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A B S T R A C T

Graph-based databases are concerned with performance and flexibility. Most of the existing approaches used to
design secure NoSQL databases are limited to the final implementation stage, and do not involve the design of
security and access control issues at higher abstraction levels. Ensuring security and access control for Graph-
based databases is difficult, as each approach differs significantly depending on the technology employed.
In this paper, we propose the first technology-ascetic framework with which to design secure Graph-based
databases. Our proposal raises the abstraction level by using ontologies to simultaneously model database and
security requirements together. This is supported by the TITAN framework, which facilitates the way in which
both aspects are dealt with. The great advantages of our approach are, therefore, that it: allows database
designers to focus on the simultaneous protection of security and data while ignoring the implementation
details; facilitates the secure design and rapid migration of security rules by deriving specific security measures
for each underlying technology, and enables database designers to employ ontology reasoning in order to verify
whether the security rules are consistent. We show the applicability of our proposal by applying it to a case

study based on a hospital data access control.
1. Introduction

NoSQL databases have become the cornerstone of multiple business
processes thanks to their focus on performance and high throughput.
From Social Networks to Fraud Detection, NoSQL databases enable the
scalability of applications to large volumes of data which would other-
wise be impossible to exploit using relational technologies. However,
this performance has unfortunately been achieved at the cost of other
characteristics, as a result of which security and privacy have been
relegated to a secondary place [1,2], despite the potential losses of
economic and reputation resulting from information leaks.

Some of the different types of NoSQL databases are: (i) Key-Value
stores, such as DynamoDB or Redis, in which data is accessed using
unique keys; (ii) Columnar stores, such as Cassandra or HBase, in
which keys are composed of combinations of columns, rows, and
timestamps; (iii) Document-oriented databases, such as MongoDB or
CouchDB, in which information is stored as documents in YAML (Yet
Another Markup Language) or JSON (JavaScript Object Notation) for-
mats, and (iv) Graph-based databases, such as Neo4J or GraphBase,
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which are widely known to perform better than the other three men-
tioned previously when accessing millions of pieces of data (nodes).
To further complicate the secure design of NoSQL databases, even
technologies that share the same NoSQL database type and model
have differences as regards their implementation and the few security
mechanisms that they provide.

In the last decade, industry and academia agreed that security
should be incorporated from the earliest development stages by fol-
lowing what has been denominated as security by design [3], which
combines principles from security and software engineering. This phi-
losophy conflicts with the current state of NoSQL database design. To
the best of our knowledge, there is currently no well-known systematic
methodology or framework that supports the NoSQL database designer
in producing a secure design at higher abstraction levels. This signifies
that the database designer has to not only maintain in-depth knowledge
of the underlying and specific database technology used, but also
learn the concrete security mechanisms needed in order to properly
implement all the security and access control issues required from the
earliest stages.
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In order to tackle this problem, in this paper, we propose the first
NoSQL database design framework for NoSQL database types. Our
proposal allows the extension of NoSQL database concepts with more
specific ontologies, which capture the idiosyncrasy of each database
type. These extensions in turn allow us to provide automatic derivation
capabilities, thus facilitating the implementation of secure database
designs in a rapid and error-free manner. More specifically, in this
paper, we focus on the ontology for Graph-based databases and show
the complete process from design to implementation. It is worth not-
ing that covering all datastores requires the development of specific
ontologies, each covering the particularities of each kind of datas-
tore, and this is, therefore, not within the scope of this paper. In
order to show the wide scalability of our approach we emphasize the
implementation-independent property of our proposal throughout the
paper. Furthermore, we also show the applicability of our approach by
developing a complete case study regarding Graph databases, including
model checks and transformation rules. To the best of our knowledge,
this is the first work to show how security and access control mecha-
nisms considered at the design phase can be derived semi-automatically
in the final implementation, thus avoiding implementation details in
the design phase.

Moreover, the integration of our approach with TITAN allows us to
provide advanced reasoning and analytics to the organization imple-
menting the database. TITAN [4] is a software platform with which
to manage the entire life cycle of data science workflows, from de-
ployment to execution, in the context of Big Data applications. TITAN
uses semantics to deal with data and create interoperable components,
improves the data analysis processes, and ensures efficient reuse and
access to software components. As such, the NoSQL database designed
with our approach not only implements security by design, but also
offers more accessible access to other relevant components, such as
algorithms and applications, thanks to TITAN. The core of TITAN is the
BIGOWL ontology [5]. BIGOWL defines the set of metadata required
in order to annotate Big Data analytic workflows, including algorith-
mic components, data sources, operation constraints, and execution
planning.

Our NoSQL database design framework was integrated into TITAN
by extending BIGOWL so as to enable the semantic description of the
NoSQL database structure and security policies. Two new main classes
were created, Database and SecurityRule. Database is a subclass of the
Data class, and is related to the SecurityRule class. The ontology classes
and properties describing a graph database were then defined, together
with their specific security elements.

The significant advantages of our framework are: (i) the designer
can incorporate security from the very beginning, using a high ab-
straction layer that hides the intricacies of particular technologies;
(ii) the database designer can delay the selection of the database
technology until the design requirements are clear; (iii) our approach
incorporates the capability of deriving the implementation for specific
target technologies, thus saving time, avoiding implementation errors,
and relieving the designer from the task of having to know how a
specific security policy should be implemented in a target technology, if
this is even possible, and (iv) the incorporation of an ontology layer that
allows us to support reasoning capabilities, thus offering the database
designer an analysis of potential inconsistencies or the degree of acces-
sibility of certain information. We wish to point out here that, to the
best of our knowledge, our approach is the first to take great advantage
of reasoning on ontologies in order to avoid ambiguity and ease the
automatic generation of the implementation details. Furthermore, the
ontologies have been built by following the FAIR (Findability, Accessi-
bility, Interoperability, and Reusability) principles [6]. The objective of
the FAIR Guiding Principles is to improve the Findability, Accessibility,
Interoperability, and Reuse of digital assets. Since ontologies often
result from research activities or are essential entities in many research
areas, they should be treated like other research artifacts, such as data,
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software, methods, etc., and the FAIR principles must be applied to
them. The compliance of our ontology with the FAIR principles has
been assessed using the FOOPS! validator [7], a web service with which
to detect best practices according to each FAIR principle, scoring the
highest mark in 17 out of 24 tests.

In order to demonstrate the validity of our proposal, we have ap-
plied it to a case study focused on the healthcare domain. This domain
is ideal owing to the fine-grained security aspects that need to be con-
sidered, especially as regards the accessibility of sensitive information
that can be obtained directly and indirectly. It was not, unfortunately,
possible to include all the material developed in this research for
reasons of space. The full versions of all the material used in this
paper, such as the ontology, the Graph database model, and the model
transformations, can be found at https://github.com/ProyectoAether.

