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A B S T R A C T 

In this study, Physics-Informed Neural Networks (PINNs) are skilfully applied to explore a diverse range of pulsar magnetospheric 
models, specifically focusing on axisymmetric cases. The study successfully reproduced various axisymmetric models found in 

the literature, including those with non-dipolar configurations, while ef fecti vely characterizing current sheet features. Energy 

losses in all studied models were found to exhibit reasonable similarity, differing by no more than a factor of three from 

the classical dipole case. This research lays the groundwork for a reliable elliptic Partial Differential Equation solver tailored 

for astrophysical problems. Based on these findings, we foresee that the utilization of PINNs will become the most efficient 
approach in modelling three-dimensional magnetospheres. This methodology shows significant potential and facilitates an 

effortless generalization, contributing to the advancement of our understanding of pulsar magnetospheres. 

Key words: magnetic fields – stars: neutron – pulsars. 
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 I N T RO D U C T I O N  

hysics-Informed Neural Networks (PINNs; Lagaris, Likas & Fo-
iadis 1997 ; Raissi, Perdikaris & Karniadakis 2019 ) is a relatively
ew but very promising family of Partial Differential Equation (PDE)
olvers based on Machine Learning (ML) techniques. This method
s suitable to obtain solutions of PDEs describing the physical laws
f a given system by taking advantage of the very successful modern
L frameworks and incorporating physical knowledge. In recent

ears, PINN-based solv ers hav e been used to solve problems in a
reat variety of fields: fluid dynamics (Cai et al. 2021 ), turbulence in
uperno vae (Karpo v et al. 2022 ), radiativ e transfer (Korber et al.
023 ), black hole spectroscopy (Luna et al. 2023 ), cosmology
Chantada et al. 2023 ), large scale structure of the Universe (Aragon-
alvo 2019 ), galaxy model fitting (Aragon-Calvo & Carvajal 2020 ),

nverse problems (Pakravan et al. 2021 ), and many more.In our
revious work (Urb ́an et al. 2023 , Paper I hereafter), we presented
 PINN solver for the Grad–Shafranov equation, which describes
he magnetosphere of a slowly rotating neutron star endowed with
 strong magnetic field (a magnetar) in the axisymmetric case. In
hat paper, we demonstrated the ability of the network to be trained
or various boundary conditions and source terms simultaneously. In
his work, our purpose is to extend our PINN approach to the more
eneral – and more challenging – case of rapidly rotating neutron
tars (pulsars). The rotating case presents new interesting challenges
elated to the presence of current sheets in the magnetosphere.
ur implementation is able to deal with these pathological regions

ufficiently well, demonstrating its potential for problems where
lassical methods struggle. 

Pulsar magnetospheres have been studied extensively in the
ast 25 yr with various approaches, each with its advantages and
 E-mail: petros.stefanou@uv.es 
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imitations. Contopoulos, Kazanas & Fendt ( 1999 ) were the first to
olve the axisymmetric, time-independent problem, a result that was
ater confirmed and impro v ed by Gruzinov ( 2005 ) and Timokhin
 2006 ). Spitko vsk y ( 2006 ) used a full magnetohydrodynamic time-
ependent code and was able to acquire solutions for aligned
nd oblique rotators. Solutions for arbitrary inclination were also
btained by P ́etri ( 2012 ) who used a time-dependent pseudo-spectral
ode. More recent approaches involve large-scale particle-in-cell
imulations that include the influence of accelerated particles (Cerutti
t al. 2015 ; Philippov & Spitkovsky 2018 ). All of these, and
any related, works have improved our understanding of the pulsar
agnetosphere. Ho we ver, some important questions remain still
ithout an answer. 
The structure of the paper is the following. After a brief summary

f the rele v ant equations and boundary conditions in Section 2 ,
e will describe the PINN method in Section 3 , with emphasis

n the new relevant details with respect to the magnetar problem
 Paper I ). In Section 4 we present our results, showing that we
re able to reproduce the well-established axisymmetric results
ncountered in the literature, but also indicating that new, possibly
nexplored solutions can be encountered. We summarize our most
ele v ant conclusions and discuss possible impro v ements and future
xtensions in Section 5 . 

