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ABSTRACT

The folding structure of the DNA molecule combined with helper molecules, also
referred to as the chromatin, is highly relevant for the functional properties of
DNA. The chromatin structure is largely determined by the underlying primary
DNA sequence, though the interaction is not yet fully understood. In this paper
we develop a convolutional neural network that takes an image-representation of
primary DNA sequence as its input, and predicts key determinants of chromatin
structure. The method is developed such that it is capable of detecting interactions
between distal elements in the DNA sequence, which are known to be highly rele-
vant. Our experiments show that the method outperforms several existing methods
both in terms of prediction accuracy and training time.

1 INTRODUCTION

DNA is perceived as a sequence over the letters {A,C,G,T}, the alphabet of nucleotides. This
sequence constitutes the code that acts as a blueprint for all processes taking place in a cell. But
beyond merely reflecting primary sequence, DNA is a molecule, which implies that DNA assumes
spatial structure and shape. The spatial organization of DNA is achieved by integrating (“recruiting”)
other molecules, the histone proteins, that help to assume the correct spatial configuration. The
combination of DNA and helper molecules is called chromatin; the spatial configuration of the
chromatin, finally, defines the functional properties of local areas of the DNA (de Graaf & van
Steensel, 2013).

Chromatin can assume several function-defining epigenetic states, where states vary along the
genome (Ernst et al., 2011). The key determinant for spatial configuration is the underlying pri-
mary DNA sequence: sequential patterns are responsible for recruiting histone proteins and their
chemical modifications, which in turn give rise to or even define the chromatin states. The exact
configuration of the chromatin and its interplay with the underlying raw DNA sequence are under
active research. Despite many enlightening recent findings (e.g. Brueckner et al., 2016; The EN-
CODE Project Consortium, 2012; Ernst & Kellis, 2013), comprehensive understanding has not yet
been reached. Methods that predict chromatin related states from primary DNA sequence are thus of
utmost interest. In machine learning, many prediction methods are available, of which deep neural
networks have recently been shown to be promising in many applications (LeCun et al., 2015). Also
in biology deep neural networks have been shown to be valuable (see Angermueller et al. (2016) for
a review).

Although DNA is primarily viewed as a sequence, treating genome sequence data as just a sequence
neglects its inherent and biologically relevant spatial configuration and the resulting interaction be-
tween distal sequence elements. We hypothesize that a deep neural network designed to account for
long-term interactions can improve performance. Additionally, the molecular spatial configuration
of DNA suggests the relevance of a higher-dimensional spatial representation of DNA. However, due
to the lack of comprehensive understanding with respect to the structure of the chromatin, sensible
suggestions for such higher-dimensional representations of DNA do not exist.
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One way to enable a neural net to identify long-term interactions is the use of fully connected layers.
However, when the number of input nodes to the fully connected layer is large, this comes with a
large number of parameters. We therefore use three other techniques to detect long-term interactions.
First, most convolutional neural networks (CNNs) use small convolution filters. Using larger filters
already at an early stage in the network allows for early detection of long-term interactions without
the need of fully connected layers with a large input. Second, a deep network similar to the ResNet
(He et al., 2015) or Inception (Szegedy et al., 2015) network design prevents features found in early
layers from vanishing. Also, they reduce the size of the layers such that the final fully connected
layers have a smaller input and don’t require a huge number of parameters. Third, we propose a
novel kind of DNA representation by mapping DNA sequences to higher-dimensional images using
space-filling curves. Space-filling curves map a 1-dimensional line to a 2-dimensional space by
mapping each element of the sequence to a pixel in the 2D image. By doing so, proximal elements of
the sequence will stay in close proximity to one another, while the distance between distal elements
is reduced.

The space-filling curve that will be used in this work is the Hilbert curve which has several advan-
tages. (i): [Continuity] Hilbert curves optimally ensure that the pixels representing two sequence
elements that are close within the sequence are also close within the image (Bader, 2016; Aftosmis
et al., 2004). (ii): [Clustering property] Cutting out rectangular subsets of pixels (which is what con-
volutional filters do) yields a minimum amount of disconnected subsequences (Moon et al., 2001).
(iii): If a rectangular subimage cuts out two subsequences that are disconnected in the original se-
quence, chances are maximal that the two different subsequences are relatively far apart (see our
analysis in Appendix A).

