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Abstract. This article focuses on developing and applying approximation techniques to derive 

conservation laws for the Timoshenko–Prescott mixed derivatives perturbed partial differential equations 

(PDEs). Central to our approach is employing approximate Noether-type symmetry operators linked to a 

conventional Lagrangian one. Within this framework, this paper highlights the creation of approximately 

conserved vectors for PDEs with mixed derivatives. A crucial observation is that the integration of these 

vectors resulted in the emergence of additional terms. These terms hinder the establishment of the 

conservation law, indicating a potential flaw in the initial approach. In response to this challenge, we 

embarked on the rectification process. By integrating these additional terms into our model, we could 

modify the conserved vectors, deriving new modified conserved vectors. Remarkably, these modified 

vectors successfully satisfy the conservation law. Our findings not only shed light on the intricate 

dynamics of fourth-order mechanical systems but also pave the way for refined analytical approaches to 

address similar challenges in PDE-driven systems. 

Keywords: beams oscillations, traveling-wave reduction, conserved vectors, Noether approach.

1 Introduction 

Perturbated partial differential equations (PDEs) are 

foundational laws for delineating core principles across 

the mechanical and chemical engineering disciplines. 

Specifically, within mechanical engineering, fourth-order 

mixed-derivative perturbed PDEs are instrumental in 

elucidating the dynamics of beam oscillations, stress 

distribution in complex materials, and the vibrational 

behavior of mechanical structures. 

On the other hand, in chemical engineering, PDEs are 

extensively applied in areas such as diffusion-reaction 

processes, mass and heat transfer in heterogeneous 

systems, and kinetic modeling of complex chemical 

reactions. By offering a mathematical framework for 

these diverse phenomena, perturbed PDEs fortify our 

understanding and predictive capabilities in both 

engineering domains. 

Conversely, PDEs are used to anticipate the behavior 

of complex systems in biology and economics. In 

computer science, perturbed PDEs can be used to 

simulate complex interactions of nonlinear events. PDEs 

may be used to describe almost any natural phenomenon. 

Perturbed PDEs play a critical role in engineering [1], 

offering valuable insights into the behavior of systems 

subjected to minute disturbances or uncertainties. 

Spanning domains from fluid mechanics to geotechnical 

engineering, they enable professionals to gauge the ripple 

effects of small changes in complex systems (e.g., the 

transition from laminar to turbulent flows), the dynamics 

of structural vibrations, and the dispersion of pollutants in 

environmental contexts [2]. Engineers employing 
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perturbed PDEs are better equipped to design robust, 

efficient, and safer systems, understand the nuanced 

impacts of variations, and ensure optimal performance 

under diverse conditions. 

2 Literature Review 

For perturbed PDEs, approximate symmetries and 

approximate conservation laws are the most important 

subjects. The significant contribution to the derivation of 

the Euler–Lagrange equation was given by Emmy 

Noether in 1918. The approximate conservation laws in 

[3, 4] were introduced via the approximate Noether-type 

symmetries associated with the Lagrangian of the 

perturbed equation. If one has obtained the approximate 

Noethe symmetries for the Euler–Lagrange equation by 

using Noether’s theorem, it is very convenient to 

construct the approximate conservation laws. Several 

differential equations do not admit nontrivial exact 

approximate Lie symmetries. We recall that Lie’s 

integration theorem [5] does not apply to generating 

group-invariant solutions. Noether’s theorem [6, 7] is 

also useless for those perturbed differential equations 

where no nontrivial exact approximate Lie symmetries 

exist. These PDEs can be analyzed by splitting them into 

unperturbed and perturbed parts, provided the former 

admits exact approximate Lie symmetries. 

Additionally, developing perturbed PDEs that do not 

satisfy nontrivial exact approximate Lie symmetries is 

significant using the perturbation method [8, 9]. They 

offered the approximate version of Lie’s theorem. 

The approximate version of Noether’s theorem was 

developed by Govinder et al. [10]. For perturbed 

differential equations, portions of the unperturbed 

equation’s local symmetries may (or may not) reemerge 

as approximate symmetries and new approximate 

symmetries may develop. Approximate symmetries are 

helpful tools for developing approximate solutions. We 

show an approximate point symmetry of the perturbed 

equation for every point symmetry of the unperturbed 

equation for algebraic and first-order ordinary differential 

equations (ODEs). This is not the case for second-order 

and higher-order ODEs. Some point symmetries of the 

original ODE may be unstable; they do not appear in the 

perturbed ODE’s approximate point symmetry 

classification. We illustrate that such unstable point 

symmetries relate to higher-order approximation 

symmetries of the perturbed ODE and can be determined 

systematically. 

In [11], it was shown that the association between 

approximate Lie Backlund symmetries and approximate 

conserved vectors may be utilized to construct 

approximation conservation 

rules for perturbed equations that do not have a 

Lagrangian. Conservation laws may be constructed for 

unperturbed PDEs that accept partial Lagrangians using 

Noether-type symmetry operators. In [7], the authors 

looked at how to approximate Lie Backlund symmetries 

and how conserved vectors might be utilized to construct 

approximate Lagrangians for perturbed equations. This 

study extended the previous discovery to perturbed PDEs 

with mixed derivative components. We provide novel 

techniques for constructing approximation conservation 

laws of perturbed equations using approximate operators 

that are not always approximate symmetry operators of 

the perturbed differential equations. We note out that 

when we use Lagrangian or partial Lagrangian to 

approximate Noether’s theorem conservation laws, the 

mixed derivative terms include differentiation by more 

than one of the independent variables. When we insert 

them into the approximation equation (divergence 

relation), several new terms emerge. 

