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1 Introduction 

Structural health monitoring (SHM) represents a growing 

are of research [1,2]. SHM advocates the analysis of con-

tinuous monitoring data and non-destructive testing to 

conduct condition-based maintenance [3], either allowing 

to determine the performance of new structures or as-

sessing the service conditions of civil infrastructures ap-

proaching the end of their lifespan. In general, the SHM 

process is organised around four stages [4]: (i) case de-

termination and operational assessment; (ii) collection of 

recorded data; (iii) extraction of damage-sensitive fea-

tures; (iv) damage identification. Structural damage is de-

fined in the literature as a change in material, geometric 

properties and/or boundary conditions from the initial ref-

erence (undamaged) condition of the structure [5]. The 

damage identification problem is in turn defined according 

to four levels of increasing complexity: damage identifica-

tion, location, quantification, and prognosis [6]. In this 

context, the extraction of damage-sensitive features from 

monitoring records is a key element in the damage identi-

fication process to link signals to the decision-making. In 

the realm of railway bridges, most research efforts have 

been devoted to the theoretical/numerical analysis of the 

moving load problem (see e.g. [7,8]). Nonetheless, the 

number of research works in the literature dealing with the 

implementation of SHM systems to real-world railway 

bridges is still scarce. Among the few experiences reported 

in the literature, most applications based upon the extrac-

tion of modal features through Operational Modal Analysis 

(OMA) (see e.g. [9,10,11]). Although OMA has the ad-

vantage of providing global damage-sensitive features 

[12,13,14], it can only be applied when the structure is 

subjected to environmental white noise excitation and its 

effectiveness to localise damage is related to its ability to 

identify high-order modes [15]. Other time series analysis 

approaches, such as auto-regressive modelling, offer a 

more flexible framework to address the problem of dam-

age identification [16,17]. Autoregressive modelling tech-

niques are capable of extracting damage-sensitive fea-

tures through the direct use of the response time series 

under the passage of trains. In particular, most research 

works in the literature have focused on the analysis of ac-

celeration records (see e.g. [18,19]). It is worth highlight-

ing the work of Meixedo and co-authors [18], who devel-

oped a damage identification approach based on the 

evaluation of anomalies in the time series of continuously 

acquired AR coefficients from acceleration signals. Their 
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results evidenced the correlation between the AR coeffi-

cients and the intrinsic stiffness of the monitored struc-

ture. This allows one to identify structural damage in a 

timely and accurate manner by inspecting the appearance 

of anomalies in the time series of continuously acquired 

AR coefficients. In this context, recent developments in 

distributed strain sensing and fiber-optics technologies 

may offer an ideal framework for the development of new 

damage identification systems. Such sensing technologies 

offer the possibility of conducting distributed monitoring 

applications with superior damage localisation capabilities. 

Studies such as those conducted by Pier F. Giordano [20] 

emphasise the importance of having the availability of 

real-world monitoring data to conduct sound comparisons 

of time-invariant vibration-based damage localisation 

methods. But they involve a considerable computational 

effort due to the need to simultaneously update model pa-

rameters [21]. To overcome this problem, various ap-

proaches can be found in the literature, such as substruc-

ture methods that allow defining dense meshes only in the 

vicinity of the damage, thus alleviating the computational 

burden (see e.g. X. Kong [22]). It is also important to re-

mark damage detection through methodologies based on 

dynamic harmonic regression models. In the literature, 

these types of harmonic models are implemented to use 

prediction intervals as statistical control limits as in the 

work conducted by Tadhg Buckley and co-authors [23]. In 

addition, the latest developments in artificial intelligence 

(AI) have broadened the scope of engineering applica-

tions. This is the case of the contribution by Hieu Nguyen-

Tran and co-authors [24], who developed a hybrid method 

combining AR modelling and artificial neural networks 

(ANN), emphasising the AR model's ability to be combined 

with innovative AI techniques .However, the great poten-

tial of this technology, the development of efficient dam-

age identification techniques is yet to be fully addressed. 