 PULSAR  MAGNETOSPHERES  

ur aim is to extend our previous results from Paper I to find
umerical solutions of the pulsar equation, that can be written as
ollows: 

 × (
B − β2 B p 

) = αB , (1) 

here β = v/c = | � × r | /c = �/ R LC is the co-rotational speed in
nits of the speed of light, with R LC = c/� being the light-cylinder
LC) radius and B p = B − B φ is the magnetic field perpendicular
© 2023 The Author(s) 
lished by Oxford University Press on behalf of Royal Astronomical Society 
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o the direction of rotation. Here, α is a scalar function given by 

= 

4 π

c 
( J − ρe v ) · B 

B 

2 
, (2) 

epresenting the ratio between the field-aligned component of the 
urrent in the corotating frame and the local magnetic field strength. 
e refer to the comprehensive and thorough recent re vie w by

hilippov & Kramer ( 2022 ; and references therein) for a complete
istorical o v erview of magnetospheric physics and the mathematical 
eri v ation of the equations. 
As in Paper I , we focus in the axisymmetric case and, for

onvenience, we use compactified spherical coordinates ( q , μ, φ)
here q = 1 /r, μ = cos θ . In these coordinates, any axisymmetric
agnetic field can be written in terms of a poloidal and a toroidal

calar stream function P and T as 

B = 

q √ 

1 − μ2 

(∇ P × ˆ φ + T ˆ φ
)
. (3) 

ere, P is related to the magnetic flux and is constant along magnetic
eld lines. Plugging this expression into equation ( 1 ) and taking the

oroidal component, we get 

 P × ∇ T = 0 , (4) 

hich means that T is only a function of P ( T = T ( P )) and, therefore,
s also constant along magnetic field lines. The poloidal component 
f equation ( 1 ) gives the well-known pulsar equation (Michel 1973 ;
charlemann & Wagoner 1973 ), which in our coordinates reads (
1 − β2 

)
� GS P + 2 β2 q 2 

(
q ∂ q P + μ∂ μP 

) + G ( P ) = 0 , (5) 

here G ( P ) = TT 

′ and � GS is the Grad–Shafrano v operator, giv en
y 

 GS ≡ q 2 ∂ q 
(
q 2 ∂ q 

) + 

(
1 − μ2 

)
q 2 ∂ μμ. (6) 

otice that in the limiting case where β = 0, we ignore the
otationally induced electric field and equation ( 5 ) is reduced to
he Grad–Shafranov equation. Hereafter, we will use the following 
horthand notation for the extended operator 

 GS β ≡ (
1 − β2 

)
� GS + 2 β2 q 2 

(
q ∂ q + μ∂ μ

)
. (7) 

A crucial difference in the modelling of magnetar and pulsar 
agnetospheres is the source of poloidal currents TT 

′ . In magnetars, 
urrents are assumed to be injected into the magnetosphere due to 
he magnetic field evolution in the neutron star’s (NS) crust, which 
wists the magnetosphere (Akg ̈un et al. 2018 ). Therefore, the source
erm in equation ( 5 ) is given either as a user-parametrized model
as for example in Akg ̈un et al. 2016 for the 2D problem or in
tefanou, Pons & Cerd ́a-Dur ́an 2023 for the 3D problem) or in a
elf-consistent manner by coupling the interior evolution with the 
agnetosphere. We adopted the latter approach in Paper I (see the 

strophysical application in section 5 of that paper), where a series of
agnetospheric steady-state solutions were obtained for each time- 

tep of the internal magnetothermal evolution. 
In the pulsar magnetosphere, ho we ver, the source of current is the

C. Lines that cross the LC have to open up and bend, giving rise to
zimuthial fields and currents. We refer to the region with open field
ines as the open region. On the other hand, lines that do not cross
he LC, but turn back to the surface, co-rotate rigidly with the the
tar. We refer to this region as the closed region. The source term TT 

′ 

ust be determined self-consistently to ensure smooth crossing of 
he lines along the LC. In particular, at the LC where β = 1, equation
 5 ) takes the simple form 

− q 2 
(
q ∂ q P + μ∂ μP 

) = 2 B z = T T ′ , (8) 
hich places a constraint on the possible functions T ( P ). This makes
quation ( 5 ) complicated to solve, as two functions have to be
etermined simultaneously. In order to do so, additional physical 
oundary conditions have to be imposed (see next subsection). 
Through this work, we measure distances in units of the radius

f the star R and magnetic fields in units of the surface magnetic
eld strength at the equator B 0 (note that the surface magnetic field
trength at the poles is 2 B 0 ). In these units, the magnetic flux is
easured in units of the total poloidal flux P 0 = B 0 R 

2 . It is convenient
o additionally define the total magnetic flux carried by field lines
hat cross the LC in a non-rotating dipole P 1 = P 0 ( R/ R LC ), which
ill be useful in what follows. Finally, the toroidal stream function

s measured in units of B 0 R . 