The combination of these points arguably renders Hilbert curves an interesting choice for represent-
ing DNA sequence as two-dimensional images. (i) is a basic requirement for mapping short-term
sequential relationships, which are ubiquitous in DNA (such as codons, motifs or intron-exon struc-
ture). (ii) relates to the structure of the chromatin, which - without all details being fully understood
- is tightly packaged and organized in general. Results from Elgin (2012) indicate that when ar-
ranging DNA sequence based on Hilbert curves, contiguous areas belonging to identical chromatin
states cover rectangular areas. In particular, the combination of (i) and (ii) motivate the application
of convolutional layers on Hilbert curves derived from DNA sequence: rectangular subspaces, in
other words, submatrices encoding the convolution operations, contain a minimum amount of dis-
connected pieces of DNA. (iii) finally is beneficial insofar as long-term interactions affecting DNA
can also be mapped. This in particular applies to so-called enhancers and silencers, which exert
positive (enhancer) or negative (silencer) effects on the activity of regions harboring genes, even
though they may be far apart from those regions in terms of sequential distance.

1.1 RELATED WORK

Since Watson and Crick first discovered the double-helix model of DNA structure in 1953 (Watson
& Crick, 1953), researchers have attempted to interpret biological characteristics from DNA. DNA
sequence classification is the task of determining whether a sequence S belongs to an existing class
C, and this is one of the fundamental tasks in bio-informatics research for biometric data analysis
(Z. Xing, 2010). Many methods have been used, ranging from statistical learning (Vapnik, 1998) to
machine learning methods (Michalski et al., 2013). Deep neural networks (LeCun et al., 2015) form
the most recent class of methods used for DNA sequence classification (R.R. Bhat, 2016; Salimans
et al., 2016; Zhou & Troyanskaya, 2015; Angermueller et al., 2016).

Both Pahm et al. (2005) and Higashihara et al. (2008) use support vector machines (SVM) to predict
chromatin state from DNA sequence features. While Pahm et al. (2005) use the entire set of features
as input to the SVM, Higashihara et al. (2008) use random forests to pre-select a subset of features
that are expected to be highly relevant for prediction of chromatin state to use as input to the SVM.
Only Nguyen et al. (2016) use a CCN as we do. There are two major differences between their
approach and ours. First and foremost, the model architecture is different: the network in Nguyen
et al. (2016) consists of two convolution layers followed by pooling layers, a fully connected layer
and a sigmoid layer, while our model architecture is deeper, uses residual connections to reuse the
learned features, has larger convolution filters and has small layers preceding the fully connected
layers (see Methods). Second, while we use a space-filling curve to transform the sequence data
into an image-like tensor, Nguyen et al. (2016) keep the sequential form of the input data.
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Apart from Elgin (2012), the only example we are aware of where Hilbert curves were used to map
DNA sequence into two-dimensional space is from Anders (2009), who demonstrated the power of
Hilbert curves for visualizing DNA. Beyond our theoretical considerations, these last two studies
suggest there are practical benefits of mapping DNA using Hilbert curves.

1.2 CONTRIBUTION

Our contributions are twofold. First, we predict chromatin state using a CNN that, in terms of archi-
tecture, resembles conventional CNNs for image classification and is designed for detecting distal
relations. Second, we propose a method to transform DNA sequence patches into two-dimensional
image-like arrays to enhance the strengths of CNNs using space-filling curves, in particular the
Hilbert curve. Our experiments demonstrate the benefits of our approach: the developed CNN deci-
sively outperforms all existing approaches for predicting the chromatin state in terms of prediction
performance measures as well as runtime, an improvement which is further enhanced by the convo-
lution of DNA sequence to a 2D image. In summary, we present a novel, powerful way to harness
the power of CNNs in image classification for predicting biologically relevant features from primary
DNA sequence.

2 METHODS

2.1 DNA SEQUENCE REPRESENTATION

We transform DNA sequences into images through three steps. First, we represent a sequence as a
list of k-mers. Next, we transform each k-mer into a one-hot vector, which results in the sequence
being represented as a list of one-hot vectors. Finally, we create an image-like tensor by assigning
each element of the list of k-mers to a pixel in the image using Hilbert curves. Each of the steps is
explained in further detail below.

