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Abstract
The valorization of biogas as a renewable energy source faces a major obstacle regarding its purification. Siloxane is one 
of the impurities that cause problems such as damages to equipment of combustion engines, turbines, and boilers used for 
biogas conversion to heat and electricity. In this review, adsorption for siloxane removal is widely discussed, with two specific 
approaches: adsorbents sensitivity to water and regeneration, two essential points for industrial application. Thus, determining 
factors in adsorbents capacity, reusability, and water tolerance including textural properties, surface functional groups, and 
hydrophobicity are deeply analyzed. Studies oriented to the optimization of traditional adsorbents such as activated carbon, 
silica gel, and aluminosilicates as well as newly emerging adsorbents such as metal organic frameworks, graphene oxides, 
and waste-derived materials are studied in detail in terms of reusability and water tolerance. Although activated carbon is 
commercially used, its low selectivity, pore blockage due to siloxane polymerization, and unsuccessful regeneration make 
it disadvantageous. Silica gel, however, shows better reusability as a result of less adsorbent-adsorbate dissociation energy. 
In addition, aluminosilicates, despite its low adsorption capacity, proved to be more practical for real biogas due to their 
high hydrophobicity. Graphene oxide cost and energy efficiency in their synthesis make them more industrially appealing 
candidates despite their low adsorption capacity. Finally, metal organic frameworks demonstrated high selectivity, high 
adsorption capacity, and more efficient regeneration and therefore have more advantages and less drawbacks, although the 
number of published studies is still limited.

Keywords  Renewable energy · Biogas upgrading · Siloxane removal · Adsorption · Activated carbon · Metal organic 
frameworks (MOF) · Graphene oxide

1  Introduction

Biogas valorization and utilization as a renewable source of 
energy has increasingly captured the worldwide attention 
over the last decades towards a lesser dependence on fossil 
fuels [1–3]. However, its use has always had its own chal-
lenges due to the presence of undesirable substances such as 
carbon dioxide, H2S, siloxanes, H2O, NH3, N2, and so forth 
[4, 5]. Biogas treatment includes its purification and upgrad-
ing process. Purification process typically includes firstly 
drying by dewatering, and then removing hydrogen sulfide, 

and finally removing other impurities. Upgrading process 
simply refers to the separation of methane from carbon diox-
ide to obtain high methane-enriched biogas which is the so-
called biomethane [6]. However, biogas upgrading systems 
faces challenges such as the massive digestate produced that 
will add more complication in terms of land use and also 
the consequent greenhouse gas emissions released from the 
digestate storage, transport, and manipulation. This chal-
lenge can be overcome by integrating some strategies into 
the anaerobic digestion such as the use of biochar, which 
will lead to a carbon zero-emission to the environment. Also, 
the biochar produced from digestate can be easily stored, 
transported and exploited for soil amendment [7, 8]. In 
addition, other strategies have been investigated to facilitate 
biogas upgrading in terms of methane content enrichment 
and simultaneously removing some potential biogas impu-
rities such as hydrogen sulfide [9]. Siloxane is one of the 
biogas impurities that brings about various obstacles such as 
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corrosion or coating, as well as damages to some equipment 
such as combustion engines, turbines and boilers used in the 
process of valorization and conversion to heat and electricity 
when biogas is used as a substitute for natural gas in grids or 
fuel cells [3, 10, 11]. Although the concentration of silox-
ane in biogas does not exceed 0.4–0.5 mg/L [12], more and 
more attempts have been made for its elimination due to its 
adverse effects on the equipment, which imposes high costs 
of maintenance and frequent equipment replacement [12, 
13]. There are two main types of siloxanes including poly 
dimethyl siloxanes (PDM) and methyl siloxanes which are 
volatile (VMS). VMS is the principal siloxane that ends up 
in biogas as a result of PDM hydrolysis and the volatiliza-
tion of a part of VMS available in the digester during the 
anaerobic digestion process [14–16]. VMS falls into two 
categories: linear and cyclic. Each category of linear and 
cyclic also has different types, which will be discussed later. 
Besides, biogas composition in terms of siloxane content 
varies mainly because of the different digested organic sub-
strates [17]. Thus, the selection of the methods for siloxane 
elimination is challenging and needs to be carefully carried 
out according to the typology of siloxanes found in biogas.

To date, there have been various methods and technolo-
gies developed for the separation and removal of siloxanes 
from biogas including absorption, adsorption, cryogenic 
condensation, biological removal, and membrane separa-
tion [13, 18–22]. Absorption of siloxanes can occur either 
physically or chemically. Physical absorption of biogas 
components are based on the solubility difference of the 
components in the solvent without any chemical reaction 
[23–26]. Thus, in order to eliminate a specific component 
from biogas, the appropriate solvent needs to be selected. 
Siloxanes are hydrophobic and non-polar and therefore 
cannot be absorbed by polar absorbents like water. Hence, 
organic solvents with long carbon chains have been tradi-
tionally used for the physical absorption of siloxanes [27, 
28]. A significant drawback regarding physical absorption 
is that the siloxanes will strip from the solvent at elevated 
gas flow rates due to their high volatility. Nonetheless, when 
siloxanes go through chemical absorption, they can be con-
verted to components with lower volatility, and therefore, the 
problem of their stripping from the solvent at higher gas flow 
rates can be minimized. On the other hand, siloxanes dem-
onstrate extreme stability against chemical and biochemical 
degradation, and only strong acids and bases can be useful 
for catalyzing the cleavage of Si-O bonds of siloxanes [2, 
29]. However, strong acids and bases cannot be practically 
used because of the consequences in terms of large amounts 
of precipitated carbonates formed in the presence of CO2 
in case of bases and potential corrosion in case of acids [2, 
18, 30]. Condensation is another method that at low tem-
peratures and pressures makes the removal of some of the 
biogas impurities feasible. However, such removal technique 