.1 Boundary conditions 

e assume that the magnetic field at the surface of the star P ( q = 1)
s known. For example, in the case of a dipole 

 ( q = 1 , μ) = B 0 (1 − μ2 ) (9) 

ut we will also explore other options. The last closed field line, called
eparatrix, will be labelled by P = P c . It marks the border between
pen and closed (current-free) regions. The value P c corresponds to 
he total magnetic flux that crosses the LC. The point where this line
eets the equator is the called Y-point and it should lie at a radius

 c , somewhere between the surface and the LC (see e.g. Timokhin
006 for a detailed discussion). Far away from the surface, field lines
hould become radial, resembling a split monopole configuration 
Michel 1973 ). Inside the closed region, the magnetosphere is 
urrent-free and purely poloidal. No toroidal fields are developed, 
o that 

 ( P > P c ) = 0 (10) 

y definition. 
In the classical model, a current sheet should develop along the

eparatrix, supported by the discontinuity of the toroidal magnetic 
eld between closed ( B φ = 0) and open ( B φ �= 0) regions. Another
urrent sheet should exist along the equator and beyond the Y-
oint, supported by the opposed directions of the magnetic field 
ines between the two hemispheres. The current sheet forms the 
eturn current that accounts for the current supported by out-flowing 
articles along the open field lines and closes the current circuit. 
All this moti v ated the seminal works to impose equatorial sym-
etry by defining a numerical domain only on one hemisphere and

mposing another boundary condition P = P c at the equator. To
eproduce these models, we will impose that along the equator and
eyond the Y-point 

 ( q < q c , μ = 0) = P c . (11) 

ere, q c = 1 / r c is the corresponding location of the Y-point in com-
actified coordinates. Ho we v er, later works hav e relax ed this assump-
ion (Contopoulos, Kalapotharakos & Kazanas 2014 ), proposing a 

ore general solution without a separatrix and with a transition 
egion close to the equator. We will explore both cases in our results
ection. 

.2 Total energy and radiated power 

he total energy of the electromagnetic field in the magnetosphere 
s given by 

 = 

1 

8 π

∫ 
( B 

2 + E 

2 )d V . (12) 
MNRAS 526, 1504–1511 (2023) 
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t is convenient to describe the electromagnetic energy content
f a given model in terms of the excess energy of a particular
agnetospheric solution with respect to the non-rotating dipole, 

 E = 

E − E d 
E d 

, (13) 

here 

 d = 

1 

3 
B 

2 
0 R 

3 (14) 

s the total magnetic energy of a non-rotating dipole. 
The total power radiated away by a rotating magnetosphere can

e calculated by integrating the Poynting flux o v er a sphere far away
rom the star 

˙
 = 

c 

4 π

∫ 
( E × B ) · ˆ r d ω = − c 

R LC 

∫ P c 

0 
T d P , (15) 

here ω is the solid angle. Again, it is convenient to measure the
elati ve dif ference of the radiated po wer with respect to the classical
rder-of-magnitude estimate 

˙
 d = 

B 

2 
0 R 

6 

R 

4 
LC 

c, (16) 

nd hereafter we will express Ė in units of Ė d . 1 

 N E T WO R K  STRUCTURE  A N D  T R A I N I N G  

L G O R I T H M  

n Paper I , we used a PINN to calculate approximate solutions of
he axisymmetric Grad–Shafranov equation. We refer the reader to
hat paper for a more detailed description of the generic implemen-
ation. In this section, we will briefly summarize the main points
nd highlight the no v elties introduced to adapt our solver to the
ulsar case. The principal changes introduced aim at enforcing the
hysical constraint [boundary conditions, or the T ( P ) requirement]
y construction instead of leaving the job to minimize additional
erms in the loss function, which usually does not reach the required
ccuracy. 

We consider solutions in points ( q, μ) ∈ D in a two-dimensional
omain D. We denote by ∂ D the boundary of this domain. To account
or the equatorial constraint in equation ( 11 ), we will consider the
quatorial line beyond r c as part of ∂ D. In order to ensure that P
epends on the coordinates while T is solely a function of P , we
esign a network structure consisting of two sub-networks that are
rained simultaneously. The output of each sub-network depends only
n its corresponding input. 
The first sub-network takes the coordinates ( q , μ) as input and

eturns as output a function that we denote by N P . Then, P is
alculated using 

 ( q, μ) = f b ( q, μ) + h b ( q, μ) N P ( q, μ; 
 ) . (17) 

here f b can be any function in D that satisfies the corresponding
oundary conditions at ∂ D. h b is an arbitrary function representing
ome measure of the distance to the boundary, that must vanish at ∂ D.
oth user-supplied functions f b and h b depend only on the coordinates
nd are unaffected by the PINN. There is some freedom to decide
heir specific form, as long as they retain certain properties (e.g.
NRAS 526, 1504–1511 (2023) 