From a molecular biology point of view, the nucleotides that constitute a DNA sequence do not
mean much individually. Instead, nucleotide motifs play a key role in protein synthesis. In bioinfor-
matics it is common to consider a sequence’s k-mers, defined as the k-letter words from the alphabet
{A,C,G,T} that together make up the sequence. In computer science the term q-gram is more fre-
quently used, and is often applied in text mining (Tomovic et al., 2006). As an example, the sequence
TGACGAC can be transformed into the list of 3-mers {TGA, GAC, ACG, CGA, GAC} (note that
these are overlapping). The first step in our approach is thus to transform the DNA sequence into a
list of k-mers. Previous work has shown that 3-mers and 4-mers are useful for predicting epigenetic
state (Pahm et al., 2005; Higashihara et al., 2008). Through preliminary experiments, we found that
k = 4 yields the best performance: lower values for k result in reduced accuracy, while higher
values yield a high risk of overfitting. Only for the Splice dataset (see experiments) we used k = 1
to prevent overfitting, as this is a small dataset.

In natural language processing, it is common to use word embeddings as GloVe or word2vec or one-
hot vectors (Goldberg, 2017). The latter approach is most suitable for our method. Each element
of such a vector corresponds to a word, and a vector of length N can thus be used to represent N
different words. A one-hot vector has a one in the position that corresponds to the word the position
is representing, and a zero in all other positions. In order to represent all k-mers in a DNA sequence,
we need a vector of length 4k, as this is the number of words of length k that can be constructed
from the alphabet {A,C,G,T}. For example, if we wish to represent all 1-mers, we can do so using
a one-hot vector of length 4, where A corresponds to [1 0 0 0], C to [0 1 0 0], G to [0 0 1 0] and T to
[0 0 0 1]. In our case, the DNA sequence is represented as a list of 4-mers, which can be converted
to a list of one-hot vectors each of length 44 = 256.

Our next step is to transform the list of one-hot vectors into an image. For this purpose, we aim
to assign each one-hot vector to a pixel. This gives us a 3-dimensional tensor, which is similar in
shape to the tensor that serves as an input to image classification networks: the color of a pixel in
an RGB-colored image is represented by a vector of length 3, while in our approach each pixel is
represented by a one-hot vector of length 256.

What remains now is to assign each of the one-hot vectors in the list to a pixel in the image. For
this purpose, we can make use of space-filling curves, as they can map 1-dimensional sequences
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to a 2-dimensional surface preserving continuity of the sequence (Bader, 2016; Aftosmis et al.,
2004). Various types of space-filling curves are available. We have compared the performance of
several such curves, and concluded that Hilbert curves yield the best performance (Appendix A).
This corresponds with our intuition: the Hilbert curve has several properties that are advantageous
in the case of DNA sequences, as discussed in the introduction section.

The Hilbert curve is a well-known space-filling curve that is constructed in a recursive manner: in
the first iteration, the curve is divided into four parts, which are mapped to the four quadrants of a
square (Fig. 1a). In the next iteration, each quadrant is divided into four sub-quadrants, which, in a
similar way, each hold 1/16th of the curve (Fig. 1b). The quadrants of these sub-quadrants each hold
1/64th of the curve, etc (Figs. 1c and d).

By construction, the Hilbert curve yields a square image of size 2n× 2n, where n is the order of the
curve (see Fig. 1). However, a DNA sequence does not necessarily have 2n ∗ 2n k-mers. In order to
fit all k-mers into the image, we need to choose n such that 2n∗2n is at least the number of k-mers in
the sequence, and since we do not wish to make the image too large, we pick the smallest such n. In
many cases, a large fraction of the pixels then remains unused, as there are fewer k-mers than pixels
in the image. By construction, the used pixels are located in upper half of the image. Cropping
the picture by removing the unused part of the image yields rectangular images, and increases the
fraction of the image that is used (Figure 1e).

