
International Journal of Greenhouse Gas Control 129 (2023) 103990

Available online 5 October 2023
1750-5836/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Experimental investigation of multiple industrial wastes for carbon dioxide 
removal strategies 

Liam A. Bullock a,*, Jose-Luis Fernandez-Turiel a, David Benavente b 

a Geosciences Barcelona (GEO3BCN), CSIC, Lluís Solé i Sabarís, s/n, Barcelona 08028, Spain 
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A B S T R A C T   

Industrial solid waste by-products are being increasingly employed for geochemical carbon dioxide removal 
(CDR) strategies due to their fine grain size, accessibility, and large annual production tonnages. Here, a range of 
such by-products has been tested experimentally for their reactivities with CO2 and water. Sample solutions were 
monitored for 100 h for changes in chemistry, and solid samples were characterised pre- and post-experiment. 
Samples rich in Ca- and Mg-bearing minerals, such as dunite, kimberlite, and ilmenite mine tailings, as well 
as marble quarry cuttings, were key cation sources. Ni sulphide, fluorite and borax tailings, coal-fired power 
plant fly ashes, and red mud samples showed high dissolution rates. The highest reaction rates were often 
observed during the initial few hours, and compared well to rates determined for rocks typically targeted for CDR 
purposes, such as basalt and gabbro. Several samples also showed secondary carbonate precipitation, suggesting 
opportunities for the development of single-step CDR technologies. Overall, the results of this study indicate that 
several industrial by-products can provide sufficient cations at favourable dissolution rates for geochemical CDR 
purposes. Any on-site or near-site conditions for reaction acceleration such as heat, concentrated CO2 or mi-
crobes, could further increase favourability for geochemical CDR opportunities.   

1. Introduction 

The necessity for carbon dioxide removal (CDR) from the atmo-
sphere on the order of tens of gigatonnes (Gt) per year by 2100 (Inter-
governmental Panel on Climate Change (IPCC ), 2018, 2019; National 
Academies of Sciences, Engineering, and Medicine (NASEM) 2019; 
United Nations Environment Programme (UNEP) 2022) is a formidable 
challenge, requiring an urgent evaluation of different available CDR 
strategies. One emerging approach is through ex-situ geochemical CDR, 
such as targeted enhanced weathering, ocean alkalinity enhancement 
(OAE), and mineral carbonation approaches using industrial 
by-products (Bullock et al., 2021; 2022; Campbell et al., 2022; Declercq 
et al., 2023; Lu et al., 2023; Mervine et al., 2018; Paulo et al., 2021; 
Power et al., 2020; 2013a; 2014; 2013b; Pullin et al., 2019; Stubbs et al., 
2022; Wilson et al., 2009a; 2014). The principle is to promote or 
accelerate natural chemical weathering through the utilisation of loose, 
excavated, or processed natural materials (e.g., basalt) or artificial ma-
terials (e.g., industrial wastes). This involves Ca-Mg-bearing minerals 
undergoing dissolution in a one-step reaction with CO2 (and typically 
water) to form soluble bicarbonates, or a two-step reaction to form new 

carbonate minerals (summarised in Fig. 1). For example, reactions 
which may occur through reacting Ca-Mg minerals with CO2 and water 
include:  

Wollastonite (wo) weathering: CaSiO3 (wo) + CO2 + 2H2O → CaCO3 +

H4SiO4 (1)                                                                                             

Olivine (forsterite, fo) weathering: Mg2SiO4 (fo) + 2CO2 + 2H2O → 2MgCO3 
+ H4SiO4 (2)                                                                                        

The products are stored as cation-stabilised bicarbonate solution 
(alkalinity), achieving CDR, or precipitate from bicarbonate to form 
carbonate minerals:  

Calcite (cal) precipitation: Ca2⁺ + 2HCO₃⁻ → CaCO₃ (cal) + H₂O + CO₂ (Eq. 
3)                                                                                                         

Magnesite (mgs) precipitation: Mg2+ + 2HCO3
− → MgCO₃ (msg) + H₂O +

CO₂ (Eq. 4)                                                                                          

Through the precipitation of carbonates, some CO2 is returned to the 
atmosphere. Both the weathering and precipitation reactions can net 
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consume CO2 (except for weathering and subsequent re-carbonation of 
carbonates), storing it safely for hundreds of thousands of years or 
longer. However, this slow process takes several hundred years or more 
to occur. One key strategy for geochemical CDR is to accelerate the 
weathering (dissolution) and precipitation processes in such a way that 
significant amounts of CO2 are removed from the atmosphere on human 
timescales (e.g., up to tens of years, or faster). Approaches to achieving 
geochemical CDR include subsurface in-situ processes for mineral 
carbonation within suitable bedrock units (requiring concentrated CO2 
either through direct air capture (DAC) or carbon capture technologies), 
and ex-situ alkalinity generation and mineral carbonation of suitable 
loose or crushed materials (Fig. 1) (Campbell et al., 2022). 

Several industrial waste by-products have been studied for their ex- 
situ geochemical CDR potential based on several advantages over nat-
ural systems (Bullock et al., 2023a; Harrison et al., 2013; Huijgen et al., 
2005; McCutcheon et al., 2015, 2016; Power et al., 2020; 2016; 2013a; 
2014; Renforth et al., 2011; Renforth, 2012; Wilson et al., 2009a,b). This 
feature is particularly true for volumetrically-abundant and fine-grained 
silicate-rich mine tailings, with potentially up to 17 Gt of material 
produced per year globally (Bullock et al., 2021) and ten- to 
hundred-fold more historic tailings stockpiled on mine sites. Of the 
global annually generated silicate-hosted tailings, potentially up to 2 Gt 
may be identified as materials of high reactivity with CO2 and of high 
CDR potential (Bullock et al., 2022). These materials include reactive 
minerals derived from asbestos and talc-hosting serpentinite-hosted 
deposits (Dichicco et al., 2015; McCutcheon et al., 2016; 2017; Power 
et al., 2013b; Paulo et al., 2021; Wang and Maroto-Valer, 2011), Ni-rich 
sulphide deposits (Assima et al., 2014; Kandji et al., 2017; Power et al., 
2020; Wilson et al., 2014), kimberlite diamond mines (Bullock et al., 
2023b; Mervine et al., 2018; Paulo et al., 2021; Wilson et al., 2009b; 
Zeyen et al., 2022), and olivine and serpentine-rich dunites mined as 
refractory minerals (Bullock et al., 2023a; Hangx and Spiers, 2009; 
Kremer et al., 2019; Kremer and Wotruba, 2020; Renforth et al., 2015; 
Schuiling and de Boer, 2011; ten Berge et al., 2012). 

Similarly, non-silicate hosted tailings have also been identified for 
their geochemical CDR potential, including limestone-hosted aggregates 
and metal deposits (Foteinis et al., 2022; Renforth et al., 2013, 2022), 
and Al-rich red muds (Bonenfant et al., 2008; Renforth, 2019), while 
borax-rich deposits may act to catalyse CO2 absorption in solution (Guo 
et al., 2011). A major benefit for tailings and similar alkaline industrial 
wastes, such as glassy slags and combustion fly ashes (Campbell et al., 
2022; Ebrahimi et al., 2018; Huijgen et al., 2005; Mustafa et al., 2020; 
Rausis et al., 2021; Reddy et al., 2009; Renforth, 2012; 2019; Reynolds 
et al., 2014; Wang et al., 2022), over natural rocks for CDR purposes is 
that they are typically available in fine grain sizes as part of the con-
ventional industrial process, so no additional energy requirements are 
needed to achieve these favourable grain sizes. Finer grains result in 
higher, fresher reactive surface areas for reactions with CO2 to take place 
(Bodénan et al., 2014; Bullock et al., 2021; Campbell et al., 2022; Hitch 
et al., 2010; Li et al., 2018; McCutcheon et al., 2016; Pronost et al., 2011; 
Renforth, 2019; Vance et al., 2009; Vogeli et al., 2011). Furthermore, 
materials such as fly ashes and slags may be produced proximal to a CO2 
emission point source (e.g., coal-fired power plants, metal refineries) 
that could be utilised for CDR purposes on-site (Wang et al., 2019). 

The academic and industrial attention being paid to such physically- 
favourable industrial wastes highlights the high potential for CO2-water- 
solid material reactions for large-scale geochemical CDR purposes, 
either hosted on-site (e.g., reactor-based schemes; (Xing et al., 2022)) or 
in other ex-situ settings (e.g., field-based schemes; Beerling et al., 2020). 
However, critical uncertainties remain regarding which by-product 
materials are appropriately reactive and at what dissolution rates 
(Wr), requiring further attention. While mafic and ultramafic-rock 
derived alkaline industrial wastes are generally considered the best 
candidates for geochemical CDR purposes, more studies are required to 
further understand their reactions. Furthermore, rigorous experimental 
studies on other industrial materials, such as Al-associated red muds, 
borate deposits, lime-treated tailings, SO2-processing products, and 
Cu-related tailings, highlighted for their possible CDR potential (e.g., 

Fig. 1. Summary of principle reactions and processes involved in natural and deliberately accelerated weathering to produce bicarbonate alkalinity and/or carbonate 
minerals to achieve CDR. The addition of CO2 to water (in the atmosphere or by direct injection) leads to formation of carbonic acid (H2CO3), dissociating into 
hydrogen ions (H+) and bicarbonate ions (HCO3

− ), acting to decrease pH, trigger disequilibrium between mineral and water, and leading to mineral dissolution. The 
additional Ca2+ or Mg2+ in solution and presence of hydroxide ions (OH⁻) increases pH, promoting the formation of carbonate ions (CO₃2⁻), and invoking Ca- 
carbonate (e.g., calcite; CaCO3) or Mg-carbonate (e.g., magnesite; MgCO3) precipitation from solution. 
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Bullock et al., 2021, 2022; Guo et al., 2011; Jones et al., 2006; Renforth, 
2012; 2019; Srivastava et al., 2022), are generally lacking. 

This study investigates the ambient-temperature reactivity of a wide 
range of industrial wastes with CO2 and water, with the primary goal of 
identifying viable cation sources at promising Wr for possible CDR 
strategies. The sample set, derived from industrial sites distributed 
globally, includes materials generally considered to be chemically and 
mineralogically favourable for CDR (e.g., diamond kimberlite, dunite, 
and Ni sulphide tailings), materials that may be promising (e.g., ilmenite 
tailings, Al red muds, borax tailings) and materials of unknown or minor 
promise (e.g., lime-treated and untreated Cu tailings, SO2-processing 
products, fly ashes, and Cu slags). The aim is to identify the materials 
that show suitable potential for CO2-water-solid material reactions for 
targeted future CDR methods and upscaled and accelerated removal 
strategies. This study also investigates the post-experimental changes to 
physical, chemical, and mineralogical (observed and predicted) prop-
erties of by-product samples to assess better the overall geochemical 
CDR potential and different CDR strategies (e.g., alkalinity production 
vs. carbonate precipitation) that could be targeted. A better under-
standing of reaction kinetics across a broader range of industrial wastes 
will aid future projects in confirming or re-evaluating the viability of 
materials for various CDR schemes. This will also help identify oppor-
tunities for upscaled pilot schemes, incorporating advanced geochem-
ical CDR methods to expedite reaction kinetics. 