neither will lead to a complete removal nor would be eco-
nomically feasible. Schweigkofler and Niessner’s experi-
ments on the removal of siloxane using condensation at 5 
°C concludes with this statement as their results only dem-
onstrated less than 15% siloxane removal from biogas [18, 
31]. For this reason, in industrial application, this method 
is implemented together with other techniques as adsorp-
tion. Biological removal of siloxane is another method 
for siloxane removal, which is based on the fact that VMS 
(volatile methyl siloxanes) can be degraded by a number 
of microorganisms such as Arthrobacter, Agrobacterium, 
Fusarium oxysporum, Methylibium sp., Pseudomonas sp., 
Phyllobacterium myrsinacearum, Rhodanobacter and Xan-
thomonadaceae as VMS are an appropriate carbon source for 
such microorganisms [22, 32–34]. Biotrickling filters (BTF) 
are the reactors typically used for the biological removal 
of VMS. However, most of the reports demonstrated either 
low removal efficiencies or long residence times. While 
siloxane removal methods such as activated carbon adsorp-
tion, phosphoric acid absorption, membrane separation, and 
water scrubbing are widely used at industrial scale for VMS 
removal, biological methods have been principally examined 
at laboratory scale [35, 36]. Thus, the performance of such 
biological systems needs to be enhanced in order to justify 
their feasibility. Another technique for siloxane removal 
from biogas is membrane separation system that provides 
high surface area and occupies low space. Membrane separa-
tion system is known to have low energy requirements and 
high efficiency. In addition, the membrane used for siloxane 
removal is normally of high selectivity for siloxane, and the 
resultant methane purity is remarkably high, which means 
that not only less energy is needed but also less methane 
is lost in this system [20, 31]. However, while membrane 
technology has been well developed for CO2 removal, its uti-
lization for siloxane removal is limited. Besides, due to high 
investment and operational costs, the membrane technology 
for siloxane removal is still in the research phase. On the 
other hand, interfering compounds existing in biogas such as 
H2S and water vapor as well as oil vapors from engines can 
cause significant damage to the membranes, in addition to 
the problem regarding their pore blockage and fouling due to 
the siloxane itself. Consequently, pretreatment of the biogas 
would be essential as well as the fact that membranes need 
to be renewed periodically [20, 37].

Adsorption is more commonly used for siloxane removal 
due to advantages such as cost-effectiveness and easy opera-
tion, among others [19, 38, 39]. To date, there have been 
several adsorbents investigated and developed for siloxane 
removal including activated carbon, silica gel, and alumi-
nosilicate adsorbents as traditional ones [40–44]. However, 
a great effort of research has been made during the last two 
decades to find out more efficient adsorbents to optimize 
the process and to overcome the limitations encountered 
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traditional adsorbents. Particularly, activated carbon and 
silica gel have been two of the most commonly used adsor-
bents for siloxane separation from biogas. Activated carbon, 
thanks to its large surface area and therefore high adsorption 
capacity, low cost, availability, and stability, has been used 
commercially [41, 42, 45]. However, some drawbacks such 
as low selectivity for siloxane due to its affinity for meth-
ane adsorption and its probable pore blockage due to the 
siloxane polymerization phenomenon have been reported, a 
process that is favored by the biogas water content [40, 43]. 
Conventionally, this adsorption system is accompanied by 
a condensation process as a pretreatment to eliminate the 
water content to enhance its efficiency. Silica gel, as opposed 
to activated carbon, demonstrated better reusability thanks 
to the weak adsorbent-adsorbate forces dominating the 
adsorption mechanism [31, 46]. Researchers also managed 
to achieve higher adsorption efficiencies and less sensitivity 
of silica gel to water molecules in biogas by manipulating 
the effective factors of the adsorbent such as textural and 
surface properties by means of the modification of the adsor-
bent synthesis and post treatment process of its preparation 
[44, 46, 47]. Zeolites and mesoporous aluminosilicates are 
another category of adsorbents that have been used for silox-
ane separation from biogas [48, 49]. Although they did not 
show good performance in terms of adsorption capacity 
compared to activated carbon, they proved to be competent 
in terms of sensitivity to biogas water content, due to their 
high hydrophobicity. Furthermore, the manipulation of their 
preparation procedure by increasing aluminum dopant and 
calcination temperature had a positive effect on their pore 
size and therefore efficiency [46, 49]. The effect of biogas 
water content on siloxane removal will be also studied in 
detail in this review. More recently, having unique character-
istics such as pore size and shape tunability and high surface 
area [50–52], metal organic frameworks (MOFs) have also 
been studied as novel adsorbents for siloxane removal and 
have demonstrated higher adsorption capacity and selectiv-
ity compared to conventional adsorbents [53–55]. Addition-
ally, their regeneration is reported to be quite successful as 
opposed to activated carbon and silica gel, a phenomenon 
that is attributed to the lack of polymerization of siloxane 
onto the adsorbent surface [56]. In the most recent stud-
ies, graphene oxide, an emerging material for environmen-
tal applications such as energy storage and separation or 
water treatment, has gained attention for siloxane removal. 
Reduced graphene oxide aerogels (rGOA) have been the 
most used graphene oxides investigated for siloxane adsorp-
tion. Although the number of the studies in this regard is 
few and they are not completely developed, rGOAs have 
shown high efficiency in terms of reusability in addition to 
their operation simplicity and the low amount of energy used 

for their synthesis [57–59]. Finally, waste-derived materi-
als and their application in adsorption processes have also 
gained interest [45, 60, 61]. Taking advantage of waste 
material and their recycling not only alleviates the envi-
ronmental burdens of waste management and disposal and 
environmental consequences, but also eliminates the need 
for producing raw materials in the framework of circular 
economy. For instance, activated carbon and carbon nano-
tubes were successfully synthesized from lignocellulosic 
biomass waste, with high specific area and pore volume, 
which can be further tested for the adsorption applications 
[62, 63] . Regarding siloxane adsorption, a porous silica was 
synthesized using the residual sand from a WWTP [61], 
a waste wood-derived biochar was utilized for the adsorp-
tion of siloxane [45], a lignocellulosic waste generated in 
food and wood industry was tested for siloxanes L2 and D4 
adsorption [64], and a biochar modified with iron was evalu-
ated for L2 siloxane adsorption [65]. Therefore, adsorbents 
derived from waste that have been used for siloxane removal 
will be also reviewed.

