example illustrates how cooperative and non-cooperative game the-
ory can be combined in a single two-stage model, by defining a biform glove game.
Specifically, strategic decisions of choosing a store are made by the players in the
non-cooperative first stage, after which the player can cooperate and form pairs of
gloves together in the cooperative second stage. By allocating the total joint payoff
of the grand coalition in the second stage, one assigns a payoff vector to each strategy
combination, thereby defining the induced strategic game. This is a simple example
of a biform model as considered in Chapter 4.

Example 1.2.3
Consider the situation of Example 1.2.2, where, for any i ∈ {1, 2, 3}, Xi = {1, 2}
represents the strategic choice of i for a store that gives away gloves, where at store
1 there are six left-hand gloves and twelve right-hand gloves and at store 2 there are
eighteen left-hand gloves and six right-hand gloves. Similar to before, available gloves
are divided equally over players that choose to visit the same store.

However, now assume that after competing for gloves and focusing on individual
incentives only, the three players cooperate and form pairs of gloves together. More-
over, assume that they allocate the joint payoff using the Shapley value, as illustrated
in Example 1.2.1. For example, again consider x = (1, 1, 2), so that players 1 and 2
both obtain three left-hand gloves and six right-hand gloves, while player 3 obtains
eighteen left-hand gloves and six right-hand gloves. This corresponds to the starting
situation of glove game v of Example 1.2.1. Allocating the joint payoff using the
Shapley value therefore yields π(x) = Φ(v) = (4.5, 4.5, 9). Of course, various symme-
try arguments can be applied in the process to determine the payoff vectors based on
the Shapley value corresponding to other strategy combinations.

In this model, each strategy combination x ∈ X leads to a new cooperative game,
for which a unique payoff vector is determined using the Shapley value. Hence,
through this cooperative stage, each strategy combination ultimately induces a payoff
allocation vector. Table 1.4 represents the induced strategic game G.



610416-L-sub01-bw-van Beek610416-L-sub01-bw-van Beek610416-L-sub01-bw-van Beek610416-L-sub01-bw-van Beek
Processed on: 31-8-2023Processed on: 31-8-2023Processed on: 31-8-2023Processed on: 31-8-2023 PDF page: 17PDF page: 17PDF page: 17PDF page: 17

Chapter 1. Introduction 11

1 2
1 (2,2,2) (4.5,9,4.5)
2 (9,4.5,4.5) (4,4,10)

1

1 2
1 (4.5,4.5,9) (10,4,4)
2 (4,10,4) (2,2,2)

2

Table 1.4 The induced strategic game G of Example 1.2.3

One readily verifies that the set of Nash equilibria of the strategic game G is given by

E(G) = {(1, 1, 2), (1, 2, 1), (2, 1, 1)}. �
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2
Axiomatic characterizations
of a proportional influence

measure for sequential
projects with imperfect

reliability

2.1 Introduction

Projects are omnipresent in society. Whether it concerns an improvised explosive
device (IED) that needs to be developed, moved and placed (see Lindelauf (2011)
for a more detailed breakdown of the tasks in a typical IED-project) or a project
involving architecture, engineering and construction, there is an analogy. Generally
speaking, projects consist of tasks, and each task can only be carried out by certain
players, leading to a so-called task structure.

In the context of organized crime, an intelligence agency may be interested in
determining who is the most important player for the completion of a project, in
order to determine who should be eliminated or apprehended. Regarding projects
involving architecture, engineering and construction, completing the project may lead
to some (monetary) reward allocation that should fairly reflect the contribution of the
various players. As a common feature, the question at hand is which players are most
influential for the completion of a project. To this aim, we define and axiomatically
characterize a new proportional influence measure based on the task structure of a
project, where for each task the players’ influence on the completion of the project is
measured in proportion to the likelihood that they carry it out successfully.

13
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A significant part of quantitative research on projects is concerned with project plan-
ning. For example, Brown et al. (2009) develop interdiction actions that maximally
delay completion of a (nuclear) weapons project. In a similar context, Hermans
et al. (2019) use game theory to analyze how to allocate intelligence resources and
evaluate their performance regarding the timely detection of such covert projects.
Estévez-Fernández et al. (2007) use so-called project games to analyze projects in
which certain tasks can be delayed or expedited, leading to costs or rewards, respec-
tively, that need to be allocated. The distribution of shared costs in delayed projects
is also analyzed by Bergantiños and Sánchez (2002) and Brânzei et al. (2002).

In this chapter, based on Van Beek et al. (2021), we do not focus on project
planning, but on measuring the relative control of each player in the completion of a
project. A related, but different approach to measuring the relative influence of play-
ers in projects on the basis of a network structure, is given in Husslage et al. (2015).
In the context of construction projects, Nasirzadeh et al. (2016) use cooperative-
bargaining theory for quantitative risk allocation between a client and a contractor.
There is scarce literature explicitly using the task structure of a project to measure
the relative influence of players. Further, the imperfect reliability of players, as il-
lustrated below, is often not incorporated in the literature. This chapter serves as a
starting point for quantitative research on the relative influence of imperfectly reli-
able players on the completion of a project, based on the task structure of this project.

Before elaborating on the new influence measure and its axiomatic characterizations,
it is important to discuss what type of projects we are analyzing. The general defi-
nition of a task structure concerns projects for which a finite player set attempts to
carry out a finite number of tasks. We assume that for the completion of a project,
each task must be carried out successfully. Each task can only be carried out by a
certain set of players, called the task group. The tasks of a project can be carried out
sequentially. For example, this implies that if a player is a member of all task groups,
this player could attempt to complete the project alone. We emphasize ‘attempt to’
here; when a player attempts to carry out a task, we generally do not assume this
player is guaranteed to carry out the task successfully. Concretely, each player-task
combination has a certain fixed success probability, also referred to as the reliability
of the player for that specific task. Depending on the context, reliability can reflect,
e.g., operational risk, trustworthiness, or quality of a player in a broader sense. The
reliability of players is a key aspect of our model. Thus, we focus mainly on sequential
projects with imperfect (player) reliability.
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In sequential projects with imperfect reliability, the success probabilities of the indi-
vidual players in each task group also lead to success probabilities of the tasks, which
in turn yields a success probability of the project as a whole. For the latter, we as-
sume that the successes of different tasks are independent. In our model, all players
in a task group can attempt to carry out the corresponding task. The probability
that a task is not carried out successfully equals the probability that all players inde-
pendently fail to carry out this task. This can be interpreted in two ways. First, it
is possible that all players in a task group attempt to carry out the task in parallel,
where the task is considered successful if at least one player manages to carry out the
task. Alternatively, a project might be such that some (random) player in the task
group attempts to carry out the task, after which another (random) player in the task
group attempts the task only if the first player has failed. This process continues until
the task is either carried out successfully, or all players (in the task group) have failed.
We do not consider, e.g., additional set-up or delay costs associated with attempting
to carry out the task multiple times.

We define a proportional influence measure that allocates the final success probability
of a project over the players, to determine to which extent each player contributes to
the completion of a project. For each task players can carry out, the increase in value
of their influence measure corresponds to their relative success probability within the
task group. Hence, the allocated value per task increases with the success probabil-
ity of the player (for this task), but decreases with the ‘total’ success probability of
the other players in the corresponding task group. This essentially reflects a balance
between a player’s reliability and a player’s replaceability.

We axiomatically characterize our proportional influence measure by proving it is
the only allocation mechanism for sequential projects with imperfect reliability that
satisfies two sets of logically independent properties. The first characterization is on
the domain of projects with a fixed player set and its main property concerns the
task decomposability of a project. It describes the relationship between the influence
measure of a project and the measures of influence one would obtain if one divides
the tasks of the project over multiple independent smaller projects. For the second
characterization, we consider the domain of projects with a varying set of players.
The characterization is mainly based on the property invariance under replacement
of players. This property relates projects with different player sets. In particular, it
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16 2.2. Projects and the proportional influence measure

prescribes the relation when in a certain task group a specific player is replaced by a
new player who was not in the original player set. We also observe that both character-
izations still work on the smaller domain of sequential projects with perfect reliability.

A potential application lies within the framework of construction projects. Matthews
and Howell (2005) propose an Integrated Project Delivery (IPD) method that em-
phasizes cooperation between various parties who share risk and reward. Despite the
fact that IPD is regarded as an effective method, Teng et al. (2019) point out that
the number of construction projects using IPD is limited, in part due to the lack of
a fair mechanism to allocate profit. For IPD projects that fit the assumptions of our
framework, the proportional influence measure could be used as such a mechanism.

An alternative way to analyze sequential projects with imperfect reliability is to define
an appropriate cooperative game and use existing game-theoretic solution concepts.
We sketch a path for future research in this direction in the final section of this chapter.

Section 2.2 formally introduces projects with imperfect reliability and the propor-
tional influence measure, as well as their counterparts in case of perfect reliability.
Section 2.3 discusses the first characterization, based on task decomposability of a
project. The second characterization, based on invariance under replacement of play-
ers, is covered in Section 2.4. Section 2.5 concludes.

2.2 Projects and the proportional influence measure

A sequential project with imperfect reliability P can be summarized by the tuple

P =
(
N, T, {pk}k∈T

)
,

where N denotes the finite set of players and T the finite set of tasks to be carried
out by these players, and, for each k ∈ T , pk ∈ [0, 1]N denotes a probability vector
such that pk

i , i ∈ N , represents the success probability of player i to carry out task k.
If P =

(
N, T, {pk}k∈T

)
is such that pk

i ∈ {0, 1} for all k ∈ T and i ∈ N (as considered
by Lindelauf (2011)), we refer to P as a project with perfect reliability.

Additionally, for each k ∈ T , Nk = {i ∈ N | pk
i > 0} is called the task group of

task k. We assume that each task must be carried out successfully for the completion
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of a project. Consequently, we also assume that Nk �= ∅ for all k ∈ T (in particular,
this implies that for all project with perfect reliability there is at least one i ∈ N with
pk

i = 1 for all k ∈ T ).
The class of all projects is denoted by P. If we restrict to the class of projects

with some fixed player set N , we emphasize this in the notation using PN . This
distinction of domains becomes relevant in the characterizations of the proportional
influence measure later on. The subclass of P of all projects with perfect reliability is
denoted by S. Similarly, SN denotes the corresponding subclass of PN with a fixed
player set N .

Importantly, we assume that the tasks of a project can be carried out sequentially,
meaning that if a player is in several task groups, this player can attempt all cor-
responding tasks. Further, all players in a task group can attempt to carry out the
corresponding task. We implicitly assume that there is no interdependence in the
success probabilities of players in a task group; the success probability is fixed for any
player-task combination, independent of, e.g., another player in the task group failing
to carry out the task. Hence, the probability that a task is not carried out successfully
is equal to the probability that all players independently fail to carry out this task.
Also assuming independence between the success of tasks, the success probability of
a project can then be found by simply multiplying the success probabilities of each
individual task. We denote the probability that a project P ∈ P is completed by
q(P ). This can be seen as the ‘quality’ of the player set (with respect to carrying out
the tasks in the project), or simply as the success probability of the project. Formally,
we define the success probability of a project as a function q : P → [0, 1] such that

q(P ) =
∏
k∈T

(
1 −

∏
i∈N

(1 − pk
i )
)

for any P =
(
N, T, {pk}k∈T

) ∈ P. Since Nk �= ∅ for all k ∈ T , note that we have
q(P ) = 1 for all P ∈ S.

We now define a solution concept for sequential projects with imperfect reliability.
We call f : PN → RN a solution concept on PN . For i ∈ N , fi(P ) represents a mea-
sure of influence of player i on the completion of the project. Similarly, f is a solution
concept on P if it assigns a vector in RN to any P ∈ PN for any finite player set N .
We propose a proportional influence measure for sequential projects with imperfect
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reliability, denoted by ρ, in which the total probability of success q(P ) is allocated
among the players in the following way. First, by the nature of a project, q(P ) is
shared equally among the tasks. Second, for each task k ∈ T , q(P )/|T | is allocated
to players proportional to their individual task-specific success probabilities provided
by pk. Intuitively, for each task, the influence measure allocates more to players with
higher reliability (i.e., success probability). Further, the influence measure allocated
to a player decreases with the ‘total’ success probability of the other players in the
corresponding task group, as the player is then more replaceable.

Definition 2.2.1
The proportional influence measure ρ : PN → [0, 1]N is defined by setting

ρi(P ) = q(P )
|T |

∑
k∈T

pk
i∑

j∈N pk
j

for all P =
(
N, T, {pk}k∈T

) ∈ PN and any i ∈ N .

Note that we define ρ as a solution concept on PN here. For the second characteriza-
tion, we define properties of a solution concept on P. In this case, we also interpret
ρ as a solution concept on P, simply by using the definition above for any finite N .

Example 2.2.1
Consider a project P =

(
N, T, {pk}k∈T

)
that consists of two tasks, to be carried out

by a set of three players, with N = {1, 2, 3}, T = {a, b}, and pa = (0.8, 0.9, 0) and
pb = (0.8, 0, 1). Clearly,

q(P ) =
(
1 − (1 − pa

1)(1 − pa
2)(1 − pa

3)
)(

1 − (1 − pb
1)(1 − pb

2)(1 − pb
3)
)

= 0.98.

Consequently,

ρ(P ) = 0.98
2

(
0.8
1.7 + 0.8

1.8 ,
0.9
1.7 ,

1
1.8

)
≈ (0.45, 0.26, 0.27). �

Clearly, for a project P =
(
N, T, {pk}k∈T

) ∈ SN with perfect reliability, we have

ρi(P ) = 1
|T |

∑
k∈T : i∈Nk

1
|Nk|

for all i ∈ N .
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Chapter 2. Characterizations of a proportional influence measure 19

Example 2.2.2
Consider the project of Example 2.2.1, but now with perfect reliability, i.e., P =(
N, T, {pk}k∈T

)
with N = {1, 2, 3}, T = {a, b}, and pa = (1, 1, 0) and pb = (1, 0, 1).

Then,

ρ(P ) = 1
2

(
1
2 + 1

2 ,
1
2 ,

1
2

)
= (0.5, 0.25, 0.25). �

2.3 Characterization using task decomposability

In this section, we present our first axiomatic characterization of the proportional
influence measure. The most prominent property of a solution concept in this charac-
terization considers the effect of dividing the tasks of a project over multiple smaller
projects that we ‘solve’ independently. In particular, it relates the solution of the
‘original’ project to the solutions of the smaller projects.

We use the following four properties of a solution concept f : PN → RN to ax-
iomatically characterize ρ on PN .

We say that f satisfies efficiency if f allocates the total probability that a project
is completed.

Efficiency (EFF) f satisfies EFF on PN if
∑

i∈N fi(P ) = q(P ) for all P ∈ PN .

For any P =
(
N, T, {pk}k∈T

) ∈ PN we define Z(P ) = N \ ⋃
k∈T Nk as the set

of null players with respect to P . These null players do not have a positive success
probability for any task. We say that f satisfies the null player property if all null
players with respect to P are allocated zero value.

Null player (NUL) f satisfies NUL on PN if fi(P ) = 0 for all P ∈ PN with
i ∈ Z(P ).

Proportionality only applies to projects with a single task. For such projects, this
property states that the value allocated to players is proportional to their success
probability.
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20 2.3. Characterization using task decomposability

Proportionality (PROP) f satisfies PROP on PN if

fi(P )
pl

i

= fj(P )
pl

j

for all P =
(
N, T, {pk}k∈T

) ∈ PN such that T = {l} and all i, j ∈ N l.

Finally, task decomposability only applies to projects P =
(
N, T, {pk}k∈T

) ∈ PN

with |T | > 1. For such projects, this property describes the relationship between the
solution of this project and the solutions of two projects PT 1 and PT 2 over which the
tasks in T of the original project are divided into two disjoint sets T 1 and T 2. We do
not impose a specific order in which the tasks need to be carried out, so T 1 and T 2

can be two arbitrary subsets that partition T . In general, we denote smaller projects
with PS =

(
N, S, {pk}k∈S

) ∈ PN for any S ⊆ T . Note that for all PS , PS1 , PS2 ∈ PN

with S ⊆ T , S1 ∪ S2 = S and S1 ∩ S2 = ∅, we have

q
(
PS

)
= q

(
PS1

)
q
(
PS2

)
. (2.1)

We say that f satisfies task decomposability if the values allocated by f for the
original project can be written as a certain weighted average of the values allocated
by f for the two corresponding smaller projects. These weights contain the rela-
tive number of tasks to be carried out and the success probabilities of the smaller
projects. In particular, the higher the relative number of tasks, the higher the weight
of that project. Further, the weight increases as the success probability of the other
smaller project increases. The intuition behind this is that the original project is only
completed if both smaller projects are completed, meaning completion of one smaller
project should only count if the other smaller project is also successful.

Task decomposability (DEC) f satisfies DEC on PN if

f(P ) = |T 1|
|T | q

(
PT 2

)
f
(
PT 1

)
+ |T 2|

|T | q
(
PT 1

)
f
(
PT 2

)

for all P =
(
N, T, {pk}k∈T

) ∈ PN such that |T | > 1 and all PT 1 , PT 2 ∈ PN with
|T 1| ≥ 1, |T 2| ≥ 1, T 1 ∪ T 2 = T and T 1 ∩ T 2 = ∅.
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Chapter 2. Characterizations of a proportional influence measure 21

Example 2.3.1
Reconsider the project P =

(
N, T, {pk}k∈T

)
with N = {1, 2, 3}, T = {a, b}, pa =

(0.8, 0.9, 0) and pb = (0.8, 0, 1), as described in Example 2.2.1. We decompose this
project into two smaller projects PT 1 and PT 2 with T 1 = {a} and T 2 = {b}, and note
that q

(
PT 1

)
= 0.98 and q

(
PT 2

)
= 1. Task decomposability is satisfied by ρ in this

example, since

1
2 · 1 · ρ

(
PT 1

)
+ 1

2 · 0.98 · ρ
(
PT 2

)
= 1

2
0.98

1

(
0.8
1.7 ,

0.9
1.7 , 0

)
+ 0.98

2
1
1

(
0.8
1.8 , 0,

1
1.8

)

= 0.98
2

(
0.8
1.7 + 0.8

1.8 ,
0.9
1.7 ,

1
1.8

)

= ρ(P ). �

Next, we show that ρ is the only solution concept for sequential projects with imperfect
reliability that satisfies the four properties defined above. To do so, we first derive
a consequence of the DEC property towards decomposing a project into single-task
projects.

Lemma 2.3.1
Let f be a solution concept on PN that satisfies DEC. Then,

f(P ) = 1
|T |

∑
k∈T

q
(
PT \{k}

)
f
(
P{k}

)
(2.2)

for all P =
(
N, T, {pk}k∈T

) ∈ PN such that |T | > 1.

Proof. Let P =
(
N, T, {pk}k∈T

) ∈ PN with |T | > 1. We give a proof by induction
on |T |. First, consider the base case T = {k, l} with k �= l. By DEC, we have

f(P ) = 1
2q

(
P{k}

)
f
(
P{l}

)
+ 1

2q
(
P{l}

)
f
(
P{k}

)
as required.

Next, assume the induction hypothesis that equation (2.2) holds for all P =(
N, T, {pk}k∈T

) ∈ PN such that |T | = t for a given integer t ≥ 2. Then, let
P =

(
N, T, {pk}k∈T

) ∈ PN with |T | = t + 1 and let l ∈ T . We get

f(P ) = t

t + 1q
(
P{l}

)
f
(
PT \{l}

)
+ 1

t + 1q
(
PT \{l}

)
f
(
P{l}

)
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22 2.3. Characterization using task decomposability

= t

t + 1q
(
P{l}

)1
t

∑
k∈T \{l}

q
(
PT \{k,l}

)
f
(
P{k}

)
+ 1

t + 1q
(
PT \{l}

)
f
(
P{l}

)

= 1
t + 1

∑
k∈T \{l}

q
(
PT \{k}

)
f
(
P{k}

)
+ 1

t + 1q
(
PT \{l}

)
f
(
P{l}

)

= 1
t + 1

∑
k∈T

q
(
PT \{k}

)
f
(
P{k}

)
,

where we use the fact that f satisfies DEC in the first equality, the induction hypoth-
esis in the second equality, and (2.1) in the third equality.

Theorem 2.3.2
Let f be a solution concept on PN . Then, f = ρ if and only if f satisfies EFF, NUL,
PROP, and DEC.

Proof. We first show that ρ satisfies the four properties. EFF and NUL are obvious
from the definition of ρ.

PROP: Consider P =
(
N, T, {pk}k∈T

) ∈ PN such that T = {l} and let i, j ∈ N l.
Then,

ρi(P )
pl

i

=
q(P ) pl

i∑
r∈N

pl
r

pl
i

= q(P )∑
r∈N pl

r

=
q(P ) pl

j∑
r∈N

pl
r

pl
j

= ρj(P )
pl

j

.

DEC: Let P =
(
N, T, {pk}k∈T

) ∈ PN be such that |T | > 1 and let i ∈ N . Let T 1

and T 2 be such that |T 1| ≥ 1, |T 2| ≥ 1, T 1 ∪ T 2 = T and T 1 ∩ T 2 = ∅ and consider
PT 1 and PT 2 . Then,

ρi(P ) = q(P )
|T |

∑
k∈T

pk
i∑

j∈N pk
j

= q(P )
|T |

( ∑
k∈T 1

pk
i∑

j∈N pk
j

+
∑

k∈T 2

pk
i∑

j∈N pk
j

)

= |T 1|
|T | q

(
PT 2

)q
(
PT 1

)
|T 1|

∑
k∈T 1

pk
i∑

j∈N pk
j

+ |T 2|
|T | q

(
PT 1

)q
(
PT 2

)
|T 2|

∑
k∈T 2

pk
i∑

j∈N pk
j

= |T 1|
|T | q

(
PT 2

)
ρi

(
PT 1

)
+ |T 2|

|T | q
(
PT 1

)
ρi

(
PT 2

)
.
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Chapter 2. Characterizations of a proportional influence measure 23

Next, let f : PN → RN satisfy the four properties. We show that f(P ) = ρ(P ) for all
P ∈ PN . We first focus on projects with one task. Let P =

(
N, T, {pk}k∈T

) ∈ PN

with T = {k}. Let i ∈ N \ Nk. By NUL, we have fi(P ) = 0 = ρi(P ). Next, let
i ∈ Nk. Since f satisfies PROP, we know that for any j ∈ Nk, we have

fj(P ) =
pk

j

pk
i

fi(P ).

Using EFF, we get

q(P ) =
∑
j∈N

fj(P ) =
∑

j∈Nk

fj(P ) =
∑

j∈Nk

pk
j

pk
i

fi(P ) = fi(P )
∑

j∈N pk
j

pk
i

.

From this, we may conclude

fi(P ) = q(P ) pk
i∑

j∈N pk
j

= ρi(P ).

Next, let P =
(
N, T, {pk}k∈T

) ∈ PN such that |T | > 1. By Lemma 2.3.1,

fi(P ) = 1
|T |

∑
k∈T

q
(
PT \{k}

)
fi

(
P{k}

)

= 1
|T |

∑
k∈T

q
(
PT \{k}

)
q
(
P{k}

) pk
i∑

j∈N pk
j

= q(P )
|T |

∑
k∈T

pk
i∑

j∈N pk
j

= ρi(P )

for any i ∈ N , also using (2.1) in the third equality. This concludes the proof.

Finally, we show that the four characterizing properties mentioned in Theorem 2.3.2
are logically independent. Since ρ is the only one-point solution concept satisfying all
four properties, it suffices to find, for any subset of three properties, an alternative
solution concept f with f �= ρ that satisfies these properties. For the following solu-
tion concepts, it is clear that f �= ρ. The single property that f does not satisfy is
indicated by, e.g., ‘No EFF’.
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24 2.3. Characterization using task decomposability

No EFF: Consider f(P ) = 2ρ(P ) for all P ∈ PN . Clearly, the scaling only af-
fects the validity of EFF.

No NUL: Let N = {1, ..., |N |}. Consider the solution concept f : PN → RN

that first shares the success probability equally among the tasks. For each task, there
are two options for how its value is allocated. In case player 1 is not a member of
the corresponding task group, the value is allocated only to player 1. If player 1 is in
the corresponding task group, the value is allocated to all players in this task group,
proportional to their success probabilities. Formally, for all P ∈ PN , f is defined by

f1(P ) = q(P )
|T |

⎛
⎝|{k ∈ T : 1 /∈ Nk}| +

∑
k∈T :1∈Nk

pk
1∑

j∈N pk
j

⎞
⎠

and
fi(P ) = q(P )

|T |
∑

k∈T :1∈Nk

pk
i∑

j∈N pk
j

for any i ∈ N \ {1}.
Let P =

(
N, T, {pk}k∈T

) ∈ PN . EFF is satisfied, since

∑
i∈N

fi(P ) = q(P )
|T |

⎛
⎝|{k ∈ T : 1 /∈ Nk}| +

∑
i∈N

∑
k∈T :1∈Nk

pk
i∑

j∈N pk
j

⎞
⎠

= q(P )
|T |

⎛
⎝|{k ∈ T : 1 /∈ Nk}| +

∑
k∈T :1∈Nk

∑
i∈N

pk
i∑

j∈N pk
j

⎞
⎠

= q(P )
|T |

⎛
⎝|{k ∈ T : 1 /∈ Nk}| +

∑
k∈T :1∈Nk

1

⎞
⎠

= q(P )
|T |

(|{k ∈ T : 1 /∈ Nk}| + |{k ∈ T : 1 ∈ Nk}|)
= q(P )

|T | |T |

= q(P ).

For PROP, let P =
(
N, T, {pk}k∈T

) ∈ PN such that T = {l} and let i ∈ N l.
First, if 1 /∈ N l, then fi(P ) = 0. Alternatively, if 1 ∈ N l, then
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fi(P )
pl

i

=

q(P )
|T |

∑
k∈T :1∈Nk

pk
i∑

j∈N
pk

j

pl
i

=
q(P ) pl

i∑
j∈N

pl
j

pl
i

= q(P )∑
j∈N pl

j

is constant, independent of i. Here, since {k ∈ T : 1 /∈ Nk} = ∅, the first equality also
holds if i = 1. The second equality follows from the fact that T = {l}.

Finally, to see DEC is satisfied, let P =
(
N, T, {pk}k∈T

) ∈ PN such that |T | > 1,
let T 1 and T 2 such that |T 1| ≥ 1, |T 2| ≥ 1, T 1 ∪ T 2 = T and T 1 ∩ T 2 = ∅, and
consider PT 1 and PT 2 . We distinguish between player 1 and the other players in N .
First, let i ∈ N \ {1}. Then,

fi(P ) = q(P )
|T |

∑
k∈T :1∈Nk

pk
i∑

j∈N pk
j

= q(P )
|T |

∑
k∈T 1:1∈Nk

pk
i∑

j∈N pk
j

+ q(P )
|T |

∑
k∈T 2:1∈Nk

pk
i∑

j∈N pk
j

= |T 1|
|T |

q(P )
q
(
PT 1

) q
(
PT 1

)
|T 1|

∑
k∈T 1:1∈Nk

pk
i∑

j∈N pk
j

+ |T 2|
|T |

q(P )
q
(
PT 2

) q
(
PT 2

)
|T 2|

∑
k∈T 2:1∈Nk

pk
i∑

j∈N pk
j

= |T 1|
|T | q

(
PT 2

)
fi

(
PT 1

)
+ |T 2|

|T | q
(
PT 1

)
fi

(
PT 2

)
,

using (2.1) in the final equality. Analogously, one can show

f1(P ) = |T 1|
|T | q

(
PT 2

)
f1
(
PT 1

)
+ |T 2|

|T | q
(
PT 1

)
f1
(
PT 2

)
,

using the fact that |{k ∈ T : 1 /∈ Nk}| = |{k ∈ T 1 : 1 /∈ Nk}| + |{k ∈ T 2 : 1 /∈ Nk}|
for the additional term in f1(P ).

No PROP: Fix a representation function g : 2N \ {∅} → N such that g(S) ∈ S

for all S ∈ 2N \ {∅}. Consider the solution concept f : PN → RN that allocates value
to only one player in each task group Nk, k ∈ T , defined by

f(P ) = q(P )
|T |

∑
k∈T

eg(Nk)
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26 2.3. Characterization using task decomposability

for all P =
(
N, T, {pk}k∈T

) ∈ PN . Let P =
(
N, T, {pk}k∈T

) ∈ PN . For each task
k ∈ T , f allocates q(P )/|T | to exactly one player in Nk, so EFF and NUL are clearly
satisfied. Next, let P =

(
N, T, {pk}k∈T

) ∈ PN such that |T | > 1, let T 1 and T 2 such
that |T 1| ≥ 1, |T 2| ≥ 1, T 1 ∪ T 2 = T and T 1 ∩ T 2 = ∅, and consider PT 1 and PT 2 .
DEC is satisfied, since

f(P ) = q(P )
|T |

( ∑
k∈T 1

eg(Nk) +
∑

k∈T 2

eg(Nk)

)

= |T 1|
|T |

q(P )
q
(
PT 1

) q
(
PT 1

)
|T 1|

∑
k∈T 1

eg(Nk) + |T 2|
|T |

q(P )
q
(
PT 2

) q
(
PT 2

)
|T 2|

∑
k∈T 2

eg(Nk)

= |T 1|
|T | q

(
PT 2

)
f
(
PT 1

)
+ |T 2|

|T | q
(
PT 1

)
f
(
PT 2

)
.

No DEC: Consider the solution concept f : PN → RN that equals ρ if the number
of tasks is equal to one and allocates the success probability of a project equally to
all non-null players if the number of tasks if larger than one. Formally, f is defined
by

fi(P ) =

⎧⎪⎪⎨
⎪⎪⎩

ρi(P ) if |T | = 1,
q(P )

|N\Z(P )| if i ∈ N \ Z(P ) and |T | > 1,

0 if i ∈ Z(P ) and |T | > 1,

for all P =
(
N, T, {pk}k∈T

) ∈ PN and any i ∈ N . Let P =
(
N, T, {pk}k∈T

) ∈ PN

such that |T | > 1. Then, q(P ) is allocated equally to the non-null players, so EFF and
NUL are satisfied when restricting to project with multiple tasks. PROP cannot be
violated here either, as this property only applies to projects with a single task. Next,
let P =

(
N, T, {pk}k∈T

) ∈ PN such that |T | = 1. ρ satisfies all four properties for all
P ∈ PN , so in particular for single-task projects. Hence, EFF, NUL, and PROP are
satisfied.

To conclude this section, we analyze the results for the special case of sequential
projects with perfect reliability. Despite the fact that the class SN of projects is
smaller than PN , the proportional influence measure ρ is still the only solution con-
cept on this subdomain that satisfies the four properties of Theorem 2.3.2.

For the sake of completeness, we provide the explicit reformulation of the four
properties on SN . Let f : SN → RN be a solution concept on SN .
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Chapter 2. Characterizations of a proportional influence measure 27

Efficiency (EFF) f satisfies EFF on SN if
∑

i∈N fi(P ) = 1 for all P ∈ SN .

Null Player (NUL) f satisfies NUL on SN if fi(P ) = 0 for all P ∈ SN with
i ∈ Z(P ).

Proportionality (PROP) f satisfies PROP on SN if fi(P ) = fj(P ) for all
P =

(
N, T, {pk}k∈T

) ∈ SN such that T = {l} and all i, j ∈ N l.

Task decomposability (DEC) f satisfies DEC on SN if

f(P ) = |T 1|
|T | f

(
PT 1

)
+ |T 2|

|T | f
(
PT 2

)

for all P =
(
N, T, {pk}k∈T

) ∈ SN such that |T | > 1 and all PT 1 , PT 2 ∈ SN with
|T 1| ≥ 1, |T 2| ≥ 1, T 1 ∪ T 2 = T and T 1 ∩ T 2 = ∅.

Theorem 2.3.3
Let f be a solution concept on SN . Then, f = ρ if and only if f satisfies EFF, NUL,
PROP, and DEC.

The proof of this theorem is analogous to the proof of Theorem 2.3.2, simplified by
the fact that, for all P =

(
N, T, {pk}k∈T

) ∈ SN , q(P ) = 1 and pk
i = 1 for all i ∈ Nk

with k ∈ T . The solution concepts used to prove the logical independence of the four
properties can be adapted accordingly as well.

2.4 Characterization using invariance under replace-
ment

Our second characterization is most prominently concerned with the behavior of a
solution concept when in a certain task group a specific player is replaced by a player
who was not in the original player set. Clearly, this property requires the player set
to change and the domain of solution concepts under consideration will become P
instead of PN .

The axiomatic characterization of ρ on P is based on the following four properties
of a solution concept f on P.
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28 2.4. Characterization using invariance under replacement

The first two properties in this characterization are efficiency and the null player
property.

Efficiency (EFF) f satisfies EFF on P if f satisfies EFF on PN for all finite N .

Null player (NUL) f satisfies NUL on P if f satisfies NUL on PN for all finite
N .

The next property only applies to projects P =
(
N, T, {pk}k∈T

) ∈ P such that
the collection {Nk}k∈T , also called the task structure of a project, is a partition of
N \ Z(P ). In this setting, partition proportionality states that, for each player-task
combination (i.e., also across tasks), the value allocated by f to each (non-null) player
is proportional to the relative success probability of that player in the only task group
to which the player belongs.

Partition proportionality (PAP) f satisfies PAP on P if
∑

r∈N pl
r

pl
i

fi(P ) =
∑

r∈N pm
r

pm
j

fj(P )

for all P =
(
N, T, {pk}k∈T

) ∈ P such that {Nk}k∈T is a partition of N \ Z(P ), and
all i ∈ N l and j ∈ Nm with l, m ∈ T .

The final property of invariance under replacement states that when in a certain
task group a specific player is replaced by exactly one player who was not in the orig-
inal player set and who has the same success probability for that task, this does not
affect any of the other non-null players. Before formally defining the property itself,
we first introduce the general definition of a replicate project P̄i ∈ P corresponding
to a project P =

(
N, T, {pk}k∈T

) ∈ P, in which a player i ∈ N is replaced by a ‘new’
player in one task group. Here, we emphasize that this new player takes over the
attempt to carry out exactly one task from player i. However, the specific task group
in which i is replaced is not important for the definition of the IUR property, so this
task group is not explicitly reflected in the notation.

Definition 2.4.1
Let P =

(
N, T, {pk}k∈T

) ∈ P be a project and let i ∈ N l with l ∈ T . Then, a replicate
project P̄i ∈ P with replica repl(i) for player i is defined by P̄i = (N̄ , T, {p̄k}k∈T ),
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with N̄ = N ∪ {repl(i)}, p̄l
repl(i) = pl

i, p̄l
i = 0, p̄l

j = pl
j for all j ∈ N \ {i}, and, for all

k ∈ T \ {l}, p̄k
repl(i) = 0 and p̄k

i = pk
i for all i ∈ N .

Invariance under replacement (IUR) f satisfies IUR on P if

fj(P ) = fj(P̄i)

for all P =
(
N, T, {pk}k∈T

) ∈ P, all i ∈ N \ Z(P ) and j ∈ N \ (Z(P ) ∪ {i}), and all
replicate projects P̄i.

Example 2.4.1
Reconsider the project P =

(
N, T, {pk}k∈T

)
with N = {1, 2, 3}, T = {a, b}, pa =

(0.8, 0.9, 0) and pb = (0.8, 0, 1), as described in Example 2.2.1, where we derived

ρ(P ) = 0.98
2

(
0.8
1.7 + 0.8

1.8 ,
0.9
1.7 ,

1
1.8

)
.

Note that player 1 is in both task groups. We now consider the replicate project
P̄1 in which player 1 is replaced by a new player 4 in the second task group, so
P̄1 = (N̄ , T, {p̄k}k∈T ) with N̄ = {1, 2, 3, 4}, p̄a = (0.8, 0.9, 0, 0) and p̄b = (0, 0, 1, 0.8).
Since q(P̄1) = 0.98, we have

ρ(P̄1) = 0.98
2

(
0.8
1.7 ,

0.9
1.7 ,

1
1.8 ,

0.8
1.8

)
.

Indeed, we find that IUR is satisfied in this example, as ρ2(P̄1) = ρ2(P ) and ρ3(P̄1) =
ρ3(P ). Note that we also have ρ1(P̄1) + ρ4(P̄1) = ρ1(P ). �

In Example 2.4.1, the value allocated to the player who is replaced (in one task group)
in the project is equal to the sum of the values allocated to this player and the replica
in the replicate project. In fact, this holds for any solution concept f that satisfies
EFF, NUL, and IUR on P.

Lemma 2.4.2
Let f be a solution concept on P that satisfies EFF, NUL, and IUR. Then,

fi(P ) = fi(P̄i) + frepl(i)(P̄i)

for all P =
(
N, T, {pk}k∈T

) ∈ P, all i ∈ N \ Z(P ), and all replicate projects P̄i with
replica repl(i) for player i.
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Proof. Let P =
(
N, T, {pk}k∈T

) ∈ P and let i ∈ N l with l ∈ T . Let P̄i =
(N̄ , T, {p̄k}k∈T ) ∈ P be the replicate project in which replica repl(i) replaces player
i for task l. First, note that the success probabilities of P and P̄i are equal, since

q(P ) =
∏
k∈T

(
1 −

∏
j∈N

(1 − pk
j )
)

=
(

1 − (1 − pl
i)

∏
j∈N\{i}

(1 − pl
j)
) ∏

k∈T \{l}

(
1 −

∏
j∈N

(1 − pk
j )
)

=
(

1 − (1 − p̄l
repl(i))

∏
j∈N̄\{i,repl(i)}

(1 − p̄l
j)
) ∏

k∈T \{l}

(
1 −

∏
j∈N̄

(1 − p̄k
j )
)

=
∏
k∈T

(
1 −

∏
j∈N̄

(1 − p̄k
j )
)

= q(P̄i),

where we use p̄k
repl(i) = 0 for all k ∈ T \ {l} in the third equality and p̄l

i = 0 in the
fourth equality. It follows that

fi(P ) = q(P ) −
∑

j∈N\(Z(P )∪{i})

fj(P )

= q(P̄i) −
∑

j∈N\(Z(P )∪{i})

fj(P̄i)

= fi(P̄i) + frepl(i)(P̄i),

where we use the fact that f satisfies EFF and NUL in the first and third equality,
and we use q(P ) = q(P̄i) and the fact that f satisfies IUR in the second equality.

We now show that ρ is the only solution concept for sequential projects with im-
perfect reliability satisfying the four properties defined above.

Theorem 2.4.3
Let f be a solution concept on P. Then, f = ρ if and only if f satisfies EFF, NUL,
PAP, and IUR.

Proof. We first show that ρ satisfies the four properties. Clearly, EFF and NUL
directly follow from the definition of ρ.
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PAP: Consider P =
(
N, T, {pk}k∈T

) ∈ P such that {Nk}k∈T is a partition of
N \ Z(P ). Let i ∈ N l with l ∈ T . Then,
∑

r∈N pl
r

pl
i

ρi(P ) =
∑

r∈N pl
r

pl
i

q(P )
|T |

∑
k∈T

pk
i∑

r∈N pk
r

=
∑

r∈N pl
r

pl
i

q(P )
|T |

pl
i∑

r∈N pl
r

= q(P )
|T | ,

is constant, independent of i and l, where the second equality follows from the fact
that i /∈ Nk and hence pk

i = 0 for all k ∈ T \ {l} since {Nk}k∈T is a partition of
N \ Z(P ).

IUR: Let P =
(
N, T, {pk}k∈T

) ∈ P, let i ∈ N l with l ∈ T , let j ∈ N \ (Z(P ) ∪ {i}),
and let P̄i = (N̄ , T, {p̄k}k∈T ) ∈ P be a replicate project. Since q(P ) = q(P̄i) and, for
all k ∈ T ,

∑
r∈N pk

r =
∑

r∈N̄ p̄k
r and pk

j = p̄k
j , we have

ρj(P ) = q(P )
|T |

∑
k∈T

pk
j∑

r∈N pk
r

= q(P̄i)
|T |

∑
k∈T

p̄k
j∑

r∈N̄ p̄k
r

= ρj(P̄i).

Next, let f be a solution concept on P satisfying the four properties. We show that
f(P ) = ρ(P ) for all P ∈ P.

Let P =
(
N, T, {pk}k∈T

) ∈ P. To be able to use the PAP property, which holds
specifically for projects with a task structure that is a partition of all non-null play-
ers, we first construct a project P̄ = (N̄ , T, {p̄k}k∈T ) without null players and in which
all players have a strictly positive probability to successfully carry out exactly one
task only. To define P̄ , first choose mutually disjoint sets of replica players {Ri}i∈N

such that
|Ri| = |{k ∈ T | pk

i > 0}|
for all i ∈ N . Note that Ri = ∅ if and only if i ∈ Z(P ). Set

N̄ =
⋃

i∈N

Ri.

Let k ∈ T . To define p̄k ∈ [0, 1]N̄ , choose a bijection

gi : Ri → {k ∈ T | pk
i > 0}
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for all i ∈ N and set, for all r ∈ N̄ and k ∈ T

p̄k
r =

⎧⎨
⎩pk

i if r ∈ Ri and gi(r) = k,

0 otherwise.

Note that Z(P̄ ) = ∅ and that the task groups N̄k, k ∈ T , partition N̄ . Moreover,
obviously, q(P ) = q(P̄ ).

For r ∈ Ri, let k(r) denote the unique task group this player belongs to, i.e.,
k(r) = gi(r). Fix t ∈ N̄ . Then,

q(P̄ ) =
∑
r∈N̄

fr(P̄ )

=
∑
r∈N̄

∑
s∈N̄ p̄

k(r)
s

p̄
k(r)
r

fr(P̄ ) p̄
k(r)
r∑

s∈N̄ p̄
k(r)
s

=
∑

s∈N̄ p̄
k(t)
s

p̄
k(t)
t

ft(P̄ )
∑
r∈N̄

p̄
k(r)
r∑

s∈N̄ p̄
k(r)
s

=
∑

s∈N̄ p̄
k(t)
s

p̄
k(t)
t

ft(P̄ )
∑
k∈T

∑
s∈N̄ p̄k

s∑
s∈N̄ p̄k

s

=
∑

s∈N̄ p̄
k(t)
s

p̄
k(t)
t

ft(P̄ )|T |,

where we use the fact that f satisfies EFF in the first equality, that
ft(P̄ )

∑
s∈N̄ p̄

k(t)
s /p̄

k(t)
t = fr(P̄ )

∑
s∈N̄ p̄

k(r)
s /p̄

k(r)
r for all r ∈ N̄ since f satisfies PAP

in the third equality, and that p̄k
r = 0 for all k ∈ T \ {k(r)}, r ∈ N̄ in the fourth

equality. Hence, since q(P̄ ) = q(P ),

ft(P̄ ) = q(P )
|T |

p̄
k(t)
t∑

s∈N̄ p̄
k(t)
s

. (2.3)

Now, let i ∈ N \ Z(P ). Then,

fi(P ) =
∑

r∈Ri

fr(P̄ )
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=
∑

r∈Ri

q(P )
|T |

p̄
k(r)
r∑

s∈N̄ p̄
k(r)
s

= q(P )
|T |

∑
r∈Ri

p
k(r)
i∑

s∈N p
k(r)
s

= q(P )
|T |

∑
k∈T : pk

i
>0

pk
i∑

s∈N pk
s

= q(P )
|T |

∑
k∈T

pk
i∑

s∈N pk
s

= ρi(P ),

where we use the fact that f satisfies EFF, NUL, and IUR to apply IUR and in
particular Lemma 2.4.2 repeatedly in the first equality, equation (2.3) in the sec-
ond equality, the definition of p̄k

r for every replica r ∈ Ri in the third equality, and
the one-to-one correspondence between Ri and {k ∈ T | pk

i > 0} in the fourth equality.

Finally, let i ∈ Z(P ). Since f satisfies NUL, we get fi(P ) = 0 = ρi(P ).

We conclude that fi(P ) = ρi(P ) for any i ∈ N .

Similar to the previous section, we show that the aforementioned four properties
are logically independent. For each subset of three properties, we define an alterna-
tive solution concept f on P with f �= ρ that satisfies these properties.

No EFF: Consider f(P ) = 2ρ(P ) for all P ∈ P.

No NUL: For any finite N , fix a representation function gN : 2N \ {∅} → N such
that gN (S) ∈ S for all S ∈ 2N \ {∅}. Consider the solution concept f on P that
equals ρ if there are no null players and allocates all value to one specific null player
otherwise, formally defined by

f(P ) =

⎧⎨
⎩ρ(P ) if Z(P ) = ∅,

q(P )egN (Z(P )) if Z(P ) �= ∅,

for all P =
(
N, T, {pk}k∈T

) ∈ P. Let P =
(
N, T, {pk}k∈T

) ∈ P with Z(P ) �= ∅. Then,
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f(P ) allocates q(P ) (to a single null player), so EFF is satisfied for such projects. Next,
let P =

(
N, T, {pk}k∈T

) ∈ P with Z(P ) �= ∅ and such that {Nk}k∈T is a partition
of N \ Z(P ), and let i ∈ N \ Z(P ). Note that fi(P ) = 0, so PAP is not violated
either. For IUR, let P =

(
N, T, {pk}k∈T

) ∈ P with Z(P ) �= ∅, let i ∈ N \ Z(P ) and
j ∈ N \ (Z(P ) ∪ {i}), and let P̄i ∈ P be a corresponding replicate project as defined
in Definition 2.4.1. Importantly, Z(P ) �= ∅ implies that Z(P̄i) �= ∅ as well. Hence,
f(P̄i) = q(P̄i)egN (Z(P̄i)). Further, j /∈ Z(P̄i), so that fj(P̄i) = 0 = fj(P ), even if
gN (Z(P̄i)) �= gN (Z(P )). This shows that f satisfies IUR as well, when restricting to
projects with null players. Finally, let P =

(
N, T, {pk}k∈T

) ∈ P with Z(P ) = ∅, in
which case f(P ) = ρ(P ). ρ satisfies all four properties for all P ∈ P, so in particular
for all projects without null players. Hence, EFF, PAP, and IUR are satisfied.

