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Abstract One of the current concerns to human health is antibiotic resistance, which promotes the

use of antibiotics that are more harmful, expensive, and ineffective. In this condition, researchers

are turning to innovative options to combat this alarming situation. Combining herbal medicine
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Pistacia atlantica extract;

Anti-microbial effects

with nanotechnology has created a new strategy to increase the effectiveness of phytochemical com-

pounds in overcoming antimicrobial resistance. Pistacia atlantica is one of the promising herbs with

medicinal benefits, but its poor solubility in biological fluids is challenging. In this regard, we seek to

evaluate the antibacterial efficacy of Pistacia atlantica extract-loaded nanovesicle. Cholesterol, Span

40, and Pluronic F127 modified nanoformulation was developed using an environmentally friendly

improved heating technique, and it was evaluated for size distribution, zeta potential, morphology,

entrapment efficiency (EE%), release behavior, stability, and antimicrobial performance. By using

DLS, spherical nanovesicles were identified with a size distribution of 50–150 nm and a zeta poten-

tial of �43 mV. The extract’s encapsulation efficiency was 72.03%. The developed loaded nanovesi-

cles demonstrated controlled extract release in the tested 96 h and storage stability of at least

12 months at 25 �C. Also, Comparing the two samples, the encapsulated extract had greater

antibacterial activity against Candida albicans, Staphylococcus aureus, and Pseudomonas plecoglos-

sicida with MIC of 1320, 570, and 1100 mg/mL, respectively. Besides reducing the misuse of antibi-

otics by allowing for the controlled release of drugs made from natural sources, we expect the

findings described here to help provide alternative plant-based formulations with greater stability

and antibacterial activity.

� 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Antimicrobial resistance has risen as a result of widespread, improper,

irregular, and indiscriminate use of antibiotics drugs (Li et al., 2022),

rendering many currently available medicines useless (Dadgostar,

2019). On the other hand, it is urgently necessary to find and isolate

novel bioactive chemicals from medicinal plants due to the rising

prevalence of drug-resistant infections (Alijani, 2023). Compounds

from medicinal plants could provide creative and easy methods to

combat pathogenic microbes (Mulat et al., 2019). Pistacia atlantica,

which contains many medicinal phenolic components, is one of the

beneficial herbal remedies (Fan et al., 2022; Yang et al., 2022). The

Pistacia atlantica tree may reach heights of 2 to 7 m. Its fruit is called

Chatlangoosh in Turkish, Baneh in Persian, and Hobb al khazra in

Arabic. It turns orange in the fall and the tree’s crimson flower is used

as a dye (Ahmed et al., 2021, Tahmourespour et al., 2022). Pistacia

atlantica has many medical and industrial applications (Mahjoub

et al., 2018; Ahmed et al., 2021; Benmahieddine et al., 2021). For

example, the antimicrobial properties of Pistacia atlantica extract were

assessed, and inhibition zones of 25 and 19 mm with a substantial inhi-

bitory impact on S. mitis (ATCC 49456) and S. mutans (ATCC 35668)

were observed. Despite the fact that medicinal plants like Pistacia

atlantica and their extracts have a variety of purposes, their practical

usage has been constrained by issues like solubility and short half-

lives (Nikkhah et al., 2020).

Research on nutraceuticals may benefit from the creative approach

of nanotechnology (Qureshi et al., 2021). The water solubility (Barani

et al., 2023), stability (Hamidian et al., 2023), bioavailability

(Mostafavi et al., 2022), circulation time (Lu et al., 2022), and target

specificity of many drugs and phytochemicals can be enhanced by

loading them into biocompatible and biodegradable nanostuctures

(Kumar et al., 2018; Kashkooli et al., 2020). For example, Sauraj

et al. developed lipophilic 5-fluorouracil prodrug encapsulated xylan-

stearic acid conjugates nanoparticles for colon cancer treatment

(Kumar et al., 2019). In a related work, the same team also revealed

Redox-responsive xylan-SS-curcumin prodrug nanomaterials for dual

drug delivery in cancer treatment (Kumar et al., 2020). It is necessary

to optimize formulation in order to increase stability (Ibrahim et al.,

2021; Wang et al., 2021), bioavailability (Zhou et al., 2021; Xiong

et al., 2021), and effectiveness of phytochemicals against microorgan-

isms (Sun et al., 2022; K. Yang et al., 2022; R. Yang et al., 2022).