This review is intended to focus on the adsorptive 
removal of siloxane from biogas and discuss the recent 
advances regarding the adsorption process including the 
optimization of traditional adsorbents as well as the recent 
appearance of emerging adsorbents such as graphene oxide, 
metal organic frameworks (MOFs), and waste-derived mate-
rials. Specifically, published studies are critically reviewed 
in terms of regeneration of the adsorbents used as a factor 
that determines the adsorbents feasibility at the commercial 
or industrial scale. In addition to this, a specific focus on the 
investigation of surface properties of the adsorbents such as 
porosity, hydrophobicity, and surface functional groups is 
presented. These parameters are the most important as far 
as the adsorption capacity and reusability are concerned. 
The significance of this review is as following: the regenera-
tion of the adsorbents is essential as far as their industrial 
application is concerned; therefore, in this review, all the 
adsorbents are scrutinized and compared among them in 
terms of reusability considering the features of the adsor-
bents that affect and determine their reusability. These are 
the bonding forces between the adsorbate and adsorbent 
that affect the dissociation energy of the adsorbate from the 
adsorbent surface, as well as issues like polymerization of 
siloxane in the adsorbents pores that leads to pore blockage 
and hampers the regeneration process. On the other hand, 
the adsorbents are compared and evaluated in terms of their 
sensitivity to water, since moisture is one of the unavoidable 
components of biogas, and the adsorbents that lose their 
adsorption capacity in its presence are indeed questionable 
with real biogas. In this sense, they will not be as practical 
and efficient as the adsorbents the performance of which is 
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not significantly affected in the presence of water due to their 
hydrophobicity. Hence, this work will help the trends for 
the next studies to take into consideration to develop more 
industrially applicable adsorbents.

2 � Biogas sources and its siloxane content

2.1 � A short review on the wide variety of biogas 
sources

Biogas refers to a water-saturated gas that is generated 
as a result of a biological process by means of micro-
bial organisms on biodegradable organic substrates under 
anaerobic conditions. It is mainly generated during the 
anaerobic digestion of biodegradable wastes such as food, 
manure, municipal, and agricultural wastes in the anaero-
bic digestion bioreactors and landfills [17, 66]. Developed 
countries implement advanced large-scale biogas plants 
to take advantage of biogas. Biogas is regularly applied 
to generate heat, power, and electricity. In addition, many 
industrial applications for its use in biogas plants as a 
substitute to natural gas are being progressed [67]. The 
composition of biogas is highly influenced by the type 
of substrate and how the anaerobic process is designed. 
For instance, the biogas resulting from the biodigesters 
of agricultural residues will have a composition different 
from that of a landfill gas recovery system or wastewater 
treatment plants (WWTPs) [3]. This will obviously affect 
the biogas upgrading procedure, which is the process to 
obtain biomethane, removing CO2 and the rest of impuri-
ties form biogas.

As mentioned, biogas contains 60–70% methane and 
30–40% carbon dioxide and trace amounts of impurities 
[11, 68]. Many studies have been conducted to eliminate 
carbon dioxide content of biogas, towards biogas upgrading. 
This process is typically carried out through technologies 
such as physical and chemical scrubbing, pressure swing 
adsorption, separation by membrane, and cryogenic separa-
tion [10]. This review will not go further in carbon dioxide 

removal technologies since the studies and developments on 
this issue have been largely reviewed [10, 69, 70].

2.2 � Siloxane and its effects on biogas valorization

To take advantage of biogas, it must be converted to heat, 
steam, or electricity or used as a gas fuel substitute in vehi-
cles. For these purposes, biogas needs to be used in dif-
ferent types of equipment such as combustion engines, gas 
turbine engines, boilers, hot water systems, process heaters 
for combined heat and power units (CHP), and fuel cells. 
However, as shown in Table 1, the existing impurities in 
biogas if not eliminated can cause damage to such equip-
ment, and therefore they hamper the feasibility of biogas val-
orization process in economical and industrial applications. 
One of these disruptive components in biogas is siloxanes. 
Siloxanes are used as additives to cleaning agents, seal-
ants, and pharmaceutical and cosmetic products as well as 
personal care products such as hairstyle products, lipsticks, 
creams, and deodorants [16, 71]. Consequently, they appear 
in wastewater and wastewater treatment plants and landfills 
[68]. Siloxanes can be categorized into two types: (1) PDM, 
which has higher molecular weight and low vapor pressure 
that makes it non-volatile, as opposed to (2) methyl silox-
anes, which have lower molecular weight and are known 
as VMS [14, 15]. For example, owing to their characteris-
tics mentioned above, for siloxanes present in wastewater 
streams, a part of VMS is volatilized and leaves the liquid 
stream, and the remaining part is adsorbed onto solid par-
ticles and solubilized in liquid medium and, consequently, 
ends up in the digester. On the other hand, more than 90% 
of PDM are not volatilized and will be mainly adsorbed on 
the surface of solid particles and carried out with the sludge 
to the digester [14, 15]. After the anaerobic digestion pro-
cess, VMS will be released to the biogas stream due to the 
hydrolysis of PMD as well as direct volatilization of a part 
of VMS that has already managed to enter the anaerobic 
digester through adsorption onto solid particles [16]. Fig-
ure 1 graphically depicts the siloxanes fate in a wastewater 
treatment plant (WWTP) or in a landfill and their occurrence 

Table 1   Biogas main impurities and their effect on the energy recovery equipment

Impurity Impact

Siloxanes The irreversible decomposition reaction of siloxanes to silica and its deposition and coating the equipment
Hydrogen sulfide (H2S) Having corrosive effect on the equipment,: hydrogen sulfide as well as its oxidation products such as SO2 and SO3 and 

H2SO4

Carbon dioxide (CO2) It diminishes the caloric value of biogas and have also a small corrosive effect due to carbonic acid formation and 
adverse effect in the alkaline fuel cells

Ammonia (NH3) Its reaction with water leads to bases that can corrode the equipment; releases NOx in combustion process; it has s 
negative effect on fuel cells

Oxygen (O2) Possibility of explosion
Nitrogen (N2) Decrease the caloric value of biogas
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in biogas. Hence, siloxanes existing in biogas are mainly 
VMS, which are either linear or cyclic. Table 2 shows the 
main types of VMS existing in biogas [19].

