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A B S T R A C T   

The effects of climate change on agriculture are a major concern for global food security. In this study, the 
impacts of climate change on rainfed rice production in the granary of Cambodia were examined on a basin scale 
by developing and applying a combined model consisting of a crop model and a basin-scale distributed hydro-
logical model. The response of rice production to soil-water availability was simulated for past (1981–2000) and 
future (2041–2060, 2081–2100) periods. From 34 general circulation models (GCMs) that participated in the 
Coupled Model Intercomparison Project Phase 5 (CMIP5), 5 GCMs were selected by evaluating monthly rainfall 
in the past. Although annual rainfall was projected to increase by all five selected GCMs, notable decreases in 
rainfed rice production were projected with 3 GCMs, while small changes were projected with the other 2 GCMs. 
The main factor restricting future rice production was soil water availability, brought by the projected change in 
the seasonal distribution of rainfall and the projected more severe dry spells in the early monsoon season. The 
results suggest the importance of the selection and bias correction of GCMs to force rice crop models and of the 
simulation of soil water flow on a basin scale for the assessment of rain-fed rice production. In particular, im-
provements in projections of rainfall amounts over shorter periods rather than annual or seasonal periods, which 
fit within the time scales of rice plant growth, were suggested to be important.    

Abbreviations 
APHRODITE: Asian Precipitation – Highly Resolved Observational 

Data Integration Towards Evaluation of Water Resources 
CMIP5: Coupled Model Intercomparison Project Phase 5 
DIAS: Data Integration and Analysis System 
GCM: General Circulation Model 
GPCP: Global Precipitation Climatology Project 
IDW: Inverse Distance Weight 
JRA-55: The Japanese 55-year Reanalysis 
LAI: Leaf Area Index 
MODIS: Moderate Resolution Imaging Spectroradiometer 
RCP: Representative Concentration Pathway 
RMSE: Root Mean Square Error 

SCORR: Spatial CORRelation coefficient 
SiB2: Simple Biosphere model 2 
WEB-DHM: Water and Energy Budget-based Distributed Hydrological 

Model 

1. Introduction 

The Fifth Assessment Report (AR5) of the Intergovernmental Panel 
on Climate Change (IPCC) states that multidecadal global warming since 
the 1950s is unequivocal (IPCC, 2014). The Sixth Assessment Report 
(AR6) is currently under preparation to be released between 2021 and 
2022, and public concern about the impact of climate change is arising. 
Climate change has severely affected many agricultural regions and is 
one of the major concerns for global food security, as it restricts stable 

* Corresponding author. 
E-mail address: tsujimoto@okayama-u.ac.jp (K. Tsujimoto).  

Contents lists available at ScienceDirect 

Ecological Modelling 

journal homepage: www.elsevier.com/locate/ecolmodel 

https://doi.org/10.1016/j.ecolmodel.2021.109815 
Received 13 May 2021; Received in revised form 3 November 2021; Accepted 5 November 2021   

mailto:tsujimoto@okayama-u.ac.jp
www.sciencedirect.com/science/journal/03043800
https://www.elsevier.com/locate/ecolmodel
https://doi.org/10.1016/j.ecolmodel.2021.109815
https://doi.org/10.1016/j.ecolmodel.2021.109815
https://doi.org/10.1016/j.ecolmodel.2021.109815
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ecolmodel.2021.109815&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Ecological Modelling 464 (2022) 109815

2

crop production (McLaughlin and Kinzelbach, 2015). The negative im-
pacts of climate change on agriculture are considered more serious in 
tropical developing countries because frequent heat stress and drought 
are combined with low levels of technological development (Li et al., 
2017). 

Cambodia is a developing country located in the Lower Mekong 
River basin on the Indochina Peninsula. It relies heavily on agriculture 
for its economic development; more than half of the total workforce is 
engaged in agriculture, and agriculture contributed approximately 32% 
of the national gross domestic product (GDP) as of 2011 (National Cli-
matic Change Committe, 2013). Irrigation rates remain low, at 
approximately 12% of the cropland (Mekong River Commission, 2018), 
and most crops are rainfed. Accordingly, a change in rainfall under 
climate change is a great threat to agricultural management, crop pro-
duction, and socioeconomic activity in Cambodia. With increasing de-
mand for agricultural products from the Lower Mekong River basin, 
sustaining and improving rice production under climate change is key 
for the development of the country. A quantitative impact assessment of 
climate change on rice production is essential for informing policies on 
adaptation strategies, including investment in irrigation facilities and 
other agricultural infrastructure. Given the increasing socioeconomic 
need in Cambodia for agricultural management under climate change, 
this study carries out an impact assessment on rainfed paddy rice pro-
duction in Cambodia. 

Among various climatic factors, rainfall, temperature, solar radia-
tion, and CO2 concentration are the most important climate factors 
affecting crop productivity (Li et al., 2017). There are many studies 
dealing with the effects of increasing CO2, and they show clear evidence 
that when interactions with other climate variables are ignored, more 
CO2 leads to higher crop yields (Ainsworth and Long, 2005; Kim et al., 
2003; Kimball et al., 2002) because of enhanced photosynthesis. In more 
realistic studies, however, higher air temperatures from elevated CO2 
levels tend to suppress the increase in yield (Krishnan et al., 2007). For 
rice, a rise in air temperature is generally considered to decrease yield 
because of the lower spikelet fertility (Prasad et al., 2006) as well as the 
higher evaporative demand of the crop (Deb et al., 2016). Because of 
such interactions of various climatological factors, the IPCC AR5 (IPCC, 
2014) reports high variability in the projected changes in rice produc-
tion under climate change. 

Recent studies on biophysical process-based rice crop modeling 
include the applications and developments of SIMRIW (Horie et al., 
1992, 1995), ORYZA2000 (Bouman et al., 2001), the CERES-Rice model 
(Mahmood, 1998) of the Decision Support System for Agrotechnology 
Transfer (DSSAT) (Jones et al., 1998), and AquaCrop (Steduto et al., 
2009). These models are designed to simulate rice plant growth, 
including photosynthesis, respiration, leaf area development, dry matter 
accumulation, phenological development, and yield, through simula-
tions of the water and nitrogen balance in the soil accounting for the 
effects of the temperature and CO2 concentration in the atmosphere. 
Crop details, soil properties, weather conditions, and rice management 
practices are the main inputs to drive these models. Each of these models 
has a series of developmental varieties in their modules and has been 
applied to climate change impact studies by many researchers world-
wide. SIMRIW-rainfed selected for this study was derived from SIMRIW 
to simulate rice plant growth under limited conditions for water and 
nitrogen (Homma and Horie, 2009; Ohnishi et al., 1997). The model was 
validated in Thailand and Indonesia (Homma and Horie, 2009; Homma 
et al., 2017b), and its modified version for remote sensing was also 
validated in Thailand and Lao PDR (Maki et al., 2017; Raksapatchar-
awong et al., 2020). However, these abovementioned rice crop models, 
including SIMRIW-rainfed model, are developed on a point-scale basis 
without consideration of the basin-scale hydrological cycle and its 
associated soil-water flow in the basin, although water availability is the 
most important factor for rain-fed rice production. 

For predicting the global climate, GCMs are the primary tools, and 
many studies have used GCMs with rice crop models to assess the 

potential effects of climate change on rice production. Impact assess-
ments of rice production based on multimodel ensemble projections 
using the GCMs included in CMIP5 (Taylor et al., 2012) have been 
conducted in many areas in the world, including Iran (Darzi-Naftchali 
and Karandish, 2019), China (He et al., 2018; Zhang et al., 2019a; 
Zheng et al., 2020), Vietnam (Deb et al., 2016), and Thailand (Arunrat 
et al., 2018; Boonwichai et al., 2019). However, uncertainty in GCM 
projections of soil moisture over monsoon regions is reported to be 
higher than that of other variables because of the diverse soil schemes 
and vegetation parameterizations in GCMs (Zhang et al., 2019b). Thus, 
the effect of soil moisture stress can be largely dependent on the selec-
tion of the GCMs to be used as inputs to the rice model. The selection of 
the GCMs and the GCM-related uncertainties have not been, however, 
paid enough attention in earlier studies in applying rice models for 
climate change impact assessments. 

The uncertainties in projected rice production can therefore be larger 
for rain-fed paddies. While many of the earlier studies assessing climate 
change impacts on crop production assumed irrigated conditions with 
high soil-water availability, the potential effects of water stress on 
rainfed paddies have not been well examined (Babel et al., 2011), 
despite the prevalence of rainfed paddies in many developing countries 
and the knowledge that water stress (drought) is one of the main factors 
restricting rice production (Homma et al., 2004; Prabnakorn et al., 
2018). 

In assessing rain-fed rice production, the daily evolution of soil 
moisture in the growing season is key to assessing the water-stress 
impact on rice growth and yield; therefore, precipitation, radiation, 
and air temperature need to be appropriately given from the GCMs to the 
rice model to simulate the actual evapotranspiration in the limited 
condition of soil water. In this regard, the evaluation and selection of 
GCMs in terms of reproducibility on a daily scale should be examined 
carefully, while many earlier studies pay little attention to them and are 
mainly based on monthly reproducibility. Although increases in soil 
moisture were projected in earlier studies in the Asian monsoon region 
for India (Saseendran et al., 2000) and the Yangtze River basin in China 
(Sun et al., 2019), our hypothesis is that the drought effect on rain-fed 
rice production can be highly affected by the finer time-scale distribu-
tions of rainfall and soil moisture, and thus drought can be more severe 
even under the increased rainfall amount over a time period from 
several months to a year. 

For reliable projections of soil moisture and rainfed rice production, 
it is considered more effective to simulate the soil-water flow with 
vegetation effects at higher spatiotemporal resolution instead of directly 
using the GCM outputs. In this study, we thus developed and applied a 
combined hydrologic and crop (rice) model, which is named “mizuha”, 
to concurrently simulate horizontal and vertical soil-water flows based 
on the basin-scale hydrologic cycle and the growth and yield of rice in 
response to root-zone soil moisture. 

