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Quantum circuits to measure scalar spin chirality
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The scalar spin chirality is a three-body physical observable that plays an outstanding role both in classical
magnetism, characterizing non-co-planar spin textures, and in quantum magnetism, as an order parameter
for chiral spin liquids. In quantum information, the scalar spin chirality is a witness of genuine tripartite
entanglement. Here we propose an indirect measurement scheme, based on the Hadamard test, to estimate the
scalar spin chirality for general quantum states. We apply our method to study chirality in two types of quantum
states: generic one-magnon states of a ferromagnet, and the ground state of a model with competing symmetric
and antisymmetric exchange. We show a single-shot determination of the scalar chirality is possible for chirality
eigenstates, via quantum phase estimation with a single auxiliary qutrit. Our approach provides a unified theory
of chirality in classical and quantum magnetism.
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I. INTRODUCTION

Digital quantum simulation holds the promise of address-
ing many-body problems that are out of reach of conventional
numerical methods [1,2]. Thanks to exponential algorithmic
speed-ups [3,4] and the natural encoding of entanglement,
gate-based quantum computers are expected to allow for an
efficient representation of correlated quantum states of matter.
Once such a state is prepared on quantum hardware, quantum
routines have to be devised to extract useful information about
its physical properties. The development of these methods
should minimize the number of state preparation instances
and measurements as the number of relevant observables of-
ten scales with the system size and the emergent nature of
quantum many-body phenomena [5] demands the study of
sufficiently large systems.

Different approaches can be adopted to determine the ex-
pectation values of physical quantities from the output of a
quantum circuit. One approach is the reconstruction of its
density matrix, either in full through quantum state tomog-
raphy [6] or approximately via classical shadows [7]. Such
an exhaustive characterization of the output state is only jus-
tified if multiple expectation values have to be computed.
When one targets a single observable, the explicit estimation
of its expectation value is the natural approach, namely by
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expanding such a Hermitian operator in a complete basis of
unitary operators (e.g., the Pauli basis) and measuring the
expectation value of each unitary term directly [8]. An alter-
native approach to this direct measurement is encoding the
Hermitian operator in a unitary operation, applying it subject
to the control of ancillary qubits to the reference state, and
then measuring the ancillary qubits to retrieve the expecta-
tion value, possibly requiring postprocessing. The canonical
example of such an indirect measurement procedure is the
Hadamard test [9], which involves a single ancillary qubit.
Quantum phase estimation (QPE) [6,10] generalizes it to mul-
tiple ancillary qubits and can prepare exact eigenstates of a
Hermitian operator [6].

The route taken here is to devise indirect measurement
schemes to determine the expectation value of the scalar spin
chirality for trios of spins- 1

2 in quantum spin states of arbitrary
sizes encoded on a quantum computer, thus avoiding the direct
measurement protocol, which takes more measurements to
achieve a given precision. The scalar spin chirality is the
three-spin- 1

2 observable [11]

χ̂i, j,k = 4√
3

�Si · (�S j × �Sk ). (1)

�Si ≡ 1
2 (σ x

i , σ
y
i , σ z

i ) are the spin- 1
2 operators at site i, where

(σ x, σ y, σ z) are the Pauli matrices. The prefactor ensures that
its eigenvalues are λ = 0,±1. The eigenvectors of χ̂ include
|↑↑↑〉, with λ = 0, and

1√
3

(|↑↓↓〉 + ωλ|↓↑↓〉 + ω2
λ|↓↓↑〉), (2)

with λ = 0,±1 for ωλ = ei 2π
3 λ. The four remaining eigen-

vectors are obtained from the ones stated above by applying
the spin flip |↑〉 ↔ |↓〉 to all three spins. The fact that the
eigenstates of χ̂ with nonzero eigenvalues are equivalent to
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the W state [12] up to local operations has resulted in the
proposal of the scalar spin chirality as a genuine tripartite
entanglement witness [13].

One of the motivations to explore quantum circuits to mea-
sure the scalar spin chirality χ̂ is the prominent role it plays
in various quantum many-body systems. In quantum mag-
netism, χ̂ has been proposed as a nontrivial order parameter
that breaks parity (P) and time reversal (T ) symmetries but
preserves PT symmetry in otherwise disordered chiral spin
liquids [11]. Moreover, in the strong-coupling limit where in-
teractions prevent two electrons from occupying the same site,
χ̂ is the orbital moment operator of circulating electrons in
three-site loops, thus coupling linearly to an applied magnetic
field [14].

