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Abstract
Nowadays, there aremany different industrial processes in which people spend several hours performing tedious and repetitive
tasks. Furthermore, most of these processes involve the manipulation of dangerous materials or machinery, such as the toy
manufacturing, where people handle ovens with high temperatures and make weary physical effort for a long period of time
during the process. In this work, it is presented an automatic and innovative collaborative robotic system that is able to
deal with the demoulding task during the manufacturing process of toy dolls. The intelligent robotic system is composed
by an UR10e robot with a RealSense RGB-D camera integrated which detects the pieces in the mould using a developed
vision-based algorithm and extracts them by means of a custom gripper located and the end of the robot. We introduce a
pipeline to perform the demoulding task of different plastic pieces relying in the use of this intelligent robotic system. Finally,
to validate this approach, the automatic method has been successfully implemented in a real toy factory providing a novel
approach in this traditional manufacturing process. The paper describes the robotic system performance using different forces
and velocities, obtaining a success rate of more than 90% in the experimental results.

Keywords Robotics · Toy industry · Automation · Soft · Flexible · Manipulation

1 Introduction

Industrial environments are usually surrounded by hazardous
situations. One of them is the dangerous machinery, that can
cause severe damage to human workers. For instance, in the
toy industry, there are production ovens which are at high
temperatures. The features of the handled material should be
also considered as they can be composed of toxic substances
that could harm humans likewise.
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Although factories invest large amounts of resources in
safety systems to prevent accidents through the integration
of laser barriers and other measures and equipment, the tradi-
tional manufacturing processes have really high production
targets with short cycle times which rise the stress of the
operators. Human operators work for several hours on the
same task; thus, they are more prone to get distracted and to
make mistakes resulting in dangerous situations.

As mentioned, manual industrial processes are often
repetitive and composed of tedious tasks and movements,
especially in the toy manufacturing industry, which is the
focus of this work. This process to create a plastic toy is
based on the following tasks: first, operators fill the moulds
with the plastic material, then they introduce themould into a
rotomoulding oven; they put themould into an air cooler after
that; finally, the operators place the mould (which is still at
high temperatures) in the demoulding zone to gently extract
the hot pieces that are inside themoulds.Operators repeat this
process for several hours manually managing several moulds
at the same time which increases their stress level.

This paper presents a new intelligent robotic system capa-
ble of performing the demoulding task of the entire toy man-
ufacturing process by carrying out the most labour-intensive
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part of the process. Therefore, this approach directly reduces
the stress and potential injuries to operators who can per-
form other dexterous and human-based tasks. This system
is composed by the usual machinery of the toy manufactur-
ing process (rotomoulding oven, air cooler, moulds, etc.),
external devices such as RGB-D cameras, pneumatic actu-
ators, emergency buttons, and safety laser scanners, and a
UR10e collaborative robot arm. All mentioned devices and
machinery have been integrated at INDUSTRIAAUXILIAR
JUEMA S.L., an actual doll manufacturing company.

The main contribution of this work is the development
of a new collaborative robotic system capable of performing
a traditional manufacturing task such as the demoulding of
soft plastic pieces autonomously, contributing to the creation
of new future smart factories such as in [3]. As mentioned
previously, during the extraction of the pieces, the mould is
still at high temperatures, whichmeans that the plastic pieces
inside are deformable and flexible. Therefore, it completely
changes the usual paradigmof rigid handling due to the possi-
ble deformations that piecesmay suffer, so higher forcesmust
be applied to accurately remove them from themould in order
to not damage or break them. Finally, with this approach, a
reduction of the operator’s stress has been achieved, thus
allowing them to perform other tasks with higher dexterity
requirements or relocating them to the other sub-tasks of the
process where the physical effort is less intensive.

The rest of the paper is structured as follows. In Sect. 2,
different works with related objectives or developments are
commented. In Sect. 3, it explains the steps of the process in
the developed pipeline. Then, in Sect. 4, the experiments and
results of the approach are shown to ensure the efficiency and
accuracy of the system. Finally, in Sect. 5, some conclusions
are described.