Enhancing the effectiveness of phytochemicals as antimicrobials is

now significantly possible because to research developments in

nanoformulation (Alijani et al., 2023; Ameen et al., 2021; Deepa

et al., 2022) utilizing biocompatible materials (Jeevanandam et al.,
2017). It has been shown that antifungal (Sathishkumar et al., 2016;

Almansob et al., 2022), anticancer (Darvish et al., 2022; Gangalla

et al., 2021; Indhira et al., 2022; Rajadurai et al., 2021), antimicrobial

(Ameen et al., 2021; Moghadam et al., 2022; Begum et al., 2022), catal-

ist (Megarajan et al., 2022; Mohammad et al., 2023; Sonbol et al.,

2021), antimicrobial efficacy (Rani et al., 2019; Soundararajan et al.,

2022) in food manufacturing and clinical application as antibiotics

may be improved by encapsulating antimicrobial phytochemicals uti-

lizing micelles, liposomes, dendrimers, polymers, and microemulsions

(Kumar et al., 2018; Kashkooli et al., 2020). Vesicular nanosystems

in particular show advantageous characteristics, such as biocompati-

bility, targeted and prolonged delivery capacity (Pan et al., 2023;

Zheng et al., 2022), enhanced phytocompound bioavailability and pro-

tection, giving them considerable potential for future uses in microbial

infection (Prajapati et al., 2021). Because of the above-mentioned

favorable characteristics of vesicular nanoplatforms as prospective

controlled delivery nano-carriers, researchers are interested in them

(Mangalgiri et al., 2021). For example, in lipid formulations, Pistacia

atlantica fruit oil was utilized as a carrier. A potential area for treating

many illnesses is the creation of lipid nanoparticles using vegetable oils.

These therapeutic benefits are the consequence of interactions between

active substances and vegetable oil lipid transporters, which have syn-

ergistic effects (El Zerey-Belaskri et al., 2022). In another study, it was

observed that loading Pistacia atlantica essential oil to solid lipid

nanoparticles had an impact on the breast cancer cell line MDA-

ability MB-231’s to undergo apoptosis. The results showed that loaded

extract may more effectively trigger apoptosis in MDA-MB-231 cells

than free extract (Dousti et al., 2022). It should be noted that no sim-

ilar study was observed for loading the Pistacia atlantica extract into

nanovesicles and investigating its antimicrobial properties.

Vesicular nanoplatforms are produced using conventional thin-film

methods, which are frequently required for the inclusion of organic

solvents during one or more preparation steps. Because of the residual

solvents, these techniques put patients at risk for health problems. Eva-

poration is one of the additional several steps in the time-consuming,

expensive process (Yeo et al., 2018). To circumvent these issues caused

by thin-film hydration methods, niosome synthesis without the use of

organic solvents is required. This calls for a straightforward, cost-

effective, and ecologically friendly synthesis process like the Mozafari

technique (Mozafari et al., 2008). In the current work, the Mozafari

method—an enhanced heating technique was employed to produce

vesicles by agitating phospholipids and surfactants in an aqueous

media. Then, without using any hazardous chemicals, these compo-

nents were warmed in the presence of glycerol. Recently, the food-

grade antibacterial Nisin was effectively encapsulated and delivered

http://creativecommons.org/licenses/by-nc-nd/4.0/
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to specific areas using the Mozafari approach (Colas et al., 2007). The

aforementioned technique uses a straightforward methodology and a

single vessel to produce nanovesicles with improved monodispersity

and storage stability at a low cost (Jahanfar et al., 2021).

In this research, for the first time, we aimed to develop a nanovesic-

ular formulation that encapsulate Pistacia atlantica in order to prevent

the effects of antibiotic resistance. In addition, the Mozafari technique,

a cost-effective method of generating vesicles, replaced the traditional

preparation process of nanovesicles. The zeta potential, size, shape,

stability, extract entrapment effectiveness, and release behavior of

the prepared vesicles were assessed. The antibacterial effects of free

extract and encapsulated extract were then evaluated against Candida

albicans, Staphylococcus aureus, and Pseudomonas plecoglossicida.