The remainder of this paper is structured as follows: Section 2
presents the background to and related work on ontologies and security
in NoSQL databases. Section 3 details the key aspects required in
order to implement security policies in Graph-oriented databases, while
Section 4 presents our innovative framework for the secure design
of NoSQL databases and their components. Section 5 presents the
integration of our framework into TITAN [4], the ontological platform
for interoperability across Big Data components, and Section 6 presents
the case study focused on the healthcare domain. Finally, Section 7
presents our conclusions and outlines future work.

2. Background and related work

In this section, we start by providing background concepts in order
to facilitate the reading of the paper and the understanding of our
proposal. We then introduce the most closely related work as regards
current proposals that attempt to model security issues at the early
design stages. Finally, a literature review regarding the combination
of ontologies, databases and security issues is conducted.

2.1. Background concepts

This section presents the background concepts of Semantic Web
technologies for knowledge representation, structure, and reasoning.

• Ontology. According to [8,9], an ontology provides a formal
representation of the real world. Ontologies are powerful tools
with which to represent the knowledge from a particular domain.
They define an explicit description of the concepts, relationships,
attributes, and constraints of a field. Ontologies are used to
allow people and organizations to communicate by providing the
consensual terminology concerning a domain. One of the main
features of ontologies is that they enable automated reasoning
about data. Ontologies are part of the W3C (The World Wide Web
Consortium) standard stack of the Semantic Web.2 An ontology
and a set of individuals form a knowledge base, which provides
services with which to facilitate interoperability between multiple
heterogeneous systems and databases.

• RDF. Resource Description Framework [10] is a W3C recommen-
dation that defines a language with which to describe resources
on the web. The RDF describes resources as triples, consisting
of a subject, predicate and object, and can represent ontology
individuals in the form of a graph. The term Knowledge Graph
has recently emerged in order to refer to interlinked descriptions
of entities while also encoding the semantics underlying the
terminology employed. In the context of this work, RDF graphs
are, therefore, knowledge graphs. The RDF Schema (RDFS) [11]
describes the vocabularies used in RDF descriptions.

2 https://www.w3.org/standards/semanticweb/
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• OWL. The Ontology Web Language is used to define ontologies
on the Web by extending the RDF and RDFS and adding a
vocabulary. OWL is equivalent to very expressive DL (Description
Logic), in which an ontology corresponds to a Tbox (Terminology
box) [12]. This equivalence allows the language to exploit de-
scription logic research results. OWL provides two sublanguages:
OWL Lite for simple applications and OWL-DL, which represents
the subset of language equivalents to description logic, the rea-
soning mechanisms of which are quite complex. OWL-DL is a syn-
tactic description that provides maximum expressiveness while
retaining computational completeness and decidability [13]. The
complete language is called OWL Full. OWL version 2 was pub-
lished in 2009, and included new features and the definition of
three new profiles: OWL 2 EL, OWL 2 QL, and OWL 2 RL [14],
and a new syntax (OWL 2 Manchester Syntax). Moreover, some of
the restrictions applicable to OWL DL have been relaxed, and as
a result, the set of RDF Graphs that description logic reasoners
can handle is slightly larger in OWL 2. Keeping in mind that
OWL 2 is a popular expressive language with increased expres-
sive power for properties, extended support for datatypes, simple
meta-modeling capabilities, extended annotation capabilities, and
keys, we used it to define our ontology. Moreover, OWL 2 spec-
ifies a precise mapping from ontology structures to RDF graphs,
and it has an explicitly specified mapping from RDF graphs back
to ontology structures.

• SPARQL (SPARQL Protocol and RDF Query Language) is a query
language for easy access to RDF stores. It is the query language
recommended by W3C [15] when working with RDF graphs [16],
thus supporting queries and web data sources identified by URIs
(Uniform Resource Identifier).

• BIGOWL is an ontology that defines the domain of workflows.
The BIGOWL ontology focuses on: (1) the definition of the tasks
that participate in the workflow; (2) the implementation of the
components; (3) the configuration parameters; (4) the number
of inputs and outputs of the task; (5) the specification of the
data types of the inputs and outputs of each stage, and (6)
the metadata associated with the workflow, such as the author
and the number of tasks in the workflow. This ontology makes
it possible to validate that the workflow is correct, since it is
possible to verify that the type of the individuals in one output is
compatible with the input of the next (or with one of the parents
defined for that type). It is also possible to validate that all the
necessary inputs of a component are connected to the output of
others. Finally, the individuals that populate the ontology are
defined following the structure specified and stored in an RDF
repository.

• TITAN is a software platform with which to manage the entire life
cycle of data science workflows, from deployment to execution, in
the context of Big Data applications. Fig. 1 shows the architecture
of TITAN (see [4] for a detailed description of the architecture).
The architecture of the Core TITAN platform comprises a GUI
(Graphical User Interface), a REST API (Representational State
Transfer Application Programming Interface), and an orchestrator
with distributed workers for the execution of the workflows. The
TITAN GUI allows users to drag components to the design area,
fill in the parameters and easily connect the components. The
REST API requires RDF storage and database solutions for data
persistence. Moreover, workflow workers also depend on remote
data file storage in order to store component outputs. Finally,
a message broker is used for distributing messages between the
components.

In this work, we have defined an OWL2 ontology so as to represent
he security domain in graph-oriented databases. This ontology extends
he BigOWL ontology in order to model the concepts and relationships
resented in a graph-oriented database, including the security policies.
3

Both the structure and the security rules of a specific database are then
codified in a knowledge graph according to the ontology. The knowl-
edge graph is stored in an RDF repository with reasoning capabilities,
thus allowing it to be queried using the SPARQL language. Finally,
the TITAN platform provides the infrastructure required to implement
the software component that is needed in order execute the proposed
framework as a workflow.

2.2. Related work

Although security is considered an important aspect in most devel-
opments, it is very common for it to be dealt with at the end of the
development process by adding the necessary security restrictions to a
system that, since it is already being implemented, is not very flexible
to change. The concept of security by design attempts to incorporate
security needs into the development process as early as possible such
that they can be considered in the design and subsequent implemen-
tation decisions, thus ensuring the development of more reliable final
systems [17].

In this respect, there are proposals focusing on the development of
secure systems that use notations for the specification of requirements
and design (such as UML (Unified Modeling Language), i*, etc.) and
extend them in order to represent security aspects. There are also
complete development methodologies and processes that have been
enriched with security activities [18–21]. Those that apply the model-
driven development approach are particularly interesting, since they
allow the automated attainment of models for specific platforms and
final implementations in specific tools, initially considering the security
aspects defined while saving development time and costs [22,23].