2 Related works

The state of the art related to the innovation and automa-
tion of industrial processes is really extended. The rise of the
competitiveness between manufacturing factories has forced
the integration of new technologies, especially in the robotic
manipulation of soft and deformable materials. In the man-
ufacturing processes, human operators manipulate different
kinds of objects composed by soft material, such as plas-
tic pieces, tyres, soles, and even food. One example of the
automation of an industrial process handling deformable
objects is [1], where authors present an innovative robotic
system to manipulate clothes and automate the stitching pro-
cess of cloth and a foam pad. However, they manipulate
planar objects, which reduces the number of unknowns and
uncertainty in comparisonwith 3Dobjects as proposed in this
paper. In [10], the authors work with linear objects to per-
form the shape control without running real-time simulations

or solving optimization problems, and they base their work
on a partition of the nodal coordinates that allows deriving a
control law directly from tangent stiffness matrices. Another
approach about intelligent manipulation is proposed in [6],
where authors present a new control framework for manip-
ulating soft objects applying deep reinforcement learning to
deform themand achieve a desired shape.Although the linear
objects aremore similar to this case, they are still simpler, and
oneof themain contributions of theseworks is based on simu-
lation. Other kinds of learning examples are explained in [5],
specifically learning from demonstration, a technique that
creates policies from example state to action mappings. That
approach defines a teacher, which provides the examples or
demonstrations to the learner, according to the two different
phases that the authors define to organize these techniques:
the first one, the acquisition of the data, and the second one,
the deriving of a policy from that information. These novel
techniques could be useful for the demoulding task due to the
complexity for the robot and the possibility of recording data
from the expert operators. However, the gathering of infor-
mation in our use case is really complex; operators use both
hands applying several forces and carrying out determined
trajectories to demould the pieces. In [4], the authors have
implemented a novel approach called Advice-Operator Pol-
icy Improvement (A-OPI). Demonstration learning improves
policies when the number of samples is larger; however, A-
OPI synthesizes new data from a student execution and a
teacher advice. Results show great potential as they surpass
the performance of teleoperation.However, the systemworks
for low-level motion control, which makes it impossible to
integrate into our system due to the complexity of the task
execution.

The approach presented in this paper is based on a high-
effort required task, such as in [13], where it explains a
strategy to improve the performance of current commercial
industrial robots using a force-impedance controller. Nev-
ertheless, our proposal’s aim is to create a system where
operators and robots can work together, so these kinds of
industrial robots are not allowed in a collaborative task.
In [16], the authors present a force control loop used in a
collaborative robot for sanding materials and state that col-
laborative robots can perform the same sanding task with
similar results to industrial robots. The main difference with
the work presented in this paper is the great dexterity of the
robot movements needed when demoulding pieces instead
of planar trajectories of that paper. In [18], it explains the
current situation of robot applications in the food industry,
which has high-quality requirements, and concludes with the
enormous number of possible tasks that robots can carry out
in this sector. Although the food sector is a more common
research field than the toy one, similarities can be found with
this industry, which has very strict quality requirements in the
final product.Contrary to the othermanufacturingfields, chil-

123



The International Journal of Advanced Manufacturing Technology

dren’s doll production industry has not been much explored,
and there are no robotic solutions integrated in real industrial
environments, a fact that this work aims to change. In [17],
it proposes a system that allows a safe cooperation between
humans and high-payload robots during industrial tasks per-
formance thanks to a tactile floor with spacial resolution able
to define static safety zones or dynamic ones considering the
current position of the joints and velocities. To integrate this
system, companies need to implement major infrastructural
changes in their factories. The solution presented in this paper
aims to integrate two safety laser scanning devices to cover
the entire working space and the areas shared between the
operator and the robot in order to ensure human safety.