2. Materials and methods

2.1. Materials

Cholesterol, Span 40, Pluronic� F127, phosphate-buffered
saline (PBS), glycerol, penicillin, Trypan blue, DMSO, MTT,
streptomycin, and chloroform were purchased from Sigma-

Aldrich (The Netherlands). The used water was Milli-Q type
from Merck Millipore. The fetal bovine serum (FBS), 0.25%
trypsin and modified Eagle’s medium (DMEM) were obtained

from Gibco (Grand Island, NY, USA). All chemicals were of
analytical grade.

2.2. Plant materials

The plant materials (fruits of Pistacia atlantica) that were
the focus of this research were gathered in August 2022
from rural areas of Sanandaj Province in Iran’s east. To

support the reproducibility, voucher specimens for P. atlan-
tica were deposited in University’s public herbarium. The P.
atlantica were collected under the license of the collection of

plant or seed specimens in the University per applicable
institutional, national, and international rules and legisla-
tion. It was verified by the university Botanical Survey Prof.
Biriji, whose voucher specimen number was 1402-08 depos-

ited at Lorestan University in Iran’s Department of Botani-
cal Sciences.

2.3. Extract preparation

P. atlantica fruits (100 g) were air-dried, coarsely ground, and
immersed in a solution of methanol: water (60:40) for 120 min.

The solution was then percolated for 72 h to ensure a thorough
extraction. A semisolid extract was achieved when the extract
was agitated, filtered, and evaporated in a rotary evaporator

under vacuum (Falahati et al., 2015). The concentrated extract
was freeze-dried, in accordance with the British Pharma-
copoeia, to produce a dry powdered extract.

2.4. Preparation of extract loaded nanovesicles by improved
heating method

The Mozafari method (improved heating method) was used to

synthesize extract-loaded nanovesicles in an environmentally
friendly manner without the use of solvents or detergents
(Jahanfar et al., 2021). Initially, distilled water was added with

the Pistacia atlantica extract. The extract solution was then
treated with a combination of Span 40, Pluronic F127, choles-
terol, and glycerol. The mixture was stirred for 60 min at a
speed of 1000 rpm on a hot plate stirrer at temperatures

between 40 and 80 �C. The mixture is left at room temperature
for one hour, which causes the vesicles to anneal and become
more stable. The mixture was kept until use at 4 �C in a dark

container with nitrogen. Fig. 1 shows a schematic representa-
tion of the Pluronic vesicular nanoplatform loaded with Pista-
cia atlantica fruits extract and the evolution of its

antimicrobial activity.

3. Characterization of the synthesized niosomes

3.1. Size distribution and morphology

A dynamic light scattering analyzer (Malvern, UK: Zetasizer
Nano (ZS), ZEN3600) using a helium laser at a wavelength
of 632.8 nm and an angle of 90� was used to examine the size
distribution and f potential of the Pluronic vesicular nanoplat-
form loaded with Pistacia atlantica extract. The formulation
solution was briefly diluted (1:20) with deionized water to pre-
vent further scattering caused by bigger particles. Three times

each of all measurements were made in a chamber that was
kept at a constant 25 �C. Transmission electron microscopy
(TEM, Zeiss, LEO912-AB, Germany) was used to determine

the morphology of formulation by negative staining with a
2% (w/v) uranyl acetate solution.

3.2. Evaluation of the encapsulation efficiency

A UV–vis spectrophotometer (JASCO, V-530, Tokyo, Japan)
operating at a wavelength of 410 nm was used to quantify
the extract concentration in the vesicular formulation. In a

typical procedure, 1 mL of extract-loaded formulation was
centrifuged at 20,000 rpm for 60 min. The following formula
was used to get the EE% of the loaded formulation:

EE %ð Þ ¼ We

Wtotal

� 100

where eW was the amount of extract in the vesicular formula-

tion after centrifugation and Wtotal was the amount of extract
that we added at the initial of the experiment.