As a result, we have trivial conserved values that must 

be immediately entered into the conserved vectors 

derived using Noether’s theorem in the first place. These 

concepts are essential to verify that conserved flows and 

symmetries have a relationship. [12, 13]. 

These techniques were used to find the approximate 

Noether-type symmetries for the Timoshenko–Prescott 

mixed derivatives perturbed PDEs [14, 15]. We mention 

that the Timoshenko–Prescott equation and the Rayleigh 

equation are algebraic equivalents but different from the 

Euler-Bernoulli equation admits a higher dimensional 

Lie algebra. The beam equation, in addition to deflection, 

describes forces and moments and may thus be used to 

explain stresses. For the plane stress problems, a 

Timoshenko beam theory [16, 17] is proposed. The 

theory is built by a novel combination of critical 

components (kinematic displacements, stress and strain 

moments, and axially invariant plane stress) to calibrate 

the relationships between all these quantities [18]. 

Prescott equations [19] use average through-thickness 

displacement and average rotation variables to calibrate 

thin rods. We shall see mixed fourth-order terms in 

Timoshenko–Prescott mixed derivatives perturbed PDEs. 

Approximately conserved vectors do not satisfy the 

divergence relation, and some extra terms arise. We 

observe that mixed derivatives terms arise in every 

conservation law. By taking differentials and adding extra 

terms to conserved vectors, we get modified conserved 

vectors that satisfy the divergence relation. This equation 

has many applications in engineering fields. The presence 

of fourth-order spatial derivatives is reminiscent of beam 

deflection equations [20], where fourth-order derivatives 

describe the curvature of a beam under various loads. The 

time derivatives could suggest that this equation models 

the beam’s dynamic response, perhaps due to time-

varying forces or boundary conditions. In many real-

world engineering problems, the systems can be too 

complex to solve analytically. 

Approximate symmetries can be used to reduce the 

complexity of the model, providing a more 

straightforward yet reasonably accurate representation. 

Conservation laws provide deep insights into the 

behavior of systems [21]. For instance, a conservation 

law associated with energy or momentum can clarify the 

system’s inherent properties and responses to external 

influences. In engineering designs, understanding the 

symmetries and conservation laws can lead to better 
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control strategies or optimizations in the system, ensuring 

that it performs optimally under given conditions. 

The paper is organized as follows. A concise 

background of Timoshenko–Prescott equations collected 

in the Research Methodology. It also contains the basic 

definitions, operators, and equations required to 

accomplish the work. The approximate Noether-type 

symmetries are computed in the Results, where the 

approximate conservation laws are also found by using 

approximate Noether-type symmetries. Finally, some 

concluding remarks are given in the Discussion. 

3 Research Methodology 

3.1 Scientific background 

Nonlinear transport and shock waves have always 

played a significant role in studying fluid dynamics, 

particularly in understanding abrupt changes in properties 

such as pressure and density. Such phenomena can often 

be attributed to events such as supersonic jet flows or 

explosions. On the structural side, the oscillation of 

beams, plates, and shells forms a vital area of study in 

mechanical engineering, particularly in predicting the 

behavior of structures under various load conditions. 

These oscillations, arising from external forces or 

inherent structural properties, can determine the stability 

and longevity of structures, ranging from bridges to 

spacecraft components. Nonhomogeneous diffusion, 

often encountered in material science and chemical 

engineering, refers to the process in which the diffusion 

coefficient varies spatially. This can result from 

temperature gradients, composition differences, or other 

external conditions that affect the system. Regardless of 

the sudden onset of shock waves, rhythmic movement of 

architectural elements, or irregular spread of particles in a 

medium, these nonlinear and nonhomogeneous 

phenomena play a pivotal role in shaping the outcomes in 

their respective fields. 

We consider the following r-th order(𝑟 ≥ 1) system of 

perturbed differential equations with n independent 

variables 𝑥 = (𝑥1, 𝑥2, … . . , 𝑥𝑛) and m dependent 

variables 𝑢 = (𝑢1, 𝑢2, … . . , 𝑢𝑚) with ∈ 

 𝐸𝜎(𝑥, 𝑢, 𝑢(1), … . , 𝑢(𝑟); 𝜖) = 0;  𝜎 = 1, 2, … , 𝑙. (1) 

Each 𝐸𝜎 represents a perturbed PDE of order to r, 

where 𝑢(1) = 𝑢𝑖
𝛼, 𝑢(2) = 𝑢𝑖1𝑖2

𝛼 ,   𝑢(𝑟) = 𝑢𝑖1, 𝑖2, … ,  𝑖𝑟
𝛼 ,  

𝛼 = 1, 2, … ,𝑚, and 𝑖, 𝑖1, … , 𝑖𝑟 = 1, 2, … , 𝑛 are the 

collections of all the first, second up to r-th order partial 

derivatives. We say that 𝑢𝑖𝑗
𝛼 = 𝑢𝑗𝑖

𝛼 , 𝑢2 consisting only 

terms 𝑢𝑖𝑗
𝛼 , for which 𝑖 ≤ 𝑗. Simultaneously, 𝑢(3) has only 

terms for 𝑖 ≤ 𝑗 ≤ 𝑟. 