Plastic sector is really extensive and is composed by dif-
ferent kinds of tasks, such as in [14], where the authors
developed a new approach which used the discrete proper-
ties of the moulds to create the configuration of the plastic
injection moulds. The common features between this plas-
tic material and the children’s dolls highlight the challenges
associated with handling soft materials, and how their phys-
ical behaviour varies based on temperature. The study of
these properties is tedious and complicated as shown in [11],
where the authors present an automatic shape control of
deformable wires based on the unknown deformation model
or themechanical properties of the object. They just use some
visual features to calculate the deformation and improve the
manipulation. A related work is described in [8], where the
authors report the first autonomous robotic solution for the
USBwires soldering task. The similarities with the approach
presented in this paper arise due to the repetitive and closed-
cycle nature of the demoulding process.

As mentioned previously, toy industry is a manufac-
turer and traditional sector which is composed mainly by
small-and-medium enterprises (SMEs), which are not usu-
ally able to develop or integrate new technologies into their
production processes. In [19], it explains the possibility of
automation in SMEs with a collaborative robot and learning-
based vision systems. They propose an automatic system for
object detection and quality control of products, together
with a multi-functional gripper capable of performing dif-
ferent operations without tool changing. In [7], the authors
present a study about the reinforcement learning in contact
manipulation robotic tasks which explains the increase of the
research in this field. In addition, they explain different kinds
of contact manipulation tasks depending on the dynamic
interaction of the objects. Our use case could be classified
in the ‘pushing tasks’ group, where authors expose the dif-
ficulty from the unknown and nonlinear dynamics when the
robot must perform gentle manipulation on objects of differ-
ent sizes, shapes, and textures. In [12], the authors present a
review about the smart robotic manufacturing representing
the new epoch of a higher degree of intelligence in industrial
tasks carried out by the robots. In [15], the authors present

a user-friendly model of robot skills, tested in real indus-
trial scenarios, specifically designed for operators with no
prior knowledge of robotics. This aspect holds significant
value for this work because one of the goals of this approach
is to prevent operator replacement and, instead, to involve
them in the operational process by making it more accessi-
ble and manageable. In addition to the task automation, the
approach supports and trains the operators tomake the transi-
tion to the robotizing of the demoulding task easier. This fact
could be supported with the proposal explained in [2], where
the authors present a demonstration learning framework for
robots wherein they developed a force-based acquisition sys-
tem to capture the task essence in two distinct scenarios:
human-human and human-robot collaboration. The purpose
is to extract task-specific features and transfer these skills
to the robot for the purpose of extracting task-specific fea-
tures and transfer these skills to the robot. In this context, the
involvement of the human factor becomes crucial as it plays
a vital role in extracting task-related features, facilitating the
robot’s learning process, and fostering collaboration between
the human and the robot during task execution. They tested
the system in the co-manipulation of objects and assem-
bly of simple interlocking parts. In contrast to deformable
objects, rigid manipulation makes the collaboration and the
acquisition of task parameters easier. Nevertheless, due to
the complexity of the soft object parameters and models,
in this work, the authors are able to extract the knowledge
of the operators to programme the robot trajectories for the
demoulding task. To improve the manipulation of flexible
objects, in [9], it presents a survey of model-based off-line
manipulation planning systems. An initial object classifica-
tion is stated, dividing into volumetric, planar, and linear, then
they categorize the planning strategies according to the type
of goal: path planning, folding/unfolding, topology mod-
ifications, and assembly. Although model-based strategies
are really useful to manipulate deformable objects, in the
focused scenario of this paper, the deformation parameters
may change during the task performance due to the temper-
ature variation.

As stated in this section, currently, there is no approach
as presented in this paper: a new intelligent robotic system
capable to perform the demoulding of soft plastic pieces in
an autonomous way. In addition, this innovative system can
collaborate with the human operator in order to finish the
entire toy manufacturing process.

3 Demoulding pipeline

The demoulding task of the toymanufacturing industry is one
of the several steps of the production process. The company
has divided into different groups the operators in order to
cover all steps; one group produces the liquid plastic material
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from raw powder and some additives, and another group uses
this liquid material to manufacture the solid pieces relying
in the rotomoulding manufacturing process. Then, while one
group paints, sews the hair, and puts the eyes on the head,
the other group assembles the pieces. Finally, the assembled
doll is packaged and distributed to retailers.