The irreversible decomposition reaction of siloxanes to 
silica has been reported to damage the existing facilities 
since silica deposits and coats devices such as valves, spark 
plugs, and compressors, which results in shortening the 
lifetime of the engines and an increase in the maintenance 
costs [13]. The oxidation reaction of siloxanes to form sili-
con dioxide (SiO2) is presented in Eq. 1:

Taking into account such obstacles caused by the pres-
ence of VMS in biogas, its removal is essential for further 
utilization of biogas as a renewable source of energy. In the 
following section, adsorption will be discussed as a promis-
ing technology for VMS removal from biogas.

3 � Adsorptive removal of siloxane

Adsorption can be defined as the change in concentration 
of a substance at the interface with the neighboring phases 
and it falls into four categories of liquid-gas, liquid-liquid, 
solid-liquid, and solid-gas depending on the type of phases 
in contact [72]. Having excellent properties such as good 
cost-efficiency, high potential of regenerability, and a spe-
cific design and manufacture for a specific need, adsorption 
process has been extensively used in environmental pro-
cesses such as water and wastewater treatment [73, 74] and 
gas separation and purification [75, 76], among the most 
important ones. Adsorption process occurs through physical 
attraction of siloxane molecule to an available site on the 
external and internal solid surface of the adsorbent. What 
determines the accessibility of siloxane molecules to the 
internal adsorption surface is the pore size of the adsorbent 
[77]. That is the reason why, as will be discussed throughout 

(1)((CH3)22SiO)n + 4nO2 → nSiO2 + 2nCO2 + 3nH2O

the paper, one of the major attempts in published studies 
has been the manipulation of the textural properties of the 
adsorbents such as pore size and pore volume to enhance 
the adsorption capacity of the tested adsorbents. However, 
adsorbents also encounter a number of process-related obsta-
cles. For example, a pretreatment step for biogas can be nec-
essary to eliminate the impurities including water, which 
will disrupt the performance of some adsorbents. Another 
issue is the heat produced due to the intrinsic exothermic 
nature of the adsorption process, which will add complica-
tion to the adsorption process schemes. Another possible 
challenge regarding the development of manufacturing of 
adsorbents is to keep a good balance between reducing the 
particle size for the enhancement of intra-particle diffusion 
kinetics and increasing the particle size to limit the pres-
sure drop [78]. Hence, more attempts need to be made to 
alleviate the challenges and obstructions that inevitably face 
the adsorbents. Decontamination of biogas from siloxane by 
means of adsorption has been investigated to date. Since the 
characteristics and concentration of siloxane in biogas vary 
depending on the source of the waste stream [19, 31], a uni-
versal adsorbent does not exist. Thus, depending on the type 
of siloxane, the adsorbent needs to be selected and further 
used. The traditional adsorbents include activated carbon, 
silica gel, molecular sieves, activated alumina, and alkaline 
oxides [19, 31, 79]. The most recent adsorbents are reduced 
graphene oxide and metal organic frameworks (MOFs), 
which proved to be effective for the removal of specific types 
of siloxanes. The numerical results of the adsorption stud-
ies, such as the adsorption capacity of the adsorbents, the 
conditions of the adsorption process, and the regeneration 
results, are presented in Table 3 and Table 4. Additionally, 
the schematic mechanism of siloxane adsorption from biogas 
is displayed in Fig. 2, whereas the common regeneration 
system is shown in Fig. 3.

One of the significant issues that needs to be taken into 
account as far as adsorption experiments are concerned is 
the initial concentration of the adsorbate. Typically, it is 

Fig. 1   Siloxane fate from water 
and wastewater treatment plants 
and landfills and its occurrence 
in biogas. VMS, volatile methyl 
siloxane; PDMS, polydimethyl-
siloxanes; WWTP, wastewater 
treatment plants
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observed in adsorption studies that the adsorption capacity 
values increase as the initial concentration of the adsorbate 
in the solution is higher. However, in order to have repro-
ducible results in terms of adsorption capacity in the real 
and large scale situation, it is highly recommended that the 
adsorption experiments are carried out with the initial con-
centration of the adsorbate in the same range as they are 

in real situation. Typically, the concentration of siloxane in 
real biogas is not more than 0.5 mg/L [5]. Hence, the studies 
that carried out their experimentation using initial siloxane 
concentrations close to these values as shown in Table 3 
present more realistic results. However, in case of the studies 
that used extremely high initial siloxane concentrations and 
achieved high adsorption capacities, the reported results are 

Table 2   Principal siloxanes in biogas: physical state and chemical structure

Siloxane Formula Physical state
at 20 °C, 101.3 kPa

Structure

Hexamethyldisiloxane (L2) Si2-O6-(CH3)6 Liquid

Octamethyltrisiloxane (L3) Si3-O2-(CH3)8 Liquid

Decamethylterasiloxane (L4) Si4-O3-(CH3)10 Liquid

Dodecamethylpentasiloxane

(L5)

Si5-O4-(CH3)12 Liquid

Hexamethylcyclotrisiloxane

(D3)

Si3-O3-(CH3)6 Solid

Octamethylcyclotetrasiloxane

(D4)

Si4-O4-(CH3)8 Liquid

Decamethylcyclopentasiloxan

e (D5)

Si5-O5-(CH3)10 Liquid

Dodecamethylcyclohexasilox

ane (D6)

Si6-O6-(CH3)12 Liquid
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hard to be generalized to the real situation. Summarizing, in 
the following sections, each types of adsorbents including 
activated carbon, silica gel, aluminosilicates, rGOA, MOFs, 
and waste-derived adsorbents will be elaborately discussed 
and compared in terms of adsorption efficiency, reusability, 
and sensitivity to water, which are determined and affected 
by the adsorbents properties such as surface textural features 
including pore size and volume and surface area, as well as 
surface functional groups and hydrophobicity.