In most of our experiments we used sequences with a length of 500 base pairs, which we convert to
a sequence of 500 - 4 + 1 = 497 4-mers. We thus need a Hilbert curve of order 5, resulting in an
image of dimensions 25 × 25 × 256 = 32 × 32 × 256 (recall that each pixel is assigned a one-hot
vector of length 256). Almost half of the resulting 1024 pixels are filled, leaving the other half of
the image empty which requires memory. We therefore remove the empty half of the image and end
up with an image of size 16× 32× 256.

The data now has the appropriate form to input in our model.

Figure 1: Hilbert Curve and cropped image

2.2 NETWORK ARCHITECTURE

Modern CNNs or other image classification systems mainly focus on gray-scale images and standard
RGB images, resulting in channels of length 1 or 3, respectively, for each pixel. In our approach,
each pixel in the generated image is assigned a one-hot vector representing a k-mer. For increasing
k, the length of the vector and thus the image dimension increases. Here, we use k = 4 resulting in
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Figure 2: A simplified version of HCNN with two computational blocks. BN is short for "Batch Normaliza-
tion".

256 channels, which implies that each channel contains very sparse information. Due to the curse of
dimensionality standard network architectures applied to such images are prone to severe overfitting.

Here, we design a specific CNN for the kind of high dimensional image that is generated from a DNA
sequence. The architecture is inspired by ResNet (He et al., 2015) and Inception (Szegedy et al.,
2015). The network has L layers and each layer implements a non-linear function Fl(xl) where l is
the index of the hidden layer with output xl+1. The function Fl(xl) consists of various layers
such as convolution (denoted by c), batch normalization (bn), pooling (p) and non-linear activation
function (af ).

The first part of the network has the objective to reduce the sparseness of the input image (Figure 2),
and consists of the consecutive layers [c, bn, c, bn, af, p]. The main body of the network enhances
the ability of the CNN to extract the relevant features from DNA space-filling curves. For this
purpose, we designed a specific Computational Block inspired by the ResNet residual blocks (He
et al., 2015). The last part of the network consists of 3 fully-connected layers, and softmax is used
to obtain the output classification label. The complete model is presented in Table 1, and code is
available on Github (https://github.com/Bojian/Hilbert-CNN/tree/master). A simplified version of
our network with two Computational Blocks is illustrated in Figure 2.

Computation Block. In the Computation Block first the outputs of two Residual Blocks and one
identity mapping are summed, followed by a bn and an af layer (Figure 2). In total, the computa-
tional block has 4 convolutional layers, two in each Residual Block (see Figure 3). The Residual
Block first computes the composite function of five consecutive layers, namely [c, bn, af, c, bn], fol-
lowed by the concatenation of the output with the input tensor. The residual block concludes with
an af .

The Residual Block can be viewed as a new kind of non-linear layer denoted by
Residual l[kj ,kj+1,dlink,dout], where kj and kj+1 are the respective filter sizes of the two con-
volutional layers. dlink and dout are the dimensions of the outputs of the first convolutional
layer and the Residual Block, respectively, where dlink < dout; this condition simplifies the
network architecture and reduces the computational cost. The Computational Block can be de-
noted as C[k1,k2,k3,k4] with the two residual blocks defined as Residual1[k1,k2,dlink,dout] and
Residual2[k3,k4,dlink,dout]. Note that here we chose the same dlink and dout for both Residual
Blocks in a Computational Block.

Implementation details. Most convolutional layers use small squared filters of size 2, 3 and 4,
except for the layers in the first part of the network, where large filters are applied to capture long
range features. We use Exponential Linear Units (ELU, Clevert et al. (2015)) as our activation
function af to reduce the effect of gradient vanishing: preliminary experiments showed that ELU
preformed significantly better than other activation functions (data not shown).
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Figure 3: Residual Block

For the pooling layers p we used Average pooling. Average pooling outperformed Max pooling
in terms of prediction accuracy by more than 2% in general, as it reduces the high variance of the
sparse generated images. Cross entropy was used as the loss function.

Table 1: Network Architecture. The output size is given as
height, width, channels.