In this light, this paper presents and exploratory analysis 

of the use of strain measurements and AR modelling to 

extract damage-sensitive features for railway bridges un-

der passing trains. The research is framed within a re-

search project on the design and exploitation of a SHM 

system installed in a steel truss railway bridge in Alicante 

(Spain), the Mascarat viaduct. With the aim of developing 

a damage identification approach exploiting the strain time 

series recorded by a fiber optics system, the present work 

analyses the effectiveness of AR modelling of strain time 

series against acceleration data in a simplified benchmark 

case study consisting of a simply supported Euler-Bernoulli 

beam. The moving load problem is solved through modal 

decomposition in terms of vertical accelerations and nor-

mal strain in closed form. Detailed parametric analyses are 

presented to evaluate the influence of vehicle speeds on 

the AR coefficients extracted from the acceleration and de-

formation time series. The presented results and discus-

sion evidence that, unlike acceleration time series, time 

series built on deformation datasets allow the generation 

of low to moderate order AR models, thus providing a com-

pact set of more robust features (AR coefficients) suitable 

for damage diagnostics. Overall, the conducted research 

aims to provide a sound theoretical basis for the use of AR 

modelling as an efficient damage identification technique 

to promote and support the use of fiber-optic sensors. 

2 Theoretical framework 

2.1 Autoregressive modelling 

The AR(𝑚) model, with 𝑚 denoting the order or number of 

parameters in the model, is developed from a discrete re-

sponse time-series data 𝑥𝑖, 𝑖 = 1,… , 𝑛 and can be written 

as: 

𝑥𝑗=∑ 𝑎𝑖𝑥𝑗−𝑖
𝑚
𝑖=1 + ℇ𝑗 , (1) 

in such a way that 𝑥𝑗 is defined as a linear combination of 

the 𝑚 previous response values multiplied by AR constant 

parameters 𝑎𝑖. The quantity ℇ𝑗 corresponds to the residual 

error in the signal value 𝑥𝑗. In matrix form, the AR model 

can be represented by: 

(

  
 

𝑥𝑚+1
𝑥𝑚+2
⋮
⋮
⋮
𝑥𝑛 )

  
 
=

(

 
 

𝑥1 𝑥2 ⋯ 𝑥𝑚
𝑥2 𝑥3 ⋯ 𝑥𝑚+1
⋮ ⋮ ⋱ ⋮
⋮ ⋮ ⋱ ⋮

𝑥𝑚−𝑛 𝑥𝑛−𝑚+1 ⋯ 𝑥𝑛−1)

 
 

(

 
 

𝑎𝑚
𝑎𝑚−1
⋮
⋮
𝑎1 )

 
 
+

(

 
 

ℇ𝑚+1
ℇ𝑚+2
⋮
⋮
ℇ𝑛 )

 
 
.   (2) 

The process of fitting the AR model 𝑎𝑖 can be conducted by 

solving the typically overdetermined set of equations in (2) 

through the least-squares method or the Yule-Walker ap-

proach [25]. 

2.2 Definition of optimal model order of AR expan-

sions 

The model order, initially unknown, determines number of 

past observations required to reproduce the time series. 

This conditions in turn the size of the observation matrix 

in Eq. (2) and, consequently, the computational cost of the 

feature extraction. A high parameterisation of the model 

would, in general, tend to overestimate the noise in the 

training dataset, thus losing generality, while a too low or-

der number would fail to accurately represent the physical 

mechanisms governing the system under investigation 

[26]. It is therefore desirable to adopt an automated ap-

proach to optimally select the model order. This may be 

conducted through parametric analyses with increasing 

model orders, in such a way that the optimal model order 

is selected through a certain error quality metric [27,28]. 

Some of the most widely used metrics in the literature in-

clude the Akaike Information Criterion (AIC) and the 

Bayesian Information Criterion (BIC) [29]. These metrics 

provide an excellent trade-off between the error in AR pre-

dictions and the complexity of the model, thus avoiding 

problems of over-fitting, i.e. over-parametrisation of the 

model. The BIC and AIC metrics are defined as [30]: 

𝐵𝐼𝐶(𝑚) = 𝑛 ln (
𝑅𝑆𝑆(𝑚)

𝑛
) +𝑚 ln(𝑛),    (3) 

𝐴𝐼𝐶(𝑚) = 𝑛 ln (
𝑅𝑆𝑆(𝑚)

𝑛
) + 2𝑚,  (4) 

where RSS(𝑚) represents the sum of squared residuals of 

the AR model of order 𝑚 (i.e. ∑ ℇ𝑗
2𝑛

𝑗=𝑚+1 ). 

3 Numerical results and discussion 

3.1 Application case study  

The investigated case study of a simply supported Euler-
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Bernoulli beam is sketched in Fig. 1. This bridge configu-

ration is presented in the Spanish railway bridge design 

code IAPF-07 [31]. The model consists of a simply sup-

ported Euler-Bernoulli girder of length L=15 m, mass per 

unit length ρ = 15 t/m, flexural stiffness 𝐸𝐼 = 7694.081 MPa, 

and constant modal damping ratio 𝜉 = 2%. It is assumed 

that the beam has a rectangular cross-section with a 

height equal to ℎ𝑠. In the moving load problem, one single 

point load 𝑃 is considered moving at a constant speed 𝑣 

across the bridge and initially located at a distance 𝑑 from 

the origin. The load as a function of time and distance can 

be described as 𝑝(𝑥, 𝑦) = 𝑃δ(𝑥 − 𝑣𝜏 − 𝑑), where δ is the Dirac 

delta function and 𝑥 and 𝑡 denote the longitudinal coordi-

nate along the load path and the time variable, respec-

tively.   