3.1 � Activated carbon

Activated carbon (AC) is an amorphous form of carbon that 
has a surface area between 600 to 1600 m2/g. Depending on 
its activation or impregnation method, it can have an acidic 
or basic feature [19]. Having a non-polar nature, it favors 

the adsorption of siloxane [86]. In addition to its high poros-
ity and large surface area, activated carbon has shown high 
adsorption capacity ranging from 100 to 1732 mg/g as well 
as cost efficiency, availability, and stability. However, one 
of the drawbacks of AC is its incapability for a selective 
removal of siloxane. For instance, it has demonstrated affin-
ity toward the adsorption of methane, a highly negative phe-
nomenon. Another obstacle is its probable pore blockage due 
to siloxane polymerization [19]. Eventually, the regeneration 
of the adsorbent has not been demonstrated to be efficient 
enough, which makes the process economically weak [12]. 
In this regard, Gilson et al. [38] carried out the adsorption 
of L2-siloxane on a number of AC, and the results corre-
sponding to the best adsorbent confirmed a percentage of 
adsorption capacity loss around 25–30% after three cycles 
of adsorption as shown in Table 4.

Table 3   Adsorbents experimental conditions and main results

AC activated carbon, SG silica gel, rGOA reduced graphene oxide aerogels, MOF metal organic framework, ZIF zeolitic imidazolate framework

Adsorbent Features Removed 
siloxane

Reaction conditions Optimum 
adsorption 
capacity
(mg siloxane/g 
adsorbent)

Reference

Specific 
surface area 
(m2/g)

Total pore 
volume 
(cm3/g)

Average 
pore size 
(nm)

Inlet con-
centration 
(mg/L)

Tem-
perature 
(°C)

Gas flow 
rate (mL/
min)

Commercial AC 
(MWV-2)

2142 1.52 - D4 1000 25 200 1732 [41]
1.45 897

CuO-modified AC 666.52 0.34 1.3 D4 2 25 100 495 [80]
Porous silica 734 0.45 3.2 D4 500 25 20 686 [46]
Acetylated SG 369 0.86 13.8 L2 83.8 0 50 304 [47]

D4 7.9 916
Methyl-functional-

ized SG
1261.3 1.03 1.63 L2 83.8 0 50 346.4 [44]

Polyethylene imine 
regulated SG

538.5 0.73 4.70 L2 83.8 0 50 367 [81]

NaOH-reformed 
silica

500–600 - - D5 1.5 25 200 200 [82]

Fe-BEA zeolite 600 - 0.75 D4 3 22 200 143 [83]
BEA-38 zeolite 710 - 0.75 D4 3 22 200 135 [83]
BEA-300 zeolite 620 - 0.75 D4 3 22 200 104 [83]
UTC-15 zeolite 533 0.261 2.18 D4 2 25 5 104.5 [49]
Amine-rGOA 167.9 0.737 3.83 L2 14.62 0 50 112.4 [57]
Vitamin C-rGOA 137.9 0.88 5.08 L2 14.62 0 50 104.9 [58]
β-cyclodextrin 

modified-rGOA
163.5 0.68 5.93 L2 14.62 0 50 111.8 [59]

Citric acid- modi-
fied-rGOA

582.4 0.39 6.07 L2 38.3 0 10 188.3 [84]

MIL-101 MOF 2987 1.72 - D4 - 25 - 950 [56]
Al-MOF fiber 293 0.1 - D4 0.45 25 Batch 8.42 [85]
ZIF-71 969 - - D4 0.2 25 Batch 2.66 [54]
Lignocellulosic 

waste-based AC
L2 - 25 Batch 438 [62]

1668 0.7 - D4 512
Iron-modified 

biochar
1068.43 0.58 - L2 83.8 20 50 356 [65]
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Table 4   Adsorbents’ detailed 
information on the regeneration 
conditions and results

AC activated carbon, SG silica gel, rGOA reduced graphene oxide aerogels, MOF metal organic frame-
work, ZIF zeolitic imidazolate framework

Adsorbents Regeneration Reference

Circumstances Cycles Adsorption 
capacity loss

Porous silica Thermal treatment, 120 °C, 5 h 3 cycles 10% [46]
Acetylated SG Thermal treatment, 110 °C, 2 h 5 cycles Negligible [47]
Methyl-functionalized SG Thermal treatment, 80 °C, 3 h 4 cycles Negligible [44]
Polyethylene imine regulated SG Thermal treatment, 100 °C, 2 h 15 cycles Negligible [81]
NaOH-reformed silica Thermal treatment, 120 °C, 2 h 2 cycles Negligible [82]
Fe-BEA zeolite Wet oxidation process 4 cycles 50% [83]
Amine-rGOA Thermal treatment, 80 °C, 0.5 h 5 cycles Negligible [57]
Vitamin C-rGOA Thermal treatment, 80 °C, 0.5 h 5 cycles Negligible [58]
β-cyclodextrin modified-rGOA Thermal treatment, 80 °C, 0.5 h 10 cycles Negligible [59]
Citric acid-modified-rGOA Thermal treatment, 100 °C, 1 h 5 cycles 5–10% [84]
MIL-101 MOF Thermal treatment, 150 °C 3 cycles Negligible [56]
Al-MOF fiber Thermal treatment, 200 °C, 4 h 1 cycle 30% [85]
Iron-modified biochar Thermal treatment, 100 °C, 4.5 h 5 cycles Negligible [65]