As occurs with any other software system, the development of
NoSQL databases considers the stages of requirements specification
and design, but takes into account the particularities of this type of
systems. The relevant literature contains proposals that address the
design of a NoSQL database type (columnar, document, etc.) [24–27]
or that attempt to achieve a higher level of abstraction with concepts
common to any NoSQL technology [28–30]. However, the proposals
for the design of NoSQL databases do not incorporate non-functional
requirements such as security until the final stages of implementation,
which results in less secure and reliable systems [3,31].

There are limitations as regards the definition of security aspects in
NoSQL database management tools at the implementation level [32–
34] and works that provide advances for specific NoSQL technologies
such as document [35] or columnar [36] or for specific database
management tools, such as MongoDB or Cassandra [37].

With regard to graph-oriented databases, there are works focused on
the access control system, such as [38], which proposes a reputation-
based system, [39], which works on fine-grained security or [40],
which extends Neo4J with a plugin in order to define user-based
policies but without considering roles or fine-grained rules.

Our previous work has dealt with security by design in NoSQL
databases but focuses on the document type. We proposed that the
central point be a design-level metamodel that includes structural
and security aspects specific to document databases, from which a
MongoDB implementation can be generated automatically [41]. This
is complemented with a modernization approach that uses domain on-
tologies to analyze the data in order to detect confidential information
and recommends that the designer add the security policies needed to
secure it [42].

The combination of ontologies and databases has been widely stud-
ied from different perspectives in the last two decades. For example,
[43,44] presented surveys regarding mapping relational database con-
tents onto ontologies in order to formally represent the content of
the database and exploit the reasoning capabilities of the ontology
in queries. In 2022, [45] introduced ontology learning from rela-

tional databases as an opportunity for semantic integration. Following
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Fig. 1. Titan platform.
the same philosophy of previous works, [46,47] mapped the con-
tent of a MongoDB database onto an ontology, while [48] proposed
an ontology-based semantic integration system for a column-oriented
NoSQL data store. Finally, more recent works have mapped graph-
oriented databases onto ontologies [49] and [50]. The objective of
all of these approaches is to represent the content of the repository
as an ontology. However, to the best of our knowledge, no ontologies
represent the schema or structure of databases, and our proposal is,
therefore, based on a representation of this nature.

The use of ontologies in cybersecurity is also a prominent area.
The use of ontologies has specifically been proposed as a solution
to various tasks, from modeling cyberattacks to easing auditors’ or
analysts’ work. In this respect, OBAC [51] utilizes concepts and re-
lations from the domain ontology of a data set to FAIR data secure
access, and [52] proposes the use of semantic web technologies in order
to implement control access in multi-domain environments. Another
attractive research area is the security assessment domain. The most
recent literature review on this topic is [53], which found that the
objective of most of the ontologies identified is to describe the fields
of Software Security and Software tests, including their various sub-
domains, e.g. risk management, security policies, incident analysis,
attack Patterns, performance tests, expert systems tests, etc.

Finally, the appearance of semantic web technologies has not been
ignored in access control models for system authorization, such as
RBAC (Role-Based Access Control) and ABAC (Attribute-Based Access
Control). In [54], an ontology with which to extend XACML (Extensible
Access Control Markup Language) [55], an XML (Extensible Markup
Language) based general-purpose authorization policy model that is
used to support RBAC, is described. The objective of ROWLBAC [56] is
to bring formalism into policy languages by modeling RBAC in OWL.
In ROWLBAC, entities (Users, Roles, Actions, etc.) are represented as
OWL classes. An attempt to model ABAC concepts in OWL is carried
out in [57]. In this case, complex elements of OWL, such as disjoint
classes, are included in order to enrich the ontology.

To the best of our knowledge, our proposal complements all pre-
vious proposals, since it is based on an ontology that allows designers
to formally represent the structure of NoSQL databases together with
the security policies required. The use of an ontology allows both the
database schema and security policies to be represented explicitly and
formally, thus reducing ambiguity and providing a unifying framework
for database developers. This representation additionally allows the
schema to be processed by a computer, providing a mechanism with
4

which to automate the database creation process. Although the problem
of modifying the database schema or defining a new security rule is a
limitation, it is not necessary to adjust the ontology, but only to add
more individuals to it. Implementing our proposal as a workflow of the
TITAN platform minimizes the impact of making a modification of this
nature, since the process is fully automated. As previously-argued, and
in order to show the applicability and scalability of our proposal, in
this paper, we deploy our ontology for graph databases together with
the security policies that can be applied to them. There is, to the best
of our knowledge, no other ontology with similar features in literature.

3. Security policies in graph-oriented databases

When approaching security in NoSQL databases from a design point
of view, it is necessary to, on the one hand, obtain the structural
aspects specific to the type of database (graph-oriented, document, or
columnar) and, on the other, define security policies related to them
that can be independent and reusable for different types of NoSQL
databases.

In order to assist in the design of security policies for graph-
oriented databases, we present two metamodels: one with the structural
concepts of graph-oriented databases (Fig. 2) and the other with the
elements required in order to define security policies for databases,
regardless of their type (Fig. 3).

The metamodel for graph-oriented databases makes it possible to es-
tablish all the necessary structural elements, signifying that a database
has elements that can be Node or Relationship between two nodes. Both
nodes and relationships can have an associated Field with an associated
DataType.

Furthermore, the security metamodel allows the establishment of
security policies in the database. This is done by allowing the definition
of a set of security rules that grant or deny privileges (Create, Read, Up-
date, Delete) regarding database elements to specific users. A condition
that has to be satisfied can be specified for each privilege involved in
the rule.

A role-based access control policy defines role hierarchies and as-
sociates users with them in order to group database users. This access
control policy is that which is most widely used and supported by end
tools. Security rules can be associated with database elements (Securi-
tyRuleElement) or the fields of those elements (SecurityRuleField). In
this paper, which is focused on graph-oriented databases, these rules
refer to nodes and their relations or attributes. However, the security
notation is independent of the type of NoSQL database that is applicable
to other types (such as document and columnar), referring in this case
to the specific elements of that type of database (documents, columns,

etc.).
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Fig. 2. Graph metamodel.

Fig. 3. Security metamodel.

4. An ontology-based framework for security in graph-oriented
databases

In order to achieve the main objective of this work, it was first
necessary to define an ontology that would generically encompass and
represent the security domain in graph-oriented databases. The purpose
of the proposed ontology is to enrich and facilitate the integration of
information into existing and future platforms. In this respect, BIGOWL
was extended in order to model both the structure (Fig. 2) and the secu-
rity rules (Fig. 3) of a graph-oriented database. We specifically created
a subclass of the BIGOWL class Data called Database, which contains a
subclass called NoSQLDatabase. Finally, the class GraphsDatabase was
included as a subclass of NoSQLDatabase. We should point out that our
approach has been made scalable to any NoSQL database by adding the
corresponding subclass and gathering the specific requirements of the
database focused on.