By developing the research methodology framework to select the 
“best” GCMs to be used for rain-fed rice production assessment and to 
use the combined hydrologic-rice growth model, we quantified the 
GCM-related uncertainty in assessing the impact of climate change on 
rain-fed rice production where soil moisture plays a key role. With this 
study, we aim to provide suggestions to the scientific community for 
future improvement of the GCM from the viewpoint of simulating rain- 
fed rice production and to provide information for local policy makers in 
Cambodia for climate change adaptation. 

2. Materials and methods 

In this study, rain-fed rice production in Cambodia under future 
climates was assessed. The overall procedure and the scientific questions 
to be solved in this study are conceptually described in Fig. 1. This study 
is unique in that future rice production is assessed not on a point scale 
but on a basin scale by combining hydrologic and rice growth models to 
improve the simulation accuracy of soil moisture and soil-water stress to 
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rice growth under nonirrigated conditions. In addition, it is notable that 
the selection and bias correction methods of the GCMs have been deeply 
examined to be properly given to the rice growth model in the context of 
obtaining climatic variables with their time series that affect rice 
growth. The detailed procedures are shown in the following sections. 

2.1. Study area 

The Pursat River basin in western Cambodia (Fig. 2a and b) was 
selected as the study area. Its watershed area is approximately 6760 
km2, and it runs from southwest to northeast to flow into Tonle Sap Lake. 
Based on the elevation data from the Advanced Spaceborne Thermal 
Emission and Reflection Radiometer (ASTER) (NASA, 2020), nine main 
subbasins were defined by the Pfafstetter algorithm (Yang et al., 2002), 
as indicated in Fig. 2b, with odd subbasin numbers (1, 3, 5, 7, 9) along 
the main stream and even numbers (2, 4, 6, 8) for tributaries. 

The land-use distribution (Fig. 2c) was obtained from the U.S. 
Geological Survey global data (Global Land Cover Characterization 
version 1.2; USGS, 2020a) and all the cropland in the middle-to-lower 
basin (1396 km2) was assumed to be paddy, since the authors 
observed the prevalence of paddy fields through the middle-to-lower 
basin with other crop types distributed mainly in the upper basin. 
Another correspondence table for the original USGS categorization and 
the model application in this study is shown in Table S1 of the Supple-
mentary Material. The soil types and their properties, including the van 
Genuchten parameters, are given by the Food and Agriculture Organi-
zation (FAO, 2007) (Fig. 2d and Table 1). 

2.2. Rice growth model (SIMRIW-rainfed) 

The SImulation Model for RIce-Weather relations (SIMRIW)-rainfed 
(Homma and Horie, 2009) was applied in this study to simulate the 
growth and yield of rice plants. SIMRIW-rainfed is based on SIMRIW 

(Horie et al., 1992, 1995) with additional components to include water 
stress effects on rice plants. 

Phenological development is based on SIMRIW (Horie et al., 1992, 
1995) and is described with the developmental index (DVI), for which its 
value is defined as 0 for seeding emergence, 1 for heading, and 2 for 
maturity. The DVI is calculated as the integration of the daily develop-
mental rate (DVR) 

DVI =
∑

DVR (1) 

The leaf area index (LAI, lai), aboveground dry matter (dm), and 
grain yield (yield) are represented as 

lai = f1(RERmax, RDR, Tair, Δnup, ws,DVI) (2)  

dm = f2(RCE, Sd, Tair, lai, Δnup, ws) (3)  

yield = f3(dm, HI, nup, ws, DVI) (4)  

where RERmax is the maximum relative expansion rate of LAI, RDR is the 
relative leaf death rate, RCE is the radiation conversion efficiency, and 
HI is the harvest index. Tair and Sd are air temperature and solar radia-
tion, respectively, and are given through the hydrological submodel 
(WEB-DHM) to SIMRIW-rainfed in the model. nup and ws are plant ni-
trogen uptake and water stress, respectively, and are given with the 
following equations. 

ΔNpool = f4(Tair, smc, fertilizer, nup) (5)  

Δnup = f5(Npool, ws, DVI) (6)  

ws =
∑

DVI=0
f6(swc) (7)  

where Npool is the available nitrogen in the soil, fertilizer is the fertilizer 
application amount, and swc is the root-zone soil moisture, which is 

Fig. 1. Diagram of the overall methodology in this study.  
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calculated in WEB-DHM in this study. The water stress is calculated as 
the accumulated values from the initiation of the growth. Following 
SIMRIW-rainfed, the effect of ws is considered in the calculation of DVR 
as well. 

Although many factors change from present to future and affect rice 
production, we considered only meteorological factors such as rainfall 
(through swc), Tair, and Sd for the changes. It was assumed that no 
changes would occur in other factors, including CO2 concentration, 
fertilizer, irrigation, and rice cultivars, and the same values were used in 
all the past and future simulations. The CO2 concentration was set to 
370 ppm. The parameters that were calibrated for rainfed rice in 
northeast Thailand were used, but the phenological development of rice 
cultivars and farmer management were adjusted to approximate the 

conditions in Cambodia in 2013–2014 (Hirooka et al., 2016; Kodo et al., 
2021). Damage by pests and diseases was not considered, and only the 
damage brought by water stress was evaluated to highlight the hydro-
logical restriction on rain-fed rice production in this region. Only single 
cropping in the rainy season under rainfed conditions without irrigation 
was considered. 

2.3. Combined hydrologic-rice growth model (mizuha) 

The combined SIMRIW rainfed model with a hydrological model was 
applied in this study to hourly simulate the concurrent responses of the 
basin-scale hydrologic cycle and rice growth with consideration of soil 
water flow in the basin and improved soil moisture estimation. For the 

Fig. 2. Study Area. (a) Regional map of the Indochina Peninsula and Cambodia. The black rectangular areas indicate the two domains for the GCM evaluation 
(domain 1 represents the Indochina Peninsula, and domain 2 represents Cambodia). The red rectangular area includes the Pursat River basin and is the same area 
shown in (b)–(d). (b) Location of the Pursat River basin shown with its river channels, main subbasins, and the location of river discharge observations (○) that were 
considered in the model simulation. (c) Land-use types from the USGS global data with modifications. (d) Distribution of the soil types (Eutric Gleysol (Ge), Gleyic 
Acrisols (Ag), Ferric Acrisols (Af), and Orthic Acrisols (Ao)) from the FAO global data. 

Table 1 
Soil types in the study area and their van Genuchten parameters (saturated water content θsat , residual water content θrsd, and parameters α and n).  

Soil Type Sand [%] Silt [%] Clay [%] α [kPa− 1]  n [-] θsat [m3 m− 3]  θrsd [m3 m− 3]  

Eutric Gleysol (Ge) 43 20 37 0.15 1.435 0.456 0.082 
Gleyic Acrisols (Ag) 41 27 32 0.22 1.524 0.448 0.069 
Ferric Acrisols (Af) 62 14 24 0.25 1.592 0.452 0.073 
Orthic Acrisols (Ao) 54 16 31 0.22 1.539 0.451 0.071 

Source: FAO (2007). 

K. Tsujimoto et al.                                                                                                                                                                                                                              



Ecological Modelling 464 (2022) 109815

5

hydrologic model, the Water and Energy Budget-based Distributed Hy-
drological Model (WEB-DHM) (Wang et al., 2009b) was used. The 
WEB-DHM is based on the Geomorphology-Based Hydrological Model 
(GBHM) (Yang et al., 2002) and is characterized by the incorporation 
(Wang et al., 2009a) of the modified Simple Biosphere model 2 (SiB2) 
(Sellers et al., 1996) to realize a process-based description for evapo-
transpiration considering the water and energy fluxes from the land 
surface and soil-water flow. The combined model of WEB-DHM and 
SIMRIW-rainfed is named “mizuha” in this study and was previously 
used for climate change impact assessment in Cambodia with CMIP3 
data (SoSo Im et al., 2014) and in Indonesia with CMIP5 data (Homma 
et al., 2017a). 

For WEB-DHM application, the target basin was divided into 500 m 
× 500 m square grids in which soil-water flow was calculated by the 
Richards equation (Richards, 1931), considering the soil-water retention 
characteristics modeled by van Genuchten (van Genuchten, 1980). In 
paddy grids, the root-zone depth was set to 50 cm and vertically dis-
cretized into 5 cm sublayers in the root zone and 10 cm sublayers below 
the root zone for soil-water flow simulation. The hillslope flow and 
subsurface flow from the grids were integrated for each flow interval in a 
subbasin to obtain river discharge. 

The root-zone soil moisture calculated in WEB-DHM was put into 
SIMRIW-rainfed paddy grids at each time step to simulate water stress 
and rice plant growth. The LAI expansion was simulated by SIMRIW- 
rainfed in response to water stress and was returned to WEB-DHM to 
be used for the hydrologic simulation in the next time step. In WEB- 
DHM, the LAI is used together with the fraction of photosynthetically 
active radiation (FPAR) to simulate canopy interception, transpiration, 
and surface energy budget. Except for paddy grids for which the LAI 
simulated by SIMRIW-rainfed grids is passed to WEB-DHM, the 8-day 
composites of LAI and FPAR from the Moderate Resolution Imaging 
Spectroradiometer (MODIS) onboard the Terra and Aqua satellites 
(MCD15A2H v006 product) (USGS, 2020d) are used. Because of the 
limited period (2003–present) of data availability for the LAI and FPAR 
from Terra/Aqua MODIS, the data from 2003 and 2019 were used in all 
the years in the past and future runs, respectively. Thus, outside of 
paddy areas, only the 8-day seasonal changes in LAI and FPAR were 
considered, and their yearly changes in each period were not considered. 