Layers Description Output
size

Input 16,32, 256
Conv1 7 × 7 conv, BN 16,32, 64
Conv2 5 × 5 conv, BN 16,32, 64
Activation
Average-Pool 2 × 2 filter, stride 2 8, 16, 64
ComputationBlock [8,4,4,3], dlink = 4 8, 16, 32
ComputationBlock [3,3,3,3], dlink = 4 8, 16, 32
Average-Pool 2 × 2 filter, stride 2 4, 8, 32
ComputationBlock [2,4,4,3], dlink = 4 4, 8, 32
ComputationBlock [2,2,2,2], dlink = 4 4, 8, 32
ComputationBlock [3,2,2,3], dlink = 4 4, 8, 32
Average-Pooling 2 × 2 filter, stride 2 2, 4, 32
BN,Activation
Average-Pool 2 × 2 filter, stride 2 1, 2, 32

Classification
layer1

64D FC layer
activation
dropout with 0.5

Classification
layer2

100D FC layer
activation
dropout with 0.5

Classification
layer3

50D FC layer,
softmax

Table 2: DNA Datasets

Name ]Samples Description
H3 14965 H3 occupancy
H4 14601 H4 occupancy

H3K9ac 27782 H3K9 acetylation
relative to H3

H3K14ac 33048 H3K14 acetylation
relative to H3

H4ac 34095 H4 acetylation
relative to H3

H3K4me1 31677 H3K4 monomethy-
lation relative to H3

H3K4me2 30683 H3K4 dimethylation
relative to H3

H3K4me3 36799 H3K4 trimethylation
relative to H3

H3K36me3 34880 H3K36 trimethylation
relative to H3

H3K79me3 28837 H3K79 trimethylation
relative to H3

Splice 3190 Splice-junction
Gene Sequences

3 EXPERIMENTS

We test the performance of our approach using ten publicly available datasets from Pokholok et al.
(2005). The datasets contain DNA subsequences with a length of 500 base pairs. Each sequence
is labeled either as “positive” or “negative”, indicating whether or not the subsequence contains
regions that are wrapped around a histone protein. The ten datasets each consider a different type of
histone protein, indicated by the name of the dataset. Details can be found in Table 2.

A randomly chosen 90% of the dataset is used for training the network, 5% is used for validation
and early stopping, and the remaining (5%) is used for evaluation. We train the network using the
AdamOptimizer (Kingma & Ba, 2017)1. The learning rate is set to 0.003, the batch-size was set to

1The LSTM model was implemented in Keras (Chollet et al., 2015), all other models were implemented in
Tensorflow (Abadi et al., 2015).
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300 samples and the maximum number of epochs is 10. After each epoch the level of generalization
is measured as the accuracy obtained on the validation set. We use early stopping to prevent over-
fitting. To ensure the model stops at the correct time, we combine the GLα measurement (Prechelt,
1998) of generalization capability and the No-Improvement-In-N-Steps(Nii-N) method (Prechelt,
1998). For instance, Nii-2 means that the training process is terminated when generalization capa-
bility is not improved in two consecutive epochs.

We compare the performance of our approach, referred to as HCNN, to existing models. One of
these is the support vector machine (SVM) model by Higashihara et al. (2008), for which results
are available in their paper. Second, in tight communication with the authors, we reconstructed the
Seq-CNN model presented in Nguyen et al. (2016) (the original software was no longer available),
see Appendix C for detailed settings. Third, we constructed the commonly used LSTM, where the
so-called 4-mer profile of the sequence is used as input. A 4-mer profile is a list containing the
number of occurrences of all 256 4-mers of the alphabet {A,C,G,T} in a sequence. Preliminary tests
showed that using all 256 4-mers resulted in overfitting, and including only the 100 most frequent
4-mers is sufficient. Details of the LSTM architecture can be found in Table 8 in Appendix C.

In order to assess the effect of using a 2D representation of the DNA sequence in isolation, we
compare HCNN to a neural network using a sequential representation as input. We refer to this
model as seq-HCNN. As in HCNN, the DNA sequence is converted into a list of kmer representing
one-hot vectors, though the mapping of the sequence into a 2D image is omitted. The network
architecture is a “flattened” version of the one used in HCNN: for example, a 7×7 convolution filter
in HCNN is transformed to a 49×1 convolution filter in the 1D-sequence model. As a summary of
model size, the Seq-CNN model contains 1.1M parameters, while both HCNN and seq-HCNN have
961K parameters, and the LSTM has 455K parameters.