2. Materials and methods 

2.1. Materials 

Twenty-one industrial processing residual materials related to global 
site operations were selected for this study. Samples include tailings 
derived from mine operations targeting diamond-hosting kimberlites, 
dunites, borax, copper (Cu), ilmenite, fluorite, and Ni sulphides, as well 
as Al-bauxite-related red muds, Cu refinery slags, products from sulphur 
dioxide (SO2) processing, carbonate marble fine cuttings, and coal-fired 
power plant fly ashes (Table 1). Changes to water chemistry through 
reactions with CO2 and powdered material samples were monitored 
throughout the experiment. These include changes to pH, alkalinity 
indicators, silica content, and cation content (labile cations leaching 
from solid samples), predominantly Ca2+ and Mg2+, required for re-
actions with CO2 (available as dissolved inorganic carbon, DIC) to pro-
duce bicarbonate (HCO3

− , stabilised by cations) and carbonate (CO3
2− , 

stabilised by cations) ions. 

2.2. Sample characterisation 

2.2.1. Scanning electron microscopy 
Pre-experimental textural and mineralogical characteristics were 

examined using a Jeol IT500HR/LA electron microscope (SEM), equip-
ped with a Raith Elphy Quantum X-ray detector for energy dispersive X- 
ray spectroscopic (EDS) microanalysis, at the Research Support Services, 
University of Alicante. 

2.2.2. X-Ray diffraction 
Mineralogical characterisation, including quantitative modal min-

eral abundances, was performed by X-ray diffraction (XRD) analysis. 
Samples were analysed using a Bruker D8-A25 diffractometer instru-
mentation at GEO3BCN, CSIC. Fine powdered (<70 μm) samples were 
placed on a flat disk sample holder, compressed, and scanned (Cu K-α1 
radiation, λ=1.5406 Å, at 40 kV and 40 mA), collecting data between 4◦

and 60◦ of 2θ, with a scan step of 0.05◦ and a contact time of 5 s. Dif-
fractogram evaluations were carried out using DIFFRAC software. 
Moreover, XRD data were interpreted using the XPowder software 
package, which allows the calculation of amorphous content. It con-
siders that amorphous absorption contributes to the full-profile back-
ground, representing a percentage of amorphous phases in the sample 

(Benavente et al., 2020; Martín Ramos, 2004; Pla et al., 2021; Sanjuán 
et al., 2019). 

2.2.3. Major and trace element geochemistry 
Whole rock composition was determined by a combination of X-ray 

fluorescence (XRF) spectrometry, loss on ignition (LOI), and inductively 
coupled plasma-mass spectrometry (ICP-MS), performed at ALS 
Geochemistry Services (Seville, Spain; ALS code CCP-PKG03). Certified 
reference materials (CRM) analysis results were within the expected 
target range for each analyte. Duplicate analyses produced values within 
the acceptable range for laboratory duplicates, with an average relative 
per cent difference of ±5 %. Total carbon (TC), total inorganic carbon 
(TIC), and total organic carbon (TOC) contents of materials were 
measured using a LECO SC-144DR elemental analyser at the University 
of Leeds. Analyses were run concurrently with LECO instrumental 
standards (LECO part No. 502–062 Lot 1018, 0.924 % C), and the 
repeatability, based on repeats of standards and blanks, was typically 
within 1 %, with a maximum relative error of ~3 %. 

2.2.4. Grain size distribution 
The experiments aimed to use a sample size range that may reflect a 

typical average particle size present for a range of waste types on an 
industrial site. Representative cited particle sizes, where values are 
presented as mean particle sizes or d90 values, typically range from ~75 
μm (e.g., Amponsah-Dacosta, 2017; Rackley, 2017; Swami et al., 2007) 
up to 250 μm (e.g., Das, 2015), with several values between 75 and 250 
μm also cited (e.g., Rodríguez et al., 1998; European Commission, 2009; 
Hu et al., 2017; Kursun et al., 2017; Schulz et al., 2017). Slag samples 
may be coarser, up to 2 mm, and fly ash samples may be finer than 64 

Table 1 
Industrial by-product samples utilised in this study.  

Sample 
code 

General sample description Locality 

Diamond kimberlite mine tailings 
DFT Diamond mine kimberlite fine tailings Northwest Territories, 

Canada 
DK Diamond mine kimberlite fine tailings Northwest Territories, 

Canada 
ACT Diamond mine kimberlite coarse tailings Western Australia 
Dunite mine tailings 
DUL Dunite mine fine tailings (<100 µm) Galicia, Spain 
DUN Dunite mine coarse material (0–3 mm) Galicia, Spain 
Al-red mud mine tailings 
GRM Aluminium mine red mud tailings Northern Territory, 

Australia 
NRMS Aluminium mine seawater neutralised 

red mud tailings 
Queensland, Australia 

Borax mine tailings 
BAP1 Boron mine tailings California, United States 
BAP2 Boron mine tailings California, United States 
BRP Boron mine tailings California, United States 
Cu mine tailings 
RTKC Copper mine tailings Utah, United States 
SDS Copper mine tailings Unknown 
A-ESC Copper mine mixed dump materials Andalucía, Spain 
A-EP Copper mine lime-treated tailings Andalucía, Spain 
Cu slag material 
ACS Copper refinery slags Andalucía, Spain 
Ilmenite mine tailings 
SCDS Ilmenite mine tailings Quebec, Canada 
SO2 processing plant by-products 
SSO2 Mud product from SO2 processing Victoria, Australia 
Marble fine cuttings 
MAR Marble quarry fine waste cuttings Alicante, Spain 
Fluorite mine tailings 
MFA Fluorite mine tailings Asturias, Spain 
Ni sulphide mine tailings 
WCN Nickel sulphide mine tailings Ontario, Canada 
Coal-fired power plant fly ash 
FA Coal-fired power plant-derived fly ash León, Spain  
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μm, though both can show wide distributions. The aim was also to 
closely reflect at least some of the inherent particle size variability in 
tailings ponds and similar settings, as well as the probable size distri-
bution which would be considered present in any implemented 
large-scale geochemical CDR system. This means that some finer and 
coarser material would also be present (any additional extensive 
high-resolution screening of fines and slightly coarser material specif-
ically for CDR purposes would likely be costly and time consuming in 
such a system). However, the aim was also to be able to compare sam-
ples to each other, meaning a close average grain size and grain size 
distribution would also be required. For these reasons, all samples were 
crushed, homogenised and dry-sieved once using a sieve shaker (up to 
20 min at a high shake power setting) to achieve a general majority size 
range of 63–250 μm. 

Pre-experimental particle size distributions were determined using a 
Malvern Mastersizer 3000 laser diffraction particle size analyser at 
GEO3BCN, CSIC. The analyser, equipped with a laser diffractometer 
(ultrasonic water disaggregation: Hydro MU system; absorption: 0.1; 
refractive index: 1.52; measurement time: 20 s; obscuration: 10–20 %; 
pump speed: 2500 rpm, five measures; material amount per run: ~1 g; 
measurement range: 0.1 to 1000 μm), provides the particle size abun-
dance as the average volume percentage of equivalent spherical diam-
eter, measured over five runs. The analyser also gives statistical particle 
information such as specific geometric surface area (G-SSA) and d10, 
d50 and d90 values (% of particles smaller than each size bracket). 

2.2.5. Specific surface area 
When a reaction is surface controlled, measured overall reaction 

rates are directly proportional to the surface area involved and thus must 
be normalised by a surface area term to obtain the rate constant. Two 
main methods can calculate surface area measurements: G-SSA calcu-
lated from grain diameter, and specific surface area determined by the 
Brunauer-Emmett-Teller or BET method (BET-SSA) (Brunauer et al., 
1938). Generally, BET measurements are used in most studies due to 
their robustness compared to geometric measurements (Liittge and 
Arvidson, 2008), though both methods show advantages and limitations 
for Wr determination. BET considers surface roughness, such as pits and 
cracks, giving a higher measurement. The specific surface areas of 
samples were measured by the gravimetric nitrogen BET method at the 
University of Barcelona (Micromeritics ASAP 2000 Micropore Analyser) 
and the University of Alicante (Quantachrome Instruments Autosorb-6 
equipment). Samples were degassed for 24 h at approximately 140 ◦C 

prior to adsorption isotherm determination, with nitrogen adsorption 
isotherms obtained at liquid nitrogen temperature. Values for G-SSA 
were also co-determined by Malvern Mastersizer during grain size dis-
tribution analysis. 

2.3. Experimental procedure 

All samples were tested for their reactivity with CO2 and water under 
controlled conditions using a benchtop experimental open system setup 
at GEO3BCN, CSIC (Fig. 2). The setup utilised bottled samples, tested for 
100 h over three runs and three weeks (three runs of seven samples, with 
a blank control bottle for each run, bottled placed in a row and con-
nected by the gas tube). The 500 ml bottles were initially washed to 
ensure no contamination was present. The cleaned bottles were filled 
with 500 ml of purified water of 18.2 MΩ/cm type Milli-Q Plus. Bottles 
were placed on multi-platform shaker plates to ensure some sample 
mobilisation during the experiment, operating at a near-constant rate of 
125 rpm. At the onset of the experiments, ~10 g of dry sample was 
added to each bottle, fitted with a CO2 gas line, as well as an over- 
pressure release valve and valve extraction point, allowing for regular 
fluid sample extractions during the experiment. The CO2 flow was 
running during the experiment at a rate of ~1.5 standard cubic feet per 
hour. The experiment commenced following a ~48-hour CO2-fluid 
saturation-equilibration period before adding the samples. Following 
equilibration, an initial pH measurement was taken for each bottle. The 
samples were then added, with one bottle remaining blank (Milli-Q 
water) to account for the effect of CO2 fluctuations during the experi-
ment. Solution sampling began immediately following the addition of 
solid samples. The solution pH and the specific conductivity (SC) were 
monitored and recorded throughout the experimental duration. When 
pH fluctuations stabilised after 100 h, sampling and the experiment were 
concluded. As well as regular sampling for cation content, a visual 
(colour change-based) indicator of carbonate hardness and alkalinity 
was determined regularly in-situ by volumetric titration using VISO-
COLOR® HE Carbonate Hardness C 20 kit (accuracy ± 0.2 mmol/L H+). 
Carbonate hardness is a measure of carbonates and bicarbonates present 
in water. The method requires extraction of 5 ml of solution per sample 
point, meaning sampling was restricted to 1–2 times per day to avoid 
rapid depletion of solution across the experimental time. The in-situ 
measurement method visually evaluates alkalinity using indicator and 
titration solutions and changes in colour to estimate carbonate hardness 
(m-value) and partial alkalinity (p-value), converted to major element 

Fig. 2. Experimental setup, utilising bottles containing 10 g sample, 500 ml water, and CO2 gas on the shaker tables.  
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oxide (e.g., Ca, Mg, Na, Fe), carbonate, and H+ concentrations. 

2.4. Post-experimental results 

Remaining solid samples were removed from bottles within 24 h of 
the experiment finishing, with no additional shaking or CO2 gas input to 
limit post-experimental effects on both the solid and fluid properties. 
Following drying and sieving, solid sample weights were measured post- 
experiment to indicate sample loss by mineral dissolution. Post- 
experimental XRD, BET-SSA measurements and TC/TIC/TOC concen-
trations were also determined on sample materials, following drying, 
using the same methods outlined above. 