3.1 Manual task

As explained before, this industrial process involves different
tasks. However, this work is focused in the most physically
demanding task for the operators, namely the rotomoulding
manufacturing process, which is really common in plastic
industries. Figure1 explains the different steps of this tech-
nique.

As shown in Fig. 1, in the first action, the operator fills the
mould with the liquid plastic material (Fig. 2a) and closes
it. Then, the mould is then placed in the rotomoulding oven
and starts heating while rotating on two axes to distribute
the material over the entire inner surface of the mould. After
the heating step, the mould is introduced in a cooling zone
to complete the creation of the piece. Finally, the operator
places the mould in the demoulding zone, and they extract
the pieces as shown in Fig. 2b.

As seen in Fig. 2, operators work directly with the moulds
and must utilize both hands to extract the pieces, as the
task demands significant force. Moreover, they must have
exceptional dexterity in order to successfully demould certain
pieces, which can be quite challenging due to their intricate
shapes. In addition, they have to do it while the mould is still
at high temperatures; otherwise, the piece will cool down and
get stuck inside. Thus, theworkers are in contactwith a harm-
ful element, as stated above. The temperature of the moulds
during the task is set by the operators specifying the time and
temperature of the rotomoulding process in the oven.

Fig. 2 Moulds used for the traditional manual task

3.2 Automatic task

Figure3 shows the proposedworkflow for the robotic system,
where it is divided into operator and robot tasks.

The main challenge of this process is to manipulate this
material under the constraint of its flexibility and the short
cycle time inwhich the object should bemanaged. If the piece
spends too much time in the mould and is not extracted, it

Fig. 1 Rotomoulding manufacturing process
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Fig. 3 Workflow of the
automatic demoulding process

cools down and it is more difficult to demould and eventually
would break during the process.

In order to develop the automatic system, a robotic cell
mock-up has been designed and developed (Fig. 4). This
mock-up allows us to execute first tests and develop the dif-
ferent algorithms before the integration in the real industrial
environment.

The red area in Fig. 4 a and c marks the air cooler, the
yellow area marks the rotomoulding oven, and the blue area
marks the demoulding zone.

This setup allows the robot to perform the demoulding
task, but the operator is still required for the rest of the steps

regardless. However, the most labour-intensive task has been
removed for the operators and devolved to the robot. In order
to perform this task and check the viability, Fig. 5 shows the
4 different moulds that will be used according to the 4 parts
of the children’s doll: head, arms, legs, and body.

The automatic extraction pipeline, which is explained in
depth in Sect. 3.3, is described next. The steps are intended to
mimic the manual process. Hence, once the mould is placed
in the demoulding zone by the operator, the robot uses a
RGB-D camera to get 3D information of the environment.
Then, the top of the mould is detected using computer vision
algorithms, and the extraction hole of each piece is detected

Fig. 4 Designs of real and
simulated setups in both lab and
industrial environments
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Fig. 5 Moulds and pieces of different doll parts

and sent to the robot. Finally, the robot performs somedefined
force-based movements to extract the piece from the mould
once the tip of the extraction tool reaches the extraction point.

3.3 Description of the system

The system is composed by three main devices: the UR10e
robot, the PC, and the gripper. To define the communication
between all of them, the PC is used as a hub. The gripper
is connected to the PC by an IO-Link module. Using this
configuration, it is possible to connect all mentioned devices
and to use the PC as the core of the system. This allows to
interconnect different libraries such as the vision, robotic, or
communication networks ones.

Robot—PC

TheXMLRPC library facilitates communication between the
UR robot and the PC by establishing a server. This server
enables the creation of Python functions on the PC that can
be invoked from the robot, with execution occurring on the
PC itself. This functionality grants us the flexibility to import
various vision libraries like OpenCV or Open3D. In addi-
tion, this feature allows us to integrate ROS, making our
system more robust by communicating with other devices
in the robotic cell. Figure6 presents the communication sys-

tem that explains how the robot sends requests to the PC,
executes the functions related with the gripper, runs the per-
ception module with the camera, and communicates with
ROSmessages. The PC then returns a value to the robot, that
is the detected position to move.

