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ABSTRACT: We report herein a protocol for the selective activation of
C(sp3)−H bonds based on the interplay of two readily available organic
catalysts and their successful implementation in cross-coupling azaarenes
with alkanes. This Minisci-like reaction is promoted by visible light at
room temperature and is free from chemical oxidants, metals, and
chlorinated solvents. A wide range of substrates are compatible,
including some bioactive molecules. Mechanistic studies support a
dual catalytic cycle with H2 evolution.

Nitrogen heterocycles are abundant in natural products,
agrochemicals, and pharmaceuticals.1 Most unique

small-molecule drugs approved by FDA contain a nitrogen
heterocycle.2 The straightforward alkylation of azaarenes is of
pivotal importance in drug discovery,3 especially if late-stage
functionalization of bioactive compounds is possible.4

The cross-dehydrogenative coupling (CDC) of azaarenes
with alkanes has become one of the most appealing approaches
to the Minisci reaction. This convergent strategy uses
abundant feedstocks, avoiding prefunctionalized substrates.5

However, sacrificial oxidants are commonly required for this
net oxidative process.6 In recent years, the use of photo-
catalysis,7 electrocatalysis,8 and electrophotocatalysis,9 has
opened other access for radical generation from C(sp3)−H
bonds.10 Very recently, the CDC of heteroarenes with alkanes
has been accomplished without external chemical oxidants by
the in situ generation of chlorine atoms (Cl•), either using
photoelectrochemical11 or dual photocobalt-catalysis12 for the
hydrogen evolution. In addition, photoinduced ligand-to-metal
charge transfer has also been used to generate Cl• and promote
this transformation.13 These approaches exploit the high bond
dissociation energy of HCl (BDE = 102 kcal/mol) to activate
C(sp3)-H bonds by hydrogen atom transfer (HAT).14 In
addition, diphenyl phosphate has also been successfully used in
stoichiometric amounts as a HAT reagent to promote this
transformation.15 Notably, this latter photochemical reaction
was accomplished in 1,2-dichloroethane using a stop-flow
microtubing reactor. Furthermore, it has been recently
demonstrated that 1,2-dichloroethane can produce Cl• under
aerobic photocatalytic conditions, promoting the desired
transformation.16 In fact, chlorinated solvents are prominent
as reaction media for many organic transformations, including

C−H activations, despite their serious health effects and
environmental concerns.17 Therefore, we proposed herein a user-
f riendly protocol for the CDC of azaarenes with alkanes where
most of the previously commented issues are addressed (Figure
1a).18

Neutral 9-arylacridines were extensively used to promote
photocatalytic decarboxylation of carboxylic acids through
proton-coupled-electron transfer, and it is known that
acridinium’s formed with trifluoroacetic acid (TFA) become
photoactive with visible light.19 We thus hypothesized (Figure
1b) that, in the presence of TFA and blue light (455 nm), the
excited state of the resulting acridinium (Ered 2.2 V vs. SCE)

20

is oxidant enough to remove an electron from pyridine N-oxide
(PyO1), without redox interference of the trifluoroacetate
anion (Eox > +2.25 V vs. SCE).

21 The resulting N-oxyl radical
could abstract hydrogen atoms from C(sp3)−H bonds22

forming PyOH123 that is significantly more acidic than TFA
in MeCN24 and can be deprotonated by azaarenes to reset the
PyO1. The resulting protonated azaarene [I−H]+ might add a
transient nucleophilic radical (II) to obtain radical cation III,
which after a single-electron-transfer (SET) with HA1•, would
enable the turnover of HA1+ and the dihydroazaarene IV’s
formation. As proposed by Kano and co-workers,25 inter-
mediate IV could transfer a hydride to III, producing H2, the
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protonated product and radical V. A final proton transfer
should deliver the product and intermediate III, which HA1•

or IV might quench. Our approach differs conceptually from
Gryko’s protocol, where PyOs are used in stoichiometric
amounts to form an EDA complex with the azaarene and more
energetic photons (405 nm).26