(a)  

  

 

(b) 

 

 𝑓1= 5 Hz    𝑓2= 20 Hz   𝑓2= 45 Hz   𝑓2= 80 Hz 

Figure 1. Geometry and mechanical properties of a simply supported 

beam with constant cross-section and traversed by a single moving 

load (a), and modal properties of the beam (b). 

3.2 Analytical solution of the vibration of simply 

supported beams under moving loads 

The moving load problem is solved through modal super-

position in closed form. In the first place, the differential 

equation of vertical displacements 𝑢(𝑥,𝜏) of the Euler-Ber-

noulli beam under a moving load disregarding damping ef-

fects can be written as: 

ρ(x)
∂2𝑢(𝑥.𝜏)

∂𝜏2
+

∂2

∂𝑥2
[𝐸𝐼(𝑥)

∂2𝑢(𝑥.𝜏)

∂𝑥2
] + 𝑃δ(𝑥 − 𝑣𝜏) = 0,   (5) 

with 𝜏 = 𝑡 − 𝑑/𝑣 being the relative time of the moving load 

on the beam. Assuming that the system behaves linearly, 

the solution of Eq. (5) can be obtained by applying modal 

variable separation 𝑢(𝑥, 𝜏) =  Φ(𝑥)𝑦(𝜏), with Φ(𝑥) being the 

modal matrix containing the 𝑛-th mode shapes Φ𝑛(𝑥) by 

columns, and 𝑦(𝜏) the vector of modal displacements. In 

virtue of the orthogonality property of the mode shapes, 

Eq. (5) can be decoupled into modal coordinates 𝑦𝑛(𝜏) as: 

∫ Φ𝑛(𝑥) [ρ(𝑥)
∂2𝑦𝑛(𝜏)

∂𝜏2
]Φ𝑛(𝑥)𝑑𝑥 + ∫

∂2Φ𝑛(𝑥)

∂𝑥2

𝐿

0

𝐿

0
EI(𝑥)

∂2Φ𝑛(𝑥)

∂𝑥2
d𝑥 = 0.    (6) 

From Eq. (6), the generalized mass 𝑀𝑛 and stiffness 𝐾𝑛 

values associated with the 𝑛-th mode can be identified as: 

𝑀𝑛 = ∫ Φ𝑛(𝑥)
𝐿

𝑜
ρ(x)Φ𝑛(𝑥)d𝑥, (7) 

𝐾𝑛 = ∫
∂2Φ𝑛(𝑥)

∂𝑥2

𝐿

0
 EI(𝑥)

∂2Φ𝑛(𝑥)

∂𝑥2
d𝑥.   (8) 

At this point, it is possible to include the damping effects 

by means of a modal damping ratio 𝜉𝑛. Using dot notation 

to represent time derivatives, Eq. (6) can be rewritten in 

a more compact form as: 

�̈�𝑛(𝜏) + 2ζ 𝑛𝜔𝑛�̇�𝑛(𝜏) + 𝜔𝑛
2𝑦𝑛(𝑦) + (

𝑃

𝑀𝑛
)Φ𝑛(𝑣𝜏) = 0,   (9) 

where the term 𝜔𝑛 stands for the undamped angular fre-

quency of the 𝑛 − 𝑡ℎ mode. The homogeneous solution of 

Eq. (9) can be readily derived as: 

𝑦𝑛
ℎ(τ) = 𝑒−𝜉𝑛𝜔𝑛𝜏[𝐴𝑛 cos(𝜔𝑛

𝑑𝜏) + 𝐵𝑛 sin(𝜔𝑛
𝑑𝜏)],   (10) 

where terms 𝐴𝑛 and 𝐵𝑛 are constants to be determined by 

the boundary conditions. Terms 𝜔𝑛 and Φ𝑛 denote the un-

damped angular frequency and mode shape of the 𝑛 − 𝑡ℎ 

vibration mode and are given by: 

𝜔𝑛 = 𝑛
2𝜋2√

𝐸𝐼

𝜌𝐿2
,   Φ𝑛(𝑥) = sin (

𝑛𝜋𝑥

𝐿
).  (11) 