Fig. 2   Schematic adsorption 
mechanism of siloxane from 
biogas

Fig. 3   Schematic regenera-
tion for the adsorbents used for 
siloxane removal
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Various factors impact the performance of siloxane 
adsorption on AC, among which activated carbon surface 
properties and biogas water content are the most significant 
ones [40, 43]. For instance, it was reported that the adsorp-
tion of siloxane suffered a tenfold decrease when the rela-
tive humidity increased from 50 to 70%, which was related 
to the competitive adsorption of water molecules into the 
adsorbent sites [43]. For this reason, the adsorption process 
has been used together with a pretreatment process such as 
refrigeration or condensation to reduce the water content 
and to prevent the probable saturation of AC. Besides, the 
importance of adsorbent surface structure on adsorption 
efficiency can be accounted by the fact that the principal 
mechanism of adsorption is physical, which can be attrib-
uted to the hydrophobicity of both materials. In this sense, 
Yu et al. [40] investigated the effect of AC characteristics 
on the adsorption capacity of D4-siloxane (octamethylcy-
clotetrasiloxane) and demonstrated that large micropores 
and small mesopores (1.7–3 nm of diameter) were the most 
favorable ones for D4 adsorption. Codony et al. [41] carried 
out dynamic adsorption of D4 on twelve different ACs and 
confirmed the significant relationship between the textural 
properties of AC and the adsorption efficiency of siloxane. 
Additionally, they demonstrated that the humidity of biogas 
adversely affects the adsorption capacity. However, the range 
of adsorption capacity they achieved for these twelve acti-
vated carbons were reported to be from 250 to 1732 mg/g as 
shown in Table 3. Regarding the regenerability of AC, Tran 
et al. [42] investigated the role of surface chemistry on the 
regeneration ability of activated carbons and showed that the 
ACs containing alkali metal cations are the ones favoring 
the polymerization of siloxanes, which brings about the hin-
drance of the regeneration of the adsorbent. Most recently, 
Yang et al. [80] managed to enhance the adsorption capacity 
of AC up to 500 mg/g by the incorporation of copper oxide. 
Indeed, they demonstrated that the strong hydrogen bond is 
responsible for the adsorption of siloxane on the CuO sur-
face (C-H-Cu hydrogen bond). However, the regeneration 
study of the adsorbents was not carried out, which questions 
its further industrial applicability.

3.2 � Silica and silica gel

Silica gel ((SiO2).nH2O) (SG) is an amorphous porous mate-
rial as a result of polymerization of silicic acid using a strong 
acid like hydrochloric or sulfuric acid. The monomer of SG, 
silica (SiO2), has also been utilized for siloxane adsorption, 
but not as frequently as SG [18]. In fact, the weak adsorp-
tion forces between SG and siloxane causes the desorption 
of siloxane molecules to require less dissociation energy 
for regeneration, which makes SG a proper adsorbent for 
siloxane adsorption with the adsorption capacity ranging 
from 200 to 916 mg/g. For instance, it was reported that 

the regeneration of SG was 95% effective under the same 
conditions (250°C and 20 minutes) than that of AC [31]. As 
revealed in this study, the characteristics of SG affecting its 
adsorptive efficacy are the specific surface area, pore vol-
ume, pore size, and hydrophobicity, which can be manipu-
lated to achieve better adsorption and regeneration perfor-
mance. Following this strategy, Jafari et al. [46] attempted 
to regulate the textural properties of mesoporous silica by 
means of silica synthesis and post-treatment modifications 
and proved higher adsorption capacity (686 mg/g) for octa-
methylcyclotetrasiloxane (D4) than that of commercial silica 
(642 mg/g). The modified mesoporous silica also demon-
strated better regeneration stability as well as more resist-
ance to humidity, a positive point due to the competitive 
effect of water [43]. In another study, Liu et al. [47] acety-
lated SG using acetic anhydrite, which showed enhancing 
effects on the adsorption efficiency of SG, due to a signifi-
cant increase of micropore specific surface area, total pore 
volume, and better hydrophobicity. Additionally, thermal 
regeneration of the acetylated SG proved to be less energy 
consuming as observed in Table 4. Notably, they achieved an 
adsorption capacity of 304 mg L2/g and 916 mg D4/g at low 
temperatures (Table 3). The best performance of the adsor-
bent at lower temperatures was accounted for by the exo-
thermic nature of micropores adsorption. They also demon-
strated that the efficiency of methyl-functionalized SG was 
within 15 to 18 times higher than unmodified SG in terms 
of adsorption capacity of hexamethyldisilane (L2) [44]. Fur-
thermore, it was also attempted to regulate the micropores 
of SG using polyethylene imine, obtaining similar results 
in siloxane removal [81]. Jung et al. [82] also proposed the 
surface modification of silica using NaOH for the removal 
of D5. Although they obtained four times more adsorption 
capacity than SG or unmodified silica, the regeneration of 
the adsorbent was carried out only for two cycles with a 
slight loss as shown in Table 4.

3.3 � Aluminosilicate adsorbents

Aluminosilicates are minerals mainly composed of alu-
minum, silicon, and oxygen. Although all aluminosilicates 
present the same basic chemical composition, the variety 
of atoms and molecular arrangements lead to different 
structures with different physico-chemical characteristics. 
Among the types of aluminosilicates, clays, zeolites, and 
mesoporous aluminosilicates stand out for their wide range 
of applications in catalysis, wastewater treatment, gas puri-
fication, and storage [48]. Among aluminosilicates, zeolites 
and mesoporous families have been used for the removal 
of siloxane from biogas with the adsorption capacity rang-
ing from 100 to 150 mg/g. The first work presented was by 
Ortega et al. [21] (2009) who investigated the adsorption 
performance of zeolite (type DAY 40) for the removal of 
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siloxanes D4 and L2 and experimentally compared with AC 
and silica gel. The results demonstrated that the adsorption 
capacity of zeolite was quite lower than that AC, which was 
attributed to its lower surface area (607 m2/g) compared to 
AC (1220 m2/g). However, zeolite, due to its high hydropho-
bicity, showed better performance in terms of less sensitivity 
to water as it had no capacity loss with levels of moisture 
of 70%, a content that AC cannot tolerate [19]. Silica gel 
also presented negative results due to its hydrophilic nature. 
Nonetheless, no study of regeneration of zeolite was pre-
sented. Later, Montanari et al. [87] studied NaX zeolite in 
comparison with AC and SG for the adsorption of D3 silox-
ane. The zeolite used was reported to show neither compa-
rable adsorption performance nor any advantages compared 
to the AC in terms of the regeneration process. Recently, 
Caberra-Codony et al. [83] investigated the regeneration 
of seven types of zeolites using a wet oxidation process 
including ozonation and Fenton-like treatment. The results 
revealed that Fe-BEA zeolite had the highest efficiency of 
143 mg/g as shown in Table 3. However, they only could 
achieve a complete regeneration of the zeolite Fe-BEA in the 
first cycle (Table 4); the recyclability of the adsorbent for the 
successive cycles was unsuccessful due to the accumulation 
of C-containing products in the adsorbent. As pointed out 
before, textural properties of the adsorbents including pore 
volume and size play a constructive role in the adsorbent 
adsorption potential. In this respect, Jiang et al. [49], in an 
attempt to obtain tunable textural properties, synthesized 
different mesoporous aluminosilicates manipulating the 
aluminum dopant and the calcination temperatures, which 
proved to significantly affect the adsorbent pore size and 
volume and, consequently, the adsorption efficiency. They 
concluded that the volume of the mesopores and the exter-
nal surface area of the adsorbent improved as the aluminum 
dopant ratio and the calcination temperature increased. In 
fact, the mesopores in this adsorbent are the space between 
the nanoparticles, and when more atoms of aluminum are 
added, they can hinder the aggregation of nanoparticles dur-
ing the calcination process. Therefore, the volume of the 
space between nanoparticles (mesopores) will increase.