Cation Wr was calculated for Ca, Si, and Mg using Eq. (5) below: 

rx = log
(

ΔX × Mw

ABET × Mr × t

)

(5)  

where rx is the Wr of element x shown as log x (mol/cm2/s), ΔX is the 
aqueous concentration of element x (converted to mol/kg), Mw is the 
water mass at each sample point (kg), ABET is the BET-derived SSA of 
rock powders before the experiment (converted to cm2/kg), Mr is the 
original material mass (kg), and t is the elapsed time in seconds from t =
0 (see also (Marieni et al., 2020)). 

In this study, in the absence of adequate time to precipitate 
demonstrable amounts of secondary carbonate minerals (and means to 
measure their occurrence in such probable low abundances, e.g., below 
XRD detection limits), the geochemical modelling program PHREEQC 
(version 3.7.0; (Parkhurst and Appelo, 2013), with MINTEQ database) 
was used to predict the possible precipitating phases that may result 
from reactions of each sample with pure water, at conditions similar to 
those of the experimental setup (temperature of 25 ◦C, starting pH of 4, 
with fixed pressure of a CO2-rich gas), with sufficient time to react 100 % 
of available elements in the solution and material. For each sample run, 
equilibrated Ca- and Mg-bearing phases (cation sources for possible 
carbonate precipitates) of the starting materials were assumed based on 
the modal XRD, where present. 

3. Characterisation results 

3.1. Pre-experimental sample characterisation 

The physical and mineralogical properties of the samples selected for 
this study are shown in Table 2, Fig. 3 and Supplementary Material (SM) 
Table I. The geochemical characteristics are shown in Table 3 and SM 
Table II. 

3.2. Grain size distribution and surface area 

As a result of the initial screening and dry sieving process, the d90 
value across all samples ranges from 46 (sample DUL) to 346 μm (ACS 
glassy slag sample), averaging 155 μm. Most samples show polydisperse 
distributions (monodisperse distributions – MFA and ACS), with no 
particles identified below a size of ~0.2 µm. Few samples show modal 
volumes greater than 1 % for particles below ~1 µm (SM Table I). The 
largest recognised grain size was at a size classification of ~1002 µm 
(samples BRP, BAP2 and WCN), with few particles identified as larger 
than ~355 µm across all samples. Some distributions generally trend 
towards coarser grain sizes and monomodal distributions, with the 
highest modal values greater than 100 µm (e.g., SDS, GRM, ACT, ACS, 
and MFA), while several samples show a bimodal distribution. G-SSA 
values range across deposits from 0.12 m2/g (sample ACS) to 1.51 m2/g 
(sample BAP1), averaging 0.85 m2/g across all samples (SM Table I). 

3.3. Sample mineralogy 

The modal mineralogy of samples was determined by XRD and 

Table 2 
Pre-experimental physical and mineralogical characteristics of samples. For 
modal mineralogy of glassy samples (e.g., ACS and FA),% represents proportion 
of total crystalline phases identified, while amorphous content represents glassy 
proportion of total sample material.  

Sample Grain size percentiles 
(µm) 

BET- 
SSA 
(m2/ 
g) 

Modal mineralogy, 
excluding 
amorphous content 
(XRD) 

Amorphous 
content (%) 

d10 d50 d90 

Diamond kimberlite mine tailings 
DFT 2.0 14.0 99.7 19.5 Muscovite (22.2 

%), quartz (21.3 
%), forsterite (15.8 
%), notronite (11.3 
%), calcite (10.3 
%), microcline (9.1 
%), albite (4.6 %), 
dolomite (3.4 %), 
clinochlore (2.0 %) 

30.4 

DK 2.0 12.2 102.6 34.8 Forsterite (22.4 %), 
microcline (19.3 
%), quartz (16.3 
%), albite (15.3 %), 
muscovite (11.0 
%), calcite (6.8 %), 
nontronite (2.8 %), 
clinochlore (2.5 %), 
dolomite (2.1 %), 
clinochrysotile 
(1.5 %) 

32.0 

ACT 4.4 84.4 257.7 2.8 Quartz (78.5 %), 
clinochlore (8.8 %), 
microcline (7.1 %), 
muscovite (3.5 %), 
calcite (1.4 %), talc 
(0.7 %) 

3.8 

Dunite mine tailings 
DUL 2.2 13.2 46.2 18.4 Lizardite (43.8 %), 

clinchlore (41.9 %), 
dolomite (7.4 %), 
tremolite (6.9 %) 

25.1 

DUN 1.6 23.2 114.2 10.0 Lizardite (56.4 %), 
enstatite (15.0 %), 
tremolite (12.9 %), 
forsterite (8.9 %), 
clinochlore (6.8 %) 

44.2 

Al-red mud mine tailings 
GRM 8.5 71.1 189.5 24.9 Gibbsite (41.6 %), 

quartz (19.3 %), 
haematite (17.8 
%), anatase (5.2 
%), calcite (5.1 %), 
kaolinite (4.3 %), 
muscovite (2.1 %), 
rutile (1.5 %) 

50.0 

NRMS 1.5 26.5 118.9 33.1 Sodalite (43.7 %), 
haematite (15.8 
%), halite (10.9 %), 
anatase (7.4 %), 
boehmite (6.9 %), 
calcite (5.1 %), 
quartz (4.6 %), 
gibbsite (3.5 %), 
magnetite (1.1 %), 
rutile (1.0 %) 

50.0 

Borax mine tailings 
BAP1 1.4 11.6 48.6 2.5 Thenardite (81.3 

%), sassolite (7.8 
%), albite (4.1 %), 
microcline (3.9 %), 
quartz (1.7 %), 
muscovite (0.6 %), 
halite (0.6 %), 
rhomboclase (0.1 
%) 

15.4 

BAP2 1.9 14.5 96.9 2.1 Borax (48.9 %), 
thenardite (21.7 

14.6 

(continued on next page) 
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verified by SEM-EDS. Of particular interest were phases that bear Ca, 
Mg, Na, and K (Fig. 3a-c), which may act to produce alkalinity (Kheshgi, 
1995; Palandri and Kharaka, 2005), as well as phases rich in elements 
that are unlikely to react, which will hinder alkalinity production or 
promote acidity (e.g., Si, Mn, Al, Fe, B, S, P, N) (Fig. 3d-F). Minerals of 
interest for alkalinity and carbonate production are Mg- and Ca-bearing 
silicates, oxides, and hydroxides, as well as Na- and K-bearing phases. 
Carbonate minerals are also of interest due to their ability to generate 
alkalinity, but any subsequent carbonate precipitation that follows 
directly from carbonate dissolution would result in no net CO2 uptake. 

Tailings samples derived from dunite and Ni sulphide processing 
operations are comprised entirely of minerals that may react to produce 
bicarbonates and carbonates. In particular, the presence of forsterite (up 
to ~100 µm in length), lizardite (~50–100 µm), tremolite (~100 µm), 
chlorite (~100 µm), and enstatite (~120 µm) are promising for CO2- 
water-mineral reactivity. The dunite samples also contain minor dolo-
mite, and amorphous content of up to 44 % (similarly high amorphous 
content also noted in other studies; (Baragaño et al., 2019; Caballero 
et al., 2009)). Kimberlite-derived samples show similarly high potential, 
mainly due to the presence of forsterite, but also sporadic brucite phases 
(up to ~10 µm, identified by SEM-EDS, Fig. 3a), saponite, a smectite 
group mineral which contains Ca-Mg-Fe and may show some CDR po-
tential (Cygan et al., 2012; Michels et al., 2015; Zeyen et al., 2022), and 
amorphous material (up to 30 %). Portlandite, a highly reactive 
Ca-hydroxide mineral and the Ca analogue of brucite was identified in 
ilmenite tailings. Calcite, thaumasite (Ca-silicate), and phlogopite 
(Mg-mica) are also present in ilmenite mine tailings. The presence of 
Na-rich minerals such as sodalite in red muds may also provide some 
CDR potential. Crocidolite, a fibrous Na-rich asbestiform amphibole, 
was also identified in one Cu tailings-derived sample (RTKC). This 
sample also contains sanidine and muscovite. Sample MAR, derived 
from marble fines, is almost entirely composed of carbonate minerals 
(calcite and dolomite). 

Samples with high abundances of quartz (or other SiO2 phases) and 
Al, Fe, and Ti-rich minerals (e.g., anatase, boehmite, gibbsite, goethite, 
haematite, and ilmenite) are unlikely to be favourable for CDR purposes. 
All Cu tailings samples show high quartz contents, with minor clays, Fe- 
oxides, and hydroxides phases also evident. Monazite, a phosphate 
mineral, was also identified in sample DFT (~50 µm), which may pre-
sent similar negative impacts on alkalinity production. Sample FA, fly 
ash, is predominantly glassy (up to 50 % amorphous content), with the 
aluminium-silicate glass identified by SEM-EDS. The crystalline phases 
present show no realistic promise for alkalinity generation or carbon-
ation. However, any amorphous phases (submicron phases, typically 
blanketing larger minerals, with Mg and/or Ca identified in the structure 
by EDS; examples shown in Fig. 3 g–i) may harbour some potential. 
Similarly, sample ACS is a glassy slag (up to 50 % amorphous content) of 
limited carbonation promise, though enstatite was identified as a crys-
talline phase by SEM-EDS. 

3.4. Sample chemistry 

Samples show geochemical compositions that reflect their miner-
alogy (Table 3). Dunite and Ni sulphide tailings samples show the 
highest MgO content (30–37 wt%, mostly reflecting high serpentine 
content), with fine-grained kimberlite tailings also exhibiting high MgO 
(~24 wt%, high olivine content). Ilmenite tailings and fine marble 

Table 2 (continued ) 

Sample Grain size percentiles 
(µm) 

BET- 
SSA 
(m2/ 
g) 

Modal mineralogy, 
excluding 
amorphous content 
(XRD) 

Amorphous 
content (%) 

d10 d50 d90 

%), tincalconite 
(14.8 %), ulexite 
(11.1 %) 
clinochlore (1.4 %), 
albite (1.0 %), 
microcline (0.9 %), 
quartz (0.1 %) 

BRP 6.4 81.7 282.1 0.8 Tincalconite (92.0 
%), borax (6.7 %), 
quartz (1.3 %) 

14.3 

Cu mine tailings 
RTKC 1.3 14.9 68.8 17.3 Quartz (62.2 %), 

jarosite (11.2 %), 
sanidine (10.6 %), 
gypsum (9.8 %), 
muscovite (3.7 %), 
crocidolite (1.2 %), 
montmorillonite 
(0.7 %), nontronite 
(0.5 %) 

12.5 

SDS 43.6 107.1 203.8 1.4 Quartz (90.1 %), 
microcline (4.9 %), 
illite (4.7 %), pyrite 
(0.3 %) 

3.2 

A-ESC 2.4 28.2 212.8 3.1 Quartz (82.5 %), 
clinochlore (6.1 %), 
muscovite (5.7 %), 
jarosite (2.6 %), 
goethite (2.2 %), 
kaolinite (1.0 %) 