One of the challenges in simulating rainfed rice production is data 
scarcity with respect to the crop calendar. Because rice is rainfed, the 
planting date is not fixed to a certain calendar date, and data on basin- 
wide planting dates are not available. We thus applied a satellite-data- 
based estimation method (Tsujimoto et al., 2021) using the 16-day 
Enhanced Vegetation Index (EVI) (MOD13Q1 and MYD13Q1 v006 
products) (USGS, 2020b, 2020c) from MODIS to estimate the planting 
dates and used those for the rice growth simulations by mizuha. This 
algorithm was originally developed by Tsujimoto et al. (2019) by using 
field observation data in the Pursat River basin by Hirooka et al. (2016). 
Since the MODIS EVI is only available after 2000, we used the estimated 
results in 2016 for both the past and future simulations, taking into 
consideration that the planting dates in 2016 are considered an average 
over the last 20 years (Tsujimoto et al., 2021). 

2.4. Past and future climate 

A simulation of the 20-year period from January 1981 to December 
2000 was conducted to compare the results with those for future cli-
mates and to validate the model with observations and statistics. The 
years from 1981 to 2000 are referred to as the past period in this study. 
For future climate, the outputs from the GCMs contributing to CMIP5 
were used as a reference. Two projection periods, the near future 
(2041–2060) and the far future (2081–2100), were considered in this 
study under the Representative Concentration Pathway (RCP) 2.6, 
RCP4.5, and RCP8.5 scenarios. The meteorological data in the past and 
future periods were interpolated into 500 m × 500 m mizuha simulation 
grids using the inverse distance weight (IDW) method and linearly 

interpolated to hourly. 

2.4.1. Past data 
The Japanese 55-year Reanalysis data (JRA-55) (Harada et al., 2016; 

Hou et al., 2014; Kobayashi et al., 2015) were referenced to describe the 
past climate. Variables in the two-dimensional diagnostic fields 
(fcst_surf and fcst_phy2m) were used as forcing data in mizuha, 
including air temperature and specific humidity at 2 m height, wind 
speed at 10 m height, total cloud coverage, downward longwave radi-
ation, downward solar radiation, and surface air pressure. These vari-
ables are provided at an approximately 55 km horizontal resolution and 
are available every three hours. In each simulation grid of mizuha, the 
air temperature was adjusted by the lapse rate based on the difference 
between the JRA-55 level (2 m) and the grid elevation. 

For rainfall amount in the past period, the observation-based dataset, 
Asian Precipitation – Highly Resolved Observational Data Integration 
Toward Evaluation of Water Resources (APHRODITE) (Yatagai et al., 
2012), was used. Its spatial resolution is 0.25◦ latitude by 0.25◦ longi-
tude. Although the number of rain-gage stations in Cambodia is limited 
in the APHRODITE dataset, we compared the APHRODITE data for the 
past period with intensive rain-gage observation results from 2010 to 
2015. The 20-year mean annual rainfall in 1981–2000 over the target 
basin was 1134 mm, which was comparable to the annual totals of 1087 
to 1528 mm over Cambodia from 2010 to 2015 (Tsujimoto et al., 2018). 

2.4.2. Evaluation and selection of GCMs 
The acquisition, evaluation, and bias correction of the GCMs were 

performed using a tool for CMIP5 from the Data Integration and Analysis 
System (DIAS, https://diasjp.net) (Kawasaki et al., 2017). Among the 34 
CMIP5 GCMs, we evaluated the 18 GCMs for which future projection 
data under RCP2.6, RCP4.5, and RCP8.5 were available at DIAS. The 
GCMs were evaluated from the viewpoint of rainfall reproductivity to be 
properly used for assessing rain-fed rice production. 

For each GCM, the 20-year mean monthly rainfall during 1981–2000 
were compared against data from the Global Precipitation Climatology 
Project (GPCP) (Adler et al., 2003) in the same period. The spatial 
correlation coefficient (SCORR) and root mean square error (RMSE) 
between the GCM and GPCP monthly rainfall were calculated by the 
following equations: 

SCORR =

∑N
i=1(xi − x)(yi − y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1(xi − x)2
(yi − y)2

√ (8)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1
(xi − yi)

2

√
√
√
√ (9)  

where xi and yi are the GCM and GPCP rainfall at grid i, respectively, and 
x and y are the means of the GCM and GPCP rainfall over the entire grid 
in the study area, respectively. If SCORR = 1 for the spatial distribution 
and RMSE = 0 for the absolute value, then the spatial distribution 
pattern of the GCM outputs completely matches that of the GPCP. 

To use both the SCORR and RMSE for GCM evaluation, the simple 
demerit point system used in Eastham et al. (2008) was adopted. In this 
study, the GCM performance was deemed poor when SCORR < 0.6 or 
RMSE > 2, and 1 demerit point was assigned to the GCM for each of the 
SCORR and RMSE indices that indicated poor performance. While 
Eastham et al. (2008) calculated the demerit points for rainy and dry 
seasons, we calculated them for each month to examine the rainfall 
reproducibility at fine temporal resolution. Thus, the maximum number 
of demerit points is 24 (2 indices × 12 months), where more demerit 
points correspond to lower reproducibility. In addition, to evaluate 
rainfall reproducibility for both monsoonal and local rainfall, we 
calculated demerit points over two regions, the Indochina Peninsula and 
Cambodia (domains 1 and 2, respectively; Fig. 2a), and summed their 
demerit points to select the best GCMs for assessing the impact of climate 
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change on rainfed paddy rice production in this region. 
Since the calculated SCORR and RMSE showed a smaller difference 

among ensemble runs from each GCM compared with those among 
GCMs, we used only one ensemble member, r1i1p1, to calculate demerit 
points for all of the GCMs to maintain equitability regardless of the 
number of ensemble members of each GCM. 

2.4.3. Bias correction of the GCM rainfall 
Statistical bias correction was applied to the daily rainfall amounts in 

the selected GCMs. The details of this bias correction method are pro-
vided in Nyunt et al. (2016). In short, this method addressed the three 
main GCM deficiencies, i.e., underestimation of extremes, high fre-
quency of rainy days, and poor seasonal simulation, through a 3-step 
statistical bias correction. Here, the GCM biases in the past climate 
were assumed to be stationary in the future climate, and the same 
transfer function (FGCMpast ) derived from the GCM hindcast was applied 
to the GCM future projection: 

xGCMpast

′

= Fobs
− 1( FGCMpast

(
xGCMpast

))
(10)  

xGCMfuture

′

= Fobs
− 1( FGCMpast

(
xGCMfuture

))
(11)  

where xGCMpast

′ and xGCMfuture

′ represent bias-corrected GCM rainfall for 
past and future periods, respectively, and Fobs is the distribution function 
of the observed rainfall during the past period. The generalized Pareto 
distribution function was used in Eqs. (10)–(11) to determine FGCMpast 

and Fobs to correct for extreme rainfall. The frequency of rainy days was 
then corrected by assuming the same number of rainy days in the 
observation as in the GCM hindcast. Using a simple rank-order statistic, 
the GCM rainfall corresponding to the same rank as that of the obser-
vation was defined as a correction threshold, and GCM future rainfall 
beyond this threshold was corrected to zero. Finally, monthly grouped 
normal rainfall was adjusted to fit a gamma distribution by mapping the 
cumulative distribution function of daily GCM rainfall to that of the 
observed rainfall, and corrections were made through Eqs. (10)–(11). In 
this study, APHRODITE was used as the observational data. 

Through the bias correction process, rainfall from all the GCMs was 
spatially interpolated to the same grids as the reference, APHRODITE, 
which is 0.25◦ latitude by 0.25◦ longitude, although the original grid 
resolutions were different among the GCMs. 

Only rainfall was bias corrected, and other meteorological variables 
(air temperature and humidity, wind speed, pressure, total cloud frac-
tion, solar radiation, and longwave radiation at the ground surface) were 
used without bias correction. Data on radiation and cloud fraction for 

CCSM4 and CESM1(CAM5) were not available at DIAS and thus the 
equivalent data from MIROC5 were used for mizuha simulations with 
CCSM4 and CESM1(CAM5). 

3. Results 

3.1. Model validation 

Because of the limited availability of basin-wide soil moisture data, 
river discharge was used for model validation on the spatiotemporal 
distribution of the simulated soil moisture, regarding river discharge as 
the spatially and temporally integrated result of soil moisture distribu-
tion in the basin. The availability of river discharge data (Masumoto 
et al., 2016) was limited to 2010–2011, and thus, the model parameters 
were calibrated against these two years. The comparison of observed 
and simulated river discharge is shown in Fig. 3. Although their agree-
ment was not perfect, we adopted the calibrated parameters for the past 
and future simulations in this study because of the limited availability 
and uncertainties in both rainfall and river discharge data. 

Since rice production statistics in the target basin were not available, 
the basin-averaged simulated results were compared with the nation-
wide FAO statistics (FAO, 2019) for yield, harvested area, and total 
production, as indicated in Fig. 4a–c. In these figures, yield (Fig. 4a) is 
shown as rice production (Fig. 4c) per unit harvested area (Fig. 4b). 
Changes in the harvested area occur both from changes in the sowed/-
planted area and from crop loss or damage over the entire sowed/-
planted area during cultivation. Clearly, increasing trends from the past 
to the present were recognized in yield and harvested area. These were 
considered to arise because of technological developments, such as 
increased fertilizer application, improvement in rice cultivars, increased 
irrigation, and agricultural land development. To distill the year-to-year 
fluctuation caused by meteorological factors, we calculated the anom-
alies from the trend, assuming a linear trend from 1981 to 2000. The 
anomalies in the FAO statistics showed correspondence with the simu-
lation results by mizuha, especially in harvested area and total pro-
duction, with lower production in 1984, 1987, and 1994 and higher 
production in 1989, 1995, and 1999. Fig. 4d shows the scatter plot be-
tween the anomalies of production in the FAO statistics and the mizuha 
simulation, indicating that the overall characteristics of year-to-year 
fluctuation were well described by mizuha, although they are not in 
perfect agreement. In this study, we used this model and these param-
eters for past and future simulations. 