The security ontology in graph databases was designed by follow-
ing the well-known and widely-accepted ‘‘Ontology 101 development
Process’’ methodology [58], which consists of the following seven steps:
5

1. Determine the domain and scope of the ontology. The appli-
cation domain of the ontology defines aspects related to secu-
rity and structure and the elements that define graph-oriented
databases.

2. Consider reusing existing ontologies. As mentioned previ-
ously, we have considered reusability and integration with the
BIGOWL [5] ontology. This ontology defines the PrimitiveType
and StructuredType classes that have the generic DataType class
as their parent; The type of a field is, therefore, a BigOWL
DataType.

3. Enumerate important terms in the ontology. The essential
terms in our ontology have been analyzed and extracted from the
metamodels presented in Section 3. Examples of these terms are:
SecurityRule, Privilege, Role, User, ruleSign, RoleHasRules, UserHas-
Role, etc. We shall, therefore, also define generic terms from
graph-oriented databases, such as Node, Relationship, Field, and
DataType.

4. Define the classes and the class hierarchy. The ontology
classes are extracted from the relevant terms. We define classes
and their hierarchy to the level of detail necessary to classify in-
dividuals. Fig. 4 shows the ontology classes. BIGOWL classes are
marked in orange. The green tagged classes model the structure
of a graph-oriented database, while the blue ones represent the
security elements. The figures show that some of these classes
are related by means of object properties or the is-a (subclass
of) relationship.

5. Define the properties of classes. We have defined the object
and data properties necessary to represent the connections re-
quired among the different individuals and store the information
for each individual. Examples of properties are: DatabaseHasRole,
which indicates the roles that exist in the database, UserHasRole,
which relates users to the roles they have, ruleSign, which stores
the sign of the rule, and SecurityRuleDefineElements, which links
the security rule to the elements to which it is applied. Table 1
provides a description of the ontology properties of the security
classes in Description Logic format. Examples of properties for
the structural part of the graph databases are (see Table 2): hasE-
lements, which relates the database to the elements it contains,
hasRelationshipTo and hasRelationshipFrom, which are used to
connect a relationship to the nodes, and hasElementField, which
maps a field onto an element, and so on.

6. Define the facets of the slots. This step includes the definition
of cardinality and value constraints. Value constraints are used
to specify the data type of a property domain and range. For
example, the range of the fieldIsRequiered property is restricted
to Boolean. In contrast, the domain of the hasRelationshipFrom
property is Relationship, and the range is limited to individuals
in the Node class. The range of the ruleSign property is restricted
to the values ‘‘+’’ or ‘‘-’’. In addition, the HasSubRole object
property has been marked as transitive in order to allow the
reasoner to infer the roles hierarchy.

7. Create instances. The ontology instances are generated from
the metamodels, which are defined in XMI (XML Metadata In-
terchange) [59]. The metamodels are transformed into RDF
through the use of mapping functions according to the speci-
fied classes and properties of the ontology, thus leading to the
creation of a knowledge graph in RDF (see Section 4.2).

4.1. Ontology model

After applying the methodology described above, an ontology was
developed. The ontology defines a total of 24 classes (that represent in-
dividuals with the same taxonomy), 12 object properties (that represent
binary relationships between individuals), 7 data properties (attributes
of individuals), and 112 constraint axioms. The ontology is, therefore,
sufficiently large to allow complex reasoning.

The main classes, along with a brief description of each of them, are

listed below:
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• SecurityRule. This class represents the security rules in a generic
database. As object properties have been defined: SecurityRuleDe-
fined links the rule with the element of the database on which
it is defined, SecurityRuleContainsPrivilege links the rule to the
privilege that the rule grants or revokes. We have defined the
SecurityRuleElement and SecurityRuleField subclasses in order to
specify whether it is a rule that affects an element or a field in
the case of a graph-oriented database. SecurityRuleElement and
SecurityRuleField are disjoint classes, i.e., there is no rule for these
two Classes.

• Privilege. This class describes the privileges associated with a se-
curity rule. Privileges are specialized into four sub-classes: Create,
Read, Update, and Delete.

• Role. This class models the roles that are defined in a database.
Roles group a set of rules that are applied to users. The creation of
roles facilitates security management, since assigning individual
rules to each user is unnecessary. The object properties of the class
Role are RoleHasRules; this property links the role to the rules and
HasSubRole, which allows the definition of hierarchies between
roles.

• User. The user class represents the database management system
users. The UserHasRole object property binds a user to its assigned
roles.

• Database. This is the generic concept of a database. The database
name is stored with the databaseHasName data property. Database
is a subclass of the BIGOWL class Data. NoSQLDatabases, ulti-
mately, GraphsDatabases are subclasses of Database. The hasE-
lement object property relates an instance of a graph-oriented
database to the elements of which it is composed.

• Element. According to graph theory, the Element class generi-
cally defines the common properties of the terms comprising a
graph, i.e., Nodes and Relationships. The elementHasName data
property stores the name of each element in the graph. The hasE-
lements object properties relate a GraphDatabase to its elements.
Furthermore, hasElementField links individuals from Element to
individuals in the NoSQLFieldGraph class. Node and Relationship
are specified as subclasses of Element ; two object properties have
been included for these classes: hasRelationshipFrom and hasRela-
tionShipTo, which associate the nodes with the relationships.

• Field. This represents the concept of a data field in any database,
regardless of its implementation. The fieldHasName and isRequired
data properties store the name of the field and whether the
field is required; With regard to object properties, hasDatatype
connects the field with its data type. As subclasses, we defined the
hierarchy NoSQLField and NOSQLFieldGraph in order to annotate
the specific database type to which the field belongs.

The implementation of the ontology in OWL2 makes it possible to
exploit the ontological language reasoning capabilities. Rule 1 shows a
simple example of how reasoning can detect inconsistencies in the rule
definition by detecting that a rule is defined as an Element and a Field
rule.

Rule 1: Sample rule of reasoning.
WL 2 Semantic ru le :

Let C be a c la s s , P a property , and x and y ind i v idua l s .
I f Domain(P ,C) and P(x , y ) then C( x ) ( sr1 )

Ontology layer :
Domain( Secur i tyRuleDef inedFie ld , Secur i tyRu leF ie ld )
D i s j o i n t C l a s s e s ( Secur i tyRuleDef inedFie ld ,

Securi tyRuleDefinedElement ) ( ax1 )

Ind iv idua l s :
SecurityRuleElement(rule1)Secur i tyRuleDef inedF ie ld ( rule1 ,

f i e l d 1 )
> SecurityRuleField(rule1) (by sr1) Incons i s t ence ( by ax1 )
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4.2. Knowledge graph creation

After the development of the ontology, the metamodels were trans-
lated to the RDF in order to build a knowledge graph according to
the ontology structure. Fig. 5 shows the infrastructure designed for
this transformation. A set of specific mapping functions was developed.
These functions produce the individuals from the XMI file by following
the ontology class hierarchy. The ontology object and data properties
make it possible to relate individuals to each other. The metamodels
are specified in XML. Function 2 shows an extract of the function that
creates the RDF triples for the privileges.