In order to test whether our method is also applicable to DNA sequence classification tasks other than
chromatin state prediction only, we performed additional tests on the splice-junction gene sequences
dataset from Lichman (2013). Most of the DNA sequence is unused, and splice-junctions refer to
positions in the genetic sequence where the transition from an unused subsequence (intron) to a used
subsequence (exon) or vice versa takes place. The dataset consists of DNA subsequences of length
61, and each of the sequences is known to be an intron-to-exon splice-junction, an exon-to-intron
splice junction or neither. As the dataset is relatively small, we used 1-mers instead of 4-mers.
Note that the sequences are much shorter than for the other datasets, resulting in smaller images
(dimensions 8× 8× 4).

4 RESULTS

The results show that SVM and Seq-CNN were both outperformed by HCNN and seq-HCNN;
LSTM shows poor performance. HCNN and seq-HCNN show similar performance in terms of
prediction accuracy, though HCNN shows more consistent results over the ten folds indicating that
using a 2D representation of the sequence improves robustness. Furthermore, HCNN yields better
performance than seq-HCNN in terms of precision, recall, AP and AUC (Table 5). It thus enables
to reliably vary the tradeoff between recall and false discoveries. HCNN outperforms all methods in
terms of training time (Table 4).

The good performance of HCNN observed above may either be attributable to the conversion from
DNA sequence to image, or to the use of the Hilbert curve. In order to address this question, we
adapted our approach by replacing the Hilbert curve with other space-filling curves and compared
their prediction accuracy. Besides the Hilbert curve, other space-filling curves exist (Moon et al.,
2001) (see Appendix A ). In Figure 4, we compare the performance of our model with different
mapping strategies in various datasets as displayed. We find that the images generated by the space-
filling Hilbert curve provide the best accuracy on most datasets and the 1-d sequence performs worst.

5 DISCUSSION

In this paper we developed a CNN that outperforms the state-of-the-art for prediction of epigenetic
states from primary DNA sequence. Indeed, our methods show improved prediction accuracy and
training time compared to the currently available chromatin state prediction methods from Pahm
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Table 3: Prediction accuracy obtained with an SVM-based method, Seq-CNN from Nguyen et al. (2016),
LSTM, seq-HCNN and HCNN. The results for SVM are taken from Table 12 in Higashihara et al. (2008).
In the splice dataset, Seq-CNN performed best when using 4-mers, while for HCNN and seq-HCNN 1-mers
yielded the best performance.

Dataset SVM LSTM Seq-CNN seq-HCNN HCNN
H3 86.47% 64.13% 79.25% 86.86± 1.563% 87.34 ±0.263%
H4 87.82% 63.82% 81.86% 87.31± 0.952% 87.33±0.264%

H3K9ac 75.08% 63.07% 68.76% 78.47± 0.699% 79.19±0.239%
H3K14ac 73.28% 68.31% 68.31% 75.06 ±0.987% 74.79±0.226%

H4ac 72.06% 60.63% 64.80% 77.04± 1.256% 77.06±0.233%
H3K4me1 69.71% 60.43% 62.60% 73.47 ±0.789% 73.21±0.221%
H3K4me2 68.97% 61.45% 62.38% 73.91± 0.631% 74.27±0.224%
H3K4me3 68.57% 58.03% 62.33% 74.54 ±0.865% 74.45±0.225%

H3K36me1 75.19% 60.78% 72.20% 77.18 ±0.973% 77.03±0.232%
H3K79me1 80.58% 63.84% 75.07% 81.66 ±1.264% 81.63±0.246%

Splice 94.70% 96.23% 91.82% 93.21± 1.645% 94.11±0.284%

Table 4: Training times, presented as min:sec.