 We should stress that the (unfortunately) often used sin 2 θ dependence with 
he inclination angle in Ė d is unphysical. It misleads to conclude that an 
ligned rotator does not emit, but it actually does radiate in a similar amount 
but a factor of about 2) than the orthogonal rotator. 
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w  
hey are sufficiently smooth) and the y hav e the desired behaviour
t the boundary. The only part that is adapted during training is
 P through its dependence on the trainable parameters 
 . With

his parametrization (or hard enforcement ) approach, we ensure
hat boundary conditions are exactly satisfied by construction. This
iffers from the other usual approach, consisting of adding more
erms related to the boundary conditions in the loss function. We will
pecify the particular form of the functions f b ( q , μ) and h b ( q , μ) in
he next section when we discuss different cases. 

Next, the second sub-network takes P as input and returns N T 

s output. This automatically enforces that T = T ( P ), required by
quation ( 4 ). The new network output N T ( P ; 
 ) is used to construct
he function T ( P ) as follows: 

 ( P ) = g( P ) N T ( P ; 
 ) , (18) 

here g is another user-supplied function to include other physical
estrictions. F or e xample, we can use a step function to treat a
ossible discontinuity of T at the border between open and closed
egions (equation 10 ). Another advantage of this approach is that
 

′ is calculated from T via automatic differentiation in the second
ub-network. 

A subtle point in the pulsar problem is the determination of the
ritical value P c that separates the open and closed regions. We
av e e xplored two different approaches: (a) P c is self-determined
y the network and (b) P c is fixed to some value. In the first case,
 c is considered an extra output of the first sub-network, closely
onnected to P , resembling the approach taken by classical solvers
or this problem. In contrast, the second method involves fixing P c as
 hyperparameter to a pre-determined value, leaving the network to
isco v er a solution that aligns with this fixed value. This introduces
he necessity to loosen some of the other imposed constraints, like the
osition of the Y-point, and encourages the exploration of solution
roperties from a fresh standpoint. 
During the network training process, both P and T [and possibly

 c , if we follow the case (a) abo v e] are obtained simultaneously by
inimizing the following loss function 

 = ω 1 L PDE + ω 2 σ ( P c ) , (19) 

here 

 PDE = 

1 

N 

∑ 

( q,μ) ∈ D 

[
� GS βP ( q, μ) + G ( P ( q, μ)) 

]2 
. (20) 

ere, N represents the size of the training set, and ω 1 and ω 2 are
djustable parameters. In approach (b), ω 2 = 0, whereas in approach
a), ω 2 is adjustable. Additionally, σ denotes the standard deviation
f the P c values for the points in the training set. P c is a global
agnetospheric value that should not depend on the coordinates.
o we ver, during training, there is no guarantee that this value will
e the same for all the points that are considered. To ensure that the
alues of P c at arbitrary points are as close to each other as possible,
e minimize the standard deviation ( σ ( P c )) of the values of P c at

ll the points of the training set by including an additional term in
he loss function ( 19 ). This inclusion guarantees that the network’s
utput for P c remains constant and independent of the coordinates
 q , μ). A schematic representation of our network’s structure can be
ound in Fig. 1 . 

We consider a fully connected architecture for both sub-networks
onsisting of four hidden layers for the first one and two hidden
ayers for the second one. All layers have 40 neurons. Our training
et consists of N = 5000 random points ( q, μ) ∈ D, which are
eriodically changed every 500 epochs in order to feed the network
ith as many distinct points as possible. The total number of epochs
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Figure 1. A sketch of the network structure. Two sub-networks are employed to ensure that P = P ( q , μ) and T = T ( P ). 
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s 35 000. This number may seem big at first sight, but is necessary
ecause of the amount of points considered. In order to minimize the
oss function, we use the ADAM optimisation algorithm (Kingma & 

a 2014 ) with an exponential learning rate decay. We have also
onsidered in this work the idea of introducing trainable acti v ation
unctions, suggested in PINNs originally by Jagtap, Kawaguchi & 

arniadakis 2020 . For each hidden layer k , the linear transformation
erformed at that layer is multiplied by a trainable parameter c k .
e found that this practice can accelerate convergence but a more 

igorous study is out of the scope of this paper. 