In classical magnetism, where spins are described by clas-
sical vectors �mi = S�ni, with ||�ni|| = 1, the scalar spin chirality
is defined as

χ cl
i, j,k = S3�ni · (�n j × �nk ), (3)

providing a metric for the non-co-planarity of spin textures,
such as skyrmions [15] and frustrated ferromagnets [16]. Re-
cent works [17–21] have addressed a quantum description,
beyond the broken-symmetry paradigm, of some of these non-
co-planar magnetic configurations, identifying the quantum
version of the scalar spin chirality [see Eq. (1)] as the proper
order parameter [20].

The digital quantum simulation of chiral spin states en-
compasses two main lines of research: the synthesis of chiral
logic gates to prepare and simulate the dynamics of chiral spin
states [22,23], and the development of measurement schemes
to identify chiral spin states [21,24]. Our work contributes
towards the latter. While Sotnikov et al. [24] proposed a
hardware-efficient approach to identify phase transitions as-
sociated with changes in the scalar spin chirality [20] by
measuring in two or more random single-qubit bases and
coarse-graining the outcomes to probe interscale dissimilar-
ities, here we follow a physically-motivated strategy whereby
the expectation value of the scalar spin chirality is computed.

II. THEORY

As a first step in our analysis, we treat classical and
quantum spin chirality on equal footing by realizing that
broken-symmetry magnetism can be described in terms of
product states,

|�〉br.symm. = |�n1〉 ⊗ |�n2〉 ⊗ ... ⊗ |�nN 〉, (4)

where |�ni〉 is a Bloch vector that describes, up to a global
phase, any arbitrary spin- 1

2 state. The unit vector �ni is the
same as the one that appears in Eq. (3), so, for any product
state of the form given by Eq. (4), the classical scalar spin
chirality [see Eq. (3)] coincides with the expectation value
of its quantum version [see Eq. (1)], ignoring the factor 4√

3
.

The observable stated in Eq. (1) therefore allows for a unified
description of chirality in both classical and quantum spin- 1

2
systems.

As an order parameter, the quantum scalar spin chirality
χ̂i jk identifies features with no classical counterpart. Indeed,
χ̂i jk takes nonzero values not only for separable states
with noncollinear vectors (�ni, �n j, �nk ) [see Eq. (4)] but

FIG. 1. Measurement of scalar spin chirality χ̂ via Hadamard
test. (a) Scheme of Hadamard test. Setting b = 0 (b = 1) results in
measurement of ancilla in X (Y) basis, the outcome of which is
the real (imaginary) part of 〈ψ |U |ψ〉. (b) Adaptation of Hadamard
test by setting U = e−i 2π

3 χ̂ , as highlighted by blue solid-line box. As
detailed in Eq. (6), measuring the ancilla in the Y (X) basis results in
〈ψ |χ̂ |ψ〉 (〈ψ |χ̂ 2|ψ〉). The scheme shows the three qubits of |ψ〉 that
undergo a nontrivial action, but |ψ〉 can be of arbitrary size. |ψ〉 may
be entangled or separable; the latter case corresponds to the cycle
test [25].

also for entangled states such as the eigenstates stated
in Eq. (2) with λ = ±1. For the latter, it is not possible
to separate the states of the three spins- 1

2 , but we can
nonetheless compute the expectation values of Ŝx

α , Ŝy
α , and

Ŝz
α at sites α = i, j, k and construct three vectors of the form

(〈Ŝx
α〉, 〈Ŝy

α〉, 〈Ŝz
α〉) ≡ �sα . Unlike the classical case (�si, �s j, �sk )

need not be noncollinear for χ̂i jk �= 0. For example, for
|ψ〉 = 1√

3
(|↑1↓2↓3〉 + ei2π/3|↓1↑2↓3〉+e−i2π/3|↓1↓2↑3〉), the

quantum scalar spin chirality is nonzero, 〈ψ |χ̂123|ψ〉 = 1, but
the three vectors are equal, �s1 = �s2 = �s3 = (0, 0,−1/6).