We observe that 𝑢𝑖
𝛼 = 𝐷𝑖(𝑢

𝛼), 𝑢𝑗𝑖
𝛼 = 𝐷𝑖𝐷𝑗(𝑢

𝛼), and so 

on, where 𝐷𝑖  is a total differentiation operator with 

respect to 𝑥𝑖 defined by  

 𝐷𝑖 =
𝜕

𝜕𝑥𝑖
+ 𝑢𝑖

𝛼 𝜕

𝜕𝑢𝛼
+ 𝑢𝑖𝑗

𝛼 𝜕

𝜕𝑢𝑗
𝛼 +⋯… . , 𝑖 = 1, 2,… (2) 

The Euler–Lagrange operator for each 𝛼 is given as 

follows [22]: 

 
𝛿

𝛿𝑢𝛼
=

𝜕

𝜕𝑢𝛼
+∑ (−1)𝑠𝐷𝑖1𝑠≥1 … . . 𝐷𝑖𝑠

𝜕

𝜕𝑢𝛼𝑖1,𝑖2,……,𝑖𝑠
; (3) 

for 𝛼 = 1, 2, … ,𝑚. 
The k-th order approximate Lie–Bäcklund symmetry 

operator is defined as follows [23]: 

 ℋ = 𝑋0 + 𝜀𝑋1 +⋯… . . +𝜖𝑘𝑋𝑘; (4) 

 ℋ = 𝜉𝑖
𝜕

𝜕𝑥𝑖
+ 𝜂𝛼

𝜕

𝜕𝑢𝛼
;   𝜉𝑖 , 𝜂𝛼 ∈ 𝐹; (5) 

where F is the space of the differential functions and 

𝜉𝑖 = 𝜉0
𝑖 + 𝜖𝜉1

𝑖 +⋯…+ 𝜖𝑘𝜉𝑘
𝑖  (𝑖 = 1, 2, … , 𝑛); 𝜂𝛼 = 𝜂0

𝛼 +
+𝜖𝜂1

𝛼 +⋯…+ 𝜖𝑘𝜂𝑘
𝛼 (𝛼 = 1, 2, … ,𝑚). 

The operator in equation (5) originates from the 

following indefinite formal sum: 

 ℋ = 𝜉𝑖
𝜕

𝜕𝑥𝑖
+ 𝜂𝛼

𝜕

𝜕𝑢𝛼
+ ∑ 𝜁𝑖1, 𝑖2, … , 𝑖𝑠

𝛼 𝜕

𝜕𝑢𝛼𝑖1, 𝑖2, … , 𝑖𝑠
𝑠≥1 . (6) 

Additionally, the following can be considered: 

 𝑋𝑏 = 𝜉𝑏
𝑖 𝜕

𝜕𝑥𝑖
+ 𝜂𝑏

𝛼 𝜕

𝜕𝑢𝛼
+ 𝜁𝑏,𝑖

𝛼 𝜕

𝜕𝑢𝑖
𝛼 + 𝜁𝑏,𝑖1,𝑖2

𝛼 𝜕

𝜕𝑢𝑖1,𝑖2
𝛼 +⋯, 

where 𝑏 = 0, 1, … , 𝑘; 𝜉𝑖 , 𝜂𝛼 ∈ 𝐹, and 𝜁𝑏,𝑖
𝛼 = 𝐷𝑖(𝑊̂𝑏

𝑎) +

+𝜉𝑏
𝑖𝑢𝑖𝑗

𝛼 ; 𝜁𝑏,𝑖1,𝑖2
𝛼 = 𝐷𝑖1𝐷𝑖2(𝑊̂𝑏

𝑎) + 𝜉𝑏
𝑖𝑢𝑗𝑖1

𝛼 . 

Now, 𝑊̂𝑏
𝑎 is the Lie characteristic function: 

𝑊̂𝑏
𝑎 = 𝜂𝑏

𝛼 − 𝜉𝑏
𝑖𝑢𝑗

𝛼 , 

where 𝕎 = (𝕎1,𝕎2, … . . ,𝕎𝑚),𝕎𝛽 ∈ 𝐹  is an 

approximate characteristic of ℋ, for which the following 

can be considered for 𝑖 = 1, 2, … , 𝑛: 

 𝕎𝑖 = 𝑊̂0
𝑖 + 𝜀𝑊̂1

𝑖 +⋯…+ 𝜖𝑘𝑊̂𝑘
𝑖 . (7) 

Equation (1) can be rewritten as follows: 

 𝐸𝜎 = 𝐸𝜎 + 𝜖𝐸𝜎;   𝜎 = 1, 2, … ,𝑚. (8) 

If there exists and nonzero functions 𝜓𝛾
𝜎 ∈ 𝐹 and 

function 𝔏 = 𝔏(𝑥, 𝑢, 𝑢(1), … . , 𝑢(𝑙); 𝜖), 𝑟 ≥ 𝑙, the last 

equation can be written as the following Euler–Lagrange 

type equation: 

 
𝛿𝔏

𝛿𝑢𝛼
= 𝜀𝜓𝛾

𝜎𝐸1
𝛾
, (9) 

where 𝜓𝛾
𝜎 = 𝜓𝛾

𝜎(𝑥, 𝑢, 𝑢(1), ……… , 𝑢(𝑟−1)) is an 

invertible matrix [22], then supplied (𝜎, 𝛾 = 1, 2, … ,𝑚). 

For some 𝛾 and 𝔏, 𝐸1
𝛾
≠ 0 is a partial Lagrangian of 

equation (8). 

The function 𝔏(𝑥, 𝑢, 𝑢(1), … . , 𝑢(𝑙); 𝜖) can be written in 

perturbated form as follows. 

𝔏(𝑥, 𝑢, 𝑢(1), … . , 𝑢(𝑙); 𝜖) = 𝔏0(𝑥, 𝑢, 𝑢(1), … . , 𝑢(𝑙)) + 

+𝜀𝔏1(𝑥, 𝑢, 𝑢(1), … . , 𝑢(𝑙)). 