Function 2: Parse privileges.
def parse_privileges(rule, privilege):

id_privilege = hashlib.sha224(privilege["@xmi:id"])
uri_privilege = URIRef(sec + id_privilege)

rdf_graph.add(
(uri_privilege,RDF.type,sec[privilege["@xsi:type"]]))

rdf_graph.add(
(rule,sec.SecurityRuleContainsPrivilege,uri_privilege))

if "@condition" in privilege:
rdf_graph.add(
(uri_privilege, sec.privilegeCondition,

Literal(privilege["@condition"])))

Once the knowledge graph has been created, it is stored in an RDF
Stardog3 repository with persistent and reasoning capabilities. At this
point, it is now possible to query the knowledge graph from a SPARQL
Endpoint. Query 1 shows an example of a SPARQL query in the RDF
repository. It retrieves details of a specific rule (sign, role, privilege,
element name, action name, and condition).

Query 1: Obtain details of security rule elemement.
PREFIX sec: <https://w3id.org/OntoSecurityGraphDB/>
PREFIX db: <https://w3id.org/OntoGraphDB/>
SELECT ?sign ?RoleName ?privilege ?elementName

?condition
WHERE{
?role rdf:type sec:Role.
?role sec:roleName ?RoleName.
?role sec:RoleHasRules ?rule.
?rule sec:ruleName ?ruleName.

FILTER(?ruleName = "rule_name")
OPTIONAL{
?rule sec:ruleSign ?sign.}

OPTIONAL{
?rule sec:SecurityRuleContainsPrivilege ?priv_uri.
?priv_uri rdfs:label ?privilege.
OPTIONAL{
?priv_uri sec:privilegeCondition ?condition.} }

?rule sec:SecurityRuleDefineElements ?element.
?element db:elementHasName ?elementName.
?element rdf:type ?ty FILTER(?ty!=owl:NamedIndividual).}

We have also defined an API that wraps the SPARQL queries. The
objective of this API is to facilitate the extraction of the necessary data
from the knowledge graph in order to generate the security policies for
the different graph database implementations. The implemented calls
return the roles, their direct children and their descendants; the users,
the roles assigned to a user; the security rules defined for elements;
the rules defined for fields, etc. The querying of the knowledge graph
makes it possible to obtain all the data needed in order to create the
security policies in a final graph-oriented database.

3 https://www.stardog.com/

https://www.stardog.com/
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Fig. 4. General overview of security graph ontology.
Table 1
Data properties and object properties of the ontology defined for No-SQL security.

Object properties Description logics

DatabaseHasRole ∃ DatabaseHasRole Thing ⊑ Database
⊤ ⊑ ∀ DatabaseHasRole Role

DatabaseHasSecurityRule ∃ DatabaseHasSecurityRule Thing ⊑ Database
⊤ ⊑ ∀ DatabaseHasSecurityRule SecurityRule

DatabaseHasUser ∃ DatabaseHasUser Thing ⊑ Database
⊤ ⊑ ∀ DatabaseHasUser User

HasSubRole TransitiveProperty HasSubRole ∃ HasSubRole Thing ⊑ Role
⊤ ⊑ ∀ HasSubRole Role

RoleHasRules ∃ RoleHasRules Thing ⊑ Role
⊤ ⊑ ∀ RoleHasRules SecurityRule

SecurityRuleContainsPrivilege ∃ SecurityRuleContainsPrivilege Thing ⊑ SecurityRule
⊤ ⊑ ∀ SecurityRuleContainsPrivilege Privilege

SecurityRuleDefineElements ⊑ SecurityRuleDefined ∃ SecurityRuleDefineElements Thing ⊑ SecurityRuleElement
⊤ ⊑ ∀ SecurityRuleDefineElements Element

SecurityRuleDefineField ⊑ SecurityRuleDefined ∃ SecurityRuleDefineField Thing ⊑ SecurityRuleField
⊤ ⊑ ∀ SecurityRuleDefineField Field

SecurityRuleDefined ∃ SecurityRuleDefined Thing ⊑ SecurityRule

UserHasRole ∃ UserHasRole Thing ⊑ User
⊤ ⊑ ∀ UserHasRole Role

Data properties Description logics

privilegeCondition ∃ privilegeCondition Datatype Literal ⊑ Privilege
⊤ ⊑ ∀ privilegeCondition Datatype string

roleName ∃ roleName Datatype Literal ⊑ Role
⊤ ⊑ ∀ roleName Datatype string

ruleName ∃ ruleName Datatype Literal ⊑ SecurityRule
⊤ ⊑ ∀ ruleName Datatype string

ruleSign ∃ ruleSign Datatype Literal ⊑ SecurityRule
⊤ ⊑ ∀ ruleSign {‘‘+’’string‘‘} ⊔ {’’-"string}

userName ∃ userName Datatype Literal ⊑ User
⊤ ⊑ ∀ userName Datatype string

userPass ∃ userPass Datatype Literal ⊑ User
⊤ ⊑ ∀ userPass Datatype string
7
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Fig. 5. Infrastructure used to create the knowledge graph.
Table 2
Data properties and object properties of the ontology defined for graph-oriented
databases.

Object properties Description logics

hasDatatype ∃ hasDatatype Thing ⊑ NoSQLField
⊤ ⊑ ∀ hasDatatype DataType

hasElementField ∃ hasElementField Thing ⊑ Element
⊤ ⊑ ∀ hasElementField NoSQLFieldGraph

hasElements ∃ hasElements Thing ⊑ GraphsDatabase
⊤ ⊑ ∀ hasElements Element

hasRelationshipFrom ∃ hasRelationshipFrom Thing ⊑ Relationship
⊤ ⊑ ∀ hasRelationshipFrom Node

hasRelationshipTo ∃ hasRelationshipTo Thing ⊑ Relationship
⊤ ⊑ ∀ hasRelationshipTo Node

Data properties Description logics

databaseHasName ∃ databaseHasName Datatype Literal ⊑ Database
⊤ ⊑ ∀ databaseHasName Datatype string

elementHasName ∃ elementHasName Datatype Literal ⊑ Element
⊤ ⊑ ∀ elementHasName Datatype string

fieldIsIndex ∃ fieldIsIndex Datatype Literal ⊑ NoSQLFieldGraph
⊤ ⊑ ∀ fieldIsIndex Datatype boolean

fieldHasName ∃ fieldHasName Datatype Literal ⊑ NoSQLField
⊤ ⊑ ∀ fieldHasName Datatype string

fieldIsRequired ∃ fieldIsRequired Datatype Literal ⊑ NoSQLField
⊤ ⊑ ∀ fieldIsRequired Datatype boolean

One of the great advantages of developing an ontology is the ability
to use reasoning capabilities. For example, the fact of having declared
the HasSubRole object property as transitive allows us to obtain all
the descendants of a specific role using the reasoner when running
Query 2; if the reasoner is not employed, the query returns only its
direct children. In Query 3, the reasoner infers that a Graph Database is
a Database and then returns the security rules defined for that database.
Without the reasoner, the query obtains no results. Note that we could
easily extend the ontology to include other types of databases.