Dataset LSTM seq-CNN seq-HCNN HCNN
H3 35:43 95:23 6:47 3:40
H4 45:32 95:53 5:12 3:12
H3K9ac 76:06 173:18 17:24 7:40
H3K14ac 81:21 180:56 17:42 13:24
H4ac 93:32 181:33 24:48 17:32
H3K4me1 93:44 192:20 18:30 10:38
H3K4me2 94:22 188:13 18:23 14:38
H3K4me3 96:03 162:32 20:40 11:33
H3K36me3 93:48 161:12 21:52 16:37
H3K79me3 64:28 158:34 14:25 10:13
Splice 6:42 35:12 3:42 1:30

et al. (2005), Higashihara et al. (2008) and Nguyen et al. (2016) as well as an LSTM model. Addi-
tionally, we showed that representing DNA-sequences with 2D images using Hilbert curves further
improves precision and recall as well as training time as compared to a 1D-sequence representation.

We believe that the improved performance over the CNN developed by Nguyen et al. (2016) (Seq-
CNN) is a result of three factors. First, our network uses larger convolutional filters, allowing the
model to detect long-distance interactions. Second, despite HCNN being deeper, both HCNN and
seq-HCNN have a smaller number of parameters, allowing for faster optimization. This is due to
the size of the layer preceding the fully connected layer, which is large in the method proposed

Table 5: Recall, Precision, area under precision-recall curve (AP) and area under ROC curve (AUC) for
seq-HCNN and HCNN. The reported values are the means over ten folds.

Dataset Recall Precision AP AUC
seq-HCNN HCNN seq-HCNN HCNN seq-HCNN HCNN seq-HCNN HCNN

H3 85.67% 87.33% 85.67% 87.33% 90.33% 93.33% 91.00% 93.67%
H4 87.00% 87.33% 87.00% 87.00% 92.67% 94.67% 93.67% 94.67%
H3K9ac 78.33% 79.00% 78.67% 79.00% 78.33% 85.00% 79.67% 85.33%
H3K14ac 74.00% 73.67% 74.67% 75.00% 73.67% 79.67% 76.33% 81.33%
H4ac 76.67% 77.67% 77.33% 78.33% 78.67% 82.67% 80.33% 83.33%
H3K4me1 72.33% 73.00% 72.67% 73.67% 70.67% 76.33% 71.67% 78.33%
H3K4me2 70.67% 72.33% 73.00% 74.00% 69.33% 77.33% 70.00% 78.67%
H3K4me3 74.33% 74.67% 75.00% 74.67% 71.00% 78.67% 72.00% 80.00%
H3K36me3 76.00% 76.67% 77.00% 77.67% 76.33% 82.00% 79.33% 83.00%
H3K79me3 81.00% 82.33% 81.00% 82.67% 79.67% 88.00% 81.00% 88.67%
Splice 91.00% 95.00% 90.67% 94.33% 95.00% 97.67% 97.33% 98.67%
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results

Figure 4: HCNN with different mapping strategies

by Nguyen et al. (2016) and thus yields a huge number of parameters in the fully connected layer.
In HCNN on the other hand the number of nodes is strongly reduced before introducing a fully
connected layer. Third, the use of a two-dimensional input further enhances the model’s capabilities
of incorporating long-term interactions.

We showed that seq-HCNN and HCNN are not only capable of predicting chromatin state, but can
also predict the presence or absence of splice-junctions in DNA subsequences. This suggests that
our approach could be useful for DNA sequence classification problems in general.

Hilbert curves have several properties that are desirable for DNA sequence classification. The intu-
itive motivation for the use of Hilbert curves is supported by good results when comparing Hilbert
curves to other space-filling curves. Additionally, Hilbert curves have previously been shown to be
useful for visualization of DNA sequences (Anders, 2009).

The main limitation of Hilbert curves is their fixed length, which implies that the generated image
contains some empty spaces. These spaces consume computation resources; nevertheless, the 2D
representation still yields reduced training times compared to the 1D-sequence representation, pre-
sumably due to the high degree of optimization for 2D inputs present in standard CNN frameworks.

Given that a substantial part of the improvements in performance rates are due to our novel architec-
ture, we plan on investigating the details of how components of the architecture are intertwined with
improvements in prediction performance in more detail. We also plan to further investigate why
Hilbert curves yield the particular advantages in terms of robustness and false discovery control we
have observed here.
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A COMPARISON OF SPACE-FILLING CURVES WITH REGARD TO LONG-TERM
INTERACTIONS

As noted before, long-term interactions are highly relevant in DNA sequences. In this section we
consider these long-term interactions in four space-filling curves: the reshape curve, the snake curve,
the Hilbert curve and the diag-snake curve. See Fig. 5 for an illustration.