9.6 

A-EP 2.2 30.2 223.2 2.4 Quartz (54.7 %), 
clinochlore (38.8 
%), siderite (2.4 
%), muscovite (2.1 
%), pyrite (2.1 %) 

13.0 

Cu slag material 
ACS 25.8 155.3 346.6 0.1 Maghemite (44.7 

%), iscorite (27.9 
%), fayalite (27.4 
%) 

50.0 

Ilmenite mine tailings 
SCDS 6.0 20.7 97.8 9.7 Hannebachite 

(38.5 %), 
portlandite (23.2 
%), thaumasite 
(20.9 %), calcite 
(15.5 %), 
phlogopite (2.0 %) 

38.8 

SO2 processing plant by-products 
SSO2 1.4 33.7 145.7 9.3 Anorthite (44.0 %), 

ilmenite (17.8 %), 
albite (13.2 %), 
muscovite (9.8 %), 
haematite (7.3 %), 
rutile (4.5 %), 
clinochlore (3.5 %) 

44.2 

Marble fine cuttings 
MAR 6.9 34.1 215.2 3.3 Calcite (69.3 %), 

dolomite (30.5 %), 
quartz (0.3 %) 

5.7 

Fluorite mine tailings 
MFA 16.5 90.2 214.1 1.3 Quartz (70.0 %), 

fluorite (14.9 %), 
calcite (10.1 %), 
dolomite (3.7 %), 
illite (0.7 %), pyrite 
(0.5 %) 

3.5 

Ni sulphide mine tailings 
WCN 3.6 18.0 46.6 4.1 Lizardite (51.3 %), 

clinochlore (45.4 
%), tremolite (3.2 
%) 

10.4 

Power plant fly ash  

Table 2 (continued ) 

Sample Grain size percentiles 
(µm) 

BET- 
SSA 
(m2/ 
g) 

Modal mineralogy, 
excluding 
amorphous content 
(XRD) 

Amorphous 
content (%) 

d10 d50 d90 

FA 4.0 43.3 120.9 1.9 Mullite (56.0 %), 
quartz (44.0 %) 

50.0  
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cuttings show high CaO concentrations (48–51 wt%, reflecting high Ca 
sulphite, carbonate, and silicate content in ilmenite tailings, high car-
bonate (calcite) in marble fines; ~13 wt% TIC content in marble fines), 
while borax tailings and Al-red mud sample NRMS show high (>10 wt 
%) Na2O contents (Na sulphates and borates). The ilmenite tailings 
sample also contains notably high S content (11 wt%) and TIC content (5 
wt%). Tailings associated with Cu mining, as well as coarse kimberlite 
tailings, show high SiO2 contents (65–87 wt%), reflecting high quartz 
content. The fly ash sample contains high TC content (26.7 wt%, all as 
TOC). Several samples show elevated trace element contents that may be 
a potential threat if liberated into local environments such as water and 
soil systems, particularly in Cu tailings and SO2 processing plant by- 
products (SM Table II). These include notably high Ba content (>250 
µg/g in diamond kimberlites, Cu tailings, fluorite tailings, and fly ashes), 
As (>130 µg/g in borax, Cu, and fluorite tailings), Co (>190 µg/g in SO2 
processing plant by-products and Cu slag glasses), Cu (>230 µg/g in Cu 
tailings and slags, Ni sulphide tailings, and SO2 processing plant by- 
products), Ni (>500 µg/g in Ni sulphide and kimberlite tailings, and 
SO2 processing plant by-products), Pb (>240 µg/g in Cu tailings and 
slags, and SO2 processing plant by-products) and Zn (>200 µg/g in Cu 
tailings and slags, fluorite tailings, and SO2 processing plant by- 
products). 

4. Experimental results 

4.1. Solution chemistry 

At the experimental onset, the pH decline from neutral to more acidic 
conditions was driven by equilibration with CO2 and the formation of 
DIC, prior to sample addition. Before sample additions, the starting so-
lution showed a pH range of ~3.6 to 4.1, generally maintained 
throughout the 100-hr experiments by the blank samples (pH fluctua-
tions ~±0.2). Over the sample set, final pH values range from 3.9 (Cu 
tailings sample A-ESC) to 7.0 (borax tailings sample BAP2), with Cu- 
related samples and the fly ash sample generally showing the lowest 
achieved pH values. In all sample cases, with the exceptions of Cu tail-
ings samples RTKC, SDS, and A-ESC (and blank samples), alkalinity in-
dicator measurements suggest the presence of carbonate (CO3

2− ) and 
bicarbonate (HCO3

− ) ions in solutions, with two borax samples (BAP2 
and BRP) showing the highest alkalinity generation. For Cu tailings, 
alkalinity indicator measurements also suggest the presence of CO2 and 
hydroxide (OH− ) in the solution. 

After the addition of the solid samples, pH values generally showed a 
rapid increase in the first 2–4 hrs of the experiment, followed by level-
ling out, though some samples exhibited a slight gradual rise beyond 
that and for the remainder of the experiment (e.g., Ni sulphide, fly ash, 
and some Cu samples) (Fig. 4a). Conductivity, which may be used to 
indicate increased dissolved salts and other inorganic chemicals, shows 
similar trends to pH, with an initial rapid increase, followed by a more 
gradual increase or plateauing for the remainder of the experiment 

Fig. 3. SEM images of example mineralogy from select samples, including (a-c) minerals of interest for alkalinity generation, and (d-f) minerals that may hinder 
alkalinity production or promote acidity. (a) Rare brucite (Mg-hydroxide) is present in kimberlite tailings samples (image from sample ACT), (b) olivine (forsterite), 
typical in dunite and kimberlite samples (image from sample DK), (c) serpentine (lizardite), present in dunite and Ni sulphide tailings samples (image from sample 
DUL), (d) pyrite, present in Cu tailings and fluorite tailings samples (image from sample A-EP), and (e) thenardite (anhydrous Na sulphate) (image from sample 
BAP1), and (f) rhomboclase (Fe sulphate), both typical in borax tailings samples (image from sample A-ESC). Also shown are possible sub-micron amorphous phases 
in samples (g) BRP, (h) SCDS, and (i) RTKC. 
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(Fig. 4b). Conductivity may also positively correlate with total alka-
linity, as demonstrated in natural water, soil, and land use trials (Amann 
and Hartmann, 2022; Bouillon et al., 2014; Proulx et al., 2018; Sechr-
iest, 1960). 

The greatest initial pH increase was associated with borax tailings 
samples BRP and BAP2, with BRP rising from 3.8 to 6.3 within an hour of 
the sample addition, and BAP2 rising from 4.7 after the sample was 
added (<1 h) to 6.7 after 2 h. This was mimicked in the BRP and BAP2 
alkalinity indicator measurements, with rapid increases in Na2O (up to 
2990 mg/L after 2 h, 3170 mg/L after 7 h) and NaCO3 (5382 mg/L after 
2 hrs, 5706 mg/L after 7 h). Ilmenite mine tailings and Al-red mud mine 
tailings samples also exhibited a notably high initial rise (up to 6.0 after 
2 h in the case of ilmenite tailings), as well as high final pH values (up to 
6.2 for both sample types after 100 hrs). Fine-grained kimberlite and 
dunite tailings were closely grouped and follow similar trends 
throughout the experiment, with final pH values of 5.8 to 6.0. Cu tailings 
samples generally lacked the initial pH increase. In one case (sample A- 
ESC), pH values did not rise above the levels of the blank samples, 
suggesting the material was generally benign with CO2-water reactions, 
with no apparent effect on pH or alkalinity generation (confirmed by no 
recorded changes in CaO or CaO3 alkalinity indicators throughout the 
experiment) (Fig. 4c, d). 

Elemental Ca, Mg, and Si release into the host solution was measured 
throughout the experimental duration (Fig. 5 and SM Table III). While 
Ca and Mg were measured for their role in alkalinity generation, Si 
concentrations of the solution were monitored due to the element acting 
as a key structural framework for silicate minerals (Oelkers, 2001; 
Marieni et al., 2020), thus acting as a control on mineral Wr in the 
majority of samples (with the exception of non-silicate-rich samples). 
Overall, the fastest Si, Ca, and Mg elemental release occurred in the 
initial 1–3 h of the experiment, when solution pH was at its lowest (pH 
~3–4), before showing a more gradual rate of release or levelling out for 
the remainder of the experiment, coinciding with gradually rising or 
plateauing pH. Red mud and dunite samples showed the highest total Si 
release across the experiment, totalling ~34–60 mmol/L, with low Si 
release from fluorite tailings and the marble cuttings sample. Ilmenite 
tailings and marble cuttings showed the highest Ca release (total release 
of 648 and 550 mmol/L, respectively), while dunite tailings (136–173 
mmol/L) and fine-grained kimberlite tailings (111–133 mmol/L) 
showed the highest Mg release. Select Cu tailings samples also showed 
notably high Mg (sample A-ESC, 44 mmol/L) and Ca (sample RTKC, 433 
mmol/L) release. 

4.2. Dissolution rates (Wr) 

Wr values were derived based on Si, Ca, and Mg release across the 
entire experimental duration, using average starting BET-SSA- 
normalised values (Fig. 6, Table 4, and SM Table IV; G-SSA-normal-
ised values also shown in SM Table IV). In general, G-SSA-normalised 
values were ~1 magnitude faster than BET-normalised values for this 
study, consistent with other studies (e.g., (Brantley and Mellott, 2000; 
Delerce et al., 2023; Renforth et al., 2015)). For Si release, 
BET-normalised values ranged across all samples ~− 12 to − 16 log 
(mol/cm2/s), averaging ~− 14 log (mol/cm2/s) (Fig. 6a). For Ca and Mg 
release, values ranged ~− 11 to − 16 log (mol/cm2/s) (Fig. 6b) and 
~− 12 to − 16 log (mol/cm2/s) (Fig. 6c), respectively. The fastest rates 
were associated with the initial hours of the experiment when the so-
lution pH was at its lowest and finer fractions were present to provide an 
initial rapid rate of dissolution. Wr values gradually declined following 
the initial stages, coinciding with rising pH and removal of finer frac-
tions into solution. Overall, samples with the fastest Wr (based on Si 
release) were typically borax tailings (average ~− 13 to − 14 log 
(mol/cm2/s)), followed by dunite tailings, fly ashes, ilmenite tailings, 
and red mud samples. 

Conversely, marble cuttings showed the fastest rates based on Ca 
release, averaging ~− 11 to − 12 log (mol/cm2/s), with carbonate-rich Ta
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fluorite tailings, ilmenite tailings, and borax tailings samples showing 
similar rates. For Mg release, the fastest Wr (~− 13 to − 14 log (mol/ 
cm2/s)) were dunite, Ni sulphide, borax, and fine kimberlite tailings, as 
well as marble cuttings, borax tailings (samples BAP1 and BRP), and one 
Cu tailings sample (A-ESC). 