3.4 � Waste‑derived adsorbents

It is worth mentioning that the utilization of waste-derived 
materials for different applications such as wastewater 
treatment and gas purification such as siloxane removal has 
recently appeared in literature [1, 60, 61].

In this regard, Silva et al. [61] synthesized porous silica 
using the residual sand from a WWTP. This waste-derived 
adsorbent silica was used for removal of D4 and D5 silox-
anes. However, the cost and energy intensity of the purifi-
cation and modification process was a critical issue to be 
considered. For instance, the sand waste, which was used 

for synthesis of silica, was reported to pass through extreme 
pretreatments to be well prepared for the synthesis process. 
Contrarily, a waste wood-derived biochar was utilized with-
out any further modification for the adsorption of siloxane 
D4 and compared with commercial AC in terms of adsorp-
tion capacity. The adsorption capacity of this biochar (3.5 
mg/g) proved to be much lower than the commercial ones 
(37.5 mg/g). However, this shortcoming is supposed to 
be overcome through activation methods that improve the 
physical properties of the adsorbent [45]. For instance, a 
lignocellulosic waste generated in food and wood industry 
was activated by different agents and then tested for silox-
anes L2 and D4 adsorption and compared with commer-
cial AC [64]. Interestingly, it demonstrated an adsorption 
capacity (438–512 mg/g) comparable to commercial AC. 
Notably, the temperatures at which the activation process 
of the waste-derived adsorbent was carried had a signifi-
cant effect on the development of porosity and thus on the 
adsorbent adsorption performance. The range of temperature 
used for the activation process was 800 to 900 °C, which 
are costly. Most recently, Meng et al. [65] introduced the 
modification of biochar with iron and accomplished compa-
rable results in terms of adsorption capacity of L2 siloxane 
from biogas (356 mg/g). Moreover, the pretreatment and 
activation process that was done in this study is less energy 
consuming in terms of temperature (600 °C). In addition, the 
adsorbent remained effective when recycled 5 times with the 
adsorption capacity practically stable as shown in Table 4. 
Anyway, more research is required to investigate more and 
different waste-derived adsorbents without energy-intensive 
treatments and yet having adsorption capacities comparable 
to commercial or traditional adsorbents. In addition to this 
adsorption performance, regeneration of the adsorbent is 
essential to prove its industrial applicability.

3.5 � Emerging adsorbents

3.5.1 � Graphene oxide

Graphene oxides (GO) are monomolecular sheets com-
posed of carbon, oxygen, and hydrogen. They have proved 
to be a suitable candidate for diverse applications such as 
energy harvesting and storage, gas separation, water treat-
ment, catalysis, and biomedical applications [88–91]. Not-
withstanding this, there has not been any reports of using 
graphene oxide for siloxane removal until 2020; since then, 
few studies have been carried out on them for siloxane 
adsorption and achieved adsorption capacities ranging from 
104 to 190 mg/g. Recently, the adsorption of hexamethyld-
isiloxane (L2) by amine-reduced graphene oxide aerogels 
(rGOA) has been reported [57], and in comparison to GO, 
it demonstrated higher adsorption efficiency toward L2 
due to a higher surface area and hydrophobicity (Table 3). 
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Although the adsorption capacity of these adsorbents is 
relatively lower than that of some of the other adsorbents 
mentioned before (Table 3), the critical point in the use of 
such adsorbents is the simple and low energy intensive-
ness of their synthesis and regeneration. These authors also 
examined the usage of vitamin C as a more environmen-
tally friendly reducing agent for the synthesis of rGOA and 
obtained practically the same adsorption and regeneration 
efficiency [58]. Furthermore, in another attempt, they also 
took advantage of the cross linker β-cyclodextrin for its 
abundant hydroxyl and amine groups for the modification 
of the surface properties of rGOA. The adsorbent proved 
to be consistent after 10 times of recycling while main-
taining its adsorption capacity [59] (Table 4). However, 
they achieved much higher adsorption capacity when they 
attempted to modify the rGOA using citric acid, which 
was pointed to be due to the improvement in the textural 
properties (higher surface area) of the adsorbent and its 
hydrophobicity. It is worth mentioning that this adsorbent 
did not show as good reusability as the previous ones, but 
better than some other adsorbents like AC [84].

3.5.2 � Metal organic frameworks (MOFs)

Metal organic frameworks (MOFs) are porous inorganic-
organic hybrid constituents. Due to their particular features 
such as high pore volume, high specific area, shape and pore 
tailorability, they have been exploited for many applications 
including biogas upgrading [53, 55, 92]. In this case, MOFs 
were mainly investigated for the separation of carbon diox-
ide until recent years [53, 55]. Lately, researchers started 
the investigation of MOFs for the removal of siloxane. 
In 2013, for the first time, Mito-oka et al. [93] employed 
DUT-4 MOF for the D4 siloxane adsorption. They investi-
gated the adsorption of D4 in the presence of water, carbon 
dioxide, and methane in comparison with a conventional 
AC, and the results showed better selectivity and adsorption 
capacity than that of conventional AC. This high efficiency 
and selectivity were attributed to the strong hydrophobic-
ity of DUT-4 and its optimal chemical interactions with the 
adsorbate molecules (D4). Later, chromium-based MIL-101 
MOF was investigated for the adsorption of D4 by Gargiulo 
et al. [56] as shown in Tables 3 and 4. They demonstrated 
high adsorption capacity of 950 mg/g and good reusabil-
ity. Contrarily to activated carbon and silica gel, adsorp-
tion of D4 on MIL-101 did not lead to a polymerization 
of adsorbate on the adsorbent surface, which is critical for 
the successful reusability of the adsorbent. In addition, they 
achieved high adsorption capacity under ambient tempera-
ture (Table 3). This is another important point, as traditional 
adsorbents significantly lose their adsorption efficiency as 
temperature increases and their best performance is limited 
to low temperatures (0 °C).