If 𝐸1
𝛾
= 0,  then 𝔏 in equation (9) is a standard 

Lagrangian that satisfies the following condition: 

 
𝛿𝔏

𝛿𝑢
= 0. (10) 
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The approximate Lie–Bäcklund symmetry operator ℋ 

given in (6) is an approximate Noether-type symmetry. It 

corresponds to the standard Lagrangian  𝔏 ∈ 𝐹 in 

equation (9) if and only if there exists a vector 𝔅𝑖 =
(𝐵1, 𝐵2, …… , 𝐵𝑛), 𝔅𝑖 ∈ 𝐹 defined as follows: 

𝔅𝑖 = 𝐵̂0
𝑖 + 𝜖𝐵̂1

𝑖 +⋯ .+𝜖𝑘𝐵̂𝑘
𝑖 , 

such that  

 ℋ(𝔏) + 𝔏𝐷𝑖(𝜉
𝑖) = 𝐷𝑖(𝔅

𝑖) + 𝑂(𝜖𝑘+1). (11) 

The higher-order terms of  𝜖  can be ignored. Also, 

the terms with respect to zero and first-order of ε can 

be separated. Then, the following equations can be 

obtained: 

 
𝑋0(𝔏) + 𝔏𝐷𝑖(𝜉0

𝑖) 𝔏 = 𝐷𝑖(𝐵̂0
𝑖);

𝑋1(𝔏) + 𝔏𝐷𝑖(𝜉1
𝑖) 𝔏 = 𝐷𝑖(𝐵̂1

𝑖).
 (12) 

The zeroth-order system and the first-order system 

for the approximate Noether-type symmetry can be 

obtained for determining the equation (11). 

The vector 𝒥 = (𝒥1, 𝒥2, ……𝒥𝑛) [3, 11] 

 𝒥𝑖 = 𝑇0
𝑖 + 𝜖𝑇1

𝑖 +⋯ .+𝜖𝑇𝑘
𝑖 , (13) 

is an approximate conserved vector of equation (1), if 

𝒥𝑖 satisfies the approximate the following equation: 

 𝐷𝑖𝒥
𝑖|(2.1) = 𝑂(𝜖

𝑘+1). (14) 

This equation defines the approximate conservation 

law for equation (1). 

According to [23], an approximate Lie–Bäcklund 

symmetry operator ℋ given in equation (6) is an 

approximate Noether-type symmetry operator of an 

approximate partial Lagrangian L corresponding to 

approximate Euler–Lagrange type system of the form 

equation (9) if and only if the characteristic  

𝕎 = (𝕎1,𝕎2, … . . ,𝕎𝑚), 𝕎𝛽 ∈ 𝐹, defined in equation 

(7), is also the characteristic of conservation law 

𝐷𝑖𝒥
𝑖 = 𝑂(𝜖𝑘+1), where 

 𝒥𝑖 = 𝔅𝑖 −  𝔏𝜉𝑖 −𝕎𝛼 𝛿𝔏

𝛿𝑢𝑖
𝛼 +⋯…+ 𝑂(𝜖

𝑘+1) (15) 

of the approximate Euler–Lagrange type equation (9) 

for 𝑖 = 1, 2, … , 𝑛. 

An approximate Lie–Bäcklund symmetry operator 

X given in equation (6) is associated with the 

approximate conserved vector 𝒥𝑖 in representation (13) 

of equation (1) if the following relation holds for  

𝑖 = 1, 2, … , 𝑛 [12, 24]: 

 ℋ𝒥𝑖 + 𝐷𝑗(𝜉
𝑗)𝒥𝑖 − 𝒥𝑖𝐷𝑗(𝜉

𝑖) = 0. (16) 

The approximate symmetries and associated 

approximate conserved vectors satisfy this relation. 

Remarkably, Sjöberg [25, 26] developed the double 

reduction theory, which states that a PDE with two 

independent variables can be reduced to an ordinary 

differential equation of order one less than the order of 

the PDE. 

3.2 Timoshenko–Prescott equation 

Layered orthotropic beams represent a specialized 

category within a broad spectrum of engineering 

materials. Such beams consist of multiple layers, each 

having distinct mechanical properties that vary in 

different directions, hence the term “orthotropic”. This 

orthotropic nature often arises from the material’s 

inherent structure, such as the grain direction in wood or 

the fiber orientation in fiber-reinforced composites. 

Owing to this unique structure, the oscillatory behaviors 

of these beams differ considerably from those of isotropic 

materials, which have uniform properties in all directions. 

Studying oscillations in layered orthotropic beams is 

crucial for understanding their dynamic responses to 

external loads and disturbances. These oscillations can be 

influenced by factors such as the layer thickness, material 

properties of each layer, boundary conditions, and 

external forces. Correctly predicting these oscillatory 

behaviors is vital for designing and analyzing structures 

fabricated from these materials, ensuring their safety and 

functionality in real-world applications. 

The Timoshenko–Prescott form of the beam 

equation is as follows [14, 15]: 

 𝛼𝛽𝑢𝑥𝑥𝑥𝑥 + 𝑢𝑡𝑡 − 𝛽(1 + 𝜀)𝑢𝑥𝑥𝑡𝑡𝑡 +
𝜖𝛽𝑢𝑡𝑡𝑡𝑡

𝛼
. (17) 

It is a perturbed PDE with mixed derivatives of 

independent variables and provides a mathematical 

framework for modeling the behavior of such beams. 

This equation captures the intricate relationships among 

displacements, velocities, and accelerations within the 

beam, accounting for the complex interplay of forces 

resulting from the material’s orthotropic nature. 

When layered orthotropic beams are subjected to 

external excitations, the resultant wave patterns exhibit 

standing and traveling waves. The challenge often lies in 

reducing these traveling-wave components to better 

understand the beam’s oscillatory behavior in isolation. 