4.3. Changes in physical, chemical, and mineralogical sample properties 

Solid samples were analysed post-experiment for their weight 
change, XRD modal mineralogy, BET-SSA change, and TC/TIC/TOC 
content changes. All borax mine tailings samples showed the highest loss 

Fig. 4. Solution chemistry trends during the experiment. (a) pH change, (b) conductivity change, and (c, d) alkalinity indicators based on carbonate hardness, 
expressed as: (c) Oxide (e.g., CaO, MgO, Na2O, major element depicted by X, and (d) XCO3 in solution. Blank samples indicated by black dashed lines in (a, b). 
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of solid sample from pre- to post-experiment (~1–5 % of original sample 
weight remaining post-experiment), while kimberlite fines (~26–32 % 
sample loss), the sample from SO2 processing (~30 % sample loss), 
select Cu tailings samples (RTKC ~25 % sample loss), Al red mud 
samples (~13–19 % sample loss), dunite tailings (~12–17 % sample 
loss), and the marble quarry fines (~12 %) also exhibited a notable 
sample decrease post-experiment (SM Table V). The Cu slag, fluorite 
tailings, Ni tailings, and fly ash samples all showed >90 % sample 
retention post-experiment. Excluding kimberlite sample ACT, fluorite 
tailings, and borax mine tailings samples, all samples showed a post- 
experimental increase in BET-SSA (Fig. 7a). Cu tailings sample A-ESC 
showed the greatest increase from 3 m2/g to 23 m2/g, while samples 
DFT, DUL, and GRM also exhibited notable increases (SM Table VI). 
Samples ACT and MFA decreased in post-experimental BET-SSA, while 
there was insufficient material remaining for post-experimental analysis 
of borax tailings samples. 

The most notable modal mineralogical change from pre- 
experimental to post-experimental, as determined by XRD (Table 5), 
was the significant reduction in borax, thenardite, sassolite, halite, tin-
calconite, and ulexite in borax tailings samples (BAP1, BAP2), with high 
calcite content (67 % modal mineralogy, where previously not identified 
pre-experiment) noted in sample BAP2. There was also a notable 

reduction in portlandite in the ilmenite mine tailings (from 22.6 % pre- 
experiment to none identified post-experiment), while calcite content 
rose from 16 % modal abundance to 53 % modal abundance in the same 
sample. Basanite (CaSO4⋅0⋅5H2O) was also present post-experiment in 
ilmenite tailings, with reductions in hannebachite abundances evident. 
Calcite showed modal reductions in select kimberlite (DK, DFT) and red 
mud samples (as well as sodalite abundance reduction in sample NRMS), 
while nontronite was evident in select kimberlite (DFT) and Cu mine 
tailings (SDS) samples post-experiment. Sample DFT also showed the 
post-experimental presence of muscovite and lizardite, and red mud 
sample GRM showed post-experimental boehmite present. It should be 
stressed that 

XRD can only characterise crystalline solid phases, meaning any 
possible amorphous phases (which may contain Ca or Mg) present in the 
samples would be not identified using this technique. The presence of 
amorphous phases is therefore inferred here in the majority of samples, 
based on the large diffuse bump XRD pattern (with high-intensity nar-
row peaks superimposed to indicate more structured crystalline phases) 
and sporadic evidence for amorphous-like powdered morphologies 
identified by SEM (containing variable amounts of Ca and Mg, based on 
EDS; Fig. 3 g–i). Of the twenty one samples, fourteen showed a reduction 
in amorphous content (including notably large reductions in samples 
DFT and DUN), four samples showed a content increase and three 
showed no recorded change. Post-experimental amorphous content also 
generally correlates positively with post-experimental BET-SSA. 

Fig. 5. Changes in cation concentrations in host media throughout the exper-
imental procedure. (a) Si, (b) Mg, and (c) Ca. Symbols and colours as shown 
in Fig. 4. 

Fig. 6. Dissolution rates (Wr) of industrial by-product samples analysed in this 
study, normalised to the BET-SSA, based on (a) Si release, (b) Mg release, and 
(c) Ca release. Symbols and colours as shown in Fig. 4. 
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With the exceptions of samples which contained no pre-experimental 
TIC content (samples RTKC, A-ESC, ASC, and FA), samples which had no 
remaining material post-experiment (borax tailings sample), dunite 
(DUN), ilmenite, and Ni sulphide tailings samples, all other samples 
showed an increase in TIC% from pre-experiment to post-experiment 
(Fig. 7b and SM Table VII). Samples ACT, GRM, SSO2, and SDS 
showed the greatest post-experimental percentage increase (~150–725 
% increase), while samples NRMS, A-EP, and MAR showed minor in-
creases (up to 12 % increase). Dunite tailings sample DUN showed the 
same TIC content pre- and post-experiment (0.1 %). Ilmenite tailings 
sample SCDS showed a decrease in TIC (5.34 % content to 2.6 % con-
tent), while Ni sulphide tailings sample WCN showed a percentage 
decrease of 44 % (0.09 % content to 0.05 % content). By comparison, the 
majority of samples show reductions in TOC content (SM Table VII). 

4.4. Geochemical modelling of precipitates 

The predictive results of the PHREEQC secondary precipitate calcu-
lations are shown in Table 5 and SM Table VIII. The calculated outputs of 
interest for this study were any predicted carbonate phases, indicating 
that possible geochemical CDR by means of mineral carbonation could 
theoretically be achieved, particularly in samples that did not contain 
carbonates in the original material. Across the sample suite, several 
carbonates were identified as possible precipitates: artinite (Mg2(CO3) 
(OH)2:3H2O), dolomite (CaMg(CO3)2), magnesite (MgCO3), huntite 
(CaMg3(CO3)4), hydromagnesite (Mg5(CO3)4(OH)2:4H2O), and nesque-
honite (MgCO3:3H2O). Samples with predicted precipitated carbonates 
were kimberlite tailings (artinite, huntite, hydromagnesite, magnesite, 
and nesquehonite identified), dunite (huntite, magnesite, and nesque-
honite), ilmenite tailings (dolomite), and Ni sulphide tailings (dolomite 

and magnesite). Most samples were predicted not to generate carbon-
ates, instead producing various Al-K-Na-Mg-Ca-Fe secondary pre-
cipitates, predominantly aluminosilicate clays (e.g., nontronite 
(recognised by XRD in some post-experimental samples), halloysite, 
kaolinite), Al-Si hydroxides (e.g., boehmite, diaspore, pyrophyllite), Fe- 
oxides (e.g., haematite, lepidocrocite), hydrous sulphates (e.g., jarosite, 
aluminite), and SiO2 polymorphs (e.g., quartz, cristobalite, chalcedony). 
Many of these non-carbonates (including some containing Ca and Mg) 
were predicted to precipitate in samples where carbonates were also 
supersaturated (minerals competing for available cations). 

5. Discussion 

5.1. Cation sources and dissolution rates 

In the kimberlite tailings samples, calcite and dolomite are consid-
ered cation sources for the high Ca in solutions, with forsterite, dolo-
mite, clinochlore, chrysotile, and talc potentially providing additional 
sources for Mg release, as well as minor brucite phases. The higher 
concentrations of Ca compared to Mg in solution in these samples, 
despite higher MgO contents compared to CaO of the starting solid 
materials, suggests faster Ca release from calcite compared to Mg release 
from dolomite and other Mg-bearing silicate sources. Dolomite, along 
with tremolite, likely provided the Ca sources in the dunite tailings 
samples, with Mg sourced from dolomite, and contributions from 
slower-reacting forsterite, lizardite, tremolite, enstatite, and clinochlore. 
Calcite was responsible for high Ca release in the Al red mud samples. In 
contrast, the Ca and Mg release identified in borax tailings samples may 
have been sourced from ulexite and clinochlore respectively. In these 
samples, high alkalinity generation is attributed to Na-rich minerals and 

Table 4 
Summary of dissolution rates (Wr), calculated over the 100-hour experimental duration, normalised to the BET-SSA, based on Si, Mg, and Ca release. Full Wr dataset, 
including BET and geometric (SSA)-normalised rates, shown in SM Table IV.   

Si-derived Wr Mg-derived Wr Ca-derived Wr  

log (mol/cm2/s) log (mol/cm2/s) log (mol/cm2/s) 

Sample Average Minimum Maximum Average Minimum Maximum Average Minimum Maximum 

Diamond kimberlite mine tailings 
DFT − 14.54 − 14.87 − 14.25 − 13.83 − 14.23 − 13.37 − 13.77 − 13.26 − 13.26 
DK − 14.66 − 15.04 − 14.26 − 13.98 − 14.4 − 13.48 − 13.98 − 14.53 − 13.35 
ACT − 15.7 − 16.08 − 15.1 − 15.17 − 15.67 − 14.41 − 14.27 − 14.69 − 13.67 
Dunite mine tailings 
DUL − 14.22 − 14.6 − 13.85 − 13.58 − 14.04 − 12.95 − 14.24 − 14.74 − 13.65 
DUN − 14.02 − 14.33 − 13.65 − 13.35 − 13.74 − 12.82 − 14.25 − 14.67 − 13.7 
Al-red mud mine tailings 
GRM − 14.32 − 14.78 − 13.63 − 15.39 − 15.96 − 14.48 − 14.27 − 14.88 − 13.44 
NRMS − 14.25 − 14.74 − 13.66 − 14.52 − 14.97 − 13.92 − 14.1 − 14.63 − 13.34 
Borax mine tailings 
BAP1 − 14.02 − 14.44 − 13.16 − 13.42 − 14.06 − 12.26 − 13.25 − 13.88 − 12.09 
BAP2 − 13.71 − 14.17 − 12.98 − 13.32 − 13.93 − 12.23 − 12.51 − 13.07 − 11.66 
BRP − 13.08 − 13.71 − 11.98 − 13.59 − 14.16 − 12.66 − 12.89 − 13.55 − 11.78 
Cu mine tailings 
RTKC − 14.9 − 15.09 − 14.74 − 15.25 − 15.74 − 14.41 − 13.15 − 13.73 − 12.24 
SDS − 14.55 − 14.98 − 13.76 − 14.11 − 14.67 − 13.13 − 12.97 − 13.43 − 12.24 
A-ESC − 14.9 − 15.29 − 14.24 − 13.34 − 14.01 − 12.27 − 14.06 − 14.68 − 13.07 
A-EP − 14.57 − 15.05 − 13.89 − 14.17 − 14.73 − 13.38 − 13.28 − 13.9 − 12.39 
Cu slag material 
ACS − 15.2 − 15.67 − 14.31 − 15.9 − 16.44 − 14.84 − 15.33 − 15.88 − 14.35 
Ilmenite mine tailings 
SCDS − 14.17 − 14.62 − 13.59 − 13.81 − 14.37 − 13.05 − 12.71 − 13.35 − 11.68 
SO2 processing plant by-products 
SSO2 − 14.58 − 14.99 − 13.87 − 14.29 − 14.76 − 13.5 − 13.83 − 14.3 − 13.01 
Marble fine cuttings 
MAR − 15.01 − 15.57 − 13.87 − 13.44 − 13.99 − 12.38 − 12.22 − 13.01 − 10.81 
Fluorite mine tailings 
MFA − 14.72 − 15.27 − 13.66 − 14.02 − 14.75 − 12.85 − 12.18 − 12.78 − 11.23 
Ni sulphide mine tailings 
WCN − 14.55 − 14.95 − 13.65 − 13.83 − 14.33 − 12.8 − 13.6 − 14.15 − 12.54 
Coal-fired power plant fly ash 
FA − 14.08 − 14.6 − 13.12 − 13.65 − 14.28 − 12.54 − 13.11 − 13.75 − 12.02  
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boron phases (borax and tincalconite). In Cu tailings, high Ca release 
associated with sample RTKC may be a product of gypsum dissolution 
(with some possible minor Ca and Mg contributions from Ca-Mg-bearing 
clays), while high Mg release in sample A-ESC may have been sourced 
from clinochlore and amorphous phases. The ilmenite tailings host 
several potential Ca sources (fast-reacting portlandite, as well as han-
nebachite, calcite, and thaumasite), and Mg may have been sourced 
from magnesite and phlogopite. SO2 processing plant by-products with 
high Ca release may have been sourced from anorthite (with Mg possibly 
sourced from clinochlore), while in the marble cuttings sample, Ca and 
Mg were sourced from calcite and dolomite, respectively. Fluorite, 
calcite, and dolomite (with possible contributions from illite) were 
responsible for Ca and Mg release in the fluorite tailings sample, while 
tremolite (Ca) and lizardite, clinochlore, and tremolite (Mg) likely 
provided the cation sources for the Ni sulphide tailings sample. 