Another advantage is that the developer can model the security us-
ing Graph DB ontology concepts such as Element or Field without hav-
ing yet selected the particular graph database technology to be used.
This makes it possible to delay the selection if necessary until require-
ments such as scalability, server-side programming, or ACID (Atomic-
ity, Consistency, Isolation, Durability) properties, among others, have
been clarified or until security policies need to be implemented.
8

Query 2: Obtain all children of a role.
PREFIX sec: <https://w3id.org/OntoSecurityGraphDB/>
SELECT ?RoleName ?subRoleName
WHERE{
?role rdf:type sec:Role.
?role sec:roleName ?RoleName. FILTER(?RoleName = "rol")

OPTIONAL{
?role sec:HasSubRole ?subRole.
?subRole sec:roleName ?subRoleName.

}
}

Query 3: Obtain all security rules elements.
PREFIX sec: <https://w3id.org/OntoSecurityGraphDB/>
PREFIX db: <https://w3id.org/OntoGraphDB/>
SELECT ?ruleName
WHERE{

?dataBase rdf:type db:Database.
?dataBase db:databaseHasName ?DatabaseName.

FILTER(?DatabaseName = "db_name")
?dataBase sec:DatabaseHasSecurityRule ?rule.
?rule rdf:type sec:SecurityRuleElement.
?rule sec:ruleName ?ruleName.

}

5. Implementation

We have implemented our proposal using TITAN as a workflow
orchestration and execution platform. The core of TITAN is the BIGOWL
ontology, which allows us to define different types of components and
their inputs, outputs, and parameters as RDF triples. This platform
makes it possible to compose and execute workflow instances by means
of a web interface and API REST. One of TITAN’s features is that
of listing the catalog of available components and their inputs and
outputs. The list of components is obtained through the use of calls
to the API REST, which transforms the SPARQL queries into JSON. The
workflow is executed once the compatibility between components has
been designed and validated. Each execution is semantically annotated
as a task type in the TITAN RDF repository. A task is a concrete
component instance with its parameters instantiated for that execution.
Finally, the API REST allows users to check the execution status and
download the files generated in each component.
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Fig. 6. Workflow components.
The workflow has been implemented in 5 interconnected compo-
nents. Fig. 6 shows the workflow diagram. The functionality of each
component is detailed below.

• Import file. This component is the user’s data entry point to the
workflow. The component has the URL of the file that contains
the metamodel as a parameter. Its output is the address in the
storage system used by TITAN.

• Graph model to knowledge graph. This component translates the
metamodels into RDF triples. The component outputs are a file
with the triples in RDF and a PDF file with a representation of
the knowledge graph.

• Insert into knowledge graph. This component receives the file
with RDF triples that contain the information regarding the indi-
viduals and the ontologies defined. Triples are stored in an RDF
repository database. The component returns the knowledge graph
identifier as output, thus allowing other components to use it.

• Knowledge graph to Neo4J and Knowledge graph to OrientDB.
These components extract the information from the knowledge
graph and transform it into the definition language used by Neo4J
and OrientDB for security policies, respectively. The implemen-
tation of these two components is described in the following
section.

5.1. Implementation of security policies in database management systems

This section deals with the implementation of security policies de-
fined at the design level in final graph-oriented database management
tools. Although our proposal is applicable to any tool, in this work,
we have focused on Neo4J and OrientDB because Neo4J is considered
a reference in this type of systems4 and OrientDB includes some in-
teresting security functionalities (that Neo4J does not allow) such as
representing security policies with associated conditions.

We could apply our proposal to other graph-oriented database man-
agement tools (such as JanusGraph, NebulaGraph, Memgraph, Tiger-
Graph, etc.). However, they have not been considered in this work,
since they are less interesting from a security point of view, as they
usually have basic RBAC systems and limited functionalities with which
to establish security policies.

First, we analyze the features offered by Neo4J for the definition of
security policies. Table 3 shows the concrete syntax in EBNF (Extended
Backus–Naur Form).

It will be noted that a security policy includes information related
to the authorization sign, privileges, elements, and roles it affects. In
the specific case of Neo4J, it is important to mention that the classic
privileges (creation, reading, modification, and deletion) are special-
ized into more types of privileges and are simultaneously grouped in a
hierarchical manner. The read permissions refer to access to the value
(Read) or to being able to reach the element (Traverse), and have a

4 https://db-engines.com/en/ranking/graph+dbms
9

Table 3
Syntax used to specify security policies in Neo4J.
< 𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦𝑝𝑜𝑙𝑖𝑐𝑦 >∶∶=< 𝑠𝑖𝑔𝑛 >< 𝑝𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒 >
[< 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠 >]𝑂𝑁 < 𝑔𝑟𝑎𝑝ℎ >< 𝑒𝑛𝑡𝑖𝑡𝑦 > 𝑇𝑂 < 𝑟𝑜𝑙𝑒 >

< 𝑠𝑖𝑔𝑛 >∶∶= 𝐺𝑅𝐴𝑁𝑇 | 𝐷𝐸𝑁𝑌
< 𝑝𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒 >∶∶= 𝑀𝐴𝑇𝐶𝐻 | 𝑇𝑅𝐴𝑉 𝐸𝑅𝑆𝐸 | 𝑅𝐸𝐴𝐷 |

𝑊𝑅𝐼𝑇𝐸 | 𝐶𝑅𝐸𝐴𝑇𝐸 | 𝐷𝐸𝐿𝐸𝑇𝐸 | 𝑆𝐸𝑇𝑃𝑅𝑂𝑃𝐸𝑅𝑇𝑌 |

𝑆𝐸𝑇𝐿𝐴𝐵𝐸𝐿 | 𝐷𝐸𝐿𝐸𝑇𝐸𝐿𝐴𝐵𝐸𝐿
< 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠 >∶∶= }}{′′∗ | < 𝑛𝑎𝑚𝑒𝐿𝑖𝑠𝑡 > }}}′′