3.3. In-vitro release

In-vitro release of extract from vesicular formulation was
assessed in pH 7.4. Briefly, formulation (0.5 mL) was placed
in a dialysis bag (12–14 kDa molecular weight cut-off) in a

100 mL phosphate (pH: 7.4) and. At defined time intervals
(0 to 96 h), one mL of the medium was withdrawn and
replaced with one ml of fresh buffer. Aliquots of the collected
samples were analyzed for their extract content. The cumula-

tive release was calculated using the following equation:

MtðnÞ ¼ Vr � Cn þ Vs �
X

Cm

where Mt(n) is the current cumulative mass of released extract

at time t, n is the number (times) of sampling, Cn is the current
concentration of extract in the medium, ƩCm is the summed
total of the previously measured concentrations, Vr is the vol-
ume of the medium, and Vs corresponds to the volume of the



Fig. 1 Schematic Representation of Pluronic vesicular nanoplatform loaded with Pistacia atlantica fruits extract and evolution of its

antimicrobial activity.
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sample removed for analysis. To study their release profiles,

various patterns of release kinetics (zero-order, first-order,
Higuchi, and Korsmeyer-Peppas model) were used (Verma
et al., 2021; Verma et al., 2022; Verma et al., 2022). In the same

dialysis bag, the study was also carried out for extract solution
with comparable beginning extract concentrations.

3.4. The evaluation of stability

The loaded formulation was synthesized and stored for
12 months at room temperature (25 �C). Physical properties
were evaluated at preset intervals (0, 3, 6, 9 and 12 months),
including average formulation size (nm) and zeta potential.

3.5. Antibacterial efficacy

Through broth microdilution, the antibacterial activity of
extract, empty vesicles, and extract encapsulated in nanovesi-
cles was evaluated against bacterial and fungal strains (Pseu-

domonas plecoglossicida, Staphylococcus aureus, and Candida
albicans). Following that, the minimum inhibitory concentra-
tion (MIC) was established. The MIC is the lowest concentra-

tion of a substance—typically a drug—that nevertheless allows
bacteria to proliferate unnoticeably. After strains were culti-
vated in Müller-Hinton broth for 24 h, 5 � 105 CFU/mL

(5 ll) pathogens, 100 ll of extract, empty vesicle and
nanovesicle-encapsulated extract, and 95 ll of pure Hinton
broth were added to each well. The 96-well plate was then
incubated at 37 �C for 24 h.

3.6. Statistical analysis

Data were coded and processed using the statistical package

for the Social Sciences (SPSS) version 25 (IBM Corp.,
Armonk, NY, USA). ANOVA was performed for normally
distributed data in more than two samples. A p value of less

than 0.05 was considered statistically significant.

4. Results and discussion

4.1. Physicochemical properties of nanocarrier

The size distribution and zeta values of the extract loaded for-
mulation by DLS at 25 �C are shown in Fig. 2. It was observed
that the nanovesicles made using the modified approach ran-

ged in size from 50 to 150 nm. The average size and size distri-
bution of the nanovesicles are significantly influenced by the
kind of surfactants and cholesterol type in the vesicular struc-
ture. To transport a sufficient number of antibiotics, penetrate

the sites of action, and release the entrapped component there,
an effective drug carrier must be compact and stable. For
instance, Moghaddam et al. recently revealed that the size

and PDI of melittin-loaded niosomes may be affected by the
surfactant: cholesterol with different molar ratios (Dabbagh
Moghaddam et al., 2021).

The polydispersity index, or PDI, is a measure of the size
distribution quality of nanosystems. The suitability of a
nanocarrier formulation for a certain drug delivery pathway
is determined by PDI and zeta potential. Controlling and val-

idating these properties is essential for the therapeutic applica-
tions of nanocarrier compositions. With a PDI of around 0.18,
the extract-loaded formulation is regarded as a monodisperse

and stable nanocarrier. In a related investigation, Silva et al.
prepared technetium-99 m-labeled niosomes with PDIs rang-
ing from 0.196 to 0.308 showed good homogeneity throughout

all the combinations (De Silva et al., 2019).
In the current study, the formulation’s zeta potentials were

also approximately �43 mV (Fig. 2). An efficient method for



Fig. 3 TEM micrograph of extract loaded formulation.

Fig. 2 The size distribution and zeta values of extract loaded formulation by DLS at 25 �C.
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identifying nanocarriers is the estimate of the surface charge

using the zeta potential approach, which may also be used to
understand the behavior and stability of niosomes in biofluids.
The zeta potential of colloidal systems is one of the variables
used to assess their stability. The system is stabilized against

aggregation as the zeta potential rises because the charged par-
ticles resist one another. Systems are regarded as stable if their
zeta potential is ±30 mV or above (Joseph and Singhvi, 2019).