Gripper—PC

The robotic gripper has been designed and developed by
ZimmerGmbH.An IO-Link communication protocolmaster
module has been integrated in order to establish communica-
tion between thePCand the gripper to read andwrite different
registers to modify its parameters and drive it. Diagram rep-
resentation of the integration is shown in Fig. 7.

Asmentioned, by using this protocol, it is possible towrite
and read registers in order to set parameters or read them. The
list of the configurable parameters is as follows:

• Status word: Read. These registers provide us informa-
tion about the gripper such as if it is in motion, if the
motors are on, and potential errors, among others.

• Diagnosis: Read. This shows the error ID.
• Current position: This shows the current position of the
gripper.

• Control word: Read/write. The functionality of this
register depends on the written value. One action is to

Fig. 6 Communication system
between the UR robot and the
PC

123



The International Journal of Advanced Manufacturing Technology

Fig. 7 Communication system
between the gripper and the PC

transfer to the gripper the parameterswritten, and another
is to send the command to close or open the gripper.

• Devicemode:Read/write. This register sets the operation
mode of the gripper. The gripper is able to work with
different force profiles or just in position mode. Figure8
shows an example of an operation profile.

• Tolerance: Read/write. Depending on the value of this
register, the gripper assumes more or less error in the
movements.

• Force:Read/write. Force was applied during the closing.
• Velocity: Read/write. Velocity of the movement.
• Base, shift, teach, and work position: Read/write.
Positions values for the gripper from the opening to
the closing position, passing through two intermediate
positions.

Several operation modes have been defined in order to
improve the dexterity of the gripper; however, Fig. 8 shows
the used profile during the task execution.

This operationmode allowsus to drive the gripper from the
base position (gripper open) to the shift position by apply-
ing velocity, and once the gripper reaches that position, it
changes to the force mode until it reaches the final work
position. Figure9 shows the design of the gripper and the
fingers employed to demould the pieces.

The customized fingers are really important during the
extraction task. One finger has a flat surface with a meshed
pattern to secure the grip and prevent slipping of the piece,
and the other finger is hollow, which allows us to integrate a

vacuum system. During the execution of the task, the robot
will grip the piece by inserting the vacuum finger through
the extraction hole. Then, the gripper closes, and the vacuum
system starts to extract the air from inside the piece, separat-
ing it from the inner surface of themould andmaking the task
easier for the robot. This feature of the system forces us to
develop an accurate extraction point detection algorithm to
be able to automatically introduce the vacuum finger inside
the piece.

ROS

As mentioned, the UR robot, PC, and grippers are the main
devices of the system. However, there are other sensors and
objects in the robotic cell that should be taken into account
in order to perform the task. To manage all the information
provided by those elements, the whole architecture has been
integrated in ROS, allowing the communication between all
the devices within the robotic cell.

ROS architecture allows to visualize in real time the
robotic cell, robot trajectories, and the defined safety areas
of the security devices, as shown in Fig. 10. In addition, ROS
makes the communication between the robot and the safety
laser scanners easier, reducing the risk for the operatorswhile
the robot is carrying out the task and applying high forces.
Once the operator joins the warning area, the robot reduces
the velocity of the movements, and if the operator is in the
danger area, the robot stops completely, ensuring the safety
of the workers.

Fig. 8 Pre-position—force
operation mode
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Fig. 9 Custom gripper designed for the task of demoulding doll parts

Fig. 10 RVIZ real-time simulation of the robotic cell

3.4 Detection of mould landmarks

As explained previously, the rotomoulding manufacturing
process is composed by different steps. One of them is the
demoulding of the pieces which will be performed by the
robot instead of the worker. To achieve this goal, a vision-
based algorithm has been developed to detect the mould and
the pieces inside. A Real Sense D435i 3D camera is used in
the perception module in order to perform the detection of
the different kinds of moulds and pieces to be demoulded.
This whole process is explained in the Fig. 11.