< 𝑔𝑟𝑎𝑝ℎ >∶∶= 𝐷𝐸𝐹𝐴𝑈𝐿𝑇𝐺𝑅𝐴𝑃𝐻|

(𝐺𝑅𝐴𝑃𝐻[𝑆](∗ | < 𝑛𝑎𝑚𝑒𝐿𝑖𝑠𝑡 >))
< 𝑒𝑛𝑡𝑖𝑡𝑦 >∶∶=< 𝑒𝑛𝑡𝑖𝑡𝑦𝑇 𝑦𝑝𝑒 > (∗ | < 𝑛𝑎𝑚𝑒𝐿𝑖𝑠𝑡 >)
< 𝑒𝑛𝑡𝑖𝑡𝑦𝑇 𝑦𝑝𝑒 >∶∶= 𝐸𝐿𝐸𝑀𝐸𝑁𝑇 [𝑆] | 𝑁𝑂𝐷𝐸[𝑆] |
𝑅𝐸𝐿𝐴𝑇𝐼𝑂𝑁𝑆𝐻𝐼𝑃 [𝑆]

< 𝑟𝑜𝑙𝑒𝑠 >∶∶=< 𝑛𝑎𝑚𝑒𝐿𝑖𝑠𝑡 >
< 𝑛𝑎𝑚𝑒𝐿𝑖𝑠𝑡 >∶∶=< 𝑛𝑎𝑚𝑒 > [}},′′ < 𝑛𝑎𝑚𝑒 >] ∗

privilege that groups the two previous ones (Match). With regard to
writing, there is a privilege that groups the others (Write), which in
turn specializes in creation (Create), deletion (Delete), modification
(Set Property), and label management (set and delete label).

The structural elements are also categorized in hierarchies, signify-
ing that we can refer to nodes (Node), relationships (Relationship), or
both, which are denominated as elements (Element). In this respect, if
we wish to establish a fine-grained authorization for specific properties,
we should indicate the names of these properties and the names of the
elements to which they belong.

Table 4 shows what the syntax with which to implement secu-
rity policies in the other graph-oriented database management system
considered, OrientDB, would be.

Its structure is similar to the syntax in Neo4J, and it allows the def-
inition of security policies by indicating the sign, privileges, elements,
and roles affected. However, both tools differ as regards the number
of policies that must be defined in order to specify the same security
constraint. In OrientDB, it is possible to group several privileges (create,
read, etc.) in a single security policy, while in Neo4J, it is necessary to
define one policy per privilege. Furthermore, OrientDB has the require-
ment that each policy should affect only one role, while Neo4J allows it
to specify a list of roles. The most interesting aspect of OrientDB is that,
unlike Neo4J, it allows each privilege to be associated with a condition
(sqlPredicate) that must be fulfilled. For example, this would make it
possible to represent policies that allow users to query or edit their own
data. Let us imagine a medical system in which a user of a patient role
can query a hypothetical patient node (with its attributes), but only the
instance that refers to its own data.

Having analyzed the target tool, we now show the development
of a set of transformations. This starts with the design level speci-
fication and leads to the automatic generation of the corresponding
implementation of the security policies.

These transformations have been implemented as Python scripts
packaged in a Docker container, and make use of the API devel-
oped in this work to query the necessary semantic resources (graph-
oriented databases structure, security model for NoSQL databases, and
the information of the particular design model to be transformed).

https://db-engines.com/en/ranking/graph+dbms
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Table 4
Syntax used to specify security policies in OrientDB.
< 𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦𝑝𝑜𝑙𝑖𝑐𝑦 >∶∶=< 𝑠𝑖𝑔𝑛 >< 𝑙𝑖𝑠𝑡𝑂𝑓𝑃 𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒𝑠 >

𝑂𝑁 < 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 > 𝑇𝑂 < 𝑟𝑜𝑙𝑒 >

< 𝑠𝑖𝑔𝑛 >∶∶= 𝐺𝑅𝐴𝑁𝑇 | 𝑅𝐸𝑉 𝑂𝐾𝐸
< 𝑝𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒 >∶∶=< 𝑎𝑐𝑡𝑖𝑜𝑛 > [= (< 𝑠𝑞𝑙𝑃 𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 >)]?,
< 𝑎𝑐𝑡𝑖𝑜𝑛 >∶∶= 𝐶𝑅𝐸𝐴𝑇𝐸 | 𝑅𝐸𝐴𝐷 | 𝐵𝐸𝐹𝑂𝑅𝐸𝑈𝑃𝐷𝐴𝑇𝐸 |

𝐴𝐹𝑇𝐸𝑅𝑈𝑃𝐷𝐴𝑇𝐸 | 𝐷𝐸𝐿𝐸𝑇𝐸 | 𝐸𝑋𝐸𝐶𝑈𝑇𝐸
< 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 >∶∶= 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒.𝑐𝑙𝑎𝑠𝑠.[∗ | < 𝑛𝑎𝑚𝑒 >]

6. Validation: Hospital use case

Our framework is applicable to the secure design of any graph-
oriented database. The following is an example of a validation, in
which our proposal has been applied to the health domain, and more
specifically to the management of diagnoses involving patients, doctors
and associated treatments. The following illustrates how a designer
would apply our proposal to the secure design of this database. These
steps could be extrapolated to the design of any other graph-oriented
database.

First, the designer models the graph-oriented database at a high
level. This includes the necessary structural aspects (Nodes, Relation-
ships, Fields, etc.), along with the security policies needed in order to
satisfy the security requirements of the system.

This task is carried out without taking into account specific char-
acteristics of the database management system in which the system
is eventually implemented, since this is an aspect that our proposal
generates automatically.

In this example, the security policies of the system are generated
by considering Neo4J as the target platform, and we eventually check
how the implementation generated satisfies the security requirements
established.

We begin with the structural part (Fig. 7), and the following nodes,
relationships and properties are then defined. The administration staff
(AdmissionStaff node) is in charge of registering patients (Patient node)
and maintaining their associated information (name, address, social
security number, etc.). Doctors (Doctor node) have an associated spe-
cialty. They are in charge of diagnosing patients, signifying that pa-
tients have associated diseases (Disease nodes) diagnosed on a certain
date by a specific doctor. Each disease additionally has a series of
possible treatments associated with it (Treatment node), and the doctor
selects one of them as the current treatment that a particular patient
suffering from that disease is following.

With regard to the security aspect, the decision is first made to de-
fine a role for each type of user that will be able to interact with the sys-
tem: administration staff (RoleAdmissionStaff), patients (RolePatient),
and doctors (RoleDoctor). A set of authorizations is then established for
each of these roles, which limit their privileges according to the security
policy sought. In order to provide more details on this, the following
security rules are defined:

• The patient role (Fig. 8) has a positive authorization defined for
query doctors.