Fig. 3. Observed and simulated river discharge in the Pursat River in 2010–2011. The observed river discharge data are from Masumoto et al. (2016).  
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3.2. Past and future rainfall by the selected GCMs 

The evaluation results of the 18 GCMs from CMIP5 are listed in 
Table 2. The five GCMs with the smallest demerit points were CCSM4, 
CESM1(CAM5), MIROC5, MPI-ESM-LR, and NorESM1-M, as shown with 
asterisks in Table 2. As explained in the earlier section with Eqs. (8)–(9), 
the selected GCMs with smaller demerit points have relatively high 
SCORRs and low RMSEs for monthly rainfall reproducibility in the past 
through January to December, and thus it is generally recognizable that 
future rainfall predictions by these GCMs are more reliable than others 
both in their absolute values (from RMSEs) and spatial distributions 
(from SCORRs). Thus, we adopted these 5 GCMs in this study to assess 
rain-fed rice production for this region. 

The daily rainfall amounts from these selected GCMs are shown in 
Fig. 5 along with the reference data from APHRODITE to show the 
validation of the reproducibility of the daily basis rainfall amount by the 
selected GCMs and the effectiveness of the bias correction applied in this 
study. The daily rainfall amounts on all the days in each month from 
May to December over the 20 years were plotted as jitter plots and 

boxplots for the past (1981–2000) and future (2041–2060 under 
RCP4.5) periods. Overall, all the selected GCMs were found to over-
estimate past rainfall compared with APHRODITE. After bias correction 
was applied, the medians and the other quartile values of the past 
rainfall estimates of the GCMs were comparable to those of APHRODITE, 
as shown in the boxplots. Using the same transfer function, future 
rainfall projections were corrected to be smaller than their original 
values in almost all the GCMs and months. These bias-correction results 
indicate that even through selecting the better-performing GCMs in 
representing the past rainfall, they tend to overestimate the future 
annual rainfall for this region; thus, they will underestimate the drought 
damage on rain-fed rice production if they are applied without bias 
correction. 

Based on the bias-corrected future rainfall, the 20-year averaged 
annual total amount in 2041–2060 under RCP4.5 was 1190 mm 
(CCSM4), 1328 mm (CESM1(CAM5)), 1216 mm (MIROC5), 1227 mm 
(MPI-ESM-LR), and 1343 mm (NorESM1-M), showing a slight (5~18%) 
increase compared with the past period (1134 mm in APHRODITE). 
Thus, it is very likely that annual rainfall in Cambodia will increase in 

Fig. 4. Comparison of the FAO statistics (nationwide) and the simulated values (Pursat River basin) for (a) yield, (b) harvested area, and (c) total production of rice 
crops. The simulated values are indicated on the right axes. The period from 1981 to 2000 is the simulation period for the past run in this study. Yield in (a) is the 
value over the harvested area only (totally damaged paddies that were planted but not harvested were not included to calculate yield). (d) Scatterplot between the 
anomalies of production from trends in FAO statistics and simulation. 
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the future. 
From the viewpoint of agricultural water resources, however, not 

only annual total but also its seasonal distribution is important. Fig. 6 
shows the bias-corrected future monthly rainfall compared with the past 
data in APHRODITE, shown as the areally averaged values for each 
subbasin (subbasin 9 for the upper stream and 1 for the lower stream, as 
their locations are shown in Fig. 2b). In Fig. 6, the rainy season in the 
past was approximately May–October, with rainfall peaking in Sep-
tember–October. In the future, the rainfall peak was projected to be 
earlier in CCSM4 and CESM1(CAM5), shifting to August–September 
with less rainfall in October. In MPI-ESM-LR, two rainfall peaks, in 
May–June and September, were projected. In MIROC5, the rainfall peak 
was projected to be later with increased rainfall in September–October 
and less rainfall in the early rainy season in June–July. The rainfall 
amount was larger in the upper subbasins (7–9) than in the lower sub-
basins (1–5) in the past, and the difference between the upper and lower 
subbasins tended to become more pronounced in the future in all the 
GCMs, especially in the months with abundant rainfall. The future 
rainfall tendency was recognized to be common regardless of the future 
periods and RCP scenarios (see Fig. S1 in the Supplementary Material). 

3.3. Rice production 

3.3.1. Projected change in rice production 
The effects on rice production appeared as both damaged areas and 

yield losses. Fig. 7 shows simulated rice yield under the past and future 
(2041–2060) climates indicated with the percentages of the damaged 
(planted but not harvested) areas (see Fig. S2 in Supplementary Material 
for 2081–2100). The future simulations with CCSM4 and CESM1(CAM5) 
showed little change in yield regardless of the periods and RCP sce-
narios, whereas the results with MIROC5 and NorESM1-M showed 
remarkable decreases in future yield compared with the past run with 
APHRODITE. Especially in the simulation with MIROC5 for 2041–2060 
under the RCP4.5 scenario, frequent occurrences of low yield at less than 
250 t ha− 1 were projected. In simulations with NorESM1-M, not only the 
median but also the maximum yields were projected to decrease under 
all three RCP scenarios in the near and far future periods, with little 
difference among scenarios/periods. The differences among scenarios/ 
periods were larger in MIROC5 and MPI-ESM-LR than in the other 
models, and these two models showed larger year-to-year and location- 
to-location fluctuations (indicated by longer boxplots). 

The totally damaged area was 11.3% in the past run, and the ratio 
was similar or even smaller in the future runs with CCSM4 (9.9~10.8%), 

CESM1(CAM5) (9.7~10.5%), and NorESM1-M (9.9~10.6%) regardless 
of the periods or RCP scenarios. However, in future runs with MIROC5 
(13.0~18.7%) and MPI-ESM-LR (14.5~16.3%), increases in the totally 
damaged area were projected. 

3.3.2. Affecting factors on rain-fed rice production 
Under the given conditions in this study, i.e., nonirrigated rainfed 

paddies with constant CO2 concentrations and fertilizer application 
rates, fixed rice cultivars, and without consideration of pests and dis-
eases, water stress to rice plants is the most important potential factor 
for lower rice production. Fig. 8 shows the root-zone soil moisture in the 
rice growing season. In the results from MIROC5, in which simulated 
rice production was lower than that of the other GCMs, soil moisture was 
comparable to that of the past and future simulations with the other 
GCMs at the beginning (May) and end (October) of the rainy season, but 
it was lower in the early rainy season in June and July. In addition, the 
soil moisture variability was larger in July and August, with the frequent 
occurrence of distinctively low soil moisture. Such dry spells just after 
the beginning of the rainy season in July are often observed in 
Cambodia, causing serious damage to agriculture. More severe dry spells 
were projected in MIROC5 than in the other GCMs during the early rainy 
season over this region. Similarly, in the simulations with MPI-ESM-LR, 
which showed high variability in rice production as with MIROC5 in 
Fig. 7, large fluctuations in soil-water availability throughout the rainy 
season under future climates are projected. On the other hand, in the 
simulated results from CCSM4 and CESM1(CAM5), in which simulated 
rice production was larger than that of the other GCMs, the median 
simulated soil moisture was higher than that of the past with relatively 
small variability in all rainy-season months. 

The simulation results with NorESM1-M are unique in that it showed 
lower production than that of the other GCMs (Fig. 7), while its soil 
moisture was similar to that of the high-yield simulations with CCSM4 
and CESM1(CAM5) (Fig. 8). This suggests the existence of other factors 
affecting rice production under climate change. Fig. 9 shows the other 
meteorological forcing data used to run mizuha for the past and future 
periods. Fig. 9 reveals that NorESM1-M projected less shortwave radi-
ation and a higher cloud fraction during the rainy season, from May to 
November, than those of the other GCMs and JRA-55. Thus, the air 
temperature was lower in NorESM1-M than in the other GCMs and even 
in the past reanalysis of JRA-55, even though the projections with 
climate change are under increased radiative forcing. The projected low 
solar radiation and air temperature are considered to be the reasons why 
rice production was consistently lower in simulations by mizuha with 

Table 2 
Evaluation results of the 18 GCMs from CMIP5 shown with the calculated demerit points. Fewer demerit points correspond to higher reproducibility, with the 
maximum number of demerit points set to 24 for each domain. The asterisks (*) by the GCM name indicate the five GCMs that were selected in this study.  

GCM name Country Demerit points     
Domain 1 + 2 Domain 1: Indochina Peninsula Domain 2: Cambodia 

CCSM4* USA 17 10 7 
CESM1(CAM5)* USA 24 14 10 
MIROC5* Japan 23 16 7 
MPI-ESM-LR* Germany 24 15 9 
NorESM1-M* Norway 24 13 11 
BCC-CSM1.1 China 28 15 13 
CanESM2 Canada 28 18 10 
CNRM-CM5 France 27 17 10 
CSIRO-Mk3.6.0 Australia 31 17 14 
FGOALS-g2 China 32 17 15 
GFDL-CM3 USA 28 14 14 
GFDL-ESM2G USA 31 17 14 
IPSL-CM5A-LR France 29 17 12 
IPSL-CM5A-MR France 26 17 9 
MIROC-ESM Japan 36 19 17 
MIROC-ESM-CHEM Japan 34 17 17 
MPI-ESM-MR Germany 28 16 12 
MRI-CGCM3 Japan 29 16 13  
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NorESM1-M than the other GCMs. 
This result highlights the importance of the solar radiation amount 

during the rainy season or the relationship between rainfall and solar 
radiation. This relationship is closely linked with the diurnal cycle of 
rainfall or convective activity because if rainfall and cloud coverage are 
concentrated at night, the amount of daily solar radiation does not 
decrease even on rainy days. In earlier studies, the diurnal and seasonal 
distributions of solar radiation in Cambodia were observed to be as 
strong in the rainy season as in the dry season because of the predomi-
nantly evening rainfall (Tsujimoto et al., 2008, 2018) and convective 
activity from midnight to early morning over Tonle Sap Lake and its 
lakeshore (Tsujimoto et al., 2018). As Tsujimoto et al. (2008) pointed 
out, the diurnal cycle of rainfall and the amount of solar radiation on 
rainy days differ across regions and seasons, and thus, it is important to 
take them into consideration when assessing the factors affecting agri-
cultural production in the region. This study suggests the importance of 
considering the reproducibility of the diurnal cycle of rainfall, 

convective activity, and solar radiation to assess the impact of climate 
change on crop production, which depends on solar radiation, air tem-
perature, and rainfall. 