Fig. 3 presents TEM images of extract-loaded vesicles. suc-
cessful synthesize of vesicular nanocarrier was verified by the
TEM images. The nanovesicles had spherical forms and resem-

bled the typical vesicles micrographs found in other investiga-
tions (Guinedi et al., 2005; Aboelwafa et al., 2010). The
diameters of the vesicles, which were measured to be between
70 and 110 nm, were in perfect agreement with the DLS mea-

surements of the particle sizes. The bimodal size distribution
of the formulation was shown by the particle size distribution
histogram. This was further supported by the TEM investiga-

tion, which showedmultiple vesicles at a 100 nm size. But in con-
trast to the overall size distribution, it was found that the
fraction of bigger vesicles was quite low. Silva et al. reported

the similar trend, noting that DLS and TEM sizes for
Technetium-99 m-labeled niosomes are 95 and 101 nm, respec-
tively (De Silva et al., 2019).

4.2. Encapsulation efficiency of loaded formulation

The EE% of the extract-loaded vesicles was evaluated after the
extract that was not entrapped was separated by centrifugation

at 15,000 rpm for 30 min at 4 �C. The extract in the loaded for-
mulation had an encapsulation effectiveness (% EE) of

72.03%. Pluronic F127 and Span 40 have molecular weights
of 12.600 and 402.6, respectively. According to reports, adding
a low molecular weight amphiphile to pluronics has a major

impact on whether these polymers associate or dissociate to
produce vesicles. Span 40 is a hydrophobic amphiphile with
an HLB value of 6.7, and extract has a hydrophobic nature

as well. The entrapment location inside the bilayer must thus
be shared by the extract and the hydrophobic amphiphile when
Pluronic F127, which has the greatest HLB and longest PPO
chain length, is mixed with Span 40 (Sezgin-Bayindir et al.,

2015). This can explain the low extract loading.
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4.3. In-vitro release behavior

Fig. 4 displays the extract release patterns from free extract
and extract loaded vesicles in PBS (pH 7.4). The in-vitro drug
release profiles showed that extract released from loaded vesi-

cles is noticeably lower than free extract. The findings of earlier
research are consistent with the release profile of free extract
(Detroja et al., 2011). The amounts released after 96 h are
shown in Fig. 4. The release profiles show a common method

of drug release, prolonged drug release of extract from
nanovesicles (Yang et al., 2008). This activity was attributed
to the hydrophilic PEO chains that surround the surface of

the vesicles and cause a reduction in surface tension that hin-
ders the release of the extract. At pH 7.4, the extract-loaded
formulation released 70.2 ± 6.1% of the extract after 96 h

whereas the free extract released completely in 20 h.
Extended-release behavior was shown by several research on
the in-vitro release behavior of encapsulated formulations.

The in-vitro release of free Cyclosporine A and niosomal for-
mulations showed similar findings (Shilakari Asthana et al.,
2016; Rasul et al., 2020). It was determined that prepared
extract-loaded niosomes are excellent options for boosting

extract solubility, which may lead to an improvement in effec-
tiveness and bioavailability.

The in-vitro release data was used for different kinetic

model equations to determine the drug release model from
vesicular formulation. The release and regression coefficient
constant (R2) were evaluated based on the slope of the appli-

cable plots. The various equation curves of the extract loaded
nanovesicle were displayed in Fig. 5. Based on this figure, the
Korsmeyer Peppas modeling for the vesicular formulation has
a reasonable R2 value. The Korsmeyer-Peppas proposed

model in our investigation had release exponent (n) values that
were close to those of the aceclofenac niosomal formulation
(Diva et al., 2014). On other study, Cyclosporine loaded in

the niosome formulation and showed different data compared
Fig. 4 Drug release profiles of extract-loade
with our study, so that, the release kinetic behavior demon-
strated that all formulations were best represented by a zero-
order model and could have a controlled release of drug over

time (Diva et al., 2014).