Such traveling-wave reduction problems aim to simplify 

the analysis, enabling engineers and scientists to focus on 

the specific features of the beam’s response. 

The recent development in generating approximate 

conservative laws for systems governed by perturbed 

PDEs provides a significant advancement in the 

engineering domain. Using an approximate Noether-

type symmetry operator, particularly for PDEs affected 

by mixed Timoshenko–Prescott derivatives, novel 

conservation vectors can be discovered. 

Such an approach paves the way for creating 

sophisticated computational models, especially in 

fields where exact solutions are elusive. 

It admits the standard Lagrangian of the following 

form: 

 𝔏 =
1

2
𝛼𝛽𝑢𝑥𝑥

2 −
1

2
𝑢𝑡
2 −

1

2
𝛽(1 + 𝜖)𝑢𝑥𝑡

2 +
1

2

𝜖𝛽𝑢𝑡𝑡
2

𝛼
.  

Thus, the approximate Euler–Lagrange type 

equation will be (10). 
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4 Results 

4.1 Approximate Noether-type symmetries 

The Timoshenko–Prescott form of the beam equation 

also finds potential applications in discrete mechanical-

electrical dynamic systems, particularly those with 

inherent nonregularities [27]. 

One intriguing application lies in 

microelectromechanical systems (MEMS), miniaturized 

mechanical and electromechanical elements ranging from 

simple structures to complex interconnected systems. 

MEMS often combines mechanical components, such as 

beams and membranes, with electrical elements, such as 

sensors and actuators, fabricated using microfabrication 

technology. 

Considering a MEMS device in which a microbeam 

[28] subjected to an electrically induced force is used as a 

resonating element, nonregularities can arise owing to 

manufacturing imperfections, material inconsistencies, or 

intentional design features. The Timoshenko–Prescott 

equation can be employed to describe the complex 

interplay of mechanical displacements and electrical 

disturbances in such a system. The nonlinear and higher-

order derivative terms can capture the intricate dynamics 

of the system, particularly when subjected to rapid or 

high-frequency excitations. 

Furthermore, piezoelectric materials, which possess 

the unique property of generating a voltage difference 

when subjected to mechanical stress, can be integrated 

into MEMS devices. The Timoshenko–Prescott form can 

aid in modeling the behavior of such systems, especially 

when the piezoelectric material is layered or possesses 

orthotropic properties. 

The equation may provide insights into nonregular 

systems, such as circuits with nonlinear components or 

signal paths with discontinuities in signal processing. 

This equation captures spatial and temporal dynamics and 

can help predict unexpected resonances or transient 

behaviors. 

The approximate Noether-type symmetries 

corresponding to standard Lagrangian  𝔏 satisfy equation 

(11). For i = {1, 2}, the following equation can be 

obtained: 

 (𝑋0 + 𝜀𝑋1)𝔏 + 𝐷𝑖(𝜉0
𝑖 + 𝜀𝜉1

𝑖) 𝔏 = 𝐷𝑖(𝐵̂0
𝑖 + 𝜀𝐵̂1

𝑖). (18) 

The zeroth-order and the first-order of ε separate it. 

These two systems of determining equations, zeroth-

order and first-order, are as follows. 

For the zeroth-order approximation: 

{
 
 

 
 

𝜉0𝑢
2 = 0;  𝜉0𝑢

1 = 0;  𝜂0𝑢𝑢 − 2𝜉0𝑥𝑢
2 = 0;

𝜉0𝑡
2 = 0; 2𝜂0𝑥𝑢 − 𝜉0𝑥𝑥

2 = 0; 𝐵̂0𝑡
1 + 𝐵̂0𝑥

2 = 0;

𝜉0𝑥
1 = 0;  𝜉0𝑡𝑢

1 + 𝜂0𝑢𝑢 − 𝜉0𝑥𝑢
2 = 0; 𝜂0𝑥𝑥 = 0;

𝜂0𝑥𝑡 = 0; 𝜂0𝑡𝑢 − 𝜉0𝑥𝑡
2 = 0; −𝜂0𝑥𝑢 + 𝜉0𝑡𝑢

1 = 0;

𝐵̂0𝑢
2 = 0; 𝜂0𝑡 − 𝐵̂0𝑢

1 = 0; −
1

2
𝜉0𝑥
2 +

1

2
𝜉0𝑡
1 − 𝜂0𝑢 = 0.

 (19) 

The following solution can be obtained: 

 

𝜉0
1 = 𝑐1;  𝜉0

2 = 𝑐2;
𝜂0 = 𝑐3𝑡 + 𝑐4𝑥 + 𝑐5;

𝐵̂0
1 = −𝑐3 − ∫𝐹𝑥(𝑥, 𝑡)𝑑𝑡 +𝐺(𝑥);

𝐵̂0
2 = 𝐹(𝑥, 𝑡).

 

Without loss of generality, it can be set 𝐹(𝑥, 𝑡) = 0 

and 𝐺(𝑥) = 0. Therefore, the obtained Noether-type 

symmetries for unperturbed equations are as follows: 

𝑋0
1 = 𝜕𝑡;  𝑋0

2 = 𝜕𝑥;  𝑋0
3 = 𝑡𝜕𝑢;  𝑋0

4 =  𝑥𝜕𝑢;  𝑋0
5 = 𝜕𝑢. 