As shown in Fig. 11, the goal of thismodule is to detect the
extraction point of the piece inside the mould. The algorithm
merges 2D and 3D information of the environment in order
to remove unnecessary data and keep interesting areas. First
of all, the 3D camera takes the point cloud of the environ-
ment. As the camera captures too many uninteresting points
of the environment, this point cloud is segmented using a
pass-through filter. As a result, the point cloud of the inter-
est area, namely the mould, is retained, and the remaining
ones are discarded. The next step is to apply RANSAC in
order to detect the plane of the top of the mould where the
piece is located. We used RANSAC over other plane-fitting
algorithms due to its robustness against noise. As the RGB
image and the point cloud are correlated, all the pixels from
the image that do not lay in the detected plane are directly
removed from the image. The result is the segmentation of
the mould in the RGB image in which it is possible to detect
the extraction point as shown in Fig. 11. Finally, the robot
moves to the detected point to perform the demoulding, as
shown in Fig. 12.

Finally, by integrating all previously mentioned devices
andmodules, this robotic cell is able to perform the demould-
ing task in the real industry environment as shown in Fig. 13.

4 Experiments and results

In this section, the results obtained in the automatic system
of the demoulding task are shown in order to measure the
success of the tasks performed by the developed system.
The process has been split into three different sub-tasks:
detection, grasping, and demoulding. As this is a sequen-
tial process, the output of the perception module is the input
of the grasping module, and its output is the input of the
demoulding module. In this way, failures are just considered
in the current module and not in the next ones allowing us to
measure the success and accuracy of the different modules
of the system. For the detection and grasping module, own
developers of the system checked at each cycle if the output is
correct or not. However, the demoulding module is checked
by the expert operator of the factory, due to their experience
and knowledge of the final product.
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Fig. 11 Diagram of the
automatic demoulding pipeline

In order to calculate the following production and quality
metrics, 10 cycles of each mould have been carried out. A
cycle considers the process from the time the robot removes
the parts from the mould until the mould is returned to the
demoulding area after the rotational moulding process.

• Average probability of success (APS): This value is
obtained by dividing the number of successes (S) by the
number of total trials (N ), measured in percentage. This
parameter will be calculated for each module separately
(perception, grasping, and demoulding).

Fig. 12 Vacuum finger introduction

APS = S

N
∗ 100 (1)

• Average time per (ATP) one piece demoulding: This
value is obtained by dividing the time the robot spends
demoulding all the pieces of themould (T ) by the number
of pieces (N ), measured in seconds.

AT P = T

N
(2)

• Average time per operation (ATPO): ATPO is calcu-
lated by dividing the sum of all operations’ time (T ) by
the total number of operations (N ), measured in seconds.
Operation term represents the unit ofwork that adds value
to the production chain. In this case, two operations are
considered: the rotomoulding process before the extrac-
tion (oven and cooling) and the extraction for all the
moulds.

AT PO =
∑N

i=0 Ti
N

(3)
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Fig. 13 Real demoulding task
performed by the robot (leg
mould)

• Number of trials per hour (NTPH): The number of
trials per hour can be calculated by ATPO.

NT PH = 3600

AT PO
(4)

• Mean operations per hour (MOPH): Mean operations
per hour is calculated by multiplying the average proba-
bility of success (APS) and the number of trials per hour.

MOPH = APS ∗ NT PH (5)

Asmentioned previously, the systemwill perform the task
in 10 complete cycles. Furthermore, in order to compare
the system performance, the robot will carry out the task
at 100%, 90%, and 80% of the maximum force (225 New-
tons) and velocity (1000mm/s) allowed for the robot. Next,
tables (Tables 1, 2, and 3) show the results of the different
tests carried out and the outcomes of the metrics. After 10
cycles, depending on the kind of piece/mould, the maximum
number of pieces could be 20 (heads and bodies) or 40 (arms
and legs).

