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ABSTRACT: The N-tert-butanesulfinylimine group behaves as a suitable
electron-withdrawing group in 1-azadienes, allowing the diastereoselective
synthesis of densely substituted pyrrolidines by 1,3-dipolar cycloadditions
(1,3-DCs) with azomethylene ylides. The use of Ag2CO3 as catalyst has
allowed one to obtain a wide variety of proline derivatives with high regio-
and diastereoselectivities. Subsequent efficient transformations provide
valuable proline derivatives, some of which can be used as organocatalysts.
The influence of the N-tert-butanesulfinyl group on the diastereoselectivity
was studied by computational methods.

Diastereoselective and enantioselective 1,3-dipolar cyclo-
additions (1,3-DCs) are very interesting processes as up

to four stereogenic centers can be generated simultaneously.1

In particular, azomethine ylides, which are often generated in
situ, have been demonstrated to be useful intermediates for
reaction with alkenes to yield pyrrolidines. The proline
derivatives obtained in these transformations have many
applications in organic synthesis such as organocatalysts,2

antitumor agents,3 and antivirals.4 The diastereoselective
version allows chiral information to be introduced into the
dipolar precursor or dipolarophile. In this context, our group
has demonstrated the high diastereoselectivity of these
processes using a chiral dipole precursor5 or a chiral
dipolarophile6 despite the small size of the groups surrounding
the stereogenic center. This strategy has also been used by the
Viso group to synthesize chiral imidazolidines using non-
racemic p-tolylsulfinimines and azomethine ylides, generated in
situ from iminoesters and LDA (Scheme 1A).7 Moreover, they
observed that the presence of Lewis acids promoted the
formation of the cycloadducts through a highly diastereose-
lective process with opposite stereochemistry.

On the other hand, tert-butanesulfinyl imines are highly
versatile chiral compounds that find extensive application as
electrophiles in a wide range of reactions.8 The electron-
withdrawing sulfinyl group present in these compounds
significantly enhances the nucleophilic addition to the iminic
carbon, resulting in a high diastereoisomeric excess.9 The
accessibility of both enantiomers of tert-butanesulfinamide10

enables the synthesis of tert-butanesulfinyl imines11 on a large
scale and the straightforward deprotection/desulfinylation
under mild acidic conditions, along with the possibility of
recycling the tert-butanesulfinamide group.12 This has
significantly facilitated the use of these imines for obtaining

the corresponding enantioenriched primary amines. These
amine derivatives have proven valuable in the synthesis of
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Scheme 1. 1,3-Dipolar Cycloadditions between
Sulfinylimines and Azomethine Ylides

Letterpubs.acs.org/OrgLett

© 2023 The Authors. Published by
American Chemical Society

8051
https://doi.org/10.1021/acs.orglett.3c02572

Org. Lett. 2023, 25, 8051−8056

This article is licensed under CC-BY 4.0

D
ow

nl
oa

de
d 

vi
a 

U
N

IV
 D

E
 A

L
IC

A
N

T
E

 o
n 

N
ov

em
be

r 
22

, 2
02

3 
at

 1
3:

35
:2

4 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ester+Blanco-Lo%CC%81pez"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Francisco+Foubelo"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Mari%CC%81a+de+Gracia+Retamosa"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jose%CC%81+M.+Sansano"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.orglett.3c02572&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.3c02572?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.3c02572?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.3c02572?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.3c02572?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.3c02572?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/orlef7/25/45?ref=pdf
https://pubs.acs.org/toc/orlef7/25/45?ref=pdf
https://pubs.acs.org/toc/orlef7/25/45?ref=pdf
https://pubs.acs.org/toc/orlef7/25/45?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.3c02572?fig=sch1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.3c02572?fig=sch1&ref=pdf
pubs.acs.org/OrgLett?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.orglett.3c02572?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/OrgLett?ref=pdf
https://pubs.acs.org/OrgLett?ref=pdf
https://acsopenscience.org/open-access/licensing-options/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


enantioenriched N-heterocycles,13 natural alkaloids,14 and
other biologically active compounds.15

Normally, these N-tert-butanesulfinylazadienes react by the
N�C double bond, and there is no example where the
reactivity takes place by the conjugated C�C bond.
Encouraged to explore an alternative reactivity pattern, we
envisioned the use of the N-tert-butanesulfinylimine group as
an electron-withdrawing group in 1-azadienes, allowing the C−
C double bond to act as a good dipolarophile in 1,3-dipolar
cycloadditions with azomethine ylides (Scheme 1B).

The reaction between (S)-N-tert-butanesulfinyl imine 1a and
glycine α-imino ester derivative 2a was chosen as the model
system. Initially, different silver and copper sources were
evaluated as catalysts (Table 1) using Et3N as the additive and

toluene (0.1 M) as solvent. While copper salts did not provide
any reactivity (Table 1, entries 4−5), silver salts were able to
promote this reaction, affording the desired cycloadduct 3aa
with high conversions and moderate to high regio- and
diastereoselectivities (entries 1−3). Then, different amounts of
reagents and concentrations were evaluated (for details, see
Supporting Information), allowing us to obtain quantitative
conversion and high diastereoselectivity by using Ag2CO3 as
catalyst and 2 equiv of imino ester 2aa and increasing the
concentration to 0.4 M.