No PAP: Let 2T denote the collection of subsets of T . Fix a representation function
g : 2T \ {∅} → T such that g(S) ∈ S for all S ∈ 2T \ {∅}. Consider the solution
concept f on P that only allocates value to players in one fixed task group, defined
by

fi(P ) = q(P ) p
g(T )
i∑

r∈N p
g(T )
r

for all P =
(
N, T, {pk}k∈T

) ∈ P and any i ∈ N . EFF is clearly satisfied. Let
P =

(
N, T, {pk}k∈T

) ∈ P with Z(P ) �= ∅ and let i ∈ Z(P ). Then, p
g(T )
i = 0 and hence

fi(P ) = 0, so NUL is satisfied. Next, let P =
(
N, T, {pk}k∈T

) ∈ P, let i ∈ N \ Z(P )
and j ∈ N \ (Z(P ) ∪ {i}), and let P̄i ∈ P be a corresponding replicate project as
defined in Definition 2.4.1. Regardless of whether player i is replaced in task g(T ) or
in some other task, it holds that p̄

g(T )
j = p

g(T )
j and that

∑
r∈N̄ p̄

g(T )
r =

∑
r∈N p

g(T )
r .

Since q(P̄i) = q(P ) as well, we have fj(P̄i) = fj(P ), meaning IUR is satisfied.

No IUR: Fix a representation function g : 2T \ {∅} → T such that g(S) ∈ S for
all S ∈ 2T \ {∅}. Let Ti = {k ∈ T | pk

i > 0}. Consider the solution concept f on P
for which the value allocated to players is fully determined by (their relative success
probability in) one specific task group the player appears in, formally defined by

fi(P ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

q(P )
p

g(Ti)
i /

∑
r∈N p

g(Ti)
r∑

j∈N\Z(P )

(
p

g(Tj)
j /

∑
r∈N p

g(Tj)
r

) if i /∈ Z(P ),

0 if i ∈ Z(P ),
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for all P =
(
N, T, {pk}k∈T

) ∈ P and any i ∈ N . By definition, we clearly see that
EFF and NUL are satisfied. Let P =

(
N, T, {pk}k∈T

) ∈ P such that {Nk}k∈T is a
partition of N \ Z(P ) and let i ∈ N \ Z(P ). Then, Ng(Ti) gives the only task group
that contains i, and

∑
r∈N p

g(Ti)
r

p
g(Ti)
i

fi(P ) =
q(P )∑

j∈N\Z(P )

(
p

g(Tj)
j /

∑
r∈N p

g(Tj)
r

)

is constant, independent of i. Hence, PAP is satisfied.

To conclude this section, we note that similar to the first characterization, the pro-
portional influence measure ρ is still the only solution concept that satisfies the four
properties on the subdomain S of sequential projects with perfect reliability. Here,
we omit the (direct) reformulations of the properties on S. Similar to Section 2.3, the
proof of Theorem 2.4.4 directly follows from the proof of Theorem 2.4.3.

Theorem 2.4.4
Let f be a solution concept on S. Then, f = ρ if and only if f satisfies EFF, NUL,
PAP, and IUR.

2.5 Extensions and a game-theoretic approach

The proportional influence measure implicitly assumes that all tasks have equal im-
portance, since in its definition the success probability q(P ) is shared equally among
the tasks. This can be justified by the fact that all tasks need to be carried out for
the project to be completed. In practice, however, some tasks may be more costly
or time-consuming, which could warrant an unequal division. The proportional in-
fluence measure can be modified quite straightforwardly to capture this, by assigning
weights to each task. Extending the characterizations to account for these weights
only requires adaptations to the properties task decomposability and partition pro-
portionality.

Further, we assume that the tasks of a project can be carried out sequentially, and
that all players in a task group can attempt to carry out this task. In certain contexts,
this final assumption could imply that several players within a task group attempt to
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carry out the task simultaneously, in which case it might happen that the task is car-
ried out more than once. If all tasks are carried out more than once, the same project
can be repeated, i.e., completed more than once. Assuming perfect reliability, Linde-
lauf (2011) proposes a ‘project power measure’ for such repeated projects by dividing
players in three categories and assigning project power equally to each player within
the same category. To allow for more differentiation between players, a modification
of the proportional influence measure could be used as a solution concept for repeated
projects as well, even with imperfect reliability. Essentially, instead of multiplying the
proportional influence measure by q(P ), the probability that a project is completed,
one could multiply by the expected number of completed projects. With minor adap-
tations to the properties efficiency and task decomposability, the characterizations
can be adjusted to fit this context as well.

The proportional influence measure is a solution concept based directly on the task
structure of a project. This solution concept accounts for the success probabilities of
all players in N , but does not explicitly take into account the ability of subcoalitions
of N to complete the project. To analyze this interesting topic, we can model the
situation corresponding to some P ∈ PN as a cooperative (transferable utility) game,
in which appropriate values for coalitions are quantified using the characteristic func-
tion vP : 2N → R. Based on such a game, the influence of all players in N can then
be measured using a game-theoretic solution concept like the Shapley value.

To give an impression of how to define an appropriate associated game, let P =(
N, T, {pk}k∈T

) ∈ PN be a sequential project with imperfect reliability. One pos-
sible corresponding game vP could be defined by setting the value of a coalition
S ∈ 2N \ {∅} equal to the success probability of that coalition by means of players in
S only:

vP (S) =
∏
k∈T

(
1 −

∏
i∈S

(1 − pk
i )
)

for any S ∈ 2N \ {∅}. Note that vP (N) = q(P ).

Example 2.5.1
Consider the project P =

(
N, T, {pk}k∈T

)
of Example 2.2.1, with N = {1, 2, 3},

T = {a, b}, pa = (0.8, 0.9, 0) and pb = (0.8, 0, 1). The game vP is given in Table 2.1.
This game is a consistent representation from which we can derive an allocation of

influence, thereby enabling a comparison of the relative importance of players in the
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S {1} {2} {3} {1,2} {1,3} {2,3} N

vP (S) 0.64 0 0 0.784 0.8 0.9 0.98

Table 2.1 The game vP of Example 2.5.1

completion of the project. In this example, we do so using the Shapley value, denoted
by Φ(vP ). The marginal vectors used to determine Φ(vP ) are given in Table 2.2.

σ mσ
1 (vP ) mσ

2 (vP ) mσ
3 (vP )

(1 2 3) 0.64 0.144 0.196
(1 3 2) 0.64 0.18 0.16
(2 1 3) 0.784 0 0.196
(2 3 1) 0.08 0 0.90
(3 1 2) 0.8 0.18 0
(3 2 1) 0.08 0.9 0

Table 2.2 Marginal vectors for all orderings corresponding to the
game vP of Example 2.5.1

The Shapley value is determined as the average of these marginals vectors, which
yields Φ(vP ) = (0.504, 0.234, 0.242). Note that this allocation is quite similar to the
proportional influence measure ρ(P ) ≈ (0.45, 0.26, 0.27). �

Restricting to projects with perfect reliability, the corresponding cooperative game
vP becomes a simple game (i.e., vP (S) ∈ {0, 1} for all S ∈ 2N , vP (S) ≤ vP (T ) for all
S, T ∈ 2N \ {∅} with S ⊆ T , and v(N) = 1). Then, one could also consider solution
concepts defined specifically on the class of simple games (often referred to as ‘power
indices’). Two prominent examples of such solution concepts are the Deegan-Packel
(DP) index (Deegan and Packel, 1978), and the Public Good (PG) index (Holler,
1982). Both are based on so-called minimal winning coalitions.

Denoting the class of simple games with player set N by SIN , the set of minimal
winning coalitions of some v ∈ SIN is defined by

MWC(v) = {S ∈ 2N \ {∅}| v(S) = 1 and T � S ⇒ v(T ) = 0}.

The set of all minimal winning coalitions that contain a player i ∈ N is denoted by
MWCi(v), i.e.,

MWCi(v) = {S ∈ MWC(v)| i ∈ S}.
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The DP-index gives equal value to each minimal winning coalition. Within such a
coalition, the value is distributed equally over the players. Hence, the Deegan-Packel
index DP : SIN → [0, 1]N is formally defined by

DPi(v) = 1
|MWC(v)|

∑
S∈MW Ci(v)

1
|S|

for all i ∈ N and all v ∈ SIN .
The Public Good index only takes into account the number of times each player

is in a minimal winning coalition; the size of a minimal winning coalition does not
directly influence this index. Formally, the Public Good index PG : SIN → [0, 1]N is
defined by

PGi(v) = |MWCi(v)|∑
j∈N |MWCj(v)|

for all i ∈ N and all v ∈ SIN .

Example 2.5.2
Consider the project P =

(
N, T, {pk}k∈T

)
of Example 2.5.1, but now with perfect

reliability, as also considered in Example 2.2.2. The corresponding game vP is readily
found on the basis of Table 2.1, by replacing every positive number with a one.

Recall from Example 2.2.2 that ρ(P ) = (0.5, 0.25, 0.25). One readily finds that
Φ(vP ) = ( 2

3 , 1
6 , 1

6 ). Further, note that MWC(vP ) = {{1}, {2, 3}}, so that DP (vP ) =
1
2 (1, 1

2 , 1
2 ) = (0.5, 0.25, 0.25) and PG(vP ) = ( 1

3 , 1
3 , 1

3 ). �

The proportional influence measure, the Deegan-Packel index, and the Public Good
index do not generally yield the same allocation of influence. However, when restrict-
ing to projects P =

(
N, T, {pk}k∈T

) ∈ SN for which the task structure {Nk}k∈T

partitions N , they do coincide. To see this, there are two key insights related to the
fact that in that case each player is in exactly one task group. First, all minimal
winning coalitions are of the same size, namely the number of tasks. Second, the
fraction of minimal winning coalitions that contain a player is equal to the reciprocal
of the size of the task group to which this player belongs. This readily leads to the
following result.

Proposition 2.5.1
Let P ∈ SN and let vP be the corresponding cooperative game. Then,

ρ(P ) = DP (vP ) = PG(vP ).



610416-L-sub01-bw-van Beek610416-L-sub01-bw-van Beek610416-L-sub01-bw-van Beek610416-L-sub01-bw-van Beek
Processed on: 31-8-2023Processed on: 31-8-2023Processed on: 31-8-2023Processed on: 31-8-2023 PDF page: 45PDF page: 45PDF page: 45PDF page: 45

3 Cost allocation in CO2
transport for CCUS hubs: a

multi-actor perspective

3.1 Introduction

The importance of reducing CO2 emissions to limit human-induced climate change is
widely acknowledged (IPCC, 2022). Transforming energy-intensive industries plays a
key role in this reduction of CO2 emissions (or ‘decarbonization’), as they account for
20% of all CO2 emissions (IEA, 2020). New and adapted infrastructures are necessary
for a successful and timely industrial transformation (de Bruyn et al., 2020; Janipour
et al., 2020; Fu et al., 2018). Hydrogen transport and distribution, heat distribution,
reinforced electricity grids and CO2 transport infrastructures are primary topics in
national, European and worldwide climate change plans.

In this chapter, based on Van Beek et al. (2023a), we provide a multi-actor per-
spective on these necessary new infrastructures. We develop a generic model to rep-
resent infrastructures and analyze the nature of the corresponding construction costs.
In particular, this model is ‘component-based’ to account for the heterogeneous re-
quirements of the users of an infrastructure. By decomposing an infrastructure into
a unique component structure, we explicitly differentiate between users based on
whether they require, e.g., CO2 conditioning for re-use, or offshore transport. Impor-
tantly, we identify and adopt a cost function with a very general structure, for which
we can explicitly determine the costs of each individual component. Although the
generality of the cost function allows for a wide range of applications within infras-
tructure construction problems, it is developed primarily with a specific application

39
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in mind, namely CO2 transport infrastructures for carbon capture, utilization and
storage (CCUS). This is a potentially effective, but also heavily debated pathway to-
wards decarbonization. A significant part of this chapter is dedicated to a discussion
of such a CO2 transport infrastructure in the port of Rotterdam and the adjoining
industry area. The case study most prominently illustrates the type of application
our model allows.

Before moving to the more general contributions of our research, we start with a
discussion of these carbon capture related technologies and explain the need for a
multi-actor perspective in the CO2 transport infrastructure application. Carbon cap-
ture and storage (CCS) is the process of capturing waste carbon dioxide, transporting
it to a storage site, and depositing it. The aim of CCS is to prevent the release of
large quantities of CO2 into the atmosphere. Carbon capture and utilization (CCU)
is the process of capturing carbon dioxide to be recycled for further usage. CCU aims
to convert the captured carbon dioxide into more valuable substances or products.
Detz and van der Zwaan (2019) and IEA (2020) expect a future increase of CO2 de-
mand by industry for, e.g., production of blue hydrogen and methane. In new large
scale carbon capture projects CCS and CCU are often combined into CCUS projects.
CCUS recently gained more traction. Plans for significant investments in CCUS tech-
nologies can be found in European industrial transformation strategies (EC, 2020),
in the World Energy Outlook (IRENA, 2021), but also in national plans such as in
the UK and in the Netherlands. IEA (2020) dedicate a special technology outlook on
the role of CCUS in decarbonization of energy-intensive industries. They conclude
that CO2 reduction targets probably cannot be achieved without the carbon capture
option, and that many technologies necessary for CCU and especially CCS seem to
be fully developed. In many regions, CCUS could be a cost effective solution for
decarbonization of such industries. However, IEA (2020) warns: “Infrastructure to
transport and store CO2 safely and reliably is essential for rolling out CCUS technolo-
gies.” They recommend the further development of shared CO2 transport and storage
infrastructures in a regional industrial hub or cluster. This cluster approach is not
a coincidence. Energy-intensive industries often use the same spatial characteristics
(e.g., harbor), each other’s products (e.g., intermediates), or shared infrastructures
(e.g., steam network). The existence of these clusters provides both opportunities and
barriers for the necessary industry transition (see, e.g., Janipour et al. (2020) and Fu
et al. (2018)). Accordingly, Quarton and Samsatli (2020) explain that significant
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stakeholder collaboration is required for CCUS investments and implementation. In
case of CCUS technologies, both CO2 emitters and CO2 users could benefit from a
CO2 transport infrastructure, but they do not have the same requirements regarding,
e.g., the quality of the CO2 or the transport capacity to a storage site. Given these
differences in user requirements, it is important to consider how to allocate the total
construction costs of such an infrastructure to the different users. This requires a
multi-actor perspective, explicitly taking into account the heterogeneity of different
(potential) users.

Of course, appropriate cost allocation is not the only enabler of such a CO2 trans-
port infrastructure, but we believe it is one of the key aspects of collaboration on
infrastructure construction. It is desirable that the cost allocation method keeps ex-
isting users on board, since a significant majority of cluster participants need to go
along with infrastructural investments for its successful realization. If all users are
asked for cost contributions based on, e.g., only total transport capacity of the net-
work, some of them might very well decide not to participate in the CO2 network. A
‘no’ from a subgroup of CO2 network users in a regional industrial cluster will increase
investment costs for remaining users, which in return can result in a ‘no’ from another
group of potential CO2 network users. On top of maintaining interested parties on
board, appropriate cost allocation methods can even increase the number of partic-
ipants of the CO2 network and thus speed-up the decarbonization of an industrial
cluster. Indeed, SER (2019) mentions that decarbonization investments from heavy
emitters can create traction or a ‘piggyback effect’ on small emitters. A piggyback
effect for new entrants may only be admissible if their entrance is also beneficial to
the existing group of users. This is the case if the cost allocation method satisfies
the property advantageous scaling: the costs allocated to each existing user do not
increase if the number of users grows larger. Further, to keep the existing users of
the infrastructure on board, it is essential that partial cooperation is not profitable.
This is ensured by coalitional rationality. This property implies that the cost allo-
cation is stable against coalitional deviations: no subgroup of the existing users has
a financial reason to object to the cost allocation, because none of these subgroups
can benefit from splitting off from the group of existing users. The equal component
cost sharing rule we propose for infrastructure construction problems in general and
CO2 transport infrastructures in particular satisfies both advantageous scaling and
coalitional rationality. It is based on the idea that participants (equally) pay only for
those infrastructure components that they use.
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Having established the need for a multi-actor perspective on CO2 transport infrastruc-
tures specifically, we now discuss the more general contributions of this chapter. User
requirements towards new infrastructures usually differ over several characteristics,
like transport radius, capacity, and conditioning. That is why we introduce so-called
component-based infrastructure cost problems in which we construct an infrastructure
that satisfies all user requirements over an arbitrary number of characteristics. Our
modeling is based on the mathematical ability to uniquely decompose an infrastruc-
ture into a component structure such that each infrastructure component is either
required by a user in its entirety, or not required at all. Each Elementary Infrastuc-
ture Component (EIC) will represent a unique part of the potential infrastructure that
may or may not be required by the users, where we remark that EICs need not always
directly correspond to physical components of the infrastructure, they are used to
decompose the entire ‘system’. Consequently, the infrastructure that is required by a
group of users is given by a set of EICs.

We identify and adopt a generic function to determine the total infrastructure con-
struction costs for a given set of requirements. This cost function is constructed in
such a way that it can be easily adapted to many different types of infrastructures. In
particular, it allows for both continuous and discrete (categorical) characteristics, and
for costs to be assigned to any combination of characteristics. Discrete characteristics
can represent characteristics that, e.g., only depend on whether or not a user requires
a certain specification. Importantly, despite the generic structure of the cost function,
we are able to derive the costs of each individual EIC. The (minimal) costs for any
group of users can then straightforwardly be determined as the sum of the costs of
the required EICs. Hence, using our component-based analysis of infrastructures, we
are able to uniquely decompose an infrastructure into EICs, assign a cost to each EIC,
and for each EIC we can pinpoint exactly which users need this component. From
this, as a natural follow-up, a way of allocating costs is derived: the equal component
cost sharing rule. For each required component, the costs are divided equally among
all users that require this component.

This allocation mechanism is completely in line with existing fairness principles and
procedures as provided within the game-theoretic allocation literature. In particu-
lar, conceptually, our allocation proposal follows Littlechild and Thompson (1977),
who develop a model for allocating the costs of an aircraft landing strip to different
types of users, in such a way that users only pay for the part of the strip that they
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require. Their model and the corresponding cost allocation method are based on
a single characteristic of the infrastructure, namely the length of the landing strip.
Kuipers et al. (2013) introduce highway games for allocating construction costs of
a highway to its users, taking into account that users may require different parts of
the highway and ensuring that users only pay for those highway stretches that they
require. There are several extensions or adaptations of highway games in which user
requirements differ over two characteristics, see, e.g., Sudhölter and Zarzuelo (2017)
for an overview of highway games and properties of different types of allocation meth-
ods. Our allocation mechanism in a collaborative infrastructure construction setting
adds to this work by allowing user requirements to differ over any positive number of
characteristics, instead of only two.

To further reflect on the role of game theory in the analysis of industrial clusters,
Gedai et al. (2012) argue that game-theoretical models could help understand decision
making in industrial clusters. Massol et al. (2018) use cooperative games to model
CCS deployment specifically. They investigate the policy and economic conditions
needed for a largest possible adoption of CCS technologies and networks, and to de-
termine the break-even price for CCS adoption. Tan et al. (2016) and Andiappan
et al. (2016) introduce cost allocation methods for newly developed multi-company
industrial clusters, based on models from cooperative and non-cooperative game the-
ory. In particular, both papers look at optimizing and allocating total cluster costs,
including multiple infrastructures, for new sites.

We emphasize, however, that the main theoretical contribution and novelty of this
chapter lies in the component-based modeling of infrastructures and in the definition
of a cost function with a very generic structure, for which we can still determine the
costs per component. The equal component cost sharing rule then simply is a natural
follow-up that satisfies the desirable properties of advantageous scaling and coalitional
rationality.

To complement the theoretical results in the technical section of the chapter, we
subsequently study the specific case of a CO2 transport infrastructure for CCUS-
hubs in the port of Rotterdam area in some detail. Here, we show how to transform
a general description of such an infrastructure and its cost drivers into a component-
based infrastructure cost problem and we apply the equal component cost sharing
rule. We also demonstrate the workings of the properties of advantageous scaling and
coalitional rationality. Finally, since the cost parameters in our case study are based
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on rough estimates, we analyze the behavior of the equal component cost sharing rule
in various additional cost scenarios. In particular, we consider two scenarios in which
either the fixed or the variable costs turn out to be higher than expected. Addition-
ally, we consider a scenario in which the cost function changes more fundamentally,
where certain costs depend on two characteristics instead of one. In each scenario, we
find that the changes to the cost allocation accurately reflect which players ‘should’
be most affected by the changes. For example, distant emitters are most affected
by increased variable transport costs, and additional costs to condition CO2 for re-
use are only allocated to those that actually require conditioning for re-use. The final
scenario also demonstrates the adaptability of the cost function in a more general way.

The chapter is organized as follows. Section 3.2 discusses the CO2 transport in-
frastructure case as a specific application of our model, considering its users and
their requirements towards this infrastructure. In Section 3.3 we formally define our
component-based infrastructure model, discussing the EICs, the cost function, and
the equal component cost sharing rule and its properties. In Section 3.4 we apply the
general model to our case study.

3.2 CO2 transport infrastructure: users, requirements
and costs

Currently there are (at least) 12 regional open CO2 transport hubs under develop-
ment globally. In this section, we provide a qualitative description of the case of
a CO2 transport infrastructure inspired by a large CCUS project in an industrial
cluster in the Netherlands, specifically the Porthos initiative in the Rotterdam port
area (Porthos, 2022). After a brief overview of the basic elements of a CO2 transport
infrastructure, we consider the potential users of this specific infrastructure and their
heterogeneous requirements, and how these requirements drive the infrastructure con-
struction costs.

The port authority of Rotterdam and two partners have set out to develop an open,
collaborative and long term CO2 network that facilitates transport, storage and re-
use of CO2. A sketch of such a CCUS transport infrastructure network can be found
in Figure 3.1. The basic idea is that captured CO2 is gathered onshore at the dif-
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Figure 3.1 Schematic overview of CCUS hub adapted from IEA (2020)

ferent industry sites through a network of feeders and (a) main transport pipeline(s).
After the gathering of the CO2 there are roughly two options. The gathered CO2 is
either transported through a main transport pipeline towards the shore where it will
be conditioned (pressure and temperature) for offshore transport towards identified
storage fields close to the Rotterdam harbour industrial complex (see, e.g., EBN and
Gasunie (2018) for potential CO2 storage fields in the Dutch North Sea), or it will be
conditioned (pressure, temperature and purity) for re-use purposes and transported
through a transport pipeline to sites that use CO2 as feedstock. The capacity of the
main pipelines determines the capacity of the transport network. The blue lines in
Figure 3.1 represent the CO2 transport network for a CCUS hub.

The following CO2 infrastructure users are in scope for this open network. First,
the heavy emitters: the large scale (petro)chemical producers that see no short term
cost effective alternative to CO2 emission reduction. They benefit from a large scale
CO2 infrastructure with long term storage facilities. Second, the distant emitters:
heavy emitters to be found a bit further away from the Rotterdam port area, such as
in the Moerdijk area or the Zeeland chemical industrial cluster (DNVGL, 2020). They
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have similar requirements towards a CO2 transport network as heavy emitters, but
they would require a larger onshore transport radius of the pipelines as the identified
offshore storage fields are closest to the Rotterdam industrial complex. Small emit-
ters: small petrochemical producers that do not aim for a large transport capacity.
For them investing in carbon capture technologies might become attractive because
of the availability of shared CO2 transport infrastructure. Next to the emitters, there
are also potential users of the captured CO2. Hydrogen producers and greenhouses:
these users of CO2 also require a smaller capacity and they are not interested in
offshore transport to storage facilities, but they do have some more conditioning re-
quirements for the CO2, e.g., its purity needs to be higher than for common onshore
transport purposes. Hence, there are two levels of conditioning that can be required
for onshore transport: standard conditioning for onshore transportation and condi-
tioning for re-use purposes. Table 3.1 gives a summary of the potential users and
their heterogeneous requirements towards the CO2 transport infrastructure.

user
onshore

transport radius
offshore

transport
capacity conditioning

heavy emitters Large Rotterdam area yes large standard
distant emitters Zeeland area yes large standard
small emitters Large Rotterdam area yes small standard
greenhouses Large Rotterdam area none small highly purified

hydrogen producers Small Rotterdam area none small highly purified

Table 3.1 Stylized description of the user requirements for a re-
gional CO2 transport infrastructure

Next, we discuss how these requirements drive the infrastructure construction costs. A
more detailed argumentation is given at the start of Appendix 3.A. The costs consist
of fixed (system) and variable (pipeline) costs. Following Serpa et al. (2011), we
express a linear relationship between the costs and the pipeline length (i.e., required
transport radius), where the specific cost parameters depend on the terrain (onshore
or offshore) and the transport capacity. Further, because conditioning mostly occurs
in separate stations, we assume that conditioning requirements only influence the fixed
portion of the costs, together with the capacity. Finally, offshore transport requires
more advanced conditioning than standard onshore transport (so there is actually a
third option for the conditioning). These conditioning costs are included in the fixed
costs for offshore transport.
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With this application in mind, Section 3.3 presents a general framework for the
component-based analysis of such infrastructures and their costs, with a natural cost
allocation rule as a direct result. Finally, we remark that several users in Table 3.1
are not yet part of the core group of interested participants, while they could benefit
from the use of such a transport infrastructure. Both DNVGL (2020) and the Rot-
terdam port authority have sketched potential future connections to the more distant
emitters and future CO2 users in their CO2 transport infrastructure plans. The po-
tential addition of users is a reason to look for cost allocation methods that satisfy the
advantageous scaling property: adding new users to the project might raise the total
construction costs, but it will not result in a cost allocation increase for any of the
original users. Further, coalitional rationality ensures that there is no financial reason
for any subgroup of users to split off from the group and carry on independently. Both
properties will be formally defined in Section 3.3.3, where we also show that they are
satisfied by the cost allocation rule we propose.

3.3 Component-based analysis of infrastructure con-
struction problems

In this section, we introduce the theoretical framework to perform a component-
based analysis of infrastructure construction problems, also from a cost allocation
perspective.

3.3.1 Elementary infrastructure components in infrastructure
problems

The situation in which players have different requirements for certain characteristics of
an infrastructure that must be constructed, is referred to as an infrastructure problem.
Formally, we define such a problem with the tuple

(N, M, X),

where N represents a finite player set, M = {1, . . . , m} represents a finite set of
characteristics, and X represents a requirement matrix of which the rows correspond
to N and the columns to M , such that the cell in the i-th row and k-th column,
Xk

i ∈ R+, indicates the value that player i ∈ N requires for characteristic k ∈ M .
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Let (N, M, X) be an infrastructure problem. We denote the column of X with respect
to k ∈ M by Xk. For any k ∈ M , Zk = {Xk

i | i ∈ N} is defined as the set of
unique values in Xk, and nk = |Zk| denotes the number of distinct requirements for
characteristic k. Then, X̃k ∈ Rnk

+ is the vector containing the elements of Zk sorted in
increasing order. To emphasize, for any k ∈ M and αk ∈ {1, . . . , nk}, X̃k

αk
represents

the αk-th lowest value required by the players of the k-th characteristic. Moreover,
we set X̃k

0 = 0 for all k ∈ M .
Using this notation, an Elementary Infrastructure Component (EIC) is defined by

Cα1,...,αm =
m∏

k=1
[X̃k

αk−1, X̃k
αk

],

where αk ∈ {1, . . . , nk} for any k ∈ M . Essentially, the origin (i.e., the point of the
EIC with the lowest values of all characteristics) of Cα1,...,αm is (X̃1

α1−1, . . . , X̃m
αm−1)

and the ‘end point’ (i.e., the point of the EIC with the highest values of all char-
acteristics) is (X̃1

α1 , . . . , X̃m
αm

). In this way, we define a total of
∏m

k=1 nk EICs. We
let C = {Cα1,...,αm | αk ∈ {1, . . . , nk}, k ∈ M} denote the collection of all EICs. We
remark that if X̃k

1 = 0 for some k ∈ M , one dimension of certain components starts
and ends at the same point: X̃k

0 = X̃k
1 = 0. This does not lead to any issues.

Each EIC represents a unique part of the potential infrastructure, in such a way
that each player either requires the entire EIC, or does not require it at all. Compar-
ing two EICs with the same values for all characteristics except one, the EIC with a
higher value for one characteristic comes on top of the EIC with lower value for this
characteristic, it does not replace the EIC with lower value. To clarify this in the con-
text of a CO2 transport network, consider Figure 3.2. The figure illustrates a 2-player
infrastructure problem with two characteristics, radius and capacity, in which player
A requires a network with large capacity in a short radius, while player B requires
a smaller capacity, but a longer radius. In this example, the EIC corresponding to
the top-left square represents the additional capacity required by player A, compared
to player B, within the short radius. That is why player A requires both the ‘small
capacity’ and the ‘large capacity’ square. Importantly, not all of the components in
C are necessarily required by the player set N . In the example, we define an EIC cor-
responding to a large capacity over the longer radius as well, but this is clearly not
required by either of the players.

Concretely, we say that an EIC is required by the player set N if and only if there
is at least one player in N who requires the corresponding characteristic values for all
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{A}Large
capacity ∅

{A, B}Small
capacity

Short
radius

{B}

Long
radius

Figure 3.2 Example of an infrastructure problem with two play-
ers (A and B) and two characteristics (radius and capacity). In
each square, the set of players who require this square is given.

characteristics. So, the corresponding (minimal) set A(N) of all EICs required by N

is formally defined by

A(N) = {Cα1,...,αm ∈ C| ∃i ∈ N such that ∀k ∈ M we have Xk
i ≥ X̃k

αk
}. (3.1)

The set A(N) is also referred to as the minimal infrastructure that N requires. In
Figure 3.2, A(N) is given by the three colored squares.

3.3.2 Component-based infrastructure cost problems

In this section, we discuss the costs corresponding to an infrastructure problem,
thereby defining the component-based infrastructure cost problem. To be able to de-
termine the exact costs of a required infrastructure, we first define the general cost
function κ : Z1 × · · · × Zm → R that gives the construction costs of a so-called boxlike
infrastructure. Here, it is important to clarify the difference between a minimal and
a boxlike infrastructure. In a minimal infrastructure, determined by A(N) for player
set N , the required value of one characteristic may decrease as another characteris-
tic increases. In Figure 3.2 for example, the required capacity decreases from large
to small as the radius increases from short to long. In a boxlike infrastructure, all
characteristic values are fixed. In the example, κ would be used to reflect the costs of
a network with a fixed capacity level and a fixed radius, it is not suitable to directly
determine the costs of a network with capacity levels that vary depending on the ra-
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dius. Graphically, κ determines the costs corresponding to any rectangle drawn from
the bottom left corner, but not (directly) the total costs corresponding to the three
colored squares in Figure 3.2.

However, the crucial feature of the general cost function κ is that through its defi-
nition one can derive a closed-form formula for the construction costs incurred due to
the ‘presence’ of each EIC individually. Using this, we find the minimal infrastructure
construction costs by summing the costs of all EICs in A(N).

Before formally defining κ, it is good to briefly discuss its general structure. The
cost function allows for both continuous and discrete (categorical) characteristics.
Where a continuous characteristic (like onshore transport radius) could take any non-
negative value, a discrete characteristic can take a restricted set of values (like 0 and
1, depending on whether a player requires CO2 conditioning for re-use). On top of
characteristics that are discrete by nature, such discrete characteristics may also be
useful to represent characteristics that are in fact continuous, but for which the (unit)
costs are grouped into certain categories, or an exact cost function is uncertain or dif-
ficult to determine in practice. By dividing the required values of such a characteristic
into categories, it suffices to only find cost estimates for when the characteristic is,
say, ‘small’ or ‘large’. For example, cost estimates exist for a CO2 transport infras-
tructure with specific capacity levels (e.g., 2.5Mt/y and 10Mt/y), but a continuous
cost function for any capacity level may be significantly harder to determine (and
perhaps unnecessary).

When quantifying costs related to qualitative characteristics, these characteristics
should have a specific, ordinal structure, in such a way that if a player requires a
certain level of a characteristic, this player also requires all lower levels of the charac-
teristic. We assume requirements are not substitutable, both within a characteristic
and across characteristics.

For every combination of continuous and discrete characteristics, we define a coeffi-
cient based on the discrete characteristics that determines the slope of a linear relation
between the costs and the product of the continuous characteristics for this particular
combination. We then sum over all combinations of characteristics to obtain the total
cost function. Of course, not every specific combination of characteristics necessarily
leads to additional costs, so many of the coefficients may be zero.
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Definition 3.3.1
Let (N, M, X) be an infrastructure problem and partition M into a set of continuous
characteristics MC and a set of discrete characteristics MD, so that MC ∪ MD = M

and MC ∩ MD = ∅. Then, we let

I = (N, M, X, κ)

denote a component-based infrastructure cost problem, with

κ(z1, ..., zm) =
∑

K⊆MC

∑
L⊆MD

βK({zk}k∈L)
∏

k∈K

zk,

where zk ∈ Zk for all k ∈ M .

Note that each cost coefficient βK is essentially a function of the discrete character-
istics in L, so that the cost coefficient takes different values depending on the specific
values of the characteristics in L. For cost coefficients that do not depend on any
discrete characteristic, we set βK(∅) = βK .

Example 3.3.1
To illustrate a component-based infrastructure cost problem I = (N, M, X, κ), we now
consider a general infrastructure problem based on Table 3.1, in which users have dif-
ferent requirements for four characteristics of a regional CO2 transport infrastructure.
In particular, the characteristics are the onshore and offshore transport radius, the
capacity of the network, and the conditioning of the CO2, respectively represented
by M = {1, 2, 3, 4}. As discussed previously, cost estimates may only be available for
specific capacity levels rather than continuously for any capacity level. Therefore, the
third characteristic will be treated as a discrete characteristic. The same holds for
the fourth characteristic, so that MC = {1, 2} and MD = {3, 4}. Written out in full,
the cost function has 16 terms:

κ(z1, z2, z3, z4) = β∅ + β∅(z3) + β∅(z4) + β∅(z3, z4)
+ β{1}z1 + β{1}(z3)z1 + β{1}(z4)z1 + β{1}(z3, z4)z1

+ β{2}z2 + β{2}(z3)z2 + β{2}(z4)z2 + β{2}(z3, z4)z2

+ β{1,2}z1z2 + β{1,2}(z3)z1z2 + β{1,2}(z4)z1z2 + β{1,2}(z3, z4)z1z2,

where zk ∈ Zk for all k ∈ M . Many of the coefficients (and thereby the corresponding
terms in κ) may be equal to zero, as will be discussed in Example 3.3.2. �
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Clearly, cost function κ has a very generic structure, that can be adapted to reflect
various infrastructure contexts. Despite this, it still allows the costs to be analyzed
on a per component basis. Specifically, to analyze the costs of more sophisticated
infrastructures, for which the requirement of a characteristic may vary for different
values of other characteristics, we can derive the costs λ(Cα1,...,αm) of each individual
EIC Cα1,...,αm ∈ C. These costs can be iteratively determined on the basis of cost
function κ, or, equivalently, using the closed-form expression (3.2), presented in The-
orem 3.3.2, based on the inclusion-exclusion principle. In this theorem, we show that
using (3.2) for the costs of each EIC, the costs of any boxlike infrastructure equal
the sum of the costs of all EICs within this ‘box’. We illustrate the workings of all
elements of this theorem in Example 3.3.2.

Theorem 3.3.2
Let I = (N, M, X, κ) be a component-based infrastructure cost problem. Let the costs
λ(Cα1,...,αm) of an EIC Cα1,...,αm ∈ C be given by

λ(Cα1,...,αm) =
∑

Mα
C

⊆K⊆MC

∑
Mα

D
⊆L⊆MD

bα1,...,αm(K, L)
∏

k∈K

(
X̃k

αk
− X̃k

αk−1
)
, (3.2)

where Mα
C = {k ∈ MC | αk > 1} and Mα

D = {k ∈ MD| αk > 1}, and

bα1,...,αm(K, L) =
∑

T ⊆Mα
D

(−1)|T |βK

({X̃k
αk

}k∈L\T , {X̃k
αk−1}k∈T

)
(3.3)

for all Mα
C ⊆ K ⊆ MC and Mα

D ⊆ L ⊆ MD.
Then, for all ζk ∈ {1, ..., nk}, k ∈ M ,

κ(X̃1
ζ1 , ..., X̃m

ζm
) =

∑
αk∈{1,...,ζk}

k∈M

λ(Cα1,...,αm)1. (3.4)

Proof. Let ζk ∈ {1, ..., nk} for all k ∈ M . We show that the costs of the cor-
responding boxlike infrastructure, as determined by κ(X̃1

ζ1
, ..., X̃m

ζm
), equal the sum

of the costs of all EICs within this box. In (3.2), for all αk ∈ {1, ..., ζk}, k ∈ M ,
we sum over all K ⊆ MC and L ⊆ MD such that Mα

C = {k ∈ MC | αk > 1} ⊆ K

1 ∑
αk∈{1,...,ζk}

k∈M

is shorthand notation for
∑

α1∈{1,...,ζ1}
· · ·

∑
αm∈{1,...,ζm}

. We use this notation

throughout the proof as well.
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and Mα
D = {k ∈ MD| αk > 1} ⊆ L, i.e., for all k ∈ M such that αk > 1 we have

k ∈ K ∪ L. Put differently, we only sum over K ⊆ MC and L ⊆ MD if αk = 1 for all
k ∈ M \ (K ∪ L). Consequently, we may rewrite (3.4) as

κ(X̃1
ζ1 , ..., X̃m

ζm
) =

∑
αk∈{1,...,ζk}

k∈M

λ(Cα1,...,αm)

=
∑

K⊆MC

∑
L⊆MD

∑
αk∈{1,...,ζk}

k∈K∪L

bα1,...,αm(K, L)
∏

k∈K

(
X̃k

αk
− X̃k

αk−1
)
,

where αk = 1 for all k ∈ M \ (K ∪ L).
Recall that

κ(X̃1
ζ1 , ..., X̃m

ζm
) =

∑
K⊆MC

∑
L⊆MD

βK({X̃k
ζk

}k∈L)
∏

k∈K

X̃k
ζk

.

Hence, we can now show that (3.4) holds by showing that

βK

({X̃k
ζk

}k∈L

) ∏
k∈K

X̃k
ζk

=
∑

αk∈{1,...,ζk}
k∈K∪L

bα1,...,αm(K, L)
∏

k∈K

(
X̃k

αk
− X̃k

αk−1
)

=
∑

αk∈{1,...,ζk}
k∈K∪L

∑
T ⊆Mα

D

(−1)|T |βK

({X̃k
αk

}k∈L\T , {X̃k
αk−1}k∈T

) ∏
k∈K

(
X̃k

αk
− X̃k

αk−1
)

for all K ⊆ MC and all L ⊆ MD, where we substitute (3.3) in the final equality.

Let K ⊆ MC and let L ⊆ MD. Note that we can analyze the terms corresponding to
continuous characteristics separately from those corresponding to discrete character-
istics, by consecutively showing

βK

({X̃k
ζk

}k∈L

)
=

∑
αk∈{1,...,ζk}

k∈L

∑
T ⊆Mα

D

(−1)|T |βK

({X̃k
αk

}k∈L\T , {X̃k
αk−1}k∈T

)
(3.5)

and ∏
k∈K

X̃k
ζk

=
∑

αk∈{1,...,ζk}
k∈K

∏
k∈K

(
X̃k

αk
− X̃k

αk−1
)
.
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The latter can be straightforwardly shown by recursively using the telescoping sum∑
αk∈{1,...,ζk}

(
X̃k

αk
− X̃k

αk−1
)

= X̃k
ζk

− X̃k
0 = X̃k

ζk
for all k ∈ K.

It remains to show that (3.5) holds. For this, we show that any βK

({X̃k
ηk

}k∈L

)
such

that ηk ∈ {1, ..., ζk} for all k ∈ L cancels out on the right-hand side of (3.5), except
when ηk = ζk for all k ∈ L.

Let ηk ∈ {1, ..., ζk} for all k ∈ L. Let U = {k ∈ L| ηk ∈ {1, ..., ζk − 1}} denote
the set of discrete characteristics in L that do not equal their ζk-th value. Note
that we always add the term βK

({X̃k
ηk

}k∈L

)
once, irrespective of U , by considering

ηk = αk for all k ∈ L and T = ∅ on the right hand side of (3.5). Next, if |U | ≥ 1,
we subtract βK

({X̃k
ηk

}k∈L

)
exactly |U | times, namely whenever ηl = αl − 1 for some

l ∈ U , ηk = αk for all other k ∈ U \ {l}, and T = {l} (so that (−1)|T | = −1). Then,
if |U | ≥ 2, we add βK

({X̃k
ηk

}k∈L

)
exactly

(|U |
2
)

times, namely whenever ηl = αl − 1
and ηm = αm − 1 for l, m ∈ U , ηk = αk for all other k ∈ U \ {l, m}, and T = {l, m}
(so that (−1)|T | = 1). This process continues until we arrive at ηk = αk − 1 for all
k ∈ U and T = U , so that we add or subtract βK

({X̃k
ηk

}k∈L

)
once more, depending

on (−1)|U |.
More generally, βK

({X̃k
ηk

}k∈L

)
is counted exactly

∑
r∈{0,...,|U |}(−1)r

(|U |
r

)
times.

Hence, we can apply the binomial theorem

(x + y)n =
∑

k∈{0,...,n}

(
n

k

)
xn−kyk

for any non-negative integer n. In particular, we use x = 1, y = −1, and n = |U |.
We find zero whenever |U | ≥ 1, and one for |U | = 0. Hence, only one term does not
cancel out on the right-hand side of (3.5), namely the term corresponding to U = ∅,
and it is added exactly once. Since this term is βK

({X̃k
ζk

}k∈L

)
, we see that (3.5)

holds, which completes the proof.

Example 3.3.2
We now illustrate Theorem 3.3.2 by means of an example of a component-based
infrastructure cost problem with MC = {1, 2} and MD = {3, 4}, and cost function

κ(z1, z2, z3, z4) = β∅(z3, z4) + β{1}(z3)z1 + β{1,2}z1z2, (3.6)

where zk ∈ Zk for all k ∈ M . Going back to the CO2 transport infrastructure context
of Example 3.3.1, the first term in (3.6) corresponds to fixed costs depending on the
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capacity level and the level of conditioning in the network. The second term repre-
sents costs that increase linearly in the onshore transport radius, where the slope of
this linear relation depends on the capacity level. The final term represents variable
costs based on the product of the onshore and offshore transport radius, for which
the cost coefficient is constant, independent of the discrete characteristics. In Sec-
tion 3.4, we provide a full case study using a more realistic cost function for such a
CO2 transport infrastructure.

We calculate the costs of all EICs Cα1,α2,α3,α4 ∈ C with αk ∈ {1, 2} for all k ∈ M .
Before elaborating on the calculations of a few instructive components, it is good to
note that many of the EICs have zero costs. For example, consider the costs of C1,2,1,2.
In (3.2), we only sum over K ⊆ {1, 2} and L ⊆ {3, 4} such that Mα

C = {2} ⊆ K and
Mα

D = {4} ⊆ L. However, note that there is no non-zero coefficient in (3.6) for which
both {2} ∈ K and {4} ∈ L. Therefore, the costs of this EIC simply equal zero. A
similar argument can be made for C1,2,2,1 and C2,1,1,2, and all EICs with αk = 2
for three or four characteristics k ∈ M . All non-zero costs of the EICs are given in
Table 3.2.

EIC λ(EIC)
C1,1,1,1 β∅(X̃3

1 , X̃4
1 ) + β{1}(X̃3

1 )X̃1
1 + β{1,2}X̃1

1 X̃2
1

C1,1,1,2 β∅(X̃3
1 , X̃4

2 ) − β∅(X̃3
1 , X̃4

1 )
C1,1,2,1 β∅(X̃3

2 , X̃4
1 ) − β∅(X̃3

1 , X̃4
1 ) +

(
β{1}(X̃3

2 ) − β{1}(X̃3
1 )
)
X̃1

1

C1,2,1,1 β{1,2}X̃1
1 (X̃2

2 − X̃2
1 )

C2,1,1,1 β{1}(X̃3
1 ) · (X̃1

2 − X̃1
1 ) + β{1,2} · (X̃1

2 − X̃1
1 )X̃2

1

C1,1,2,2 β∅(X̃3
2 , X̃4

2 ) − β∅(X̃3
1 , X̃4

2 ) − β∅(X̃3
2 , X̃4

1 ) + β∅(X̃3
1 , X̃4

1 )
C2,1,2,1 (

β{1}(X̃3
2 ) − β{1}(X̃3

1 )
)
(X̃1

2 − X̃1
1 )

C2,2,1,1 β{1,2} · (X̃1
2 − X̃1

1 )(X̃2
2 − X̃2

1 )

Table 3.2 All non-zero costs of EICs Cα1,α2,α3,α4 ∈ C with αk ∈
{1, 2} for all k ∈ M based on cost function (3.6)

For C1,1,1,1, we have Mα
C = Mα

D = ∅, so we sum over all K ⊆ {1, 2} and L ⊆ {3, 4}
in (3.2). However, λ(C1,1,1,1) will only consist of three terms, corresponding to the
combinations of K and L with non-zero coefficients, namely K = ∅ and L = {3, 4},
K = {1} and L = {3}, and K = {1, 2} and L = ∅. Since Mα

D = ∅, we restrict to
T = ∅ in (3.3) for both L = {3} and L = {3, 4}. For L = ∅, we use the fact that

bα1,...,αm(K, ∅) = βK
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for any K ⊆ MC . Further, we use the convention that the empty product equals one
in the term corresponding to K = ∅, and that X̃k

0 = 0 for all k ∈ M , which yields

λ(C1,1,1,1)

= (−1)0β∅(X̃3
1 , X̃4

1 ) + (−1)0β{1}(X̃3
1 ) · (X̃1

1 − X̃1
0 ) + β{1,2} · (X̃1

1 − X̃1
0 )(X̃2

1 − X̃2
0 )

= β∅(X̃3
1 , X̃4

1 ) + β{1}(X̃3
1 ) · (X̃1

1 − 0) + β{1,2} · (X̃1
1 − 0)(X̃2

1 − 0)

= β∅(X̃3
1 , X̃4

1 ) + β{1}(X̃3
1 )X̃1

1 + β{1,2}X̃1
1 X̃2

1 .