For the first-order approximation: 

{
 
 

 
 

𝜉1𝑢
2 = 0; 𝜉1𝑢

1 = 0; 𝜂1𝑢𝑢 − 2𝜉1𝑥𝑢
2 = 0;

𝜉1𝑡
2 = 0; 2𝜂1𝑥𝑢 − 𝜉1𝑥𝑥

2 = 0; 𝐵̂1𝑡
1 + 𝐵̂1𝑥

2 = 0; 

𝐵̂1𝑢
2 = 0; 𝜉1𝑡𝑢

1 + 𝜂1𝑢𝑢 − 𝜉1𝑥𝑢
2 = 0; 𝜂1𝑥𝑥 = 0;

𝜉1𝑥
1 = 0; 𝜂1𝑡𝑢 − 𝜉1𝑥𝑡

2 = 0; 𝜂1𝑡 − 𝐵̂1𝑢
1 = 0;

  𝜂1𝑥𝑡 = 0; 𝜉1𝑡𝑥
1 − 𝜂1𝑥𝑢 = 0;

1

2
𝜉1𝑡
1 −

1

2
𝜉1𝑥
2 − 𝜂1𝑢 = 0.

 (20) 

Solving system of equations (20) allows for 

obtaining the following solutions: 

𝜉1
1 = 𝑐6;  𝜉1

2 = 𝑐7;
𝜂1 = 𝑐8𝑡 + 𝑐9𝑥 + 𝑐10;

𝐵̂1
1 = −𝑐8 −∫𝐶𝑥(𝑥, 𝑡)𝑑𝑡 + 𝐾(𝑥);

𝐵̂1
2 = 𝐶(𝑥, 𝑡).

 

After setting 𝐶(𝑥, 𝑡) = 0 and 𝐾(𝑥) = 0, approximate 

Noether-type symmetries can be obtained using 

representation (4) for equation (17) such that  

 
ℋ = (𝑐1𝜕𝑡 + 𝑐2𝜕𝑥 + 𝑐3𝑡𝜕𝑢 + 𝑐4𝑥𝜕𝑢 + 𝑐5𝜕𝑢) +

+𝜖(𝑐6𝜕𝑡 + 𝑐7𝜕𝑥 + 𝑐8𝑡𝜕𝑢 + 𝑐9𝑥𝜕𝑢 + 𝑐10𝜕𝑢).
 (21) 

From it, the approximate Noether-type symmetries 

(by equating one by one constant) equal to one and 

other equal to zero as follows: 

 

ℋ1 = 𝜕𝑡;  ℋ
2 = 𝜕𝑥;  ℋ

3 = 𝑡𝜕𝑢;  ℋ
4 = 𝑥𝜕𝑢;

ℋ5 = 𝜕𝑢;  ℋ
6 = 𝜖𝜕𝑡;  ℋ

7 = 𝜖𝜕𝑥;

ℋ8 = 𝜖𝑡𝜕𝑢;  ℋ
9 = 𝜖𝑥𝜕𝑢;  ℋ

10 = 𝜖𝜕𝑢.

 (22) 

4.2 Approximate conservation laws 

The approximate conserved vectors corresponding 

to approximate Noether-type symmetry ℋ1 in 

equation (22) can be obtained using equation (15). As 

a result,  

 

𝒥1
1 = −

1

2
𝛼𝛽𝑢𝑥𝑥

2 −
1

2
𝑢𝑡
2 −

1

2
𝛽(1 + 𝜖)𝑢𝑥𝑡

2 +

+
1

2

𝜖𝛽𝑢𝑡𝑡
2

𝛼
+ 𝑢𝑡 [𝑢𝑡 −

𝜖𝛽𝑢𝑡𝑡𝑡

𝛼
+ 𝛽(1 + 𝜖)𝑢𝑥𝑥𝑡] ;

𝒥1
2 = 𝑢𝑡[−𝛼𝛽𝑢𝑥𝑥𝑥 + 𝛽(1 + 𝜖)𝑢𝑥𝑡𝑡] +

+𝛼𝛽𝑢𝑥𝑡𝑢𝑥𝑥 − 𝛽(1 + 𝜖)𝑢𝑥𝑡𝑢𝑡𝑡 .

 (23) 

Therefore, the total divergence is as follows: 

𝐷𝑡𝒥1
1 + 𝐷𝑥𝒥1

2 = −𝛽(1 + 𝜖)𝑢𝑥𝑡𝑢𝑥𝑡𝑡 + 

+𝛽(1 + 𝜖)𝑢𝑥𝑥𝑡𝑡𝑢𝑡 . 
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As we know, some extra terms arise that require more 

simplification. After some adjustments to the terms 

emerging in conservation laws, it can be obtained: 

 
𝐷𝑡𝒥1

1 + 𝐷𝑥𝒥1
2 = −𝐷𝑡[𝛽(1 + 𝜖)𝑢𝑥𝑡

2 ] +

+𝐷𝑥[𝛽(1 + 𝜖)𝑢𝑡𝑢𝑥𝑡𝑡].
 (24) 

The modified approximate conserved vectors are 

stated as 𝒥̃1
𝑖  with  

𝒥1
1 = 𝒥1

1 + 𝛽(1 + 𝜖)𝑢𝑥𝑡
2 ; 

𝒥1
2 = 𝒥1

2 − 𝛽(1 + 𝜖)𝑢𝑡𝑢𝑥𝑡𝑡 , 

where 𝐷𝑡𝒥̃1
1 + 𝐷𝑥𝒥̃1

2 = 0. 
The approximate conserved vectors corresponding to 

approximate Noether-type symmetry ℋ2 in equation 

(22) are obtained using equation (15): 

 𝒥1
2 = 𝑢𝑥 [−𝑢𝑡 −

𝜖𝛽𝑢𝑡𝑡𝑡

𝛼
+ 𝛽(1 + 𝜖)𝑢𝑥𝑥𝑡] + 

+
𝜖𝛽𝑢𝑥𝑡𝑢𝑡𝑡

𝛼
− 𝛽(1 + 𝜖)𝑢𝑥𝑡𝑢𝑥𝑥; 

 𝒥2
2 =

1

2
𝛼𝛽𝑢𝑥𝑥

2 +
1

2
𝑢𝑡
2 −

1

2
𝛽(1 + 𝜖)𝑢𝑥𝑡

2 −
1

2

𝜖𝛽𝑢𝑡𝑡
2

𝛼
+ 

+𝑢𝑥[−𝛼𝛽𝑢𝑥𝑥𝑥 + 𝛽(1 + 𝜖)𝑢𝑥𝑡𝑡]. 