Next, some conclusions are exposed from the results
obtained in the experiments. The arm and leg parts are more
difficult to demould than the other pieces due to their elon-
gated shape, which makes the material more concentrated

and the piece more compact. This fact forces the system to
carry out a two-step demoulding procedure for these pieces.
Firstly, it is extracted the upper part of the piece in order to
enable the airflow between the inner surface of themould and
the piece, thereby facilitating the extraction process. After-
wards, it is demoulded in the lower segment. Moreover, as
the body part is the largest part, the robot needs to make
more movements during demoulding, which means that it
takes more time than the other parts. Finally, the headpiece
is the easiest to demould due to its uniform and rounded
shape. The headpiece also holds a large amount of air inside
it, and the gripper fingers can apply vacuum and make the
demoulding task easier. Given the diverse shapes of each
piece, the robot follows varying paths during the demoulding
process. Elongated pieces need supplementarymovements to
initially release the upper segment before demoulding the rest
of the piece. Furthermore, the body and head are demoulded
directly.

In general terms, it is possible to see a forward correlation
between the percentage of force and velocity applied, and the
APS (Eq.1) which justifies that the demoulding task requires
high effort by the operators. However, the APS of the detec-
tion module has no significant changes as it is independent
of the velocity or force of the robot; it just depends on the
camera. Finally, the grasping module changes because the

Table 1 Results at 80% velocity and force

Pieces Num. pieces APS % ATP (s) ATPO NTPH MOPH
Detection Grasping Demoulding

Head 20 20 (100%) 17 (85%) 10 (58.8%) 9 1219.8 2.9514 1.125

Body 20 20 (100%) 16 (80%) 8 (50%) 11.5

Leg 40 39 (97.5%) 36 (92.3%) 15 (41.7%) 10

Arm 40 40 (100%) 38 (95%) 10 (26.3%) 9
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Table 2 Results at 90% velocity and force

Pieces Num. pieces APS % ATP (s) ATPO NTPH MOPH
Detection Grasping Demoulding

Head 20 19 (95%) 18 (94.7%) 14 (77.8%) 7.5 1217.3 2.9574 1.978

Body 20 20 (100%) 16 (80%) 13 (81.3%) 10

Leg 40 39 (97.5%) 37 (94.9%) 28 (75.7%) 8.5

Arm 40 39 (97.5%) 37 (94.9%) 25 (67.6%) 8.5

part is soft and flexible, so the robot spends too much time
from detecting the parts until it grasps them; the parts may
deform due to the lack of temperature.

Asmentioned previously,APS (Eq.1)metricmeasures the
success of each module independently, and it is possible to
see how it increases as force and velocity increase. However,
the detection module is independent to the robot’s perfor-
mance, so it remains roughly constant. ATP (Eq.2) metric
has the same behaviour as the previous one as it is directly
correlated with the force and velocity of the robot’s perfor-
mance. Meanwhile, the robot at 80% spends 9 s to demould
1 head, increasing 10% the time is reduced by 1.5 s, and
finally, at 100% is 1 s faster still. In industrial processes in
which machinery is working 24h, there is a production of
9600 heads at 80% in a day; in comparison with 13,292
heads at 100%, there is a huge difference for the company.
ATPO (Eq.3) and NTPH (Eq.4) metrics are similar in the
three cases as the time of the rotomoulding process and the
cooling is included and they are constant; however, in 1 year
period, the difference between the robot at 80% and 100%
represents more than 1000 produced pieces. Finally, MOPH
(Eq.4) considers the APS (Eq.1), and a huge difference is
shown in the table between the 3 demoulding tests. From
80 to 90%, there is an 75.82% increase in performance, and
from 90 to 100%, a 34.83%. These increments represent a
remarkable production improvement in the long term. In the
period of 1 year, the robot at 80% runs 9855 operations, and
each operation is a complete cycle of each mould, which
means 118,260 produced pieces, at 90% the robot produces
207,927 pieces, and at 100%, it produces 280,355 pieces.
The difference of 20% is more than double the number of
pieces produced in a year. In summary, conducting tests at dif-
ferent capacity levels provides a holistic understanding of a

robot’s performance, safety margins, efficiency, result valid-
ity, and adaptability. This approach ensures that the robot’s
capabilities are thoroughly examined and validated for both
optimal performance and safe operation, while also account-
ing for potential changes in operational conditions over
time.

