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Abstract. Collaborative location-based collecting systems (CLCS) are a 
particular case of collaborative systems where a community of users 
collaboratively collect geo-referenced data. Each CLCS sets its territory 
coverage objectives, commonly defined as to guarantee that all the affected 
territory is surveyed with a particular coverage criterium. This paper presents a 
three-step pipeline to recommend the subareas that require observations 
dynamically. The first step generates a disjoint and adjacent set of areas -a 
mesh- covering the sampling territory. The second step sets a priority and 
coverage objective for each area. Finally, the third step considers the project’s 
objectives and the area coverage situation to recommend the areas that need 
surveys. The output of this last step is an input for a user-task distribution 
process where the user’s profile is taken into account. Moreover, an example of 
meshing strategy and task generation is proposed. 

Keywords. Collaborative Location-based Collecting Systems, Meshing, 
Decision-making, Spatial Crowdsourcing. 

1 Introduction 

Collaborative Location-based Collecting Systems (CLCS) are collaborative systems 
where the community of users collects data associated with their location normally by 
using a mobile application [3]. CLCS can be weighed as a supporting technology of 
some citizen science projects, such as the AppEar project[1], GeoVin [2] or 
iNaturalist [14]. Citizen science projects encourage and support the contributions of 
volunteers to the advancement of scientific research. Some location-based activities 
need to survey scientific data associated with a location and a timestamp, 
consolidating these contributions as tuples with the structure: 
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< lat−long, timestamp, sampleData > 

 
As an example, a sampleData value for AppEar project includes ecological 
information about rivers, lakes and estuaries; GeoVin sampleData describes the 
‘barber bug’ insect (Triatoma infestans) presence; iNaturalist sampleData is about 
biodiversity observations around the globe. 
Each CLCS sets its territory coverage objectives, commonly defined as to guarantee 
that all the affected territory is surveyed with particular coverage criteria [3]. For 
instance, the coverage criteria can be a sample every 100 meters. Setting coverage 
criteria implies dealing with the problem of organizing the division of observation 
tasks so that the project’s objectives are met. Specifically, it requires (i) the 
segmentation of the territory into smaller areas and (ii) assigning coverage priorities 
to each area considering the project objectives. And so, if necessary, repeat (i) and 
(ii). 
Even though the spatial modeling and segmentation problem is widely approached in 
geographical information and location-aware systems [9, 12, 8, 18,6, 5], and the 
growing number of studies in spatial tasks assignment in a wide range of fields [10, 
11, 15–17, 7] , the subject of relating tasks to spatial segments considering project’s 
objectives is largely absent. 
This article presents an approach for decision-making assistance to dynamically 
recommend the tasks for those subareas that require observations based on the 
coverage objectives and a geographical area of scope of the CLCS. Such a tool is 
much needed in CLCS as well in the industry. As the survey tasks are completed, the 
recommendation is dynamically executed to find those areas that have not been 
completed. Also, it is possible to trigger a new segmentation if a particular condition 
on the system’s global status is achieved. 
The recommendation is made through a three steps pipeline where the first step 
generates a disjoint and adjacent set of areas -a mesh- that covers the sampling 
territory. The second step sets a priority and objectives for each area, and it can be 
done manually or automatically through a rule set. Finally, the third step considers the 
project’s objectives and the area coverage situation to recommend the areas that need 
to be surveyed. The output of this last step is an input for a user-task distribution 
process where the user’s profile is taken into account. It is essential to notice that this 
approach generates a set of tasks considering, on the one hand, what is needed to 
achieve the project objectives and, on the other hand, the status of the project. 
However, nothing is addressed concerning the assignment of these tasks to the people 
who have to solve them. This assignment proposes a challenge in the adaptability 
research area to analyze the tailoring of tasks based on each user’s preferences, 
characteristics, and behavior. Although this is an external process, the result of the 
task assignment in terms of how many were completed is essential feedback to update 
the CLCS’s global state and be able to repeat the generation of tasks. In addition, this 
work presents a possible mesh computation strategy suitable for a cold start and a task 
generation strategy. 
This article is organized as follows. In Section 2 the related work is presented. In 
Section 3 the pipeline steps are detailed. Finally, Section 4 shares discussions and 
future work. 
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2 Related work 