To further illustrate the workings of (3.3), essentially representing the inclusion
and exclusion of cost parameters, we consider the costs of EIC C1,1,2,2 next. Since
Mα

D = MD = {3, 4}, we only consider L = {3, 4}, for which K = ∅ gives the only
non-zero coefficient. However, in this case b1,1,2,2(∅, L) consists of four terms, corre-
sponding to T = ∅, T = {3}, T = {4}, and T = {3, 4}, respectively:

λ(C1,1,2,2)

= (−1)0β∅(X̃3
2 , X̃4

2 ) + (−1)1β∅(X̃3
1 , X̃4

2 ) + (−1)1β∅(X̃3
2 , X̃4

1 ) + (−1)2β∅(X̃3
1 , X̃4

1 )

= β∅(X̃3
2 , X̃4

2 ) − β∅(X̃3
1 , X̃4

2 ) − β∅(X̃3
2 , X̃4

1 ) + β∅(X̃3
1 , X̃4

1 ).

Finally, we consider EIC C2,1,2,1. Since Mα
C = {1} and Mα

D = {3}, the only
combination of K and L with a non-zero coefficient and Mα

C ⊆ K and Mα
D ⊆ L is

K = {1} and L = {3}, for which b2,1,2,1({1}, {3}) = β{1}(X̃3
2 )−β{1}(X̃3

1 ). Using this,
we directly find the closed-form expression for the costs of this EIC, namely

λ(C2,1,2,1) =
(
β{1}(X̃3

2 ) − β{1}(X̃3
1 )
)
(X̃1

2 − X̃1
1 ).

The remaining costs in Table 3.2 can be calculated in the same way. Indeed, we
find that the costs of any boxlike infrastructure equal the sum of the costs of all EICs
within this box. For example, one readily verifies that

λ(C1,1,1,1) + λ(C1,1,1,2) + λ(C1,1,2,1) + λ(C1,2,1,1) + λ(C2,1,1,1) + λ(C1,1,2,2)

+ λ(C1,2,1,2) + λ(C1,2,2,1) + λ(C2,1,1,2) + λ(C2,1,2,1) + λ(C2,2,1,1)

+ λ(C1,2,2,2) + λ(C2,1,2,2) + λ(C2,2,1,2) + λ(C2,2,2,1) + λ(C2,2,2,2)

= β∅(X̃3
2 , X̃4

2 ) + β{1}(X̃3
2 )X̃1

2 + β{1,2}X̃1
2 X̃2

2

= κ(X̃1
2 , X̃2

2 , X̃3
2 , X̃4

2 ). �
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To determine the total construction costs c(N) of the minimally required infrastruc-
ture of player set N , we simply sum the costs of all EICs in A(N), i.e.,

c(N) =
∑

Cα1,...,αm ∈A(N)

λ(Cα1,...,αm).

In a component-based infrastructure cost problem I = (N, M, X, κ), non-negativity of
the costs of each EIC is guaranteed if cost function κ satisfies a natural condition. We
describe such problems as component-based infrastructure cost problems with regular
κ. The results in Section 3.3.3 will use the non-negativity of each EIC’s costs.

Definition 3.3.3
Let I = (N, M, X, κ) be a component-based infrastructure cost problem. Then, we say
κ is regular if

bα1,...,αm(K, L) ≥ 0

for any αk ∈ {1, . . . , nk}, k ∈ M and all K, L such that Mα
C ⊆ K ⊆ MC and

Mα
D ⊆ L ⊆ MD, where Mα

C = {k ∈ MC | αk > 1} and Mα
D = {k ∈ MD| αk > 1}.

In the context of Example 3.3.1 and using cost function (3.6), the regularity re-
quirements on κ boil down to the following conditions on the underlying cost co-
efficients. Next to non-negativity of all cost coefficients, regularity entails that the
cost coefficient of onshore transport does not decrease as the capacity level increases.
Further, the cost coefficient corresponding to the fixed costs cannot decrease when
the capacity level increases and conditioning remains at the lowest level, or when the
level of conditioning increases with the capacity fixed at its lowest level. Lastly, this
fixed costs coefficient must be such that the additional costs of conditioning CO2 for
re-use do not decrease as the capacity level of the network grows, and vice versa. All
requirements seem to be reasonable.

3.3.3 The equal component cost sharing rule

The equal component cost sharing rule γ is an allocation mechanism that follows nat-
urally from the component-based analysis of infrastructure construction costs. Specif-
ically, γ divides the total costs c(N) corresponding to a component-based infrastruc-
ture cost problem I = (N, M, X, κ) over the players in N , such that the costs of each
required EIC are equally divided over the players who require that component.
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58 3.3. Component-based analysis of infrastructure problems

To properly define the equal component cost sharing rule, we let Nα1,...,αm =
{i ∈ N | Xk

i ≥ X̃k
αk

∀k ∈ M} denote the set of players in N who require component
Cα1,...,αm ∈ C. Using this, A({i}) = {Cα1,...,αm ∈ C| i ∈ Nα1,...,αm} is defined as the
set of EICs that a player i ∈ N requires in I. Finally, we denote the class of all
component-based infrastructure cost problems by I.

Definition 3.3.4
The equal component cost sharing rule γ on I is defined by setting

γi(I) =
∑

Cα1,...,αm ∈A({i})

λ(Cα1,...,αm)
|Nα1,...,αm |

for all I = (N, M, X, κ) ∈ I and any i ∈ N .

For each player, the allocated costs are based only on the costs of the components
that this player actually requires. Hence, the definition of γ is such that players ‘only
pay for what they need’. Moreover, if players require the same set of components,
they pay the same.

We will show that the equal component cost sharing rule satisfies the properties of
coalitional rationality and advantageous scaling, if the component-based infrastruc-
ture cost problem is such that cost function κ is regular.

Let f be a cost sharing rule on I. Intuitively, the coalitional rationality property
states that for any component-based infrastructure cost problem I = (N, M, X, κ) ∈ I,
no coalition S ⊆ N has a (financial) reason to object to the cost allocation f(I), be-
cause no coalition can benefit from splitting off from the grand coalition N : for any
S ⊆ N , the total costs allocated to the players in S are below or equal to the costs of
the minimal infrastructure A(S) that S requires. Put differently, the cost allocation
is stable against coalitional deviations. Note that this property is strongly related to
the cooperative game-theoretic notion of the core (Gillies (1959), see Ray and Vohra
(2015) for a more extensive discussion of the core).

A coalition S requires an EIC if at least one player in S requires the
EIC. Formally, A(S) = {Cα1,...,αm ∈ C| Sα1,...,αm �= ∅}, where Sα1,...,αm =
{i ∈ S| Cα1,...,αm ∈ A({i})} denotes the set of players in S who require
EIC Cα1,...,αm ∈ C.
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Coalitional rationality Let f be a cost sharing rule on I. Then, f satisfies coali-
tional rationality on I if

∑
i∈S

fi(I) ≤
∑

Cα1,...,αm ∈A(S)

λ(Cα1,...,αm)

for all I = (N, M, X, κ) ∈ I and all S ⊆ N .

Theorem 3.3.5
The equal component cost sharing rule γ satisfies coalitional rationality on I, if κ is
regular.

Proof. Let I = (N, M, X, κ) ∈ I with regular κ and let S ⊆ N . Then,

∑
i∈S

γi(I) =
∑
i∈S

∑
Cα1,...,αm ∈A({i})

λ(Cα1,...,αm)
|Nα1,...,αm |

=
∑

Cα1,...,αm ∈C
|Sα1,...,αm |λ(Cα1,...,αm)

|Nα1,...,αm |
≤

∑
Cα1,...,αm ∈C:
Sα1,...,αm �=∅

λ(Cα1,...,αm)

=
∑

Cα1,...,αm ∈A(S)

λ(Cα1,...,αm),

where the inequality follows from the fact that the costs of each EIC are non-negative
(since κ is regular) and Sα1,...,αm ⊆ Nα1,...,αm for all αk ∈ {1, . . . , nk}, k ∈ M .

Next, we define advantageous scaling for a cost sharing rule f on I. This property
states that the costs allocated to each player can only decrease if the player set N

grows larger. Recall that Xj , j ∈ N , denotes the j-th row of matrix X.

Advantageous scaling Let f be a cost sharing rule on I. Then, f satisfies ad-
vantageous scaling on I if

fi(Ī) ≤ fi(I)

for all I = (N, M, X, κ) ∈ I and Ī = (N̄ , M, X̄, κ) ∈ I such that N ⊆ N̄ and Xj = X̄j

for all j ∈ N , and for all i ∈ N .
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60 3.3. Component-based analysis of infrastructure problems

Theorem 3.3.6
The equal component cost sharing rule γ satisfies advantageous scaling on I, if κ is
regular.

To see that γ satisfies advantageous scaling if κ is regular, consider
I = (N, M, X, κ) ∈ I and Ī = (N̄ , M, X̄, κ) ∈ I with regular κ such that
N ⊆ N̄ and Xj = X̄j for all j ∈ N , and let i ∈ N . It is good to note that C̄ contains
more components than C if a new player also brings new requirements. Since the
costs of player i can only be affected by EICs that i requires, i is not affected by
new components that only the new players require. However, a new requirement
may ‘split’ an existing component that i requires into ‘subcomponents’. We will not
formally define such splits, but instead provide an intuitive argument why this never
increases the costs of player i. Clearly, the costs of the original component equal
the sum of the costs of the subcomponents. If a subcomponent is not required by a
new player, the corresponding costs are divided over the same set of players in N as
before, so this does not affect the costs of i. If a subcomponent is required by a new
player, the costs of this subcomponent are divided over more players than before,
thereby lowering the costs of i (here, we also use the non-negativity of the costs of
each EIC). It follows that γi(Ī) ≤ γi(I).

Before applying our cost sharing rule in a case study, we remark that one can define
a cooperative cost game (N, cI) corresponding to a component-based infrastructure
cost problem I = (N, M, X, κ) by letting the value cI(S) reflect the total costs of the
minimal infrastructure A(S) that a coalition S ⊆ N requires. Note that we consider
cost games here, as opposed to the profit games considered in Section 1.2. However,
all corresponding concepts can be straightforwardly translated to the cost setting.

Interestingly, Theorem 3.3.7 shows that the equal component cost sharing rule
γ(I) coincides with the Shapley value of the corresponding cost game. Further, if κ

is regular, this cost game is concave, where a cost game c ∈ TUN is concave if

c(S ∪ T ) + c(S ∩ T ) ≤ c(S) + c(T )

for all S, T ∈ 2N .

Theorem 3.3.7
Let I = (N, M, X, κ) ∈ I be a component-based infrastructure cost problem and let
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cI ∈ TUN be the corresponding cost game, defined by

cI(S) =
∑

Cα1,...,αm ∈A(S)

λ(Cα1,...,αm)

for any S ∈ 2N \ {∅}. Then,
γ(I) = Φ(cI),

and cI is concave if κ is regular.

Proof. Let i ∈ N and recall that

Φi(cI) = 1
|N |!

∑
σ∈Π(N)

mσ
i (cI).

Let σ ∈ Π(N). Then, the marginal costs of player i in this order equal the total sum of
the costs of every EIC that is required by i and such that it is not required by any player
that comes before i in σ. To formalize this, let P (σ, i) = {j ∈ N | σ−1(j) < σ−1(i)}
denote the set of predecessors of player i with respect to σ ∈ Π(N). Then,

Φi(cI) = 1
|N |!

∑
σ∈Π(N)

mσ
i (cI)

= 1
|N |!

∑
σ∈Π(N)

∑
Cα1,...,αm ∈A({i}):

P (σ,i)∩Nα1,...,αm =∅

λ(Cα1,...,αm)

= 1
|N |!

∑
Cα1,...,αm ∈A({i})

|{σ ∈ Π(N)| P (σ, i) ∩ Nα1,...,αm = ∅}|λ(Cα1,...,αm)

= 1
|N |!

∑
Cα1,...,αm ∈A({i})

|N |!
|Nα1,...,αm |λ(Cα1,...,αm)

=
∑

Cα1,...,αm ∈A({i})

1
|Nα1,...,αm |λ(Cα1,...,αm)

= γi(I).

Next, we show that cI is concave, if κ is regular. Recall that for any S ∈ 2N we have

A(S) = {Cα1,...,αm ∈ C| ∃i ∈ S such that ∀k ∈ M we have Xk
i ≥ X̃k

αk
}
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Let S, T ∈ 2N . It is clear that A(S ∪ T ) = A(S) ∪ A(T ), which yields

c(S ∪ T ) =
∑

Cα1,...,αm ∈A(S∪T )

λ(Cα1,...,αm)

=
∑

Cα1,...,αm ∈A(S)

λ(Cα1,...,αm) +
∑

Cα1,...,αm ∈A(T )

λ(Cα1,...,αm)

−
∑

Cα1,...,αm ∈A(S)∩A(T )

λ(Cα1,...,αm)

= c(S) + c(T ) −
∑

Cα1,...,αm ∈A(S)∩A(T )

λ(Cα1,...,αm).

For c(S ∩ T ), however, any EIC in A(S ∩ T ) has to be required by a player that is
both in S and in T , where in A(S) ∩ A(T ) we also include EICs that are required by
both S and T , but not necessarily by the same player in both coalitions. Therefore,
A(S ∩ T ) ⊆ A(S) ∩ A(T ). Hence,

c(S ∪ T ) + c(S ∩ T )

= c(S) + c(T ) −
∑

Cα1,...,αm ∈A(S)∩A(T )

λ(Cα1,...,αm) +
∑

Cα1,...,αm ∈A(S∩T )

λ(Cα1,...,αm)

≤ c(S) + c(T ) −
∑

Cα1,...,αm ∈A(S)∩A(T )

λ(Cα1,...,αm) +
∑

Cα1,...,αm ∈A(S)∩A(T )

λ(Cα1,...,αm)

= c(S) + c(T ),

where, in the inequality, we also use the fact that the costs of each EIC are non-
negative, since κ is regular.

In fact, if κ is regular, the concavity of the cost game directly implies that the Shapley
value is in the core and that the (extended) Shapley value is a so-called population
monotonic allocation scheme (Sprumont, 1990). The former directly implies coali-
tional rationality, where the latter implies advantageous scaling.
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3.4 Component-based infrastructure cost problems ap-
plied to CO2 transport infrastructures

In this section, we apply the technical model of Section 3.3 to the specific case of CO2
transport infrastructure for CCUS-hubs in the port of Rotterdam area described in
Section 3.2. This section follows the steps as sketched in Figure 3.3. We first con-
vert the qualitative problem description of Section 3.2 into a component-based in-
frastructure cost problem, and determine the required set of EICs and their costs.
Subsequently, we discuss the results with respect to cost allocation using the equal
component cost sharing rule, also considering alternative scenarios for the cost pa-
rameters.

Figure 3.3 Steps for applying component-based analysis and
equal component cost sharing rule to a multi-actor infrastructure
construction problem

3.4.1 CO2 transport EICs and their costs

The general problem description of Section 3.2 can be transformed into a formal
component-based infrastructure cost problem. The player set is represented more
compactly using numbers: N = {1, 2, 3, 4, 5}, corresponding to the players ‘Heavy
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64 3.4. Application to CO2 transport infrastructure

Emitters’, ‘Distant Emitters’, ‘Small Emitters’, ‘Greenhouses’, and ‘Hydrogen pro-
ducers’, respectively. Furthermore there are four infrastructure component character-
istics for which the users have different requirements, hence M = {1, 2, 3, 4}. Table
3.3, a quantified version of Table 3.1, gives the entries for our requirement matrix X.

M →
onshore

transport
radius

offshore
transport

radius
capacity conditioning

N ↓ 1 2 3 4
heavy emitters 1 30 30 2 1

distant emitters 2 80 30 2 1
small emitters 3 30 30 1 1

greenhouses 4 30 0 1 2
hydrogen producers 5 10 0 1 2

Table 3.3 Transformation of Table 3.1 into entries for require-
ment matrix X

The first two characteristics, onshore and offshore transport radius, are expressed
in kilometers. The third characteristic, transport capacity, is in this application rep-
resented by discrete options: 1 reflects a small capacity (around 2.5 Mt/y), and a 2
reflects a larger network with higher capacity (around 10 Mt/y). Finally, the fourth
characteristic is related to the conditioning of CO2, is also discrete and can take two
values: this characteristic is 2 if the corresponding player re-uses CO2 (and thereby
requires additional conditioning w.r.t. pressure, temperature and purity), and 1 oth-
erwise.

The elementary infrastructure components corresponding to this CO2 transport
infrastructure are defined on the basis of the vectors of unique requirements (sorted
in increasing order) for each characteristic, namely

X̃1 =

⎡
⎢⎢⎣

10

30

80

⎤
⎥⎥⎦ , X̃2 =

⎡
⎣ 0

30

⎤
⎦ , X̃3 =

⎡
⎣1

2

⎤
⎦ , and X̃4 =

⎡
⎣1

2

⎤
⎦ .

Next, we present how these infrastructure characteristics drive the construction costs.
This part continues with the findings on the CO2 transport cost drivers from Sec-
tion 3.2: the CO2 infrastructure construction cost function is a combination of onshore
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costs and offshore costs; and those costs consist of a fixed and a variable portion. For
a detailed derivation of the cost function parameter values, the β’s in Section 3, we
refer to Appendix 3.A.

The costs of onshore transportation are determined by a fixed and variable portion.
The value of the fixed cost parameter is determined by the value of characteristics
3 and 4, i.e., capacity and level of conditioning. The variable cost parameter is
determined by the requirement for characteristic 3, capacity, only. The higher the
required transport capacity, the higher the costs per km. For readability purposes of
this section, the cost function is first presented in a conditional breakdown, and the
characteristic values z3 and z4 are included in the conditions only. Recall that z3 = 1
and z3 = 2 represent a small (2.5 Mt/y) and large (10 Mt/y) capacity, respectively,
and z4 = 1 and z4 = 2 represent standard conditioning and conditioning for re-use,
respectively. We have

κonshore(z1, z3, z4) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

6 + 0, 6z1 if z3 = 1 and z4 = 1,

8 + 0.75z1 if z3 = 2 and z4 = 1,

42 + 0.6z1 if z3 = 1 and z4 = 2,

94 + 0.75z1 if z3 = 2 and z4 = 2,

with z1 ∈ {10, 30, 80}, z3 ∈ {1, 2} and z4 ∈ {1, 2}. Thus, an onshore transport radius
of 10 kilometers (z1 = 10) with 2.5 Mton capacity (z3 = 1) and standard conditioning
(z4 = 1), costs 6 + 0.6 · 10 = 12 million euros, while the same 10 kilometers with 2.5
Mton capacity and conditioning for re-use purpose (z4 = 2) cost 42 + 0.6 · 10 = 48
million euros.

Offshore transportation costs are also determined by a fixed and variable portion.
The values of both the fixed and the variable cost parameter are determined only
by the value of characteristic 3 (i.e., transport capacity), as the conditioning that
partly determines the fixed costs is the same for all offshore transport. However, we
only want to add (fixed) offshore costs if the players actually make use of offshore
transportation, i.e., if their required offshore length is greater than 0. For the variable
cost portion this happens instantly as the cost parameter will be multiplied by the
required offshore length. For the fixed costs portion we achieve this using the indicator
variable X5 with, for all i ∈ N , X5

i = 1 if X2
i > 0 and 0 otherwise. This is a simple
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dummy variable that does not have a meaningful impact on the interpretation or
structure of the model, while ensuring fixed costs for offshore transportation are only
included when applicable. As a consequence, however, the resulting EICs will be based
on 5 characteristics instead of 4. Note that X̃5 = [0 1]�. One can interpret these
fixed costs as the required costs for transfer and compressor stations when going from
onshore to offshore transportation. Formally, we have

κoffshore(z2, z3, z5) =

⎧⎨
⎩ 1.2z2 + 38z5 if z3 = 1,

1.6z2 + 64z5 if z3 = 2,

with z2 ∈ {0, 30}, z3 ∈ {1, 2} and z5 ∈ {0, 1}. Note that here the first term represents
the variable costs and the second term the fixed.

For the total cost function of our CO2 transport infrastructure application we have

κ(z1, z2, z3, z4, z5) = κonshore(z1, z3, z4) + κoffshore(z2, z3, z5)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

6 + 0.6z1 + 1.2z2 + 38z5 if z3 = 1 and z4 = 1,

8 + 0.75z1 + 1.6z2 + 64z5 if z3 = 2 and z4 = 1,

42 + 0.6z1 + 1.2z2 + 38z5 if z3 = 1 and z4 = 2,

94 + 0.75z1 + 1.6z2 + 64z5 if z3 = 2 and z4 = 2,

with z1 ∈ {10, 30, 80}, z2 ∈ {0, 30}, z3 ∈ {1, 2}, z4 ∈ {1, 2} and z5 ∈ {0, 1}. It can be
shown that κ is regular, so that the costs of each EIC are non-negative.

Up to this point, we only show a numerical breakdown of cost function κ for the
component-based infrastructure cost problem, by providing different cost functions
depending on the capacity level and the level of conditioning. This is simply a more in-
tuitive representation of a more general cost function as formulated in Definition 3.3.1.
In particular, we have

κ(z1, z2, z3, z4, z5) = β∅(z3, z4) + β{1}(z3)z1 + β{2}(z3)z2 + β{5}(z3)z5, (3.7)

with z1 ∈ {10, 30, 80}, z2 ∈ {0, 30}, z3 ∈ {1, 2}, z4 ∈ {1, 2} and z5 ∈ {0, 1}. The coef-
ficient values are derived in Appendix 3.A and summarized in Table 3.11. Using the
more general notation, we have β∅(1, 1) = 6, β∅(2, 1) = 8, β∅(1, 2) = 42, β∅(2, 2) = 94,
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β{1}(1) = 0.6, β{1}(2) = 0.75, β{2}(1) = 1.2, β{2}(2) = 1.6, β{5}(1) = 38 and
β{5}(2) = 64.

Having completed the decomposition into EICs, Theorem 3.3.2 can now be used to
derive the costs per EIC. From the vectors X̃1, X̃2, X̃3, X̃4 and X̃5, we know there
are 3 · 2 · 2 · 2 · 2 = 48 EICs. As we will argue below, only 12 of these have non-zero
costs. For these 12 EICs, Table 3.4 shows the final expression of the costs in terms
of the coefficients. To clarify the final expressions, we further illustrate the calcula-
tions of two components. We omit some of the details that were already discussed in
Example 3.3.2, since the calculations are largely analogous, even though we have a
different cost function and an additional characteristic. Also, we are now able to fill
in the actual values of the characteristics.

EIC λ(EIC)
C1,1,1,1,1 β∅(1, 1) + β{1}(1) · 10 = 12
C2,1,1,1,1 β{1}(1) · (30 − 10) = 12
C3,1,1,1,1 β{1}(1) · (80 − 30) = 30
C1,1,2,1,1 β∅(2, 1) − β∅(1, 1) +

(
β{1}(2) − β{1}(1)

)
· 10 = 3.5

C2,1,2,1,1 (
β{1}(2) − β{1}(1)

)
· (30 − 10) = 3

C3,1,2,1,1 (
β{1}(2) − β{1}(1)

)
· (80 − 30) = 7.5

C1,1,1,1,2 β
{3}
{5}(1) · 1 = 38

C1,1,2,1,2 (
β{5}(2) − β{5}(1)

)
· 1 = 26

C1,2,1,1,1 β{2}(1) · 30 = 36
C1,2,2,1,1 (

β{2}(2) − β{2}(1)
)

· 30 = 12
C1,1,1,2,1 β∅(1, 2) − β∅(1, 1) = 36
C1,1,2,2,1 β∅(2, 2) − β∅(1, 2) − β∅(2, 1) + β∅(1, 1) = 50

Table 3.4 All non-zero costs of EICs for the case study of CO2 transport
infrastructure for CCUS-hubs in the port of Rotterdam area

We first consider λ(C1,1,1,1,1). Since Mα
C = Mα

D = ∅, we sum over all K ⊆ {1, 2, 5}
and L ⊆ {3, 4} in (3.2). Since there are four combinations of K and L with non-zero
coefficients in (3.7), λ(C1,1,1,1,1) would in principle consist of four terms. However,
note that X̃2

1 = X̃5
1 = 0, because the lowest required offshore transport radius is zero

(and the binary characteristic indicating whether offshore transport is required is zero
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as well then), and recall that X̃k
0 = 0 for all k ∈ M . Consequently, we find

λ(C1,1,1,1,1) = β∅(X̃3
1 , X̃4

1 ) + β{1}(X̃3
1 ) · (X̃1

1 − X̃1
0 ) + β{5}(X̃3

1 ) · (X̃5
1 − X̃5

0 )

+ β{2}(X̃3
1 ) · (X̃2

1 − X̃2
0 )

= β∅(1, 1) + β{1}(1) · (10 − 0) + β{5}(1) · (0 − 0) + β{2}(1) · (0 − 0)

= β∅(1, 1) + β{1}(1) · 10

= 12.

Next, consider λ(C3,1,2,1,1). Since Mα
C = {1} and Mα

D = {3}, the only combination
of K and L with a non-zero coefficient and Mα

C ⊆ K and Mα
D ⊆ L is K = {1} and

L = {3}. Therefore,

λ(C3,1,2,1,1) = b3,1,2,1,1({1}, {3}) · (X̃1
3 − X̃1

2 )

=
(
β{1}(X̃3

2 ) − β{1}(X̃3
1 )
) · (X̃1

3 − X̃1
2 )

=
(
β{1}(2) − β{1}(1)

) · (80 − 30)

= 0.15 · 50

= 7.5.

This line of reasoning can also be used to show that only twelve out of 48 EICs
have non-zero costs, since for all other EICs there does not exist a combination of K

and L such that Mα
C ⊆ K ⊆ MC and Mα

D ⊆ L ⊆ MD with a non-zero coefficient.

Observe that if we sum all costs given in Table 3.4, we get

266 = β∅(2, 2) + β{1}(2) · 80 + β{5}(2) · 1 + β{2}(2) · 30 = κ(80, 30, 2, 2, 1).

More generally, the costs of any boxlike infrastructure equal the sum of the costs of all
EICs within this box. Finally, we remark that C1,1,2,2,1 is not required by any player,
since no individual player requires both the highest capacity level and conditioning
for re-use. Hence, C1,1,2,2,1 /∈ A(N). This component will therefore be omitted from
now on. All other EICs are required by at least one player. This means A(N) consists
of exactly 11 elementary infrastructure components with non-zero costs.

Table 3.5 gives, for each of these 11 components, the EIC, the corresponding set
of players N(EIC) that requires it, the costs λ(EIC), and an interpretation. It is clear
from this EIC-decomposition that not all infrastructure components are required by
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all players. The requirements from players 1 and 2 coincide in many EICs, while
players 4 and 5 are only interested in the first two EICs and one EIC dedicated to
re-use conditioning. This last one is not of interest to the other three players.

EIC N(EIC) λ(EIC) Interpretation

C1,1,1,1,1 {1, 2, 3, 4, 5} 12
onsh. transp. [km 0-10] with small cap.
and no re-use cond.

C2,1,1,1,1 {1, 2, 3, 4} 12
onsh. transp. [km 10-30] with small cap.
and no re-use cond.

C3,1,1,1,1 {2} 30
onsh. transp. [km 30-80] with small cap.
and no re-use cond.

C1,1,2,1,1 {1, 2} 3.5
onsh. transp. [km 0-10] with increased cap.
and no re-use cond.

C2,1,2,1,1 {1, 2} 3
onsh. transp. [km 10-30] with increased cap.
and no re-use cond.

C3,1,2,1,1 {2} 7.5
onsh. transp. [km 30-80] with increased cap.
and no re-use cond.

C1,1,1,1,2 {1, 2, 3} 38 conversion to offsh. transp. with small cap.
C1,1,2,1,2 {1, 2} 26 conversion to offsh. transp. with increased cap.
C1,2,1,1,1 {1, 2, 3} 36 offsh. transp. [km 0-30] with small cap.
C1,2,2,1,1 {1, 2} 12 offsh. transp. [km 0-30] with increased cap.
C1,1,1,2,1 {4, 5} 36 cond. for re-use, small cap.

Table 3.5 Each EIC with non-zero costs required in the CO2
transport network, with the set of players that requires it, its costs,
and an interpretation. Onsh. = onshore, offsh. = offshore, transp.
= transport, cap. = capacity, cond. = conditioning.

If we sum the costs of these EICs, we find that c(N) = 216 million euros for the
construction costs of the minimal infrastructure that N requires. One can also see
that these 216 million euros can be split in 104 million euros onshore infrastructure
construction costs and 112 million euros offshore infrastructure construction costs.
The next section discusses how to allocate these costs to the CO2 transport infras-
tructure users.
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3.4.2 Component-based cost allocations for CO2 transport in-
frastructure

In this section, we apply the equal component cost sharing rule γ to allocate the
total CO2 infrastructure construction costs c(N) = 216 over its different users. The
basic idea of equal component cost sharing is that the costs of each EIC in A(N) are
equally shared among the group of users of this component. For example, the costs
of EIC C1,1,1,1,1 are allocated equally to all players, whereas only player 2 pays for
C3,1,1,1,1, a component corresponding to the longer transport radius only the distant
emitters require. In this way, combining the information from columns 2 and 3 in
Table 3.5 directly provides the cost allocation that follows from this rule. All costs
are rounded to (at most) one decimal place in this section, yielding

γ(I) = (52.3, 89.8, 30.1, 23.4, 20.4).

The remainder of this section demonstrates the use of the equal component cost shar-
ing method in two ways. First, we vary the set of players that are using the CO2
transport network, in order to show the attractiveness of the rule’s properties coali-
tional rationality and advantageous scaling. Second, we consider three additional cost
scenarios to show the adaptability of the general cost function κ and to show that
one can easily attribute particular cost increases to specific players.

Varying the player set
The player set N consists of five typical potential users of CO2 infrastructure. Within
this group of 5, there are 2 logical groups that might find some common ground in their
requirements and also in the things they do not need. The heavy, distant and small
emitters each require offshore transport infrastructure, while they do not require any
conditioning for re-use. The greenhouses and hydrogen producers need conditioning
for re-use purposes, while they do not require any offshore transport. In Figure 3.4
we describe what would happen if either the ‘offshorers’ or the CO2 re-users would
split off from N .

Let Soffshore = {1, 2, 3} be the offshore subgroup that splits off from N and con-
structs a CO2 transport infrastructure that only satisfies their subgroup’s require-
ments. Compared to N , Soffshore no longer requires C1,1,1,2,1, so that c(Soffshore) =
216 − 36 = 180. Thus, if the offshore subgroup would build an infrastructure that
only satisfies their requirements it would cost them 180 million euros. This is higher
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Figure 3.4 Coalitional rationality: what would happen if the off-
shore or the re-use coalition would split off and decide to construct
their own CO2 infrastructure?

than the approximately 52.3 + 89.8 + 30.1 = 172.2 million euros that are allocated to
them in the setting where an infrastructure is constructed for all players in N .

Alternatively if the re-use subgroup Sre-use = {4, 5} would split off, they require
only C1,1,1,1,1, C2,1,1,1,1, and C1,1,1,2,1, with total construction costs c(Sre-use) = 60
million euros. This is significantly more than the approximately 23.4 + 20.4 = 43.8
million euros in the case of constructing and sharing an CO2 transport infrastructure
for the total group of users N .

Due to the coalitional rationality property of the equal component cost sharing
rule γ, these seemingly opposite subcoalitions Soffshore = {1, 2, 3} and Sre-use = {4, 5}
are not better of if they construct and share a CO2 transport infrastructure for only
their subgroup. This does not only hold for these two coalitions, but for any potential
coalitional deviation.

Next, we analyze the effect of adding players. For this, the new starting point of anal-
ysis is a situation in which only the ‘local’ players cooperate to construct a CO2 trans-
port infrastructure and the distant emitter, player 2, is not involved. The component-
based infrastructure problem I = (N, M, X, κ) we have analyzed so far would instead
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be a problem without player 2. Figure 3.5 illustrates what would happen if this local
coalition would consider letting the distant emitter, player 2, join this local group.

Figure 3.5 Advantageous scaling: what would happen if the local
coalition would extend its coalition and infrastructure design to the
more distant CO2 transport user?

Formally, we then consider the component-based infrastructure problem Ilocal =
(Nlocal, M, X−2, κ), with Nlocal = {1, 3, 4, 5} and where X−2 represents the matrix X

without its second row. Since the absence of player 2 has no effect on the requirements
of any of the other players or on the cost function κ, we can use Table 3.5 to determine
the total costs of the player set Nlocal and the allocation of these costs according to
the equal component cost sharing rule, and we find that c(Nlocal) = 178.5. Applying
the equal component cost sharing rule to this component-based CO2 infrastructure
problem yields

γ(Ilocal) = (88.5, 44, 25, 21).

Comparing γ(I) to γ(Ilocal), it becomes apparent that all players in the local group
would benefit if the distant emitter, player 2, joins the project. This addition to
the player set from Nlocal to N would lead to a decrease in the costs allocated to
all four ‘local’ players, as anticipated based on the advantageous scaling property.
The difference is most notable for players 1 and 3, since the first three players share
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a requirement for costly offshore transportation. Therefore, players 1 and 3 benefit
greatly from sharing the corresponding costs with player 2. In case of player 1, this
effect is reinforced much further by the fact that player 2 is the only other player who
requires high transport capacity.

Varying the costs
CCUS is one of the key enabling technologies for accelerating and realizing decar-
bonization of industries. New insights in costs and cost drivers, especially of shared
CO2 transport infrastructures, will emerge every year. The parameters that we use
are based on non-recent studies and the estimates are rough (cf. Appendix 3.A). That
is why we extend our application with three extra cost parameter scenarios. This sec-
tion not only shows the impact on cost allocations to the players, but it also shows
that if better, more recent or more accurate data becomes available, one can easily
update the cost model and its parameters. The following scenarios are considered:

• a scenario VAR↑ 25% where all variable cost parameters values are 25 percent
higher;

• a scenario FIX↑ 25% where all fixed cost parameters are 25 percent higher;

• a scenario REUSE+VAR in which the conditioning for re-use also leads to in-
creased variable onshore transportation costs.

In all three cases, the other parameter values remain the same. The adaptations of the
cost function parameters used in κ that follow from these three scenarios are given in
Table 3.6. The third cost scenario REUSE+VAR shows the adaptability of the cost
function of a component-based infrastructure cost problem. In this REUSE+VAR
scenario, the conditioning for re-use (z4 = 2) does not just lead to fixed costs, but
also increases the variable costs of onshore CO2 transport. It means that parameter
“Onshore VAR 2.5 Mton” is split into “Onshore VAR 2.5 Mton standard” with orig-
inal value 0.6, the variable costs for onshore transport with standard conditioning,
and “Onshore VAR 2.5 Mton re-use”, the new variable costs for onshore transport
with re-use conditioning, with value 1. This new parameter value is for illustrative
purposes only.

The extra variable cost driver in the third scenario leads to a change in the costs of
the EIC C1,1,1,2,1, since we need to account for the variable re-use conditioning costs.
Since player 4 and 5 have different transport radius requirements, it also leads to one
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cost parameter description baseline VAR ↑ 25% FIX ↑ 25%
REUSE+

VAR
Onshore VAR 2.5 Mton 0.6 0.75 0.6 -
Onshore VAR 2.5 Mton standard - - - 0.6
Onshore VAR 2.5 Mton re-use - - - 1
Onshore VAR 10 Mton 0.75 0.94 0.75 0.75
Onshore FIX 2.5 Mton standard 6 6 7.5 6
Onshore FIX 10 Mton standard 8 8 10 8
Onshore FIX 2.5 Mton re-use 42 42 52.5 42
Onshore FIX 10 Mton re-use 94 94 117.5 94
Offshore VAR 2.5 Mton 1.2 1.5 1.2 1.2
Offshore VAR 10 Mton 1.6 2 1.6 1.6
Offshore FIX 2.5 Mton 38 38 47.5 38
Offshore FIX 10 Mton 64 64 80 64

Table 3.6 Cost parameters for different cost scenarios as used
in the cost function κ of the EIC application to CO2 transport in-
frastructure problems

new EIC (with non-zero costs) in A(N): C2,1,1,2,1. This component is only required
by player 4 and represents the extra 20 kilometer transport radius needed by player
4, relative to player 5. The costs per EIC in each of the three scenarios are outlined
next to the baseline in Table 3.7.

Note that for cost scenarios FIX↑ 25% and VAR↑ 25%, the costs of all EICs except
C1,1,1,1,1 and C1,1,2,1,1 either increase 25%, or do not change. This occurs because all
these components correspond to a part of the infrastructure that leads to either only
additional fixed costs (e.g., additional fixed costs for conditioning) or only additional
variable costs (e.g., additional variable onshore transport costs). We also remark that
the total costs are 243 million euros in both scenarios. This is merely a coincidence:
in the baseline cost scenario the total costs c(N) = 216 consist of exactly 108 fixed
costs (42+8-6+64) and 108 variable costs, so the total costs increase an equal amount
in both scenarios.

Using Table 3.7, one can readily apply the equal component cost sharing rule to
find the cost allocations given in Table 3.8.

Several interesting observations can be made here. The equality of the total costs
for the scenarios FIX↑ 25% and VAR↑ 25% allows for a ‘fair’ comparison of the
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EIC N(EIC) baseline FIX↑ 25% VAR↑ 25% REUSE+VAR
C1,1,1,1,1 {1, 2, 3, 4, 5} 12 13.5 13.5 12
C2,1,1,1,1 {1, 2, 3, 4} 12 12 15 12
C3,1,1,1,1 {2} 30 30 37.5 30
C1,1,2,1,1 {1, 2} 3.5 4 3.875 3.5
C2,1,2,1,1 {1, 2} 3 3 3.75 3
C3,1,2,1,1 {2} 7.5 7.5 9.375 7.5
C1,1,1,1,2 {1, 2, 3} 38 47.5 38 38
C1,2,1,1,1 {1, 2, 3} 36 36 45 36
C1,1,2,1,2 {1, 2} 26 32.5 26 26
C1,2,2,1,1 {1, 2} 12 12 15 12
C1,1,1,2,1 {4, 5} 36 45 36 40
C2,1,1,2,1 {4} - - - 8
c(N) 216 243 243 228

Table 3.7 Costs per EIC in four different scenarios for the CO2
transport cost drivers

player baseline FIX↑ 25% VAR↑ 25% REUSE + VAR
heavy emitters 52.3 59.3 (↑ 13.3%) 58.4 (↑ 11.7%) 52.3 (↑ 0%)
distant emitters 89.8 96.8 (↑ 7.8%) 105.3 (↑ 17.2%) 89.8 (↑ 0%)
small emitters 30.1 33.5 (↑ 11.5%) 34.1 (↑ 13.5%) 30.1 (↑ 0%)
greenhouses 23.4 28.2 (↑ 20.5%) 24.5 (↑ 4.5%) 33.4 (↑ 42.7%)
hydrogen producers 20.4 25.2 (↑ 23.5%) 20.7 (↑ 1.5%) 22.4 (↑ 9.8%)

Table 3.8 Cost allocations based on the equal component cost
sharing rule for the construction costs of a CO2 transport infras-
tructure in four different cost scenarios

corresponding cost allocations. The equal component cost sharing rule behaves as we
would expect. It is clear that the players who require conditioning for re-use (4 and
5) are relatively most affected by an increase in fixed costs, since this is a relatively
large part of their (allocated) costs. Similarly, the distant emitters are most affected
by the increase in variable costs, due to their large onshore transport radius.

For the REUSE+VAR cost scenario, only the players who require conditioning for
re-use purposes face an increase in allocated costs. The larger requirement for onshore
transport radius of player 4 compared to player 5 means the former is affected more
by the increase in variable costs.
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3.A Cost drivers and parameter values for CO2 trans-
port infrastructure application

In this appendix, we first review literature concerning the main cost drivers in the
construction of a CO2 transport infrastructure. Then, we derive the cost parameter
values used in Section 3.4 on the basis of two selected studies.

van der Linden (2019) estimates that for the regional CCUS cluster in Rotterdam
investments in the range of 300 to 400 million euros are necessary. A year later, in a
more extensive study, these costs have been re-estimated to 400 to 500 million euros
(DNVGL, 2020). CO2 transport infrastructure is a significant (but not the only) por-
tion of these roughly estimated investment costs. Capital cost estimates are highly
variable (Akbilgic et al., 2015), depending, e.g., on which cost components are aggre-
gated to calculate total capital costs. Though there are different factors driving the
costs, often only estimates of total costs are presented. There is also a stream of lit-
erature developing detailed cost models for different CCUS network components, see
Knoope (2015) for a review. These detailed models can be used to optimize pipeline
configurations such as pipeline diameter and choice of materials based on, e.g., geo-
logical and economic conditions. These studies are, however, often focused on a single
component (e.g., only considering compression cost drivers or offshore pipeline cost
drivers), rather than an entire CO2 transport infrastructure like we aim to analyze.
Two exceptions are summarized in Mallon et al. (2013): a 2011 report from the Zero
Emmission Platform (ZEP, 2011) on CO2 transport costs and in the same year a
technical study from JRC into CO2 pipeline costs (Serpa et al., 2011).

The cost drivers and the corresponding parameter values we consider in our ap-
plication are mainly based on these two studies. We choose these sources for our cost
estimates for various reasons: they are readily available, are most consistent with
the cost driver relations found in the literature, and cover a range of CO2 transport
infrastructure designs with varying characteristics. Although ZEP’s and JRC’s cost
estimates as absolute numbers might no longer be accurate, they do provide insight
in the relative changes in investment costs due to changes in type of terrain (onshore
or offshore), transport capacity, or transport radius.

ZEP presents total transport cost estimates for different combinations of pipeline
length and yearly transport capacity. They also perform a simple sensitivity analysis,
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where they conclude that investment costs account for circa 90% of total CO2 trans-
port costs, the relation between costs and transport length is almost linear, and the
actual use of the transport pipeline does (almost) not influence the costs as long as
it does not exceed its maximum capacity.

Serpa et al. (2011) state that the capital costs of a CO2 pipeline system consist of
pipeline material and installation costs, and costs for system equipment such as pump-
ing and filtering stations and (digital) control systems. They develop a heuristic and
simplified approach to estimate CO2 pipeline costs. They express a linear relation-
ship between costs and pipeline length, where the specific cost parameters depend on
the terrain (onshore or offshore), the yearly transport capacity and the quality of CO2.

Next, we discuss the derivation of the cost parameter values used in the applica-
tion in Section 3.4. Recall from Section 3.2 and Section 3.4.1 that, based on the
aforementioned two studies, we consider costs consisting of fixed (system) and vari-
able (pipeline) costs, for both onshore and offshore transportation. There is a linear
relationship between the costs and the required transport radius, where the specific
cost parameters depend on the terrain and the transport capacity.

Further, conditioning requirements only influence the fixed portion of the costs2,
together with the capacity.

Since CCUS is one of the key enabling technologies for accelerating and realizing
decarbonization of industries, new insights in costs and cost drivers, especially of
shared CO2 transport infrastructures, will emerge regularly. The parameters that
we use are based on non-recent studies and the estimates are rough. Therefore, we
present our parameter derivation in such a way that if better, more recent or more
accurate data becomes available, one can easily adapt the cost parameters.

What parameters?
In Section 3.4.1, it becomes clear that we only need to find 10 different cost param-
eters for the corresponding total cost function. We have continuous characteristics
‘onshore transport radius’ and ‘offshore transport radius’, MC = {1, 2}, and discrete

2In fact, it is not clear how exactly the conditioning requirements influence the infrastructure
construction costs. Unfortunately, Knoope (2015) concludes in her CO2 infrastructure cost model
review that cost models for pumping stations (related to conditioning of the CO2) are not validated,
and also EBN (2018) notes that there is no reference cost known for pumping stations. Mallon et al.
(2013) apply a cost model to estimate the investments costs of pumping stations, but the actual
investment costs seem to be 3 to 5 times higher than its estimates.
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characteristics ‘transport capacity’ and ‘CO2 conditioning’, MD = {3, 4}. Finally
from the entries in the requirement matrix X we see that both discrete variables only
take two values.

Onshore cost parameters
We start with the cost parameters for onshore transportation. In Table 3.9, we com-
bine ZEP’s and JRC’s transport cost estimates into one table.

Capacity (Mt/y) per km (JRC) 10 km feeders (ZEP) 180 km spine (ZEP)
2.5 0.59 11.5 147
5 0.64
10 15 226
15 0.83

Table 3.9 Onshore transport pipeline system cost estimates in
million euros for different combinations of pipeline length and
yearly transport capacity, based on Annex 3 from ZEP (2011) and
Table 10 from Serpa et al. (2011).

JRC’s data refer to pipeline costs only, while ZEP’s data refer to total pipeline
system costs. Since, we use this data only for inspirational and exemplary purposes,
we combine this data without further corrections for potential price level differences.
First, we interpolate the JRC data to find that for 10 Mt/y capacity the pipeline costs
per km are approximately 0.735 million euros.