To test our hypothesis, lepidine and cyclohexane were
chosen as substrates, using commercial PyO1 and acridine A1
(prepared in one step, see SI) as organic catalysts. To our
delight, the reaction was promoted by blue light irradiation
(455 nm) under an argon atmosphere at room temperature
(Table S1, entry 1). Following this encouraging result, we
demonstrated that the reaction requires irradiation to proceed,
that photocatalyst A1 significantly improves the reaction yield,
and that without deoxygenation, the reaction outcome was
improved (entry 2). Given that 3O2 is a very efficient triplet
quencher for acridinium salts,27 the performance of the
reaction in the presence of air suggests the participation of
the singlet-excited state of the photocatalyst.19a Most
importantly, this protocol is more user-friendly than others
because inert gases or special equipment (glovebox, stop-flow
microtubing reactor, etc.) are not required and the reaction is
promoted at room temperature (30−35 °C). We thus found
that 200 mol % of TFA, 25 mol % of PyO1, and 5 mol % of A1
in 7:3 MeCN/HFIP with cyclohexane (5 equiv) and [lepidine]
= 0.10 M were optimal reaction conditions. Although the
reaction works in MeCN, using HFIP as a cosolvent might

help solubilize PyO1 and other polar substrates without redox
interference.28 Increasing the load of PyO1 slightly (30 mol %)
allows the reaction to complete (entry 8). We also examined
other PyOs and diphenyl phosphate as HAT catalysts and
other 9-arylacridines in our model reaction (Table S2).
However, poorer or similar results were obtained compared
to those shown in entry 8 of Table S1.
Having found the optimal reaction conditions, we examined

the substrate scope (Figure 2). Substituted quinolines reacted
smoothly at C4 or C2 to obtain the cyclohexyl derivatives in
moderate-to-good yields (1-10, 41%−93%), showing good
functional group tolerance. Pyridines were also suitable
substrates, mainly obtaining the monoalkylated products for
p-Ph and p-CO2Et substrates (11, 12) and the dialkylated
product 13 with the more reactive p-CN pyridine. We also
explored quinoxalin-2(1H)-ones,29 obtaining the desired
products (14-16), showing good tolerance to nitro groups,
albeit with larger excess of cyclohexane. Notably, 1,4-diazines
reacted selectively to afford monoalkylated products (17, 18)
in good yields. We were pleased to observe that phenan-
thridine gave product 19 in an excellent yield. Benzothiazole
and benzimidazole substrates gave products 20 and 21 in
moderate yields. Some other azaarenes were recalcitrant
substrates under our conditions (listed in Figure S19). Other
cycloalkanes reacted with lepidine to give the desired products
in good to excellent yields (22, 23), even using lower excess of
the alkane (3 equiv for 23). Methylcyclopentane reacted
mainly at the tertiary C−H bond and secondary bonds, with a
normalized selectivity tertiary vs. secondary of 89% for isomers
of 24. Bridged alkanes also reacted smoothly, providing
exclusively exo-norbornane derivative 25 and a 91:9 mixture
of C1:C2-26 from adamantane (97.6% normalized selectivity).
The challenging acyclic alkanes exhibited excellent site-
selectivity for tertiary C−H bonds (products 27−29). The
functionalization of benzylic C−H bonds was less efficient,
furnishing products 30 and 31 in lower yields. Notably, p-
cymene reacted with the least hindered benzylic C−H bond.
Substrates with a short alkyl chain and electron-withdrawing
groups have shown poor reactivity but excellent selectivity at
the γ-CH position (valeronitrile → 32; isoamyl acetate → 33).
When different amides were examined, only methylacetamide
and pyrrolidinone gave the products 34 and 35 in low to
moderate yields (failed substrates are shown in Figure S19).
Cyclic ethers and acyclic methyl tert-butyl ether reacted
selectively to give the corresponding α-heteroatom CDC
products 36−38. Notably, methanol reacts smoothly, provid-
ing the hydroxymethyl derivative 39 or its deuterated analog
40 in good yields, which complements the methylation
observed under other photochemical conditions via the Spin-
Center Shift (SCS) pathway.30 Increasing the steric demand at
α-positions of alcohols decreased their reactivity, with ethanol
providing 41 in 36% yield, while other branched alcohols
failed, and isoamyl alcohol reacted mainly at the γ-position
(42). The weakness of a C−H bond in a formyl group (BDE
88 kcal/mol) was used to direct the HAT event.31 However,
the product depended on the substitution at the adjacent
position, in contrast to primary 3-methylbutanal, which
afforded product 43 via the SCS pathway, secondary/tertiary
aldehydes provided alkylated heteroarenes 44 and 45 in good
yields after decarbonylation. Our methodology was successfully
applied to functionalizing natural nicotine, cinchonine, and
quinine with cyclohexane, obtaining products 46−48 in
reasonably good yields. These results illustrate the compati-