4. Discussion 

4.1. Future projection of rice production in Cambodia 

The assessment of climate change impacts in data-scarce regions was 
one of the major challenges in this study, especially in conducting as-
sessments not only at the field scale but also at the basin scale consid-
ering the basin hydrological cycle and spatial distribution of rainfall and 
soil moisture within a basin. Although uncertainty remains, the 
following five points are suggested from this study. 

First, excluding NorESM1-M, two out of four GCMs (CCSM4 and 
CESM1(CAM5)) showed little change in future rice production 
compared with that of the past in terms of the median and other quartile 

Fig. 5. Daily rainfall in March–December from APHRODITE (1981–2000) and the five selected GCMs (CCSM4, CESM1(CAM5), MIROC5, MPI-ESM-LR, NorESM1-M). 
For GCMs, outputs for the past (1981–2000) and future (2041–2060, RCP4.5) periods are shown with and without bias corrections. The number of data points is 20 
× (the number of days in the month) for each jitter plot and boxplot (minimum, lower quartile, median, upper quartile, and maximum values without outliers are 
shown). All the data are over the study area at 12.5◦ N, 104.0◦ E. 
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Fig. 6. Monthly rainfall in the five GCM future projections compared with past observations (APHRODITE). Spatially interpolated rainfall as areal averages for 
subbasins 1–9 (see Fig. 2b for their locations) are shown. Past data for subbasin 5 are shown with a black line in each panel for reference. The annual total rainfall and 
its change ratio against APHRODITE at 12.5◦ N, 104.0◦ E are indicated in the top left of each panel. See Fig. S1 in the Supplementary Materials for the other future 
period and RCP scenarios. 

Fig. 7. Simulated rice yield under the past and future climate conditions in 2041–2060 under the RCP2.6, 4.5, and 8.5 scenarios. The data in each plot are from all 
the paddy grids (5585 grids) over 20 years (111,700 points), shown as jitter plots and boxplots (the minimum, lower quartile, median, upper quartile, and maximum 
values without outliers are shown). Points with yield = 0 are not shown in the jitter plots to improve the visibility of the graph. At the bottom of each plot, the 
percentage of the number of paddy grids with yield = 0 (i.e., totally damaged area = planted area – harvested area) to the total planted area is indicated. See Fig. S2 
in the Supplementary Material for 2081–2100. 
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values from basin-wide statistics over 20 years. However, the year-to- 
year and location-to-location fluctuations (shown as the width of the 
jitter plots) in the future are much larger than those in the past, even in 
the simulations with CCSM4 and CESM1(CAM5). This suggests higher 
spatiotemporal variability in rice production in the basin, which can be a 
great threat to individual farmers even though rice production on a basin 
scale may not be significantly impacted. Under such conditions, a 
framework to share or allocate potential risks and resources within the 
basin may be an effective long-term risk management strategy. 

Second, considering that one of the selected GCMs (MIROC5) sug-
gested the potential intensification of dry spells in the early rainy season, 
preparation for supplementary irrigation in this season or a shifting of 
the crop calendar may be options as adaptation strategies. 

Third, since most of the selected GCMs showed an increase in the 
regional difference in rainfall between the upper and lower basins in the 
Pursat River basin, with more rainfall in the upper basin and less rainfall 
in the lower basin where most of the paddies are located, the effective 
storage of excess rainfall from the upper basin using reservoirs, along 
with irrigation facilities in downstream paddy fields, can also be an 
option. 

Fourth, differences among the future periods (either the near future 
in 2041–2060 or far future in 2081–2100) and RCP scenarios (RCP2.6, 
RCP4.5, RCP8.5) were not significant in the simulations with CCSM4, 
CESM1(CAM5), and NorESM1-M, whereas they were large in MIROC5 
and MPI-ESM-LR. From this study, it is difficult to conclude whether the 
impact on rice production changes with time or with RCP. Rather, 

Fig. 8. Same as Fig. 7 but for the root-zone (top 50 cm) soil moisture (volumetric soil-water content in m3 m− 3) in May, Jul, and October. Data at 2:00 LT and 14:00 
LT each day are taken for each plot; the number of data points in each plot is 5585 paddy grids × 20 years × 365 days × 2 times/day = 81,541,000. See Fig. S3 in the 
Supplementary Material for other months and future periods. 
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further investigation of the rainfall pattern that affects rainfed paddy 
rice production should be taken to improve the methods for climate 
change impact assessment of rice production, including the improve-
ment, selection, and bias correction of GCMs. 

Finally, although this study neglected the effects of increasing CO2 
concentrations, rice yield has been reported to increase with more CO2. 
In addition, the effects of the changes in CO2 as well as soil moisture, 
solar radiation, and air temperature differ among different rice cultivars. 
Changes in the application rate of fertilizer and irrigation clearly affect 
rice production, but the extent of their effects also depends on the 
cultivar (Iwahashi et al., 2021; Kodo et al., 2021). Moreover, as such 
changes in agronomic management, shifts in the crop calendar, espe-
cially on planting dates, are known to affect rice production even under 
the same meteorological conditions (Hirooka et al., 2016). Using the 

present study as a base scenario, effective adaptation strategies that also 
consider other effects, such as cultivars, CO2 concentration, fertilizer, 
irrigation, and crop calendar, should be examined. 

4.2. Quantification of the GCM-related uncertainties and suggestions 
from the viewpoint of GCM application to rain-fed rice production 
simulations 

In an earlier study that examined changes in soil moisture under 
climate change, Saseendran et al. (2000) assessed the tropical humid 
climate in India and suggested that increased rainfall will increase soil 
moisture and thus increase rice production. Similarly, Sun et al. (2019) 
projected future agricultural drought in the Yangtze River basin in China 
under climate change and suggested an increase in soil moisture. 

Fig. 9. Meteorological forcing data from the JRA-55 reanalysis (1981–2000) and GCM future projections (2041–2060, RCP4.5). Daily data for 20 years in each 
month are shown for locations at 12.5◦ N, 104.0◦ E. Radiation and cloud fraction data were not available at the DIAS for CCSM4 and CESM1(CAM5). 

K. Tsujimoto et al.                                                                                                                                                                                                                              



Ecological Modelling 464 (2022) 109815

13

However, these studies examined changes in rainfall and soil moisture 
on an annual or monthly basis without considering finer temporal scale 
distributions or the duration of dry spells. Our study showed the 
importance of analysis with a higher temporal resolution than annual or 
monthly to assess the impact of soil moisture on rice production, as dry 
spells lasting less than 1 month can severely affect rice growth, and thus 
monthly or annually based evaluation can underestimate the drought 
damage to rice production. This is especially the case for Cambodia, 
where the annual rainfall is projected to increase. 

To properly take into consideration the effect of soil moisture defi-
ciency on rain-fed rice production, the methodologies for the selection 
and bias correction of the GCMs as well as for downscaling simulation of 
the soil-water flow in the basin are the key to improving the accuracy of 
future projections. These are the keys of this study. In a similar study 
over the Lower Mekong River basin, Ruan et al. (2018) ranked the 34 
GCMs in CMIP5 according to their rainfall reproducibility against the 
APHRODITE data using RMSE, SCORR, and six other statistical indices. 
MPI-ESM-LR was selected as the best model, followed by 
IPSL-CM5A-MR, when the GCMs were evaluated by their rainy season 
(May–October), dry season (November–April), and annual total rainfall 
accumulations. The scores for CCSM4 and CESM1(CAM5) were also 
high, with better scores for the dry season in CCSM4 and for the rainy 
season in CESM1(CAM5). The other two GCMs selected in our study, 
NorESM1-M and MIROC5, were ranked 12th and 20th, respectively. 
However, in evaluating rainfall reproducibility over the Mekong River 
basin at monsoon onset with the GPCP and other data, Hasson et al. 
(2016) found a better performance in CCSM4, MIROC5, and 
NorESM1-M than in CESM1(CAM5) and MPI-ESM-LR. Comparing the 
results of our study with these earlier studies, we can see that the 
evaluation of GCMs is highly dependent on the evaluation periods and 
metrics. This suggests the importance of examining the appropriate time 
span when evaluating GCMs for assessing impacts on rice production. 
Considering the potential time span that is critical for rainfed rice, a 
shorter period rather than annual or seasonal periods will be more 
effective for evaluating rainfall reproducibility. In this regard, the GCMs 
that were selected in this study based on monthly rainfall were consid-
ered more suitable than those selected in earlier studies for assessing the 
impact of climate change on rainfed rice production. 

The predictability of dry spells during monsoonal rainfall was sug-
gested to be important because farmers generally start planting rainfed 
paddies in accordance with the onset of the rainy season. Since rainfall 
or soil-water availability during the early growing season is important 
for successful rice growth, the predictability of dry spells greatly affects 
the accuracy of rainfed paddy rice production estimates. Although the 
escalating number of dry spells in the early monsoon season was pro-
jected only by MIROC5 and not by the other four GCMs, Hasson et al. 
(2016) found that MIROC5 had a better performance in reproducing 
rainfall at the monsoon onset. This suggests that detailed examination of 
the reproducibility and future projection of rainfall at monsoon onset 
and of dry spells is required. 

In addition, this study indicates the potential overestimation of daily 
rainfall amount by the GCMs throughout the rainy season for this region 
- even for the selected GCMs - and suggests the importance of bias 
correction, in addition to the selection, of the GCMs. However, the bias 
correction method also needs to be examined further. In the bias 
correction method used in this study, GCM biases were considered to be 
stationary from the past to the future, and the same transfer function was 
applied for the GCM hindcasts and predictions. The weak rainfall fea-
tures in GCMs that were under a determined threshold value derived 
from the hindcast were then removed completely. As a result, in the bias- 
corrected GCM outputs, weak rainfall was artificially removed in some 
months and models: this is apparent in Fig. 5 for March and April in 
NorESM1-M, for June in MIROC5, from July through November in 
CCSM4, and for October–November in CESM1(CAM5). However, 
because even weak rainfall can have an important effect on the wetness 
of the root-zone soil, accurate bias correction of rainfall to reproduce 

root-zone soil wetness is necessary when using GCMs to assess the 
impact of climate change on agriculture. The removal of weak rainfall in 
MIROC5 in June is considered one reason for the decreased soil moisture 
in June and lowered rice production in the mizuha simulations with 
MIROC5. Although this study directly applies the bias correction method 
by Nyunt et al. (2016), the bias correction method itself should be 
further examined depending on the objectives to use future rainfall data, 
and for assessing rain-fed rice production, the bias correction method for 
weak rainfall events should be improved. 

