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A B S T R A C T

The rise of Artificial Intelligence (AI) and Deep Learning has led to Machine Learning (ML) becoming a common
practice in academia and enterprise. However, a successful ML project requires deep domain knowledge as well
as expertise in a plethora of algorithms and data processing techniques. This leads to a stronger dependency and
need for communication between developers and stakeholders where numerous requirements come into play.
More specifically, in addition to functional requirements such as the output of the model (e.g. classification,
clustering or regression), ML projects need to pay special attention to a number of non-functional and quality
aspects particular to ML. These include explainability, noise robustness or equity among others. Failure to
identify and consider these aspects will lead to inadequate algorithm selection and the failure of the project.
In this sense, capturing ML requirements becomes critical. Unfortunately, there is currently an absence of ML
requirements modeling approaches. Therefore, in this paper we present the first i* extension for capturing
ML requirements and apply it to two real-world projects. Our study covers two main objectives for ML
requirements: (i) allows domain experts to specify objectives and quality aspects to be met by the ML solution,
and (ii) facilitates the selection and justification of the most adequate ML approaches. Our case studies show
that our work enables better ML algorithm selection, preprocessing implementation tailored to each algorithm,
and aids in identifying missing data. In addition, they also demonstrate the flexibility of our study to adapt
to different domains.
1. Introduction

The use of Artificial Intelligence (AI) has dramatically increased
in recent years. Thanks to the latest advances and the proliferation
of data science and deep learning, data-intensive problems can now
be solved and better decisions can be made. One of the branches of
AI is Machine Learning (ML). In this field, mathematical models learn
weights to define the rules that guide the distribution function of a data
set.

The use of ML models can aid to answer questions related to
classification such as ‘‘Will this person infected with COVID-19 survive with
this health and demographic data?’’, regression ‘‘Which are the estimated
sales of our company with these characteristics?’’ and clustering ‘‘Which
are the common patterns of people infected by COVID-19?’’ among others.

Abbreviations: AI, Artificial Intelligence; ML, Machine Learning; i*, iStar; RE, Requirements Engineering; GORE, Goal-Oriented Requirements Engineering;
GRL, Goal Requirements Language; PRISE, PRocess to support IStar Extensions; SVM, Support Vector Machine; KNN, K-nearest neighbors; DBScan, Density
Based Spatial Clustering of applications with noise; OCL, Object Constraint Language; API, Application Programming Interface; IT, Information Technologies;
FRs, Functional Requirements; NFRs, Non-Functional Requirements; SCADA, Supervisory Control and Data Acquisition; GMM, Gaussian Mixture Model; SPEC,
Spectral Clustering; EHR, Electronic Health Record; QA, Quality Aspect; DS, Dataset; PSO, Particle Swarm Optimization
∗ Corresponding author.

E-mail address: alavalle@dlsi.ua.es (A. Lavalle).

Despite its widespread use and power, as [1] argues, requirements
are a non-resolved challenge in ML projects. How well project require-
ments are translated into concepts, features and ML metrics depends
entirely on the expertise of the data scientist or data analyst. To further
aggravate the situation, capturing requirements in an ML project re-
quires both technical knowledge of ML as well domain knowledge [2],
making it difficult to find suitable candidates.

According to [3], requirements are paramount in ML projects. In-
complete or incorrect requirements capture can imply costly drawbacks
in the project, which are commonly detected too late during implemen-
tation [4]. Consequently, there is a need to improve ML requirements
capture. Given the involvement and interaction between domain and
technical knowledge, the ideal ML requirements language is one that
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bridges the gap between the domain expert and the ML developer. It has
to be understandable enough to specify the project objectives to be met
while relating these objectives to ML concepts. Among the existing re-
quirement languages, Goal-Oriented Requirements Engineering (GORE)
frameworks stand out for this task, organizing project requirements
into goals that can be specified by domain experts and linking them
to domain concepts that can be specialized.

One of the main and most widespread GORE frameworks is iStar
(henceforth dubbed i*). i* has become the de-facto standard since it
can be applied to any field thanks to its high level of abstraction. It
has received numerous extensions in different areas. In 2017 Gonçalves
et al. [5] made a systematic literature review of iStar extensions iden-
tifying 51 papers which directly extend iStar, 70 which extend iStar
through Tropos [6] and 56 through GRL [7]. It also has been applied
to largely disparate areas such as safety-critical systems [8], multi-agent
systems [9], analytical visualizations [10], and risk assessment [11]
among others. Consequently, due to its widespread use, a systematic
methodology to create i* extensions called PRISE [12] (PRocess to
support IStar Extensions) emerged. By following the steps outlined by
this methodology, it is possible to create i* specializations that can
capture the specific constructs and rules of the field where it is applied.

Additionally, we should highlight that, although capturing require-
ments is a high-level task, each requirement should be converted into
technical concepts that can be implemented by ML Experts in lower-
level abstraction layers. Therefore, any solution that aims to tackle ML
requirements capture needs to consider not only high-level abstraction
concepts, but also how these concepts will be translated into alternative
ML implementations and solutions.

Therefore, in this paper, we have conducted an extensive research
by applying the formal PRISE [12] methodology in order to create
the first i* for capturing ML requirements. Our work not only enables
capturing ML requirements, but it also includes a set of guidelines
that facilitate its application. On one hand, it drives the creation of
the requirements model through a questionnaire. This questionnaire
guides ML experts in their interview with domain experts, ensuring
that all crucial requirements are evaluated. On the other hand, we
provide a set of tables that reflect how existing ML models contribute
to non-functional requirements and which ML metrics can be used for
each kind of goal. This facilitates the identification and selection of
the most appropriate ML models and metrics according to the goals
and priorities of the quality aspects. In order to evaluate our research,
we have applied it in two real-world projects, the first one based on
gas turbines for electricity generation and the second one based on
analyzing patients affected by COVID-19. We should also point out that
we have used two real world projects from absolutely different domains
in order to better check the suitability of our research.

As demonstrated by our case studies, the advantages of our work
are:

• It allows domain experts to specify their goals, driven by the
questionnaire provided and the aid of ML experts.

• Improves the selection of the most adequate ML models and met-
rics according to the specified goals, non-functional requirements
and the contribution tables provided.

• Aids in the identification of missing requirements and data that
must be gathered for the project.

• Can be applied to ML projects in different domains.

The remainder of the paper is structured as follows: Section 2
resents the related work in the field of Machine Learning requirements
nd the use of the i* and its extensions to different fields. In Section 3
e have conducted an extensive research by following the main steps
f PRISE in order to create a novel iStar extension for ML. Section 4
resents our guide to apply our work and facilitate the capture of
equirements in ML projects. In Section 5 our iStar extension for ML is
valuated through two real case studies. Finally, Section 6 summarizes
2

he conclusions and future works.
2. Related work

Over the last two decades, Goal-Oriented Requirements Engineering
(GO-RE) has attracted attention from the research community [13].
The i* framework is a goal-based modeling language used to model
requirements. More recently, the i* framework has been modified from
its initial version [14] to its current version 2.0 [15].

Several extensions have been created since its creation. The range
of specifications of i* covers a wide range of fields, from law to gam-
ification [5]. Among recent extensions, we can find for instance [16],
where authors proposed an extension to help non-expert users in data
visualization to communicate their analytical needs and generate au-
tomatically the visualizations that best fit their requirements. In [17],
an iStar extension that contributes to the Open Innovation business
paradigm is presented. Other works focused on Human-Centric Char-
acteristics [18,19] use personas and contexts to model human-centric
aspects of the software in goal models. Other novel tools such as
BiStar [20] combine graphical and textual i* modeling.