The two glassy samples (Cu slag and power plant fly ash), which 
contain limited crystalline phases of limited reactivity and cation con-
tent, likely sourced their Ca and Mg release from cation-hosting amor-
phous phases (constituting up to 50 % of the sample material). Glassy 
slag and fly ash samples contain abundant amorphous materials, 
resulting from heating and rapid quenching processes. Amorphous ma-
terials in samples are suggested to supply cations that were released into 
solution during experimentation, where apparent crystalline sources are 
generally lacking (e.g., glassy slag and fly ash samples, and possibly 
some red mud, Cu, and borax tailings samples). The presence of cation- 
bearing amorphous material could also explain high cation release in 
samples that contain minerals that generally undergo slow dissolution (i. 
e., most silicate phases), as glassy phases may react similarly to, or even 
more rapidly than, phases such as olivine (Gislason and Oelkers, 2003; 

Kelemen et al., 2011, 2020). 
As anticipated based on mineralogy, the highest cation release for Ca 

and Mg was associated with dunites, kimberlites, and marble cuttings, 
making these the preferred cation sources. These samples host multiple 
Ca-Mg source minerals, with carbonate minerals (calcite, dolomite) 
most likely to produce alkalinity due to their comparatively fast Wr 
compared to Mg-Ca silicates. Such silicates may have also contributed 
Ca-Mg cations in the dunite and kimberlite samples, particularly sapo-
nite (identified by SEM-EDS in kimberlite samples), lizardite, chrysotile, 
and forsterite, as well as any rare hydroxide phases present, such as 
brucite (identified by SEM-EDS in kimberlite samples) and any Ca-Mg- 
bearing amorphous material present. Dunites, Ni sulphides, and kim-
berlites are known for their CDR potential due to their high Ca-Mg cation 
content in silicate and hydroxide minerals (Bullock et al., 2021; Kremer 
et al., 2019; Schuiling and Krijgsman, 2006; Wilson et al., 2009a, 2014; 
Lacinska et al., 2017; Mervine et al., 2018; Rigopoulos et al., 2015; ten 
Berge et al., 2012), while carbonate-rich deposits have also been tar-
geted for ex-situ CDR processes (Caserini et al., 2021; Foteinis et al., 
2022; Rau, 2008; Rau and Caldeira, 1999; Renforth and Henderson, 
2017; Renforth et al., 2013). Ilmenite tailings also show notably high Mg 
and Ca release, owing to the high portlandite (fast reacting 
Ca-hydroxide) and calcite content to produce alkalinity, while select Cu 
tailings samples also show higher release than the majority of samples 
(in particular, samples containing crocidolite). Conversely, high silica, 
low Ca-Mg Cu slags and Cu tailings are undesirable for CDR purposes. 
Furthermore, solution pH of Cu slag and tailings samples after 100 h was 
in the range 3.9–5.1. In practical applications, host conditions (e.g., 
water-saturated soils) with a pH <5.2 may be considered unsuitable 
candidates for CDR approaches, as dissolution of minerals by 

Fig. 7. Changes to physical and chemical sample properties from pre- to post-experiment: (a) Pre- and post-experimental BET-SSA (m2/g), there was insufficient 
material remaining for post-experimental analysis of borax tailings samples. (b) Pre- and post-experimental total inorganic carbon (TIC) sample contents (%); samples 
RTKC, A-ESC, ASC, and FA contained no pre-experimental TIC content and borax tailings samples had no remaining material post-experiment. 
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non-carbonic acids would not produce alkalinity, thus reducing removal 
efficiency (Dietzen and Rosing, 2023). 

Aluminium red muds show evidence of calcite dissolution through 
post-experimental reductions in modal contents. Though subject to more 
limited studies, red muds have been pinpointed for their CDR potential 
(Bonenfant et al., 2008; Renforth, 2019). While Al and Fe could increase 
alkalinity in very low or high pH solutions, in some conditions they may 
have the opposite effect on alkalinity contributions. The solubility of Al 
and Fe secondary oxides and clays is also very low, effectively removing 
these phases from the solution. Any secondary formation of 
Fe-carbonates would require strong reducing conditions to prevent the 
production of Fe-oxides and CO2 (Renforth, 2019). Samples with high 
sulphide and sulphate mineral contents, prominent in Cu 
tailings-derived samples (e.g., pyrite identified in A-EP, baryte, and 
jarosite in A-ESC, gypsum in sample RTKC) and borax tailings samples 
(e.g., rhomboclase and thenardite), are likely to impact the carbonate 
system to produce CO2 through acidity production. Similarly, materials 
treated with sulphuric compounds, such as those that may be present 
naturally in Ni sulphide tailings and enriched by industrial processes in 
mud products from SO2 processing, may also rapidly produce Ca- and 
Mg-bearing sulphate minerals. The Ilmenite tailings sample contains 
high amounts of highly reactive portlandite, as well as thaumasite, 
calcite, and phlogopite, suitable for CDR purposes. However, high 
amounts of sulphate, sulphide or sulphite minerals such as hannebachite 
(present in this study) may pose a problem for CDR, as well as any 
potentially toxic trace elements with affinities to S that may also be 
present (e.g., As, Se) and create environmental risks. As borate can act to 
catalyse the conversion of CO2 to HCO3

– (Guo et al., 2011), the high 
abundance of Na-bearing borax and tincalconite in borax mine tailings 
samples may also be of particular interest for CO2 reactivity. 

Dissolution here is typically incongruent, indicated by the continual 
gradual increase in cation concentrations over 100 h of experimental 
time, the result of the non-stoichiometric release of the solid phase 
components, common in multicomponent minerals and mineral systems 
(Colman, 1981; Ruiz-Agudo et al., 2012, 2014), with concurrent pre-
cipitation of secondary minerals (e.g., clays) also affecting the net stoi-
chiometry of the fluid composition. Regarding favourable Wr, borax 
tailings, dunite tailings, fly ashes, ilmenite tailings, and red mud samples 
show the highest Si-derived rates, while marble cuttings, fluorite tail-
ings, and ilmenite tailings show the highest Ca-derived rates. The 
highest Mg release rates correspond to dunite, Ni sulphide, borax, and 
fine kimberlite tailings. These results suggest that dunite, kimberlite, red 
muds, and ilmenite tailings show the highest cation release concentra-
tions and Wr. 

In terms of desired Wr for meaningful CDR on human timescales, 
rates calculated here are comparable to those determined in previous 
studies for minerals and rocks that are typically targeted for geochem-
ical CDR feedstock, such as olivine, basalt, and gabbro (typical Wr range 
of − 12 to − 14.5 log (mol/cm2/s); (e.g., Crovisier et al., 1987; Eick et al., 
1996; Gislason and Oelkers, 2003; Gudbrandsson et al., 2011; Gysi and 
Stefánsson, 2012; Marieni et al., 2020; Pokrovsky and Schott, 2000; 
Stockmann et al., 2012; Wolff-Boenisch et al., 2004). Of these examples, 
some include experiments conducted under CO2-saturated conditions (e. 
g., Gysi and Stefánsson, 2012; Marieni et al., 2020; Pokrovsky and 
Schott, 2000), akin to the methods utilised in this study, and achieving 
similar rates, ~12.3 to − 14.1 log (mol/cm2/s), to the range of the ma-
jority of samples in this study. 

Though care was taken to subject samples to equal conditions during 
experimentation, it is important to note critiques during data evaluation. 
The varied environmental and industrial settings (such as different 
processing and storage conditions) that the samples originate from will 
have varied effects on achieved Wr and possible secondary precipitates, 

Table 5 
Post-experimental modal mineralogical changes (determined by XRD) and pre-
dicted carbonate precipitation phases from CO2-water-material reactions of 
samples, assuming continued reaction time to full conversion of any Ca- and Mg- 
bearing minerals present, under experimental conditions, produced by 
PHREEQC modelling using the MINTEQ database.  

Sample Post-experimental 
mineralogical changes 
(determined by pre- and 
post-experimental XRD) 

Post- 
experimental 
amorphous 
content (%) 

Predicted carbonate 
precipitation phases 
(determined by 
PHREEQC) 

Diamond kimberlite mine tailings 
DFT Lizardite present in 

post-experimental 
sample 

45.5 Artinite; huntite; 
hydromagnesite; 
magnesite; 
nesquehonite 

DK - 37.0 Artinite; huntite; 
hydromagnesite; 
magnesite; 
nesquehonite 

ACT - 4.4 Dolomite; magnesite 
Dunite mine tailings 
DUL - 20.6 Huntite; magnesite; 

nesquehonite 
DUN - 18.4 Magnesite 
Al-red mud mine tailings 
GRM Boehmite (Al-(oxy) 

hydroxide) present in 
post-experimental 
sample 

50.0 ND 

NRMS Halite is not present in 
post-experimental 
sample, but was 
identified pre- 
experiment 

50.0 ND 

Borax mine tailings 
BAP1 Clinochlore and 

pargasite (Na-Ca-Mg- 
amphibole) present 
post-experiment; halite, 
rhomboclase, and 
sassolite not present 
post-experiment 

12.0 ND 

BAP2 Calcite and pargasite 
present post- 
experiment; borax, 
thenardite, tincalconite, 
and ulexite not present 
post-experiment 

9.9 ND 

BRP Insufficient amount of 
material remaining for 
XRD 

- ND 

Cu mine tailings 
RTKC - 10.9 ND 
SDS Nontronite (smectite 

group mineral) present 
post-experiment 

2.7 ND 

A-ESC - 7.3 ND 
A-EP - 8.3 ND 
Cu slag materials 
ACS - 50.0 ND 
Ilmenite mine tailings 
SCDS Bassanite (Ca-sulphate) 

present post- 
experiment, large 
increase in calcite post- 
experiment; portlandite 
not present post- 
experiment 

15.5 Dolomite 

SO2 processing plant by-products 
SSO2 - 35.0 ND 
Marble fine cuttings 
MAR - 5.3 ND 
Fluorite mine tailings 
MFA - 3.3 ND 
Ni sulphide mine tailings 
WCN - 11.5 Dolomite; magnesite 
Power plant fly ash 
FA - 48.1 ND 

Hyphen (-) indicates no changes to minerals present (though changes to modal 
abundances may have occurred), ND indicates no carbonate phases identified in 
PHREEQC output. 
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pre- and syn-experiment. Timescales, treatment, and degree of exposure 
to the atmosphere (or other conditions) at each sample origin site are 
unknown, which may have an effect on the amount of “natural” disso-
lution and/or precipitation that has already taken place. Samples of 
hyperalkaline state, such as red muds, also experience different effects 
with the addition of CO2 during the experiment, potentially reducing pH 
and invoking carbonation or rapid production of Ca-bearing clays, sili-
cates, and hydroxides. It should be noted that Wr achieved in the initial 
stages of the experiments may be elevated due to very fine particles 
formed during the powdering attaching to the solids. However, this may 
also be the case in industrial settings where materials are also typically 
crushed routinely as part of conventional management processes (e.g., 
commodity extraction, storage practices). 