4.4. Stability study

Vesicular systems must maintain their integrity under various
circumstances. The stability of the loaded formulation was
assessed over a 12-month period at 25 �C using the parameters

of particle size and zeta potential (Fig. 6). The size of the
extract-loaded vesicle changed little at 25 �C, demonstrating
good physical stability. This slight changes might be due to

the aggregation or fusing of vesicles, which often happened
when molecular mobility increased and smaller vesicles con-
verted into bigger ones (Kopermsub et al., 2011). The presence
of cholesterol in vesicles contributes to their high level of sta-

bility. Zeta potential values were shown to decrease up to
6 months before increasing once again during the subsequent
6 months. As a result, and in excellent accord with other

results, these loaded vesicles may be a stable formulation that
they have higher storage period. For instance, the size, zeta,
and EE% of a cyclosporine A (CsA) loaded niosome were

assessed over the period of 3 months. They demonstrated that
after three months of storage, niosomal vesicles are a stable
formulation (Rasul et al., 2020).

4.5. Antimicrobial activity of formulations

The antibacterial effects of synthesized extract loaded vesicles
were assessed by measuring the minimum inhibitory concen-

tration (MIC). Pistacia atlantica extract has been shown in
prior investigations to have an antibacterial effect. For
instance, the lowest inhibitory concentration, minimum bacte-

ricidal concentration, and disc diffusion techniques were used
d formulation and free extract at pH 7.4.



Fig. 5 Different release kinetics of extract loaded nanovesicle.

Fig. 6 Variations in size and zeta potential of extract-loaded vesicle during storage at a 12-month period in 25 �C.

Synthesize of pluronic-based nanovesicular formulation loaded with Pistacia atlantica 7
to assess the antibacterial activity of the Pistacia atlantica

extract against six pathogenic bacteria. The essential oil dis-
played stronger antibacterial activity against the tested
Gram-positive bacteria than the Gram-negative bacteria,
according to the results of both antimicrobial techniques.

Fig. 7 represents the MIC of free vesicles, extracts, and vesi-
cles/extracts against Candida albicans, Staphylococcus aureus,
and Pseudomonas plecoglossicida. There was no evidence of



Fig. 7 The minimum inhibitory concentration (MIC) of free Vesicle, extract and Vesicle/extract against Pseudomonas plecoglossicida,

Staphylococcus aureus, and Candida albicans.
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antibacterial action in the free vesicles. The vesicle/extract
demonstrated more potent antibacterial action against all three

pathogens than free extract did. It’s interesting to note that
Staphylococcus aureus, with a MIC of 570 g/mL, had the best
antibacterial action. The Staphylococcus aureus (a gram-

positive bacteria) is responsible for a wide range of clinical ill-
nesses. This bacterium frequently causes infections, both in sit-
uations where they are contracted in the community and in

hospitals. Many authors mentioned that the uptake of vesicles
is higher in gram-positive bacteria. These results suggest that,
in comparison to free extract, lower vesicle/extract concentra-
tions are needed to inhibit microbial growth. This may be

because nanovesicles have the capacity to protect extract from
microbial enzyme effects and facilitate vesicle interaction on
the surface of the pathogen membrane. For instance, Man-

souri et al found that streptomycin sulfate-loaded niosomes
showed more antibacterial activity than free streptomycin sul-
fate, with MIC values decreasing between 4- and 8-folds

(Mansouri et al., 2021). Similar studies by Kashef et al. showed
that ciprofloxacin encapsulated niosomes were more efficient
against staphylococcus aureus that forms biofilms and is cipro-
floxacin resistant (Kashef et al., 2020).

5. Conclusion

Here, an environmentally friendly method for preparing nanovesicles

for the delivery of Pistacia atlantica extract was successfully used. In

comparison to free extracts, the developed loaded nanovesicles showed

improved stability and antibacterial efficacy, enabling high encapsula-

tion efficiency and controlled release. In comparison to the free extract,

the loaded vesicles also showed an improved potency against Candida

albicans, Staphylococcus aureus, and Pseudomonas plecoglossicida. This

work advances the use of drugs obtained from nature in the treatment

of infectious disorders brought on by bacteria that are multidrug resis-

tant. To determine the plant extracts’ active ingredients and to learn

more about the underlying process, more research is required. We

see a chance to expand on the information we’ve obtained here about

plant extracts and nanovesicles to additional bioactive substances for

better stability and antibacterial effectiveness. The suggested vesicle-

loaded extract release is anticipated to aid decrease the misuse of

antibiotics by permitting nature-derived materials and controlled drug

release, even if the therapeutic efficacy of pathogen elimination in real-

ity has yet to be proved in clinics.
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