 MAGN ETOSP HERIC  M O D E L S  

n this section, we present the results obtained for various cases and
nder different physical assumptions. Our analysis encompasses the 
uccessful reproduction of all distinct axisymmetric models found in 
iterature, which include: 

(i) The classical solutions (Contopoulos et al. 1999 ; Gruzinov 
005 ), 
(ii) The family of solutions with varying locations of the Y-point 

Timokhin 2006 ), 
(iii) The impro v ed solution where the separatrix current sheet is

moothed out (Contopoulos et al. 2014 ), 
(iv) The non-dipolar solutions (Gralla, Lupsasca & Philippov 

016 ). 

Each of these models presents unique challenges and character- 
stics, and we will delve into the outcomes achieved for each one.
n particular, the o v erall magnetospheric configuration, the poloidal 
ux at the separatrix P c , the functions T ( P ) and G ( P ), and the energy

osses Ė agree with the previous works. 

.1 Hard enforcement of boundary conditions 

s discussed earlier, we construct P according to equation ( 17 ) to
ulfill the boundary conditions. For the cases (i) and (ii) we have
mployed an f b with the following form: 

 b ( q, μ) = (1 − μ2 ) 

⎡ 

⎣ P c + q(1 − P c ) 
ReLU 

3 
(

1 − q c 
q 

)
(1 − q c ) 3 

⎤ 

⎦ , (21) 
here ReLU ( x ) is the Rectified Linear Unit function, which returns
ero if x < 0 and x if x > 0 2 , q c = 1 / r c is the position of the Y-point
nd n is a free positive parameter. 

Furthermore, we have chosen the following h b function: 

 b ( q, μ) = (1 − μ2 )(1 − q) 

√ 

ReLU 

3 

(
1 − q c 

q 

)
+ μ2 , (22) 

here the reader can check that h b is zero at the boundary. The terms
ith the ReLU functions enforce that P = P c at the equator when
 < q c , and the third power ensures that P and its first and second
eri v ati ves are all continuous. 
The parametrization for T ( P ) requires the additional function g .
e use a gaussian 3 transition beginning at P = P c : 

( P ) = 

{ 

1 P ≤ P c 

e 
− ( P−P c ) 2 

2( δP ) 2 P > P c 

, (23) 

here δP is a small number that controls the width of the current
heet, where the transition of T from a finite value to zero takes
lace. Note that g and its first deri v ati ve are both continuous at the
eparatrix, so T and T 

′ are well defined. 
For the cases (iii) and (iv), the condition P = P c at the equator

s lifted and consequently, the parametrization functions must be 
odified. Our choice for these cases is: 

f b ( q, μ) = f 1 ( q) 
∑ l max 

l= 1 
b l 
l 
P 

′ 
l ( μ) + f 2 ( q)(1 − | μ| ) (24) 

h b ( q, μ) = q(1 − q)(1 − μ2 ) (25) 

g( P ) = −P 

(
ReLU 

(
1 − | P | 

P c 

))
. (26) 

Adjustable weighting functions, denoted as f 1 and f 2 , are utilized
o control the relative importance of the two terms. To be specific,
 1 should be significant near the surface but diminish at considerable
istances from the star, while f 2 should vanish close to the surface
ut be dominant at q � 1. At intermediate distances, approximately 
round the LC, both f 1 and f 2 should be much smaller than h b to ensure
hat the neural network contribution in equation ( 17 ) dominates. 

In order to allow for more versatile configurations beyond the 
tandard dipole representation, the surface boundary condition is 
MNRAS 526, 1504–1511 (2023) 
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M

Figure 2. The classical axisymmetric pulsar magnetosphere. Fade black 
lines: magnetic field lines as contours of P . Thick pink line: separatrix and 
equatorial current sheet, where P = P c . Vertical green line: LC. Colourmap: 
the source current G ( P ). Labels on the field lines are in units of P c . Colourbar 
is in symmetrical logarithmic scale. z and x axes are in units of the stellar 
radius R . The bulk of the return current flows along the current sheet, with a 
small percentage flowing along open field lines. 

Table 1. Model parameters for the different magnetospheric solutions. 