However, authors in [5] detected an elevated number of anomalies
related to symbols in i* extensions. These anomalies included symbol
redundancy (when a semantic construct is represented by multiple
symbols), symbol overload (when the same symbol is used to represent
multiple constructs), symbol deficit (when a semantic construct is not
represented by any symbol) or symbol excess (when a symbol does
not represent any semantic construct). As a result, the PRISE [12]
methodology was proposed for defining i* extensions, in order to avoid
the aforementioned issues.

Nevertheless, despite the extensive use of i*, to date there have
been no i* approaches related to Machine Learning requirements that
cover functional and non-functional requirements. In fact, no extension
related to ML can be found in the i* extensions catalogue [21].

Although no i* extensions can be found, there is a small set of
works related to Machine Learning and Requirements Engineering (RE).
In [1], authors support ML system development by suggesting check-
lists that allow developers to complete the basic tasks in ML project
development. However, they do not specifically address the issues of
RE. In [3], a survey with experts in ML projects is presented. Authors
highlight the substantial differences between ML and non-ML projects
requirements. Nevertheless, no solution is provided to guide the capture
of requirements in ML projects.

There are also some works that partially cover either functional or
non-functional requirements. In [22] (GORE-MLOps), a specific method
for linking GORE with ML is proposed. Nevertheless, they only con-
sider functional requirements (FRs). In our approach, we also include
non-functional requirements (NFRs) such as transparency, drift in pro-
duction environments, fairness, scalability and others. In [23], the
authors focus on the quality attributes and define the main NFRs in the
ML field. Similarly, in [24] the authors focus on capturing only NFRs in
ML projects whereas we also consider FRs such as temporal resolutions,
reliability or validation.

Regarding works that consider requirements in general, the authors
in [25] present a research roadmap for capturing and identifying re-
quirements based on questions. However, they do not define indicators
to monitor the requirements. In [26] a roadmap to follow requirements
in ML productions is presented, based on their experience, but without
taking formal requirements into account. In [27], the authors propose a
model that covers the main gaps between requirements engineering and
machine learning through solution patterns. However, the framework
lacks specific constraints related to constructs from the ML field. For
this reason, it requires deep domain knowledge to be applied.

Finally, it is key to note that works such as [22,23,25] have provided
initial steps in ML requirements. However, they only provide the the-
oretical fundamentals and do not provide guidance or implementation
of the solution.

As shown, to the best of our knowledge none of the approaches
summarized above provide a solution that tackles the problem con-

sidering both functional, non-functional requirements as well as their
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associated implementation. Most of the approaches define the theoreti-
cal fundamentals without including practical and systematic derivation
of the implementation that could help designers with the requirements
gathering and elicitation. Compared to these approaches, our approach
is based on a specific and semantically-tested language, providing a
suitable metamodel that can be implemented, helping us with gathering
both functional and non-functional requirements.

Moreover, our work is the first i* extension applied to Requirements
Engineering in ML. This extension has been created following an au-
thoritative framework specifically designed for this purpose (PRISE).
This allows us to lower the high-level abstraction of i*, developing
a more-specific, less error-prone, semantically-valid, and more con-
strained modeling language that is adapted to the needs of the ML
field. Moreover, our approach includes a series of guidelines to follow
in order to avoid skipping any important requirement that should be
considered in an ML project.

Finally, as the presented model is more directed and less error-
prone, ML projects can be developed with less effort and time, making
ML development more efficient. Therefore, we believe that our ap-
proach complements all the previous theoretical works by providing
a metamodel that allows designers to gather the main requirements of
ML projects in a systematic fashion.

3. Applying PRISE to create an istar extension for ML

As previously mentioned, the i* framework has received numerous
extensions and as a result, a systematic process for the creation of i*
extensions called PRISE [12] has been proposed in the literature. In
this section, we detail the PRISE steps that we have applied in order to
create an i* extension to capture Machine Learning (ML) requirements.
It is important to highlight that PRISE only provides the steps to
be followed in order to create the i* extension. The actual domain
knowledge and decisions on what concepts and relationships should be
included must be provided by the authors of the extension created. In
the case of the i* extension for ML, the authors of this paper.

PRISE is structured in 6 main steps summarized in Fig. 1. The
process starts with the necessity of building an i* extension and it
ends when the extension is built, in this case formalized through a
metamodel (Fig. 3). It is an iterative process where new constructs
can appear while steps 2, 3 and 4 are being performed. Despite being
an iterative process, the analysis of external iStar models is performed
individually, once the constructs of an extension are added, the next
model is explored.

Every main step in PRISE has sub-processes. However, with the
aim of providing only relevant information, the most important topics
related to the main step are presented. By following the steps outlined
by PRISE, we make sure to create a complete, consistent, and conflict-
free i* extension. The following sections describe in detail the creation
of our work by applying the PRISE methodology.

3.1. INPUT: Need to extend istar

In recent years, the adoption of ML solutions has experienced a
significant growth. Despite its widespread use and power, requirements
are a non-resolved challenge in ML projects [1]. Incomplete or incorrect
requirements capture can imply costly drawbacks in the project, which
are commonly detected too late during implementation [4]. More-
over, capturing requirements in an ML project requires both technical
knowledge of ML as well domain knowledge [2].

Therefore, there is a need to improve the process of capturing ML
requirements. Considering the involvement and interaction between
domain expertise and technical knowledge, the ideal language for ML
requirements should act as a bridge connecting domain experts and ML
developers. This language has to be clear enough to specify the project
3

objectives while also relating these objectives to ML concepts.
3.2. STEP I: Analyze the need of extension

The first step is to analyze the need of an i* extension. As mentioned
in Section 2, Requirements Engineering (RE) in Machine Learning (ML)
projects is still a challenging problem. Only a few approaches, such
as [27], tackle this task by trying to cover the main gaps between
RE and ML. However, the solution patterns offered have too much
freedom, and some inconsistencies are likely to appear.

Moreover, according to [2], RE in ML requires both domain knowl-
edge and the ability to translate high-level organization requirements
into low-level understandable and implementable goals. This implies
that talent can be expensive or hard to retain. Moreover, RE can be
difficult for non-experts in ML, producing errors that would be detected
in late stages during the implementation phase.

Another reason for considering crucial the need of an i* extension
for ML is the incapability of capturing ML constraints. Using i* on
its high-abstraction layer can produce inconsistencies. For instance, as
Fig. 2 shows, although both elements are correctly typed as tasks and
goals, the relationship between them is not correct. Kmeans is a classi-
fication task, while 𝑅2 is a regression metric, which cannot be used
to define classification goals. They cannot be related. Consequently,
the correctness of the chosen elements relies entirely on the burden
of knowledge of the ML expert.

Therefore, it is paramount to provide a semantically-valid extension
of i*, where construct constraints and specific rules of ML are captured.

3.3. STEP II: Describe concepts of the istar extension

According to PRISE [12], it is recommended to search, select and
reuse concepts from other works. We have reused generic concepts that
are not related specifically to ML. For instance, i* elements such as
Actor, Goal or Task [28] or concepts proposed in [29] as Datasource.