We now describe a quantum routine based on the
Hadamard test (see Fig. 1) to compute the expectation value
of the scalar spin chirality for a general state |ψ〉 of N � 3
spins- 1

2 , either separable or entangled. Using χ̂3 = χ̂ , the
unitary Uτ ≡ e−iχ̂τ (τ ∈ R) becomes

Uτ ≡ e−iχ̂τ = 1 + (cos τ − 1) χ̂2 − i sin τ χ̂ . (5)

Setting τ = 2π
3 and plugging Uτ into the Hadamard test

[Fig. 1(a)], the expectation values of χ̂ and χ̂2 are obtained
from measuring the ancillas in the Y and X bases:

〈ψ |χ̂ |ψ〉 = − 2√
3

〈Y 〉a,

〈ψ |χ̂2|ψ〉 = 2

3
(1 − 〈X 〉a). (6)

Importantly, this particular choice of τ = 2π
3 ensures the

unitary operator Uτ can be realized through the quantum
circuit shown within the blue solid-line box in Fig. 1(b).
Ignoring qubit connectivity constraints, the three-qubit unitary
Uτ=2π/3 can be decomposed in terms of only 6 CNOT gates.
The shallow character of this decomposition is even more
pronounced once we control the two SWAP gates with the
ancillary qubit in the Hadamard test: the total CNOT count is
14 [26], far below the maximum 100 CNOTs for a four-qubit
operation [27].
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Another interesting implication of this choice of τ = 2π
3 is

the connection to the cycle test [25], which has been recently
proposed as a way to measure the unitary-invariant properties
of a set of states, which characterize their relative geometrical
orientation. In fact, the circuit in Fig. 1(b) is precisely the
cycle test in the case of a separable state |ψ〉 = |�n1〉 ⊗ |�n2〉 ⊗
|�n3〉. For such separable state inputs, the expectation value of
the scalar spin chirality can be written as the imaginary part
of the Bargmann invariant [28]:

〈ψ |χ̂ |ψ〉 = 2√
3

Im{〈�n1|�n2〉〈�n2|�n3〉〈�n3|�n1〉}. (7)

This connection is not a coincidence: for the case of three
single-qubit (i.e., spin- 1

2 ) states, Im{〈�n1|�n2〉〈�n2|�n3〉〈�n3|�n1〉} �=
0 if an only if �n1 · (�n2 × �n3) �= 0, which is nothing more than
the condition for a classical state to be chiral. Naturally, for
entangled states, this geometric interpretation is no longer
valid, but the cycle test can still probe χ̂ .

III. RESULTS

A. Chirality of one-magnon states

We now test our method with a multispin- 1
2 entangled

state. We choose a spin-wave (i.e., one-magnon) state in a
one-dimensional lattice [29],

|q〉 = 1√
N

N∑
n=1

eiqnŜ−
n |↑↑ ... ↑〉, (8)

where N is the number of sites, Ŝ−
n is the spin-lowering opera-

tor at site n, and q = 2π
N m is the wave number of the magnon,

with m ∈ {0, 1, 2, ..., N − 1}. After some straightforward al-
gebra we find that

〈q|χ̂n1,n2,n3 |q〉 = 2[sin(q�21) + sin(q�32) + sin(q�13)]

N
√

3
,

(9)

where �i j ≡ ni − n j and n1, n2, n3 label arbitrary sites. For
N = 3 the spin-wave states with q = 0,± 2π

3 can be identified
with the aforementioned eigenstates of the scalar spin chirality
operator with eigenvalues λ = 0,±1 [see Eq. (2)], in which
case we obtain 〈q|χ̂1,2,3|q〉 = 3

2π
q.

The maximal values of the scalar spin chirality evaluated at
any trio of spins- 1

2 for spin-wave states defined on N ∈ [3, 10]
sites are shown in black in Fig. 2. The same expectation values
were estimated via the Hadamard-test-based method depicted
in Fig. 1 using a total of 10 000 samples for each N , as
presented in blue in Fig. 2. The spin-wave states were initial-
ized via a generic state preparation method that exploits the
Schmidt decomposition of the state [30]. The standard spin- 1

2 -
to-qubit encoding {|↑〉 ↔ |0〉, |↓〉 ↔ |1〉} was assumed. The
horizontal dashed line marks the value of 1√

3
[31], above

which the scalar spin chirality is a witness of genuine tripartite
entanglement [13]. Although the scalar spin chirality only
guarantees the existence of genuine tripartite entanglement
in spin-wave states for N = 3 sites, the nonzero value of
the concurrence fill [32] confirms the presence of tripartite
entanglement for larger N , though it seems to vanish for a
sufficiently large size. This contrasts with the macroscopic bi-