Finally, the reproducibility of solar radiation in connection with the 
diurnal cycle of rainfall was also shown to be important for NorESM1-M. 
Although atmospheric processes are calculated at a finer time resolution 
than daily, for the application of GCM outputs to climate change impact 
assessments of agriculture and other socioeconomic sectors, often only 
daily or monthly data are used, and GCM evaluation is also conducted at 
these time scales. This study showed the importance of evaluating GCM 
rainfall with its diurnal cycle to select GCMs that have higher repro-
ducibility not only for rainfall but also for radiation and air temperature, 
which are the three important limiting factors for crop production. The 
simulated results with NorESM1-M in this study were thus not consid-
ered reliable because of the observed relationship between rainfall and 
solar radiation. However, changes in the diurnal cycle of rainfall and its 
effect on solar radiation on rainy days may also change in the future. 
This aspect should be monitored when assessing the agricultural impacts 
of climate change. 

5. Conclusions 

Through the evaluation and bias correction of the GCMs that 
participated in CMIP5, all five selected GCMs showed future increases in 
annual rainfall in this region under all three RCP scenarios. Despite the 
commonly projected increase in rainfall on an annual basis, the pro-
jected effect on rain-fed rice production differed depending on the GCMs 
to force the rice model, and three out of five selected GCMs resulted in a 
projected decrease in rice production. The major cause was revealed to 
be the changes in the seasonal distribution of rainfall, and it was 
different among the five GCMs. The rainfall peak was projected to shift 
earlier in CCSM4 and CESM1(CAM5) to August–September with less 
rainfall in October; two rainfall peaks, in May–June and September, 
were projected in MPI-ESM-LR; and in MIROC5, the rainfall peak was 
projected to shift later with increased rainfall in September–October and 
less rainfall in June–July. 

The simulated lower yield with NorESM1-M was attributable to the 
projected lower solar radiation, which was considered erroneous based 
on the observed solar radiation. For simulations with MIROC5 and MPI- 
ESM-LR, high variability in lower-than-average root-zone soil moisture 
was considered the main factor restricting rice production. In MIROC5, 
dry spells in the early monsoon season were projected to be more severe 
than those in the other GCMs. These results suggest the importance of 
the ability of GCMs to project the diurnal cycle of rainfall (or solar ra-
diation on rainy days). They also show the importance of using accu-
mulated rainfall amount in shorter periods than annual or seasonal (in 
the time scale of the potential damage to rice growth), including the 
onset and withdrawal of the monsoons, timing and length of dry spells, 
and weak rainfall events. 

In using the present results for policy making, this study raises the 
importance of improving the projection ability of climate, which in-
cludes the improvement of GCMs themselves and of methods for their 
evaluation, selection and bias correction. The appropriate methods may 
differ depending on the objectives; for example, those for assessing the 
impact on agriculture may differ from those for assessing flood risk. The 
examination and establishment of appropriate methods for targeting the 
assessment of vegetation/crop growth are greatly needed, in addition to 
the continuous improvement of the predictability of atmospheric fields 
by global and regional climate models. 

For reliable future projections, in addition to model development, 
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access to local data on related variables and human-related activities 
such as land-use distribution and agricultural management (crop cal-
endar, application of irrigation, fertilizer, pesticide application, and so 
on) are essential for the calibration, validation, and bias correction of 
the models. Such hydrometeorological and agricultural data, especially 
those in long-term periods, in turn will contribute to future projection 
accuracy and to promoting the socioeconomic development of the 
country and thus will be highly encouraged. 
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Hasson, S., Pascale, S., Lucarini, V., Böhner, J., 2016. Seasonal cycle of precipitation over 
major river basins in South and Southeast Asia: a review of the CMIP5 climate 
models data for present climate and future climate projections. Atmos. Res. 180, 
42–63. https://doi.org/10.1016/j.atmosres.2016.05.008. 

He, L., Cleverly, J., Wang, B., Jin, N., Mi, C., Liu, D.L., Yu, Q., 2018. Multi-model 
ensemble projections of future extreme heat stress on rice across southern China. 
Theor. Appl. Climatol. 133, 1107–1118. https://doi.org/10.1007/s00704-017-2240- 
4. 

Hirooka, Y., Homma, K., Kodo, T., Shiraiwa, T., Soben, K., Chann, M., Tsujimoto, K., 
Tamagawa, K., Koike, T., 2016. Evaluation of cultivation environment and 
management based on LAI measurement in farmers’ paddy fields in Pursat province. 
Cambodia. Field Crops Res. 199, 150–155. https://doi.org/10.1016/j. 
fcr.2016.08.031. 

Homma, K., Horie, T., 2009. The present situation and the futureimprovement of 
fertilizer applicationsby farmers in rainfed rice culture. In: Elsworth, L.R., Paley, W. 
O. (Eds.), Fertilizers: Properties, Applications and Effects. Nova Science Publishers 
Inc, New York, NY, pp. 147–180. 

Homma, K., Horie, T., Shiraiwa, T., Sripodok, S., Supapoj, N., 2004. Delay of heading 
date as an index of water stress in rainfed rice in mini-watersheds in Northeast 
Thailand. Field Crops Res. 88, 11–19. https://doi.org/10.1016/j.fcr.2003.08.010. 

Homma, K., Koike, T., Tsujimoto, K., Ohta, T., 2017a. Climate change impact on rice 
production in Musi river basin in Indonesia. J. Earth Sci. Clim. Change 8, 31. https:// 
doi.org/10.4172/2157-7617-C1-036. 

Homma, K., Maki, M., Hirooka, Y., 2017b. Development of a rice simulation model for 
remote-sensing (SIMRIW-RS). J. Agric. Meteorol. 73, 9–15. https://doi.org/ 
10.2480/agrmet.d-14-00022. 

Horie, T., Nakagawa, H., Centeno, H., Kropff, M., 1995. The rice crop simulation model 
SIMRIW and its testing. In: Matthews, R.B., Kropff, M.J., Bachelet, D., van Laar, H.H. 
(Eds.), Modeling the Impact of Climate Change On Rice Production. CAB 
International, AsiaOxon, U.K., pp. 51–66 

Horie, T., Yajima, M., Nakagawa, H., 1992. Yield forecasting. Agric. Syst. 40, 211–236. 
https://doi.org/10.1016/0308-521x(92)90022-g. 

Hou, A.Y., Kakar, R.K., Neeck, S., Azarbarzin, A.A., Kummerow, C.D., Kojima, M., 
Oki, R., Nakamura, K., Iguchi, T., 2014. The global precipitation measurement 
mission. Bull. Am. Meteorol. Soc. 95, 701–722. https://doi.org/10.1175/bams-D-13- 
00164.1. 

IPCC, 2014. Climate Change 2014 Synthesis Report. IPCC, Geneva, Switzerland.  
Iwahashi, Y., Ye, R., Kobayashi, S., Yagura, K., Hor, S., Soben, K., Homma, K., 2021. 

Quantification of changes in rice production for 2003–2019 with MODIS LAI Data in 
Pursat Province. Cambodia. Remote Sens. 13, 1971. https://doi.org/10.3390/ 
rs13101971. 

Jones, J.W., Tsuji, G.Y., Hoogenboom, G., Hunt, L.A., Thornton, P.K., Wilkens, P.W., 
Imamura, D.T., Bowen, W.T., Singh, U., 1998. Decision support system for 
agrotechnology transfer: DSSAT v3. In: Tsuji, G.Y., Hoogenboom, G., Thornton, P.K. 
(Eds.), Understanding Options for Agricultural Production. Springer Netherlands, 
Dordrecht, pp. 157–177. 

Kawasaki, A., Yamamoto, A., Koudelova, P., Acierto, R., Nemoto, T., Kitsuregawa, M., 
Koike, T., 2017. Data integration and analysis system (DIAS) contributing to climate 
change analysis and disaster risk reduction. Data Sci. J. 16, 41. https://doi.org/ 
10.5334/dsj-2017-041. 

Kim, H.Y., Lieffering, M., Kobayashi, K., Okada, M., Miura, S.H.U., 2003. Seasonal 
changes in the effects of elevated CO2 on rice at three levels of nitrogen supply: a free 