5.2. Carbonate precipitation 

High post-experimental solid sample loss in borax samples indicates 
high-water solubility of sulphate and borate minerals present in sam-
ples, such as thenardite, borax, and tincalconite. More limited sample 
loss in kimberlite and dunite samples may indicate the dissolution of 
carbonates (also the case for the marble fines sample) and some disso-
lution of forsterite, serpentine group minerals, talc, and amorphous 
content. Sample loss in Al red muds, SO2 processing muds, and select Cu 
tailings samples may indicate the dissolution of clay minerals under 
acidic conditions. Post-experimental XRD results suggest complete 
portlandite dissolution in ilmenite tailings and possible calcite dissolu-
tion in red muds (alongside sodalite) and select kimberlite tailings. High 
modal abundances of calcite in post-experimental ilmenite tailings 
suggest carbonate precipitation may have been achieved on short (1–3 
weeks) timescales, likely owing to the high degree of Ca saturation in the 
solution. Significant borax, thenardite, tincalconite, sassolite, and 
ulexite dissolution is also inferred from post-experimental XRD results of 
select borax tailings samples, with notable calcite precipitation apparent 
in the post-experimental BAP2 sample. The BAP2 sample solution 
reached pH 7, possibly permitting carbonate precipitation in short 
(<100 hour) timescales under supersaturated carbonate conditions, 
with available nucleation sites (seed crystals) for secondary carbonates 
created from significant mineral dissolution of pre-existing phases. 

PHREEQC modelling of CO2-water-material reactions undertaken 
here suggests that some carbonates, such as artinite, dolomite, magne-
site, huntite, hydromagnesite, and nesquehonite, may precipitate from 
solution in some of the sampled materials, should reactions be permitted 
to continue towards completion. Mg-carbonates such as magnesite and 
dolomite may precipitate slowly at low temperatures (Arvidson and 
Mackenzie, 1997; Lippmann, 1973; Pokrovsky and Schott, 2000; Bane-
rjee, 2016, Gautier et al., 2014; Giammar et al., 2005; Power et al., 2019; 
Saldi et al., 2009, 2012). Magnesite is the most stable Mg-carbonate over 
a wide range of temperatures but is reluctant to form at ambient tem-
peratures, typically requiring temperatures of 60–80 ◦C to form in 
aqueous solutions (Gautier et al., 2014; Hänchen et al., 2008; Saldi et al., 
2009, 2012; Usdowski, 1989). As a consequence of the inhibitions to 
formation, numerous metastable hydrated Mg-carbonates are more 
typically formed at lower temperatures (Power et al., 2019), where the 
kinetic barriers for artenite, hydromagnesite, and nesquehonite growth 
are much lower (Hänchen et al., 2008; Hopkinson et al., 2012). This 
kinetic favourability reflects the Gay-Lussac-Ostwald or Ostwald step 
rule, whereby nucleation of more soluble phases, such as amorphous or 
metastable phases, is kinetically favoured over less soluble equivalents 
due to the lower interfacial energy between minerals and water (Lang-
muir, 1997). In sufficiently highly supersaturated solution, phases 
rapidly nucleate, precipitating low crystallinity and/or amorphous ma-
terial (Langmuir, 1997; Sanjuán et al., 2019) (Fig. 3 g–i). Such hydrated 
Mg-carbonates have also been shown to co-exist under atmospheric 
conditions (Giampouras, 2020; Kloprogge et al., 2003). 

Primary dolomite can precipitate directly from an aqueous solution, 
mostly under near ambient temperatures, with no CaCO3 dissolution 

involved (Baker et al., 1994; Chakrabarti et al., 2011; Curtis et al., 1963; 
Land, 1973; Magenheim and Gieskes, 1992; Plumlee et al., 1994; Rosen 
et al., 1989; Tucker, 1982; Weber, 1964; Wells, 1962). Dolomite pre-
cipitation is favourable in aqueous solution with high Mg2+/Ca2+ and 
carbonate alkalinity, elevated temperatures, and a high degree of su-
persaturation (Compton, 1988; Machel, 2004). Microbial activities can 
also promote dolomite formation at ambient temperatures (Liu et al., 
2023; McKenzie and Vasconcelos, 2009; Roberts et al., 2004; 
Sánchez-Román et al., 2008; Van Lith et al., 2003 Vasconcelos and 
McKenzie, 1997; Vasconcelos et al., 1995). The presence of secondary 
nesquehonite and hydromagnesite has been identified in several 
carbonation studies, such as in basalt dissolution (Matter et al., 2016; 
Pogge von Strandmann et al., 2019), in brucite-rich mine tailings, 
whereby brucite was carbonated to form nesquehonite, and in other 
serpentine-rich deposits and tailings (e.g., Hostetler et al., 1966; 
Mumpton and Thompson, 1967; Wilson et al., 2009a; Lu et al., 2023; 
Oskierski, 2013; Wilson et al., 2011), where Mg for the formation of 
hydromagnesite and nesquehonite was predominantly derived from 
both brucite and Mg-silicate mineral sources. 

The modelled results suggest that the ilmenite, Ni sulphide, 
kimberlite, and dunite tailings are highly suitable for any implemented 
schemes involving alkalinity production and carbonate precipitation, 
such as for any on-site solid output storage (e.g., carbonate storage in 
tailings dams). As well as carbonate precipitation, several aluminosili-
cate clays, Al-Si hydroxides, Fe-oxides, hydrous sulphates, and SiO2 
polymorphs were also predicted to form in these samples. Though these 
phases do not directly act to remove CO2, their presence is still impor-
tant for the overall CDR capacity, as they compete for available cations 
during precipitation. The solubility of Fe and Al secondary minerals is 
very low, so their precipitation strips most of the Al and Fe from the 
solution (Renforth, 2019). Sulphates that are present may have no im-
plicit reaction with CO2 (e.g., CaSO4 → Ca2+ + SO4

2− ) or may become 
acid compounds, impacting the carbonate system to produce CO2 
(H2SO4 + 2HCO3

− → SO4
2− + 2CO2 + 2H2O) (Renforth, 2019). Fe and Al 

may also form complexes with OH− in solution over a wide pH range, 
meaning their contributions to alkalinity may vary from positive to 
negative. At low pH, Al and Fe could contribute to CDR through 
increased alkalinity or the precipitation of iron carbonate (FeCO3). 
However, the formation and stability of iron carbonate are influenced by 
redox conditions, and oxidation produces Fe-oxide and CO2 (Renforth, 
2019), although favourable conditions could be maintained in under-
ground storage conditions. 

While their contributions to alkalinity are still considered here, the 
practicalities whereby alkalinity is produced, CDR is effectively ach-
ieved, and precipitation is prevented or suppressed would require 
further considerations for marble fines. Direct and indirect CDR appli-
cations of carbonate rocks (such as marble cuttings) have been proposed 
for enhanced weathering and ocean alkalinity modification strategies 
(typically with limestone as a feedstock, e.g., Caserini et al., 2021; 
Harvey, 2008; House et al., 2007; Kirchner et al., 2020; Moras et al., 
2022; Rau and Caldeira, 1999; Rau et al., 2007; Renforth et al., 2013). 
The aim with such carbonate-rich feedstocks is to utilise a sufficiently 
fast-reacting cation source for increased alkalinity (i.e., storage as bi-
carbonate in marine settings), before secondary carbonate precipitation 
occurs. These samples are therefore unsuitable for CDR methods tar-
geting mineral carbonation. Although alkalinity production may be the 
preferred CDR route in terms of net CO2 uptake (>1.5 mol of C removed 
for every mole of Mg or Ca dissolved from silicate minerals, 0.5 mol for 
carbonate minerals; Renforth and Henderson, 2017), carbonation and 
secondary precipitation of silicate-rich feedstocks may offer a more 
practical means of geochemical CDR for industry, as on-site manage-
ment of solid products is likely to be easier to manage, monitor, and 
control compared to effluent outflows to groundwater, river, and ocean 
systems. Furthermore, precipitation of carbonates and other secondary 
minerals may provide an elemental sink to remove potentially toxic 
trace elements (e.g., Ba, As, Co, Cu, Ni, Pb, Zn, Se) from entering local 
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water systems or even concentrate potentially economic elements for 
future exploitation means. Co-application of CDR feedstocks such as 
biochar (Janssens et al., 2022), or the inclusion of certain types of fungi 
(Ruibal et al., 2005), in CDR strategies (e.g., enhanced weathering on 
amended croplands) can also potentially mitigate trace element release 
through retention, whilst also achieiving additional CDR. If applied in an 
agricultural setting, such synergistic combinations can also lead to 
improved soil health and increased crop productivity (Hagens et al., 
2023; Rizwan et al., 2016; te Pas et al., 2023). Precipitation of typical 
secondary phases such as Fe-oxides and clays can also remove trace el-
ements from solution through adsorption onto mineral surfaces, devel-
opment of thin coatings or separate particles, substitution for other 
elements in the precipitated mineral phase, or physical capture (Bullock 
et al., 2019; Kısakürek et al., 2004; Stipp et al., 2002). Secondary pre-
cipitation of silica-rich layers at the surface of primary minerals, 
particularly evident in some silicate minerals, can hinder mineral 
dissolution and carbonate precipitation (Béarat et al., 2006; Harrison 
et al., 2015;Kremer et al., 2022; Ruiz-Agudo et al., 2012), requiring 
additional consideration to improve carbonation reactivity (e.g., the use 
of additives to enhance silica dissolution;, (Demadis and Mavredaki, 
2005); sonication approaches to enhance carbonation; (Chizmeshya 
et al., 2007); concurrent grinding and disintegration methods; (Rashid 
et al., 2021)). 

5.3. Opportunities for geochemical CDR within industry 

Industrial by-product generation could provide a massive untapped 
resource for geochemical CDR opportunities, based on the promise of 
chemically and mineralogically suitable materials, and the huge ton-
nages of material generation per year (Ahmed et al., 2016, Bobicki et al., 
2012; Bullock et al., 2021; Ćwik et al., 2019; Gorai and Jana, 2003). The 
utilisation of industrial by-products for geochemical CDR purposes may 
provide a new usage pathway for these materials that would otherwise 
be of limited or no use to the industrial producer, or materials deemed 
hazardous to the environment (e.g., carbonation of red muds may 
mitigate against leaching effects; (Renforth, 2012)). Since most wastes 
are produced on-site at mines, power plants, refineries, smelters, etc., 
there are opportunities to apply geochemical CDR methods on-site (or 
site-adjacent), making the most efficient use of available sources for land 
space, transport, storage, and reaction acceleration. Ex-situ geochemical 
CDR methods, where the material is moved from its place of origin and 
typically crushed up or processed to some degree, may comprise 
aqueous or dry reaction settings above the surface or in the sub-surface, 
with an engineered approach implemented to accelerate reactions 
deliberately (with associated additional costs). 