Further optimization was performed employing a variety of
solvents (Table 1, entries 6−10), even though in most cases
another regioisomer was observed in low proportion (<15%).
THF and acetonitrile lead to quantitative conversions,
although diastereomeric ratios decreased in comparison with

toluene (entries 7−8 vs 6). On the other hand, dichloro-
methane and water provided the desired cycloadduct 3aa in
moderate conversion (entries 9−10). Finally, the catalyst
loading could be reduced to 10 mol % without compromising
conversion, diastereoselectivity, and reaction time (Table 1,
entry 11). Using the best conditions, (R)-N-tert-butanesulfinyl
imine 1a was also evaluated affording the enantiomer ent-3aa
with the same conversion and diastereoselectivity results
(Table 1, entry 12). The importance of the N-tert-
butanesulfinyl imine group was demonstrated when its
analogue N-p-tolylsulfinimine 1a′ was used under the best
reaction conditions, giving rise to a complex mixture of
products and diastereoisomers (Table 1, entry 13).

Having determined the best reaction conditions, we
investigated the scope of the reaction by using a wide variety
of imino esters 2 and N-tert-butanesulfinyl imines 1 (Scheme
2). A selection of aryl-substituted imino ester 2 bearing
electron-donating and electron-withdrawing groups were
successfully tested, affording adducts 3aa−3ag in moderate
to good yields for the isolated major diastereoisomer (30−
83%), high regioselectivities, and good to excellent diastereo-
meric ratios. The reaction could be scaled up to 1 mmol for the
synthesis of cycloadduct 3aa requiring a 36 h reaction time
without compromising yield, diastereoselectivity, and reaction
time. The thienyl-substituted heteroaromatic imino ester 2h
gave rise to the cycloadduct 3ah with good regio- and
diastereoselectivity and with moderate yield. On the other
hand, while the imino ester containing the bulkiest t-butyl ester
group leads to the corresponding cycloadduct 3ai in moderate
regioselectivity, good yield, and excellent diastereomeric ratio,
the imino ester with the benzyl ester group provided the
adduct 3aj in high diastereomeric ratio and regioselectivity.
The regioisomer 3ai′ was isolated in moderate yield (20%).
The alanine derivative iminoester was also tolerated, affording
the cycloadduct 3ak in moderate yield and diastereoselectivity.
Apart from the imino ester, we also evaluated different N-tert-
butanesulfinyl imines. Cinnamaldehyde N-tert-butanesulfinyl
imine derivatives possessing electron-donating and electron-
withdrawing groups were well tolerated, leading to the
cycloadducts 3ba−di in moderate to good yields, moderate
to excellent regioselectivities, and high to excellent diastereo-
meric ratios. The acrolein N-tert-butanesulfinyl imine deriva-
tive provided the cycloadduct 3ga in moderate yield with low
diastereomeric ratio and could be isolated with an 80:20 ratio
of dr. Moreover, the aliphatic (E)-crotonaldehyde and (E)-2-
pentenal N-tert-butanesulfinyl imine derivatives afforded cyclo-
adducts 3ea−fa in high yields and excellent regioselectivities
and diastereomeric ratios. Finally, α,β-unsaturated ketones N-
tert-butanesulfinyl imine derivatives were also allowed to
obtain the 3ha−ia cycloaducts in excellent regioselectivities,
moderate yields, and high diastereomeric ratios. Isomerization
experiments were also carried out to explain some lower
diastereomeric ratios. Reaction to synthesize 3ad was
monitored at different times, exhibiting lower diastereoselec-
tivity depending on the reaction time (for details, see
Supporting Information). Cycloadducts 3aa and 3ai′ could
be crystallized, and their absolute configurations were
elucidated by XRD analysis. Assuming a uniform reaction
pathway, the absolute configuration of the other products 3
was assigned by analogy.

Cycloadducts 3 were easily transformed in appealing
derivatives (Scheme 3). For example, N-allyl-substituted
derivatives 4 were prepared in moderate yield by treatment

Table 1. Optimization Reaction Conditionsa

Entry LA Solvent Conv.b (%) drc (%)