K. Tsujimoto et al.                                                                                                                                                                                                                              

https://diasjp.net/
https://diasjp.net/
https://doi.org/10.1016/j.ecolmodel.2021.109815
http://refhub.elsevier.com/S0304-3800(21)00360-4/sbref0001
http://refhub.elsevier.com/S0304-3800(21)00360-4/sbref0001
http://refhub.elsevier.com/S0304-3800(21)00360-4/sbref0001
http://refhub.elsevier.com/S0304-3800(21)00360-4/sbref0001
http://refhub.elsevier.com/S0304-3800(21)00360-4/sbref0001
https://doi.org/10.1111/j.1469-8137.2004.01224.x
https://doi.org/10.1016/j.agsy.2018.04.001
https://doi.org/10.1016/j.agsy.2018.04.001
https://doi.org/10.3354/cr00978
https://doi.org/10.1016/j.scitotenv.2018.10.201
https://doi.org/10.1016/j.scitotenv.2018.10.201
http://refhub.elsevier.com/S0304-3800(21)00360-4/sbref0006
http://refhub.elsevier.com/S0304-3800(21)00360-4/sbref0006
http://refhub.elsevier.com/S0304-3800(21)00360-4/sbref0006
http://refhub.elsevier.com/S0304-3800(21)00360-4/sbref0006
http://refhub.elsevier.com/S0304-3800(21)00360-4/sbref0006
http://refhub.elsevier.com/S0304-3800(21)00360-4/sbref0006
https://doi.org/10.1007/s00704-017-2355-7
https://doi.org/10.1007/s00704-015-1525-8
https://doi.org/10.1007/s00704-015-1525-8
http://refhub.elsevier.com/S0304-3800(21)00360-4/sbref0009
http://refhub.elsevier.com/S0304-3800(21)00360-4/sbref0009
http://refhub.elsevier.com/S0304-3800(21)00360-4/sbref0009
http://refhub.elsevier.com/S0304-3800(21)00360-4/sbref0010
http://refhub.elsevier.com/S0304-3800(21)00360-4/sbref0011
https://doi.org/10.2151/jmsj.2016-015
https://doi.org/10.1016/j.atmosres.2016.05.008
https://doi.org/10.1007/s00704-017-2240-4
https://doi.org/10.1007/s00704-017-2240-4
https://doi.org/10.1016/j.fcr.2016.08.031
https://doi.org/10.1016/j.fcr.2016.08.031
http://refhub.elsevier.com/S0304-3800(21)00360-4/sbref0016
http://refhub.elsevier.com/S0304-3800(21)00360-4/sbref0016
http://refhub.elsevier.com/S0304-3800(21)00360-4/sbref0016
http://refhub.elsevier.com/S0304-3800(21)00360-4/sbref0016
https://doi.org/10.1016/j.fcr.2003.08.010
https://doi.org/10.4172/2157-7617-C1-036
https://doi.org/10.4172/2157-7617-C1-036
https://doi.org/10.2480/agrmet.d-14-00022
https://doi.org/10.2480/agrmet.d-14-00022
http://refhub.elsevier.com/S0304-3800(21)00360-4/sbref0020
http://refhub.elsevier.com/S0304-3800(21)00360-4/sbref0020
http://refhub.elsevier.com/S0304-3800(21)00360-4/sbref0020
http://refhub.elsevier.com/S0304-3800(21)00360-4/sbref0020
https://doi.org/10.1016/0308-521x(92)90022-g
https://doi.org/10.1175/bams-D-13-00164.1
https://doi.org/10.1175/bams-D-13-00164.1
http://refhub.elsevier.com/S0304-3800(21)00360-4/sbref0024
https://doi.org/10.3390/rs13101971
https://doi.org/10.3390/rs13101971
http://refhub.elsevier.com/S0304-3800(21)00360-4/sbref0026
http://refhub.elsevier.com/S0304-3800(21)00360-4/sbref0026
http://refhub.elsevier.com/S0304-3800(21)00360-4/sbref0026
http://refhub.elsevier.com/S0304-3800(21)00360-4/sbref0026
http://refhub.elsevier.com/S0304-3800(21)00360-4/sbref0026
https://doi.org/10.5334/dsj-2017-041
https://doi.org/10.5334/dsj-2017-041


Ecological Modelling 464 (2022) 109815

15

air CO2 enrichment (FACE) experiment. Glob. Change Biol. 9, 826–837. https://doi. 
org/10.1046/j.1365-2486.2003.00641.x. 

Kimball, B.A., Kobayashi, K., Bindi, M., 2002. Responses of agricultural crops to free-air 
CO2 enrichment. In: Sparks, D.L. (Ed.), Advances in Agronomy. Academic Press, 
London, UK, pp. 293–368. 

Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi, K., 
Kamahori, H., Kobayashi, C., Endo, H., Miyaoka, K., Takahashi, K., 2015. The JRA- 
55 reanalysis: general specifications and basic characteristics. J. Meteorol. Soc. Jpn. 
II 93, 5–48. https://doi.org/10.2151/jmsj.2015-001. 

Kodo, T., Homma, K., Kobayashi, S., Yagura, K., Hor, S., Kim, S., 2021. Effects of 
irrigation facilities development on cultivation management and productivity of rice 
in Cambodia: implications based on comparison of adjacent irrigated and 
nonirrigated areas in Pursat. Jpn. J. Southeast Asian Stud. 59, 101–118. https://doi. 
org/10.20495/tak.59.1_101. 

Krishnan, P., Swain, D.K., Bhaskar, B.C., Nayak, S.K., Dash, R.N., 2007. Impact of 
elevated CO2 and temperature on rice yield and methods of adaptation as evaluated 
by crop simulation studies. Agric. Ecosyst. Environ. 122, 233–242. https://doi.org/ 
10.1016/j.agee.2007.01.019. 

Li, S., Wang, Q., Chun, J.A., 2017. Impact assessment of climate change on rice 
productivity in the Indochinese Peninsula using a regional-scale crop model. Int. J. 
Climatol. 37, 1147–1160. https://doi.org/10.1002/joc.5072. 

Mahmood, R., 1998. Air temperature variations and rice productivity in Bangladesh: a 
comparative study of the performance of the YIELD and the CERES-Rice models. 
Ecol. Model. 106, 201–212. https://doi.org/10.1016/s0304-3800(97)00192-0. 

Maki, M., Sekiguchi, K., Homma, K., Hirooka, Y., Oki, K., 2017. Estimation of rice yield 
by SIMRIW-RS, a model that integrates remote sensing data into a crop growth 
model. J. Agric. Meteorol. 73, 2–8. https://doi.org/10.2480/agrmet.D-14-00023. 

Masumoto, T., Yoshida, T., Kudo, R., 2016. Basin-scale irrigation planning in areas with 
scarce data. Irrig. Drain. 65, 22–30. https://doi.org/10.1002/ird.2032. 

McLaughlin, D., Kinzelbach, W., 2015. Food security and sustainable resource 
management. Water Resour. Res. 51, 4966–4985. https://doi.org/10.1002/ 
2015wr017053. 

Mekong River Commission, 2018. Irrigation Database Improvement For the Lower 
Mekong Basin. MRC Technical Report No. 1. Mekong River Commission, Vientiane, 
Laos.  

NASA, 2020. ASTER Global Digital Elevation Map Announcement. NASA, Washington, 
DC.  

National Climatic Change Committe, 2013. Cambodia Climate Change Strategic Plan 
2014-2023. National Climatic Change Committe, Cambodia.  

Nyunt, C.T., Koike, T., Yamamoto, A., 2016. Statistical bias correction for climate change 
impact on the basin scale precipitation in Sri Lanka, Philippines, Japan and Tunisia. 
Hydrol. Earth Syst. Sci. Discuss. 1–32. https://doi.org/10.5194/hess-2016-14. 

Ohnishi, M., Horie, T., Koroda, Y., 1997. Simulating rice leaf area development and dry 
matter production in relation to plant N and weather. In: Kropff, M., Teng, P., 
Aggarwal, P., Bouma, J., Bouman, B., Jones, J., Van Laar, H. (Eds.), Applications of 
Systems Approaches At the Field Level. Springer, Netherlands, pp. 271–284. 

Prabnakorn, S., Maskey, S., Suryadi, F.X., de Fraiture, C., 2018. Rice yield in response to 
climate trends and drought index in the Mun River Basin. Thailand. Sci. Total 
Environ. 621, 108–119. https://doi.org/10.1016/j.scitotenv.2017.11.136. 

Prasad, P.V.V., Boote, K.J., Allen, L.H., Sheehy, J.E., Thomas, J.M.G., 2006. Species, 
ecotype and cultivar differences in spikelet fertility and harvest index of rice in 
response to high temperature stress. Field Crops Res. 95, 398–411. https://doi.org/ 
10.1016/j.fcr.2005.04.008. 

Raksapatcharawong, M., Veerakachen, W., Homma, K., Maki, M., Oki, K., 2020. Satellite- 
based drought impact assessment on rice yield in Thailand with SIMRIW− RS. 
Remote Sens. 12, 2099. https://doi.org/10.3390/rs12132099. 

Richards, L.A., 1931. Capillary conduction of liquids through porous mediums. Physics 
(College Park Md) 1, 318–333. https://doi.org/10.1063/1.1745010. 

Ruan, Y., Yao, Z., Wang, R., Liu, Z., 2018. Ranking of CMIP5 GCM Skills in simulating 
observed precipitation over the lower mekong basin, using an improved score-based 
method. Water (Basel) 10, 1868. https://doi.org/10.3390/w10121868. 

Saseendran, S.A., Singh, K.K., Rathore, L.S., Singh, S.V., Sinha, S.K., 2000. Effects of 
climate change on rice production in the tropical humid climate of Kerala, India. 
Clim. Change 44, 495–514. https://doi.org/10.1023/a:1005542414134. 

Sellers, P.J., Randall, D.A., Collatz, G.J., Berry, J.A., Field, C.B., Dazlich, D.A., Zhang, C., 
Collelo, G.D., Bounoua, L., 1996. A revised land surface parameterization (SiB2) for 

atmospheric GCMS. Part I: model formulation. J. Clim. 9, 676–705 https://doi.org/ 
10.1175/1520-0442(1996)009<0676:arlspf>2.0.co;2.  

So Im, M., Tsujimoto, K., Aida, K., Tamagawa, K., Ohta, T., Koike, T., Nukui, T., Sobue, S. 
I., Homma, K., 2014. Water and food security under climate change in Cambodia. 
Trans. Jpn. Soc. Aeronaut. Space Sci. Aerosp. Technol. Jpn. 12. Tn_31-Tn_39. 
https://doi.org/10.2322/tastj.12.tn_31.  

Steduto, P., Hsiao, T.C., Raes, D., Fereres, E., 2009. AquaCrop-The FAO crop model to 
simulate yield response to water: I. Concepts and underlying principles. Agron. J. 
101, 426–437. https://doi.org/10.2134/agronj2008.0139s. 

Sun, F., Mejia, A., Zeng, P., Che, Y., 2019. Projecting meteorological, hydrological and 
agricultural droughts for the Yangtze River basin. Sci. Total Environ. 696, 134076 
https://doi.org/10.1016/j.scitotenv.2019.134076. 

Taylor, K.E., Stouffer, R.J., Meehl, G.A., 2012. An overview of CMIP5 and the experiment 
design. Bull. Am. Meteorol. Soc. 93, 485–498. https://doi.org/10.1175/bams-D-11- 
00094.1. 