Spatial crowdsourcing is the process of crowdsourcing a set of spatial tasks (i.e. tasks 
related to a location) to a set of users, which requires the users to perform the spatial 
tasks by physically traveling to those locations[11]. Location-based task assignment 
needs to assess the available sensing resources to meet the objectives of the CLCS. 
The criteria for optimization of task assignment include sensing costs, coverage of 
areas of interest, quality, and redundancy of sampled data. The approach in [15] 
proposed a coverage-based task assessment that finds the least costly subset of 
participants to achieve the coverage goal. The work in [16] also proposed a coverage- 
based task assignment method for assigning viewpoints to a group of moving 
participants. Similarly, [17] focuses on one class of spatial crowdsourcing, in which 
the users send their locations to the server. After that, the server assigns the tasks in 
proximity to the user’s location to every user, intending to maximize the overall 
number of assigned tasks. Notice that the tasks are defined by a geolocated point in all 
these approaches but not associated with a sampling geolocated area. 
Regarding the segmentation into sampling areas, the discipline of geographic 
information systems (GIS) defines and uses different tessellated models to represent 
information about the earth [8]. Sometimes these models have the objective to build a 
hierarchical discretization of a high definition raster image or to support a vector 
representation of terrain surface, such as the Voronoi regions [9] or the Delaunay 
triangulation [18]. Articles that address the meshing problem by calculating the 
Voronoi regions from a set of centroids were found, as is the case of Fleischman et al. 
[6] and Du and Gunzberg [5]. These approaches can be helpful when, as was 
mentioned in Section 1, a new segmentation of the territory is needed considering the 
accumulated sampling activity. 

3 Approach 

CLCS spatial decision-making needs to optimize users’ work by combining the 
defined objectives for the CLCS with the completed tasks in the territory. As was 
mentioned, one possible way to present the objectives is in terms of the number of 
samples per subarea and setting criteria for building a set of areas. Furthermore, these 
objectives can be complemented by prioritizing specific subareas. 
This article proposes a pipeline to support a located-based task generation considering 
the project’s objectives and the system’s global status, as it is shown in Figure 1. The 
first step aims at generating a Mesh, given a list of geolocated geometries and some 
initial mesh configurations. 
As a second step, the coverage and priority for each area must be defined, and it 
can be done manually or automatically through the application of a ruleset. These two 
configurations are essential at different times of the process: coverage setting is 
needed for the task generation step, and the area priority definition is a requirement 
for the location-based tasks recommendation system (see the gray box in Figure 1). 
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The third step feeds on the project objectives and the system’s global status to 
generate a list of spatial tasks to be distributed to users. After that, the 
recommendation of tasks (and their subsequent completion) offers an updated 
system’s global status as feedback for this task generation (see CT -Completed Tasks- 
parameter in Figure 1). 
Moreover, the mesh can be thought of as a dynamically adapted mesh that is 
recalculated based on the newly completed location-based tasks that represent the 
feedback to step 3 and can trigger feedback to step 1. 
The following subsections introduce a few preliminary definitions and then give 
details about the steps of the pipeline, with an example strategy in each case. 
 
3.1Preliminary definitions 
Two methods are frequently used to represent geographic phenomena in ways that 
can be encoded in spatial databases, called raster and vector methods. Both can be 
used to encode continuous fields and discrete objects, but there is a strong association 
between raster and continuous fields and between vector and discrete objects in 
practice. One of the most common forms of raster data comes from remote-sensing 
satellites, which capture information as high-definition images. In a vector 
representation, all lines are represented as points connected by a straight line, and 
areas are captured as a series of points or vertices connected by straight lines, called 
polygons. Lines are represented in the same way, and the term polyline (or multiline) 
has been coined to describe a curved line represented by a series of straight segments 
connecting vertices [12]. 

 
Definition 1 (Point). It is a tuple (latitude, longitude) of geographic coordinates. 
Negative values in latitude refer to points in the southern hemisphere, and negative 
values in longitude refer to points located west of the Greenwich meridian. 
For instance, a point is pair with latitude: -24,5073190, and longitude: - 68,3958578. 

 
Definition 2 (Multiline). A multiline object is a sequence of more than two points. 

 
Definition 3 (Polygon). A polygon is a particular case of a multiline element, where 
the first point is also the last one, making a closed geometry. 
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3.2 Mesh Generation 
As presented in the introduction, CLCS needs to relate each obtained sample with an 
area of the mesh. Depending on each project’s particular characteristics, the area 
mesh must meet certain conditions on shape and granularity. However, in all cases, 
the mesh is a set of adjacent and disjoint cells organized following the shape of a 
given geometry. 
 

Table 1. Mesh generation interface. 
 

 
For this reason, in this first step, it is necessary to delimit the territory and be able to 
configure the desired characteristics of the mesh. Table 1 details the input and output 
value types for the Mesh Generation step. The geolocated territory is defined by the 
geomList input parameter, while the characteristics are defined by the meshConfig 
input parameter. The geomList parameter can contain a single element that represents 
the total area of scope of the project or a set of geometries that spatially defines 
the territory. However, the details of this parameter depend on the particular meshing 
strategy. 
 

 
Fig. 2. Mesh Generation strategies 

 
The output of the Mesh Generation step is the initial system global status as is 
defined below: 

 
Definition 4 (System global status). The system global status is a list of tuples: 

GS = {< a, rt, ct, w >} 
 
where a is a sampling area, rt is an integer number representing the required number 
of sampling tasks, ct is an integer number representing number of completed 
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sampling tasks in area a, and w is the assigned priority weight to area a. 
 