Id. b l r c / R LC δP P c / P 1 P ∞ 

/ P 1 � E Ė 

C1 1,0,0 0.992 0.002 1.23 – 0.048 0.96 
C2 1,0,0 0.7 0.002 1.71 – 0.089 1.91 
C3 1,0,0 0.4 0.002 3.25 – 0.319 7.08 
E1 1,0,0 – – 1.40 0.77 0.024 0.39–0.73 
E2 1,0,0 – – 1.60 0.86 0.027 0.47–0.89 
E3 1,0,0 – – 1.80 0.95 0.031 0.57–1.10 
E4 1,0,0 – – 2.00 1.01 0.035 0.66–1.32 
M1 1, −2,2 – – 1.40 0.78 0.002 a 1.94–2.58 
M2 1, −1,1 – – 2.00 1.00 0.009 a 0.64–1.28 
M3 1, −2,2 – – 2.00 1.01 0.003 a 1.93–2.57 
M4 1, −3,3 – – 2.00 1.01 0.002 a 1.94–2.58 

a Note. for the cases with multipolar content, excess energy has been calculated 
w.r.t a non-rotating magnetic field with the same multipolar content E mul = 

B 2 0 R 
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Figure 3. Same as Fig. 2 but with the Y-point positioned at r c = 0.4 R LC . The 
region where the return current flows through open field lines in negligible. 
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resented as a linear combination of magnetic multipoles. To impose
 current-free region, the function g is employed, and while it does
ot necessarily indicate a current sheet, it is chosen to be at least
uadratic. This ensures that T 

′ and consequently G experience at
east one change of sign, allowing the current circuit to close. 

.2 Classical solutions 

he solutions obtained in Contopoulos et al. ( 1999 ); Gruzinov ( 2005 )
ill be referred to as the classical solutions . Fig. 2 illustrates contour

ines of the poloidal flux function P , with the colourmap representing
he source current G = TT 

′ . All the well-known characteristics of the
ulsar magnetosphere are observed in these solutions: The open field
ines e xtend be yond the LC and stretch to wards infinity, e ventually
dopting a split monopole configuration at considerable distances,
nd a current sheet forms at the equator due to the magnetic field’s
eversal between the North and South hemispheres. 
NRAS 526, 1504–1511 (2023) 
In the region where field lines have P > P c , both the toroidal
agnetic field and poloidal current are zero, except for the narrow

ransition zone [ P c , P c + δP ] located just inside the separatrix.
eyond the separatrix, the blue region illustrates the small portion of

he return current that flows back to the star along open field lines. In
ontrast, the nearly white region just inside the separatrix represents
he substantial portion of the return current that flows along the
urrent sheet. We summarize in Table 1 the model parameters of
ifferent solutions. The first line corresponds to the classical model
epicted in Fig. 2 . 
To showcase the accuracy of our findings, we present in Fig. 4 a

ow well our solution aligns with the pulsar equation ( 5 ). The colour
ap illustrates the absolute error of the pulsar equation for our
odel, revealing remarkably low values within the bulk of the domain

 � 10 −5 ). As expected, the error is slightly larger in proximity to the
eparatrix, a region of discontinuity. None the less, this discrepancy
oes not impede our solver from ef fecti vely approximating the
olution throughout the rest of the domain, nor does it significantly
ffect the solution far from these regions. 

In general, we anticipate the maximum error to be of the order of√ 

L since it corresponds to the error of the PDE for a considerable
et of random points. Indeed, as depicted in Fig. 4 b, at the conclusion
f the training process, the loss reaches values around ∼10 −7 ,
onfirming this assumption. The prominent spikes observed in the
gure correspond to the periodic changes of the training set of points.
o we ver, it is noticeable that as the training epochs progress, the

pikes diminish, indicating that the network has learned to generalize
o new points without compromising accuracy. The small fluctuations
etween the spikes, should be interpreted as the variance in the
pproximation to the solution. As the network adapts its parameters
o acquire the solution, it cannot simultaneously reconcile all the
raining points. Consequently, it fluctuates around a mean instead of
nding a single minimum value. 
With the same PINN, it is straightforward to produce solutions

ith different positions of the Y-point, as in Timokhin ( 2006 ) simply
y varying the parameter q c in equation ( 21 ). Fig. 3 shows an example
f such a solution, where the Y-point lies at a distance r c = 0.4 R LC . In
his case, the totality of the return current flows through the current
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Figure 4. (a) Colourmap of the residuals of the pulsar equation. Colourbar is in log scale. (b) Evolution of the loss function with the training epochs. Only the 
value of the loss every 100 epochs is plotted for clarity. Big spikes correspond to changes in the training set. Small fluctuations can be interpreted as the variance 
of the PDE residual. 

Figure 5. Same as Fig. 2 but for the case of non-fixed equatorial boundary 
condition. Field lines that cross the LC can close through the current sheet. 
The solid pink line indicates the line P = P c = 1.4 P 1 , whereas the dashed 
pink line corresponds to P = P ∞ 

= 0.77 P 1 . 
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heet. Interestingly, we observe that the luminosity for r c = 0.4 R LC is
n order of magnitude larger than the classical solution (see Table 1 ).