For the specific case of ML elements, approaches as [27] describe
interesting elements related to RE and ML. However, the relationships
between specific ML constructs are not ideal. Therefore, we prefer not
to use directly those concepts and, instead, we will provide similar ML
constructs but with other relationships between them.

In the following, we describe the new concepts that have been
introduced in our proposed work of i* extension from ML requirements:

• Source: This element represents a specific source from which data
is obtained. It can be internal data (data that belongs to the
company) or external data (provided by open data repositories
or institutional open API’s). It specializes the i* class Resource.

• Dataset : Sources can be very different from each other. For
instance, they can have different timestamp units and metrics. As
a result, they must be unified under a single criterion, forming the
Dataset element. Dataset will be the main input for the Task ele-
ments (specifically, MLTask). The dataset element has two related
attributes: temporalResolution, which is an attribute that unifies
the temporal resolution of different Sources, and refreshPeriod,
which specifies when the Dataset must be refreshed with new data
for other MLTasks (for instance, re-training the ML model).

• MLGoals: This abstract class is a specification of the i* Goal class.
MLGoals are the abstraction that can be instantiated into three dif-
ferent ML goals. It must be highlighted that with the construct of
MLGoals, it is easier to establish a boundary between goals related
to different fields (for instance, ML goals and chemical goals).
Therefore, RE can be approached from a multidisciplinary point
of view if required by the project. The three specialized classes are
related to the three main tasks in ML: classification, regression,
and clustering. A MLGoal is the desired level of compliance that
should be achieved for a specific qualitative goal.

• ClassificationGoal: The specification of MLGoals associated with
a classification goal. It has a parameter to specify the temporal

resolution of the goal.
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Fig. 1. Main steps of PRISE.
Fig. 2. Inconsistency between a task and a goal in ML, using base i*.

• RegressionGoal: The specification of MLGoals associated with a
regression goal. As in the previous case, it has a parameter to
specify the temporal resolution of the goal.

• ClusteringGoal: The specification of MLGoals associated with a
clustering goal. Unlike ClassificationGoal and RegressionGoal, it has
no temporal resolution attribute.

• MLTask: It is a specialization of i* Task class. It can be split
into three more specific classes: ClassificationTask, Regression-
Task and ClusteringTask. Furthermore, it has common attributes
belonging to all ML tasks. It has the validationTypes attribute,
which specifies if either a train test-split must be performed
(the hyper-parametrization must be realized afterwards), or a
train-test-validation split should be performed instead (the hyper-
parametrization is included in that process). Moreover, it has
the parameters TrainingSize and ValidationSize, which specify the
train and the validation sizes (for instance, 80% train size and
20% train size; or 90% train size and 10% test size). Finally, the
CVFolds attribute specifies how many folds must be done in a
cross-validation technique, with the aim of providing more robust
results to the ML model [30]. Every MLTask will generate an
Indicator.

• ClassificationTask: The specification of MLTask associated with a
classification task. Classification can be binary or multiclass, spec-
ified by a boolean attribute (binaryClass). Furthermore, simple
classification models can be aggregated to form a more complex
classification model, following techniques such as bagging and
boosting. These techniques are included through the aggregated-
Classifier relation.

• RegressionTask: The specification of MLTask associated with a
regression task. Similar to ClassificationTask, simple regression
models can be aggregated to form a more complex regression
model, represented through the aggregatedRegressor relation.

• ClusteringTask: The specification of MLTask associated with a
clustering task.

• Indicator : An Indicator is the parameter that specifies the degree
of compliance of a specific MLGoal, to be achieved by means of a
MLTask. In an ideal use case, the MLIndicator would have an equal
or higher level of compliance than the one set for the MLGoal.
4

• ClassificationIndicator : The specialization of Indicator associated
with a classification indicator.

• RegressionIndicator : The specialization of Indicator associated
with a regression indicator.

• ClusteringIndicator : The specialization of Indicator associated
with a clustering indicator.

• DataPreparation: This is a specialization of i* Task. This element
has an enumeration of additional preprocessing operations that
can be performed in ML, according to project needs and the
algorithm used. For instance, Normalization is a requirement for
using a SVM algorithm, but it is not required for a RandomForest
approach. On the other hand, an operation related to Outlier-
sTreatment is mandatory if the algorithm is sensible to outliers (as
KNN), while other algorithms such as DBScan are quite robust to
them. These relationships between algorithms and DataPrepara-
tion attributes will be controlled through OCL (Object Constraint
Language) constraints [31].

• MLQualityAspects: This element specifies the different ML quali-
ties that the model may be expected to fulfill. These can be: Scal-
ability, NoiseRobustness, ConceptDriftAdaptation, Explainability,
HighDimensionality, Equity, Simplicity and Transparency. How-
ever, not all ML models are able to cover all quality aspects.
Therefore, in order to help with the selection of the most suitable
ML models to achieve the defined MLQualityAspects we have
proposed Table 2 (fully explained in Section 4).

We must highlight that our study is focused on capturing require-
ments from the ML point of view. This implies that other aspects
related to IT projects but not related to ML are not included. For ex-
ample, the requirements of visualizations, security in data transactions,
documentation, or credibility of data are out of the scope.

3.4. STEP III: Develop iStar extension

After describing all the concepts that are included in our study, we
have formalized it by creating a metamodel, implemented using the
ECORE (ECLIPSE) tool. Fig. 3 shows our resulting metamodel.

One of the key points of our work is the relation between the
specifications of MLGoal—MLTask—Indicator. Our model avoids invalid
configurations: for instance, the degree of compliance of a classification
task is measured with a classification metric, which is trying to achieve
a classification goal. Moreover, different MLQualityAspects are captured
from business needs. The different MLTasks that help to achieve ML-
Goals can be related to these quality aspects, and by using Table 2,
MLTasks that are not suitable (due to these algorithms breaking or
hurting desirable MLQualityAspects) can be discarded. This ensures that
only valid ML algorithms will be selected. Therefore, the number of
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Fig. 3. Proposed extension of i* for Machine Learning projects.
Fig. 4. Main errors in iStar extensions while encoding.
mistakes and inefficient resource consumption training less-than-ideal
algorithms will be greatly reduced. Moreover, the use of enumerated
classes helps to avoid mistakes, since it is ensured that only appropriate
indicators for the ML task will be selected.

Finally, we have created a questionnaire in order to guide and
assist in the application of our work (described in Section 4). By
answering those questions, the metamodel can be built iteratively with
information about the specific use case.

3.5. STEP IV: Validate and evaluate the iStar extension

Our research has been validated and evaluated in each iteration
until reaching the final metamodel. We have thoroughly revised our
metamodel with the aim of avoiding mistakes. The main common
mistakes of an i* extension are represented in Fig. 4. Our study has
focused on avoiding these errors. In our proposed metamodel it is not
possible to find errors of symbol redundancy, symbol deficit, symbol
overload or symbol excess. Only the specialization of the abstract
5

classes to more specific elements could be interpreted as a symbol
redundancy. However, it has been discarded as an error, since it is
not possible to instantiate an abstract class, the specification is needed,
and it discriminates between different ML elements. Moreover, we
have also checked and corrected any problems related to completeness,
consistency, and conflicts.

Furthermore, in this paper, we fully apply our study to two real case
studies. In Section 5.1 we apply it to an industrial project based on gas
turbines for electricity generation. In Section 5.2, we apply it to a case
study based on patients affected by COVID-19.