The resulting natural frequencies 𝑓𝑛 = 𝜔𝑛/2𝜋 and mode 

shapes of the first four vibration modes of the present case 

study are depicted in Fig. 1 (b). Defining the following non-

dimensional parameters: 

Ω =
nπ(vτ)

L
,   Φ𝑛(𝑥) = sin (

𝑛𝜋𝑥

𝐿
),   (12) 

η =
2𝑃𝐿2

𝐸𝐼𝑛4𝜋4
[(1 − 𝑆𝑛

2)2 + 4(𝜉𝑛𝑆𝑛)
2]−1,   (13) 

the particular solution of Eq. (5) reads: 

𝑦𝑛
𝑝
= 𝐶𝑛 cos(𝛺𝜏) + 𝐷𝑛 sin(𝛺𝜏),   (14) 

with 𝐶𝑛 and 𝐷𝑛 given by: 

𝐶𝑛 = −2ζ 𝑛𝜂𝐿, 𝐷𝑛 = (1 − 𝑆𝑛
2)𝜂𝐿.    (15) 

In this light, the solution of the modal coordinate 𝑦𝑛(𝜏) is 

obtained as 𝑦𝑛(𝜏) = 𝑦𝑛
𝑝(𝜏) + 𝑦𝑛

ℎ(𝜏), and terms 𝐴𝑛 and 𝐵𝑛 in 

Eq. (10) are found by applying the simply supported 

boundary conditions, which leads to: 

𝐴𝑛 = −𝐶𝑛,  𝐵𝑛 =
𝜉𝑛𝜔𝑛𝐶𝑛+𝜔𝑛

𝑑

𝜔𝑛
𝑑 .      (16) 

Considering that the dynamic response is governed by 𝑚 vi-

bration modes, the solution reads: 

u(x, τ) = ∑ {𝑒−𝜉𝑛𝜔𝑛𝜏[𝐴𝑛 cos(𝜔𝑛
𝑑𝜏) + 𝐵𝑛 sin(𝜔𝑛

𝑑𝜏)] +𝑚
𝑛=1

𝐶𝑛 cos(𝛺𝜏) + 𝐷𝑛 sin(𝛺𝜏)}Φ𝑛(𝑥) = 𝑄(𝑡)Φ𝑛(𝑥),          (17) 

with 𝜔𝑛
𝑑 = 𝜔𝑛√1 − 𝜉𝑛

2 denoting the damped natural angular 

frequency. In this light, under the assumption of linear 

elasticity and Navier’s stress distribution for bending 

stresses, it is straightforward to extract the closed-form 

solution of the strain time-series at the top fibre of the 

cross-section as: 

v 

x EI, ρ 

15 m d 

ℎ𝑠 

P·δ (x-v·τ) 
u (x, t) 
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𝜀(𝑥, 𝜏) =
ℎ𝑠

2
𝑄(𝑡)

𝑑2Φ𝑛(𝑥)

𝑑𝑥2
.  (18) 

Since the system is assumed to be linear, the previous 

formulation can be readily extended to general train com-

positions by means of linear superposition. 

3.3 Identification of the characteristic AR model 

Two different load cases have been studied, namely (i) one 

single moving load in Fig. 2, and (ii) the ICE2 train in Fig. 

3 (the train composition is given in [31]). In these anal-

yses, the first ten vibration modes have been considered.  

The first load case consists of a single moving load of 100 

kN crossing the beam at 150 km/h, and originally located 

𝑑 = 5 m far from the origin. The acceleration and strain 

(top fibres) time series computed at the mid-span of the 

beam for the first loading case and the corresponding pre-

dictions by the AR model are shown in Figs. 2 (a) and (b), 

respectively. As indicated above, the model order m de-

termines the quality of the associated autoregressive 

model 𝐴𝑅(𝑚). For the definition of the optimal order of the 

AR models, parametric analyses considering increasing 

model orders have been computed as reported in Figs. 2 

(c) and (d) for the acceleration and strain time series, re-

spectively. On this basis, the optimal model order can be 

determined by seeking the AR model yielding the mini-

mum error metric in terms of BIC, AIC or MSE. Alterna-

tively, the elbow point at which the rate of variation of the 

considered metrics stabilizes can be also considered to ex-

tract more compact expansions. In these figures, the op-

timal model orders determined by the minimum value and 

elbow point of the BIC curves are represented in this figure 

with red filled dots. Finally, the AR coefficients determined 

for expansions with a model order of 𝑚 = 26 are shown in 

Figs. 2 (e) and (f) for the acceleration and strain time se-

ries, respectively. It is noted in these figures that most 

information is provided by the first ten coefficients. It is 

noted in Figs. 2 (c) and (d) that the AIC and BIC metrics 

exhibit similar behaviours, while the MSE metric tends to 

achieve convergence at lower model orders.   