However, as far as industrial application is concerned, 
MOFs have shown a significant obstacle that is their poor 
thermo-mechanical stability. To tackle such problems, 
recently, Pioquinto-García et al. [85] incorporated DUT-4 
into polyacrylonitrile fiber (Al-MOF fiber). The results 
proved faster adsorption kinetics and the diffusion of adsorb-
ate (D4) was roughly 3 times higher than that of DUT-4 
powder. This means that MOF particles distribution on the 
fiber enhances the contact between the adsorbate and MOF 
particles. Eventually, through an environmental assessment, 
the adsorbent preparation appeared to have less adverse envi-
ronmental effects than those derived from the synthesis of 
DUT-4 powders. Unfortunately, the Al-MOF fiber did not 
show a good reusability performance, and after one regen-
eration cycle, the adsorption capacity decreased by 30% 
(Table 4). In another study, Tiempos-Flores et al. [54] man-
aged to enhance the hydrophobicity of zeolitic imidazolate 
framework (ZIF-71), which led to an improvement of the 
adsorption capacity. In general, the adsorption capacities 
obtained with MOFs are not comparable to other typical 
adsorbents. ’Unfortunately, there are no systematic reports 
on the regeneration of MOF adsorbents, which is considered 
as a downside of MOFs as adsorbents. The authors highly 
recommend researchers to include the reusability studies to 
their investigations in order to be able to establish the excel-
lence of MOFs at industrial scale for siloxane removal.

4 � Conclusions

Adsorption is a robust method for siloxane removal from 
biogas and makes a valuable contribution to the biogas 
upgrading as the presence of siloxanes in biogas causes 
damage to the equipment used for its conversion to elec-
tricity and heat. As discussed in this review, conventional 
adsorbents such as activated carbon or silica gel need to be 
more investigated to be optimized in terms of adsorption 
capacity and especially reusability. However, this study did 
not aim to cover subjects such as comprehensive comparison 
of different methods and technologies for siloxane removal 
and elaborative discussion on studies regarding the source 
of biogas such as anaerobic digestion process. Furthermore, 
two main factors affecting the adsorbents regenerability 
have been found: the adsorbate-adsorbent bonding and the 
polymerization of siloxane in the pores of the adsorbent. 
Thus, many studies are carried out to manipulate the surface 
functional groups of the adsorbents towards the occurrence 
of physical adsorption in which weak Van der Waals are 
the bonding forces. In addition to this, water vapor typi-
cally exists in the biogas composition, so the hydrophobic-
ity degree of the adsorbents plays an essential role in the 
adsorption efficiency of the siloxane. Activated carbon, 
due to its high surface area and availability, has been used 
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commercially, but its low selectivity for siloxane and its 
complicated regeneration due to the blockage of its pores 
because of siloxane polymerization question its utilization 
and cost efficiency. In comparison to activated carbon, silica 
gel demonstrated better reusability due to the presence of 
weak forces between adsorbate and the silica gel surface. 
Zeolites, despite their lower adsorption capacity compared 
to activated carbon and because of their high hydrophobic-
ity, were found more practical for siloxane adsorption from 
real biogas with high water content. GO adsorbents showed 
relatively lower adsorption capacities as well; however, the 
cost and energy efficiency of their synthesis and regenera-
tion makes them more industrially appealing candidates. 
Eventually, metal organic frameworks (MOFs) proved to 
be promising for adsorption of siloxane due to their higher 
selectivity, high hydrophobicity, high adsorption capacity, 
and more efficient regeneration owing to lack of the occur-
rence of siloxane polymerization, contrarily to activated 
carbon, as well as maintaining high adsorption capacity at 
ambient temperature, an advantage that other adsorbents did 
not present. However, limited studies have been published 
for MOF utilization as adsorbents for siloxane removal. 
The regeneration was also another issue that needs to be 
addressed in case of MOFs.

5 � Future prospects and challenges

The concluding authors’ recommendation is that more focus 
is required to be put on the regeneration of adsorbents to 
establish the industrialization of adsorbents for the removal 
of siloxanes. In addition, more research should be carried out 
on the adsorbents derived from waste considering the world-
wide increasing significance of circular economy. In this 
respect, different potential wastes that have not been tested 
before for the production of adsorbents need to be evaluated. 
Furthermore, more attempts need to be made on decreasing 
the cost and energy consumption in the synthesis process of 
waste-derived adsorbents as well as the optimization studies 
to improve their efficiency to convince manufacturers and 
companies to move towards such potential waste materials. 
As discussed, MOFs were found one of most promising can-
didates for the selective and highly efficient adsorption of 
siloxane. However, only limited studies were conducted on 
MOFs as far as siloxane removal is concerned. In addition, 
MOFs need to be deeply investigated in terms of regenera-
tion, since this issue is not addressed. Hence, more studies 
are recommended to be carried out specifically on differ-
ent types of MOFs, which have proved highly effective for 
various purposes, and yet not tested for siloxane adsorption. 
Finally, an important issue to be considered when comparing 
adsorbents efficiency is the initial siloxane concentration. 

This is important since the siloxane concentration in the real 
biogas does not exceed 0.5 mg/L. Therefore, it is highly rec-
ommended to conduct adsorption experiments in the ranges 
of siloxane concentrations close to the real biogas concentra-
tions to have more realistic results for larger and industrial 
applications.
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