• The admission staff role (Fig. 9 has several authorizations asso-
ciated with it in order to grant privileges regarding nodes and
relationships. On the one hand, it is necessary to read, create, and
update (not delete) privileges for patients and for the relationship
that indicates that a certain admission worker has registered a
certain patient. On the other hand, the admissions staff is granted
read privileges concerning admissions staff.

• The doctor role (Fig. 10) presents two authorizations similar to
those described above, which grant several privileges to nodes
and relationships. Nevertheless, it also defines two fine-grained
authorizations for fields. The first rule establishes a negative au-
thorization that withdraws read permission for the patient’s social
10
Fig. 7. Use case: structural aspects.

Fig. 8. Use case: role patient.

security number (which had full read access). The second rule also
refines access to patient information, this time withdrawing the
privilege to read their addresses, but only for those patients who
are underage.

We execute the TITAN workflow with the Metamodels shown in
Figs. 7, 8, 9, 10 as input. The knowledge graph is created and stored
in the Stardog RDF repository.

Figs. 11 and 12 show part of this knowledge graph, specifically the
structural aspects of the database and the patient role, respectively.
The pink nodes in the knowledge graph represent individuals, while
the blue nodes represent ontology classes. The square nodes symbolize
data values, and the arcs are ontology objects and data properties.

The security policy components can, therefore, extract data by
means of the REST API, which encapsulates the SPARQL queries. For
example, Query 3 makes it possible to obtain all the rules defined in
the database. Table 5 displays the query result. Once all the rule names
have been obtained, Query 1 is executed in order to retrieve the rule
details. Table 6 shows the details of the rule GrantRNodesToDoctor,
which authorizes the RoleDoctor role to read several nodes. Note that
it completely affects the Patient, Disease, Doctor, and Treatment nodes,
without having any condition to evaluate (which is an optional field of
the security rules).

The last step of our proposal consists of the automated generation
of the implementation of the security policies defined in a specific
graph-oriented database manager. For this case study, we generate the
implementation of the security policies specified in the model for the
Neo4J and OrientDB tools.
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Fig. 9. Use case: role admission staff.

Fig. 10. Use case: role doctor.
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Table 5
Query 3 results.

ruleName

GrantCRUregistersToAdmissionStaff
GrantCRUPatientToAdmissionStaff
GrantRNodesToDoctor
GrantRAdmissionStaffToAdmissionStaff
GrantCRUDRelationshipsToDoctor
GrantRDoctorToPatient

Table 6
Query 1 results.

sign RoleName privilege elementName condition

+ RoleDoctor Read Patient
+ RoleDoctor Read Disease
+ RoleDoctor Read Doctor
+ RoleDoctor Read Treatment

Listing 4: GrantCRUPatientToAdmissionStaff.
Neo4J
RANT CREATE ON GRAPH Hospi ta l NODE Pat i en t
TO RoleAdmisionStaf f ;
RANT MATCH ON GRAPH Hospi ta l NODE Pat i en t
TO RoleAdmisionStaf f ;
RANT SET PROPERTY {∗} ON GRAPH Hospi ta l
NODE Pat i en t TO RoleAdmisionStaf f ;

OrientDB
RANT SET CREATE , READ, AFTER UPDATE ON
database . c l a s s . Pa t i en t TO RoleAdmisionStaf f ;

Listing 5: DenyRPatientaddressToDoctor.
Neo4J

ENY MATCH address ON GRAPH Hospi ta l
NODE Pat i en t TO RoleDoctor ;

OrientDB
EVOKE SET READ = ( today−Pa t i en t . dateOfBir th
< 18 years ) ON database . c l a s s . address
TO RoleDoctor ;

Listings 4 and 5 provide an example of how several security rules
have eventually been implemented. On the one hand, we show the
‘‘GrantCRUPatientToAdmissionStaff’’ rule, which grants creation, read-
ing, and modification privileges for the Patient element for the RoleAd-
missionStaff role. This rule is transformed into several security policies
(one per privilege) in Neo4J, and into a single policy in OrientDB
(Listing 4).

On the other hand, we show the ‘‘DenyRPatientaddressToDoctor’’
rule, which denies reads as regards the address attribute of Patient to
the Doctor role, but includes a condition indicating that it will affect
only those patients under the age of 18. The setting of these conditions
is not supported by Neo4J but is supported by OrientDB, and the
transformations will, therefore, act by following different strategies. In
Neo4J, a conservative strategy is chosen in which the address of all
Patient instances is hidden, while in OrientDB the condition is indicated
in the security policy (Listing 5).

7. Conclusions

NoSQL databases are characterized by the fact that they provide
high performance and flexibility while considering security to be a
‘second-class citizen’. The lack of standardized security mechanisms,
even in technologies that share the same NoSQL database type, and the
absence of a high-abstraction secure methodology make it challenging
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Fig. 11. Fragment of the knowledge graph representing the Structural aspects.
o create secure designs. In this context, the database designer has to be
nowledgeable as regards the particular low-level mechanisms offered
y each technology, limitations, and workarounds in order to achieve
secure implementation.

In order to tackle this problem, in this paper we present the first
igh-abstraction security framework for the secure design of NoSQL
atabases. One of the key aspects of our approach is the proposal of
n ontology that allows designers to simultaneously model the high
evel concepts and structures of NoSQL databases together with the
ecurity policies required in the same design phase. Another great
dvantage of our framework is that, thanks to the ontological layer,
esigners can implement ontology rules in order to analyze and detect
otential errors and overlooked issues. Furthermore, our framework
akes it possible to automatically derive the implementation of the

ecure NoSQL databases regardless of the concrete technology that
ill be used in the future, thus saving time and avoiding the errors

ntroduced by ad-hoc implementations. Since the implementation of
ecurity mechanisms requires fine-grained concepts that vary from one
12

oSQL database type to another, we have focused on the extended
model for Graph-based databases. In order to show the applicability
of our proposal, we have applied it in a case study in the Healthcare
domain by designing a secure Graph-based database and implementing
it in two popular technologies, Neo4J and OrientDB.

We would also like to stress here that our framework has been
integrated into the well-known TITAN framework, thus allowing us
to easily integrate the implemented database into more complex and
huge data science workflows and interact with data science algorithms
and data transformation steps. In other words, our framework is not
only another theoretical framework, but is also a framework that is
ready to be used and embedded in complex data science workflows and
processes.

Our immediate future work will be focused on exploring the com-
prehensive reasoning capabilities that can be implemented from our
ontology, thus allowing database designers to better evaluate poten-
tial information leaks and undesired data access, along with other
design errors that could be detected before generating the final NoSQL
database implementation. In the long term, we plan to support all kinds
of NoSQL datastores, which will require the analysis and development

of specific ontologies for each of them.
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Fig. 12. Fragment of the knowledge graph representing the Patient role.
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