Consequently, the following can be written: 

 𝐷𝑡𝒥2
1 + 𝐷𝑥𝒥2

2 = 𝐷𝑡[𝛽(1 + 𝜖)𝑢𝑥𝑥𝑡𝑢𝑥] − 

−𝐷𝑥[𝛽(1 + 𝜖)𝑢𝑥𝑡
2 ]. 

The modified approximate conserved vectors are as 

follows: 

 
𝒥2
1 = 𝒥2

1 − 𝛽(1 + 𝜖)𝑢𝑥𝑥𝑡𝑢𝑥;

𝒥2
2 = 𝒥2

2 + 𝛽(1 + 𝜖)𝑢𝑥𝑡
2 .

 (25) 

In this equation, the approximate conserved vectors 

satisfy the approximate conservation law: 

𝐷𝑡𝒥̃2
1 + 𝐷𝑥𝒥̃2

2 = 0. 

The approximate conserved vectors correspond to 

the approximate Noether-type symmetry ℋ3. 

After considering equation (15), the following 

expressions can be obtained: 

 𝒥3
2 = −𝑢 + 𝑡 [𝑢𝑡 +

𝜖𝛽𝑢𝑡𝑡𝑡

𝛼
− 𝛽(1 + 𝜖)𝑢𝑥𝑥𝑡] −

𝜖𝛽𝑢𝑡𝑡

𝛼
; 

𝒥3
2 = 𝑡[𝛼𝛽𝑢𝑥𝑥𝑥 − 𝛽(1 + 𝜖)𝑢𝑥𝑡𝑡] + 𝛼𝛽𝑢𝑥𝑡 . 

They correspond to the following condition: 

 𝐷𝑡𝒥3
1 + 𝐷𝑥𝒥3

2 = 𝐷𝑥[−𝑡𝛽(1 + 𝜖)𝑢𝑥𝑡𝑡]. 

The modified approximate conserved vectors 𝒥̃3 
𝑖  

satisfy the approximate conservation law: 

𝐷𝑡𝒥̃3
1 + 𝐷𝑥𝒥̃3

2 = 0, 

where  

 
𝒥3
1 = 𝒥3

1;

𝒥3
2 = 𝒥3

2 + 𝑡𝛽(1 + 𝜖)𝑢𝑥𝑡𝑡 .
 (26) 

For approximate Noether-type symmetry ℋ4 in 

equation (21), the approximate conserved vectors are  

 
𝒥4
1 = 𝑥 [𝑢𝑡 +

𝜖𝛽𝑢𝑡𝑡𝑡

𝛼
− 𝛽(1 + 𝜖)𝑢𝑥𝑥𝑡] +

𝜖𝛽𝑢𝑡𝑡

𝛼
;

𝒥4
2 = 𝑥(𝛼𝛽𝑢𝑥𝑥𝑥 − 𝛽(1 + 𝜖)𝑢𝑥𝑡𝑡) − 𝛼𝛽𝑢𝑥𝑥 .

 

There is an extra term arising in approximate 

conservation law such that  

 𝐷𝑡𝒥4
1 + 𝐷𝑥𝒥4

2 = 𝐷𝑡[−𝑥𝛽(1 + 𝜖)𝑢𝑥𝑥𝑡]. 

Now, the modified approximate conserved vectors 

 𝒥̃4
𝑖    𝑠atisfy the following approximate conservation 

law: 

𝐷𝑡𝒥̃4
1 + 𝐷𝑥𝒥̃4

2 = 0. 

where  

 
𝒥̃4
1 = 𝒥4

1 + 𝑥𝛽(1 + 𝜖)𝑢𝑥𝑥𝑡;

𝒥̃4
2 = 𝒥4

2.
 (27) 

For approximate Noether-type symmetry ℋ5 in the 

equation (12), the approximate conserved vectors are 

as follows: 

 
𝒥5
1 = 𝑢𝑡 +

𝜖𝛽𝑢𝑡𝑡𝑡

𝛼
− 𝛽(1 + 𝜖)𝑢𝑥𝑥𝑡 ;

𝒥5
2 = 𝛼𝛽𝑢𝑥𝑥𝑥 − 𝛽(1 + 𝜖)𝑢𝑥𝑡𝑡 .

 

This time, there is an extra term arising in 

approximate conservation law such that  

 𝐷𝑡𝒥5
1 +𝐷𝑥𝒥5

2 = 𝐷𝑡[−𝛽(1 + 𝜖)𝑢𝑥𝑥𝑡]. 