3.6. STEP V: Check other new constructs to be added

This step has been carried out iteratively. PRISE is an iterative
process where new constructs can be identified during steps II, III and
IV. Thus, when new constructs are identified during an iteration, they
are listed by this step to be considered in the next iteration.
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Fig. 5. Main stages of our process for collecting Machine Learning requirements.
3.7. STEP VI: Publicize the iStar extension

Finally, the last step of PRISE is to publicize our new i* extension
for ML. First, this extension is aimed to be published in a widely known
journal in order to reach a wider public. Second, we are also working
to include it in the i* extension catalogue1 after its publication.

4. Guide to capture ML requirements by using our iStar extension

One of the most important aspects of RE in ML is to capture
and transform business objectives into clear analysis objectives [32].
Moreover, those analytical objectives must be measured using suitable
metrics. However, capturing project goals and defining metrics to
measure whether they have been achieved or not is a challenging task.

In this work, we have formalized the process of capturing ML
requirements through a complete metamodel based on i*. Moreover,
with the aim of supporting the requirements capture step, we have
established a guided process shown in Fig. 5. This process is comprised
of a set of stages based on our requirements questionnaire tool, that is
summarized at the end of the section in Table 3. For quick reference, in
the following we will refer to questions within the questionnaire tool as
QX, where X indicates the number of the question. The process begins
when an ML project is going to be developed, it provides an initial guide
about the direction that an ML project must follow. Each stage helps
the ML expert to build iteratively the i* model in a guided way and to
ensure that all the relevant aspects of the ML solution are covered. After
having collected all the information necessary to build the i* model and
validate its construction, we will obtain as output the selection of the
most suitable ML model that fulfills the requirements defined during
the process.

The aim of this process and the requirements questionnaire tool is
to guide the ML expert in building capturing the project requirements.
Since the some of the points in the questionnaire can require high
technical ML knowledge, the ML expert can translate them into more
understandable questions for the domain expert if necessary. Thus, by
following the defined process, the metamodel can be instantiated for a
specific use case, and consequently, converted into a specific i* for ML
model.

In the following, we present in detail the set of stages defined by
the authors together with the points associated to each stage:

4.1. Stage 1 - High-level goal definition

To start with, we must detect which are the main goals of the ML
project. These ML goals are usually supplied by the stakeholder in
natural language, where no computer science knowledge is required.

1 https://istarextensions.cin.ufpe.br/catalogue/
6

Moreover, these high abstraction goals must be split into more specific
goals that can be assigned to specific ML models. This stage can be
tackled by with the first point from the questionnaire tool presented in
Table 3:

P1. Defining the overall objective of the project from a ML
point of view. By having the stakeholder answer Q1 from the
questionnaire tool, we will capture the highest abstraction Goals
of the project on a qualitative level. Moreover, the direction of
the project will be established, since the approach to follow will
be selected from:

• Classification Goal: I want to predict a discrete variable
or a specific class from a predetermined set (e.g. predict
within a 7-day margin if the COVID-19 patient will die).

• Regression Goal: I want to predict the numerical value of
a continuous variable (e.g. predict properly in how many
days a COVID-19 patient will die).

• Clustering Goal: I want to group data that have similar
behaviors (e.g. detect common patterns in the patients that
have died of COVID-19).

4.2. Stage 2 - Definition of success metrics

After specifying which are the ML goals of the project, we have
to specify how to determine whether the project can be considered a
success or not, which will in turn enable selecting across implemen-
tation alternatives. In order to perform trade-off analysis between ML
goals and the efficacy/efficiency of the ML model, suitable metrics
and thresholds for the goals established in the previous stage must be
selected. In conjunction with quality aspects defined in the next step
will enable ML experts and stakeholders to compare across existing
alternatives. This stage can be tackled by the second point of the
questionnaire tool:

P2. Define proper measures for planned goals that establish the
success or failure of the project. While Point 1 establishes
qualitative goals, this second point is focused on a quantitative
perspective. By interviewing the stakeholder using Q2 from the
questionnaire tool, a suitable indicator and a metric value will
be selected for measure each of the previously defined goals.
In order to assist in the definition of the Indicators we created
Table 1. This table summarizes the possible metrics that can be
selected for each type of MLGoal.
Although metric selection may apparently be easy, there are
many issues that can arise in real ML projects such as noise,
biased datasets, creation and deletion of new features, etc, which
can lead to choosing non-proper metrics and undesirable results.
For example, Accuracy is a metric with very widespread use,
although on many occasions it may not be suitable. If we want

https://istarextensions.cin.ufpe.br/catalogue/
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Table 1
Suitable Indicators for each MLGoal type.

Classification Regression Custering

- Accuracy - R2 - Silhouette Coefficient
- Sensitivity - RMBE - Adjusted Rand Index
- Precision - MAPE - V-Measure
- F1-Score - MAE - Mutual Based Inference
- Specificity - Carlinsky-Harabasz Index
- Error Rate

to predict deaths in a COVID-19 project (a classification goal),
and the dataset has a bigger representation of survivors than
deaths, choosing an Accuracy metric may cause considerable
errors when results are interpreted. Thus, if the model learns a
simple rule such as everyone will survive, it will provide a good
Accuracy metric. In this case, focusing the attention on a highly
accurate prediction on the deaths group (using metrics such as
precision, recall, or F1) will result in a more robust model. These
types of metrics are more suitable for biased datasets, multi-class
classification, etc.
Therefore, this second point will result in obtaining suitable In-
dicators (ClassificationIndicator, RegressionIndicator, ClusteringIndi-
cator) that will be linked to specific MLGoals (ClassificationGoal,
RegressionGoal, ClusteringGoal). Moreover, a specific value for
each Indicator will be provided. And each Indicator will provide
information about the degree of compliance between the actual
value of the indicator vs the desired value of the indicator
(Indicator vs MLGoal).

.3. Stage 3 - Non-functional requirements

The aforementioned steps 1 and 2 will gather enough information
o start dealing with the technical part of the project. However, other
equirements such as quality aspects (including NFRs) that the project
ust fulfill are not covered yet. In fact, some recent literature [23] has
ighlighted the special attention NFR’s require. However, ML qualities
re not directly treated as NFR’s (since some ML qualities can be
onsidered functional requirements).

In our study, we present NFR’s and ML qualities as different possi-
ilities of one abstract element: MLQuality. While different ML qualities
an be defined, there are three that we consider crucial from the
equirements engineering point of view. For that reason, we have
pecific points in our requirements questionnaire that address each of
hose three ML qualities, and a fourth general one. The points related
ith ML qualities are the following:

P3. Rate the importance of being able to explain the overall
decisions of the model as well as identifying the weights
of individual dimensions in the output. Explainability is
paramount in some research fields such as medicine [33,34].
Moreover, there are specific libraries designed to provide ex-
plainability to ML models, like SHAP [35]. In fact, in [36]
authors show how legal requirements can be implemented into
ML models, with the aim of dealing properly with explainability.
Consequently, it must be established clearly if the explainability
of the model is a desirable ML quality. If it is, some techniques
and algorithms are more suitable to be used, while other tech-
niques which lack transparency or are more difficult to be used
to generate explanations coherent with the model logic are prone
to be discarded (such as deep neural networks) [37].
The explainability of the model helps domain experts to under-
stand which dimensions are relevant in the model, thus avoiding
the black-box problem. Moreover, the explainability can be ex-
tended with the aim of providing the reasoning for a specific
prediction including the effect of each dimension, as we can
7

see in Fig. 6. Therefore, this point will aid in specifying if the
Explainability MLQuality is required in the project and to which
degree it should be fulfilled.