As is shown in Figure 2, in this work, several strategies are proposed, and they can be 
further extended. The Regular Mesh Generator (detailed in the following sub- section) 
is based only on a geometry (or a list of geometries) that defines the territory and the 
map of meshing parameters. This strategy is useful to tackle the cold-start meshing. 
Other strategies approach the mesh generation based on the territory spatial definition 
and the existence of other intermediate points located in the territory. Examples of 
these are the Voronoi regions [9], or Delaunay triangulations [18], among others. 
Moreover, the granularity level of meshes can be thought of as dynamic and can be 
supported as an automatic process triggered in step 3. As an example, this can be used 
to divide areas that fulfill certain conditions, updating the system’s status in the areas 
involved. Similarly, the areas can be merged to achieve larger areas. 

 
Regular Mesh Generation (cold-start) Some scenarios require the sampling activity 
to be done in the proximity of a geographic element (a Point, multiline or polygon) 
without other points as a reference. This situation is associated with a cold-start mesh, 
and the geomList parameter is populated with these elements geographic, aiming at 
building a mesh following the shape of these geometries. For example, consider 
AppEar project, which needs to survey the ecological situation at the shores of rivers, 
lakes, and estuaries. In this case, geomList is made up of spatial geometries that 
represent the rivers and lakes. 
This particular meshing strategy where the generated areas are organized in a regular 
shape grid following the shape of a given geometry is called Regular Mesh. In other 
words, the upper limit of the mosaic is the geometry’s limit, the lines that separate the 
cells’ rows are parallel to that limit, and the number of rows and the dimension of its 
cells are set through the configuration map. 
To detail the example scenario, suppose that sampling tasks need to be completed on 
the shore of a lake, that a ring parallel delimits the shore to the shoreline, spaced 100 
meters apart, and that at least one sample is needed every 50 meters. This 
requirement would need an initial mesh with one row (or ring) of 50 meters width 
cells, like the one depicted in Figure 3 (b), and the meshConfig parameter is: 
 

meshConfig = {< cellWidth, 50 >, < nrows, 1 >, < gridHeigth, 50 >} 
 
Another situation could need also a second sample of 70 meters from the shore, 
and in this case a different mesh would be needed, with two rings or rows around the 
lake. This is graphically explained in Figure 3 (c). In this case the meshConfig 
parameter is: 
 

meshConfig = {< cellWidth, 50 >, < nrows, 2 >, < gridHeigth, 100 >} 
 
Similarly, the different sampling requirements can be applied to the geometry of a 
river, as is depicted in Figure 4. 
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Fig. 3. Lake polygon and Regular Mesh examples 
 
 
 
 

Fig. 4. Adaptive mesh for a river 
 
 
The regular mesh generation algorithm is presented in Listing 1.1 and builds a 
mesh for a given spatial geometry, a cell width, a total grid height, and a row number. 
Notice that this geometry can be a multiline (definition 2) or a polygon (definition 3), 
but in a general way, geometries are made up of sequences of segments, where each 
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segment is a pair of connected points. 
To generate the polygon’s grid, this algorithm builds a grid for each segment, and 
after that, it connects the grids of consecutive segments. In each segment union, one 
of two possible situations is faced: either the segments form a convex angle (that is, 
there is an uncovered space between the grids to be connected), or they form a 
concave angle (that is, these grids overlap ). Therefore, an additional process must be 
carried out that performs extrapolation or interpolation,respectively. 

 
Listing 1.1. GridConnector algorithm 

 
Although this mesh generation is handy when the mesh must follow the shape of a 
geolocated geometry, it can be applied as a cold start strategy in other domains. 

 
3.3 Area Priority and Coverage definition 
A common trait in CLCS is to present the project’s objectives in terms of coverage in 
a set of areas, as an integer value associated to each one. In this work, the coverage 
need is modeled with the rt value in the system global status (defined in 4). 
Furthermore, special areas can also be highlighted using polygons or points of interest 
(POIs), where another criterion is applied for setting the required number of tasks rt. 
 

Table 2. Area priority definition interface 
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As was introduced, this step can be done manually or automatically employing a rule- 
based system and needs to be carried out after the subareas are defined (step 1 is 
executed). In any case, this is useful for generating tasks if the strategy applied for 
this considers their priorities. The first time this step is executed, the input system’s 
global state has no defined weights, but after regeneration of the mesh, it may be 
necessary to update some of those weights. 
 

Table 3. Example project objectives definition 

 
Considering a rule-based system, a possible projObjectives map is described in Table 
3. This map determines that all areas must have a required sampling task of 20 
samples (rt = 20), and the same weight value (w = 5), except for those areas that 
contain any of the points of interest defined in the POIs property, in which case w = 7. 