We combine JRC’s variable cost estimates corresponding to 2.5 Mt/y and 10 Mt/y
with ZEP’s data to find approximations for the fixed costs, in the following way. The
10 km feeders are seen as a simple onshore transport system that is sufficiently condi-
tioned for transportation to the shore - conditioning level 1. Hence, we estimate fixed
costs for this type of pipeline at approximately 11.5 − 10 · 0.59 = 5.6 million euros for
a small yearly capacity and 15 − 10 · 0.735 = 7.65 for a large capacity. The 180 km
spine from ZEP is seen as a system that has a more advanced conditioning level due
to the long distance, and is re-use ready - conditioning level 2. Again using the two
variable cost parameters, the corresponding fixed costs are estimated in a similar way,
which yields approximately 40.8 and 93.7 for small and large capacity, respectively.

Offshore cost parameters
Next, we consider offshore system costs. Again, we use a combination of JRC and
ZEP data.
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Capacity (Mt/y) per km (JRC) 180 km spine (ZEP)
2.5 1.18 250
5 1.28
10 338
15 1.78

Table 3.10 Offshore transport pipeline system cost estimates in million
euros for different combinations of pipeline length and yearly transport
capacity, based on Annex 3 from ZEP (2011) and Table 10 from Serpa
et al. (2011).

Using a similar linear interpolation approach as with the onshore cost parameter
estimations, we find offshore variable costs of approximately 1.18 and 1.53 for small
and large capacity, respectively, and use this to derive the corresponding offshore fixed
costs estimates of approximately 37.6 and 62.6.

Parameters for application
The parameter estimates used in Section 3.4 are summarized under ‘baseline’ in Table
3.11. As explained previously, the derived cost function parameters are rough esti-
mates based on rather non-recent sources. To avoid the impression of working with
accurate cost estimates, we round up all estimates. In this table, we also present the
first two scenarios in which the cost parameters differ, as discussed in Section 3.4.2.

cost parameter description name in κ baseline VAR ↑ 25% FIX ↑ 25%
Onshore VAR 2.5 Mton β{1}(1) 0.6 0.75 0.6
Onshore VAR 10 Mton β{1}(2) 0.75 0.94 0.75
Onshore FIX 2.5 Mton Cond1 β∅(1, 1) 6 6 7.5
Onshore FIX 10 Mton Cond1 β∅(2, 1) 8 8 10
Onshore FIX 2.5 Mton Cond2 β∅(1, 2) 42 42 52.5
Onshore FIX 10 Mton Cond2 β∅(2, 2) 94 94 117.5
Offshore VAR 2.5 Mton β{2}(1) 1.2 1.5 1.2
Offshore VAR 10 Mton β{2}(2) 1.6 2 1.6
Offshore FIX 2.5 Mton β{5}(1) 38 38 47.5
Offshore FIX 10 Mton β{5}(2) 64 64 80

Table 3.11 Cost parameters, in million euros, for different cost scenar-
ios as used in the cost function κ of the component-based infrastructure
cost problem applied to CO2 transport infrastructure problems.
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4 Competition and cooperation
in linear production and

sequencing processes

4.1 Introduction

Cooperative and non-cooperative game theory are often presented as two opposing
branches of the same field, where players either cooperate, form coalitions, and reach
joint decisions, or do not cooperate and decide only on their own individual strate-
gies. In this chapter, based on Van Beek et al. (2023b), we analyze hybrid models
that combine elements from these two branches of game theory in a single two-stage
model. In particular, we incorporate strategy dependence into linear production (LP)
processes and sequencing processes.

Brandenburger and Stuart (2007) create a two-stage model called a biform game
to analyze strategic moves in business, where a non-cooperative first stage is followed
by a cooperative second stage. The non-cooperative stage concerns a strategic de-
cision like whether to invest in innovation, and these strategic decisions made by
the players then determine the competitive environment in which some cooperative
game is played. They use a cooperative solution procedure based on the core to find
a unique allocation in the cooperative phase for all possible strategy combinations.
These allocations per strategy combination are used as the payoff vectors for the
so-called induced non-cooperative game. This induced game can then be analyzed
as a standard strategic game, for which the existence of (pure) Nash equilibria is
investigated.

81
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Although certainly inspired by the work of Brandenburger and Stuart (2007), we de-
viate from the original biform games both in model and in application. Rather than
studying business strategy, we define biform games to analyze two well-investigated
operations research (OR) problems. We introduce a strategic component to coopera-
tive ‘OR-games’ (see Borm et al. (2001) for a survey) corresponding to LP-processes
and sequencing processes. In particular, we analyze the influence of a strategy depen-
dent resource bundle and a strategy dependent initial processing order, respectively.
Further, we will not use the core to determine the allocation in the cooperative game.
The core is a powerful solution concept that is very suitable for the analysis of coop-
erative games in a competitive environment, but a disadvantage of the core is that it
usually does not prescribe a unique allocation vector, where a unique payoff vector
is required for the induced strategic game. Brandenburger and Stuart (2007) solve
this problem by taking a weighted average of the extreme points of the core. The
weights are determined by so-called confidence indices, reflecting the degree of con-
fidence each player has in their performance in the cooperative game. Finding these
confidence indices is somewhat arbitrary, perhaps even more so in an OR-game set-
ting. Therefore, we choose payoff vectors based on the Owen set (Owen, 1975) and
gain splitting rules as introduced by Hamers et al. (1996). Though examples can
be constructed for which the Owen set contains infinitely many allocation vectors, it
generally prescribes a unique allocation vector. A gain splitting rule always leads to a
unique payoff vector. Note that the Owen set is a subset of the core in LP-games, and
any non-negative gain splitting rule yields a core element in sequencing games, so we
certainly do not disregard or disqualify the core as a solution concept. By choosing
these context specific core selectors, however, we aim to let the allocation of value in
the cooperative game more aptly reflect the specific problem at hand.

Before introducing both models in more detail, it is important to discuss the gen-
eral purpose of this chapter, also considering the existing literature. Two-stage (or
multi-stage) models are not uncommon in the game-theoretic literature, but the two-
stages are often both cooperative or both non-cooperative. Combining cooperative
and non-cooperative game theory into the same model is still less common, though
it has numerous advantages. Among other things, such a combination is able to in-
corporate externalities, by having the value created by a coalition in the cooperative
stage also depend on the strategic choices of players who are not in that coalition,
through their strategies in the non-cooperative stage. In this way, the combination
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allows for a more explicit modeling of externalities than in cooperative models like
partition function form games (Kóczy, 2018).

Before the aforementioned paper on biform games, Hart and Moore (1990) consider
a two-stage model to compare transactions within firms to those between firms (with
a focus on the optimal assignment of assets), in which a non-cooperative stage is fol-
lowed by a cooperative game. Instead of the core, they use the Shapley value (Shap-
ley, 1953) to solve the cooperative game. In the context of LP-processes, Anupindi
et al. (2001) analyze a model (extended by, among others, Granot and Sošić (2003))
in which independent retailers face stochastic demand for an identical product and
unilaterally order their inventories in a non-cooperative stage (before the demand is
realized), followed by a cooperative stage in which incurred surpluses are transshipped
to retailers that incurred shortages. This leads to additional profits to be allocated to
the retailers. Next to the existence of Nash equilibria, an important focus of Anupindi
et al. (2001) is an issue that ties to mechanism design: how to determine an allocation
mechanism that, in this decentralized system, achieves the efficiency of a centralized
system. This is outside the scope of this chapter.

Further, biform games have been used to analyze, among other things, supply
network formation (Hennet and Mahjoub, 2010), smart grid communications (Kim,
2012), stochastic programming with recourse (Summerfield and Dror, 2013), and the
impact of surplus division on investment incentives (Feess and Thun, 2014). Nonethe-
less, literature related to biform games is relatively limited in quantity, especially with
regard to sequencing processes. The objective of this chapter is not to give an ex-
haustive theoretical analysis of a model with direct practical applications. However,
we want to illustrate that the conceptual idea of biform games can be applied to a
great variety of problems, and by analyzing and reflecting on both LP and sequencing
processes, we aim to inspire others to continue in this field of research.

An LP-process in a general setting, as presented in Owen (1975), can be used to
model situations in which a set of players is able to pool a set of resources used in
the manufacturing of a set of products. How much of each resource players need to
manufacture a product is described by a linear technology matrix, the availability of
resources per player is determined by resource bundles, and the prices of products
by some price vector. From this, a cooperative game can be derived, called a lin-
ear production game (LP-game). Without the need to formally define the game, the
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Owen set derives a tailor-made set of payoff allocations directly from the LP-process
on the basis of the values of players’ resource bundles, as determined by the shadow
prices obtained by solving the dual program of the linear programming problem faced
by the grand coalition. Van Gellekom et al. (2000) provide a detailed axiomatic
characterization of the Owen set.

In general, this line of research does not incorporate strategy dependence in the
LP-process. Hennet and Mahjoub (2010) use a biform model in the context of LP-
processes, but do this through a strategy dependent price vector, and analyze this in
the context of the role of a player in a supply chain. We adapt the original definition
of LP-processes such that the resource bundles of individual players are determined
strategically, which is more in line with the aforementioned work of Anupindi et al.
(2001).

It is often assumed that resources are owned completely by the players (firms) at
the start of an LP-process. This assumption is quite restrictive, since in practice the
firms are often dependent on their supply chain to obtain these resources. This is a
situation that lends itself well for analysis with a biform model. Starting with the
non-cooperative first stage, players compete to obtain resources and we assume that
they can only settle on one source. One might think of a situation in which firms can
obtain a scarce or hard to produce resource, like fossil fuels or complicated electronics,
from different sources. There may be significant costs and preparation time involved
with settling on a source, for example due to a need for lobbying to access a resource
in another country, or to train or financially support manufacturers of such a resource.
Using a second supplier would therefore come at overly high additional costs, making
it financially unattractive. In other types of practical situations, having an exclusive
supplier may be contractually required or desirable for, e.g., branding purposes.

The resource bundle available at a source is often restricted, meaning this bundle
has to be split between firms if multiple firms decide to settle on the same location.
The competition for resource bundles gives rise to the first-stage strategic game that
determines the exact LP-process in which the firms end up. Once each firm has
obtained a resource bundle, it may be of interest to the firms to cooperate, as they
might have a surplus of one resource and a deficit in another resource needed in the
manufacturing process. This is modeled in the second-stage LP-process, which is
solved using a payoff vector based on the Owen set. We refer to this model as a
biform linear production (BLP) process.
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The induced strategic games that arise from BLP-processes are shown to exhibit some
interesting properties. The existence of a pure Nash equilibrium is guaranteed in the
‘standard case’: a finite number of players, two locations of sources, and players who
choose the same source split the corresponding resource bundle equally. We restrict
our analysis to pure Nash equilibria in this chapter, henceforth simply referred to as
Nash equilibria. The payoff based on the Owen set is then contrasted with one-point
game-theoretic solution concepts like the Shapley value and the nucleolus (Schmeidler,
1969) that explicitly make use of the corresponding LP-games with respect to each
strategy combination. This approach is somewhat more similar to the aforementioned
model of Hart and Moore (1990), albeit applied to an entirely different setting. We
show that the existence of a Nash equilibrium is still guaranteed, provided that the
solution concept based on the Owen set is replaced by an anonymous game-theoretic
solution concept of the corresponding LP-games. Finally, we discuss the effect of
changes in the structure of the BLP-process on the existence of Nash equilibria. We
consider modifications with unequal resource bundle splitting, or with more than two
locations. First, in case of unequal splitting, the existence of a Nash equilibrium is
no longer guaranteed if there are three or more players. Second, with more than two
locations, even for two players a Nash equilibrium need not exist.

Next to the analysis of LP-processes, we also apply the biform framework to se-
quencing processes. A sequencing process involves determining in what order a finite
number of jobs should be lined up in front of one or more machines to minimize the
joint costs incurred by the set of jobs as a whole. These costs are often a linear func-
tion of the completion times of the jobs, where different jobs generally have different
cost parameters and processing times. This creates a measure of ‘urgency’ for the
jobs. For linear cost functions, the sequencing problem is optimized by processing the
jobs in (weakly) decreasing order of urgency, also defined as a Smith order (Smith,
1956). If we are given some initial order of jobs in the queue (often said to be rep-
resenting initial processing rights), this order is generally not optimal. Solving the
sequencing problem then yields a rearrangement of the jobs leading to maximal joint
cost savings. A natural question is how to allocate these cost savings over the vari-
ous jobs, which is particularly relevant when different jobs belong to different agents
(e.g., different companies processing jobs on the same machines). By treating jobs as
agents, or players, this question can be answered using game theory.



610416-L-sub01-bw-van Beek610416-L-sub01-bw-van Beek610416-L-sub01-bw-van Beek610416-L-sub01-bw-van Beek
Processed on: 31-8-2023Processed on: 31-8-2023Processed on: 31-8-2023Processed on: 31-8-2023 PDF page: 92PDF page: 92PDF page: 92PDF page: 92

86 4.1. Introduction

The first so-called sequencing game was developed by Curiel et al. (1989) for the
deterministic one-machine sequencing problem. The work on sequencing games has
been extended in several ways (see also Curiel et al. (2002) for a survey), where in
the vast majority of the literature on sequencing games, an initial order is assumed to
be given. Exceptions to this are Klijn and Sánchez (2006) and Hall and Liu (2016),
who analyze sequencing games without an initial order. Still, the games defined here
are cooperative games with a single stage. Multi-stage sequencing situations were
proposed by Curiel (2010), in which each stage corresponds to a cooperative game,
where the order arrived at after the first stage becomes the initial order of the second
stage, and so on. In this multi-stage sequencing situation, however, an initial order is
still assumed to be given for the first stage.

There are many scenarios in which the initial processing rights are not naturally
fully determined, but can somehow be strategically influenced by the players. For
example, when there is limited capacity for vaccination during a pandemic, this ca-
pacity may be centrally assigned to different groups in a certain order. However, these
groups may be able to influence this (initial) order by requesting to be processed with
a certain priority. Therefore, we do not assume an initial order is simply given. In
our model, the initial order is determined strategically, where all players have the
opportunity to request their preferred position in the order. If two or more players
request the same position, a tie-breaking rule is used to determine who is processed
first. This tie-breaking rule can be based on, e.g., the urgency of players.

In this way, we create a biform sequencing (BS) process. The first stage corresponds
to a strategic game that determines the initial order, where the second stage is a
(cooperative) sequencing process in which we assume that the cost savings of re-
arranging the initial order to an optimal order are allocated using a so-called gain
splitting rule. We consider biform sequencing processes with and without additional
costs associated with the strategic decision. Most prominently, we fully specify the set
of (pure) Nash equilibria in biform sequencing processes without strategy dependent
additional costs. Since in certain practical situations players may be able to influence
their position in the initial processing order by incurring some costs (e.g., payment for
priority service), we also discuss biform sequencing processes with such costs. Players
incur additional costs based only on their obtained or requested position in the initial
order. We still find a Nash equilibrium if the additional costs are associated with the
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obtained position in the initial order, and provide an example of the absence of Nash
equilibria in case these costs are associated with the requested position instead.

Section 4.2 analyzes biform linear production processes and Section 4.3 treats bi-
form sequencing processes. Both sections contain a discussion of possible extensions
of the models.

4.2 Biform linear production processes

Biform linear production (BLP) processes are an extension of standard LP-processes,
in which the resource bundles of players are strategically determined. As mentioned in
the introduction, the motivation behind this model is to analyze an LP-process where
firms compete for resources that are scarce or hard to manufacture. An LP-process
is described by the tuple

L = (N, R, P, A, {bi}i∈N , c),

where N represents the finite set of players, R the finite set of resources, P the finite
set of products, A the |R| × |P | linear technology matrix of which the cell in the
r-th row and p-th column corresponds to the number of units of resource r needed to
manufacture one unit of product p, bi ∈ RR

+ represents the resource bundle of player
i ∈ N , and c ∈ RP

+ represents the market prices for a unit of each product. We assume
for each resource that at least one player owns a positive quantity of this resource,
i.e.,

∑
i∈N bi

r > 0 for all r ∈ R, where bi
r denotes the amount of resource r ∈ R owned

by player i ∈ N . Further, we assume that each product with a positive market price
also requires a positive quantity of at least one resource. Formally, for all p ∈ P such
that cp > 0, there exists a resource r ∈ R such that Arp > 0.

Let L = (N, R, P, A, {bi}i∈N , c) be an LP-process. Then, the corresponding transfer-
able utility LP-game vL ∈ TUN is defined such that the value of coalition T ∈ 2N \{∅}
is given by

vL(T ) = max
y∈RP

{c�y | Ay ≤
∑
i∈T

bi, y ≥ 0}.
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In words, the value of a coalition is the maximum revenue generated by the sale of
products, where production is restricted by the sum of resource bundles available to
the coalition. The value vL(T ) of a coalition T can also be found by solving the
dual program instead. In the dual programs, the feasible region does not depend on
the coalition T at hand. We denote the corresponding feasible region by F , formally
defined by

F = {z ∈ RR| z�A ≥ c�, z ≥ 0}.

For a coalition T ∈ 2N \ {∅}, we then have

vL(T ) = min
z∈F

z� ∑
i∈T

bi.

For any z ∈ RR that solves the dual program, zr is the shadow price of resource r ∈ R

corresponding to this solution. We define the optimal region O as the set of shadow
prices within the feasible region that solve the minimization problem for the grand
coalition, i.e.,

O = {z ∈ F | vL(N) = z� ∑
i∈N

bi}.

The Owen set is a solution concept that exploits the unique structure of an LP-
process to find an allocation vector without the need to explicitly derive the LP-
game. On the domain specified at the start of this section, Van Gellekom et al.
(2000) axiomatically characterize the Owen set. The Owen set is a polytope that is
based on the shadow prices that solve the dual linear programming problem for the
grand coalition. Formally, the Owen set (Owen, 1975) is defined by

Owen(L) = {(z�bi)i∈N ∈ RN | z ∈ O}.

The Owen set of an LP-process is a subset of the core of the corresponding LP-
game. The elements of the Owen set are called Owen vectors. Though the Owen set
commonly consists of a single vector, examples can be contrived in which it does not
prescribe a unique allocation vector. This is due to the fact that the optimal region O

is a polytope that can contain more than one element. For any given set of resource
bundles, we therefore use the centroid of O, i.e., the mean of all its extreme points,
denoted by z̄, as ‘the’ vector of shadow prices of the resources to select one specific
Owen vector (z̄�bi)i∈N .
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Our model introduces a strategic element to standard LP-processes by letting players
compete for resources, rather than assuming each player owns some resource bundle
beforehand. We assume that resources can be obtained from two locations, sources 1
and 2, with resource bundles l1 ∈ RR

+ and l2 ∈ RR
+, respectively. The strategic choice

of the players will be to settle on source 1 or on source 2. This leads to the following
definition of a BLP-process.

Definition 4.2.1
A BLP-process is a tuple

L = (N, {Xi}i∈N , l1, l2, {L(x)}x∈X),

in which we have Xi = {1, 2} for all i ∈ N , l1 and l2 are the respective resource
bundles at the two locations, and for any x ∈ X = Πi∈N {1, 2},

L(x) = (N, R, P, A, {bi(x)}i∈N , c).

Here, in the LP-process L(x), bi(x) = 1
|Sk(x)| lk, with i ∈ N and k ∈ {1, 2} such that

xi = k, where Sk(x) = {j ∈ N | xj = k}.

Using the notation L(x), we emphasize that an LP-process is strategy dependent. We
explicitly show what part of the LP-process (indirectly) becomes strategy dependent
in our notation as well, using, e.g., bi(x) for the strategically determined resource
bundle of player i ∈ N . If a set of players chooses the same source, the resource
bundle available at this location is divided using an ‘equal bundle splitting rule’, i.e.,
each player gets an equal fraction of the available resource bundle. For this, we let
S1(x) and S2(x) denote the set of all players who choose location 1 and 2, respectively.

The next step is to determine the payoff vectors associated with a BLP-process,
thereby defining the induced (finite) strategic game. In the following two sections,
the payoff vectors of an induced strategic game are determined using ‘the’ Owen vector
or some one-point game-theoretic solution concept that satisfies anonymity, respec-
tively. In both cases, we are able to guarantee the existence of a Nash equilibrium in
the induced strategic game.
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4.2.1 BLP-processes using the Owen set

In this section, the strategic game induced by a BLP-process has payoffs based on the
Owen set of the corresponding LP-processes. Let L = (N, {Xi}i∈N , l1, l2, {L(x)}x∈X)
be a BLP-process. For any given x ∈ X, we define z̄(x) to be the average of all extreme
points of the optimal region O(x) = {z(x) ∈ F | vL(x)(N) = z(x)� ∑

i∈N bi(x)}, where
vL(x) is the LP-game corresponding to LP-process L(x) = (N, R, P, A, {bi(x)}i∈N , c).
Moreover, let ω(x) ∈ RN be the Owen vector corresponding to z̄(x), given by

ωi(x) = z̄(x)�bi(x)

for all i ∈ N . The strategic game GL,Owen =
({Xi}i∈N , {πL,Owen

i }i∈N

)
that is

induced by this BLP-process L is now defined by setting

πL,Owen
i (x) = ωi(x)

for any x ∈ X and all i ∈ N .

Importantly, there are only three possibilities for the average shadow prices of a
BLP-process. The key observation is that

∑
i∈N bi(x) is the only strategy dependent

factor that influences z̄(x) for any x ∈ X. If all players choose the same location as
their source, then only the resource bundle at that location will be available to the
grand coalition. We define z̄1 as the (average) vector of shadow prices corresponding
to the strategy combination x ∈ X for which S1(x) = N , and z̄2 is defined similarly
for x such that S2(x) = N . For all remaining strategy combinations, note that each
location is chosen by at least one player, so that the corresponding total resource
bundle is the sum of l1 and l2. All such strategy combinations then lead to the same
(average) price vector, denoted by z̄1,2. We formalize this in the following lemma.

Lemma 4.2.2
Let L = (N, {Xi}i∈N , l1, l2, {L(x)}x∈X) be a BLP-process. Let x ∈ X. Then,

(i)

z̄(x) =

⎧⎪⎪⎨
⎪⎪⎩

z̄1 if S1(x) = N,

z̄2 if S2(x) = N,

z̄1,2 otherwise.
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(ii) For all i ∈ N ,

πL,Owen
i (x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(z̄1)� 1
|N | l1 if S1(x) = N,

(z̄2)� 1
|N | l2 if S2(x) = N,

(z̄1,2)� 1
|S1(x)| l1 if i ∈ S1(x) and S2(x) �= ∅,

(z̄1,2)� 1
|S2(x)| l2 if i ∈ S2(x) and S1(x) �= ∅.

The following example illustrates a BLP-process and its corresponding induced game.

Example 4.2.1
Consider a BLP-process L = (N, {Xi}i∈N , l1, l2, {L(x)}x∈X) with

N = {1, 2, 3}, Xi = {1, 2} for all i ∈ N, l1 =

⎡
⎣18

48

⎤
⎦ and l2 =

⎡
⎣90

12

⎤
⎦ ,

where for any x ∈ X, we have L(x) = (N, R, P, A, {bi(x)}i∈N , c) with

R = {r1, r2}, P = {p1, p2}, A =

⎡
⎣1 4

2 2

⎤
⎦ and c =

⎡
⎣3

6

⎤
⎦ .

The feasible region is given by

F = {z ∈ R2| z1 + 2z2 ≥ 3, 4z1 + 2z2 ≥ 6, z ≥ 0},

with extreme points [3 0]�, [1 1]� and [0 3]�.

Consider x = (1, 1, 1), so that the players (equally) divide only resource bundle
l1. In this case, the objective function for the dual program of N is given by
z� ∑

i∈N bi(x) = 18z1 + 48z2 for all z ∈ F . The unique extreme point of the
feasible region that minimizes this objective function, is [3 0]�. Since the opti-
mal region O(x) consists of a single vector, we simply get z̄(x) = z̄1 = [3 0]�.
For these shadow prices, the corresponding payoff in the induced strategic game is
πL,Owen

i (x) = (z̄1)�bi(x) = (z̄1)� 1
3 l1 = [3 0][6 16]� = 18 for all i ∈ N .

Similarly, x = (2, 2, 2) leads to z̄(x) = z̄2 = [0 3]� and πL,Owen
i (x) = (z̄2)� 1

3 l2 =
12 for all i ∈ N .

For any other strategy combination x, the total resource bundle available to the
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92 4.2. Biform linear production processes

grand coalition N becomes l1+l2 = [108 60]�. Solving the corresponding minimization
problem minz∈F 108z1 + 60z2 gives z̄(x) = z̄1,2 = [1 1]�. With x = (1, 1, 2), we find

πL,Owen(x) =

⎛
⎝[1 1]

⎡
⎣ 18

2
48
2

⎤
⎦ , [1 1]

⎡
⎣ 18

2
48
2

⎤
⎦ , [1 1]

⎡
⎣90

12

⎤
⎦
⎞
⎠ = (33, 33, 102).

For each strategy combination, the resulting payoffs determined by the Owen set of
the corresponding LP-process are given in Table 4.1. Recall that in such tables, we
always let the row represent the strategy of player 1, where player 2 chooses a column,
and the matrix is determined by the choice of player 3.

1 2
1 (18,18,18) (33,102,33)
2 (102,33,33) (51,51,66)

1

1 2
1 (33,33,102) (66,51,51)
2 (51,66,51) (12,12,12)

2

Table 4.1 The strategic game GL,Owen induced by the BLP-
process of Example 4.2.1

The set of Nash equilibria of the induced game GL,Owen is

E(GL,Owen) = {(1, 2, 2), (2, 1, 2), (2, 2, 1)}. �

Next, we show that any strategic game GL,Owen induced by a BLP-process L, has
a Nash equilibrium. We do so using a comprehensive result from Konishi et al.
(1997). In particular, they show that any strategic game satisfying four properties
has a Nash equilibrium. These properties are presented in the general context of
‘congestion games’, in which players compete by choosing to use a certain facility
in a facility set. The first property, (P1), states that this facility set is finite. Let
G =

({Xi}i∈N , {πi}i∈N

)
be a strategic game. Then, (P1) is defined as

(P1) there exists a finite set K such that Xi = K for all i ∈ N .

Second, (P2) concerns ‘independence of irrelevant choices’ and requires that the
payoff of a player is not affected by any change in the strategy combination, as long as
the set of players who choose the same facility as this player is not altered. Formally,

(P2) πi(xj , x−j) = πi(x̃j , x−j) for any i, j ∈ N and any x ∈ X and x̃j ∈ Xj

such that xi �= xj and xi �= x̃j.
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The third property (P3), ‘anonymity’, implies, in combination with (P1), that only
the number of players choosing each of the facilities within K impacts the payoffs,
their identities do not. Formally,

(P3) πi(x) = πi(y) for any i ∈ N and any x, y ∈ X such that xi = yi and
|{j ∈ N | xj = k}| = |{j ∈ N | yj = k}| for any k ∈ K.

Finally, ‘partial rivalry’ (P4) means that if some player chose the same facility as
player i ∈ N , but then deviates to a different facility, this will never decrease the
payoff of i:

(P4) πi(xj , x−j) ≤ πi(x̃j , x−j) for any i, j ∈ N , i �= j, and any x ∈ X and
x̃j ∈ Xj such that xi = xj and xi �= x̃j.

After formalizing the result in Proposition 4.2.3, we prove Theorem 4.2.4 by show-
ing that GL,Owen satisfies all four properties.

Proposition 4.2.3 [Konishi et al. (1997)]
Let G =

({Xi}i∈N , {πi}i∈N

)
be a strategic game that satisfies properties (P1), (P2),

(P3) and (P4). Then, E(G) �= ∅.

Theorem 4.2.4
Let L be a BLP-process and let GL,Owen be the induced strategic game. Then,
E(GL,Owen) �= ∅.

Proof. We prove the theorem by showing that GL,Owen satisfies (P1)-(P4) from
Proposition 4.2.3. For GL,Owen, we have Xi = {1, 2} for all i ∈ N , so (P1) is clearly
satisfied.

Next, let i, j ∈ N , x ∈ X and x̃j ∈ Xj such that xi �= xj and xi �= x̃j . Note that
since Xi = {1, 2} for all i ∈ N , if xi �= xj and xi �= x̃j , then xj = x̃j , meaning (P2)
is satisfied as well.

For (P3), let i ∈ N , x, y ∈ X such that xi = yi and |Sk(x)| = |Sk(y)| for all
k ∈ {1, 2}. Note that xi = yi implies that i ∈ Sk(x) ⇔ i ∈ Sk(y) for any k ∈ {1, 2}.
Using Lemma 4.2.2(ii), it follows that πL,Owen

i (x) = πL,Owen
i (y).

To show (P4) is satisfied, let i, j ∈ N , i �= j, let k ∈ {1, 2}, and let x ∈ X such
that xi = xj = k and x̃j �= k. Since, in x, at least two distinct players choose k, we
must have either Sk(x) = N , or 1 < |Sk(x)| < |N |. For Sk(x) = N , we have

πL,Owen
i (xj , x−j) = (z̄k)� 1

|N | lk
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≤ (z̄1,2)� 1
|N | lk

≤ (z̄1,2)� 1
|N | − 1 lk

= πL,Owen
i (x̃j , x−j),

where the first inequality follows from the fact that z̄k is a solution to minz∈F {z�lk}
since Sk(x) = N , and the final equality follows from |Sk(x̃j , x−j)| = |Sk(x)| − 1. We
also use the latter for 1 < |Sk(x)| < |N |, which yields

πL,Owen
i (xj , x−j) = (z̄1,2)� 1

|Sk(x)| lk ≤ (z̄1,2)� 1
|Sk(x)| − 1 lk = πL,Owen

i (x̃j , x−j).

This shows that (P4) is satisfied as well, which completes the proof.

4.2.2 BLP-processes using an anonymous solution

In this section, we focus on a modification of Theorem 4.2.4 using an anonymous
one-point game-theoretic solution concept (from now on referred to as an anonymous
solution) instead of the Owen set to determine the payoffs in the induced strategic
game. We consider game-theoretic solutions on the class of LP-games with fixed
player set N , defined by a function f on this class such that

∑
i∈N fi(v) = v(N).

Solution f satisfies anonymity if for every LP-game v, any bijection σ : N → N , and
all i ∈ N , we have fσ(i)(v) = fi(vσ), where vσ(T ) = v(σ(T )) for all T ⊆ N \ {∅}.
Here, σ(i) = j implies player j in v is ‘named’ i in vσ, and σ(T ) is the set of players
in v corresponding to coalition T in vσ, i.e., σ(T ) = {j ∈ N | ∃i ∈ T with σ(i) = j}.
In the context of LP-games, this means that any difference in payoffs between players
is explained by a difference in their resource bundles, not by their identities. A direct
implication of the anonymity of f is that for any LP-game v with fixed player set N

and all i, j ∈ N with i and j symmetric in v, i.e., with v(T ∪ {i}) = v(T ∪ {j}) for
any T ⊆ N \ {i, j}, it holds that fi(v) = fj(v). Examples of prominent anonymous
solutions include the Shapley value (Shapley, 1953) and the nucleolus (Schmeidler,
1969).

Given a BLP-process L = (N, {Xi}i∈N , l1, l2, {L(x)}x∈X) and an anony-
mous solution f , we define the corresponding induced strategic game as
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GL,f =
({Xi}i∈N , {πL,f

i }i∈N

)
, where the payoff of player i ∈ N equals

πL,f
i (x) = fi(vL(x)).

Lemma 4.2.5 states that, in GL,f , for any strategy combination in which two players
choose the same location, these players have the same payoff. Further, the effect of
unilaterally deviating from this specific location to the other location is the same for
each player.

Lemma 4.2.5
Let L = (N, {Xi}i∈N , l1, l2, {L(x)}x∈X) be a BLP-process, let f be an anonymous
solution and let GL,f =

({Xi}i∈N , {πL,f
i }i∈N

)
be the induced strategic game. Then,

(i) πL,f
i (x) = πL,f

j (x) for any i, j ∈ N and any x ∈ X such that xi = xj.

(ii) πL,f
i (x̃i, x−i) = πL,f

j (x̃j , x−j) for any i, j ∈ N , any x ∈ X, and any x̃i ∈ Xi

and x̃j ∈ Xj such that xi = xj, x̃i = x̃j and xi �= x̃i.

Proof.

(i) Let i, j ∈ N and x ∈ X such that xi = xj . Since this implies that bi(x) = bj(x),
it readily follows that i and j are symmetric in vL(x), so that πL,f

i (x) = πL,f
j (x)

by anonymity of f .

(ii) Let i, j ∈ N , x ∈ X, x̃i ∈ Xi and x̃j ∈ Xj such that xi = xj , x̃i = x̃j and
xi �= x̃i. Then, bi(x̃i, x−i) = bj(x̃j , x−j) and bi(x̃j , x−j) = bj(x̃i, x−i). Consider
the LP-games vL(x̃i,x−i) and vL(x̃j ,x−j), and consider the bijection σ : N → N

such that σ(i) = j, σ(j) = i, and σ(k) = k for all k ∈ N \ {i, j}. Note that
vσ

L(x̃i,x−i) = vL(x̃j ,x−j). Hence, applying anonymity of f (in the second equality),
we get

fi(vL(x̃i,x−i)) = fσ(j)(vL(x̃i,x−i)) = fj(vσ
L(x̃i,x−i)) = fj(vL(x̃j ,x−j)).

In particular, this lemma implies that, in GL,f , if a player i ∈ N can deviate profitably
from some x ∈ X, then all players j ∈ N with xi = xj can deviate profitably.

Corollary 4.2.6
Let L = (N, {Xi}i∈N , l1, l2, {L(x)}x∈X) be a BLP-process, let f be an anonymous
solution and let GL,f =

({Xi}i∈N , {πL,f
i }i∈N

)
be the induced strategic game. Let
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i, j ∈ N , x ∈ X, x̃i ∈ Xi and x̃j ∈ Xj such that xi = xj and x̃i = x̃j. If
πL,f

i (x) < πL,f
i (x̃i, x−i), then πL,f

j (x) < πL,f
j (x̃j , x−j).

The following example illustrates that the Nash equilibria of GL,Owen and GL,f in-
duced by the same BLP-process L need not coincide. Hence, the existence of a
Nash equilibrium in GL,f does not follow from Theorem 4.2.4. However, using Corol-
lary 4.2.6, its existence is still guaranteed, as formalized in Theorem 4.2.7.

Example 4.2.2
Consider a BLP-process L = (N, {Xi}i∈N , l1, l2, {L(x)}x∈X) with

N = {1, 2}, X1 = X2 = {1, 2}, l1 =

⎡
⎣100

200

⎤
⎦ and l2 =

⎡
⎣300

50

⎤
⎦ ,

where for any x ∈ X, we have L(x) = (N, R, P, A, {bi(x)}i∈N , c) with

R = {r1, r2}, P = {p1, p2}, A =

⎡
⎣5 5

6 6

⎤
⎦ and c =

⎡
⎣9

9

⎤
⎦ .

The feasible region is given by

F = {z ∈ R2| 5z1 + 6z2 ≥ 9, z ≥ 0}

and has two extreme points, leading to z̄1 = [9/5 0]� and z̄2 = z̄1,2 = [0 3/2]�. The
LP-games corresponding to each strategy combination are given in Table 4.2.

T {1} {2} N

vL(1,1)(T ) 90 90 180
vL(1,2)(T ) 180 75 375
vL(2,1)(T ) 75 180 375
vL(2,2)(T ) 37.5 37.5 75

Table 4.2 The LP-game vL(x) for each x ∈ X in Example 4.2.2

The induced strategic game GL,Owen, for which the payoffs can be calculated us-
ing Lemma 4.2.2(ii), is depicted in Table 4.3. To derive GL,Φ, given in Table 4.4,
the Shapley value Φ(vL(x)) can be straightforwardly calculated using the standard
equation (1.1) for the Shapley value of two-player games.
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1 2
1 (90,90) (300,75)
2 (75,300) (37.5,37.5)

Table 4.3 The strategic game
GL,Owen induced by the BLP-
process of Example 4.2.2

1 2
1 (90,90) (240,135)
2 (135,240) (37.5,37.5)

Table 4.4 The strategic game
GL,Φ induced by the BLP-process of
Example 4.2.2

Note that E(GL,Owen) = {(1, 1)}, whereas E(GL,Φ) = {(1, 2), (2, 1)}. �

Theorem 4.2.7
Let L be a BLP-process, let f be an anonymous solution and let GL,f be the induced
strategic game. Then, E(GL,f ) �= ∅.

Proof. Denote L = (N, {Xi}i∈N , l1, l2, {L(x)}x∈X) and suppose E(GL,f ) = ∅. Set
x0 = (1, 1, . . . , 1) and x|N | = (2, 2, . . . , 2). The proof by induction (on a finite set) is
based on the following idea: using the assumption that there are no equilibria, and
starting from strategy combination x0, we show that for all strategy combinations
x ∈ X with S1(x) �= ∅ it is beneficial to unilaterally deviate for all players in S1(x).
This reasoning, however, would lead to the conclusion that x|N | is a Nash equilibrium,
yielding a contraction.

As L and f are fixed, we use π instead of πL,f in the proof. For the base case,
since x0 /∈ E(GL,f ), Corollary 4.2.6 implies that πi(x1) > πi(x0) for all x1 ∈ X and
i ∈ N with S2(x1) = {i}. Note that this inequality implies that it is not beneficial
for player i to unilaterally deviate from x1 by choosing location 1 instead of 2.

Next, we assume the induction hypothesis that for some k ∈ {1, ..., |N | − 1}, it
holds that

πi(xk) > πi(xk−1) (4.1)

for all xk−1, xk ∈ X and i ∈ S1(xk−1) with |S2(xk−1)| = k − 1 and S2(xk) =
S2(xk−1) ∪ {i}. To emphasize, player i unilaterally deviates from xk−1 by choosing
location 2 instead of 1.

Note that for an arbitrary xk ∈ X with |S2(xk)| = k, (4.1) implies that there is
no profitable unilateral deviation for the players in S2(xk). Since E(GL,f ) = ∅, there
must therefore be a strictly profitable deviation for a player in S1(xk). Corollary 4.2.6
then implies that

πi(xk+1) > πi(xk) (4.2)
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for all xk, xk+1 ∈ X and i ∈ S1(xk) with |S2(xk)| = k and S2(xk+1) = S2(xk) ∪ {i}.
This shows the induction hypothesis holds for k + 1 as well.

Note, however, that for k = |N | − 1, (4.2) yields πi(x|N |) > πi(x|N |−1) for
all x|N |−1 ∈ X and i ∈ N with S1(x|N |−1) = {i}, which in turn implies that
x|N | = (2, 2, . . . , 2) ∈ E(GL,f ), a contradiction. Hence, E(GL,f ) �= ∅.

For the sake of completeness, we remark that a proof along similar lines as the proof
of Theorem 4.2.7 can also be used to prove Theorem 4.2.4. However, the result of
Konishi et al. (1997) as stated in Proposition 4.2.3, used to prove Theorem 4.2.4,
cannot be used to prove Theorem 4.2.7. In particular, property (P4) need not be
satisfied. This is illustrated in the following example.

Example 4.2.3
Reconsider the BLP-process L from Example 4.2.2, but suppose the induced strategic
game GL,f = ({Xi}i∈N , {πL,f

i }i∈N ) is now determined by the anonymous solution f

given by fi(vL(x)) = 3
|N | vL(x)(N) − 2Φi(vL(x)) for any x ∈ X and any i ∈ N . Then,

we have πL,f
1 (1, 1) = 90 > 82.5 = πL,f

1 (1, 2), meaning (P4) is violated. �

4.2.3 BLP-processes with unequal bundle splitting or three
locations

In the preceding sections, we consider BLP-processes in which resources can be ob-
tained from two locations, where all players who choose the same location get an
equal fraction of the resource bundle. In this section, we consider modifications with
unequal bundle splitting or more than two locations. For the former, we show that
the existence of a Nash equilibrium is no longer guaranteed if there are three or more
players. For the latter, even for two players a Nash equilibrium need not exist.

The equal bundle splitting rule is contingent on the firms holding equal sway over
the sources. In practice, power dynamics may be such that one firm will obtain a
larger part of the resource bundle if firms are forced to compete at a source. Using
an alternative splitting rule, where each player gets some non-negative fraction of
the resource bundle that is not necessarily equal to the fraction of the other players,
affects the results. Allowing for arbitrary ways of splitting, the set of Nash equilibria
of the induced strategic game can become empty for |N | > 2, as demonstrated in
Example 4.2.4.
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To properly define a BLP-process L = (N, {Xi}i∈N , l1, l2, {L(x)}x∈X) with un-
equal bundle splitting rules, let λ(x) = {λi(x)}i∈N denote the bundle splitting rule of
x ∈ X, where we require that λi(x) ≥ 0 for all i ∈ N , and

∑
i∈Sk(x) λi(x) = 1 for all

k ∈ {1, 2} with Sk(x) �= ∅. We refer to any such bundle splitting rule as a non-negative
bundle splitting rule. Then, for any x ∈ X, L(x) = (N, R, P, A, {bi(x)}i∈N , c) is de-
termined by bi(x) = λi(x)lk for any i ∈ N and k ∈ {1, 2} such that xi = k.

Example 4.2.4
We reconsider the BLP-process L of Example 4.2.1. Recall that z̄1 = [3 0]�, z̄2 =
[0 3]�, z̄1,2 = [1 1]�, l1 = [18 48]� and l2 = [90 12]�. We use an equal bundle splitting
rule for all strategies x ∈ X, except λ(1, 2, 2) = (1, 1

6 , 5
6 ), λ(2, 1, 2) = ( 5

6 , 1, 1
6 ) and

λ(2, 2, 1) = ( 1
6 , 5

6 , 1).
For the corresponding resource bundles, we get, e.g., b1(1, 2, 2) = l1, b2(1, 2, 2) =

[15 2]� and b3(1, 2, 2) = [75 10]�. The shadow prices are not affected by the bundle
splitting rule, so z̄1,2 = [1 1]� is still used to determine the payoff based on the Owen
set for (among others) the three strategy combinations with unequal bundle splitting.
For each strategy combination, the resulting payoffs determined by the Owen set of
the corresponding LP-process are given in Table 4.5.

1 2
1 (18,18,18) (33,102,33)
2 (102,33,33) (17,85,66)

1

1 2
1 (33,33,102) (66,17,85)
2 (85,66,17) (12,12,12)

2

Table 4.5 The strategic game GL,Owen induced by the BLP-
process with unequal bundle splitting of Example 4.2.4

Note that E(GL,Owen) = ∅. A key difference from Example 4.2.1 is that we now have,
e.g., πL,Owen

1 (2, 1, 2) �= πL,Owen
1 (2, 2, 1). �

The final observation in Example 4.2.4 shows that (P3) from Proposition 4.2.3 no
longer holds. This does not yet occur when there are only two players, meaning
Theorem 4.2.4 can still be generalized for |N | = 2.

Theorem 4.2.8
Let L = (N, {Xi}i∈N , l1, l2, {L(x)}x∈X) be a BLP-process with |N | = 2, using non-
negative bundle splitting rules, and let GL,Owen be the induced strategic game. Then,
E(GL,Owen) �= ∅.
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Proof. Similar to the proof of Theorem 4.2.4, we show that GL,Owen satisfies (P1)-
(P4) from Proposition 4.2.3. Properties (P1) and (P2) are again clearly satisfied.

To show that (P3) is satisfied, let i ∈ N , x, y ∈ X such that xi = yi and
|Sk(x)| = |Sk(y)| for all k ∈ {1, 2}. Since |N | = 2, this implies that x = y and
hence πL,Owen

i (x) = πL,Owen
i (y).

Finally, for (P4), let i, j ∈ N , i �= j, let k ∈ {1, 2}, and let x ∈ X such that
xi = xj = k and x̃j �= k. Note that Sk(x) = N since |N | = 2, so that

πL,Owen
i (xi, xj) = (z̄k)�λi(xi, xj)lk

≤ (z̄1,2)�λi(xi, xj)lk
≤ (z̄1,2)�lk

= πL,Owen
i (xi, x̃j),

using λi(xi, xj) ≥ 0 and λi(xi, xj) ≤ 1 in the first and second inequality, respec-
tively.

Alternatively, maintaining the equal bundle splitting rule, one can generalize the BLP-
process using a model with three locations. Even for |N | = 2, the set of Nash equilibria
of the induced strategic game can become empty, as shown in Example 4.2.5.

Example 4.2.5
Consider a BLP-process with three locations L = (N, {Xi}i∈N , l1, l2, l3, {L(x)}x∈X)
with

N = {1, 2}, X1 = X2 = {1, 2, 3}, l1 =

⎡
⎣100

200

⎤
⎦ , l2 =

⎡
⎣300

50

⎤
⎦ , and l3 =

⎡
⎣200

150

⎤
⎦ ,

where for any x ∈ X, we have L(x) = (N, R, P, A, {bi(x)}i∈N , c) with

R = {r1, r2}, P = {p1, p2}, A =

⎡
⎣0 2

5 1

⎤
⎦ and c =

⎡
⎣3

6

⎤
⎦ .

Similar to the two-location setting, the resource bundles in L(x) are determined using
an equal bundle splitting rule, i.e., bi(x) = 1

|Sk(x)| lk, with k ∈ {1, 2, 3} such that
xi = k, where Sk(x) = {j ∈ N | xj = k}.
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Chapter 4. Biform linear production and sequencing processes 101

The feasible region is given by

F = {z ∈ R2| 5z2 ≥ 3, 2z1 + z2 ≥ 6, z ≥ 0}.

The shadow prices correspond to the extreme points of the feasible region. Specifically,
we find

z̄(x) =

⎧⎨
⎩[0 6]� if x ∈ {(2, 2), (2, 3), (3, 2)},

[2.7 0.6]� otherwise.

The induced strategic game is determined similar to the two-location setting. For
x = (1, 1), this leads to πL,Owen

1 (x) = πL,Owen
2 (x) = [2.7 0.6] 1

2 l1 = 195. Alternatively,
for x = (2, 3), the payoffs are πL,Owen

2 (x) = [0 6]l2 = 300 and πL,Owen
3 (x) = [0 6]l3 =

900, respectively. In this way, we find the strategic game given in Table 4.6.