1 Ag2CO3 Toluene 81 92:8
2 AgSbF6 Toluene 79 66:34
3 AgOAc Toluene 79 86:14
4 Cu(OTf)2 Toluene <5 -
5 [(CH3CN)4Cu]PF6 Toluene <5 -
6d Ag2CO3 Toluene >95 92:8
7d Ag2CO3 THF >95 88:12
8d Ag2CO3 CH3CN >95 78:22
9d Ag2CO3 CH2Cl2 71 92:8
10d Ag2CO3 H2O 75 59:41
11d,e Ag2CO3 Toluene >95 92:8
12d,e,f Ag2CO3 Toluene >95 92:8
13d,g Ag2CO3 Toluene >95 nd

aReactions were performed with N-tert-butanesulfinyl imine 1a (0.1
mmol), α-imino ester 2a (0.1 mmol), catalyst (20 mol %), and Et3N
(20 mol %) in toluene (0.1 M) at room temperature for 24 h.
bConversions were measured by 1H NMR of the crude reaction. cdr
was measured by 1H NMR of the crude reaction. dReaction was
performed in toluene (0.4 M) without Et3N. eAg2CO3 was reduced to
10 mol %. fReaction was performed with (R)-N-tert-butanesulfinyl
imine 1 to generate the enantiomer ent-3aa. gReactions were
performed with N-p-tolylsulfinyl imine 1a′ (LA = Lewis acid, nd =
not determined).
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with an excess (1.5 equiv) of allyl bromide, in the presence of
indium metal, in THF at 60 °C for 16 h, avoiding the
isomerization of the stereogenic centers. The N-tert-butane-
sulfinylimine group of cycloadducts 3aa and 3dc was easily
reduced with sodium borohydride to afford N-tert-butanesul-

finyl amine derivatives 5 in quantitative yields. Additionally,
the removal of the tert-butanesulfinyl group was carried out
under acidic conditions in Et2O, allowing us to produce the
cyclization step to afford the bridged 3,6-diazabicyclo[3.2.1]-
octanes 6 in excellent overall yields.

Moreover, to demonstrate the applicability of this new
family of densely substituted pyrrolidines, cycloadduct 5aa was
evaluated as an organocatalyst in the asymmetric direct aldol
reaction between cyclohexanone 7 and 4-nitrobenzaldehyde 8
(Scheme 4). The aldol adduct 9 was obtained in quantitative
conversion and moderate diastereo- and enantioselective ratios
(>95% conversion, 78:22% dr, and 68:32 er) in the presence of
a 20% catalyst.

Scheme 2. Substrate Scope

aReactions were performed with (S)-N-tert-butanesulfinyl imine 1 (0.3 mmol), α-imino ester 2 (0.6 mmol), and Ag2CO3 (10 mol %) in toluene
(0.4 M) at room temperature. Yields (isolated products after flash column chromatography), dr, and regioselectivities determined by 1H NMR or
LRMS analysis and reaction time are shown in the SI for each product. The second value of dr refers to a mixture of different diastereoisomers.
bReaction was performed on a 1 mmol scale. cReaction performed with (R)-N-tert-butanesulfinyl imine 1 to generate the corresponding
enantiomer ent-3aa. d5% Et3N was employed. eYield refers to a mixture of diastereoisomers (95:5 dr). fYield refers to a mixture of diastereoisomers
(80:20 dr). gYield refers to a mixture of diastereoisomers (90:10 dr).

Scheme 3. Synthetic Transformations of Adducts 3

Scheme 4. Aldol Reaction Organocatalyzed by 5aa
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Finally, to understand the influence of the N-tert-
butanesulfinyl group on the diastereoselectivity of this reaction,
DFT calculations were performed at the B3LYP level of theory
(see Supporting Information for additional details). The
computational analysis (DFT, B3LYP level) revealed that a
notable interaction can exist between the oxygen atom of the
sulfinyl group and the silver atom of the metallodipole
(Scheme 5). Apparently the TSendodown is more compact,

and possessed more energy, than the corresponding TSendoup.
During the optimization of the geometries of the TSendodown a
very important steric interaction was observed between the
tert-butyl group and the benzylidene moiety of the 2b-Agdipole,
which was negligible in the approach TSendoup. In fact, this
feature distorted the original planarity of the metallodipole to
reach the minor diastereomeric structure 3ab′. In both TSs a
typical asynchrony was detected, being the incipient carbon−
carbon bond, originated by the 1,4-addition, slightly shorter
than the second carbon−carbon bond (produced by the
Mannich reaction). The difference of 2.8 kcal·mol−1 justifies
the absolute configuration of the synthesized molecules 3.

In summary, the N-tert-butanesulfinylimine group acts as an
effective electron-withdrawing group in 1-azadienes, allowing
the highly diastereoselective synthesis of a new family of
densely substituted pyrrolidines via 1,3-dipolar cycloadditions
with azomethine ylides. By using Ag2CO3 as a catalyst, proline
derivatives with up to four stereogenic centers in the
pyrrolidine ring have been obtained in moderate to good
yields and good to excellent regio- and diastereoselectivities.
The (S)-configuration of the sulfinyl group is able to induce a
(2S,3R,4S,5R) absolute configuration in the final pyrrolidines.
These derivatives were transformed with high efficiency and
selectivity, yielding valuable proline derivatives that can also be
employed as organocatalysts. The feasibility of these proline
derivatives as organocatalysts has been proved via the
asymmetric direct aldol reaction between cyclohexanone and
4-nitrobenzaldehyde, giving rise to the aldol adduct with
quantitative conversion and moderate enantioselective and
diastereoselective ratios. The interaction between the oxygen

atom of the sulfinyl group and the silver atom of the W-shaped
metallodipole was studied by computational methods to
understand the diastereoselectivity of this reaction.
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