 

 

 

 

 

 

Figure 2. Acceleration (a) and strain (top surface) (b) time series and 

AR predictions at mid-span of a simply supported beam traversed by a 

single moving load of 100 KN travelling at 150 km/h and starting 5 m 

far from the origin of the beam (𝛥𝑡 = 1 𝑚𝑠) . Quality parametric anal-

yses for increasing model orders for AR modelling of the acceleration 
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(c) and strain time series (d) (red filled dots represent the optimal 

model orders determined as the minimum and elbow points of the BIC 

curve). AR coefficients (𝑚 = 26) fitted with the acceleration (e) and (f) 

strain time series. 

It is evident in these figures that the AR model requires 

considerably larger model orders to represent the acceler-

ation time series. Indeed, the influence of fast oscillating 

terms in the strain time series is considerably lower, thus 

requiring lower model orders to achieve a comparable pre-

diction accuracy. In this work, the elbow point of the BIC 

curves is selected to define the optimal expansion. It is 

noted in these figures that the elbow points are found at 

model orders of 𝑚 = 18 and 𝑚 = 3 for the acceleration and 

the strain time series, respectively. The predictions of the 

corresponding AR models are depicted in Figs. 2 (a) and 

(b) with red scatter points. It can be concluded from these 

results that strain measurements can be reproduced with 

low order AR models, thus providing a more compact set 

of AR coefficients for damage detection purposes. The 

same conclusions hold when considering a complete train 

load in Fig. 3. It this case, the elbow points are found at 

model orders of 𝑚 = 11 and 𝑚 = 3 for the acceleration and 

the strain time series, respectively.  

Figures 4 (a, b) and (c, d) report a parametric analysis of 

the AR coefficients determined for the previous two load-

ing cases, respectively. Specifically, six different train ve-

locities are considered, namely 𝑣 = 100, 150, 200, 250, 

300 and 350 km/h. The analysis is performed both for ac-

celeration and strain time series and furnished in Figs. 4 

(a, c) and (b, d), respectively. Overall, only slightly larger 

variabilities in the amplitude of the AR coefficients for the 

acceleration times can be noted. From these analyses, it 

is clear that the variability of the AR coefficients (both in 

terms of acceleration and strain time series) is driven by 

the train composition and the passage velocity. 

 

 

 

 

 

 

Figure 3. Acceleration (a) and strain (top surface) (b) time series 

and AR predictions at mid-span of a simply supported beam traversed 

by the ICE2 train travelling at 160 km/h (∆𝑡 = 1 𝑚𝑠). Quality para-

metric analyses for increasing model orders for AR modelling of the 

acceleration (c) and strain time series (d) (red filled dots represent the 
optimal model orders determined as the minimum and elbow points of 

the BIC curve). AR coefficients (𝑚 = 26) fitted with the acceleration (e) 
and (f) strain time series. 
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Figure 4. Parametric analysis of AR coefficients for different train 

velocities: (a, b) single load; (c, d) ICE2 train; (a, c) acceleration time 

series; (b, d) strain time series. 

 

4 Conclusion 

This paper presented a methodology for the rapid and 

cost-effective detection of bridge damage under moving 

train loads using AR signal modelling. In particular, this 

work analysed the advantages of using strain measure-

ments over acceleration monitoring systems in terms of 

damage sensitivity. The approach proposed in this work 

exploits the analysis of autoregressive (AR) experimental 

time series for continuous damage detection, AR coeffi-

cients are extracted continuously and used as damage-

sensitive features. In order to automatically select the op-

timal model order in the AR expansion, a systematic meth-

odology was proposed that involves evaluating fit quality 

metrics for increasing model orders. This work presented 

a theoretical case study of a one-dimensional (1D) bridge 

system to investigate the potential of the proposed meth-

odology. Detailed parametric analyses were presented to 

analyse the influence of train configuration and speed on 

the AR coefficients extracted from the acceleration and de-

formation time series. Overall, the results presented 

demonstrate the superior ability of strain measurements 

to provide more compact AR expansions that are less in-

fluenced by operating conditions such as train speed. This 

is mainly due to the less influential presence of highly os-

cillating terms in strain measurements compared to accel-

eration signals. Future research efforts will be devoted to 

the implementation of the proposed methodology for the 

continuous structural evaluation of the Mascarat Bridge 

(Alicante-Spain, real case) through the processing of the 

experimental recordings. 
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