While cation release and Wr of some industrial by-products show 
similar promise to rocks and minerals utilised in geochemical CDR 
studies and pilot schemes, there is still a need to speed up reactions to 
achieve meaningful or near-complete dissolution on human-relevant 
timescales of decades or faster, while additional financial costs and 
energy penalties require assessement to determine the viability of such 
acceleration schemes. The experimental procedure of this study utilised 
concentrated CO2 in a reactor-style system, which acts to lower pH and 
promote dissolution at rates greater than that which may be achieved 
under ambient CO2 conditions (e.g., atmospheric conditions), whilst 
also providing CO2 for bicarbonate and carbonate production. This un-
derscores the potentially crucial role that any CO2 point source might 
have in expediting reactions for ex-situ geochemical CDR, but realising 
this potential would likely involve the need for additional facilities 
dedicated to capturing and concentrating the gas from flue emissions. At 
industrial centres reliant upon fossil-fuel intensive operations (e.g., 
smelter and refining activities, cement production, coal-fired power 
plants), CO2 or CO2-rich gas streams may be generated (e.g., by elec-
trolytic and anode production processes). If CO2 can be captured or 
enriched from flue gases, this could be utilised in any contained reactor 
system setting for geochemical CDR. Similarly, any on-site DAC scheme 

could also provide enriched CO2 for reactions with industrial by- 
products, with consideration that needs to be given to additional en-
ergy penalties and costs. Enriched CO2 would help to speed up reactions 
by ensuring CO2 supply is not limited for alkalinity and carbonate 
generation, whilst also creating an acidic environment to speed up the 
dissolution of targetable minerals (Delerce et al., 2023; Harrison et al., 
2013; Pokrovsky and Schott, 2000; Reddy et al., 2009; Reynolds et al., 
2014). 

Wr may also be increased through harnessing heat potential at in-
dustrial sites for increased temperature reactions (Assima et al., 2014; 
Delerce et al., 2023), though such excess heat at sites is seldom exploited 
for secondary usage (Fleiter et al., 2020). Taking advantage of hotter 
climates may also provide a means of increasing reactions for some 
global localities (Andrews and Taylor, 2019; Bullock et al., 2023a; 
Edwards et al., 2017; Khudhur et al., 2022; Pogge von Strandmann et al., 
2022), relevant for ex-situ geochemical CDR possibilities that may exist 
in some of the source locations of samples used in this study (e.g., 
samples from Spain, Australia, United States). This is particularly rele-
vant to any open scheme aimed at spreading materials across croplands, 
coastland, forest, or other suitable areas of extensive land (including 
land available on industrial sites), whereby SSA exposure to the atmo-
sphere is maximised (i.e., enhanced weathering approaches; (Beerling 
et al., 2020Meysman and Montserrat, 2017; Montserrat et al., 2017; 
Schuiling and Krijgsman, 2006; Taylor et al., 2016)). 

Besides locality-specific approaches, CDR strategies that could be 
targeted by industry are also dependant upon the starting mineralogical 
compositions of the materials. Several samples studied here comprise 
modal mineralogies that may not contain high amounts of silicates, and 
may therefore limit the CDR approaches that could be pursued (i.e., 
alkalinity generation without subsequent carbonate precipitation on 
human-relevant timescales). Red muds, such as those utilised in this 
study, have the potential to remove CO2 under ambient conditions under 
the right conditions that optimise the hyperalkalinity of the solutions 
whilst preventing excess alkalinity loss that may occur during treatment 
with seawater (Khudhur et al., 2022; Renforth et al., 2012; Si et al., 
2003). Calcite and carbonate-rich materials, such as the marble quarry 
cuttings studied here, can also provide opportunities for alkalinity 
generation and OAE, though some of these approaches require (poten-
tially spatially, financially, and energetically intensive) calcination 
methods, restricted to CO2-enriched waters (e.g., for seawater usage) in 
a reactor-type system (Caldeira and Rau, 2000; Darton et al., 2022; Xing 
et al., 2022). Recent work by Renforth et al. (2022) demonstrated that 
some hydrated carbonate minerals, such as ikaite (CaCO3⋅6H2O), could 
be specifically created from calcite-bearing carbonate materials for 
geochemical CDR purposes, with sufficient stability sustained to target 
OAE approaches. 

Borax samples also indicate a high alkalinity production potential, 
with notably high increases in pH and alkalinity indicators, as well as Na 
and Ca cation release, and comparatively fast Si- and Ca-derived Wr, 
compared to the rest of the sample set. This is despite the borax tailings 
hosting comparatively lower concentrations of CaO and MgO than Ca- 
Mg-rich, but slower reacting, silicate-hosting materials. Boron (B) 
poses a potential environmental risk to water supply (World Health 
Organization, 2017). Therefore, carbonating materials, and simulta-
neously incorporating B into secondary carbonate precipitates, may be a 
necessary risk mitigation strategy. Incorporation of B into calcite, 
aragonite, and vaterite (CaCO3 polymorph) is possible through 
adsorption-precipitation processes (Kobayashi et al., 2020; Wang et al., 
2018; Xiao et al., 2008), though significant B incorporation may only be 
possible under high pH (8–12) conditions (Kobayashi et al., 2020). 
Furthermore, excess B in the solution may inhibit calcite crystal growth 
from the less thermodynamically stable vaterite. As borax tailings may 
react with CO2 to form bicarbonates and carbonates of limited stability 
under low temperature conditions (forming Na-bicarbonates or 
Na-carbonates, and boric acid, akin to reaction mechanisms of related 
Na-metaborate compounds with CO2; (Uysal et al., 2017)), the use of 
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such materials in CDR strategies may be limited to processes that store 
products in specific settings (e.g., pH, temperature, and 
pressure-controlled systems, thus limiting upscale potential), or for use 
as additives or as a mixture material with other potential feedstocks to 
increase pH and initiate carbonate precipitation. As a consequence, any 
geochemical CDR management with borax tailings would need more 
careful consideration, potentially requiring closed system reactors or 
similar setups to operate safely and effectively. Such approaches have 
been considered, including the production of sodic-boric carbonate by 
means of reacting CO2 with diluted Na-borate solvents under 
high-pressure and temperature reactor conditions (Yilmaz et al., 2009; 
Yücel, 1973). 

Approaches to implementing geochemical CDR methods by relevant 
industrial sectors under current legislation and wider scientific (and 
public) perception would ultimately reap the benefits in several years 
when CDR can be effectively measured, reported, and verified (Mea-
surement, Reporting, and Verification; MRV) as part of either an 
enforced MRV framework or by internal or widely recognised protocols. 
Though such MRV protocols are not yet in place, and carbon crediting is 
not implemented for geochemical CDR beyond voluntary markets, there 
is an increasing appeal from industry players (e.g., funders and in-
cubators in developing CDR technologies) to fill the gaps that exist in 
CDR knowledge, MRV, and carbon offsetting (e.g., carbon removal 
knowledge gaps and MRV framework development by CarbonPlan and 
Frontier; (Arcusa and Sprenkle-Hyppolite, 2022; Chay et al., 2022; 
Kracke et al., 2022). Furthermore, there is also scope for CDR strategies 
that can enhance metal recovery, making CDR implementation efforts 
more economically feasible, with a lower risk to industrial operators 
(Hamilton et al., 2018, 2020; Khan et al., 2021; Wang and Dreisinger, 
2022; Wang et al., 2021, 2023; Wilson and Hamilton, 2022). By evalu-
ating material availability and reactivity, location, site conditions and 
reaction acceleration sources, and by conducting thorough 
techno-economic, co-benefit, and environmental assessments, a site or 
company can lead in the growing operational carbon removal sector. As 
certification and carbon crediting become more prevalent throughout 
the industry, this proactive approach could prove beneficial. 

6. Conclusions 

The range of industrial by-product samples investigated for their 
geochemical CDR suitability in this study show variable cation release 
and surface area-normalised dissolution rates that span several magni-
tudes. High Ca and Mg release into CO2-saturated solutions, favouring 
alkalinity production, has been generally observed in samples associated 
with dunite mine tailings, kimberlite tailings, ilmenite tailings, and 
marble quarry cuttings. These samples contain minerals such as brucite, 
portlandite, saponite, olivine (forsterite), serpentine (chrysotile and 
lizardite), and carbonates (calcite and dolomite), acting as the main 
cation sources, though dissolution of carbonates counteracts CDR if 
subsequent carbonate precipitation occurs. In addition to these high 
cation releasing samples, borax tailings, fly ashes, and red mud samples 
show high Si-derived dissolution rates, while fluorite tailings show high 
Ca-derived dissolution rates, and Ni sulphides show high Mg-derived 
rates. The achieved rates, which were generally one magnitude slower 
for geometric surface area-normalised methods than for BET- 
normalised, are comparable to rates determined for rocks typically tar-
geted for CDR purposes, such as basalt and gabbro. 

The fastest dissolution rates of this study (~− 11 to − 12 log (mol/ 
cm2/s)) were achieved under more acidic (CO2-saturated, pH ~3–4 at 
the start of the experiment, coupled with the highest fraction of finer 
grained materials present during experimentation) solution conditions, 
suggesting if sustained acidic conditions, high CO2 saturation or other 
means of reaction acceleration can be implemented (e.g., higher tem-
peratures, microbial activity), faster rates can be achieved and pro-
longed (providing pH eventually rises above ~5.2 to permit alkalinity 
production from carbonic acids). Sample loss, increases in TIC content, 

post-experimental changes to modal mineralogies, and aqueous 
geochemical modelling results suggest that secondary precipitation of a 
range of carbonates (of variable stability and composition) may occur in 
ilmenite, borax, Ni sulphide, kimberlite, and dunite samples, indicating 
that mineral carbonation, in addition to alkalinity generation, may be a 
usable strategy for geochemical CDR of certain industrial by-products, 
albeit at a slow rate, under ambient temperature conditions, and in 
mildly acidic to neutral (pH ~5–7) solutions. 

Observations suggest opportunities to explore geochemical CDR 
strategies with a wide range of industrial by-products, particularly for 
ex-situ strategies that effectively use the voluminous, fine-grained 
(where already crushed) materials produced in global operations. 
Furthermore, harvesting on-site or site-proximal sources of reaction 
accelerants such as heat waste, favourable climates, CO2-concentrated 
gases, microorganisms that can thrive in such environments, and 
available water sources can potentially deliver meaningful CDR on 
human-relevant timescales. There may also be possible secondary ben-
efits to operators using materials typically considered unwanted or 
hazardous. Experimental investigations that focus on the geochemical 
CDR potential of specific materials, sites, and industries, on top of 
meaningful techno-economic and life cycle assessments, may reap po-
tential environmental and economic benefits in the future. 
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