1 2 3
1 (195,195) (390,840) (390,630)
2 (840,390) (150,150) (300,900)
3 (630,390) (900,300) (315,315)

Table 4.6 The strategic game GL,Owen induced by the BLP-
process with three locations of Example 4.2.5

The set of Nash equilibria of this strategic game is empty.

In particular, note that (P2) from Proposition 4.2.3 is violated, since, e.g.,
πL,Owen

1 (2, 1) �= πL,Owen
1 (2, 3). Whether player 2 chooses location 1 or 3 affects the

shadow prices and thereby the payoff of player 1. This does not yet come into play
when there are only two locations. �

4.3 Biform sequencing processes

In this section, we introduce a strategic component to sequencing processes. We first
recall the definition of a standard (cooperative) sequencing process, where an initial
order is given. Such a process will form the second stage of a biform sequencing
process, at which we arrive after an initial order is strategically determined in the
first stage.
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102 4.3. Biform sequencing processes

4.3.1 Sequencing processes

A sequencing process is summarized by the tuple

Q = (N, σ0, p, α).

Here, N is the finite player set, where each player represents a job (these two terms
will be used interchangeably). From the start, all jobs are lined up to be processed
sequentially on a single machine. The initial processing order is denoted by σ0, where
an order is described by a bijection σ : {1, 2, . . . , |N |} → N and the collection of all
such orders is denoted by Π(N). In particular, σ(k) = i indicates that job i ∈ N is
on the k-th place in the processing order. Vectors p ∈ RN and α ∈ RN , satisfying
pi > 0 and αi > 0 for all i ∈ N , denote the processing times and cost parameters of
the players, respectively. The cost parameter of a player determines the linear rela-
tionship between this player’s costs and the completion time of the corresponding job.

Let Q = (N, σ0, p, α) be a sequencing process. Then, for any processing order
σ ∈ Π(N), the completion time of a job i ∈ N is denoted by Ci(σ), with

Ci(σ) =
∑

j∈N : σ−1(j) ≤ σ−1(i)

pj .

The corresponding individual costs of player i w.r.t. σ are given by αiCi(σ).

Clearly, an individual player’s costs are lower when this player is closer to the head of
the queue in the initial order, since fewer players are processed before this player in
that case. To determine an optimal order, however, we are interested in minimizing
the total costs

∑
i∈N αiCi(σ) of the set of jobs as a whole over all orders σ ∈ Π(N).

Intuitively, it is clear that jobs with a high cost parameter should be processed before
those with low cost parameter, unless the processing time of the former is substantially
higher than that of the latter. This creates a measure of urgency for each player, de-
noted by u = (ui)i∈N , where the urgency of player i ∈ N is defined by ui = αi

pi
. Smith

(1956) proved that any optimal processing order σ̂ ∈ Π(N) is such that the players
are ordered in weakly decreasing order of urgency, i.e., for all k ∈ {1, 2, . . . , |N | − 1},
we have

ασ̂(k)

pσ̂(k)
≥ ασ̂(k+1)

pσ̂(k+1)
.
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Chapter 4. Biform linear production and sequencing processes 103

The set of misplaced pairs MP (σ0) within the given initial order σ0 ∈ Π(N) comprises
all pairs of players who are not ordered according to a Smith order, formally defined
by

MP (σ0) = {(i, j) ∈ N × N | σ−1
0 (i) < σ−1

0 (j) and ui < uj}.

By rearranging all misplaced pairs, one arrives at a Smith order. If two neighboring
players i, j ∈ N with σ−1

0 (i) = σ−1
0 (j) − 1 are misplaced, i.e., (i, j) ∈ MP (σ0), these

players can save costs by switching places. Specifically, the cost savings of such a pair
of neighboring players are

gij = αjpi − αipj > 0.

Note that αjpi corresponds to the individual cost decrease of player j, where αipj is
the individual cost increase of player i, so that gij gives the joint cost savings of the
pair. Importantly, note that these cost savings are independent of the exact position
of the neighbors in the queue.

The maximal cost savings the grand coalition can make, are achieved through re-
arranging misplaced pairs in the initial order by consecutively switching neighboring
players until the players are arranged in a Smith order. The corresponding maximal
cost savings obtained by a Smith order σ̂ ∈ Π(N) therefore equal

∑
i∈N

αi(Ci(σ0) − Ci(σ̂)) =
∑

(i,j)∈MP (σ0)

gij .

Next, we need to determine how to allocate these cost savings to the players. For this,
we use so-called gain splitting rules. The concept of such a rule is that whenever a
pair of neighboring players makes a gain by switching places, this gain is only divided
among these players. Curiel et al. (1989) propose and axiomatically characterize the
Equal Gain Splitting (EGS) rule, that divides each such gain equally over the two
players involved. Now, we consider gain splitting rules GSλ defined by

GSλ(Q) =
∑

(i,j)∈MP (σ0)

(
λije{i} + (1 − λij)e{j})gij

for any λ ∈ Λ. Here, Λ = {λ : N ×N → [0, 1] | λ(r, s)+λ(s, r) = 1 for all r, s ∈ N, r �=
s, and λ(r, r) = 1}. With minor abuse of notation, we write λij instead of λ(i, j). For
the equal gain splitting rule we have EGS(Q) = GSλ(Q) for λ ∈ Λ such that λrs = 1

2
for all r, s ∈ N , r �= s. The split core of Q in Hamers et al. (1996) refers to the set
{GSλ(Q)| λ ∈ Λ} of all allocation vectors corresponding to a gain splitting rule.
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104 4.3. Biform sequencing processes

For an arbitrary gain splitting rule GSλ, the corresponding net profit of player i ∈ N

in the sequencing process Q = (N, σ0, p, α) is defined by

πλ
i (Q) = GSλ

i (Q) − ICi(Q),

where the initial individual costs ICi(Q) of player i w.r.t. σ0 are given by ICi(Q) =
αiCi(σ0). To emphasize, negative values of the net profit vector correspond to net
payments made by the players. Note that the net profit vector does not (directly)
depend on the individual costs of the players after rearranging; it is determined by
a non-negative weighted sum of positive gains made when rearranging players from
the initial order to a Smith order, from which we subtract the individual costs in the
initial order. Therefore, no player can be worse off after rearranging all misplaced
pairs in the initial order, even if the player is processed later due to the rearrangement.

Example 4.3.1
Let N = {1, 2, 3}, p = (4, 3, 4) and α = (2, 3, 6). In this example, we use the equal gain
splitting rule and we determine the net profit vectors πEGS(N, σ0, p, α) corresponding
to each of the six possible initial orders. First, note that there is a unique Smith order,
given by σ̂ = (3, 2, 1). Next, consider σ0 = (1, 2, 3). Then, the initial cost vector is
given by (8, 21, 66). There are three misplaced pairs, (1, 2), (1, 3) and (2, 3), with
g12 = g23 = 6 and g13 = 16, so EGS(N, (1, 2, 3), p, α) = (11, 6, 11). Hence,

πEGS (N, (1, 2, 3), p, α) = (11, 6, 11) − (8, 21, 66) = (3, −15, −55).

The initial individual costs of players 1, 2, and 3, were 8, 21, and 66, respectively.
After switching each misplaced neighbor pair and equally allocating the joint cost
savings to the corresponding pair of players, player 1 has a net profit of 3, and players
2 and 3 pay 15 and 55, respectively. Indeed, no player is worse off with respect to
the initial order. Player 1 even has a positive net profit, since the gains of switching
the pairs (1, 2) and (1, 3) are relatively high compared to the initial individual costs
of player 1.

Similarly, we get

πEGS (N, (1, 3, 2), p, α) = (11, 3, 8) − (8, 33, 48) = (3, −30, −40),

πEGS (N, (2, 1, 3), p, α) = (8, 3, 11) − (14, 9, 66) = (−6, −6, −55),

πEGS (N, (2, 3, 1), p, α) = (0, 3, 3) − (22, 9, 42) = (−22, −6, −39),
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Chapter 4. Biform linear production and sequencing processes 105

πEGS (N, (3, 1, 2), p, α) = (3, 3, 0) − (16, 33, 24) = (−13, −30, −24),

πEGS (N, (3, 2, 1), p, α) = (0, 0, 0) − (22, 21, 24) = (−22, −21, −24).

The net profit vectors clearly depend on the initial order. In particular, note that if a
player i ∈ N gets closer to the head of the queue in the initial processing order, this
leads to a strict improvement of the net profit of i. �

In fact, the final observation in Example 4.3.1 holds whenever the gains of position
switches are allocated using a gain splitting rule. If any (set of) player(s) is ‘removed’
from the set of players before i in the initial order, the net profit of i increases. To
formalize this in Lemma 4.3.1, we define the set of predecessors P (σ, i) of player i ∈ N

with respect to σ ∈ Π(N) by P (σ, i) = {j ∈ N | σ−1(j) < σ−1(i)}.

Lemma 4.3.1
Let Q = (N, σ0, p, α) and Q̃ = (N, σ̃0, p, α) be sequencing processes and let i ∈ N be
such that P (σ0, i) � P (σ̃0, i). Then, for all λ ∈ Λ, we have

πλ
i (Q) > πλ

i (Q̃).

Proof. Starting from σ̃0, note that σ0 can be reached through consecutive neighbor
switches by first adequately rearranging i’s predecessors, then some switches between
i and its neighboring predecessor, and finally by rearranging i’s successors (i.e., all
players for which i is a predecessor). We show that switches of the first and third type
do no affect the net profit of i, where any switch of the second type strictly improves
the net profit of i. Note that at least one switch of this second type is required, since
P (σ0, i) is a strict subset of P (σ̃0, i).

Let Q′ = (N, σ′
0, p, α) and Q′′ = (N, σ′′

0 , p, α) be sequencing processes such
that P (σ′

0, i) = P (σ′′
0 , i). Then, πλ

i (Q′) = πλ
i (Q′′), since Ci(σ′

0) = Ci(σ′′
0 ), and

(i, j) ∈ MP (σ′
0) ⇔ (i, j) ∈ MP (σ′′

0 ) and (j, i) ∈ MP (σ′
0) ⇔ (j, i) ∈ MP (σ′′

0 ) for any
j ∈ N \ {i}. This shows that rearranging the predecessors and successors of i does
not affect i’s net profit.

It therefore suffices to show that any switch of the second type, between i and
its neighboring predecessor, leads to a strictly higher net profit of i. So, we may
restrict to the sequencing processes Q′ and Q′′ with σ′

0 and σ′′
0 such that for some

l ∈ {1, . . . , |N |−1} and j ∈ N\{i}, we have σ′
0(l) = σ′′

0 (l+1) = j, σ′
0(l+1) = σ′′

0 (l) = i,
and σ′

0(k) = σ′′
0 (k) for all k ∈ {1, . . . , |N |} \ {l, l + 1}.
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106 4.3. Biform sequencing processes

First, if ui < uj , then MP (σ′′
0 ) = MP (σ′

0) ∪ {(i, j)} and, consequently,

πλ
i (Q′′) − πλ

i (Q′) = GSλ
i (Q′′) − ICi(Q′′) − GSλ

i (Q′) + ICi(Q′)

= αi (Ci(σ′
0) − Ci(σ′′

0 )) + λijgij

≥ αi (Ci(σ′
0) − Ci(σ′′

0 ))

> 0.

Next, for ui = uj , note that MP (σ′′
0 ) = MP (σ′

0) and GSλ
i (Q′′) = GSλ

i (Q′), so

πλ
i (Q′′) − πλ

i (Q′) = GSλ
i (Q′′) − ICi(Q′′) − GSλ

i (Q′) + ICi(Q′)

= αi (Ci(σ′
0) − Ci(σ′′

0 ))

> 0.

Finally, for uj < ui, MP (σ′
0) = MP (σ′′

0 ) ∪ {(j, i)} and, consequently,

πλ
i (Q′′) − πλ

i (Q′) = GSλ
i (Q′′) − ICi(Q′′) − GSλ

i (Q′) + ICi(Q′)

= αi (Ci(σ′
0) − Ci(σ′′

0 )) − (1 − λji)gji

= αi (Ci(σ′
0) − Ci(σ′′

0 )) − (1 − λji)(αipj − αjpi)

= αi (Ci(σ′
0) − Ci(σ′′

0 )) − (1 − λji)(αi (Ci(σ′
0) − Ci(σ′′

0 )) − αjpi)

= λjiαi (Ci(σ′
0) − Ci(σ′′

0 )) + (1 − λji)αjpi

≥ λjiαi (Ci(σ′
0) − Ci(σ′′

0 ))

≥ 0.

Note that the first inequality is strict unless λji = 1, where the second inequality is
strict unless λji = 0.

Hence, we may conclude that πλ
i (Q′′) − πλ

i (Q′) > 0, and, consequently, πλ
i (Q) >

πλ
i (Q̃).

We remark that Lemma 4.3.1 holds specifically for payoff vectors defined using a gain
splitting rule. If instead we allocate the cost savings using, e.g., the Shapley value of
the corresponding cooperative sequencing game (Curiel et al., 1989), it can happen
that a player’s net profit becomes lower if the player ‘moves’ towards the head of the
queue in the initial processing order, as demonstrated in Example 4.3.2.

Let Q = (N, σ0, p, α) be a sequencing process. A key difference between payoff
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vectors defined using a gain splitting rule and those based on a game-theoretic solu-
tion, is the assumption underlying sequencing games that not all rearrangements of
an initial order are admissible for all coalitions. Specifically, it is assumed that rear-
rangements of σ0 in which a player in some coalition T ∈ 2N \ {∅} ‘passes’ a player
in N \ T are not allowed for T . Formally, an order σ ∈ Π(N) is admissible for T if
P (σ, i) = P (σ0, i) for all i ∈ N \ T . The set of all admissible orders for T is denoted
by AQ(T ).

Then, the sequencing game vQ ∈ TUN is defined by cost savings game

vQ(T ) = max
σ∈AQ(T )

∑
i∈T

αi(Ci(σ0) − Ci(σ))

for all T ∈ 2N \ {∅}. Note that AQ(N) = Π(N), so that

vQ(N) =
∑
i∈N

αi(Ci(σ0) − Ci(σ̂)) =
∑

(i,j)∈MP (σ0)

gij .

Further, for all i ∈ N , AQ({i}) = {σ0}, so vQ({i}) = 0.

Example 4.3.2
Let N = {1, 2, 3}, p = (6, 3, 4) and α = (2, 3, 12). Note that σ̂ = (3, 2, 1). Using the
Shapley value, the corresponding net profit of player i ∈ N in the sequencing process
Q = (N, σ0, p, α) is defined by

πΦ
i (Q) = Φi(vQ) − ICi(Q).

Let Q = (N, σ0, p, α) be a sequencing process with σ0 = (1, 2, 3) and denote the
corresponding sequencing game by v(1,2,3). We have IC1(Q) = 12, IC2(Q) = 27, and
IC3(Q) = 156. Further, g12 = 12, g13 = 64, and g23 = 24. To determine v(1,2,3),
note that, e.g., AQ({1, 2}) = {σ0, (2, 1, 3)}, whereas AQ({1, 3}) = {σ0}. Hence,
v(1,2,3)({1, 2}) = g12 = 12, but v(1,2,3)({1, 3}) = 0. In this way, we find v(1,2,3) as
given in Table 4.7. One readily verifies that Φ(v(1,2,3)) = 1

3 (82, 118, 100), so that

πΦ(N, (1, 2, 3), p, α) = 1
3 (46, 37, −368).

Next, let Q = (N, σ0, p, α) be a sequencing process with σ0 = (2, 1, 3) and denote
the corresponding sequencing game by v(2,1,3). This game is determined in a similar
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108 4.3. Biform sequencing processes

S {1} {2} {3} {1,2} {1,3} {2,3} N

v(1,2,3)(S) 0 0 0 12 0 24 100
v(2,1,3)(S) 0 0 0 0 64 0 88

Table 4.7 The sequencing games v(1,2,3) and v(2,1,3) correspond-
ing to the sequencing process of Example 4.3.2

manner and also given in Table 4.7. For the net profit vector, we find

πΦ(N, (2, 1, 3), p, α) = (40, 8, 40) − (18, 9, 156) = (22, −1, −116).

Importantly, note that

P ((2, 1, 3), 2) � P ((1, 2, 3), 2),

but
πΦ

2 (N, (2, 1, 3), p, α) < πΦ
2 (N, (1, 2, 3), p, α),

contradicting the result for net profit vectors defined using gain splitting rules of
Lemma 4.3.1. Intuitively, the reason why this happens, is that when σ0 = (1, 2, 3),
player 2 needs to cooperate (i.e., be a member of the coalition) to make switching
positions admissible for players 1 and 3 in the sequencing game v(1,2,3). Because
player 2 is needed to ‘enable’ the gain g13, player 2 gets a third of this gain in the
corresponding Shapley value. Since this gain is relatively very high, it outweighs the
decrease in the initial costs of player 2 for σ0 = (2, 1, 3). Such an effect does not occur
if the gains are allocated using a gain splitting rule. �

4.3.2 Biform sequencing processes

Our model introduces a strategic element to the sequencing processes described in the
previous section. We no longer assume an initial order is given. Instead, strategic in-
dividual choices for a position in the first stage of the biform sequencing (BS) process
determine an initial order that is used in the cooperative sequencing process of the sec-
ond stage. The finite strategy set of any player i ∈ N is given by Xi = {1, 2, . . . , |N |}.
For example, xi = 1 indicates that player i requests to be processed first.

As it can happen that several players request to be in the same position, we need
a tie-breaking rule. We interpret a tie-breaking rule as a decision made by some
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Chapter 4. Biform linear production and sequencing processes 109

entity that determines the initial order for any given strategy combination. This en-
tity first simply assigns every position that is requested by exactly one player to this
player. An unassigned position is called empty if it is not requested by any player
and called undecided if it is requested by at least two players. Then, recursively,
starting from the earliest undecided position, all players who requested this position
are assigned to either this position or an empty one. At every step in the recursion,
the players are assigned such that a player with a higher ‘priority’ is assigned to an
earlier position among the empty ones and the requested one. This recursive process
is illustrated in Example 4.3.3.

Given a strategy combination x ∈ X and tie-breaking rule τ : X → Π(N), the
strategically determined initial processing order is denoted by στ

0 (x). We assume a
tie-breaking rule τ is priority order based (pob). This means that the way players in
a tie are prioritized can be directly induced from the unique priority order σ̄τ

0 on all
players, needed when all players would request exactly the same position.

We remark that a tie-breaking rule τ can also be regarded as a matching mech-
anism. Specifically, our tie-breaking rule fits well with a two-sided mechanism (see,
e.g., Gale and Shapley (1962)), in which players prefer earlier positions (not neces-
sarily being the one they request) and positions prefer players with higher priority
according to σ̄τ

0 . Alternatively, one could consider other mechanisms to match players
to (empty and undecided) positions, e.g., one-sidedly using a serial dictatorship with
priority order σ̄τ

0 (see, e.g., Svensson (1999)). In this way, the tie-breaking rule can
be further substantiated using matching theory. This is, however, not in the scope of
this chapter.

Example 4.3.3
Consider a sequencing process with N = {1, 2, 3, 4}, α = (2, 4, 4, 3) and p = (2, 1, 2, 1),
so that u = (1, 4, 2, 3). An initial order will be strategically determined using the
priority order based tie-breaking rule τ , fully determined by the priority order σ̄τ

0 =
(2, 4, 3, 1). Note that this priority order fits with the principle of ‘highest urgency
comes first’. By definition, this means that if, e.g., x = (2, 2, 2, 2), then στ

0 (x) =
(2, 4, 3, 1).

If x = (2, 1, 3, 1), the first step is to assign players to the positions that were
requested exactly once. After assigning position 2 to player 1 and position 3 to player
3, τ is used to break the tie between players 2 and 4, who compete for the undecided
position 1 and the empty position 4. Player 2 has priority over player 4, which leads
to στ

0 (x) = (2, 1, 3, 4).
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110 4.3. Biform sequencing processes

If x = (1, 1, 2, 2), τ is first used to break the tie between players 1 and 2, who can
be assigned to undecided position 1 and empty positions 3 and 4. Since player 2 has
the highest priority, we get στ

0 (x)(1) = 2, after which player 1 is placed in the best
remaining available position, στ

0 (x)(3) = 1. The next undecided position is position
2, with position 4 empty. Since player 4 has priority over player 3, player 4 is assigned
to position 2 and player 3 to position 4. Hence, στ

0 (x) = (2, 4, 1, 3).
If x = (3, 3, 4, 4), players 1 and 2 first compete for empty positions 1 and 2 and

undecided position 3. After assigning 2 to position 1 and 1 to position 2, players 3
and 4 compete for empty position 3 and undecided position 4. To emphasize, at each
step in the recursion, players with higher priority are assigned to earlier positions
among the empty position(s) and the undecided position, not necessarily (as close as
possible to) the position they requested. As a consequence, στ

0 (x) = (2, 1, 4, 3). �

Now we are able to formally define a biform sequencing process and a corresponding
induced strategic game based on a gain splitting rule GSλ.

Definition 4.3.2
A biform sequencing (BS) process is a tuple

Q = (N, {Xi}i∈N , τ, {Q(x)}x∈X),

in which for all i ∈ N we have Xi = {1, 2, . . . , |N |}, τ : X → Π(N) is a pob
tie-breaking rule, and for any x ∈ X,

Q(x) = (N, στ
0 (x), p, α)

is a corresponding sequencing process with initial order στ
0 (x). Given such a BS-

process Q and a gain splitting rule GSλ with λ ∈ Λ, the corresponding induced strategic
game is given by GQ,λ =

({Xi}i∈N , {πQ,λ
i }i∈N

)
, where for any x ∈ X and all i ∈ N

we set
πQ,λ

i (x) = πλ
i (N, στ

0 (x), p, α).1

Example 4.3.4
Reconsider the 3-player sequencing process of Example 4.3.1. We now consider the
BS-process Q = ({1, 2, 3}, {Xi}i∈N , τ, {Q(x)}x∈X) using the pob tie-breaking rule τ

with priority order σ̄τ
0 = (2, 3, 1). For all x ∈ X, στ

0 (x) is presented in Table 4.8.

1Note that if x, y ∈ X are such that στ
0 (x) = στ

0 (y), then πQ,λ
i (x) = πQ,λ

i (y) for all i ∈ N .
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1 2 3
1 (2,3,1) (3,2,1) (3,1,2)
2 (2,1,3) (3,2,1) (3,1,2)
3 (2,3,1) (3,2,1) (3,2,1)

1

1 2 3
1 (2,3,1) (1,2,3) (1,3,2)
2 (2,3,1) (2,3,1) (3,1,2)
3 (2,3,1) (2,3,1) (2,3,1)

2
1 2 3

1 (2,1,3) (1,2,3) (1,2,3)
2 (2,1,3) (2,1,3) (2,1,3)
3 (2,3,1) (3,2,1) (2,3,1)

3

Table 4.8 The strategy dependent initial processing orders στ
0 (x)

for each x ∈ X in Example 4.3.4

Next, we analyze the induced strategic game GQ,EGS =({Xi}i∈{1,2,3}, {πQ,EGS
i }i∈{1,2,3}

)
based on the equal gain splitting rule. For

each of the six possible initial orders, the corresponding net profits are given in
Example 4.3.1. The induced game GQ,EGS is given in Table 4.9.

1 2 3
1 (-22,-6,-39) (-22,-21,-24) (-13,-30,-24)
2 (-6,-6,-55) (-22,-21,-24) (-13,-30,-24)
3 (-22,-6,-39) (-22,-21,-24) (-22,-21,-24)

1
1 2 3

1 (-22,-6,-39) (3,-15,-55) (3,-30,-40)
2 (-22,-6,-39) (-22,-6,-39) (-13,-30,-24)
3 (-22,-6,-39) (-22,-6,-39) (-22,-6,-39)

2
1 2 3

1 (-6,-6,-55) (3,-15,-55) (3,-15,-55)
2 (-6,-6,-55) (-6,-6,-55) (-6,-6,-55)
3 (-22,-6,-39) (-22,-21,-24) (-22,-6,-39)

3

Table 4.9 The induced strategic game GQ,EGS of Example 4.3.4

It follows that

E(GQ,EGS) = {(1, 1, 2), (2, 1, 2), (3, 1, 2)}.

Note that for all x ∈ E(GQ,EGS) we have στ
0 (x) = σ̄τ

0 = (2, 3, 1), but there are (many)
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112 4.3. Biform sequencing processes

x ∈ X such that στ
0 (x) = (2, 3, 1) with x /∈ E(GQ,EGS). The equilibrium (3, 1, 2) is

quite special, since it corresponds to the strategy combination in which all players
request the position they are entitled to according to the priority order σ̄τ

0 . �

The ‘special’ type of equilibrium found in Example 4.3.4 exists for any BS-process.

Theorem 4.3.3
Let Q = (N, {Xi}i∈N , τ, {Q(x)}x∈X) be a BS-process, let GSλ be a gain splitting rule
with λ ∈ Λ, and let GQ,λ =

({Xi}i∈N , {πQ,λ
i }i∈N

)
be the induced strategic game. Let

x ∈ X be such that xi = (σ̄τ
0 )−1(i) for all i ∈ N . Then, x ∈ E(GQ,λ).

Proof. Let i ∈ N and set k = (σ̄τ
0 )−1(i), so that xi = k. Consider x̃i = l with

l ∈ Xi \ {k}. With respect to the strategy combination (x̃i, x−i), only position l

is undecided and only position k is empty. In particular, position l is requested by
player i and the player j ∈ N such that (σ̄τ

0 )−1(j) = l. If l < k, the underlying
priority order ranks j before i, so j is assigned to the earlier (undecided) position l,
while i is assigned to the later (empty) position k. If l > k, the underlying priority
order ranks i before j, so i is assigned to the earlier position k and j to the later
position l. In both cases, στ

0 (x̃i, x−i) = στ
0 (x) and therefore πQ,λ

i (x̃i, x−i) = πQ,λ
i (x).

Consequently, x ∈ E(G).

Next, we show that any induced strategic game GQ,λ has exactly |N | Nash equilibria.
In particular, the proof of Theorem 4.3.4 clarifies that these equilibria are such that
the player with the lowest priority (as determined by the underlying priority order)
can request any position. All other players should request the position they are
entitled to according to the priority order.

Theorem 4.3.4
Let Q = (N, {Xi}i∈N , τ, {Q(x)}x∈X) be a BS-process, let GSλ be a gain splitting rule
with λ ∈ Λ, and let GQ,λ =

({Xi}i∈N , {πQ,λ
i }i∈N

)
be the induced strategic game.

Then, |E(GQ,λ)| = |N |.

Proof. For ease of notation and without loss of generality, let N = {1, 2, . . . , n} and
let the priority order underlying the tie-breaking rule τ be given by σ̄τ

0 = (1, 2, . . . , n),
meaning the players are ‘numbered’ in decreasing order of priority. It suffices to prove
the following two claims. Claim 1 shows there are at least n equilibria, and Claim 2
shows there are at most n equilibria.
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Chapter 4. Biform linear production and sequencing processes 113

Claim 1 Let x ∈ X be such that xj = j for all j ∈ {1, 2, . . . , n − 1}. Then,
x ∈ E(GQ,λ).
Claim 2 Let x ∈ E(GQ,λ). Then, xj = j for all j ∈ {1, 2, . . . , n − 1}.

Proof Claim 1 Let i ∈ N and x̃i ∈ Xi. We will show that either στ
0 (x̃i, x−i) =

στ
0 (x) = σ̄τ

0 , or P (στ
0 (x), i) � P (στ

0 (x̃i, x−i), i). In both cases, this implies that
πQ,λ

i (x) ≥ πQ,λ
i (x̃i, x−i). Note that in the latter case, this is a consequence of

Lemma 4.3.1.

For i = n, we have that στ
0 (x̃n, x−n) = στ

0 (x) for all x̃n ∈ {1, 2, . . . , n}. This is
obvious if x̃n = n. If x̃n = k, k �= n, note that there is a unique undecided position k

and a unique empty position n w.r.t. (x̃n, x−n). Due to the fact that player n has a
lower priority than player k, the tie-breaking rule assigns position k to player k and
position n to n.

Next, let i ∈ N \ {n}, and let x̃i = k with k �= i be a possible unilateral devia-
tion from x for player i. Denote xn = l. We distinguish several cases. In these
cases, we assume without loss of generality that l < n, as Theorem 4.3.3 states that
x ∈ E(GQ,λ) for xn = n.

Case 1: k = n. Then, player i is the only player who requests position n, so
player i is assigned to position n. It is clear that P (στ

0 (x), i) � P (στ
0 (x̃i, x−i), i).

Case 2: l = i, k < n. In this case, position k is undecided and position n is
empty. If k < i, player i has lower priority than player k, so player i loses the tie
and is assigned to position n. If k > i, player i has higher priority than player k, so
player i is assigned to position k and player k is assigned to position n. Either way,
note that P (στ

0 (x), i) ⊆ P (στ
0 (x̃i, x−i), i) and n ∈ P (στ

0 (x̃i, x−i), i) \ P (στ
0 (x), i), so

that P (στ
0 (x), i) � P (στ

0 (x̃i, x−i), i).
Case 3: l = k, k < n. Then, we have a three-way tie, where position k is

undecided and positions i and n are empty. Player n always has the lowest priority
and therefore always ends up in position n. Player i loses the tie against player k if
k < i and wins the tie if k > i. Either way, player i is assigned to position i and
player k to position k, so that στ

0 (x̃i, x−i) = στ
0 (x).

Case 4: l �= i, l > k, k < n. Then, positions k and l are undecided and positions
i and n are empty. The tie-breaking rule first assigns the players k and i, who request
the earliest undecided position k. Similar to the previous case, players k and i are
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114 4.3. Biform sequencing processes

always assigned to positions k and i, respectively. Player n always loses the tie for
position l. Again, we get στ

0 (x̃i, x−i) = στ
0 (x).

Case 5: l �= i, l < k, k < n. Again, positions k and l are undecided and positions
i and n are empty. However, the tie-breaking rule now first assigns the players l and
n, who request the earliest undecided position l. Player l is assigned to position l and
player n to position i if l < i, and vice versa if l > i. Player i is then assigned to
empty position n if k < i and to undecided position k if k > i. Similar to the second
case, we get P (στ

0 (x), i) � P (στ
0 (x̃i, x−i), i).

Proof Claim 2 Let x ∈ E(GQ,λ) and assume towards contradiction that xj �= j for
some j ∈ {1, 2, . . . , n − 1}. Let i be the smallest index for which this is true, i.e.,
x1 = 1, . . . , xi−1 = i − 1, and xi = k with k �= i. Note that player i can still be
assigned to position i through tie-breaking, but only if position i is empty. So, if
στ

0 (x)−1(i) = i, then xj �= i for all j ∈ N . In that case, player n can deviate and
be assigned to x̃n = i. Alternatively, if στ

0 (x)−1(i) > i, player i can deviate and be
assigned to x̃i = i, as player i will then be the player with the highest priority who
requests position i. In both cases, the deviating player makes sure to be assigned to
position i, instead of some position strictly later than i. Using the fact that the set of
players assigned to the first i−1 positions is fixed, we can apply Lemma 4.3.1 to argue
that the corresponding deviation is strictly profitable, contradicting x ∈ E(GQ,λ).

4.3.3 Biform sequencing processes with additional costs

As an extension of the previous model, one could analyze the influence of associating
costs γ ∈ RN with the strategic choice for a certain position in the initial order. First,
we consider a cost function that assigns fixed costs to each position in the strategically
determined initial order. Here, players do not pay for their requested position, but
for the position in which they actually end up. More formally, for any x ∈ X and
k ∈ {1, 2, . . . , |N |}, player i ∈ N incurs fixed costs γ(k) if στ

0 (x)−1(i) = k.

Example 4.3.5
Reconsider the BS-process Q = ({1, 2, 3}, {Xi}i∈N , τ, {Q(x)}x∈X) of Example 4.3.4
using the pob tie-breaking rule τ with priority order σ̄τ

0 = (2, 3, 1), where for each
x ∈ X, Q(x) = ({1, 2, 3}, στ

0 (x), p, α) is a corresponding sequencing process for which
στ

0 (x) is given in Table 4.8, p = (4, 3, 4) and α = (2, 3, 6). Introducing costs, the net
profits as specified by πQ,EGS in the corresponding induced strategic game GQ,EGS

will change. We emphasize that the costs are associated with the obtained position in
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Chapter 4. Biform linear production and sequencing processes 115

the strategically determined initial processing order here, meaning that the net profit
vectors of two different strategy combinations that lead to the same initial order are
still equal.

Let γ = (20, 10, 0), i.e., the fixed costs of being first, second or third in the resulting
initial processing order are 20, 10 or 0, respectively. Consider στ

0 (x) = (3, 2, 1), for
which we saw in Example 4.3.1 that the net profit vector is (−22, −21, −24) without
fixed costs. By assigning the additional costs to each position in the initial processing
order, this net profit vector becomes (−22, −31, −44). In a similar way, we find the
new net profits for each strategy combination. The new induced strategic game is
given in Table 4.10.

1 2 3
1 (-22,-26,-49) (-22,-31,-44) (-23,-30,-44)
2 (-16,-26,-55) (-22,-31,-44) (-23,-30,-44)
3 (-22,-26,-49) (-22,-31,-44) (-22,-31,-44)

1
1 2 3

1 (-22,-26,-49) (-17,-25,-55) (-17,-30,-50)
2 (-22,-26,-49) (-22,-26,-49) (-23,-30,-44)
3 (-22,-26,-49) (-22,-26,-49) (-22,-26,-49)

2
1 2 3

1 (-16,-26,-55) (-17,-25,-55) (-17,-25,-55)
2 (-16,-26,-55) (-16,-26,-55) (-16,-26,-55)
3 (-22,-26,-49) (-22,-31,-44) (-22,-26,-49)

3

Table 4.10 The induced strategic game of Example 4.3.5 with
fixed costs γ = (20, 10, 0) associated with obtained positions

For this game, the set of equilibria is given by {(2, 1, 2), (3, 1, 2)}. �

Example 4.3.5 shows that Theorem 4.3.4 cannot be generalized to this new setting of
BS-processes with additional costs. The reason for this is that Lemma 4.3.1 cannot be
generalized: the fixed costs may outweigh the benefits of obtaining an earlier position
in the initial order. However, it can be shown that the existence of the specific equi-
librium in which all players request the position they are entitled to according to the
underlying priority order, is still guaranteed. So, Theorem 4.3.3 can be generalized
to this setting.
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116 4.3. Biform sequencing processes

As an alternative option, one can associate costs with the strategic choice itself. In
this case, players pay a fixed amount depending on their requested position. The
position in which a player actually ends up in the initial processing order does not
play a role here. Formally, for any x ∈ X and k ∈ {1, 2, . . . , |N |}, player i ∈ N incurs
fixed costs γ(k) if xi = k. Note that different strategy combinations that lead to the
same initial processing order can now have different net profit vectors. In fact, the
existence of an equilibrium is no longer guaranteed, as illustrated by Example 4.3.6.

Example 4.3.6
Reconsider the 3-player biform sequencing process with fixed costs presented in Ex-
ample 4.3.5, with one key difference: the costs γ = (20, 10, 0) are now associated with
the requested position rather than the obtained position in the initial order. The
resulting induced strategic game is given in Table 4.11.

1 2 3
1 (-42,-26,-59) (-42,-31,-44) (-33,-30,-44)
2 (-16,-26,-75) (-32,-31,-44) (-23,-30,-44)
3 (-22,-26,-59) (-22,-31,-44) (-22,-21,-44)

1
1 2 3

1 (-42,-26,-49) (-17,-25,-65) (-17,-30,-50)
2 (-32,-26,-49) (-32,-16,-49) (-23,-30,-34)
3 (-22,-26,-49) (-22,-16,-49) (-22,-6,-49)

2
1 2 3

1 (-26,-26,-55) (-17,-25,-55) (-17,-15,-55)
2 (-16,-26,-55) (-16,-16,-55) (-16,-6,-55)
3 (-22,-26,-39) (-22,-31,-24) (-22,-6,-39)

3

Table 4.11 The induced strategic game of Example 4.3.6 with
fixed costs γ = (20, 10, 0) associated with requested positions

Note that the set of Nash equilibria is empty. �
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5 Corruption in auctions:
social welfare loss in hybrid

multi-unit auctions

5.1 Introduction

In this chapter, based on Van Beek et al. (2022), we initiate the study of the social
welfare loss (in utilitarian welfare terms) caused by corrupt auctioneers, both in single-
item and multi-unit auctions. We consider auction settings where a seller wants to
sell some items and for this purpose recruits an auctioneer to organize an auction on
their behalf. Such settings are widely prevalent in practice as they emerge naturally
whenever the seller lacks the expertise or facilities to host the auction themselves. For
example, individual sellers usually involve dedicated auctioneers or auction houses
when they want to sell particular objects (such as real estate, cars, artwork, etc.). In
private companies, the responsible finance officers are typically in charge of handling
the procurement auctions (i.e., auctions with a single buyer and multiple sellers).
Similarly, government procurement is often executed by some entity that acts on
behalf of the government. The dilemma in such settings is that the incentives of the
seller and the auctioneer are rather diverse in general: while the seller is interested in
extracting the highest payments for the objects (or getting service at the lowest cost),
auctioneers primarily care about maximizing their own gains from hosting the auction.
Although undesirably, this asymmetry can incentivize the auctioneer to manipulate
the auction to their own benefit through some fraudulent scheme.

Corruption in auctions, where an auctioneer engages in bid rigging (i.e., manip-
ulation of the submitted bids) with one or several of the bidders, occurs especially

117
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118 5.1. Introduction

in the public sector (e.g., in construction and procurement auctions). For example,
in 1999 the procurement auction for the construction of the new Berlin Brandenburg
airport had to be rerun after investigations revealed that the initial winner was able
to change the bid after illegally acquiring information about the application of one
of their main competitors (The Wall Street Journal, 1999). As another example, in
1993 the New York City School Construction Authority caused a scandal when in-
vestigation revealed that they used a simple (but effective) bid-rigging scheme in a
procurement auction setting (Olmstead, 1993):

“In what one investigator described as a nervy scheme, that worker would
unseal envelopes at a public bid opening, saving for last the bid submitted by
the contractor who had paid him off. At that point, knowing the previous
bids, the authority worker would misstate the contractor’s bid, insuring
that it was low enough to secure the contract but as close as possible to
the next highest bid so that the contractor would get the largest possible
price.”

This kind of bid rigging, where the winning bid ‘magically’ aligns with the highest
losing bid, is also known as magic number cheating (Ingraham, 2005). We refer the
reader to Lengwiler and Wolfstetter (2010) and Menezes and Monteiro (2006) (and the
references therein) for several other bid rigging examples. Despite the fact that this
form of corruption occurs in practice, its negative impact is still poorly understood
theoretically.

Our goal is to initiate the study of the social welfare loss caused by corrupt auc-
tioneers in fundamental auction settings. We focus on a basic model that captures
the magic number cheating mentioned above and generalizations thereof. Clearly,
more sophisticated bid rigging models are conceivable and we hope that our work will
trigger future work along these lines.

We capture corruption in auctions by adapting the payment scheme. For illustration
purposes, consider the single-item auction setting and suppose the auctioneer runs a
sealed bid first-price auction. After receiving all bids, the auctioneer approaches the
highest bidder with the offer that they can lower their bid to the second highest bid
in exchange for a bribe. If the highest bidder agrees, they win the auction and pay
the second-highest bid for the items plus the corresponding bribe to the auctioneer.
If the highest bidder disagrees, they still win the auction, but pay their bid for the
item according to the first-price auction format. We assume that the bribe to be
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paid to the auctioneer is a pre-determined fraction γ ∈ [0, 1] of the savings of the
highest bidder, i.e., the auctioneer’s bribe amounts to γ times the difference between
the highest and second highest bid. In case of the multi-unit auction setting, the
procedure described above is adapted accordingly by offering all winning bidders to
lower their bids to the highest losing bid.

Observe that the payment scheme described above essentially reduces to the win-
ning bidders paying a convex combination of γ times their bids and (1 − γ) times the
highest losing bid. We will show that this setting is therefore equivalent to studying a
hybrid auction (γ-HYA), where the items are assigned to the highest bidders (accord-
ing to the respective single-item or multi-unit auction scheme) and the payments are a
convex combination of the first-price and the second-price payments. By varying the
parameter γ ∈ [0, 1], γ-HYA thus interpolates between the respective second-price
auction (γ = 0) and first-price auction (γ = 1) schemes.

More elaborate corruption schemes are of course conceivable. For example, it may
be overly suspicious to lower all winning bids in a multi-unit auction to the ‘magic
number’ (the highest losing bid). To avoid this, the auctioneer may want to an-
nounce different (bribed) bids for every winning bidder, which can still be captured
by γ-HYA. Alternatively, the auctioneer might ask for a fixed amount rather than a
fraction of the gains, the bidders may be heterogenous (in which case the auctioneer
does not use the same parameter γ for each bidder), and bidders may have moral ob-
jections against partaking in such a scheme and do not accept the bribe. To capture
such more general corruption schemes, we also study what we term γ-approximate
first-price auctions (γ-FPA) in this chapter. Basically, these auctions implement a
payment scheme that recovers at least a fraction of γ ∈ [0, 1] of the first-price payment
rule. The γ-HYA also belongs to this class.

We study the inefficiency of equilibria of γ-FPA and γ-HYA, both in the single-
item and the multi-unit auction setting. More specifically, our goal is to obtain a
precise understanding of the (robust) price of anarchy (POA) (see Koutsoupias and
Papadimitriou (1999), Roughgarden (2015a), and Syrgkanis and Tardos (2013)), i.e.,
the worst-case ratio between the optimal social welfare and the (expected) social wel-
fare of an equilibrium. Here, social welfare is measured in utilitarian welfare terms,
i.e., as the total valuation of the bidders. We opt for the price of anarchy notion here
because it is one of the most appealing and widely accepted measures to assess the
efficiency of equilibria, especially in the context of social welfare analysis. The POA
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of the first-price and second-price auction has been investigated intensively for both
the single-item and the multi-unit auction setting. We focus on the analysis of the
(robust) price of anarchy under the complete information setting, focusing on two
equilibrium notions: pure Nash equilibria and the more general notion of coarse cor-
related equilibria. An important reason we opt to study coarse correlated equilibria
is that it yields comprehensive results. Since coarse correlated equilibria generalize
correlated equilibria, which in turn generalize (mixed) Nash equilibria, upper bounds
on the price of anarchy for coarse correlated equilibria hold for these other equilibrium
notions as well.

An assumption that often needs to be made to derive meaningful bounds is that
the bidders cannot overbid (see Feldman et al. (2013) for a more general discussion
of the no-overbidding assumption). Accordingly, we derive bounds on the price of
anarchy distinguishing between the case when bidders can overbid and when they
cannot overbid their actual valuations for the items.

Altogether, our bounds provide a complete picture of the POA of γ-FPA and in
particular γ-HYA, for different equilibrium notions both in the single-item and the
multi-unit auction setting and with and without overbidding.

Finally, we discuss existing literature to which this chapter contributes. This lit-
erature can be roughly divided into two categories: corruption in auctions and the
price of anarchy.

There is a large body of research in economics studying collusion among bidders in
auctions (see, e.g., Graham and Marshall (1987) and McAfee and McMillan (1992)).
Collusion between the auctioneer and the bidders in the form of bid rigging (as consid-
ered in this chapter) has also been studied in the literature, but less intensively. Most
existing works study certain aspects of equilibrium outcomes (e.g., equilibrium struc-
ture, auctioneer surplus, seller revenue, and optimal bribe schemes); for an overview
of the existing works along these lines, see Lengwiler and Wolfstetter (2010) and the
references therein.

The specific bid rigging model that we consider here was first studied by Menezes
and Monteiro (2006) and a slight generalization thereof by Lengwiler and Wolfstetter
(2000), both for the single-item auction setting. These works consider a so-called
Bayesian (i.e., incomplete information) setting, where the valuations are independent
draws from a common distribution function. Menezes and Monteiro (2006) prove the
existence of symmetric equilibrium bidding strategies and derive an optimal bribe
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function for the auctioneer. The authors also study a fixed-price bribe scheme, where
the auctioneer charges a fixed amount that is independent of the gained surplus.
Subsequently, Lengwiler and Wolfstetter (2010) study a more complex bid rigging
scheme for the single-item auction setting, where the auctioneer additionally offers
the second highest bidder to increase their bid. However, none of these works study
the price of anarchy of corrupt auctions. Hence, the impact of this corruption on
social welfare is still poorly understood.

In our view, the existence of such bid rigging schemes serves as suitable motivation
to analyze the price of anarchy of the resulting auctions γ-HYA and γ-FPA. But, at
the same time, we feel that the study of such hybrid auction formats is interesting in
its own right, purely from an auction design perspective. For example, tight bounds
on the price of anarchy (as a function of γ) provide insights on which payment rule
should ideally be used to reduce inefficiency of equilibria.

Studying the price of anarchy in auctions has recently received considerable at-
tention (see Roughgarden et al. (2017) for a survey). Significant work has gone into
deriving bounds on the price of anarchy for various auction formats, both in the
complete and incomplete information setting. The smoothness notion, originally in-
troduced by Roughgarden (2015a) to analyze the robust price of anarchy of strategic
games, turned out to be very useful in an auction context as well. Syrgkanis and
Tardos (2013) build upon this notion and provide a powerful (smoothness-based)
toolbox for the analysis of a broad range of auctions that fall into their composition
framework.

With respect to the multi-unit auction setting, De Keijzer et al. (2013) use an
adapted smoothness approach to derive bounds on the POA for the first-price and
the second-price multi-unit auction (mostly focusing on an incomplete information
setting without overbidding). The price of anarchy bounds corresponding to coarse
correlated equilibria we derive are also based on a smoothness approach, and coincide
with theirs for the extreme points γ = 0 and γ = 1. We use an adapted smoothness
notion (inspired by De Keijzer et al. (2013) and Syrgkanis and Tardos (2013)) to
derive our bounds, both in the overbidding and the no-overbidding setting.