P4. Define whether the behavior of data can be expected to
change as new data is gathered. This point is related to the
change in data distribution. If the behavior of data changes, the
model must be re-trained, due to the fact that new predictions
will have a different distribution than old data. This change in
data trend is known as concept drift [38]. Therefore, the trend
must be captured to provide proper predictions. The retraining
of the model usually is a time-consuming process and cannot be
treated lightly. However, if data usually changes and the model
must be re-trained continuously due to changes in the distri-
bution, then traditional batch techniques cannot be used. For
those cases, there are specific algorithms that deal properly with
concept drift. By having the stakeholder answer Q4 from our
questionnaire tool, the ML expert will be able to specify whether
ConceptDrift as MLQuality is a requirement of the project.

P5. Determine whether data is expected to be biased and cor-
rective actions should be taken. Real projects can have bias
in multiple phases of the project (from social bias introduced
into input data to deployment bias when the project has been
finished) [39]. As a result, undesired effects such as unfairness
or wrong decisions may arise during an ML project [40]. If bias
is detected, it must be analyzed, and additional preprocessing
steps should be performed with the aim of minimizing the afore-
mentioned bias. If Equity is specified as an MLQuality, additional
preprocessing operations should be performed.

P6. Establish the importance of the remaining quality aspects
listed in the metamodel enumeration. There is a list of other
possible ML quality aspects that may be desirable to take into
account in the project ( Table 2 lists the possible quality aspects).
By posing Q6 of the questionnaire tool to the stakeholder during
the interview, the ML expert will be able to identify other ML
qualities that have to be considered, allowing filtering which
algorithms are more suitable for fulfilling these quality aspects.

In order to assist in the selection of the most suitable MLTask, we
present Table 2. This table relates the different ML qualities and the
algorithms that fulfill them since not all ML algorithms are able to deal
properly with all ML aspects. Table 2 represents the different relation-
ships between each instance of an MLTask (ClassificationTask, Regres-
sionTask, and CusteringTask) and MLQualityAspects. This relationship is
established through a ContributionType class.

We establish a scale in Table 2 where the different symbols mean:
++ Makes; + Supports; - Harms; - - Breaks. It should be mentioned that
it is possible to extend the list of ML algorithms and MLQualityAspects
if the context needs it.

4.4. Stage 4 - Dataset characteristics & constraints

After defining the quality aspects, we focus on gathering informa-
tion related to data sources. With this, we want to post which are the
main tasks to develop over the data sources. Thus, those sources could
be processed into a more refined dataset, which will help to achieve the
aforementioned qualitative and quantitative ML goals. The following
points from our questionnaire guide the identification of tasks that
should be modeled in this stage:

P7. Establish the time horizon (if any) for which the solution
should provide an output. By addressing this point we are
specifying which data will be used for training the ML model
and which data will be discarded.
For instance, we want to predict if a car will break down within
the margin of 7 days with data provided by the car sensors in real
time. In order to train the ML model, historical data generated
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Fig. 6. Effects of every feature in a prediction. Explainability in an ML model.
Table 2
Suitable MLTasks for the different MLQualityAspects.

Classification algorithms

Scalab. Noise R. C. Drift Explain. Dim. Simp.
LogisticRegression + −− ++ − +
KNN −− −− −− + − +
NaiveBayes ++ + −− ++ +
RandomForest −− + −− +
SVM − −− − −−
AdaBoost − −− − − −
XGBoost + + −− − − −
Autoencoders + −− −− −− + ++
Bagging −− + + −

Regression algorithms

Scalab. Noise R. C. Drift Explain. Dim. Simp.
KNNR ++ − −− + − −
RandomForestRegressor −− + −− +
LinearSVR + −− ++ − +
SVR − −− − −−
XGBoostRegressor + + −− − − −
Bagging −− + + −

Clustering algorithms

Scalab. Noise R. C. Drift Explain. Dim. Simp.
Adaboost(Clustering) − −− − − −
KMeans + − −− + +
HAC − −− −− + −
GMM + + −− − −
SpectralClustering − −− +
DBScan − ++ −− − − −
CluStream + − −
DenStream ++ − −−

for sensors 7 days before its breakdown must be removed for
every car from dataset (with the aim of avoiding the introduction
of future information). Consequently, the data from training
Datasets will be reduced. That could imply that no data (or
insufficient data) is available for the qualitative goal pursued,
and the answer should be re-evaluated. For instance, reducing
8

the initial margin established.
P8. Identify available data sources for the model and whether
domain knowledge can be applied over them. Much liter-
ature can be found where the inclusion of domain knowledge
improves ML results [41–43]. Therefore, experts in the appli-
cation field can provide valuable information with the aim of
focusing an ML project. Moreover, the ML expert usually applies
her knowledge in multiple different fields, where the ML expert
is a newcomer. Consequently, domain knowledge is required
quite often and it is usually provided by a stakeholder. However,
it must be highlighted that sometimes either no domain knowl-
edge is available or an agnostic approach has to be followed
due to other constraints. Therefore, considering Q8 from the
questionnaire tool will help the ML expert determine whether
it will be necessary to modify the Sources element and therefore
the Dataset element.

P9. Determine the granularity of data required according to the
overall goal and compare it with the granularity available
in the data sources. Granularity of data is paramount in the
performance of an ML project. Some detailed metrics require
a high frequency of input data (for instance, ten temperature
values per second). Therefore, if the sensor can provide only one
value every ten seconds, the goal cannot be achieved. On the
other hand, if the goal requires computing an aggregated value,
the aggregation operation can imply a heavy computing process
and therefore, it could be unaffordable if time restrictions ex-
ist. This point will allow the parametrization of the attributes
refreshPeriod and temporalResolution of Dataset element.

P10. Establish whether external validation will be required for
the project. Sometimes, it may be required to train the model
with specific data, and then test the model with data from
another source (e.g. training with data from one hospital, and
test it with data from another hospital). When external data
is available (which implies additional Source and Dataset ele-
ments), it can provide more solid results to the specified model.
However, this data is not always available. Consequently, inter-
nal validation is quite often the chosen option for testing the

model.
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Table 3
Questionnaire tool for ML experts to aid in ML requirements capture.

Question Metamodel Class/es affected

Q1. From a qualitative point of view, which objectives do I have?
Is a regression/clustering/classification model required?

Goal
MLGoal(ClassificationGoal,
RegressionGoal, ClusteringGoal)

Q2. Which metric is the proper one to measure the planned goal?
Which value of that metric would consider the project as success?

Indicators
(ClassificationIndicator,
RegressionIndicator,
ClusteringIndicator)

Q3. Is the explainability of the model or the effect of every dimension
on each prediction mandatory?

MLQuality
(Explainability/Transparency)

Q4. Can the behaviour of data be changed? New instances can
be added, or it is static?

MLQuality
(ConceptDriftAdaptation)

Q5. Is data biased? Is it necessary any additional preprocessing
step with the aim of providing equity in data?

MLQuality
(Equity)

Q6. Is there any other specific ML quality aspect that the ML
model should have?

MLQuality

Q7. Should the system provide a prediction within a time limit? Dataset

Q8. Which data should be considered for the model? Must an
agnostic approach be followed to deal with the problem, or is
domain knowledge available?