 
3.4Task Generation 
In this step, the set of sampling tasks that are necessary to achieve the project 
objective is built. Specifically, is a set of tuples 
 

TL = {< a, n >} 
 
where a is a sampling area, n is an integer number representing the pending sample 
work. 
Different strategies can be applied, considering that task completion is not directly 
related to the task list as users do not always complete the assigned task. For example, 
this step could estimate the number of redundant tasks based on the feedback through 
which completed tasks are reported. 
 

Table 4. Task generation interface 
 

 
In the different approaches to solving step 2, the first time this step is executed, it is 
based only on the system’s global state. However, in the following iterations, 
feedback from step 3 is considered: how the community of users completed the 
required tasks. This feedback is modeled in a list of tuples 
 

CT = < a, m > 
 
where a is the surveyed area and m the completed task count that informs the finished 
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sampling tasks in that area. 
In the next section, a particular strategy for task generation is presented. 
 
Offset task generation strategy The offset task generation approach is a particular 
task generation strategy that focuses on the pipeline feedback from an external task 
recommendation system. The value m is not necessarily less than or equal to the value 
n that was generated for that area in the previous cycle as an output of this step. Since 
the users community might perform fewer sampling tasks than those requested for 
that area, more tasks may be carried out since there are geographical locations that 
can attract more visitors. 
The difference (offset) between m and n is calculated to measure the response to 
the lastly generated task list. If δ=m-n is positive, it is an over-sampled area, but if 
δ=m-n is negative, then an under-sampled area is present. In the first case, this area is 
already covered and is separated from the output. In the second case, redundancy is 
applied to the calculation of the offset, which is a scale factor (f) to take into account 
that the area in question is rarely visited. In addition, it is helpful to establish a 
threshold (t) that allows establishing which areas need more visibility. 
Therefore, the task list update is done with the algorithm described in Listing 1.2. 
 

Listing 1.2. Task list update 
 
Suppose the situation where for a certain area a 1 15 samples were requested but only 
12 were solved, then δ is -3. On the other hand, if another area a 2 had 15 requested 
samples but only 3 were solved, then δ = −12. Also, if t = 10 and f = 2, meaning that 
when treshold is exceeded, double sample quantity is requested. Therefore in the first 
example the new value for area a 1 is n ′ = 3, and for a 2 is n ′ = 12 × 2 = 24. 
Like the mesh generation step, several strategies could be defined for this step, and 
the pipeline could be configured according to the domain and objectives of each 
project. 

 
3.5 User Location-based Task Recommendation System 
An external system could consume the sampling task list generated in the former step 
to assign the tasks to particular users. 
There are several approaches to distributing tasks taking into account other aspects 
such as user experience [4]. Although this step is introduced in the main description 
of the pipeline process, its details are out of the scope of this article. However, 
according to the nature of geolocated activities, some research lines are introduced in 
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the following. 
The use of health statutes, user behavior, the weather, and other context variables 
could be considered when recommending tasks to users. There are approaches related 
to physical exercise and the idea of avoiding users getting boring doing it [10]. In the 
context of this article, the sampling task could be assigned to people who complement 
their physical activities within the objective of the original projects: people do 
exercise and cooperate in collecting data of interest in an area. 
In addition, several approaches centered the user preferences in order to recommend 
points of interest based on external resources like a knowledge base of restaurants, 
shopping malls, or any other social places[13]. However, the point of interest that 
feeds those approaches could be combined with the sampling task list, which can be 
considered as located areas of interest. 
Finally, using user traveling behaviors is another approach to focus the distribution of 
sampling tasks. This means selecting those tasks that better adapt to the spatial and 
temporal behavior of users. 

 

4 Conclusion and Future work 

This work presented a pipeline approach for decision-making in generating location-
based sampling tasks. This proposal considered the project’s coverage objectives, 
area priority configuration, and global system status. 
The generated task list may be a requirement for a recommendation system that 
assigns tasks to the users who participate in the project based on user profiles that can 
consider the person’s characteristics, preferences, or historical behavior. Also, that 
system can recommend game items in an adaptive gamification approach. 
The meshing approach developed in this work can be considered a cold start for an 
adaptation strategy based on the community’s behavior. An initial set of areas can 
then be adjusted by calculating Voronoi regions taking as centroids the samples or 
from other hot spots that represent the busiest areas. This complemented approach 
allows having a dynamic set of sampling areas to propose a better distribution of the 
samples. 
As further work, the inclusion of the proposed approach with the adaptive user- 
preferences-centered task distribution will be analyzed. Although there is a wide 
range of approaches, the first steps will be focused on using gamification strategies in 
the recommendation. For example, to generate specific gamification elements based 
on the generated task list to consider the project and user goals and preferences. 
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