As discussed in Timokhin ( 2006 ), both the luminosity and the
otal energy stored in the magnetosphere increase with decreasing r c , 
o the magnetosphere will generally try to achieve the configuration 
ith the minimum energy, that is, with r c as close as possible to

he LC. Therefore, although the configurations with a small r c are 
athematically sound and very interesting from the astrophysical 

oint of view (much larger luminosity), they are probably short-lived 
nd less frequent in nature than the standard configuration. 
.3 Non-fixed boundary condition at the equator 

n most previous studies that used classical methods to tackle this
roblem, it was a common practice to solve it in just one hemisphere
nd setting boundary conditions at the equator (equation 11 ), where a
ind of ‘jump’ is expected to occur. This approach is reasonable, but
t limits the range of magnetospheric solutions that can be obtained.
he solutions have equatorial symmetry (in addition to axisymmetry) 
nd end up having a specific configuration: a dipole magnetic field
t the surface and a Y-point configuration where the equatorial and
eparatrix current sheets meet. 

Ho we ver, by utilizing PINNs and taking advantage of their local
nd flexible nature for imposing constraints and boundaries, we can 
reate solutions with fewer (only physically relevant, rather than 
athematical) requirements. In this section, we introduce solutions 
here boundary conditions are applied only at the surface and at

nfinity, without restricting the equator as part of the solution domain.
At infinity, we simply demand that the solution approaches a split
onopole configuration (last term in equation 24 ) with a specific

alue (denoted by P = P ∞ 

) at the equator: 

 ( μ, q = 0) = P ∞ 

(1 − | μ| ) . 
Since the equator is free from any boundary conditions, some 

ther constraint must be imposed to distinguish between a possibly 
nfinite class of different solutions. We decide to set the value of
 c beforehand. This value separates the regions with and without 
lectric currents. This approach is just as valid and perhaps more
ersatile than other constraints, like pinning down the position of the
-point. As for P ∞ 

, we do not fix its value; instead we let the network
gure it out. The value of P ∞ 

separates the regions with currents of
ifferent sign. 
In Fig. 5, we present a typical solution for these boundary

onditions. This magnetospheric configuration bears resemblance 
o the one obtained in Contopoulos et al. ( 2014 ), where a substantial
umber of field lines that cross the LC close inside the equatorial
urrent sheet. Ho we v er, we hav e arriv ed to this result by following
 different prescription. They enforced specific boundary conditions 
t the equator to ensure that the perpendicular component of the
MNRAS 526, 1504–1511 (2023) 
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M

Figure 6. (a) Same as Fig. 5 but for a non-dipolar surface magnetic field. (b) Close up to highlight the multipolar content of the magnetic field close to the star. 
Notice that (a) is in logarithmic scale, while (b) is in linear scale. 

Figure 7. Coefficients b l of the P polynomial expansion as a function of 
the radial distance r for the non-dipolar case. Dashed dotted lines correspond 
to the even coefficients of the split monopole expansion, being zero the odd 
ones. 
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orentz force applied to the equatorial current sheet becomes zero.
n the other hand, our approach involved imposing that the solution
ecomes a split monopole with a certain magnetic flux at infinity
hile leaving the equator unrestricted. 
An interesting generalization of this set of solutions involves

pplying non-dipolar surface boundary conditions. Instead of stick-
ng to the basic dipole case, the surface magnetic field can be a
ombination of various magnetic multipoles (Gralla et al. 2016 ).
his option is not feasible in the classical solution because having
ontributions of even multipoles breaks the equatorial symmetry.
ev ertheless, our solv er can handle this situation without an y issues,
NRAS 526, 1504–1511 (2023) 
ecause it is working throughout the entire domain. As we mo v e
o significant distances from the star, we anticipate the multipole
olution to gradually converge towards the classical dipole solution. 