Dataset
Source

Q9. Which granularity of data is suitable for achieving the goal?
Is the required granularity available?

Dataset
(Parameters temporalResolution)
and refreshPeriod)

Q10. Is external validation required, or is it enough with
internal validation?

Source
Dataset
5
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4.5. Stage 5 - Model validation

Finally, once the questionnaire is completed and the model is built,
the domain expert and the ML expert review it in order to identify
potential inconsistencies and oversights. In case the ML requirements
model is validated, the ML project development will proceed. In the
case of any inconsistency is detected, the questionnaire and the model
will be reviewed in order to update it according to the domain expert’s
needs. In Table 3, we can observe the relationship between each posed
question and the elements affected in the metamodel.

Once the ML Expert has passed through these stages and has col-
lected the answer to these 10 Questions, an overview of the project
will be available. Therefore, it will be possible to build the i* model
by following the metamodel specified (Fig. 3) in an easy way avoiding
common mistakes.

Each question will capture information about different elements of
the metamodel. Questions 1 and 2 provide information about goals and
metrics. Questions 3 to 6 are related to the ML Quality aspects that the
ML solution must fulfill. Finally, questions from 7 to 10 are related to
data and its processing before the ingestion in the ML model.

After gathering all the requirements for the ML model we have to
specify which algorithms are prone to be candidate solutions and which
algorithms should be discarded because they do not fulfill the project
constraints. In order to accomplish this, the domain expert should
evaluate the thresholds established for functional requirements (FRs)
as well as the priorities for quality aspects (including NFRs). In order
to facilitate the evaluation, we propose Eq. (1) to weight the suitability
of each algorithm, establishing a ranking among the most promising
ones:

𝑆𝐴 =
𝑁
∑

𝑖=1
𝐷𝑎𝑖𝑊𝑖 (1)

Where:

• SA: Score of the algorithm.
• Dai: Degree of compliance of the algorithm with Quality Aspect i.

According to the relation between the algorithm and the quality
aspect, four degrees of compliance can be identified. For algo-
rithms that have ++ in Table 2, the degree of compliance will
9

be considered 1. For algorithms that have + in Table 2, the
degree of compliance will be considered 0.5. Conversely, negative
contributions to quality aspects will be weighted with −1 (- -) and
−0.5 (-) respectively.

• W i: Weight of the Quality Aspect according to the priorities
established by the project requirements.

. Cases of study

In this section, we describe the application of our work in two real
ase studies with the aim of evaluating and demonstrating its applica-
ility to different domains. The first case study is based on predicting
nomalies in gas turbines for electricity production (Section 5.1). The
econd one is based on predicting the patients’ evolution for patients
ffected by COVID-19 (Section 5.2).

It should be noted that in order to create the visual model, the
ase i* syntax has been respected. Consequently, Task specifications
ave Task visual syntax and Goals specifications have Goals visual
yntax. However, Indicator cannot be inherited directly. Therefore, a
idespread symbol for indicators previously used in other works such
s [27] has been adopted.

.1. Case study 1: Automatic anomalous working process detection in gas
urbines

In this section, we present the application of our work to a real
L case study. First, we will provide the answers to the questions that

llow us to iteratively build the model. These questions are presented
n Section 4. Then, we will present the resulting requirements model.

The first case of study is based on a gas turbine used for electric
nergy generation. A gas turbine is the prime mover for the gener-
tor. Its input is thermal energy from burning gas and the output is
echanical power that drives the generator. Thus, this device converts

he mechanical energy generated by the gas combustion into electrical
nergy that is supplied as a product at the terminals of the generator.

The industrial process that governs the turbine is very complex.
he turbine model used in the case study incorporates more than 100
ensors, which provide information about every part of the device. The
ystem measures 31 physical values with backup sensors and multiple
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measuring points distributed along the turbine and the generator. The
aim of the project is to predict whether the turbine is working correctly
or not, and if risks breaking down in order to avoid damaging the
machinery. However, the project has the added difficulty that only data
from correct operations is available, since generating real error data
risks breaking down the machinery and it is unaffordable due to its
cost.

Consequently, the project has two business requirements: 1) The
number of phases that compose the industrial process must be detected
automatically to identify how the gas turbine transits from one phase
to another, and 2) for each phase, we must detect if the data tuple that
is received from the sensors belongs to a normal working process or to
an abnormal one.

The first step is to collect information through the requirements
questionnaire in order to get a general vision of the problem and collect
information to create the i* model. For simplicity, we include for each
point the number and question from our requirements questionnaire
along with the result for this particular case study.

5.1.1. Stage 1 - High-level goal definition
1. From a qualitative point of view, which objectives do I have?

Is a regression/clustering/classification model required? The
customer wants an ML model capable of detecting, without hu-
man intervention, if the turbine is working properly or not. And
if the turbine has an anomalous working process, an alarm will
be raised in the SCADA software for the domain expert.

.1.2. Stage 2 - Definition of success metrics
2. Which metric is the proper one to measure the planned goal?

Which value of that metric would consider the project as
success? The accuracy of the ML model should be at least 0.85.

.1.3. Stage 3 - Non-functional requirements
3. Is the explainability of the model or the effect of every

dimension on each prediction mandatory? It is not necessary.
Only an accuracy rate above the threshold is required.

4. Can the behavior of data change as new instances are added,
or is it static? If so, is continuous re-training necessary? No,
the information provided has all the different data distributions
that the industrial process can follow. It is not expected to change.

5. Is data biased? Is it necessary any additional preprocess-
ing step with the aim of providing equity in data? Data
provided belongs only to correct tuples. Consequently, only a
semi-supervised approach can be performed. Data equity is not
required for this industrial process.

6. Is there any other specific ML quality aspect that the ML
model should have? Yes, the model must be simple, and it
should be scalable. The candidate algorithms must, at the very
least, to have a neutral relationship with simplicity; and at most
a ‘‘hurt’’ relationship with scalability.

5.1.4. Stage 4 - Dataset characteristics & constraints
7. Should the system provide a prediction within a time limit?

The solution should provide information about the error at least
1 min before an incorrect working process. Moreover, the system
should dampen false anomalies. A notification will be launched
only when the turbine has an anomalous working process.

8. Which data should be considered for the model? Must an
agnostic approach be followed to deal with the problem, or
is domain knowledge available? All data retrieved by all the
sensors is considered important. However, there are 2 redundant
sensors for each measured value. Consequently, the system could
be simplified by retrieving the mean for every physical value.
This reduces a problem with a dimensionality of around 100 to a
dimensionality of around 30.
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9. Which granularity of data is suitable for achieving the goal?
Is the required granularity available? Every sensor has its own
working process for sending the data: some of them send a few
signals every second and some others send the value after a few
hours. Consequently, the values should have been interpolated
from every signal, on a 10-sec interval. With that granularity,
question 9 can be answered properly.

10. Is external validation required, or is it enough with internal
validation? No more data is available. As a result of that, internal
validation will be enough.

5.1.5. Stage 5 - Model validation
Once we have finished answering the questionnaire and built the

model, the domain expert and the ML expert review it in order to
identify potential inconsistencies and oversights. In this particular case,
model validation arises the need to include additional datasets, as
the dataset provided does not include enough information to test the
classification model. We provide more details about the model and the
dataset in the following subsection.