(a) Reshape curve (b) snake curve (c) Diag-Snake curve (d) Hilbert curve

Figure 5: Space-filling curves

As can be seen in Fig. 5, mapping a sequence to an image reduces the distance between two ele-
ments that are far from one another in the sequence, while the distance between nearby elements
does not increase. Each of the curves does have a different effect on the distance between far-
away elements. In order to assess these differences, we use a measure that is based on the dis-
tance between two sequence elements as can be observed in the image. We denote this distance by
LC(x,y) where x, y ∈ S , with S the sequence and C the curve under consideration. Then for the
sequence S = {A,B,C,D,E, · · · ,P} we obtain

• Lseq(A,P ) = 15 for the sequence;

• Lreshape(A,P ) = 3
√

2 for the reshape curve;
• Lsnakesnake(A,P ) = 3 for the snake curve;

• Ldiag−snake(A,P ) = 3
√

2 for the diagonal snake curve.
• Lhilbert(A,P ) = 3 for the Hilbert curve;

We now introduce the following measure:

Γ(C) =
mean(∆(C))

max(∆(C))
,

where the ∆(C) is the set of the weighted distances between all pairs of the elements in the sequence.
Here, ∆(C) is a set containing the distance between any two sequence elements, weighted by their
distance in the sequence:

∆(C) = {Lseq(x,y) · LC(x,y) | x, y ∈ C, x 6= y}.

Note that a low max(∆(C)) relative to mean(∆(C)) implies that long-term interactions are strongly
accounted for, so a high Γ(C) is desirable.

Γ(C) is evaluated for the four space-filling curves as well as the sequence representation for se-
quences of varying lengths.The results show that the Hilbert curve yields the highest values for
Γ(C) 6 and thus performs best in terms of retaining long-distance interactions.
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Curve Sequence Length : bits
16 64 256 1024 4096

Reshape 0.22 0.18 0.16 0.16 0.15
Snake 0.28 0.20 0.17 0.16 0.16
Diag-snake 0.22 0.17 0.16 0.15 0.15
Hilbert 0.30 0.24 0.22 0.21 0.21

Table 6: Γ(C) for four space-filling curves,
evaluated in sequences of varying lengths.

B FROM SEQUENCE TO IMAGE

Figure 6 shows the conversion from DNA sequence to image.

Figure 6: Sequence to Image
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C DETAILS OF ALTERNATIVE NEURAL NETWORKS

Table 7: The model architecture of seq-CNN (Nguyen et al.,
2016)

Layer filter size stride output dim
Convolution 1 7 2 60
Activation
Max pooling 3 3 60
Convolution 2 5 2 30
Activation
Max pooling 3 2 30
Dropout, 0.5
FC layer 100
Activation
Dropout, 0.5
Classifier 2

Table 8: Bir-Direction LSTM

Layer Description
Embedding

Conv 1
1-by-3 convolution layer
with 32 filter size
activation function is RELU

Max pooling 1× 2 max pooling layer
Bir-LSTM 1 100 units
Bir-LSTM 2 128 units
Dropout 0.3 dropout rate
Classifier sigmoid

Architecture # Parameters
seq-CNN 1.1M
biLSTM 455K

Hilbert-CNN 961K
Table 9: Table with the number of network parameters

D HYPERPARAMETER OPTIMIZATION

Accuracy is one of the most intuitive performance measurements in deep learning and machine
learning. We therefore optimized the hyperparameters such as the network architecture and learn-
ing rate based on maximum accuracy. The hyperparameters are optimized through random search
(Bergstra & Bengio, 2012) and using general principles from successful deep learning strategies and
the following intuition. First, as our main goal was to capture long-term interactions, we chose a
large kernel size for the first layer, for which various values were attempted and 7x7 gave the best
performance. As is common practice in deep learning, we then opted for a smaller kernel size in the
following layer. Second, in order to limit the number of parameters, we made use of residual blocks
inspired by ResNet (He et al., 2015) and Inception (Szegedy et al., 2015). Finally, we applied batch
normalization to prevent overfitting.
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