The structure of this chapter is as follows. Section 5.2 treats the preliminaries re-
quired to read the remaining sections. In Section 5.3, we formally introduce the auc-
tion formats used to capture corruption. In Section 5.4 and Section 5.5, we provide
numerous bounds on the price of anarchy of such (multi-unit) auctions, respectively
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with and without overbidding. A more fine-grained landscape of price of anarchy
bounds emerges when restricting to single-item auctions, as analyzed in Section 5.6.
Finally, we discuss and reflect on the main results in Section 5.7.

5.2 Preliminaries

In this section, we recall notation, definitions, and assumptions corresponding to
standard auction formats, equilibrium notions, and the price of anarchy.

5.2.1 Standard auction formats

We focus on the description of the multi-unit auction setting; the single-item auction
setting follows as a special case (choosing k = 1 below). Let N = {1, . . . , n} denote the
set of bidders, with n ≥ 2. In the multi-unit auction setting, there are k ≥ 1 identical
items (or goods) that we want to sell to the bidders (or players). Each bidder i ∈ N

has a non-negative and non-decreasing valuation function vi : {0, . . . , k} → R+ with
vi(0) = 0, where vi(j) specifies i’s valuation for receiving j ∈ {0, . . . , k} items. We
assume that for each bidder the valuation function vi is submodular or, equivalently,
that the marginal valuations are non-increasing, i.e., for every j ∈ {1, . . . , k − 1},

vi(j) − vi(j − 1) ≥ vi(j + 1) − vi(j).

The valuation function vi is assumed to be known to all players for all i ∈ N , i.e.,
we consider the complete information setting. We use v = (v1, . . . , vn) to denote
the profile (or vector) of the valuation functions of the bidders. We assume that the
bidders submit their bids according to the following standard format: Each bidder
i ∈ N submits a bid vector bi = (bi(1), . . . , bi(k)) of k non-negative and non-increasing
marginal bids, i.e., bi(j) specifies the additional amount i is willing to pay for receiving
j instead of j − 1 items, with j ∈ {1, . . . , k}. The overall amount that i bids for
receiving q ∈ {1, . . . , k} items is thus

∑q
j=1 bi(j).

Consider a multi-unit auction setting and suppose the auctioneer uses an auction
mechanism M to determine an assignment of the items and the respective payments of
the bidders. Each bidder submits their bid vector bi to the mechanism. Based on the
bidding profile b = (b1, . . . , bn), the mechanism M orders the submitted marginal bids
non-increasingly (breaking ties in an arbitrary, deterministic manner) and assigns the
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k items to the bidders who submitted the k highest marginal bids in the order. We use
βj(b) to refer to the j-th lowest winning (marginal) bid in b, i.e., βk(b) ≥ . . . ≥ β1(b).
We use x(b) = (x1(b), . . . , xn(b)) to refer to the resulting allocation, where xi(b) spec-
ifies the number of items that bidder i ∈ N receives; xi(b) = 0 if i does not receive any
item. Each bidder who receives at least one item is called a winner. The highest losing
bid is denoted by p̄(b). Formally, p̄(b) = max{bi(j)| j ∈ {xi(b) + 1, ..., k}, i ∈ N}.

For each bidder i ∈ N , the payment of i is denoted by pi(b). We adopt the con-
vention that pi(b) = 0 whenever i is not a winner. If i is a winner, there are two
standard payment schemes that determine the respective payments, namely

• First-price payment scheme: Every bidder i ∈ N pays their bid for the received
items, i.e., pi(b) =

∑xi(b)
j=1 bi(j);

• Second-price payment scheme: Every bidder i ∈ N pays the highest losing bid
p̄(b) for each received item, i.e., pi(b) = xi(b)p̄(b).

Suppose we fix the payment scheme of mechanism M according to one of these
schemes. We refer to mechanism M with the first-price payment or the second-price
payment scheme, respectively, as FP-Auction or SP-Auction. We remark that in
the multi-unit auction setting these auctions are usually referred to as discriminatory
price auction and uniform price auction, respectively. However, here we stick to the
given naming convention to align it with the common terminology of the single-item
auction setting.

The utility uvi
i (b) of bidder i ∈ N is defined as the total valuation minus the pay-

ment for receiving xi(b) items, i.e., uvi
i (b) = vi(xi(b)) − pi(b); note that uvi

i (b) = 0
by definition if bidder i is not a winner. Whenever vi is clear from the context, we
simply denote the utility of bidder i by ui(b). We assume that each bidder strives to
maximize their utility.

Example 5.2.1
Let M1 be a FP-Auction and let M2 be a SP-Auction, with N = {1, 2} and
k = 2. The valuation function of player 1, v1, is such that v1(1) = 3 and v1(2) = 6.
For player 2, we have v2(1) = 1 and v2(2) = 1.5. Recall that v1(0) = v2(0) = 0 by
convention.

Suppose the two players submit bid vectors b1 = (3, 1) and b2 = (4, 1). Recall that
these vectors represent marginal bids; e.g., player 2 bids 4 to receive a single item and
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5 to receive both items. For this bidding profile b = (b1, b2), the two highest marginal
bids are b1(1) and b2(1), so both players will be assigned one item, i.e., x(b) = (1, 1).
To emphasize, the assignment of items for a given bidding profile does not depend
on the payment scheme of the mechanism, so this holds for both M1 and M2. Note
that p̄(b) = 1.

First, we consider M1. Then, p1(b) = b1(1) = 3 and p2(b) = b2(1) = 4, and
u1(b) = v1(x1(b)) − p1(b) = 3 − 3 = 0 and u2(b) = 1 − 4 = −3. Alternatively, for
M2, p1(b) = p2(b) = p̄(b) = 1, with u1(b) = 2 and u2(b) = 0.

Note that b2(1) > v2(1), i.e., the bid of player 2 to receive one item exceeds the
player’s valuation for this item. This is referred to as overbidding. �

A common assumption on the bidding profiles is the no-overbidding (NOB) assump-
tion: for all bidders it holds that their bid vectors do not exceed their valuations, i.e.,∑q

j=1 bi(j) ≤ vi(q) for any q ∈ {1, . . . , k} and all i ∈ N . We do not always make this
assumption; it will be explicitly indicated when we do.

Finally, we adopt the convention that the following two standard assumptions must
always be satisfied by a mechanism. For the mechanisms we consider throughout this
chapter, it is clear these two assumptions are satisfied.

1. No positive transfers (NPT): The payment of each bidder is non-negative, i.e.,
pi(b) ≥ 0 for all i ∈ N .

2. Individual rationality (IR): The payment of each bidder does not exceed their
bid, i.e., pi(b) ≤ ∑xi(b)

j=1 bi(j) for all i ∈ N .

If for every bidding profile b of non-negative and non-increasing marginal bids it holds
that

∑
i∈N pi(b) ≤ ∑k

j=1 βj(b), then we call the mechanism first-price dominated.
Note that every mechanism that satisfies individual rationality must be first-price
dominated, since

∑
i∈N

∑xi(b)
j=1 bi(j) =

∑k
j=1 βj(b), recalling that βj(b), j ∈ {1, ..., k},

refers to the j-th lowest winning marginal bid in b.

5.2.2 Equilibrium notions and the price of anarchy

Below, we briefly review the different equilibrium notions used in this chapter. Please
note that the following notions are all defined in the context of some (fixed) auction
mechanism M, but that this mechanism is often not explicitly reflected in the nota-
tion. Recall that the strategy space of bidding profiles is restricted by the fact that
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marginal bids must be non-negative and non-increasing.
Let M be an auction mechanism. A bidding profile b = (b1, . . . , bn) is a pure

Nash equilibrium (PNE) if no bidder has an incentive to deviate unilaterally; more
formally, b is a PNE if for every bidder i ∈ N and every bidding profile of i, b′

i, it
holds that ui(b) ≥ ui(b′

i, b−i). Here we use the standard notation b−i to refer to the
bid vector b with the i-th component being removed; (b′

i, b−i) then refers to the bid
vector b with the i-th component being replaced by b′

i.
The concept of pure Nash equilibria can be generalized by considering random-

ized bid vectors (leading to mixed Nash equilibria) and then generalized further by
allowing for correlation among bidders (leading to correlated equilbria). We consider
an even more general equilibrium notion in this chapter. Let σ be a joint (correlated)
distribution over bidding profiles of the bidders (the profile of valuation functions v

remains fixed). Then, σ is a coarse correlated equilibrium (CCE) if for every bid-
der i ∈ N and every bid vector b′

i it holds that Eb∼σ[ui(b)] ≥ Eb−i∼σ−i
[ui(b′

i, b−i)],
where, e.g., Eb∼σ[ui(b)] represents the expected utility of player i when a random
bidding profile b is drawn according to σ. Hence, σ is a CCE if no bidder can im-
prove their expected utility by deviating unilaterally to some fixed bid vector b′

i. To
emphasize, the draw from a joint distribution σ does not influence this deviation b′

i

(contrary to correlated equilibria, as discussed in more detail below). This is reflected
by the notation b−i ∼ σ−i in the expectation, where σ−i refers to the same joint
distribution σ, but then with the i-th component removed. We elaborately discuss
an example of a coarse correlated equilibrium in the proof of Theorem 5.4.4.

We now provide a brief intuitive explanation behind CCE, also clarifying the con-
trast with correlated equilibria (CE). Suppose some entity draws a random bidding
profile b according to some correlated distribution σ, and proposes to each bidder
i ∈ N a bid vector bi. Then, σ is a CE if no bidder can obtain an increase in
expected utility by deviating from the proposed bid vector, where in the (possibly
mixed) deviation the bidder takes into account the proposed bid vector and, through
the correlation, information about the distribution of the bid vectors of other bidders.
For CCE, however, a bidder only considers submitting a fixed deviation (bid vector)
without taking into account information from the draw of the joint distribution. Con-
ditioning on this information may determine that some deviation leads to an increase
in expected utility, where this would not have been the case when ‘unconditionally’
submitting a fixed deviation. Therefore, the set of CE is a subset of the set of CCE.
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We define the social welfare of a bidding profile b = (b1, . . . , bn) as the overall valua-
tion obtained by the bidders, i.e., SW(b) =

∑
i∈N vi(xi(b)). Note that although social

welfare is defined independently of the payments, this expression can be rewritten on
the basis of utilities and payments as well. The expected social welfare of a joint
distribution σ over bidding profiles is then defined by

E[SW(σ)] = Eb∼σ[SW(b)] = Eb∼σ

[∑
i∈N

vi(xi(b))
]

= Eb∼σ

[∑
i∈N

(ui(b) + pi(b))
]

.

We use x∗(v) to refer to an assignment that maximizes the social welfare with respect
to the valuation functions v = (v1, . . . vn); i.e.,

SW(x∗(v)) =
∑
i∈N

vi(x∗
i (v))

is the maximum social welfare achievable for the bidders, independent of their bids.
The assignment x∗(v) is also called a social optimum.

The price of anarchy is defined as the maximum ratio of the social welfare of the
social optimum and the (expected) social welfare of an equilibrium in an auction
mechanism M. For its formal definition, let v = (v1, . . . , vn) be a profile of valuation
functions and let PNE(v) and CCE(v) denote the set of pure Nash equilibria and
coarse correlated equilibria with respect to v, respectively. Then, the price of anar-
chy (Koutsoupias and Papadimitriou, 1999) with respect to pure Nash equilibria (or
PNE-POA for short), is defined by

PNE-POA(v) = sup
b∈PNE(v)

SW(x∗(v))
SW(b) .

Similarly, we define

CCE-POA(v) = sup
σ∈CCE(v)

SW(x∗(v))
E[SW(σ)] .

The price of anarchy of an auction mechanism M then refers to the worst-case price
of anarchy over all possible (in our case submodular) valuation profiles, i.e.,

PNE-POA(M) = sup
v

PNE-POA(v)
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and
CCE-POA(M) = sup

v
CCE-POA(v).

Before illustrating the price of anarchy in an example, it is good to note that this
notion is intended to study auctions in which equilibria actually exist. Informally,
the price of anarchy should be interpreted as ‘every equilibrium is such that the
ratio between the optimal social welfare and the social welfare of the equilibrium is
at most the price of anarchy’; profiles of valuation functions such that no equilibria
exist, are not taken into account. Equilibria do not always exist, especially when
restricting to pure Nash equilibria. The existence of (pure Nash) equilibria may even
depend on the tie-breaking rule, as will be illustrated in Example 5.3.2. Providing
a full characterization of the sets of equilibria for the different auction settings and
equilibrium notions considered in this chapter would certainly be interesting, but is
beyond the scope of this chapter.

Example 5.2.2
Reconsider Example 5.2.1, with N = {1, 2}, k = 2, v1(1) = 3, v1(2) = 6, v2(1) = 1,
and v2(2) = 1.5. Clearly, the social optimum is x∗(v) = (2, 0), with SW(x∗(v)) = 6.
With respect to b = (b1, b2) = ((3, 1), (4, 1)), we have x(b) = (1, 1) and SW(b) = 4.

For the first-price auction M1, it is clear that b is not a pure Nash equilibrium, as
u2(b) = −3 < 0 = u2(b1, (0, 0)). For the second-price auction M2, however, bidding
profile b is a pure Nash equilibrium, since neither bidder can strictly increase their
utility by deviating unilaterally. To see this, recall that u1(b) = 2 and u2(b) = 0.
No player can deviate such that their payment decreases, but they are still assigned
an item. The highest losing bid will only become strictly lower than one if a player’s
marginal bids both become strictly lower than one, in which case this player is no
longer assigned any item, yielding zero utility. Hence, lowering a marginal bid will
either not make a difference, or lead to lower utility. Instead, a player could submit
a different bid vector in an attempt to win both items. However, the highest losing
bid, and thereby the payment per item, would then increase to at least 4 if player 1
deviates accordingly, and at least 3 in case player 2 deviates. Neither player could
benefit from this.

This shows that PNE-POA(M2) is at least SW(x∗(v))/SW(b) = 1.5. In fact,
the price of anarchy with respect to pure Nash equilibria of second-price auctions is
unbounded. For example, consider v1(1) = 3 and v1(2) = 6 as before, but now with
v2(1) = v2(2) = 0, combined with b1 = (0, 0) and b2 = (3, 3). Then, b = (b1, b2) is a
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pure Nash equilibrium with a social welfare of zero.
Note, however, that player 2 overbids here, since b2(1) > v2(1) and b2(1)+b2(2) >

v2(2). Under the NOB assumption, this would not be allowed. This assumption has
major implications for the price of anarchy. In particular, Birmpas et al. (2019) find
a tight bound on PNE-POA(M2) of 2.1885 under NOB. �

5.3 Capturing corruption with hybrid and approximate
first-price auctions

In this section, we formally describe the auction settings we consider to model corrup-
tion in auctions. Let M be an auction mechanism in which bidders submit their bid
vectors b = (b1, . . . , bn) in a ‘sealed manner’, i.e., at first only the auctioneer sees the
bidding profile b. After receipt of the bidding profile b, the auctioneer runs a first-
price multi-unit auction to obtain the respective assignment x(b) = (x1(b), . . . , xn(b))
and payments p(b) = (p1(b), . . . , pn(b)), but does not reveal this outcome yet. The
bidders might want to verify the ‘soundness’ of the outcome of the auction, so the
final bids may have to be revealed eventually. Importantly, however, since the bids
are sealed, the revealed bids do not have to equal the submitted ones. A corrupt
auctioneer abuses this by approaching each winning bidder i ∈ N individually with
the offer that they can lower all their xi(b) winning bids to the highest losing bid p̄(b)
(while receiving the same number of items), in exchange for a fixed fraction γ ∈ [0, 1]
of the surplus gained by i. The bidder can either reject or accept this offer. If bidder
i rejects the offer, the allocation xi(b) and respective payment pi(b) remain unmodi-
fied. If bidder i accepts the offer, i receives the xi(b) items at a reduced price of p̄(b)
each, but additionally pays a fee fγ

i of γ times the surplus to the auctioneer. More
formally, the total payment of a winning bidder i who accepts the offer is

pγ
i (b) = xi(b)p̄(b) + fγ

i (b) where fγ
i (b) = γ

xi(b)∑
j=1

(bi(j) − p̄(b)).

We also refer to this setting as the γ-corrupt auction.
As the final payments are dependent on γ, we (implicitly) assume that the bidders

are aware of this parameter, much alike it is assumed that the bidders know the used
payment scheme in other auction formats. Note that the change in the bid vector of
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player i conforms to the imposed bidding format, i.e., the modified marginal bids of
bidder i are still non-negative and non-increasing.

Proposition 5.3.1 shows that, under the assumption that the final allocation remains
invariant1, each winning bidder can only benefit from accepting the corrupt auction-
eer’s offer, independently of the parameter γ and of what the other bidders do.

Proposition 5.3.1
Let γ ∈ [0, 1] and let M be a γ-corrupt auction. Let b be a bidding profile and let
i ∈ N be a winning bidder. Then, pγ

i (b) ≤ pi(b).

Proof. Observe that the total payment to be made by i becomes

pγ
i (b) = xi(b)p̄(b) + fγ

i (b) = γ

xi(b)∑
j=1

bi(j) + (1 − γ)xi(b)p̄(b)

when i accepts the offer. Clearly, each winning bid of i satisfies bi(j) ≥ p̄(b),
j ∈ {1, . . . , xi(b)}. Thus, pγ

i (b) ≤ ∑xi(b)
j=1 bi(j) = pi(b), where pi(b) is the payment

that i would have to pay when rejecting the offer. In fact, this inequality is strict
unless all winning bids of i are equal to p̄(b) or γ = 1. In both these cases, the offer
made by the auctioneer does not have any effect for i (as there is no surplus generated
in the former case, and no difference in the final payment of i in the latter case).

Subsequently, we introduce our novel hybrid auction scheme, which we term γ-hybrid
auction (or γ-HYA for short), for which we assume that each winning bidder always
accepts the offer. γ-HYA uses the same allocation rule as in the standard multi-unit
auction setting, but uses a convex combination of the first-price and second-price
payment scheme (parameterized by γ), i.e.,

pγ
i (b) = γ

xi(b)∑
j=1

bi(j) + (1 − γ)xi(b)p̄(b). (5.1)

1Formally, there does not exist a tie-breaking rule that ensures that, for any bidding profile, the
allocation of items to bidders does not change when all winning bidders lower their bids to the highest
losing bid. To circumvent this tie-breaking issue, one can consider non-uniform bid rigging schemes
instead, where bidders lower their bids in different ways, and such that they turn out higher than
the highest losing bid. An example of such a bid rigging scheme that fits within our framework is
given in Example 5.7.1.
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for any i ∈ N . Said differently, γ-HYA interpolates between SP-Auction (γ = 0)
and FP-Auction (γ = 1) as γ varies from 0 to 1. We also use pγ(b) to refer to the
above payment in the single-item auction setting. To emphasize, (5.1) coincides with
the equation to determine the payment in γ-corrupt auctions presented in the proof
of Proposition 5.3.1.

Example 5.3.1
Let γ ∈ [0, 1] and let M be a γ-corrupt auction with N = {1, 2} and k = 2.
Consider Example 5.2.1 and recall that b = ((3, 1), (4, 1)), with x(b) = (1, 1) and
SW(x∗(v))/SW (b) = 6/4 = 1.5. Having determined that both players will be as-
signed one item, the corrupt auctioneer now approaches both bidders individually,
with the offer to lower their winning bid to the highest losing bid p̄(b) = 1. (Note
that we implicitly assume ties are broken such that it is ensured that both bidders
still win exactly one item.) In exchange for lowering the bid, the auctioneer demands
a fraction γ of the surplus of both players, being b1(1) − p̄(b) = 2 for player 1 and 3
for player 2. By Proposition 5.3.1, we assume both players accept.

First, let γ = 0.75, so that the auctioneer benefits more than the players. Then,

pγ
1(b) = x1(b)p̄(b) + γ(b1(1) − p̄(b)) = 1 + 0.75(3 − 1) = 2.5

and similarly pγ
2(b) = 3.25. Clearly, the payments also correspond to a γ-HYA with

γ = 0.75. Bidding profile b is not a pure Nash equilibrium. For example, if player 1
bids 2 instead of 3 for the first item, this does not change the assignment of items,
but would lower bidder 1’s payment by 0.75.

Next, let γ = 0.25. Analogously, or using (5.1) instead, we find pγ
1(b) = 1.5 and

pγ
2(b) = 1.75. Again, b is not a pure Nash equilibrium. �

The following proposition follows immediately from the discussion above and allows
us to focus on the POA of γ-HYA to study γ-corrupt auctions in which each bidder
accepts the corrupt auctioneer’s offer.

Proposition 5.3.2
Let γ ∈ [0, 1]. Then, the γ-corrupt auction and γ-HYA are equivalent. Hence, these
settings admit the same set of equilibria and have identical social welfare objectives,
and therefore have same the price of anarchy.

Of course, studying the price of anarchy of an auction mechanism is only interesting if
equilibria exist. Example 5.3.2 shows, in a single-item setting, that there can be pure
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Nash equilibria for γ-HYA, and also shows that the existence of pure Nash equilibria
may depend on the tie-breaking rule.

Example 5.3.2
Consider a single-item γ-HYA with γ ∈ (0, 1] and N = {1, 2}. Let v1(1) > v2(1) > 0.
We consider two tie-breaking rules: one that always favors player 1 and another that
always favors player 2. For the former, note that, e.g., b1 = b2 = v2(1) is a pure Nash
equilibrium, with SW(b1, b2) = v1(1) = SW(x∗(v)). In fact, pure Nash equilibria are
always efficient in any γ-HYA with γ ∈ (0, 1] and without overbidding (i.e., the price
of anarchy of such auction mechanisms is one, as formalized in Theorem 5.5.1).

However, in case the tie-breaking rule favors player 2, it can be shown that no
pure Nash equilibrium exists. �

In our basic bid rigging model, all winning bidders lower their bids to the high-
est losing bid. As discussed in the introduction, while this magic number bidding
phenomenon has been observed in real-life for single-item auctions, it might seem
somewhat unrealistic in the multi-unit auction setting. To allow for additional, more
general corruption schemes, we introduce so-called γ-approximate first-price auctions
(γ-FPA). The allocation is still determined as in γ-HYA, but the payment scheme is
relaxed. We say that a mechanism M with payment rule p = (p1(b), . . . , pn(b)) is a
γ-FPA for some γ ∈ [0, 1] if it always recovers at least a fraction of γ of the first-price
payments, i.e., for every bidding profile b,

∑
i∈N

pi(b) ≥ γ

k∑
j=1

βj(b).

These auctions capture several additional corruption settings. For example, sup-
pose some bidders never accept the offer of the auctioneer (say due to moral objec-
tions) and their payments thus remains the first-price payment. While this setting is
not covered by γ-HYA, it is covered by γ-FPA. As another example, if the auctioneer
handles a different fraction γi for each bidder i ∈ N , the resulting auction is γ-FPA
with γ = mini∈N γi. It is immediate that every γ-HYA is a γ-FPA. In Sections
5.4 and 5.5, we derive bounds on the coarse correlated price of anarchy for the more
general class of γ-FPA.
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5.4 Multi-unit auctions with overbidding

In this section, we consider γ-approximate first-price auctions, for which we derive a
tight bound on the coarse correlated price of anarchy in case players can overbid (i.e.,
without the no-overbidding assumption), using a general proof template based on the
notion of smoothness. We first define our smoothness notion, which is adapted from
the ones given in Syrgkanis and Tardos (2013) and De Keijzer et al. (2013). For this,
recall that given a bidding profile b, we let βj(b) refer to the j-th lowest winning bid
under b.

Definition 5.4.1
Let M be a multi-unit auction. Then, M is (λ, μ)-smooth for some λ > 0 and μ ≥ 0
if for every valuation profile v and for each bidder i ∈ N there exists a (possibly
randomized) bidding strategy σ′

i such that for every bidding profile b we have

∑
i∈N

Eb′
i
∼σ′

i
[ui(b′

i, b−i)] ≥ λSW(x∗(v)) − μ

k∑
j=1

βj(b).

We remark that in essence, this definition comes close to the weak smoothness defi-
nition in Syrgkanis and Tardos (2013), but relates more directly to the winning bids
in the multi-unit auction setting. A similar definition is also used in De Keijzer et al.
(2013), but there it is imposed on a per-player basis and used for the Bayesian setting.

Next, we derive a parameterized bound on the coarse correlated price of anarchy
of smooth mechanisms, which forms the basis of the bounds we obtain for γ-FPA.

Theorem 5.4.2
Let γ ∈ [0, 1] and let M be a γ-FPA which is (λ, μ)-smooth, with μ ≤ γ. Then,

CCE-POA(M) ≤ 1
λ

.

Proof. Let v be a valuation profile and let σ be a coarse correlated equilibrium.
Let i ∈ N and let σ′

i be the bidding strategy of bidder i as given by the smoothness
definition. Exploiting the coarse correlated equilibrium condition for i, we have for
every (deterministic) bid vector b′

i that Eb∼σ[ui(b)] ≥ Eb∼σ[ui(b′
i, b−i)] and thus also

Eb∼σ[ui(b)] ≥ Eb∼σ[Eb′
i
∼σ′

i
[ui(b′

i, b−i)]]. (5.2)
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Using this, we obtain

E[SW(σ)] =
∑
i∈N

Eb∼σ [ui(b) + pi(b)]

≥
∑
i∈N

Eb∼σ

[
Eb′

i
∼σ′

i
[ui(b′

i, b−i)] + pi(b)
]

≥
∑
i∈N

Eb∼σ

[
Eb′

i
∼σ′

i
[ui(b′

i, b−i)]
]

+ Eb∼σ

⎡
⎣γ

k∑
j=1

βj(b)

⎤
⎦

≥ λSW(x∗(v)) + (γ − μ)Eb∼σ

⎡
⎣ k∑

j=1
βj(b)

⎤
⎦ (5.3)

≥ λSW(x∗(v))

where the first inequality follows from (5.2), the second inequality from the fact that
M is a γ-FPA, the third inequality from Definition 5.4.1, and the fourth inequality
from μ ≤ γ. Using this, we find CCE-POA(v) ≤ 1/λ.

As a final step to obtain an optimized price of anarchy bound as a function of γ, we
use the following lemma from De Keijzer et al. (2013) (adapted to our setting).

Lemma 5.4.3 [De Keijzer et al. (2013)]
Let M be a mechanism that is first-price dominated and let α > 0 be fixed arbitrar-
ily. Then, for every valuation profile v and for every bidder i ∈ N there exists a
randomized bidding strategy σ′

i such that for every bidding profile b we have

Eb′
i
∼σ′

i
[ui(b′

i, b−i)] ≥ α

(
1 − 1

e1/α

)
vi(x∗

i (v)) − α

x∗
i (v)∑
j=1

βj(b) (5.4)

On the basis of Theorem 5.4.2 and Lemma 5.4.3, we derive the bound of Theorem 5.4.4
below on the coarse correlated price of anarchy of γ-FPA for any γ ∈ (0, 1]. It is known
that the price of anarchy is unbounded for second-price auctions (γ = 0). Importantly,
we also find a matching lower bound, already in a single-item γ-HYA setting. Thus,
we completely settle the coarse correlated price of anarchy of γ-FPA when overbidding
is allowed. The corresponding bound is displayed in Figure 5.1.
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Figure 5.1 Tight upper bound of Theorem 5.4.4 on the CCE-POA (y-
axis) for multi-unit γ-FPA with overbidding as a function of γ (x-axis)

Theorem 5.4.4
Let γ ∈ (0, 1] and let M be a γ-FPA. Then,

CCE-POA(M) ≤ 1
γ(1 − e−1/γ)

. (5.5)

Further, this bound is tight.

Proof.
Upper bound: Let α > 0 and note that M is first-price dominated. Let v be a
valuation profile and let b be a bidding profile. Summing inequality (5.4) over all
players, we find

∑
i∈N

Eb′
i
∼σ′

i
[ui(b′

i, b−i)] ≥ α

(
1 − 1

e1/α

)∑
i∈N

vi(x∗
i (v)) − α

∑
i∈N

x∗
i (v)∑
j=1

βj(b)

≥ α

(
1 − 1

e1/α

)
SW(x∗(v)) − α

k∑
j=1

βj(b),

for some (possibly randomized) bidding strategy σ′
i, where the second inequality

follows from the fact that
∑

i∈N

∑x∗
i (v)

j=1 βj(b) ≤ ∑k
j=1 βj(b) for any bidding profile b,

as β1(b) ≤ ... ≤ βk(b) and
∑

i∈N x∗
i (v) = k. Hence, M is (α(1 − e−1/α), α)-smooth.

Restricting to 0 < α ≤ γ, Theorem 5.4.2 implies

CCE-POA(M) ≤ 1
α(1 − e−1/α)

.
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To minimize this upper bound, consider its derivative with respect to α,

− 1
α2(1 − e−1/α)2

(
1 − e−1/α − α

1
α2 e−1/α

)
= −1 − (1 + 1

α )e−1/α

α2(1 − e−1/α)2 .

As (1 + 1/α)e−1/α < 1 for all α > 0, the derivative is negative for all α > 0. There-
fore, the bound is minimized by maximizing α ∈ (0, γ]. Substituting α = γ yields the
upper bound.

Matching lower bound: The upper bound is proven to be tight by generalizing an
example used by Syrgkanis (2014) to provide a lower bound on the CCE-POA for the
first-price single-item auction. Consider a single-item γ-HYA with N = {1, 2}. We
have v1 = v for some v > 0 and v2 = 0. If both bidders bid 0, the tie is broken in
favor of bidder 2, whereas bidder 1 wins the auction if bidders tie with any positive
bid. We construct a coarse correlated equilibrium with a welfare loss that matches
the upper bound.

Let t be a random variable with support [0, (1 − e−1/γ)v] whose cumulative dis-
tribution function (CDF) F and density function f (which is well-defined for any
t ∈ (0, (1 − e−1/γ)v]), respectively, are given by

F (t) = (1 − γ) + v

v − t
γe−1/γ and f(t) = v

(v − t)2 γe−1/γ .

Note that F (0) = (1 − γ) + γe−1/γ .
Consider a bidding profile σ = (t, t). Since ties are broken in favor of bidder 2

only for t = 0, bidder 2 wins with probability (1 − γ) + γe−1/γ , which yields

SW(x∗(v))
E[SW(σ)] = v

(1 − F (0))v = 1
1 − (1 − γ) − γe−1/γ

= 1
γ
(
1 − e−1/γ

) .

It remains to show that σ is a CCE. This is quite obvious for bidder 2, who
either wins by bidding 0, or loses if t > 0. Given any positive bid from bidder 1,
the payment would be strictly greater than v2 = 0, meaning bidder 2 could never
profitably deviate.

For bidder 1, we show that any deviation to a fixed bid b1 = b with
b ∈ (0, (1 − e−1/γ)v] leads to an expected utility of at most Eb∼σ[u1(b)]. To start
with σ itself, note that bidder 1 wins whenever t > 0, and since both bidders bid t,
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we have a payment of γt + (1 − γ)t = t. Recalling that v1 = v, we get

Eb∼σ[u1(b)] =
∫ (1−e−1/γ )v

0
(v − t)f(t)dt

=
∫ (1−e−1/γ )v

0

v

v − t
γe−1/γdt

= vγe−1/γ [− ln(v − t)](1−e−1/γ )v
0

= vγe−1/γ
(

ln(v) − ln(e−1/γv)
)

= vγe−1/γ 1
γ = ve−1/γ .

By deviating to b, bidder 1 wins the item if b ≥ t, and for each t ∈ (0, b] pays
γb + (1 − γ)t. Hence, the expected utility of bidder 1 becomes

Et∼F (t)[u1(b, t)] =
∫ b

0
(v − γb − (1 − γ)t)f(t)dt.

To facilitate the calculations, note that

∫ b

0
tf(t)dt = γve−1/γ

∫ b

0

t

(v − t)2 dt

= γve−1/γ

[
v

v − t
+ ln(v − t)

]b

0

=
(

v

v − b
− 1

)
γve−1/γ + ln

(
v − b

v

)
γve−1/γ

and ∫ b

0
f(t)dt = F (b) − F (0) =

(
v

v − b
− 1

)
γe−1/γ .

Using this, we get

Et∼F (t)[u1(b, t)] = (v − γb)
∫ b

0
f(t)dt − (1 − γ)

∫ b

0
tf(t)dt

= (v − γb − (1 − γ)v)
(

v

v − b
− 1

)
γe−1/γ

− (1 − γ) ln
(

v − b

v

)
γve−1/γ
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= γ(v − b)
(

v

v − b
− 1

)
γe−1/γ − (1 − γ) ln

(
v − b

v

)
γve−1/γ

= bγ2e−1/γ − (1 − γ) ln
(

v − b

v

)
γve−1/γ .

Since 0 < b < v, note that − ln
(

v−b
v

)
is increasing in b. As γ ∈ (0, 1], this implies

the entire function above is increasing in b. Hence, it can be upper bounded by
substituting the upper bound of the support: b = (1 − e−1/γ)v. This yields

Et∼F (t)[u1(b, t)] ≤ (1 − e−1/γ)vγ2e−1/γ − (1 − γ) ln
(

e−1/γ
)

γve−1/γ

=
(

(1 − e−1/γ)γ2 + (1 − γ)
)

ve−1/γ

=
(

(1 − e−1/γ)γ2 + (1 − γ)
)
Eb∼σ[u1(b)].

Therefore, Et∼F (t)[u1(b, t)] ≤ Eb∼σ[u1(b)] for any b ∈ (0, (1 − e−1/γ)v] if

(1 − e−1/γ)γ2 + (1 − γ) ≤ 1 ⇐⇒ γ(1 − e−1/γ) ≤ 1

which holds for any γ ∈ (0, 1] as required. This shows that bidder 1 does not have any
profitable deviation in the interval (0, (1 − e−1/γ)v]. Finally, since b = (1 − e−1/γ)v
already gives F (b) = 1, any higher bid will only lead to a (strictly) higher payment
(since γ > 0), thereby being (strictly) worse than bidding b = (1 − e−1/γ)v. Hence,
deviations to a bid higher than this upper bound of the support of F (t) need not be
considered.

This shows that σ is a CCE for which the ratio of the social welfare of the social
optimum and the expected social welfare of σ exactly coincides with the upper bound
on the coarse correlated price of anarchy.

5.5 Multi-unit auctions without overbidding

In the previous section, we established a tight bound on the coarse correlated price
of anarchy of γ-FPA when players are allowed to overbid. Especially when γ gets
small this has an extremely negative effect on the price of anarchy. In this section, we
still focus on the multi-unit auction setting and show that the bound on the coarse
correlated price of anarchy of γ-FPA improves significantly under the standard as-
sumption of no-overbidding (NOB as defined in Section 5.2), most notably for lower
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values of γ. Before deriving this improved bound, we first show that under NOB,
pure Nash equilibria of (multi-unit) γ-HYA with γ ∈ (0, 1] are fully efficient.

The pure price of anarchy of γ-HYA without overbidding has been analyzed be-
fore for γ = 0 and γ = 1: Birmpas et al. (2019) show that the PNE-POA is 2.1885 for
the second-price multi-unit auction (γ = 0), while De Keijzer et al. (2013) show that
the PNE-POA is 1 for the first-price multi-unit auction (γ = 1). Interestingly, we do
not find a smooth interpolation between these two boundary points when analyzing
the PNE-POA on the interval γ ∈ [0, 1]. As it turns out, for γ-HYA the PNE-POA
stays at 1 almost over the entire range, the only exception being at γ = 0 where it is
2.1885 by the result of Birmpas et al. (2019).

Theorem 5.5.1
Let γ ∈ (0, 1) and let M be a γ-HYA in which players cannot overbid. Then, pure
Nash equilibria are always efficient, i.e., PNE-POA(M) = 1.

This theorem follows from a minor adaption of the proof template used by De Keijzer
et al. (2013) to show that pure Nash equilibria are always efficient for γ = 1. It can be
shown that the same result goes through whenever γ > 0. Intuitively, when consider-
ing γ > 0, there is a non-zero first price component and thus a player always has an
incentive to lower their winning bid (to the highest losing bid). The reasoning that a
player would increase their utility by lowering their winning bid holds in the same way.

Next, we reconsider the bound on the coarse correlated price of anarchy of Theo-
rem 5.4.4, but now under NOB. Under this assumption, we no longer have to restrict
to μ ≤ γ when considering the coarse correlated price of anarchy of (λ, μ)-smooth
mechanisms. This leads to the following improvement on the bound of Theorem 5.4.2.

Theorem 5.5.2
Let γ ∈ [0, 1] and let M be a γ-FPA in which players cannot overbid and which is
(λ, μ)-smooth. Then,

CCE-POA(M) ≤ max{1, 1 + μ − γ}
λ

.

Proof. Let v be a valuation profile and let σ be a coarse correlated equilibrium.
Similar to the proof of Theorem 5.4.2, we arrive at (5.3), namely
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E[SW(σ)] ≥ λSW(x∗(v)) + (γ − μ)Eb∼σ

⎡
⎣ k∑

j=1
βj(b)

⎤
⎦ .

Then, we distinguish two cases.
Case 1: μ ≤ γ. In the proof of Theorem 5.4.2, we found CCE-POA(v) ≤ 1/λ.
Case 2: μ > γ. Exploiting that the no-overbidding assumption holds in this case,

we get that
∑k

j=1 βj(b) =
∑

i∈N

∑xi(b)
j=1 bi(j) ≤ ∑

i∈N vi(xi(b)) = SW(b). Recalling
that E[SW(σ)] = Eb∼σ[SW(b)], we obtain

E[SW(σ)] ≥ λSW(x∗(v)) + (γ − μ)E[SW(σ)].

Rearranging terms yields CCE-POA(v) ≤ (1+μ−γ)/λ. Combining both cases proves
the claim.

Let γ ∈ [0, 1] and let M be a γ-FPA. On the basis of Theorem 5.5.2, we derive a
stronger bound on the coarse correlated price of anarchy of M, as stated in Theo-
rem 5.5.3 below. This upper bound is significantly lower than its counterpart from
the previous section, especially for lower values of γ.

The upper bound displayed in Figure 5.2 is based on the improved bound of
Theorem 5.5.3 for lower values of γ, until it intersects with the bound of Theo-
rem 5.4.4. Then, the latter is used for higher values of γ. In particular, we obtain
CCE-POA(M) ≤ −W−1(−e−2) ≈ 3.146 for γ = 0 and CCE-POA(M) ≤ e/(e − 1) ≈
1.582 for γ = 1. Here, W−1 refers to the Lambert W function. This function solves
yey = x for y, where x, y ∈ R with x ≥ −1/e. Specifically, this function takes two
values if −1/e ≤ x < 0, denoted by y = W0(x) and y = W−1(x), where W−1(x) refers
to the lower branch of this function. It cannot be expressed in terms of elementary
functions.

Theorem 5.5.3
Let γ ∈ [0, 0.607...)2 and let M be a γ-FPA in which players cannot overbid. Then,

CCE-POA(M) ≤ −(1 − γ)W−1

(
− 1

e(2−γ)/(1−γ)

)
. (5.6)

2Here, 0.607... corresponds to the exact (unrounded) intersection point between the bounds of
(5.5) and (5.6). In the remainder of this chapter, several of such (intersection) points will be presented
in a similar manner; it will be clear from context to which exact solution the point corresponds.
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Figure 5.2 Upper bound of Theorems 5.4.4 & 5.5.3 on the CCE-
POA (y-axis) for multi-unit γ-FPA without overbidding as a func-
tion of γ (x-axis)

Proof. As established in the proof of Theorem 5.4.4, M is (α(1 − e−1/α), α)-smooth.
By Theorem 5.5.2, we therefore have

CCE-POA(M) ≤ max{1, 1 + α − γ}
α(1 − e−1/α)

.

Similar to the proof of Theorem 5.4.4, we minimize this upper bound with respect to
α. The proof of Theorem 5.4.4 shows that it is optimal to use α = γ when restricting
to α ≤ γ. Using the no-overbidding assumption, we can also set α ≥ γ and obtain

CCE-POA ≤ 1 + α − γ

α
(
1 − e−1/α

) . (5.7)

This upper bound is minimized for

α = − 1
W−1

(−e−(2−γ)/(1−γ)
)

+ 2−γ
1−γ

. (5.8)

Substituting this into (5.7), we obtain the upper bound in (5.6). Importantly, the
optimized bound in (5.6) is only valid if we have α ≥ γ, which does not hold for
the entire range γ ∈ [0, 1] if we use (5.8). More concretely, we have α ≥ γ for all
γ ≤ 0.607... only. Thus, for γ ≤ 0.607... we can use (5.6) to bound the price of
anarchy. For γ ≥ 0.607... the best we can do is to choose α = γ and obtain the same
CCE-POA bound as in Theorem 5.4.4.
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5.6 Single-item auctions without overbidding

In this section, we further improve the price of anarchy bounds for single-item γ-HYA.
This setting allows to make more direct use of the (second-price) payments. For coarse
correlated equilibria, we derive a strong price of anarchy bound for low values of γ,
namely 1/(1 − γ). This bound can be complemented by the bounds for multi-unit
auctions displayed in Figure 5.2. Finally, to improve upon this multi-unit bound for
the higher range of γ, we derive two technically more involved bounds that work
specifically in a two-player setting.

For the proofs of the coming theorems, we introduce some more notation. Given
a bid vector b, let HB(b) = maxi∈N bi and SB(b) denote the highest and second
highest bid in b, respectively, and let HB−i(b) = maxj∈N\{i} bj be the highest bid
excluding bid bi, i ∈ N . For a randomized bid vector σ, let HB(σ) be the ran-
dom variable equal to the highest bid when the bids are distributed according to σ.
We sometimes write E[HB(σ)] for Eb∼σ[HB(b)] (similarly for SB(σ) and HB−i(σ)).
Finally, let pγ(b) denote the payment of the (only) winner w.r.t. b in a single-item
γ-HYA, irrespective of that player’s identity. If that identity becomes relevant, we
indicate this using a subscript as before, e.g., by pγ

i (b).

5.6.1 Single-item auctions with n players

To upper bound the price of anarchy of single-item γ-HYA, note that any upper
bound for the multi-unit auction setting also holds for the single-item setting, so
Theorems 5.4.4 and 5.5.3 still apply. We combine this with Theorem 5.6.1 stated
below, which provides a good bound for small values of γ. Together, these three
bounds (separated using different colors) yield the upper bound displayed in Figure
5.3 for the coarse correlated price of anarchy in the single-item auction setting.

Theorem 5.6.1
Let γ ∈ [0, 1) and let M be a single-item γ-HYA in which players cannot overbid.
Then,

CCE-POA(M) ≤ 1
1 − γ

.

Proof. Let player 1 be the player with highest valuation v1, and if there are multiple
players with the highest valuation the player in whose favor ties are broken when
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Figure 5.3 Upper bound of Theorems 5.4.4, 5.5.3 & 5.6.1 on the
CCE-POA (y-axis) for single-item γ-HYA without overbidding as
a function of γ (x-axis)

bidding v1. Let σ be a coarse correlated equilibrium. We have

Eb∼σ[SW(b)] = Eb∼σ[u1(b)] +
∑

i∈N\{1}
Eb∼σ[ui(b)] + Eb∼σ[pγ(b)]. (5.9)

Define E as the event that player 1 wins the auction with respect to σ, and let Ē
be the complement event that player 1 does not win the auction with respect to σ.

Suppose player 1 deviates to v1. Then, since no player overbids, player 1 wins
under (v1, b−1) either with the single highest bid or because ties are broken in favor
of player 1 by assumption. Note that this holds independently for E and Ē . By the
CCE conditions, we thus have

Eb∼σ[u1(b)] ≥ Eb∼σ[u1(v1, b−1)]

= v1 − Eb∼σ [pγ(v1, b−1)]

= v1 − (γv1 + (1 − γ)Eb∼σ [HB−1(b)])

= (1 − γ)v1 − (1 − γ)Eb∼σ [HB−1(b)] .

Substituting this inequality in (5.9), we obtain

Eb∼σ[SW(b)] ≥ (1 − γ)v1 − (1 − γ)Eb∼σ [HB−1(b)] + Eb∼σ

[ ∑
i∈N\{1}

ui(b) + pγ(b)
]
.
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Since we have to show that v1/Eb∼σ[SW(b)] ≤ 1/(1 − γ), which can be rewritten as
Eb∼σ[SW(b)] ≥ (1 − γ)v1, the proof follows if we can show that

Eb∼σ

[ ∑
i∈N\{1}

ui(b) + pγ(b)
]

≥ (1 − γ)Eb∼σ [HB−1(b)] .

Case 1: Suppose b ∈ E . Then player 1 wins the auction with respect to b and we have
∑

i∈N\{1}
ui(b) + pγ(b) = pγ

1(b) = γb1 + (1 − γ)HB−1(b) ≥ HB−1(b).

Case 2: Suppose b ∈ Ē . Then some other player i′ ∈ N \ {1} wins the auction with
respect to b and we have

∑
i∈N\{1}

ui(b) + pγ(b) = ui′(b) + pγ
i′(b) = vi′ − pγ

i′(b) + pγ
i′(b) = vi′ ≥ bi′ = HB−1(b),

where last inequality holds because i′ does not overbid and the last equality holds
because i′ being the highest bidder implies that bi′ = HB−1(b). This concludes the
proof.

5.6.2 Single-item auctions with 2 players

We now present a more fine-grained picture for the coarse correlated price of anarchy
of γ-HYA in a 2-player setting, for which the upper bound ultimately becomes a
combination of three upper bounds, as represented by the three colors in Figure 5.4.

We already derived the bound we use for small values of γ in Theorem 5.6.1,
corresponding to the green graph in the figure. To derive the two remaining bounds,
we take inspiration from an approach for first-price auctions by Feldman et al. (2016).
The extra difficulty we have is bounding the second-price component. The first-price
has a direct relation with winning the auction and so we can use the CCE conditions to
bound it, but the second-price component is more difficult to get a grip on. However,
we still derive two bounds that significantly improve on the bounds of Theorem 5.4.4
and Theorem 5.5.3.