5.1.6. Resulting ML requirements model
After iterating through the questionnaire, we have obtained the cor-

responding ML requirements model. The model resulting from applying
our approach is shown in Fig. 7:

The visual elements that have been used for representing our work
have been taken from the i* language guide 2.0 [15]. Moreover,
since they represent more specific lower-abstraction concepts from
the ML domain, we have added a label corresponding to the type of
element. Consequently, MLQualityAspect has the ‘‘cloud’’ figure with
the QA specification; the different goals have the ‘‘oval’’ figure, with
the specification of either ClusG or ClassG corresponding to a clustering
goal or a classification goal respectively; the tasks notation uses the
‘‘hexagon’’ figure, with the notation of ClusT for clustering tasks, ClassT
for classification tasks and 𝐷𝑃 for data preparation tasks; Sources
use the ‘‘rectangle’’, with two different specific classes marked as 𝑆
(sources) and 𝐷𝑆 (datasets) respectively. Moreover, the same notation
as in [15] has been used for contribution links, refinement links and
actors (and their boundaries). Nevertheless, since the i* language guide
2.0 does not include any notation for indicators and evaluation links,
we have used the common representations that appear in related works,
such as [44].

As we can see in the figure, the highest-level goal is the Auto-
matic Anomalous Working Process Detection. Due to data generation
limitations, the data provided for training the models is related to a
correct working process of the turbine only. Thus, a semi-supervised
approach will be used, where one of the classes (anomalous operations)
is unknown.

The main goal has been split into two different MLGoals. The first
one is the Automatic Detection of the number of phases that compose the
industrial process. This is considered a clustering goal (ClusG) since the
objective is to group the data into clusters (phases) in order to identify
the behavior of the process from the data available. The second one,
Correctness on each tuple is a classification goal (ClassG) since it aims to
determine whether each tuple is correct or anomalous given the current
operations data.

Regarding the clustering goal, two quality aspects (QA) have been
defined according to the requirements elicited from Question 6: Scal-
ability and Simplicity. Scalability is a requirement since it is possible
that the number of tuples sent on each second could vary in the future
(this is common in an IoT environment) and the algorithm should be
able to deal with larger volumes of data in a timely manner. Moreover,
Simplicity is a desirable quality since a well-trained simple algorithm
should be able to provide the suitable information and favors quicker
training and evaluation.

The remaining ML quality aspects have been discarded. NoiseRo-
ustness quality is not applicable since only correct data is available.
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Fig. 7. Application of our ML approach to a case study 1 (industry).
Table 4
Weights of candidates algorithms for ML model in industrial application.

Algorithm Quality Aspects 𝑆𝐴

Simplicity Scalability

Da W Da W

Kmeans 0, 5 0, 5 1 0, 25 0, 5
HAC 0 0, 5 −0, 5 0, 25 −0, 125
GMM 0 0, 5 0, 5 0, 25 0, 125
Spectral Clustering 0 0, 5 −0, 5 0, 25 −0, 125

Moreover, the industrial process is fixed, and not expected to change.
Consequently, supporting or detecting Concept Drift is unnecessary.
Furthermore, the Explainability of the industrial process is not required
in the project. In addition, Equity is not a problem since there are no
sensitive-to-equity groups involved in the process, only the machinery.
Finally, the number of sensors in the turbine is not expected to change
significantly. Thus, given the current number of dimensions in the data,
the HighDimensionality requirement is not considered. Regarding the
different parameters of MLTask associated to clustering, the ML expert
has opted for these parameters: a TrainTestSplit= 80–20 and a CVFold=
5 (related to the 80–20 partition). Finally, a ValidationSize= 10 has been
used for hyperparameter tuning.

Since the ML quality aspects of the project are not very restrictive,
being assisted by Table 2, 4 different algorithms are suitable candidates
to carry out the project (they have been represented as clustering
tasks, ClusT ). These algorithms are Gaussian Mixture Model (GMM),
Kmeans, Density-Based spatial clustering (DBSCAN) and Spectral Clus-
tering (SPEC). In order to rank these algorithms, we apply Eq. (1) as
shown in Table 4. For this use case, the domain expert has considered
a weight of 1 for Simplicity and a weight of 0.5 for Scalability. Then,
according to Table 2, the contributions to each quality aspect have been
weighted, giving a final suitability score for each algorithm.

In this case, as we are very interested in the optimal clustering,
the algorithm that provides the best silhouette coefficient will be used
in the model, with the suitability score acting as the discriminator
11

between algorithms that obtain similar results. Due to the fact that
the algorithms are based on distances, the Normalization task has been
linked with every clustering task. Moreover, a multilabel encoding will
be performed on a variable, and consequently, this DP task will be a
contribution to every clustering task.

Furthermore, for the classification goal Correctness on each tuple,
only one classification task ClassT is available. As we are using an
approach based on semi-supervised learning, the use of Autoencoders
(a type of neural network) is suitable for this binary classification.
Moreover, due to the heavy restrictions of data (we only have labeled
one class), only this approach has been considered. The ML expert has
opted for the same parameters for the classification task as in clustering
tasks, with two exceptions: parameter isBinary= True, as it has been
explained before (and it only belongs to classification tasks) and the
ValidationSize= 0 due to the fact that Autoencoder uses its own method
for the tuning of its elements. Thus, no specific data is needed for this
part.

In addition, Accuracy has been chosen as the classification indicator
(ClassI) for the aforementioned classification goal because we are using
a binary classification (a tuple can be correct or not) related to the
semi-supervised learning. Finally, each algorithm requires information
provided by a DataSet element (DS). Data provided by the domain ex-
pert is real and belongs to a correct working process of the turbine. This
data has been represented as a Source (𝑆). Exploring the information
provided by this source, we note that we are missing erroneous tuples
in order to test whether our classifier identifies anomalies correctly.
Therefore, we capture the need to provide an additional ‘‘erroneous’’
dataset. Tuples within this dataset should be classified as ‘‘erroneous’’
by the classification model. Due to the lack of erroneous real data, this
dataset has been created synthetically.

5.2. Case study 2: Analysis of medical data for evolution prediction on
patients affected by COVID-19 disease

In this section, we present the application of our work to an-
other study. As previously, we will provide the answers to questions
presented in Section 4. Then, we present the requirements model.

In this case study, we analyze retrospectively the data created in a
set of hospitals between 27th February 2020 to 12th November 2020,
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regarding patients affected by COVID-19 disease. The Electronic Health
Record (EHR) is formed by demographics, comorbidities tests, pre-
scription medication and outpatient data. To summarize, the business
requirement is related to the prediction of the evolution of patients. It
must predict if a patient will die or not, according to her comorbidities.
As before, for simplicity we present each stage indicating directly the
question from the requirements questionnaire along with the results for
this particular case study.

5.2.1. Stage 1 - High-level goal definition
1. From a qualitative point of view, which objectives do I have?

Is a regression/clustering/classification model required? The
project aims to develop a binary classification ML model that pre-
dicts if a patient will die or not, according to her comorbidities.

.2.2. Stage 2 - Definition of success metrics
2. Which metric is the proper one to measure the planned goal?

Which value of that metric would consider the project as
success? Accuracy is not accepted as a valid metric in this project.
Instead, the ML model must fulfill two metrics: precision, and
sensitivity. The precision of the model should be at least 0.85. The
sensitivity should be at least 0.80. Those metrics must be obtained
with another hospital corpus as well.