Finally, Fig. 14 illustrates the trajectories traced by the
robot during the demoulding process of the headpiece. This
visual representation offers a valuable perspective on the
movements and displacements the robot has performed in
its environment. The 3D graph provides a better understand-
ing of the relationship between the position of the robot and
the force applied by the robotic tool. The blue line represents
the position of the robot along the task path, and the red cir-
cles represent the amount of force obtained from the robotic
tool (the larger the size, the more force).

As shown in Fig. 14, once the detection algorithm pro-
vides the piece extraction point, the robotmoves to themould
and performs the trajectories to grip the piece and demould
it. The trajectory begins at the ‘Init” marker. Subsequently,
the robot moves forward to point ‘A”, which designates the
detected extraction point of the headpiece. Following this, the
robot executes a rotation movement applying force at point
‘B’, where it grasps the piece using the gripper. Finally, the
robot moves from ‘B’ to ‘C’ and performs an upward pull
to successfully extract the piece from the mould. Larger cir-
cles appear when the robot grasps, rotates, and pulls up to
remove the piece. However, the amount of force provided by
the robot is only the one detected in the end effector, not in all
the joints. For a better understanding of the task performance
data, Fig. 15 shows the end effector positions and orientations
of the robot, as well as the forces during the demoulding task.
These values are shown along an iteration axis.

Table 3 Results at 100% velocity and force

Pieces Num. pieces APS % ATP (s) ATPO NTPH MOPH
Detection Grasping Demoulding

Head 20 19 (95%) 19 (100%) 19 (100%) 6.5 1214.75 2.9635 2.667

Body 20 20 (100%) 18 (90%) 18 (100%) 8

Leg 40 40 (100%) 40 (100%) 37 (92.5%) 7.5

Arm 40 39 (97.5%) 37 (94.9%) 33 (89.2%) 7.5
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Fig. 14 Trajectory of the robot
during the demoulding task of a
head piece

Upon comparing both previous plots (Figs. 14 and 15),
the relationship among points ‘A’, ‘B’, and ‘C’ becomes
apparent. The robot initiates movement moving to point ‘A’,
where the orientation and position stabilize at constant val-
ues; then, the position undergoes a brief alteration while the
force demonstrates an upward trend. Subsequently, the robot
pivots and advances with force application upon reaching
point ‘B’, coinciding with the Z -axis rotation matching that

of the initial point. Lastly, as the robot reaches point ‘C’, it
pulls upward, revealing both positional and force elevation
along the Z -axis. Summarizing, while extracting the piece
from themould, the end effector records a force that surpasses
40 N. This implies that the other joints are also subjected to
higher force magnitudes. Consequently, it is evident that the
robot must use its full capacity, even operating near its limits,
to successfully execute the demoulding process.

Fig. 15 Positions, orientations, and forces of the robot during the demoulding task of a head piece
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5 Conclusion and future work

In conclusion, this work proposes a new automatic and col-
laborative robotic system able to perform the demoulding
task of soft plastic pieces in a real industrial environment
of a doll manufacturing company. This system is based on
a vision algorithm to detect the moulds and the extraction
point of the pieces to send them to the robot and perform the
demoulding. The force requirement of this task is a challenge
for a collaborative robot; however, by executing similar tra-
jectories to the expert operators, it is possible to carry out the
task correctly.

Finally, this collaborative task allows operators to per-
form other tasks that require more dexterity while the robot
performs the task, avoiding injuries. The results show us
the success rate of the system, which makes it useful for
the company, provides an increase in production, and serves
as the first step for the technological transference for small
companies.
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