We first consider the interval γ ∈ [0, 1
2 ]. On this interval, the upper bound on the

coarse correlated price of anarchy is the minimum of the upper bound from Theo-
rem 5.6.1 and the upper bound of Theorem 5.6.2 below (represented by the orange
graph in Figure 5.4), which holds specifically for γ ∈ (0.217..., 1

2 ]. However, since the
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Figure 5.4 Upper bound of Theorems 5.6.1 & 5.6.2 on the CCE-
POA (y-axis) for single-item γ-HYA without overbidding and two
bidders as a function of γ (x-axis)

upper bound of Theorem 5.6.2 is strictly higher than the bound of 1/(1 − γ) from
Theorem 5.6.1 for all γ below their intersection point γ = 0.339..., this interval is
sufficiently wide.

Theorem 5.6.2
Let γ ∈ (0.217..., 1

2 ] and let M be a 2-player single-item γ-HYA in which players
cannot overbid. Then,

CCE-POA(M) ≤ 1
1 − (1 − γ)(e−1/(1−γ) + e−1−e−1/(1−γ))

.

Proof. Without loss of generality we assume that player 1 has a valuation of 1 and
player 2 has a valuation of v ≤ 1. Consider some coarse correlated equilibrium σ.
Let α = E[u1(σ)] be the utility of player 1 and β = E[u2(σ)] be the utility of player
2 in σ. The maximum social welfare is clearly 1, achieved when player 1 always wins.
Lower bounding the expected welfare of an arbitrary σ and taking the reciprocal of
this bound thus translates into an upper bound on the price of anarchy. We have

E[SW(σ)] ≥ α + β + E[pγ(σ)] = α + β + γE[HB(σ)] + (1 − γ)E[SB(σ)]. (5.10)

We find the v, α and β that minimize this expression to determine a lower bound on
the expected social welfare. Let FX be the CDF of the random variable X where
X ∈ {HB, HB−1, HB−2, SB}. Then, by the CCE conditions and the fact that a CDF
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is always bounded by 1, we know that on their respective domains

FHB−1(σ)(x) ≤ min
{

α

1 − x
, 1

}
, FHB−2(σ)(x) ≤ min

{
β

v − x
, 1

}
, (5.11)

FHB(σ)(x) ≤ min
{

α

1 − x
,

β

v − x
, 1

}
. (5.12)

For example, if FHB−1(σ)(x) > α
1−x , player 1 can bid x instead and thereby obtain a

utility strictly greater than α
1−x · (1 − x) = α. Since the current utility of player 1 is

α, this contradicts the CCE conditions.
Observe that for 2 players the following chain of equalities holds

FSB(σ)(x) = P[SB(σ) ≤ x]

= P[min(HB−1(σ), HB−2(σ)) ≤ x]

= P[HB−1(σ) ≤ x] + P[HB−2](σ) ≤ x] − P[HB(σ) ≤ x]

= FHB−1(σ)(x) + FHB−2(σ)(x) − FHB(σ)(x). (5.13)

We derive a more explicit expression for the expected payment using (5.13)

E[pγ(σ)]

= γE[HB(σ)] + (1 − γ)E[SB(σ)]

= γ

∫ 1

0
1 − FHB(σ)(x)dx + (1 − γ)

∫ 1

0
1 − FSB(σ)(x)dx

= γ

∫ 1

0
1 − FHB(σ)(x)dx + (1 − γ)

∫ 1

0
1 − FHB−1(σ)(x) − FHB−2(σ)(x) + FHB(σ)(x)dx

= (2γ − 1)
∫ 1

0
1 − FHB(σ)(x)dx + (1 − γ)

2∑
i=1

∫ 1

0
1 − FHB−i(σ)(x)dx. (5.14)

Using the two bounds in (5.11) we can lower bound the two integrals in the
summation by

∫ 1

0
1 − FHB−1(σ)(x)dx ≥

∫ 1−α

0
1 − α

1 − x
dx = 1 − α + α ln(α),

∫ 1

0
1 − FHB−2(σ)(x)dx ≥

∫ v−β

0
1 − β

v − x
dx = v − β + β ln(β/v).

Since γ ≤ 1/2, we have (2γ − 1) ≤ 0 in (5.14). To lower bound the social welfare,
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146 5.6. Single-item auctions without overbidding

we should therefore upper bound the expected highest bid. For this, note that due
to the fact that players cannot overbid, player 2 never bids higher than v. Therefore,
since γ > 0, any bid of player 1 that is (strictly) above v is (strictly) dominated by
bidding v instead. (Formally, player 1 should bid v + ε for any ε > 0. Since ε can be
an arbitrarily small number, we ignore it in the remainder of the proof for notational
convenience.) Hence, it is clear that E[HB(σ)] ≤ v. From this, it also follows that
α ≥ 1 − v, because bidding v will yield a utility of at least 1 − v for player 1. Using
this, and again lower bounding the two rightmost integrals of (5.14) using (5.11), we
get

γE[HB(σ)] + (1 − γ)E[SB(σ)]

≥ (2γ − 1)v + (1 − γ)(1 − α + α ln(α) + v − β + β ln(β/v)).

Substituting into (5.10) yields

E[SW(σ)] ≥ α + β + (2γ − 1)v + (1 − γ)(1 − α + α ln(α) + v − β + β ln(β/v))

= γ(α + β + v) + (1 − γ)(1 + α ln(α) + β ln(β) − β ln(v)). (5.15)

The derivative of this bound with respect to β equals

γ + (1 − γ)(1 + ln(β) − ln(v)) = 1 + (1 − γ) ln(β/v).

Note that this derivative is equal to zero for β = ve−1/(1−γ), and that it is positive
for greater β and negative for smaller β. Therefore, the bound attains its minimum
at β = ve−1/(1−γ). Substituting this β in (5.15) yields

E[SW(σ)] ≥ γ(α + (1 + e− 1
1−γ )v) + (1 − γ)(1 + α ln(α) + ve− 1

1−γ ln(e− 1
1−γ )

= γ(α + (1 + e− 1
1−γ )v) + (1 − γ)(1 + α ln(α)) − ve− 1

1−γ . (5.16)

Next, we take the derivative of (5.16) with respect to v, which gives

γ(1 + e− 1
1−γ ) − e− 1

1−γ = γ − (1 − γ)e− 1
1−γ .

This derivative is positive for all γ > 0.21781 . . . , so for all γ ∈ (0.21781 . . . , 1/2], we
minimize the upper bound by setting v to its lowest admissible value, being v = 1−α.
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Chapter 5. Corruption in auctions 147

Substituting the optimal parameter settings β = ve−1/(1−γ) = (1 − α)e−1/(1−γ) gives
the following social welfare bound

E[SW(σ)] ≥ γ(α + (1 − α)(1 + e− 1
1−γ )) + (1 − γ)(1 + α ln(α)) − (1 − α)e− 1

1−γ

= 1 − (1 − γ)(1 − α)e− 1
1−γ + (1 − γ)α ln(α), (5.17)

as a function of α only, which we optimize by setting its derivative with respect to α

equal to zero. This yields

(1 − γ)e− 1
1−γ + (1 − γ)(1 + ln(α)) = 0 ⇐⇒ ln(α) = −1 − e− 1

1−γ

⇐⇒ α = e−1−e−1/(1−γ)
.

To facilitate the simplification of the formula of the final bound, we first substitute
only ln(α) in (5.17), after which α itself is substituted in the final step. We get

E[SW(σ)] ≥ 1 − (1 − γ)e− 1
1−γ + (1 − γ)αe− 1

1−γ + (1 − γ)α(−1 − e− 1
1−γ )

= 1 − (1 − γ)e− 1
1−γ − (1 − γ)α

= 1 − (1 − γ)
(
e−1/(1−γ) + e−1−e−1/(1−γ))

. (5.18)

We divide 1 by (5.18) to get the upper bound on the price of anarchy presented as
the orange graph in Figure 5.4.

A similar proof template, combined with some additional numerical analysis, can
be used to also derive an upper bound on the coarse correlated price of anarchy for
γ ∈ [ 1

2 , 1]. The key change in the derivation is that in this case (2γ − 1) ≥ 1, so
we derive a lower bound instead for the leftmost integral of (5.14). A more detailed
derivation is given in Van Beek et al. (2022).

In this way, we find the third and final upper bound, represented by the blue graph
in Figure 5.4. Note that for γ = 1 this bound coincides with the (tight) bound of
approximately 1.229 in Feldman et al. (2016).
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Figure 5.5 Overview of our upper bounds on the POA (y-
axis) for γ-FPA and γ-HYA, respectively, as a function of γ (x-
axis). (a) CCE-POA for multi-unit γ-FPA with overbidding (The-
orem 5.4.4). (b) CCE-POA for multi-unit γ-FPA without over-
bidding (Theorems 5.4.4 & 5.5.3). (c) CCE-POA for single-item
γ-HYA without overbidding (Theorems 5.4.4, 5.5.3 & 5.6.1). (d)
CCE-POA for single-item γ-HYA without overbidding and two
bidders (Theorems 5.6.1 & 5.6.2).

5.7 Discussion

In this section, we discuss and reflect on the main results of this chapter. The main
price of anarchy bounds we obtain are summarized in Figure 5.5. First, if the bid-
ders can overbid we obtain a tight bound on the CCE-POA over the entire range of
γ ∈ (0, 1] (Figure 5.5(a)). This bound shows that the POA increases from a small
constant e/(e−1) to infinity as γ decreases from 1 to 0. Put differently, for the type of
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corruption considered in this paper, the negative impact on worst-case social welfare
is larger for lower values of γ. Thinking about γ-HYA, we feel that this makes sense
intuitively: as γ approaches 0, the auctioneer only withholds a small fraction of the
surplus and the bidders are thus incentivized to exploit the corruption (as it comes at
a low cost). In contrast, as γ approaches 1, the auctioneer charges a significant frac-
tion of the surplus and while the bidders still have good reasons to join the corruption
(as formalized in Proposition 5.3.1), they exploit it less drastically as it comes at a
large cost.

Where we completely settle the CCE-POA of γ-FPA for both the single-item and
multi-unit auction setting, a more fine-grained landscape of the price of anarchy
emerges under the no-overbidding assumption. This is a standard assumption that
often needs to be made to derive meaningful bounds on the POA. For example, it is
well-known that the PNE-POA of the second-price single-item auction is unbounded
if the bidders can overbid. On the other hand, it is one if bidders cannot overbid.
In the second-price single-item auction, the no-overbidding assumption can also be
motivated ‘endogenously’, since overbidding is a dominated strategy for each bidder.
However, this does not hold in second-price multi-unit auctions.

In general, the impact that the no-overbidding assumption has on the price of
anarchy is not well-understood. This aspect also relates to the price of undominated
anarchy studied by Feldman et al. (2016). They prove a clear separation for the POA
in single-item first-price auctions, depending on whether this assumption is made.
Specifically, the CCE-POA increases from 1.229 (without overbidding) to e/(e − 1)
(with overbidding). A similar separation holds for the multi-unit second-price auc-
tion setting, where the PNE-POA is e/(e − 1) (without overbidding, Markakis and
Telelis (2015)) and 2.1885 (with overbidding, Birmpas et al. (2019)). Our bounds also
contribute to this line of research by revealing that there is a substantial difference in
the POA depending on whether or not bidders can overbid; e.g., compare the bounds
depicted in (a) and (b) (multi-unit setting), or (a) and (c) (single-item setting) in
Figure 5.5.

Looking at our proof techniques on a higher level, our upper bounds for γ-FPA are
based on an adapted smoothness notion which relates directly to the highest marginal
winning bids (i.e., first-price payments). In particular, our smoothness argument does
not exploit the second-price payments of γ-HYA at all. As it turns out, this allows
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us to derive tight bounds for γ-HYA and, more generally, for γ-FPA when bidders
can overbid. Thus, our results reveal that the (approximate) first-price payments
are the determining component of such composed payment schemes. In contrast, in
single-item auctions when overbidding is not allowed, it becomes crucial to exploit the
second-price payments of γ-HYA to obtain improved bounds. In a two-player setting,
further improvements (as reflected by Figure 5.5(d)) can be achieved by directly using
the cumulative distribution functions of equilibrium bids to derive these bounds. This
triggers some interesting questions for future research regarding proof techniques to
derive price of anarchy bounds.

Further, we remark that although we focus on the complete information setting in
this chapter, the price of anarchy can also be studied in the incomplete informa-
tion setting as introduced by Harsanyi (1967), where players have private valuation
functions drawn from a common prior. Several of our upper bounds are based on
an adapted smoothness approach for multi-unit auctions which can be extended to
this incomplete information setting and Bayes-Nash equilibria (Roughgarden, 2015b).
More specifically, these extensions could be proven along similar lines as in De Keijzer
et al. (2013), where smoothness is used to bound the Bayes-Nash POA of (standard)
multi-unit auctions.

On a more conceptual level, in this chapter we considered a basic bid rigging model
where the auctioneer colludes with the winning bidders only. In this basic model, all
winning bidders lower their bids to the highest losing bid, which might seem some-
what unrealistic in the multi-unit auction setting. However, note that γ-HYA can
also incorporate non-uniform bid rigging, as illustrated in Example 5.7.1. Further,
γ-FPA captures several additional corruption settings. Still, it would be interesting
to study the price of anarchy of more complex bid rigging models. For example,
the model introduced in Lengwiler and Wolfstetter (2010) (ideally generalized to the
multi-unit auction setting) might be a natural next step.

Example 5.7.1 [Non-uniform bid rigging in γ-HYA]
As before, we consider auctions in which the bidders submit their bid vectors b =
(b1, . . . , bn) to the auctioneer who runs a first-price multi-unit auction. The auc-
tioneer then approaches each winning bidder i ∈ N individually with the offer that
they can lower their xi(b) winning bids. However, in contrast to the basic model,
the auctioneer and bidder i agree to ‘camouflage’ their bid rigging by bidding the
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highest losing bid p̄(b) plus a fraction α ∈ [0, 1] of the surplus bi(j) − p̄(b) for each
j ∈ {1, . . . , xi(b)}. Note that this maintains the relative order among the winning
bids and the magic number cheating becomes less obvious as the winning bids fluc-
tuate more. The remaining surplus of (1 − α)(bi(j) − p̄(b)) is then split, where the
auctioneer withholds a fraction of β ∈ [0, 1]. As before, bidder i can either reject or
accept the offer. But, also here, it is not hard to see that accepting the offer is a
dominant strategy. The total payment of a winning bidder i is then

p
(α, β)
i (b) =

xi(b)∑
j=1

(p̄(b) + α(bi(j) − p̄(b))) + f
(α, β)
i (b), where

f
(α, β)
i (b) = β

xi(b)∑
j=1

(1 − α)(bi(j) − p̄(b)).

After simplifying, we obtain

p
(α, β)
i (b) = (α + β(1 − α))

xi(b)∑
j=1

bi(j) + (1 − α − β(1 − α))xi(b)p̄(b).

If we define γ = α + β − αβ, the above payments p
(α, β)
i are equivalent to pγ

i as
defined in (5.1). Note also that this mapping satisfies γ ∈ [0, 1] for every α, β ∈
[0, 1]. Put differently, given α, β ∈ [0, 1], the price of anarchy of the above non-
uniform bid rigging scheme is determined by the price of anarchy of γ-HYA with
γ = α + β − αβ. �
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6 Entangled equilibria for
bimatrix games

6.1 Introduction

This chapter introduces and analyzes a refinement of Nash equilbria (Nash, 1951).
While the notion of Nash equilibria for strategic games is the most prevalent solution
concept in non-cooperative game theory, it is not without drawbacks. The set of
Nash equilibria for a strategic game can contain many outcomes, some of which are
counterintuitive. Further, a Nash equilibrium need not be ‘robust’, in the sense that
it may no longer be a Nash equilibrium after minor perturbations in the data of
the game. To address this issue, Selten (1975) proposes the notion of perfectness
of equilibria. This equilibrium notion, also referred to as trembling hand perfect
equilibrium, is based on a thought experiment that takes into account the possibility
that players unintentionally play the ‘wrong’ strategy (not necessarily corresponding
to a strategy played in a Nash equilibrium) with small, but positive probability due
to a ‘slip of the hand’. As a consequence of these mistakes, each strategy is played
with positive probability. This refinement of Nash equilibria was followed by the
notion of properness (Myerson, 1978), strict perfectness (Okada, 1984), that of stable
sets (Kohlberg and Mertens, 1986), and many others (see Van Damme (1991) and
Govindan and Wilson (2008) for an overview).

The fact that a different strategy is played with small probability can alterna-
tively be interpreted as a consequence of blocked actions, rather than mistakes in
the execution of actions. With this interpretation, Kleppe et al. (2012) introduce fall
back equilibria, based on a thought experiment in which players strategically choose

153
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a back-up action in case their ‘primary’ action is blocked.
The majority of existing Nash equilibrium refinements are based on a thought ex-

periment which imposes a certain ‘imperfection’, due to mistakes or blocked actions,
on the choices or payoffs of individual players.

The refinement proposed in this chapter deviates from the existing refinements by
considering a thought experiment in which the imperfections occur on a ‘system’
level, instead of those corresponding (directly) to individual players. Imperfections
are interpreted as the blocking of actions. However, if an imperfection occurs, the
chosen actions are blocked for all players simultaneously, rather than for individual
players. The idea behind this is that after players submit their strategies, some entity
converts these strategies into actions leading to payoffs. In this new thought experi-
ment, with small probability, this entity makes an error that blocks the chosen actions
instead of implementing them, and chooses a random combination of the remaining
actions. Put differently, either the chosen actions are executed for all players, or no
player actually plays their chosen action. In this way, there is an entanglement in the
errors. We therefore refer to an equilibrium based on this thought experiment as an
entangled equilibrium. We emphasize that the aim of this explorative chapter is not
prescriptive but descriptive, in the sense that it investigates the workings and com-
putational aspects of entangled equilibria rather than their quality. In this context,
we note that there is no direct relationship between entangled equilibria on one hand
and perfect or fall back equilibria on the other hand.

This thought experiment considers a type of entanglement that is not related to
quantum entanglement. Nash equilibrium refinements have also been considered in
the context of quantum games (for example, Paku�la (2008) analyzes perfect equilibria
in quantum games). The entangled equilibrium notion we consider in this chapter
allows for the analysis of entanglement between (actions of) players without relying
on quantum game theory.

In this chapter, we focus on mixed extensions of two-person finite strategic games, a
class of strategic games known as bimatrix games. Given such a bimatrix game, we
define a perturbed game corresponding to the thought experiment described above
and then define an entangled equilibrium as the limit of a sequence of Nash equilibria
for the perturbed games, when these perturbations tend to zero. We show that the
set of entangled equilibria is a non-empty subset of the set of Nash equilibria.
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Further, an important part of this chapter is dedicated to the discussion of a
geometric-combinatorial approach to determine all entangled equilibria of 2×n bima-
trix games. This approach is based on the approach of Borm (1992) to find perfect
and proper equilibria in 2 × n bimatrix games. Importantly, solving a 2 × n bimatrix
game for entangled equilibria requires relatively little extra work compared to finding
Nash equilibria for the bimatrix game.

The structure of this chapter is as follows. Section 6.2 discusses the preliminaries
related to bimatrix games required to read the remaining sections. Section 6.3 pro-
vides the formal definition of entangled equilibria and discusses their existence and
relation to Nash equilibria. Finally, Section 6.4 treats the geometric-combinatorial
approach to derive all entangled equilibria for 2 × n bimatrix games. Section 6.5
concludes.

6.2 Preliminaries

A bimatrix game is the mixed extension of a two-person finite strategic game, char-
acterized by a pair (A, B) of real-valued matrices of size m × n. The two players are
referred to as 1 and 2. Player 1 chooses a row, with index set M = {1, ..., m}, and
player 2 chooses a column, indexed by N = {1, ..., n}. In the mixed extension, the
players can choose mixed (or randomized) strategies, from sets denoted by �m for
player 1 and �n for player 2, and formally defined by

�m = {p ∈ Rm| p ≥ 0,
∑
i∈M

pi = 1} and �n = {q ∈ Rn| q ≥ 0,
∑
j∈N

qj = 1}.

In the corresponding finite strategic game, the strategies are denoted by e1, ..., em and
f1, ..., fn for players 1 and 2, respectively. For example, this means that in the mixed
extension, ei with i ∈ M corresponds to the unit vector in �m for which pi = 1 and
pk = 0 for all k ∈ M \ {i}. More generally, for p ∈ �m and i ∈ M , pi is interpreted
as the probability that player 1 selects ei. The strategies e1, ..., em and f1, ..., fn are
referred to as pure strategies in the mixed extension.

The matrices A and B represent the payoffs of players 1 and 2, respectively. Hence,
if player 1 selects ei and player 2 selects fj , with i ∈ M and j ∈ N , then player 1
receives Aij and player 2 receives Bij . In the mixed extension, we consider expected
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payoffs, given by

p�Aq =
∑
i∈M

∑
j∈N

piAijqj and p�Bq =
∑
i∈M

∑
j∈N

piBijqj

for players 1 and 2, respectively, for any (p, q) ∈ �m × �n. Hereafter, we omit the
transpose sign, and simply denote the expected payoffs by pAq and pBq.

Let (A, B) be a m×n bimatrix game. Then, a strategy combination (p, q) ∈ �m ×�n

is a Nash equilibrium of (A, B) if

pAq ≥ p′Aq and pBq ≥ pBq′

for all p′ ∈ �m and all q′ ∈ �n. In fact, this is equivalent to

pAq ≥ eiAq and pBq ≥ pBfj

for all i ∈ M and all j ∈ N . The set of Nash equilibria of (A, B) is denoted by
E(A, B). The existence of a (mixed) Nash equilibrium is guaranteed in bimatrix
games (Nash, 1951).

Let p ∈ �m and let q ∈ �n. The so-called pure best reply correspondence of player 1
to q is defined by

PB1(q, A) = {ei| eiAq ≥ ekAq for all k ∈ M}

and the pure best reply correspondence of player 2 to p is

PB2(p, B) = {fj | pBfj ≥ pBfl for all l ∈ N}.

Similarly, the sets of best replies of player 1 (to q) and player 2 (to p) are given by

B1(q, A) = {p ∈ �m| pAq ≥ p′Aq for all p′ ∈ �m}

and
B2(p, B) = {q ∈ �n| pBq ≥ pBq′ for all q′ ∈ �n},

respectively. Note that
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B1(q, A) = Conv{PB1(q, A)}
and

B2(p, B) = Conv{PB2(p, B)}.

Clearly, a strategy combination (p, q) ∈ �m × �n is a Nash equilibrium if and only
if p ∈ B1(q, A) and q ∈ B2(p, B).

6.3 Entangled equilibria for bimatrix games

In this section, we formally define the notion of an entangled equilibrium for a bima-
trix game (A, B), on the basis of perturbed games corresponding to (A, B). Then,
we show that the set of entangled equilibria is a subset of the set of Nash equilibria,
and that the existence of an entangled equilibrium is guaranteed in any bimatrix game.

Let (A, B) be an m × n bimatrix game. We first formally define the perturbed game
(Aε, Bε) corresponding to (A, B), for some small ε > 0. In the perturbed game, the
entries of Aε and Bε are based on the thought experiment that, with probability ε,
the resulting pure strategy combination chosen by the players is blocked instead of
played. If cell (i, j) is blocked, then all cells in row i and j are blocked too. Thus,
effectively, actions i and j are blocked.1 In Definition 6.3.1, we assume that, if a
pure strategy combination is blocked, a replacing pure strategy combination is cho-
sen randomly from those not corresponding to one of the blocked actions, with equal
probability for all remaining pure strategy combinations.

Definition 6.3.1 [Perturbed game]
Let (A, B) be an m×n bimatrix game and let 0 < ε < 1. Then, the perturbed bimatrix
game (Aε, Bε) is defined such that

Aε
ij = (1 − ε)Aij + ε

(m − 1)(n − 1)
∑

k∈M\{i}

∑
l∈N\{j}

Akl, (6.1)

Bε
ij = (1 − ε)Bij + ε

(m − 1)(n − 1)
∑

k∈M\{i}

∑
l∈N\{j}

Bkl, (6.2)

for any i ∈ M and any j ∈ N .
1This in particular means that the perturbations here are not of the Kohlberg-Mertens type (c.f.

Kohlberg and Mertens (1986)).
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Using this definition of perturbed games, an entangled equilibrium is defined as fol-
lows.

Definition 6.3.2 [Entangled equilibrium]
Let (A, B) be an m×n bimatrix game. A strategy combination (p, q) ∈ Δm ×Δn is an
entangled equilibrium of (A, B) if there exists a sequence {εk}k∈N converging to zero
and a sequence {(pk, qk)}k∈N converging to (p, q), such that (pk, qk) ∈ E(Aεk , Bεk ) for
all k ∈ N. The set of entangled equilibria is denoted by EE(A, B).

Example 6.3.1 illustrates both definitions.

Example 6.3.1
Consider the 2 × 2 bimatrix game (A, B) given by

(A, B) =

⎡
⎣

f1 f2

e1 1, 0 0, 0

e2 0, 1 0, 2

⎤
⎦.

The Nash equilibria of a bimatrix game can be determined graphically as the inter-
section points of the graphs of the best replies of players 1 and 2, B1 and B2. For
(A, B), these graphs coincide: they are both given by the black lines in Figure 6.1 at
f2 from e2 to e1 and at e1 from f2 to f1. Hence,

E(A, B) = {e1} × Conv{f1, f2} ∪ Conv{e1, e2} × {f2}.

The perturbed game (Aε, Bε) for some (small) ε > 0 is determined using Defini-
tion 6.3.1. For example, consider (e1, f1). Then, with probability ε this strategy
combination is blocked, and a strategy combination is chosen from the remaining
strategies, being only e2 and f2 here. Hence, Aε

11 = (1 − ε) · 1 + ε · 0 = 1 − ε and
Bε

11 = (1 − ε) · 0 + ε · 2 = 2ε. The remaining payoffs can be computed in a similar
manner. This yields

(Aε, Bε) =

⎡
⎣

f1 f2

e1 1 − ε, 2ε 0, ε

e2 0, 1 − ε ε, 2 − 2ε

⎤
⎦.
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�� ��1 − � �� + ���

Figure 6.1 Graphical representation of best reply correspon-
dences in (A, B) (thick black lines) and (Aε, Bε) (green dotted line
for player 1, green dashed line for player 2) of Example 6.3.1

For any q ∈ Δ2, substituting q2 = 1 − q1 yields

e1Aεq = (1 − ε)q1 = q1 − εq1,

e2Aεq = ε(1 − q1) = ε − εq1.

Hence,

B1(q, Aε) =

⎧⎪⎪⎨
⎪⎪⎩

{e2} if 0 ≤ q1 < ε,

Δ2 if q1 = ε,

{e1} if ε < q1 ≤ 1.

Similarly, for any p ∈ Δ2 we substitute p2 = 1 − p1 and find

pBεf1 = 2εp1 + (1 − ε)(1 − p1) = 1 − p1 − ε + 3εp1,

pBεf2 = εp1 + (2 − 2ε)(1 − p1) = 2 − 2p1 − 2ε + 3εp1.

Hence,

B2(p, Bε) =

⎧⎪⎪⎨
⎪⎪⎩

{f2} if 0 ≤ p1 < 1 − ε,

Δ2 if p1 = 1 − ε,

{f1} if 1 − ε < p1 ≤ 1.

We also represent these best replies graphically in Figure 6.1, using a dotted line for
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player 1 and a dashed line for player 2. Clearly,

E(Aε, Bε) = {(e1, f1), ((1 − ε)e1 + εe2, εf1 + (1 − ε)f2), (e2, f2)}.

The interior intersection point converges to (e1, f2). By Definition 6.3.2, we therefore
have

EE(A, B) = {(e1, f1), (e1, f2), (e2, f2)}. �

In Example 6.3.1, we found that the set of entangled equilbria is a non-empty subset
of the set of Nash equilibria. This holds for any m × n bimatrix game.

Theorem 6.3.3
Let (A, B) be an m × n bimatrix game. Then,

EE(A, B) ⊆ E(A, B).

Proof.
Let (p, q) ∈ EE(A, B). Then, there exists a sequence {εk}k∈N converging to zero and
a sequence {(pk, qk)}k∈N converging to (p, q) such that (pk, qk) ∈ E(Aεk , Bεk ) for all
k ∈ N. Put differently, we have pkAεk qk ≥ p′Aεk qk and pkBεk qk ≥ pkBεk q′ for all
p′ ∈ Δm, q′ ∈ Δn and all k ∈ N. Using the convergence of {εk}k∈N, {pk}k∈N and
{qk}k∈N, this implies

pAq = lim
k→∞

pkAεk qk ≥ lim
k→∞

p′Aεk qk = p′Aq

for all p′ ∈ Δm. Similarly, we find

pBq = lim
k→∞

pkBεk qk ≥ lim
k→∞

pkBεk q′ = pBq′

for all q′ ∈ Δn. This shows that (p, q) ∈ E(A, B).

Theorem 6.3.4
Let (A, B) be an m × n bimatrix game. Then, EE(A, B) �= ∅.

Proof.
Let {εk}k∈N be a sequence of positive numbers converging to zero. Since any bimatrix
game has a Nash equilibrium, there exists a sequence {(pk, qk)}k∈N such that that
(pk, qk) ∈ E(Aεk , Bεk ) for all k ∈ N. Further, note that Δm × Δn is compact,
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meaning this sequence has a subsequence that converges to, say, (p, q) ∈ Δm × Δn by
the Bolzano-Weierstrass theorem. By definition, this implies (p, q) ∈ EE(A, B).

6.4 Entangled equilibria for 2 × n bimatrix games

In this section, we discuss a method to solve 2 × n bimatrix games using a geometric-
combinatorial approach. We follow the notation and methodology developed in Borm
(1992), adapted to our setting. Importantly, solving a 2 × n bimatrix game for entan-
gled equilibria requires relatively little extra work compared to finding Nash equilibria
of the bimatrix game. In particular, explicit computation of (equilibria in) the per-
turbed games is not required.

Let (A, B) be a 2 × n bimatrix game and let j ∈ N . We assign a label to each
pure strategy fj of player 2, indicating whether the set of pure best replies of player
1 to fj is {e1}, denoted by label [1], {e2}, with label [2], or {e1, e2}, with label [12].
The set of all pure strategies of player 2 with label [1] is denoted by J([1]). Formally,
we have J([1]) = {fj | PB1(fj , A) = {e1}}. J([2]) and J([12]) are defined similarly.
Next, let p ∈ �2. Then, PB2(p, [1]), PB2(p, [2]), and PB2(p, [12]) denote the sets of
pure best replies of player 2 to p with the corresponding label.

Throughout this section, we consistently use a superscript ε to indicate that we
consider definitions related to the perturbed game (Aε, Bε) corresponding to (A, B).
For example, we analogously define Jε([1]) = {fj | PB1(fj , Aε) = {e1}}, and similarly
Jε([2]) and Jε([12]) for the sets of pure strategies of player 2 with labels [2] and [12],
respectively, in the perturbed game. Hereafter, we use more concise notation to in-
dicate whether we consider (pure) best replies corresponding to the perturbed game
or the original game, using PBε

1(q) = PB1(q, Aε) and PB1(q) = PB1(q, A) for any
q ∈ �n. For example, PBε

1(fj) = {ei| eiA
εfj ≥ ekAεfj for all k ∈ {1, 2}}. Similarly,

we let, e.g., PBε
2(p, [1]) = {fj ∈ Jε([1])| pBεfj ≥ pBεfl for all l ∈ N} denote the set

of pure best replies of player 2 to p with label [1] in the perturbed game.

The geometric part of the method to find all Nash equilibria starts by drawing the n

lines p �→ pBfj , j ∈ N , representing all possible payoffs to player 2 corresponding to
the pure strategy fj as a function of p. Note that the piecewise linear maximum func-
tion fully describes the best reply correspondence of player 2. The label assigned to
each pure strategy, providing partial information about the best reply correspondence



610416-L-sub01-bw-van Beek610416-L-sub01-bw-van Beek610416-L-sub01-bw-van Beek610416-L-sub01-bw-van Beek
Processed on: 31-8-2023Processed on: 31-8-2023Processed on: 31-8-2023Processed on: 31-8-2023 PDF page: 168PDF page: 168PDF page: 168PDF page: 168
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of player 1, is also represented graphically above the corresponding line.
The piecewise linear maximum function consists of t line segments for some t ∈ N ,

with t + 1 extreme points. The strategies of player 1 corresponding to these extreme
points are denoted by p0, p1, ..., pt and ordered ‘from left to right’ such that p0 = e2

and pt = e1. Further, for each k ∈ {1, ..., t}, Ik and Īk denote the open and closed
interval of strategies between pk−1 and pk, respectively. For all p′, p′′ ∈ Ik, we have
PB2(p′) = PB2(p′′), meaning PB2(Ik), PB2(Ik, [1]), PB2(Ik, [2]), and PB2(Ik, [12])
can unambiguously be defined as well.

Towards the set of Nash equilibria, let S(p) = {q ∈ �n| (p, q) ∈ E(A, B)} denote the
set of solutions to some p ∈ �2. Note that S(p) may be empty for specific p, and that
S(p) is a polytope, since it is a bounded set determined by a finite system of linear
inequalities. The extreme points of S(p) are the sets of pure solutions and coordination
solutions, denoted by PS(p) and CS(p), respectively. The set of pure solutions is
formally defined by PS(p) = {fj | (p, fj) ∈ E(A, B)}, and it is straightforwardly
determined as

PS(p) =

⎧⎪⎪⎨
⎪⎪⎩

PB2(p, [12]) if p ∈ �2 \ {e1, e2},

PB2(p, [12]) ∪ PB2(p, [2]) if p = e2,

PB2(p, [12]) ∪ PB2(p, [1]) if p = e1.

The set of coordination solutions is formally defined by

CS(p) = {q(j, l)| fj ∈ PB2(p, [1]), fl ∈ PB2(p, [2])},

where for each fj ∈ J([1]) and fl ∈ J([2]) the strategy q(j, l) ∈ �n is uniquely
determined by requiring that e1Aq(j, l) = e2Aq(j, l) and that qk(j, l) = 0 for all
k ∈ N \ {j, l}. Then,

S(p) = Conv{PS(p) ∪ CS(p)}.

Similar to before, PS(Ik) and CS(Ik), and hence S(Ik) = Conv{PS(Ik) ∪ CS(Ik)},
are well-defined for all k ∈ {1, ..., t}.

Since for all k ∈ {1, ..., t} it holds that S(Ik) ⊆ S(pk−1) and S(Ik) ⊆ S(pk), it is
generally most efficient to first determine the set of all Nash equilibria with respect
to the intervals Ik and to include the corresponding end points of the interval in the
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Chapter 6. Entangled equilibria for bimatrix games 163

equilibrium set. Next, the extreme points p0, p1, ..., pt need to be considered only if
an additional pure or coordination solution arises compared to the intervals. In this
way, the set of Nash equilibria can be determined in at most 2t + 1 steps.

Theorem 6.4.1 [Borm (1992)]
Let (A, B) be a 2 × n bimatrix game. The set of Nash equilibria is given by

E(A, B) =
t⋃

k=1
Īk × S(Ik) ∪

t⋃
k=0

{pk} × S(pk).

In Example 6.4.1, we illustrate the methodology to find both the set of Nash equilib-
ria and the set of entangled equilibria. For the latter, we follow the ‘naive’ approach
of first explicitly calculating all Nash equilibria of the perturbed game, after which
we find the set of entangled equilibria by letting ε converge to zero. This clarifies
the workings of entangled equilibria, but also shows the computations are quite intri-
cate. After this example, we discuss how to systematically find the set of entangled
equilibria more efficiently using the set of Nash equilibria of the ‘original’ bimatrix
game.

Example 6.4.1
Consider the 2 × 4 bimatrix game (A, B) given by

(A, B) =

⎡
⎣

f1 f2 f3 f4

e1 0, −15 0, 0 0, 6 6, 6

e2 6, 12 0, 9 6, −6 0, −9

⎤
⎦.

Before focusing on the set of entangled equilibria, we first illustrate the geometric-
combinatorial approach to find the set of Nash equilibria, starting with a drawing
of the lines p �→ pBfj , j ∈ {1, ..., 4}, to represent the possible payoffs of player
2 corresponding to fj (on the vertical axis) as a function of p (on the horizontal
axis) in Figure 6.2. For example, the downward sloping line starting from the top
left corresponds to f1, with label [2], as indicated by [2]1. To find the set of Nash
equilibria, we focus on the piecewise linear maximum function (i.e., the best reply
correspondence of player 2). Note that the lines corresponding to f1 and f2 intersect
in p1 = 1

6 e1 + 5
6 e2, the lines corresponding to f2 and f3 intersect in p2 = 5

7 e1 + 2
7 e2,

and finally those corresponding to f3 and f4 intersect in p3 = e1.
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Figure 6.2 Graphical representation towards solving the 2 × 4
bimatrix game of Example 6.4.1

Using Theorem 6.4.1, and the fact that q(4, 3) = 1
2 f3 + 1

2 f4, we find

E(A, B) = {e2} × {f1}
∪ Conv{ 1

6 e1 + 5
6 e2, 5

7 e1 + 2
7 e2} × {f2}

∪ {e1} × Conv{f4, 1
2 f3 + 1

2 f4}.

Next, we consider the set of entangled equilibria, which is determined by finding the
set of Nash equilibria of the perturbed game (Aε, Bε) corresponding to (A, B) and
letting ε converge to zero. Using Definition 6.3.1, we find

(Aε, Bε) =

⎡
⎣

f1 f2 f3 f4

e1 2ε, −15 + 13ε 4ε, −ε 2ε, 6 − 2ε 6 − 2ε, 6 − ε

e2 6 − 4ε, 12 − 8ε 2ε, 9 − 10ε 6 − 4ε, −6 + 3ε 0, −9 + 6ε

⎤
⎦.

We graphically represent this perturbed game in Figure 6.3, using ε = 0.1 for illus-
tration purposes.

Globally speaking, the pictures in Figures 6.2 and 6.3 look alike. There are two
important changes: the line corresponding to f2 now has label [1] instead of [12], and
the lines corresponding to f3 and f4 now intersect slightly left of e1.
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Figure 6.3 Graphical representation towards solving the per-
turbed 2 × 4 bimatrix game of Example 6.4.1

For the former, we now no longer have a pure solution f2 on the middle interval
between pε

1 = 3+2ε
18−12ε e1 + 15−14ε

18−12ε e2 and pε
2 = 15−13ε

21−14ε e1 + 6−ε
21−14ε e2. Instead, since f1

and f3 both have label [2], combined with f2 now having label [1], there are two
coordination solutions on the boundaries of these intervals. For the coordination
solution at pε

1, we have qε
1(2, 1) = 2ε

6−4ε and qε
2(2, 1) = 6−6ε

6−4ε . At pε
2, we find qε(2, 3) =

6−6ε
6−4ε f2 + 2ε

6−4ε f3.
The second prominent change is that the lines corresponding to f3 and f4 now

intersect in pε
3 = 3−3ε

3−2ε e1 + ε
3−2ε e2 instead of e1. The corresponding coordination

solution is given by qε(4, 3) = 3−ε
6−4ε f3 + 3−3ε

6−4ε f4.
Also, since PBε

2(e1, [1]) = {f4}, we still have this pure solution at e1. However, as
pε

3 �= e1, we no longer have a convex hull between the coordination solution and the
pure solution. Instead, they form two separate components.

Finally, note that on the ‘new’ interval, between pε
3 and e1, there are no solutions.

To ensure the ordering from left to right of the extreme points does not change,
we require 0 < ε < 3

4 . For all such ε, we find

E(Aε, Bε) = {e2} × {f1}
∪ { 3+2ε

18−12ε e1 + 15−14ε
18−12ε e2} × { 2ε

6−4ε f1 + 6−6ε
6−4ε f2}

∪ { 15−13ε
21−14ε e1 + 6−ε

21−14ε e2} × { 6−6ε
6−4ε f2 + 2ε

6−4ε f3}
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166 6.4. Entangled equilibria for 2 × n bimatrix games

∪ { 3−3ε
3−2ε e1 + ε

3−2ε e2} × { 3−ε
6−4ε f3 + 3−3ε

6−4ε f4}
∪ {e1} × {f4}.

Letting ε converge to zero, we find that the set of entangled equilibria is given by

EE(A, B) = {e2} × {f1}
∪ { 1

6 e1 + 5
6 e2} × {f2}

∪ { 5
7 e1 + 2

7 e2} × {f2}
∪ {e1} × { 1

2 f3 + 1
2 f4}

∪ {e1} × {f4}.

Clearly, the coordination solution qε(4, 3) converges to q(4, 3), and the extreme points
pε

1, pε
2, and pε

3 converge to p1, p2, and p3, respectively. Further, note that the ‘new’
coordination solutions qε(2, 1) and qε(2, 3) that arose due to the change in label of f2

from [12] to [1] both converge to the original pure solution f2. �

Having built some intuition in Example 6.4.1, we now discuss how the geometric-
combinatorial approach to determine the set of Nash equilibria can be adapted to sys-
tematically find the set of entangled equilibria without the cumbersome explicit com-
putation of (equilibria in) the perturbed game. Each ‘old’ interior extreme point (i.e.,
p1, ...., pt−1) will correspond to exactly one ‘new’ interior extreme point (pε

1, ..., pε
t−1).

Moreover, there may be at most two additional interior extreme points eε
2 and eε

1 at
either side, i.e., close to e2 and e1, respectively. Although eε

2 and eε
1 need not be new

interior extreme points, it is helpful to explicitly consider them in general. The exact
correspondence between pk and pε

k, k ∈ {1, ..., t − 1}, e2 and eε
2, and e1 and eε

1 is
described below.

Definition 6.4.2
Let p = [r 1 − r]� ∈ �2 and let 0 < ε < 1. Then, pε = [rε 1 − rε]� with

rε =
(1 − ε)r + ε

n−1 (1 − r)
1 − ε + ε

n−1
. (6.3)

Note that pε ∈ �2 \ {e1, e2} for any p ∈ �2, since 0 < rε < 1 for any 0 ≤ r ≤ 1.
Further, note that the ordering from left to right of the extreme points is maintained
if ε is such that rε is strictly increasing in r, which holds for all 0 < ε < n−1

n .
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Next, we define two subsets of the pure best reply correspondence of player 2, with
respect to e1 and e2, in the ‘original’ bimatrix game. In Lemma 6.4.4, we show that
these sets correspond to the pure best replies of player 2 to e1 and e2 in the perturbed
game.

Definition 6.4.3
Let (A, B) be a 2 × n bimatrix game. Then,

PB2(e1) = {fj ∈ PB2(e1)| B2j ≤ B2l for all fl ∈ PB2(e1)}

and
PB2(e2) = {fj ∈ PB2(e2)| B1j ≤ B1l for all fl ∈ PB2(e2)}.

Similar to before, we denote, e.g., the corresponding set of pure best replies of player
2 to e1 with label [1] by PB2(e1, [1]).

To determine the set of Nash equilibria of the perturbed game, we are ultimately
interested in the piecewise linear maximum function representing the best reply cor-
respondence of player 2, i.e., the upper envelope of the line-label picture. The next
lemma fully describes the structure of (the upper envelope of) the new line-label
picture for the perturbed game.

Lemma 6.4.4
Let (A, B) be a 2 × n bimatrix game and let (Aε, Bε) be the corresponding perturbed
game. Then, for sufficiently small ε,

(i) Bfj = Bfl ⇐⇒ Bεfj = Bεfl for all j, l ∈ N ;

(ii) PBε
2(pε) = PB2(p) for all p ∈ �2;

(iii) PBε
2(e1) = PB2(e1) and PBε

2(e2) = PB2(e2).

Proof.

(i) This statement follows directly from (6.2).

(ii) Let p ∈ �2. First, note that PBε
2(pε) ⊆ PB2(p). This follows directly from the

fact that, for sufficiently small ε, pBfj > pBfk implies pεBεfj > pεBεfk for all
k ∈ N .
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168 6.4. Entangled equilibria for 2 × n bimatrix games

Hence, it suffices to prove that PB2(p) ⊆ PBε
2(pε). For this, let

p = [r 1 − r]� ∈ �2, pε = [rε 1−rε]� ∈ �2\{e1, e2} as given in Definition 6.4.2,
and let j, l ∈ N such that fj , fl ∈ PB2(p). To prove that fj , fl ∈ PBε

2(pε), it
suffices to show that

rεBε
1j + (1 − rε)Bε

2j = rεBε
1l + (1 − rε)Bε

2l. (6.4)

By definition of PB2(p), we have

rB1j + (1 − r)B2j = rB1l + (1 − r)B2l. (6.5)

To prove (6.4), note that

rε(Bε
1j − Bε

1l) + (1 − rε)(Bε
2j − Bε

2l)

= rε
(

(1 − ε)(B1j − B1l) + ε

n − 1(B2l − B2j)
)

+ (1 − rε)
(

(1 − ε)(B2j − B2l) + ε

n − 1(B1l − B1j)
)

= 1
1 − ε + ε

n−1

(
(1 − ε)2r(B1j − B1l) + ε

n − 1(1 − ε)(1 − r)(B1j − B1l)

+ ε

n − 1(1 − ε)r(B2l − B2j) +
( ε

n − 1

)2
(1 − r)(B2l − B2j)

+ (1 − ε)2(1 − r)(B2j − B2l) + ε

n − 1(1 − ε)r(B2j − B2l)

+ ε

n − 1(1 − ε)(1 − r)(B1l − B1j) +
( ε

n − 1

)2
r(B1l − B1j)

)

= 1
1 − ε + ε

n−1

(
(1 − ε)2(r(B1j − B1l) + (1 − r)(B2j − B2l))

+
( ε

n − 1

)2
(r(B1l − B1j) + (1 − r)(B2l − B2j))

)

= 0,

where in the first equality we substitute (6.2) with m = 2, in the second
equality we substitute (6.3), also using the fact that (1 − rε)(1 − ε + ε

n−1 ) =
(1 − ε)(1 − r) + ε

n−1 r, and the final equality follows from (6.5).