The modified approximate conserved vectors 𝒥̃5 
𝑖  

satisfy the following approximate conservation law: 

 𝐷𝑡𝒥̃5
1 +𝐷𝑥𝒥̃5

2 = 0. 

where  

 
𝒥̃5
1 = 𝒥5

1 + 𝑥𝛽(1 + 𝜖)𝑢𝑥𝑥𝑡;

𝒥̃5
2 = 𝒥5

2.
 (28) 

Similarly, the modified approximate conserved 

vectors corresponding to approximate Noether-type 

symmetries ℋ6, ℋ7, ℋ8, ℋ9, and ℋ10 in equation 

(22) are listed as follows: 

 

𝒥̃6
1 = 𝜖𝒥1

1 + 𝜖𝛽(1 + 𝜖)𝑢𝑥𝑡
2 ;

𝒥̃6
2 = 𝜖𝒥1

1 − 𝜖𝛽(1 + 𝜖)𝑢𝑥𝑡𝑡𝑢𝑡;

𝒥̃7
1 = 𝜖𝒥2

1 − 𝜖𝛽(1 + 𝜖)𝑢𝑥𝑥𝑡𝑢𝑥;

𝒥̃7
2 = 𝜖𝒥2

2 + 𝜖𝛽(1 + 𝜖)𝑢𝑥𝑡
2 ;

𝒥̃8
1 = 𝜖𝒥3

1, 𝒥̃8
2 = 𝜖𝒥3

2 + 𝜖𝑡𝛽(1 + 𝜖)𝑢𝑥𝑡𝑡;

𝒥̃9
1 = 𝜖𝒥4

1 + 𝜖𝑥𝛽(1 + 𝜖)𝑢𝑥𝑥𝑡 ;  𝒥̃9
2 = 𝜖𝒥4

2;

𝒥̃10
1 = 𝜖𝒥4

1 + 𝜖𝛽(1 + 𝜖)𝑢𝑥𝑥𝑡;  𝒥̃10
2 = 𝜖𝒥5

2.

 (29) 

All these modified approximate conserved vectors 

corresponding to approximate Noethor-type 

symmetries satisfy the approximate conservation laws 

𝐷𝑡𝒥̃
𝑖 = 0 (𝑖 = {1, 2}). 
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5 Discussion 

Developing a Timoshenko–Prescott form of the beam 

equation provides an array of potential engineering 

applications. At the heart of this formulation lies the 

perturbed partial differential equation with mixed 

derivatives of independent variables, which is a 

sophisticated mathematical structure with significant 

implications for real-world modeling and simulation. 

The ability to derive approximate conservation laws 

for systems governed by such perturbed PDEs opens the 

door to tackling complex engineering problems where 

exact solutions might be difficult to obtain. Such 

approximate laws can be instrumental in systems 

modeling, where conservation principles (such as energy 

and momentum) play an essential role. The introduction 

of approximate Noether-type symmetry operators further 

enriches this framework, offering a systematic way to 

generate conservation vectors. 

One direct application of this methodology is in 

structural engineering, specifically in modeling beams 

under various loadings and boundary conditions. The 

Timoshenko–Prescott beam equation can potentially 

model the behavior of advanced materials or complex 

loading scenarios more accurately than traditional beam 

theories. This could be crucial for predicting failures, 

understanding vibration modes, and optimizing structural 

designs. 

Furthermore, in the broader spectrum of mechanical 

engineering, this methodology may find application in 

systems with small perturbations. For instance, perturbed 

PDEs are often used in fluid mechanics to study stability 

and transition to turbulence. Similarly, in aeroelasticity, 

understanding the behavior of structures (such as aircraft 

wings) under aerodynamic loading often involves 

perturbed differential equations. 

Another potential application is in computational 

engineering. The presented results can be applied to 

develop new numerical algorithms for solving problems 

described by the Timoshenko–Prescott equations. Such 

algorithms could be more efficient or accurate than 

generic solvers, particularly for problems where 

perturbations play a significant role. 

The scientific research presented delves deep into the 

realm of beam mechanics, which is a core subject in 

mechanical engineering. The Timoshenko–Prescott form 

of the beam equation provides a more generalized and 

robust description of beam behavior, accounting for 

shearing effects and rotational inertia, phenomena often 

omitted in simpler Euler–Bernoulli beam theories. The 

significance of this research for mechanical engineering 

can be summarized in advanced computational models, 

predictive capabilities, innovative material and structural 

design, and bridges to advanced mechanical phenomena. 

While the current research provides a significant leap 

in understanding beam mechanics, the horizon of 

possibilities is vast. Making on this foundation, the 

mechanical engineering community can drive academic 

discourse and practical innovations that shape our world. 

6 Conclusions 

For systems characterized by perturbed or 

approximated partial differential equations that admit a 

standard Lagrangian, a unique method has been proposed 

to derive approximate conservation laws. This approach 

relies heavily on utilizing approximate Noether-type 

symmetry operators specific to perturbed PDEs. 

The focus of this study was primarily on the PDE-

affected mixed Timoshenko–Prescott derivatives, leading 

to the unearthing of new approximation conservation 

vectors for the said equation. 

Notably, this methodology is a pioneering approach to 

generating conservation laws. It is observed that all 

conserved vectors that possess mixed derivatives in their 

highest-order equations incorporate additional terms. 

These terms serve as foundational elements for 

constructing modified approximation-conserved vectors. 

With the necessary modifications to the full 

derivatives of the associated mixed components and 

incorporation of the approximate conserved vector, these 

modified approximate conserved vectors adhere to the 

approximation conservation law. The discoveries and 

methodologies outlined in this study have profound 

implications for mechanical engineering. 

Understanding and applying these approximate 

conservation laws can significantly influence complex 

mechanical systems’ design, analysis, and optimization. 

This research paves the way for more precise predictive 

systems modeling, particularly when traditional 

conservation laws may not offer adequate accuracy. In 

real-world scenarios, such as the design of structures, 

machinery, or transport systems, these insights can lead 

to safer, more efficient, and more resilient systems. 

Engineers can apply this knowledge to make informed 

decisions in the presence of uncertainties or 

perturbations, thereby ensuring the reliability and 

longevity of mechanical systems. Therefore, this 

breakthrough advances the theoretical aspects of 

mechanical engineering and provides practitioners with 

robust tools for tangible real-world applications. 
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