Fig. 6 shows an example of such a case. In particular, we consider
 combination of a dipole, a quadrupole, and an octupole, with the
orresponding coefficients in equation ( 24 ) being b 1 = 1, b 2 = −2
nd b 3 = 2. At first glance, when observing the magnetosphere on
 larger scale of tens of LC, it appears quite similar to the previous
ne. Ho we ver, upon closer inspection of the zoomed-in right panel,
he complex and intricate structure in the innermost region of the

agnetosphere becomes evident. 
To better understand the structure of this last model, in Fig. 7 we

how the absolute value of the first six multipole weights computed
 v er spheres at different radii. We see how the even l = 2 multipole
uickly decreases with distance. Other even multipoles grow in the
nner region, but they also become vanishingly small at a distance of a
ew LC. On the contrary, the odd multipoles approach the asymptotic



Pulsar equation with PINNs 1511 

v  

−

5

T
u
a
a  

t  

t  

d
 

f  

e
W  

d  

t
 

T
a  

t  

m
P
i  

t  

c

e  

s
P  

e
t
c  

5
P  

t
a
L  

H  

a  

c
o  

m
 

s
p
a
e
e
d
d
a  

c
p
T
d

o
t

a
e
p
o

A

W
I
p
o
a
P
s
t

D

A  

t

R

A  

A  

A
A
C  

C  

C  

C
C
G
G
J  

K  

K
K
L  

L  

M
P  

P
P
P
R  

S
S
S
T
U  

T

©
P

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/526/1/1504/7276630 by U
niversidad de Alicante user on 02 O

ctober 2023
alues corresponding to the split monopole at radial infinity ( P ∝ 1
| μ| ), shown with dashed lines in the figure. 

 DISCUSSION  A N D  FINA L  R E M A R K S  

able 1 summarizes the various models studied in this work. We 
se the letter C to denote solutions acquired following the classical 
pproach, the letter E for solutions without an equatorial constraint, 
nd the letter M for solutions with multipolar content. For the first
hree models, P c is determined by the PINN, while for the rest of
hem is fixed to a pre-determined value. P ∞ 

, when present, is al w ays
etermined by the PINN. 
The excess energy for all the models is of the order of a

ew per cent. Models with no equatorial restriction tend to have lower
nergies, indicating that they are the preferred configuration in nature. 
ith the exception of the model C3, the luminosity for all models

oes not vary from the classical dipole case by more than a factor of
hree. 

In Fig. 8 , we present the function T ( P ) for all the models of Table 1 .
he curves corresponding to models with fixed boundary conditions 
t the equator exhibit a steep transition to zero, which is modelled by
he current sheet (equation 23 ) and begins at P = P c . In contrast, the

odels with no restrictions at the equator smoothly reach the value 
 = P c through a continuous transition from positive (orange area 

n Figs 5 , 6 ) to ne gativ e current (blue area in Figs 5 , 6 ). Importantly,
hese models do not develop a current sheet to close the current
ircuit. 

The area under each of the curves represents the luminosity (see 
quation 15 ), which explains why the model with a lower r c exhibits a
ignificantly higher energy loss rate, as it has more open lines carrying 
oynting flux to infinity . Additionally , the presence or absence of
quatorial restrictions leads to distinct behaviours in the models. In 
he models without equatorial restrictions, not all the Poynting flux 
arried by lines crossing the LC escapes to infinity. Instead, up to
0 per cent of the total pulsar spin-down energy flux (the area between 
 ∞ 

and P c ) remains confined in the equatorial current sheet. This
rapped energy could potentially be dissipated in particle acceleration 
nd high-energy electromagnetic radiation within a few times the 
C radius, as was first pointed out in Contopoulos et al. ( 2014 ).
o we v er, the e xact fraction of power that can be locally dissipated

nd reabsorbed, as opposed to the fraction that is genuinely lost and
ontributes to the spin-down, remains unclear. In the last column 
f Table 1 , we have included the expected range of values for such
odels. 
In this study, extending the results of our previous paper for

lowly rotating magnetar magnetospheres, our success lies in the 
roficient application of PINNs to obtain numerical results for 
 diverse range of pulsar magnetospheric models, meticulously 
xploring various cases under different physical assumptions. Our 
 xtensiv e analysis encompasses the accurate reproduction of several 
istinct axisymmetric models found in the scientific literature. The 
ecision to focus solely on axisymmetry was a deliberate one, 
iming at affirming the remarkable ability of PINNs to ef fecti vely
apture and characterize the intricate peculiarities exhibited by 
ulsar magnetospheres, including the features of the current sheet. 
hroughout our investigation, we purposefully accounted for a rich 
iversity of models, incorporating non-dipolar configurations. 
This work serves as a stepping stone towards the development 

f a robust and trustworthy general elliptic PDE solver, specifically 
ailored to address the challenging complexities of this and related 
2023 The Author(s) 
ublished by Oxford University Press on behalf of Royal Astronomical Society 
strophysical problems. Looking ahead, our research can be naturally 
xtended to the three-dimensional magnetospheric case, a promising 
rospect that holds the potential for reaching a deeper understanding 
f the underlying physics go v erning pulsar magnetospheres. 
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