(iii) We only prove PBε
2(e1) = PB2(e1); PBε

2(e2) = PB2(e2) follows similarly. Since
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PBε
2(eε

1) ⊆ PB2(e1) for sufficiently small ε,

PBε
2(e1) = {fj ∈ PB2(e1)| Bε

1j ≥ Bε
1l for all fl ∈ PB2(e1)}.

Let fj , fl ∈ PB2(e1). Then, since

Bε
1j − Bε

1l = (1 − ε)(B1j − B1l) + ε

n − 1(B2l − B2j) = ε

n − 1(B2l − B2j),

it follows that

PBε
2(e1) = {fj ∈ PB2(e1)| B2j ≤ B2l for all fl ∈ PB2(e1)} = PB2(e1).

Lemma 6.4.4 has several implications. First, Lemma 6.4.4(i) shows that coincident
lines in the ‘old’ line-label picture for (A, B) remain coincident lines in the ‘new’
picture for (Aε, Bε).

Next, if two or more non-coincident lines intersect (on the upper envelope of the
line-label picture) at p ∈ �2 in the old picture, then these lines all intersect again in
the new picture at pε. In particular, this applies to each old interior extreme point,
in relation to the new interior extreme points pε

1, ..., pε
t−1. As ε converges to zero, the

corresponding set Sε(pε
k) of solutions to pε

k, k ∈ {1, ..., t − 1}, converges to some set
of solutions, denoted by Se(pk).

Now, consider the left boundary p = e2 and suppose |{B1j | fj ∈ PB2(e2)}| ≥ 2, i.e.,
two or more non-coincident lines intersect at e2. Then, by Lemma 6.4.4(ii),

eε
2 =

[
ε

n−1
1 − ε + ε

n−1

1 − ε

1 − ε + ε
n−1

]�

is the new interior extreme point in which all former pure best replies at e2 are the
new pure best replies. The set of solutions to which Sε(eε

2) converges is denoted by
Se(e2). Of course, there is still an extreme point at e2 in the perturbed game. Hence,
the old extreme point e2 is essentially ‘split in two’. Lemma 6.4.4(iii) shows that the
set of solutions Sε(e2) can be determined on the basis of PB2(e2). The set of solutions
to which Sε(e2) converges is denoted by S̄e(e2).

Next, reconsider p = e2, but now suppose |{B1j | fj ∈ PB2(p)}| = 1. Then, eε
2

is not actually a new (interior) extreme point. In that case, we refer to eε
2 as an

‘artificial’ extreme point. We will see later that in this case Se(e2) ⊆ S̄e(e2).
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170 6.4. Entangled equilibria for 2 × n bimatrix games

Similarly, with respect to p = e1, we define a (possibly artificial) extreme point
eε

1 = pε
t , for which the corresponding set of solutions Sε(eε

1) converges to Se(e1). Fur-
ther, S̄e(e1) is defined analogously to S̄e(e2)

Finally, it remains to consider the intervals. Note that Lemma 6.4.4(i) implies that
the old set of pure best replies with respect to the interval Ik (between pk−1 and pk

for k ∈ {1, ..., t}) exactly corresponds to the new set of pure best replies with respect
to Iε

k (between eε
2 and pε

1 in case k = 1, between pε
k−1 and pε

k for k ∈ {2, ..., t−1}, and
between pε

t and eε
1 in case k = t). The set of (old) solutions to which the corresponding

set of new solutions Sε(Iε
k) converges, is denoted by Se(Ik).

We remark that in case an extreme point at a boundary is split into two extreme
points, there is also a new interval, e.g., between eε

1 and e1. However, we know that
the set of solutions on an interval is always a subset of the sets of solutions to its
extreme points. In the limit, such an interval therefore does not lead to additional
entangled equilibria compared to the ones obtained from its two converging extreme
points, and hence such intervals need not be considered.

To exactly determine Se(pk), Se(e2), S̄e(e2), Se(e1), S̄e(e1), and Se(Ik), one ad-
ditional consideration is necessary: how to determine the new labels. Again, the
approach remains tractable, since, for sufficiently small ε, only the old labels [12] can
change, and Lemma 6.4.5 shows that all such labels change in the same way. For any
2 × n bimatrix game (A, B), the way all labels [12] change follows directly from the
row sums of matrix A, denoted by

a1 =
∑
l∈N

A1l and a2 =
∑
l∈N

A2l.

Lemma 6.4.5
Let (A, B) be a 2 × n bimatrix game and let (Aε, Bε) be the corresponding perturbed
game. Then, for sufficiently small ε,

(i) Jε([12]) = J([12]), Jε([1]) = J([1]), and Jε([2]) = J([2]), if a1 = a2;

(ii) Jε([12]) = ∅, Jε([1]) = J([1]) ∪ J([12]), and Jε([2]) = J([2]), if a1 < a2;

(iii) Jε([12]) = ∅, Jε([1]) = J([1]), and Jε([2]) = J([2]) ∪ J([12]), if a1 > a2.
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Proof. Let j ∈ N . Using equation (6.1), we have

Aε
1j − Aε

2j = (1 − ε)(A1j − A2j) + ε

n − 1
∑

l∈N\{j}
(A2l − A1l). (6.6)

First, suppose fj /∈ J([12]). Then, it follows from (6.6) that, for sufficiently small ε,
A1j > A2j implies Aε

1j > Aε
2j and A1j < A2j implies Aε

1j < Aε
2j . This shows that

PB1(fj) = PBε
1(fj), i.e., all pure strategies with label [1] or [2] in (A, B) keep that

same label in (Aε, Bε).
Next, suppose fj ∈ J([12]). Then, A1j = A2j and consequently

Aε
1j − Aε

2j = ε

n − 1
∑

l∈N\{j}
(A2l − A1l) = ε

n − 1
∑
l∈N

(A2l − A1l) = ε

n − 1(a2 − a1).

So, Aε
1j = Aε

2j and fj ∈ Jε([12]) if a1 = a2, Aε
1j > Aε

2j and fj ∈ Jε([1]) if a1 < a2,
and Aε

1j < Aε
2j and fj ∈ Jε([2]) if a1 < a2.

In particular, Lemma 6.4.5 implies that there can be a new coordination solution in
the perturbed game that does not directly correspond to an old coordination solution
in the original game. However, such a new coordination solution will converge to the
old pure solution corresponding to the old label [12].

Summarizing, Lemmas 6.4.4 and 6.4.5 fully describe the line-label picture for a per-
turbed game. A direct analysis of the solutions of the basis of this new picture using
coordination solutions and pure solutions, in combination with a limit argument, leads
to the following exact characterizations of the solutions corresponding to all interior
extreme points and all intervals.

Proposition 6.4.6
Let (A, B) be a 2 × n bimatrix game and let k ∈ {1, ..., t − 1}. Then,

Se(pk) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∅ if a1 < a2 and PB2(pk, [2]) = ∅, or

if a1 > a2 and PB2(pk, [1]) = ∅,

S(pk) otherwise.
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Proposition 6.4.7
Let (A, B) be a 2 × n bimatrix game and let k ∈ {1, ..., t}. Then,

Se(Ik) =

⎧⎪⎪⎨
⎪⎪⎩

∅ if a1 < a2 and PB2(Ik, [2]) = ∅, or

if a1 > a2 and PB2(Ik, [1]) = ∅,

S(Ik) otherwise.

For the solutions corresponding to the possibly artificial interior extreme points eε
2

and eε
1, note that, e.g., PS(e1) also includes pure best replies with label [1], while

we should restrict to those with label [12] for interior points. Therefore, we use, e.g.,
PB2(e1, [12]) instead of PS(e1) in Proposition 6.4.8.

Proposition 6.4.8
Let (A, B) be a 2 × n bimatrix game. Then,

Se(e1) =

⎧⎪⎪⎨
⎪⎪⎩

∅ if a1 < a2 and PB2(e1, [2]) = ∅, or

if a1 > a2 and PB2(e1, [1]) = ∅,

Conv{CS(e1) ∪ PB2(e1, [12])} otherwise,

and

Se(e2) =

⎧⎪⎪⎨
⎪⎪⎩

∅ if a1 < a2 and PB2(e2, [2]) = ∅, or

if a1 > a2 and PB2(e2, [1]) = ∅,

Conv{CS(e2) ∪ PB2(e2, [12])} otherwise.

Finally, to describe S̄e(e1) and S̄e(e2), we define

PS(e1) = PB2(e1, [1]) ∪ PB2(e1, [12])

and
PS(e2) = PB2(e2, [2]) ∪ PB2(e2, [12]),

and, for i ∈ {1, 2},

CS(ei) = {q(j, l) ∈ CS(ei)| fj , fl ∈ PB2(ei)}
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and
S̄(ei) = Conv{PS(ei) ∪ CS(ei)}.

Proposition 6.4.9
Let (A, B) be a 2 × n bimatrix game. Then,

S̄e(e1) =

⎧⎪⎪⎨
⎪⎪⎩

Conv{PB2(e1, [1])} if a1 < a2 and PB2(e1, [2]) = ∅, or
if a1 > a2 and PB2(e1, [1]) = ∅,

S̄(e1) otherwise,

and

S̄e(e2) =

⎧⎪⎪⎨
⎪⎪⎩

Conv{PB2(e2, [2])} if a1 < a2 and PB2(e2, [2]) = ∅, or
if a1 > a2 and PB2(e2, [1]) = ∅,

S̄(e2) otherwise.

Combining the four propositions above, we can fully characterize the set of entangled
equilibria for a 2 × n bimatrix game in the following way.

Theorem 6.4.10
Let (A, B) be a 2 × n bimatrix game. Then, the set of entangled equilibria of (A, B)
is given by2

EE(A, B) =
t⋃

k=1
Īk × Se(Ik)

∪
t−1⋃
k=1

{pk} × Se(pk)

∪ {e1} × (
Se(e1) ∪ S̄e(e1)

)
∪ {e2} × (

Se(e2) ∪ S̄e(e2)
)
.

Using the structure of EE(A, B) as described in Theorem 6.4.10, we now illustrate
how to efficiently modify the line-label picture to readily determine the set of entangled
equilibria for each specific 2×n bimatrix game by using the format of the set of Nash
equilibria with respect to the modified picture, thus avoiding explicit computations
for perturbed games.

2It is readily verified that if, e.g., |{B1j | fj ∈ P B2(e1)}| = 1, then Se(e1) ⊆ S̄e(e1).
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Example 6.4.2
Consider the 2 × 7 bimatrix game (A, B) given by

(A, B) =

⎡
⎣

f1 f2 f3 f4 f5 f6 f7

e1 0, −15 0, 0 0, 6 6, 6 0, 6 0, 6 0, 6

e2 6, 12 0, 9 6, −6 0, −9 0, 6 3, 6 3, −9

⎤
⎦.

This game is graphically represented in Figure 6.4. Note that the 2×4 bimatrix game
of Example 6.4.1 is a subgame of (A, B). Similar to Example 6.4.1, one readily finds

E(A, B) = {e2} × {f1}
∪ Conv{ 1

6 e1 + 5
6 e2, 1

3 e1 + 2
3 e2} × {f2}

∪ { 1
3 e1 + 2

3 e2} × Conv{f2, f5}
∪ Conv{ 1

3 e1 + 2
3 e2, e1} × {f5}

∪ {e1} × Conv{f4, f5, q(4, 3), q(4, 6), q(4, 7)},

where q(4, 3) = 1
2 f3 + 1

2 f4, q(4, 6) = 1
3 f4 + 2

3 f6, and q(4, 7) = 1
3 f4 + 2

3 f7.

0

1

2

3

4

5

6

7

8

9

10

11

12

1
6
e1 +

5
6
e2

1
3
e1 +

2
3
e2

[2]1

[12]2

[2]3

[1]4,[2]7

[12]5,[2]6

e2 e1

Figure 6.4 Graphical representation towards solving the 2 × 7
bimatrix game of Example 6.4.2 for Nash equilibria
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From this, we can straightforwardly derive the set of entangled equilibria. First, note
that with respect to the row sums

a1 = 6 < 18 = a2,

i.e., f2 and f5 get label [1] instead of [12] in the perturbed games. We keep track of
this in Figure 6.5 using [1]2̄ and [1]5̄.

The extreme point at e1 is split into two extreme points, which is graphically
reflected in Figure 6.5 by shifting the right boundary to the right, to ē1, so that e1

becomes an interior extreme point.

0

1

2

3

4

5

6

7

8

9

10

11

12

1
6
e1 +

5
6
e2

1
3
e1 +

2
3
e2

[2]1

[1]2̄

[2]3

[1]4,[2]7

[1]5̄,[2]6

e2 e1 ē1

Figure 6.5 Graphical representation towards solving the 2 × 7
bimatrix game of Example 6.4.2 for entangled equilibria

The set of Nash equilibria corresponding to Figure 6.5 is

{e2} × {f1}
∪ { 1

6 e1 + 5
6 e2} × {q(2̄, 1)}

∪ { 1
3 e1 + 2

3 e2} × Conv{q(2̄, 6), q(5̄, 6)}
∪ Conv{ 1

3 e1 + 2
3 e2, e1} × {q(5̄, 6)}

∪ {e1} × Conv{q(4, 3), q(4, 6), q(4, 7), q(5̄, 3), q(5̄, 6), q(5̄, 7)}
∪ {ē1} × Conv{f4, q(4, 7)},
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where, e.g., q(2̄, 1) corresponds to the coordination solution between f2 (with label
[12] in the original game) and f1. Using the fact that each new coordination solution
converges to the old pure solution with label [12] in the original game, we readily find

EE(A, B) = {e2} × {f1}
∪ { 1

6 e1 + 5
6 e2} × {f2}

∪ { 1
3 e1 + 2

3 e2} × Conv{f2, f5}
∪ Conv{ 1

3 e1 + 2
3 e2, e1} × {f5}

∪ {e1} × Conv{f5, q(4, 3), q(4, 6), q(4, 7)}
∪ {e1} × Conv{f4, q(4, 7)}. �

6.5 Concluding remarks

The perturbations considered in the thought experiment corresponding to entangled
equilibria are not of the Kohlberg-Mertens type, and there is also no direct relation-
ship between entangled equilibria and perfect equilibria. Example 6.5.1 illustrates
that these two equilibrium sets can be disjoint. Consequently, the same holds when
comparing entangled equilibria with the sets of proper or fall back equilibria (since
Kleppe et al. (2012) show that, for bimatrix games, each proper equilibrium is a fall
back equilibrium).

Example 6.5.1
Consider the 2 × 2 bimatrix game (A, B) given by

(A, B) =

⎡
⎣

f1 f2

e1 1, 0 0, 0

e2 0, 2 0, 1

⎤
⎦.

Note that this is the 2 × 2 bimatrix game of Example 6.3.1 in which B21 and B22 are
interchanged. For the bimatrix game of Example 6.3.1, we found that EE(A, B) =
{(e1, f1), (e1, f2), (e2, f2)}. There, the only perfect equilibrium is (e1, f2).

For the bimatrix game of this example, one readily finds that EE(A, B) = (e1, f2),
while (e1, f1) is the only perfect equilibrium (since e1 weakly dominates e2 and f1

weakly dominates f2). This shows both equilibrium sets can also be disjoint. �
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The definitions and results of Section 6.3 can be extended in various ways. First, note
that while Definition 6.3.1 assumes that if a strategy combination is blocked, a replac-
ing pure strategy combination is chosen with equal probability for all remaining pure
strategy combinations, Theorems 6.3.3 and 6.3.4 hold for non-uniform distributions
as well. It may also be interesting to consider truly correlated strategies as replace-
ment for the blocked actions. Further, note that the entangled equilibrium notion is
well-defined for n-person finite strategic games in general.

One could also explore whether there exist generic relationships between entangled
equilibria and existing solution concepts, to offer an alternative justification for these
concepts.

Finally, another direction for further research is to examine characterizations of
the structure of the set of entangled equilibria, in general or for specific classes of
games (e.g., strictly competitive bimatrix games or generic games).
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B. Rama (eds.)].

IRENA (2021). World energy transitions outlook: 1.5°C pathway. International
Renewable Energy Agency, Abu Dhabi.

Janipour, Z., de Nooij, R., Scholten, P., Huijbregts, M., and de Coninck, H. (2020).
What are sources of carbon lock-in in energy-intensive industry? a case study into
dutch chemicals production. Energy Research & Social Science, 60:1–9.



610416-L-sub01-bw-van Beek610416-L-sub01-bw-van Beek610416-L-sub01-bw-van Beek610416-L-sub01-bw-van Beek
Processed on: 31-8-2023Processed on: 31-8-2023Processed on: 31-8-2023Processed on: 31-8-2023 PDF page: 189PDF page: 189PDF page: 189PDF page: 189

Bibliography 183

Kim, S. (2012). Biform game based cognitive radio scheme for smart grid communi-
cations. Journal of Communications and Networks, 14(6):614–618.

Kleppe, J., Borm, P., and Hendrickx, R. (2012). Fall back equilibrium. European
Journal of Operational Research, 223(2):372–379.

Klijn, F. and Sánchez, E. (2006). Sequencing games without initial order. Mathemat-
ical Methods of Operations Research, 63(1):53–62.

Knoope, M. (2015). Costs, safety and uncertainties of CO2 infrastructure develop-
ment. PhD thesis, Utrecht University.
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Academic summary

This dissertation focuses on the mathematical analysis of projects involving decisions
by multiple actors. Projects involve a set of different parties, firms, or stakeholders,
often referred to as players. These players all have their own capabilities, require-
ments, and incentives, but their (monetary) outcome is dependent on the decisions of
other players as well. Game theory is a mathematical tool to analyze the interactive
decision-making process, generally paired with a method to ‘resolve’ the conflict sit-
uation. The way in which players interact in such a situation is commonly divided in
two categories, distinguishing between cooperative and competitive (non-cooperative)
behavior.

Models within a cooperative framework study situations in which groups of players
can cooperate by reaching a mutual agreement on a joint plan of action to maximize
their joint payoff. This is generally paired with a specification of how to allocate
this payoff. Cooperative games with transferable utility assign a (joint) value to
every possible subset of players (called ‘coalitions’), not only to the group of players
as a whole (the ‘grand’ coalition). In principle, this game serves as a conservative
and consistent benchmark to properly address the allocation problem for the grand
coalition, taking into account coalitional incentives. By ‘solving’ the game, one finds
allocations of the total joint value of the grand coalition to the players.

This stands in contrast to non-cooperative models, in which strategic players are
interested in maximizing their individual payoffs, taking into account the strategic
behavior of other players based on individual incentives only. Regarding solutions,
(variants of) Nash equilibria are the main topic of interest.

Chapters 2 and 3 are written within a cooperative framework. Chapter 4 considers
two-stage models, in which a non-cooperative first stage is followed by a cooperative
second stage. Chapters 5 and 6 analyze non-cooperative models.

187



610416-L-sub01-bw-van Beek610416-L-sub01-bw-van Beek610416-L-sub01-bw-van Beek610416-L-sub01-bw-van Beek
Processed on: 31-8-2023Processed on: 31-8-2023Processed on: 31-8-2023Processed on: 31-8-2023 PDF page: 194PDF page: 194PDF page: 194PDF page: 194

188

In Chapter 2, we define and axiomatically characterize a new proportional influence
measure for sequential projects with imperfect reliability. We consider a model in
which a finite set of players aims to complete a project, consisting of a finite number
of tasks, which can only be carried out by certain specific players. Moreover, we
assume the players to be imperfectly reliable, i.e., players are not guaranteed to carry
out a task successfully. To determine which players are most important for the com-
pletion of a project, we use a proportional influence measure, where players’ influence
on the completion of each task within the project is measured in proportion to the like-
lihood that they complete it successfully. This chapter provides two characterizations
of this influence measure. The most prominent property in the first characterization is
task decomposability. This property describes the relationship between the influence
measure of a project and the measures of influence one would obtain if one divides
the tasks of the project over multiple independent smaller projects. Invariance under
replacement is the most prominent property of the second characterization. If in a
certain task group a specific player is replaced by a new player who was not in the
original player set, this property states that this should have no effect on the allocated
measure of influence of any other original player.

Chapter 3, provides a multi-actor perspective on the realization of new infrastruc-
tures, motivated by the necessity for infrastructures to support the ongoing climate
and energy transition in general, and CO2 transport infrastructures for carbon cap-
ture, utilization and storage in particular. We develop a general model to represent
infrastructures that allows for a unique decomposition into ‘elementary infrastructure
components’ based on heterogeneous user requirements. Notably, it incorporates a
cost function with a very generic and adaptable structure, for which we can still ex-
plicitly determine the costs of each individual component. As a direct consequence
an intuitive cost allocation rule is obtained: equal component cost sharing. This allo-
cation rule is in line with existing game-theoretic concepts and satisfies the desirable
properties of advantageous scaling and coalitional rationality. Advantageous scaling
guarantees that the costs allocated to each existing user do not increase if the number
of users grows larger and coalitional rationality ensures that there is no subgroup of
infrastructure users that would have a financial reason to object to the cost allocation.
Additionally, we examine the application of our model to a prospective CO2 transport
infrastructure for CCUS in the port of Rotterdam and the adjoining industry area.



610416-L-sub01-bw-van Beek610416-L-sub01-bw-van Beek610416-L-sub01-bw-van Beek610416-L-sub01-bw-van Beek
Processed on: 31-8-2023Processed on: 31-8-2023Processed on: 31-8-2023Processed on: 31-8-2023 PDF page: 195PDF page: 195PDF page: 195PDF page: 195

Academic summary 189

Chapter 4, analyzes applications of biform games to linear production (LP) and se-
quencing processes. Biform games apply to problems in which strategic decisions are
followed by a cooperative stage, where the specific format of the cooperative stage
is determined by these strategic decisions. The cooperative stage corresponding to
a strategy combination is then ‘solved’, leading to a unique payoff allocation vector.
By associating a payoff vector with each possible strategy combination, the induced
strategic game is determined. In biform LP-processes, we allow firms to compete for
resources, rather than assuming the resource bundles are simply given. With strategy
dependent resource bundles that can be obtained from two locations, we show that
the induced strategic game has a pure Nash equilibrium, using the Owen set or any
game-theoretic solution concept that satisfies anonymity to solve the second-stage
cooperative LP-game. In biform sequencing processes, we no longer assume an initial
processing order is given. Instead, this initial order is strategically determined by
allowing players to request their preferred position in the initial order. Solving the
second-stage cooperative sequencing game using a gain splitting rule, we fully deter-
mine the set of pure Nash equilibria of the induced strategic game.

In Chapter 5, we initiate the study of the social welfare loss (in utilitarian welfare
terms) caused by corrupt auctioneers, both in single-item and multi-unit auctions.
In our model, the auctioneer may collude with the winning bidders by letting them
lower their bids in exchange for a (possibly bidder-dependent) fraction γ ∈ [0, 1] of
the surplus: the difference between their bid and the highest losing bid. We consider
different corruption schemes. In the most basic one, all winning bidders lower their
bid to the highest losing bid. We show that this setting is equivalent to a γ-hybrid
auction in which the payments are a convex combination of first-price and second-
price auction payments. More generally, we consider corruption schemes that can be
related to γ-approximate first-price auctions (γ-FPA), where the payments recover
at least a γ-fraction of the first-price payments. Our goal is to obtain a precise under-
standing of the robust price of anarchy of such auctions. If no restrictions are imposed
on the bids, we establish a bound on the robust price of anarchy of γ-FPA which is
tight for the single-item and the multi-unit auction setting. On the other hand, if
bidders cannot overbid, a more fine-grained landscape of the price of anarchy emerges,
depending on the auction setting and the equilibrium notion. Interestingly, we derive
(almost) tight bounds for both auction settings and both pure Nash equilibria and
coarse correlated equilibria.
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Finally, Chapter 6 proposes a new refinement of Nash equilibria for bimatrix games.
Most existing refinements are based on a thought experiment which imposes a certain
‘imperfection’ on the choices or payoffs of individual players. The equilibrium refine-
ment proposed in this chapter deviates from the existing refinements by considering
a thought experiment in which the imperfections occur on a ‘system’ level, instead of
those corresponding (directly) to individual players. Imperfections are interpreted as
the blocking of actions. If an imperfection occurs, the chosen actions are blocked for
all players simultaneously, rather than for individual players. The idea behind this is
that, after players submit their strategies, some entity converts these strategies into
actions leading to payoffs. In this new thought experiment, with small probability, this
entity makes an error that blocks the chosen actions instead of implementing them,
and chooses a random combination of the remaining actions. Put differently, either
the chosen actions are executed for all players, or no player actually plays their chosen
action. In this way, there is an entanglement in the errors. We therefore refer to an
equilibrium based on this thought experiment as an entangled equilibrium. Focusing
on bimatrix games, we show that the set of entangled equilibria is a non-empty subset
of the set of (mixed) Nash equilibria. Further, we discuss a geometric-combinatorial
approach to determine all entangled equilibria of 2 × n bimatrix games. Importantly,
solving a 2 × n bimatrix game for entangled equilibria requires relatively little extra
work compared to finding Nash equilibria for the bimatrix game.
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Dit proefschrift richt zich op de wiskundige analyse van projecten waarbij beslissingen
worden genomen door meerdere actoren. Bij projecten zijn verschillende partijen,
bedrijven of belanghebbenden betrokken, vaak aangeduid als spelers. Deze spelers
hebben elk hun eigen capaciteiten, benodigdheden en (financiële) prikkels, maar hun
uitkomst is ook afhankelijk van de beslissingen van andere spelers. Speltheorie is
een wiskundig hulpmiddel om het interactieve besluitvormingsproces te analyseren,
meestal gepaard met een methode om de conflictsituatie ‘op te lossen’. Het type
interactie tussen de spelers in een dergelijke situatie wordt doorgaans onderverdeeld
in twee categorieën, namelijk coöperatief en competitief (niet-coöperatief) gedrag.

Modellen binnen een coöperatief kader bestuderen situaties waarin groepen spelers
kunnen samenwerken door een wederzijdse overeenkomst te sluiten over een gemeen-
schappelijk actieplan om hun gezamenlijke uitbetaling te maximaliseren. Dit gaat
meestal gepaard met een specificatie van hoe deze uitbetaling moet worden verdeeld
over de spelers. Coöperatieve spellen met overdraagbaar nut kennen een (gezamen-
lijke) waarde toe aan elke mogelijke subset van spelers (‘coalities’), niet alleen aan
de groep spelers als geheel (de ‘grote coalitie’). Dit spel dient als referentiekader om
het allocatieprobleem voor de grote coalitie consistent op te lossen, rekening houdend
met de (financiële) uitkomsten van alle coalities. Door het spel op te lossen vindt men
allocaties van de totale gezamenlijke waarde van de grote coalitie aan de spelers.

Dit staat in contrast met niet-coöperatieve modellen, waarin strategische spelers
gëınteresseerd zijn in het maximaliseren van hun individuele uitbetalingen, rekening
houdend met het strategische gedrag van andere spelers op basis van alleen de indi-
viduele prikkels. Wat oplossingen betreft, zijn (varianten van) Nash-evenwichten het
belangrijkste onderwerp van interesse.

Hoofdstukken 2 en 3 zijn geschreven in een coöperatief kader. Hoofdstuk 4 be-
handelt modellen waarin een niet-coöperatieve eerste fase wordt gevolgd door een
coöperatieve tweede fase. Hoofdstukken 5 en 6 analyseren niet-coöperatieve modellen.
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In Hoofdstuk 2 definiëren we een nieuwe proportionele invloedsmaat voor sequentiële
projecten met imperfecte betrouwbaarheid. We beschouwen een model waarin een
eindige verzameling spelers een project wil voltooien dat bestaat uit een eindig aantal
taken die alleen kunnen worden uitgevoerd door bepaalde specifieke spelers. Boven-
dien nemen we aan dat de spelers imperfect betrouwbaar zijn; spelers kunnen in het
algemeen niet garanderen dat ze een taak succesvol uitvoeren. Om te bepalen welke
spelers het belangrijkst zijn voor de voltooiing van een project, gebruiken we een
proportionele invloedsmaat, waarbij de invloed van spelers op de voltooiing van elke
taak binnen het project wordt gemeten in verhouding tot de kans dat ze de taak suc-
cesvol voltooien. Dit hoofdstuk geeft twee axiomatische karakteriseringen van deze
invloedsmaat. De belangrijkste eigenschap van de eerste karakterisering is ‘taakont-
leedbaarheid’. Deze eigenschap beschrijft de relatie tussen de invloedsmaat van een
project en de invloedsmaat die je zou krijgen als je de taken van het project zou
verdelen over meerdere onafhankelijke kleinere projecten. ‘Invariantie bij vervanging’
is de belangrijkste eigenschap van de tweede karakterisering. Als in een bepaalde
taakgroep een specifieke speler wordt vervangen door een nieuwe speler die niet in de
oorspronkelijke spelersgroep zat, stelt deze eigenschap dat dit geen effect mag hebben
op de toegekende invloedsmaat van een andere oorspronkelijke speler.

Hoofdstuk 3 biedt een multi-actorperspectief op de totstandkoming van nieuwe infra-
structuren, gemotiveerd door de behoefte aan infrastructuren ter ondersteuning van de
huidige klimaat- en energietransitie in het algemeen, en CO2-transportinfrastructuren
voor koolstofafvang, -gebruik en -opslag in het bijzonder. We ontwikkelen een alge-
meen model om infrastructuren te beschrijven dat een unieke decompositie in ‘ele-
mentaire infrastructuurcomponenten’ mogelijk maakt op basis van heterogene gebrui-
kerseisen. In het bijzonder bevat dit model een kostenfunctie met een zeer generieke
en aanpasbare structuur, waarvoor we nog steeds expliciet de kosten van elk indi-
vidueel component kunnen bepalen. Hieruit volgt direct een intüıtieve kostenallo-
catieregel: de kosten per component worden gelijk verdeeld over de spelers die dit
component nodig hebben. Deze toewijzingsregel is in lijn met bestaande speltheore-
tische concepten en voldoet aan twee wenselijke eigenschappen: ‘voordelige schaling’
en ‘coalitionele rationaliteit’. Voordelige schaling garandeert dat de kosten die aan
elke bestaande gebruiker worden toegewezen niet stijgen als het aantal gebruikers
toeneemt. Coalitionele rationaliteit zorgt ervoor dat er geen subgroep van infrastruc-
tuurgebruikers is die een financiële reden zou hebben om bezwaar te maken tegen de
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kostentoewijzing. Verder analyseren we de toepassing van ons model op een mogelijke
CO2-transportinfrastructuur voor koolstofafvang, -gebruik en -opslag in de haven van
Rotterdam en het aangrenzende industriegebied.

Hoofdstuk 4 analyseert toepassingen van ‘biforme’ spellen op lineaire productie (LP)
processen en sequencingprocessen (gerelateerd aan wachtrijtheorie). Biforme spellen
zijn van toepassing op problemen waarin strategische beslissingen worden gevolgd
door een coöperatieve fase, waarbij de specifieke uitgangssituatie in de coöperatieve
fase bepaald wordt door deze strategische beslissingen. De coöperatieve fase die over-
eenkomt met een strategiecombinatie wordt dan ‘opgelost’, wat leidt tot een unieke
uitbetalingsallocatievector. Door aan elke mogelijke strategiecombinatie een uitbeta-
lingsvector te koppelen, wordt het ‘gëınduceerde strategische spel’ bepaald. In biforme
LP-processen stellen we bedrijven in staat om te concurreren voor grondstoffen, in
plaats van aan te nemen dat de grondstoffenbundels simpelweg gegeven zijn. Met
strategie-afhankelijke grondstoffenbundels die kunnen worden verkregen op twee lo-
caties, tonen we aan dat het gëınduceerde strategische spel een zuiver Nash-evenwicht
heeft, waarbij gebruik wordt gemaakt van de Owen-set of een willekeurig speltheore-
tisch oplossingsconcept dat voldoet aan anonimiteit om het coöperatieve LP-spel van
de tweede fase op te lossen. Bij biforme sequencingprocessen gaan we er niet langer
van uit dat een initiële verwerkingsvolgorde gegeven is. In plaats daarvan wordt deze
initiële volgorde strategisch bepaald door spelers de mogelijkheid te geven om hun
voorkeurspositie in de initiële volgorde aan te vragen. Door het coöperatieve spel van
de tweede fase op te lossen met een ‘winstsplitsingsregel’, bepalen we de volledige
verzameling pure Nash-evenwichten van het gëınduceerde strategische spel.

In Hoofdstuk 5 initiëren we de studie van het sociale welvaartsverlies (in utilitaire
welvaartstermen) veroorzaakt door corrupte veilingmeesters, zowel bij veilingen met
één item als bij veilingen met meerdere eenheden. In ons model kan de veilingmeester
samenspannen met de winnende bieders door hen hun bod te laten verlagen in ruil
voor een (mogelijk van de bieder afhankelijke) fractie γ ∈ [0, 1] van het surplus: het
verschil tussen hun bod en het hoogste verliezende bod. We beschouwen verschillende
corruptieschema’s. In de meest basale variant verlagen alle winnende bieders hun
bod tot het hoogste verliezende bod. We laten zien dat dit equivalent is aan een
γ-hybride veiling waarin de betalingen een convexe combinatie zijn van de betalin-
gen bij ‘eerste prijs’ (winnaar betaalt het winnende bod) en ‘tweede prijs’ (winnaar
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betaalt het hoogste verliezende bod) veilingen. Ter veralgemenisering beschouwen
we corruptieschema’s die gerelateerd kunnen worden aan ‘γ-approximate first-price
auctions’ (γ-FPA), waarbij de betalingen ten minste een fractie γ van de betalingen
uit de eerste prijs veiling opleveren. Ons doel is om een nauwkeurig begrip te krijgen
van de ‘price of anarchy’ (POA) van dergelijke veilingen. Als er geen beperkingen
worden opgelegd aan de biedingen, vinden we de precieze waarde van de POA voor
γ-FPA voor veilingen met één of meerdere items. Als bieders niet kunnen overbieden,
ontstaat er een fijnmaziger landschap van de POA, afhankelijk van de veilingsetting
en het evenwichtsconcept. We leiden scherpe limieten af voor beide veilingsettings en
voor zowel pure Nash-evenwichten als ‘coarse correlated’ evenwichten.

Tenslotte stelt Hoofdstuk 6 een nieuwe verfijning van Nash-evenwichten voor bima-
trixspellen voor. De meeste bestaande verfijningen zijn gebaseerd op een gedachte-
experiment dat een zekere ‘imperfectie’ oplegt aan de keuzes of uitbetalingen van
individuele spelers. De evenwichtsverfijning die in dit hoofdstuk wordt voorgesteld
wijkt af van de bestaande verfijningen door een gedachte-experiment te beschouwen
waarin de imperfecties op ‘systeemniveau’ optreden, in plaats van op het niveau van
individuele spelers. Imperfecties worden gëınterpreteerd als het blokkeren van acties.
Als een imperfectie optreedt, worden de gekozen acties geblokkeerd voor alle spelers
tegelijk, in plaats van voor individuele spelers. Het idee hierachter is dat, nadat spe-
lers hun strategieën hebben ingediend, een entiteit deze strategieën omzet in acties
die leiden tot uitbetalingen. In dit nieuwe gedachte-experiment maakt deze entiteit
met kleine waarschijnlijkheid een fout die de gekozen acties blokkeert in plaats van
uitvoert, en kiest deze een willekeurige combinatie van de overgebleven acties. Anders
gezegd, ofwel worden de gekozen acties uitgevoerd voor alle spelers, ofwel speelt geen
enkele speler zijn gekozen actie. Op deze manier is er een verstrengeling in de fouten.
Daarom noemen we een evenwicht gebaseerd op dit gedachte-experiment een ‘entang-
led’ (verstrengeld) evenwicht. Voor bimatrixspellen tonen we aan dat de verzameling
van verstrengelde evenwichten een niet-lege deelverzameling is van de verzameling van
(gemengde) Nash-evenwichten. Verder bespreken we een geometrisch-combinatorische
aanpak om alle verstrengelde evenwichten van 2 × n bimatrixspellen te bepalen. Be-
langrijk is dat het oplossen van een 2×n bimatrixspel voor verstrengelde evenwichten
relatief weinig extra werk kost vergeleken met het vinden van Nash-evenwichten voor
het bimatrixspel.
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Summary for non-experts

This dissertation focuses on the mathematical modeling of group decisions. Though
there is great variety in the types of situations modeled in this dissertation, the
commonality is that in all cases the situation somehow involves decisions made by
multiple actors. All models are in some way related to game theory. In game theory,
the actors are referred to as players. In general, these players all have their own ca-
pabilities, requirements, and incentives, but their (monetary) outcome is dependent
on the decisions of other players as well. Game theory is a mathematical tool to
analyze the interactive decision-making process, generally paired with a method to
‘resolve’ the conflict situation. The way in which players interact in such a situation
is commonly divided in two categories, distinguishing between cooperative and com-
petitive (non-cooperative) behavior. The different models in this dissertation follow a
similar division between collaborative projects and problems with strategic individual
behavior, or a combination thereof.

Cooperative models study situations in which groups of players can cooperate by
reaching a mutual agreement on a joint plan of action, leading to joint payoffs, costs,
or cost savings, generally paired with a specification of how these should be allocated
to the different players. Such allocation mechanisms are often called ‘solutions’. For
example, Chapter 3 analyzes situations in which players cooperate on the construc-
tion of a new infrastructure. Collaborating on a joint infrastructure that meets the
requirements of all players, rather than constructing a separate infrastructure for each
individual player, leads to cost savings. Appropriate allocation of the joint costs, such
that all players can only benefit from collaboration on the infrastructure construction
project, can be a key enabler for the successful realization of such projects. The model
of this chapter is developed primarily with a practically relevant application in mind:
CO2 transport infrastructure for industrial decarbonization. We extensively study a
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concrete case of a prospective CO2 transport infrastructure for carbon capture, uti-
lization and storage in the port of Rotterdam and the adjoining industry area. An
important element of this model is the way in which it incorporates heterogeneity in
the requirements of potential users of this infrastructure. Through this, and using a
model inspired by cooperative game theory, we propose a well-substantiated method
to allocate the total infrastructure construction costs to the users.

On the other hand, there are non-cooperative models. In these models, strategic
players focus on maximizing their individual payoffs, taking into account the strate-
gic behavior of other players based on individual incentives only. The main solution
concept studied in this context is that of a (Nash) equilibrium. Intuitively, some com-
bination of strategies is an equilibrium if no players has a (financial) incentive to uni-
laterally deviate and choose a different strategy instead. An auction, in which players
compete by strategically submitting their (sealed) bids to obtain items, is a prominent
example of interactive decision-making by multiple players in a non-cooperative set-
ting. Chapter 5 considers auctions with a corrupt auctioneer. Corruption in auctions,
where auctioneers manipulate the submitted bids (referred to as ‘bid rigging’) to their
own benefit, occurs in practice, especially in the public sector. However, even though
this bid rigging has been studied and observed in practice, its impact on social welfare
(measured as the total valuation of players for the items they win in the auction) is
still poorly understood. We contribute to this understanding by initiating the study
of social welfare loss caused by corrupt auctioneers in fundamental auction settings.
Specifically, we try to bound the worst-case ratio between the optimal social welfare
and the social welfare of an equilibrium, the so-called price of anarchy.

Chapter 2 considers collaborative projects consisting of a number of tasks to be car-
ried out by a set of players. Each task can only be carried out by a subset of all
players, so players may have to cooperate to complete a project. In this context, we
define a new solution that measures the influence each player has on the completion
of the project, and show this solution is the only one satisfying two sets of properties.

Chapter 4 considers two-stage models, in which a non-cooperative first stage is
followed by a cooperative second stage. Conceptually, the specific format of the
cooperative stage is determined by strategic decisions in the first stage.

Finally, Chapter 6 presents a new solution concept that refines the notion of Nash
equilibria for a general class of non-cooperative games, called bimatrix games.



610416-L-sub01-bw-van Beek610416-L-sub01-bw-van Beek610416-L-sub01-bw-van Beek610416-L-sub01-bw-van Beek
Processed on: 31-8-2023Processed on: 31-8-2023Processed on: 31-8-2023Processed on: 31-8-2023 PDF page: 203PDF page: 203PDF page: 203PDF page: 203

Samenvatting voor niet-deskundigen

Dit proefschrift richt zich op het wiskundig modelleren van groepsbeslissingen. Hoe-
wel de situaties die in dit proefschrift worden gemodelleerd sterk uiteenlopen, is de
overeenkomst dat de situatie in alle gevallen beslissingen omvat die door meerdere
actoren worden genomen. Alle modellen zijn op enigerlei wijze gerelateerd aan spel-
theorie. In speltheorie worden de actoren spelers genoemd. In algemene zin hebben
deze spelers elk hun eigen capaciteiten, benodigdheden en (financiële) prikkels, maar
hun uitkomst is ook afhankelijk van de beslissingen van andere spelers. Speltheorie is
een wiskundig hulpmiddel om het interactieve besluitvormingsproces te analyseren,
meestal gepaard met een methode om de conflictsituatie ‘op te lossen’. Het type in-
teractie tussen de spelers in een dergelijke situatie wordt doorgaans onderverdeeld in
twee categorieën, namelijk coöperatief en competitief (niet-coöperatief) gedrag. De
verschillende modellen in dit proefschrift volgen een vergelijkbare verdeling.

Coöperatieve modellen bestuderen situaties waarin groepen spelers kunnen samen-
werken door een wederzijdse overeenkomst te sluiten over een gemeenschappelijk ac-
tieplan, wat leidt tot gezamenlijke uitbetalingen, kosten of kostenbesparingen, meestal
gepaard met een specificatie van hoe deze moeten worden toegewezen aan de verschil-
lende spelers. Zulke allocatiemechanismen worden vaak ‘oplossingen’ genoemd. In
Hoofdstuk 3 worden situaties geanalyseerd waarin spelers samenwerken bij de aanleg
van een nieuwe infrastructuur. Samenwerken aan een gezamenlijke infrastructuur die
voldoet aan de eisen van alle spelers, in plaats van het bouwen van een aparte infra-
structuur voor elke individuele speler, leidt tot kostenbesparingen. Een juiste allocatie
van de gezamenlijke kosten, zodat alle spelers profiteren van de samenwerking aan het
infrastructuurbouwproject, kan een belangrijke factor zijn voor de succesvolle reali-
satie van dergelijke projecten. Het model in dit hoofdstuk is voornamelijk ontwikkeld
met een praktisch relevante toepassing in gedachten: CO2-transportinfrastructuur
voor industriële decarbonisatie. We bestuderen een concrete casus van een mogelijke
CO2-transportinfrastructuur voor koolstofafvang, -gebruik en -opslag in de haven van
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Rotterdam en het aangrenzende industriegebied. Een belangrijk element van dit mo-
del is de manier waarop het rekening houdt met de heterogene eisen van potentiële
gebruikers van deze infrastructuur incalculeert. Hierdoor, en door gebruik te maken
van een model gëınspireerd op de coöperatieve speltheorie, stellen we een goed onder-
bouwde methode voor om de totale bouwkosten toe te wijzen aan de gebruikers.

Aan de andere kant zijn er niet-coöperatieve modellen. In deze modellen richten
strategische spelers zich op het maximaliseren van hun individuele uitbetalingen, re-
kening houdend met het strategische gedrag van andere spelers op basis van hun
individuele prikkels. Het belangrijkste oplossingsconcept voor dergelijke modellen is
het (Nash) evenwicht. Intüıtief is een combinatie van strategieën een evenwicht als
geen enkele speler een (financiële) prikkel heeft om eenzijdig van strategie af te wij-
ken en in plaats daarvan een andere strategie te kiezen. Een veiling, waarin spelers
concurreren door strategisch hun biedingen uit te brengen om items te verkrijgen, is
een prominent voorbeeld van interactieve besluitvorming door meerdere spelers in een
niet-coöperatieve context. Hoofdstuk 5 beschouwt veilingen met een corrupte veiling-
meester. Corruptie bij veilingen, waarbij veilingmeesters de uitgebrachte (‘gesloten’)
biedingen manipuleren, komt in de praktijk voor, vooral in de publieke sector. Hoe-
wel dit manipuleren van biedingen in de praktijk is bestudeerd en waargenomen, is
de invloed ervan op de sociale welvaart (gemeten als de totale waardering van spelers
voor de items die ze winnen in de veiling) nog steeds onduidelijk. Wij dragen bij
aan dit inzicht met de analyse van sociaal welvaartsverlies veroorzaakt door corrupte
veilingmeesters in fundamentele veilingcontexten. Specifiek proberen we de slechtste
verhouding tussen de optimale sociale welvaart en de sociale welvaart van een even-
wicht, de zogenaamde ‘prijs van anarchie’, te begrenzen.

Hoofdstuk 2 behandelt collaboratieve projecten die bestaan uit een aantal taken die
uitgevoerd moeten worden door een aantal spelers. Elke taak kan slechts worden uit-
gevoerd door een deelverzameling van alle spelers, dus het kan zijn dat spelers moeten
samenwerken om een project te voltooien. In deze context definiëren we een nieuwe
oplossing die de invloed meet van elke speler op de voltooiing van het project, en we
laten zien dat deze oplossing de enige is die voldoet aan twee groepen eigenschappen.

Hoofdstuk 4 beschouwt tweefasenmodellen, waarin een niet-coöperatieve eerste
fase wordt gevolgd door een coöperatieve tweede fase. De specifieke uitgangssituatie
in de coöperatieve fase wordt bepaald door strategische beslissingen in de eerste fase.

Tot slot presenteert Hoofdstuk 6 een nieuw oplossingsconcept dat Nash-evenwichten
verfijnt voor ‘bimatrixspelen’, een algemene klasse van niet-coöperatieve spelen.
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