FIG. 2. Estimation of expectation value of scalar spin chirality χ̂

at trio of sites of spin-wave states defined on N-site ring. The maxi-
mal value of χ̂ across all trios of spins- 1

2 and all N spin-wave states
for a given number of sites N is shown in black, following Eq. (9).
The same expectation values were estimated using the Hadamard test
in Fig. 1 with 10 000 samples for each N and the results are shown
in blue. The horizontal dashed line marks the value above which χ̂

identifies genuine tripartite entanglement [13]. Although the scalar
spin chirality is only above this threshold for N = 3, the concurrence
fill [32], which is a measure of tripartite entanglement, was also
computed, confirming the existence of tripartite entanglement for all
system sizes considered in the plot. The black and red solid lines
were added to emphasize the decay of χ̂ and the concurrence fill
with the system size N .

partite entanglement of magnons in the thermodynamic limit
reported in the literature [33,34].

B. Chirality of spin-spiral ground state

We have also estimated the scalar spin chirality of a trio of
spins- 1

2 in the ground state |ψ0〉 of

Ĥ = − J
N∑

n=1

�Sn · �Sn+1 + �D ·
∑

n

�Sn × �Sn+1

+ B′Ŝx
1 + B

N∑
n=1

Ŝz
i , (10)

with �D = D�z on a ring of N = 10 sites. Figure 3 shows the
results for a trio of spins at sites 1, 4, and 9 of the ring with
Hamiltonian parameters J = 1, D = J tan(2π/N ) and B′ =
−0.1, with B varied across the range [0, 1]. For B = 0, the
(ferromagnetic) Heisenberg and the Dzyaloshinskii-Moriya
(DM) interactions give rise to a ground state that is a linear
superposition of spin spiral states in the xy plane with dif-
ferent phases. The chosen value for D ensures that a period
of the spin spirals is completed upon covering all N sites.
The nonzero value of B′ leads to a broken-symmetry state
with a single spiral configuration in the ground state [35]. As
B is increased, a non-co-planar spin configuration arises, as
attested by the nonzero value of the scalar spin chirality. For a
sufficiently high B the three spins- 1

2 become aligned with the
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FIG. 3. Scalar spin chirality χ̂ for trio of spins- 1
2 at sites 1, 4,

and 9 of ring with N = 10 sites for ground state |ψ0〉 of Hamiltonian
given in Eq. (10) with J = 1, �D = J tan(2π/N )ẑ and B′ = −0.1. |ψ0〉
was found via exact diagonalization and 〈ψ0|χ̂149|ψ0〉 was computed
numerically (black solid line). The same expectation value was com-
puted via the Hadamard test (Fig. 1) using 10 000 samples for each
value of B. In the inset figure, we show the spin configurations,
obtained by computing the expectation value of �S = (Ŝx

i , Ŝy
i , Ŝz

i ) at
every site i of the ring, for B = 0 (orange), B = 0.17 (blue), and
B = 1 (green). The first and third spin configurations are coplanar
while the second is non-co-planar, as captured by χ̂ .

external magnetic field, and therefore the scalar spin chirality
vanishes again.

C. Analysis of efficiency of method

We now compare this scheme to the default strategy of di-
rectly measuring the scalar spin chirality operator, as far as the
total number of state preparation instances and single-qubit
measurements are concerned. In order to directly measure the
scalar spin chirality, it must be expanded in the Pauli basis:

χ̂ = XY Z + Y ZX + ZXY − XZY − Y XZ − ZY X

2
√

3
. (11)

The standard approach amounts to measuring each Pauli
string separately. Assuming that we want the error to be
bounded by ε, the total number of trials required is at most
NTotal = 3

ε2 [36]. For the Hadamard test, in turn, achieving a
precision of ε requires at most NTotal = 4

3ε2 . Hence, for the
same precision, the Hadamard test results in 9

4 = 2.25 fewer
state preparation instances than the standard approach. If we
consider instead the number of single-qubit measurements,
then the default option involves 3 single-qubit measurements
for each Pauli string as opposed to the sole measurement of
the ancilla in the Y basis in each trial of the Hadamard test.
Hence, the Hadamard test yields 27

4 = 6.75 fewer single-qubit
measurements than the default method. When implemented
in M trios of spins- 1

2 of a multi-spin- 1
2 state, the total number

of measurements is reduced by factor of 6.75 M. This is par-
ticularly relevant in near-term quantum hardware, where the
measurement operations have the highest error rates [37] and
execution times [38].