Figure 1. Desired transformation and reaction design.
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bility of m-substituted pyridines and the tolerance to diverse
functional groups, such as tertiary amines, free hydroxyl
groups, and terminal double bonds. Examining the function-
alization of O-methylmenthol with lepidine, we found that only
three equivalents were needed to obtain product 49 in good
yield and excellent site-selectivity. Finally, when ambroxide was
examined, selective H-abstraction next to the O atom was
followed by radical addition to protonated lepidine and SCS
with C−O bond cleavage, giving product 50 in good yield.

Preliminary mechanistic studies (Figure 3) support the
proposed catalytic cycles shown in Figure 1b. Radical trapping
experiments with TEMPO or 1,1-diphenylethene demonstra-
ted the formation of cyclohexyl radical, likely through HAT
from cyclohexane to the pyridine-N-oxyl radical (Figure 3a).
The quantum yield of the reaction during the first 30 min is
significantly below 1 (Figure 3b) to ensure that either the
radical chain propagation is inefficient or the reaction takes
place through a closed photoredox cycle. The reaction profile
(Figure S1) shows that it is much faster in the initial stages.

Figure 2. Substrate scope. aYields for isolated pure products are given. bPyO1 was added in two portions, 20 mol % at the beginning and 10 mol %
after 24 h. c10 equiv of R-H. d23 equiv of R-H. e3 equiv of TFA. f3 equiv of R-H. g4 equiv of TFA.
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Therefore, the quantum yield should be lower after the first
hours, and a closed photoredox cycle is more plausible. We
prepared 2-cyclohexylbenzothiazole (20) from the correspond-
ing hydrogenated 20-H2 under the standard reaction
conditions (Figure 3c), which supports the intermediacy of
these compounds and their dehydrogenation. Remarkably, gas
evolution was observed during the experiments in flow (Figure
S14), and the formation of H2 was further confirmed by GC-
TCD analysis (Figure 3d and Figure S13).
The UV−vis spectra of all of the reaction components

confirmed that none of them absorbed light at 455 nm. Still,
adding TFA to a solution of A1 caused a significantly increased
absorption between 390 and 460 nm (Figures S7−S8).
Additionally, Stern−Volmer quenching experiments of a
solution of A1 and an excess of TFA (Figure S6) show that
PyO1 is the best single quencher from all reaction
components, which is consistent with a SET from PyO1 to
[HA1]+*. The deuterium kinetic isotope effects (KIEs) were
determined from two parallel reactions to obtain 1/1-d11
(Figure 3e) and a competition experiment (Figure 3f), giving
kH/kD = 1.25 and 6.14, respectively. The same study for
forming product 20 (Figures S17 and S18) afforded kH/kD =
1.64 and 3, respectively. The difference obtained for the KIEs
suggests that the alkyl radical formation via HAT is product-
determining but not the turnover-determining step.32

To showcase the synthetic utility of our protocol, we took
advantage of the homogeneous reaction mixture to scale up the
process using continuous flow for better light harvesting.33 Our
target was 4,7-dichloro-2-cyclohexylquinoline (6) because it
can be readily transformed into different 4-aminoquinolines
(Figure 4), which are analogs of active pharmaceutical

ingredients (APIs).34 After carefully optimizing the residence
time (Table S6), under otherwise identical conditions to the
batch protocol, except that the acridine load was decreased to 2.5
mol %, we prepared compound 6 in the gram scale (see details
in SI). Most importantly, the productivity was significantly
improved in flow.
In conclusion, we have demonstrated that the CDC of

azaarenes with unactivated alkanes can be promoted by visible
light without sacrificial oxidants, metals, halide sources, or
chlorinated solvents. A catalytic system based on a readily
available 9-arylacridine photocatalyst and pyridine N-oxide was
used for the first time in this transformation. Mechanistic
studies support a dual photoredox/HAT catalytic cycle with a
H2 evolution. The developed catalytic system may help in
approaching future C−H functionalizations.
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