.2.3. Stage 3 - Non-functional requirements
3. Is the explainability of the model or the effect of every

dimension on each prediction mandatory? It is absolutely
mandatory. The model must provide what has been learned and
which elements are the most relevant for the classification. It is
not necessary to provide the effect of each dimension for each
prediction, only the overall explainability of the model.

4. Can the behavior of data change as new instances are added,
or is it static? If so, is continuous re-training necessary? No,
the model will not be retrained. Other elements that could alter
the data distribution (for instance, the vaccines) will have their
own model prediction. Those ML models are not related to this
project.

5. Is data biased? Is it necessary any additional preprocessing
step with the aim of providing equity in data? Data pro-
vided has a great bias in survivors among deaths. As a result,
proper metrics should be used for evaluating the model (precision
and sensitivity). However, no additional preprocessing steps are
required.

6. Is there any other specific ML quality aspect that the ML
model should have? No, there are no other desirable ML quality
aspects.

.2.4. Stage 4 - Dataset characteristics & constraints
7. Should the system provide a prediction within a time limit?

The prediction must be performed with a 7-day margin.
8. Which data should be considered for the model? Must an

agnostic approach be followed to deal with the problem, or is
domain knowledge available? An agnostic approach must not
be followed. According to domain knowledge, for the death pre-
diction model, age, sex, and two types of comorbidities (chronic
comorbidities, and comorbidities arisen during COVID-19 period
infection) are important.

9. Which granularity of data is suitable for achieving the goal?
Is the required granularity available? Only the age has a
numerical attribute and its minimum granularity is a year. This
granularity is enough for the considered problem.

10. Is external validation required, or is it enough with internal
validation? External validation is required with data coming
from other hospitals. That data is available and provided by the
12

stakeholders.
Table 5
Weights of candidates algorithms for ML model in e-health application.

Algorithm Quality Aspects 𝑆𝐴

Simplicity Explainability

Da W Da W

Logistic Regression 0, 5 1 1 4 4, 5
KNN 0, 5 1 0, 5 4 2, 5
NaiveBayes 0, 5 1 0 4 0, 5
RandomForest 0 1 0 4 0

5.2.5. Stage 5 - Model validation
Once we have finished answering the questionnaire and built the

model, the domain expert and the ML expert review it in order to
identify potential inconsistencies and oversights. In this particular case,
the model validation step finds no inconsistencies and thus the model is
validated. As previously, we present the resulting model in more detail
in the following subsection.

5.2.6. Resulting ML requirements model
Once we have answered the set of questions to frame the problem,

we proceed to build our requirements model. The model resulting from
applying our approach is shown in Fig. 8.

As we can see in Fig. 8, the project is focused on a classification goal
(Mortality risk prediction). Moreover, it has been imposed two different
classification metrics for achieving the success on the project (Precision
nd Sensitivity)

Regarding the non-functional requirements, two quality aspects
(QA) have been imposed as requirements: (i) Simplicity, due to the
high dimensionality of the problem only simple algorithms will be
used (and the quality aspect will be assigned a weight of (1), and
(ii) Explainability, since the project is framed in the e-health field the
explainability of the model is paramount, (thus resulting in the quality
aspect having a weight of 4). Consequently, four algorithms have been
selected as ClassificationTasks candidates: Logistic Regression, KNN,
Naïve Bayes and Random Forest. The results of these algorithms can
be seen in Table 5:

As an additional requirement, models must be trained and tested
with internal data (data from other hospital) and additionally tested
with external data (data from other hospital). Thus, the classification
tasks are parametrized with a CrossValidation = 5, and TrainTestSplit=
80–20. Moreover, the tuning of hyperparameters will be realized with a
specific external technique called PSO (Particle Swarm Optimization),
with the aim of getting better Sensitivity and Precision metrics, at the
cost of Accuracy metrics. Moreover, the external data will compose a
pure test dataset, that must fulfill the specified MLQualityAspects.

Finally, it must be highlighted that there are two DataProcessing
tasks that must be performed, depending on the algorithms used: Multi-
label encoding for the codification of the diseases, and Normalization for
the algorithms that require it. Thanks to our work, we obtain a person-
alized preprocessing pipeline ensuring that we cover the necessary data
transformations even if these vary from one algorithm to the other.

6. Conclusions and future works

The latest advances and proliferation of Artificial Intelligence (AI)
have forced us to focus on improving the development of Machine
Learning (ML) systems. Succeeding in ML projects requires expertise in
a wide variety of ML techniques as well as identifying project require-
ments and how they are translated into ML concepts. Consequently, the
need to improve requirements capture in the field of ML arises in order
to bridge the gap between the domain expert and the ML developer.

Therefore, in this paper, we have presented the first i* extension
for capturing ML requirements. The main objective of this study is
to provide a solid and coherent modeling language that captures ML
requirements, including high abstraction concepts and also how these
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oncepts are translated into explicit ML implementations. With the aim
f creating a complete, consistent, and conflict-free i* extension, we
ave followed the steps outlined by PRISE (Process to Support iStar
xtensions). The result has been the creation of a metamodel imple-
ented in the ECORE (Eclipse) modeling tool that enables capturing
L requirements.

In order to capture the elements that compose our novel i* extension
or ML requirements, we provide a guided process composed of a set of
tages based on (i) a requirements questionnaire, (ii) a set of tables that
acilitates the identification and selection of the most appropriate ML
odels and metrics according to the goals and priorities of the quality

spects and (iii) an equation to weight the suitability of each algorithm
nd establish a ranking among the most promising one. Each stage of
ur process helps the ML expert to iteratively build the model in a
uided manner and ensure that all relevant aspects of the ML solution
re covered.

Finally, have applied our modeling language in two real-world case
tudies. The first one had an industrial context, where we aimed to
etect malfunctioning in electricity generation using gas turbines. The
econd one was related to the healthcare sector, where we tried to pre-
ict which patients risked dying according to their comorbidities before
heir health worsened. In both case studies, our work has significantly
ontributed to explore the project goals, identify key non-functional
equirements, select the most adequate algorithms and analyze the
vailable data sources with project goals in mind. Moreover, in our first
ase study, our work helped identifying missing data that was supplied
hrough synthetic generation. In our second case study, it contributed
o define specific preprocessing pipelines for each algorithm. Over-
ll, the application of our work to different contexts was successful,
emonstrating the flexibility of the modeling language and the overall
pproach.

Regarding the limitations, it is important to highlight that our
tudy is focused on ML requirements and algorithms. More specifically,
e have covered the most popular ML algorithms for classification,

egression and clustering tasks. However, our tables would need to be
13

xpanded with additional algorithms and variants in order to cover all
possible cases. Therefore, in the event that a team aims to implement
an algorithm not included within our tables, they would need to first
analyze the contributions of the algorithm to the different quality
aspects.

Similarly, our approach can be partially ported as-is to other AI ar-
eas such as Deep Learning. In this case, however, both the questionnaire
and tables would likely require to be expanded.

Finally, it is worth noting that we have not covered other as-
pects such as Reinforcement Learning or all the details involved in
eXplainable AI (XAI).

Regarding future works, our first step is to carry out a controlled
experiment with several users in order to better evaluate the impact
of our study. We are also working on extending our work through
the inclusion of new algorithms and specific elements related to deep
learning. Finally, we plan to develop tools that support the framework,
with the aim of facilitating requirements capture and implementation.
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