Tsujimoto, K., Masumoto, T., Mitsuno, T., 2008. Seasonal changes in radiation and 
evaporation implied from the diurnal distribution of rainfall in the Lower Mekong. 
Hydrol. Process. 22, 1257–1266. https://doi.org/10.1002/hyp.6935. 

Tsujimoto, K., Ohta, T., Aida, K., Tamakawa, K., So Im, M., 2018. Diurnal pattern of 
rainfall in Cambodia: its regional characteristics and local circulation. Prog. Earth 
Planet. Sci. 5, 39. https://doi.org/10.1186/s40645-018-0192-7. 

Tsujimoto, K., Ohta, T., Hirooka, Y., Homma, K., 2019. Estimation of planting date in 
paddy fields by time-series MODIS data for basin-scale rice production modeling. 
Paddy Water Environ. 17, 83–90. https://doi.org/10.1007/s10333-019-00700-x. 

Tsujimoto, K., Ono, K., Ohta, T., Chea, K., Muth, E.N., Hor, S., Hok, L., 2021. Multiyear 
analysis of the dependency of the planting date on rainfall and soil moisture in paddy 
fields in Cambodia, 2003–2019. Paddy Water Environ. 19, 635–648. https://doi. 
org/10.1007/s10333-021-00863-6. 

USGS, 2020a. Global Land Cover Characterization (GLCC). Version 1.2. USGS, Reston, 
Virginia.  

USGS, 2020b. MODIS/Aqua Vegetation Indices 16-day L3 Global 250m SIN Grid. USGS, 
Reston, Virginia.  

USGS, 2020c. MODIS/Terra Vegetation Indices 16-day L3 Global 250m SIN Grid. USGS, 
Reston, Virginia.  

USGS, 2020d MODIS/Terra+Aqua Leaf Area Index/FPAR 8-Day L4 Global 500m SIN 
Grid. USGS, Reston, Virginia. 

van Genuchten, M.T., 1980. A closed-form equation for predicting the hydraulic 
conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898. https://doi.org/ 
10.2136/sssaj1980.03615995004400050002x. 

Wang, L., Koike, T., Yang, K., Jackson, T.J., Bindlish, R., Yang, D., 2009b. Development 
of a distributed biosphere hydrological model and its evaluation with the Southern 
Great Plains Experiments (SGP97 and SGP99). J. Geophys. Res. 114, D08107. 
https://doi.org/10.1029/2008jd010800. 

Wang, L.E.I., Koike, T., Yang, D., Yang, K.U.N., 2009a. Improving the hydrology of the 
Simple Biosphere Model 2 and its evaluation within the framework of a distributed 
hydrological model. Hydrol. Sci. J. 54, 989–1006. https://doi.org/10.1623/ 
hysj.54.6.989. 

Yang, D., Herath, S., Musiake, K., 2002. A hillslope-based hydrological model using 
catchment area and width functions. Hydrol. Sci. J. 47, 49–65. https://doi.org/ 
10.1080/02626660209492907. 

Yatagai, A., Kamiguchi, K., Arakawa, O., Hamada, A., Yasutomi, N., Kitoh, A., 2012. 
APHRODITE: constructing a long-term daily gridded precipitation dataset for Asia 
based on a dense network of rain gauges. Bull. Am. Meteorol. Soc. 93, 1401–1415. 
https://doi.org/10.1175/bams-D-11-00122.1. 

Zhang, H., Zhou, G., Liu, D.L., Wang, B., Xiao, D., He, L., 2019a. Climate-associated rice 
yield change in the Northeast China Plain: a simulation analysis based on CMIP5 
multi-model ensemble projection. Sci. Total Environ. 666, 126–138. https://doi.org/ 
10.1016/j.scitotenv.2019.01.415. 

Zhang, W., Zhou, T., Zhang, L., Zou, L., 2019b. Future intensification of the water cycle 
with an enhanced annual cycle over global land monsoon regions. J. Clim. 32, 
5437–5452. https://doi.org/10.1175/jcli-D-18-0628.1. 

Zheng, J., Wang, W., Ding, Y., Liu, G., Xing, W., Cao, X., Chen, D., 2020. Assessment of 
climate change impact on the water footprint in rice production: historical 
simulation and future projections at two representative rice cropping sites of China. 
Sci. Total Environ. 709, 136190 https://doi.org/10.1016/j.scitotenv.2019.136190. 

K. Tsujimoto et al.                                                                                                                                                                                                                              

https://doi.org/10.1046/j.1365-2486.2003.00641.x
https://doi.org/10.1046/j.1365-2486.2003.00641.x
http://refhub.elsevier.com/S0304-3800(21)00360-4/sbref0029
http://refhub.elsevier.com/S0304-3800(21)00360-4/sbref0029
http://refhub.elsevier.com/S0304-3800(21)00360-4/sbref0029
https://doi.org/10.2151/jmsj.2015-001
https://doi.org/10.20495/tak.59.1_101
https://doi.org/10.20495/tak.59.1_101
https://doi.org/10.1016/j.agee.2007.01.019
https://doi.org/10.1016/j.agee.2007.01.019
https://doi.org/10.1002/joc.5072
https://doi.org/10.1016/s0304-3800(97)00192-0
https://doi.org/10.2480/agrmet.D-14-00023
https://doi.org/10.1002/ird.2032
https://doi.org/10.1002/2015wr017053
https://doi.org/10.1002/2015wr017053
http://refhub.elsevier.com/S0304-3800(21)00360-4/sbref0038
http://refhub.elsevier.com/S0304-3800(21)00360-4/sbref0038
http://refhub.elsevier.com/S0304-3800(21)00360-4/sbref0038
http://refhub.elsevier.com/S0304-3800(21)00360-4/sbref0039
http://refhub.elsevier.com/S0304-3800(21)00360-4/sbref0039
http://refhub.elsevier.com/S0304-3800(21)00360-4/sbref0040
http://refhub.elsevier.com/S0304-3800(21)00360-4/sbref0040
https://doi.org/10.5194/hess-2016-14
http://refhub.elsevier.com/S0304-3800(21)00360-4/sbref0042
http://refhub.elsevier.com/S0304-3800(21)00360-4/sbref0042
http://refhub.elsevier.com/S0304-3800(21)00360-4/sbref0042
http://refhub.elsevier.com/S0304-3800(21)00360-4/sbref0042
https://doi.org/10.1016/j.scitotenv.2017.11.136
https://doi.org/10.1016/j.fcr.2005.04.008
https://doi.org/10.1016/j.fcr.2005.04.008
https://doi.org/10.3390/rs12132099
https://doi.org/10.1063/1.1745010
https://doi.org/10.3390/w10121868
https://doi.org/10.1023/a:1005542414134
http://refhub.elsevier.com/S0304-3800(21)00360-4/sbref0049
http://refhub.elsevier.com/S0304-3800(21)00360-4/sbref0049
http://refhub.elsevier.com/S0304-3800(21)00360-4/sbref0049
http://refhub.elsevier.com/S0304-3800(21)00360-4/sbref0049
http://refhub.elsevier.com/S0304-3800(21)00360-4/sbref0023
http://refhub.elsevier.com/S0304-3800(21)00360-4/sbref0023
http://refhub.elsevier.com/S0304-3800(21)00360-4/sbref0023
http://refhub.elsevier.com/S0304-3800(21)00360-4/sbref0023
https://doi.org/10.2134/agronj2008.0139s
https://doi.org/10.1016/j.scitotenv.2019.134076
https://doi.org/10.1175/bams-D-11-00094.1
https://doi.org/10.1175/bams-D-11-00094.1
https://doi.org/10.1002/hyp.6935
https://doi.org/10.1186/s40645-018-0192-7
https://doi.org/10.1007/s10333-019-00700-x
https://doi.org/10.1007/s10333-021-00863-6
https://doi.org/10.1007/s10333-021-00863-6
http://refhub.elsevier.com/S0304-3800(21)00360-4/sbref0057
http://refhub.elsevier.com/S0304-3800(21)00360-4/sbref0057
http://refhub.elsevier.com/S0304-3800(21)00360-4/sbref0058
http://refhub.elsevier.com/S0304-3800(21)00360-4/sbref0058
http://refhub.elsevier.com/S0304-3800(21)00360-4/sbref0059
http://refhub.elsevier.com/S0304-3800(21)00360-4/sbref0059
https://doi.org/10.2136/sssaj1980.03615995004400050002x
https://doi.org/10.2136/sssaj1980.03615995004400050002x
https://doi.org/10.1029/2008jd010800
https://doi.org/10.1623/hysj.54.6.989
https://doi.org/10.1623/hysj.54.6.989
https://doi.org/10.1080/02626660209492907
https://doi.org/10.1080/02626660209492907
https://doi.org/10.1175/bams-D-11-00122.1
https://doi.org/10.1016/j.scitotenv.2019.01.415
https://doi.org/10.1016/j.scitotenv.2019.01.415
https://doi.org/10.1175/jcli-D-18-0628.1
https://doi.org/10.1016/j.scitotenv.2019.136190

	Quantifying the GCM-related uncertainty for climate change impact assessment of rainfed rice production in Cambodia by a co ...
	1 Introduction
	2 Materials and methods
	2.1 Study area
	2.2 Rice growth model (SIMRIW-rainfed)
	2.3 Combined hydrologic-rice growth model (mizuha)
	2.4 Past and future climate
	2.4.1 Past data
	2.4.2 Evaluation and selection of GCMs
	2.4.3 Bias correction of the GCM rainfall


	3 Results
	3.1 Model validation
	3.2 Past and future rainfall by the selected GCMs
	3.3 Rice production
	3.3.1 Projected change in rice production
	3.3.2 Affecting factors on rain-fed rice production


	4 Discussion
	4.1 Future projection of rice production in Cambodia
	4.2 Quantification of the GCM-related uncertainties and suggestions from the viewpoint of GCM application to rain-fed rice  ...

	5 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	Funding
	Supplementary materials
	References