D. One-shot determination with qutrit quantum
phase estimation

Finally, we consider the use of quantum phase estimation
with a single ancillary qutrit [39] to measure, in one shot,
the eigenvalue of an input eigenstate of the scalar spin chi-
rality. Since only one ancilla is required, the corresponding
quantum circuit is essentially the one shown in Fig. 1(a) with
U = e−i 2π

3 χ̂ and b = 0, but with two differences due to the use
of a qutrit instead of a qubit as the ancilla. First, the Hadamard
gate before the controlled-unitary (and its inverse after it) has
to be replaced by a 3 × 3 quantum Fourier transform,

QFT3 = 1√
3

⎛
⎝

1 1 1
1 w w2

1 w2 w

⎞
⎠, (12)

where w = ei 2π
3 . Second, the application of the unitary oper-

ation U = e−i 2π
3 χ̂ to the state |ψ〉 in the main register subject

to the control of the ancillary qutrit in the computational basis
|i〉 follows the relation

OU (|i〉 ⊗ |ψ〉) = |i〉 ⊗ U i|ψ〉, (13)

with i = 0, 1, 2. For clarity, the three steps of the algorithm
are detailed below:

|0〉 ⊗ |ψ〉 QFT3−−→|0〉 + |1〉 + |2〉√
3

⊗ |ψ〉

OU−−−→|0〉 ⊗ |ψ〉 + |1〉 ⊗ U |ψ〉 + |2〉 ⊗ U2|ψ〉√
3

QFT†
3−−→|0〉

3
⊗ (1 + U + U2)|ψ〉

+ |1〉
3

⊗ (1 + w2 U + w U2)|ψ〉+

+ |2〉
3

⊗ (1 + w U + w2 U2)|ψ〉. (14)

For the three distinct eigenvalues of χ̂ , having one of the
corresponding eigenstates as the input state |ψ〉 leaves the
ancillary qutrit in a different computational basis state with
certainty:

χ̂ |ψ〉 = 0 ⇔ U |ψ〉 = |ψ〉 : Ancilla measured in|0〉,
χ̂ |ψ〉 = −|ψ〉 ⇔ U |ψ〉 = w|ψ〉 : Ancilla measured in|1〉,
χ̂ |ψ〉 = +|ψ〉 ⇔ U |ψ〉 = w2|ψ〉 : Ancilla measured in|2〉.

The expectation value of the scalar spin chirality can be es-
timated as 〈ψ |χ̂ |ψ〉 = P2 − P1, where Pi is the probability of
measuring the ancillary qutrit in state |i〉.

Importantly, if the main register is prepared in a linear
superposition of states with different scalar spin chirality, once
the QPE algorithm is executed, the wave function collapses
onto the components indicated by the ancilla readout. This
approach [40] can be used as a strategy to prepare states with
well-defined scalar spin chirality in chosen triads of spins, in
the same vein of the recently proposed algorithms to prepare
the valence-bond-solid states [41] and the Gutzwiller wave
function [42].
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IV. CONCLUSIONS

In summary, we have proposed quantum circuits to probe
the scalar spin chirality for trios of spins- 1

2 in a wave function
defined on an arbitrary lattice. The first circuit is based on
the Hadamard test with U = e−iτ χ̂ as the reference unitary
operator (see Fig. 1). It maps the expectation value of either
χ̂ or χ̂2 onto the average value of Y or X for the ancillary
qubit. For τ = 2π

3 the algorithm is identical to the cycle test
[25], but it works for both separable and entangled states. We
have illustrated the application of this method to one-magnon
states, as well as to the ground state of a toy model of a chiral
ferromagnet. Finally, when the Hadamard test is implemented
with a qutrit as the ancilla, it is identical to quantum phase esti-
mation and enables the single-shot readout of the eigenvalues
of χ̂ when the main register is prepared in a corresponding
eigenstate.

Our results pave the way towards the efficient digital
quantum simulation of magnetic materials with chiral proper-
ties. In addition, our quantum schemes provide a connection
between the scalar spin chirality formula that is widely used in
classical descriptions of magnetism, which can be formulated

in terms of product states, and its quantum upgrade, which
also applies to entangled states. Future work will address the
extension of our results to the determination of the scalar spin
chirality of spin systems with S > 1

2 and to the generalization
of this concept to sets of more than three spins.
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