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Epidemiological, clinical, and experimental studies have shown that low levels
of plasma high-density lipoprotein cholesterol (HDL-C) are associated with increased
atherosclerotic cardiovascular disease (CVD). Nevertheless, HDL-targeted drugs, such
as cholesteryl ester transfer protein inhibitors, fibrates, and niacin, have failed to reduce
cardiovascular events in large-scale randomized controlled trials. Furthermore, no plau-
sible causal link between HDL-C and CVD risk was found in Mendelian randomization
studies. These data strongly indicate that increased HDL-C levels do not always correlate
with enhanced beneficial HDL properties, thus questioning the potential of HDL-C as a
biomarker of HDL function. We are pleased to introduce this special issue, “High-Density
Lipoproteins and Cardiovascular Disease: The Good, the Bad, and the Future”, which aims
to present timely and informative findings on the role of HDL functions, their influence on
CVD and other non-cardiovascular diseases, and on the development of new HDL-based
therapeutic strategies that optimize HDL functions.

HDL is a highly heterogeneous particle and carries a large variety of lipids, proteins,
hormones, vitamins, and miRNAs which confer HDL particles with multiple cardiopro-
tective functions. These include the enhancement of macrophage reverse cholesterol
transport and endothelial functions, antioxidant, anti-inflammatory, anti-thrombotic and
anti-apoptotic properties, and also antidiabetic and immunomodulatory properties (re-
viewed in [1,2]). The different compositions of HDL subpopulations are related to their
functions, but the assignment of specific molecules to HDL functions remains largely
poorly understood. Sphingosine 1-phosphate (S1P) is a bioactive molecule, mainly bound
to HDL, that is thought to be beneficial in the occurrence and development of myocardial
ischemia (reviewed in [3]). Furthermore, S1P metabolism appears to be unbalanced in
cardiometabolic diseases such as obesity and diabetes mellitus [3]. S1P-enrichment of HDL
might constitute a novel strategy in the treatment of cardiometabolic complications.

HDL metabolism is also relevant to non-cardiovascular diseases. Obesity significantly
alters HDL metabolism, resulting in altered HDL subclass distribution, composition, and
function through multiple mechanisms (reviewed in [4]). These findings motivate further
research on the potential effects of anti-obesity treatments on HDL functions and their
physiopathological consequences. Recent findings also revealed a significant impact of
HDL on pulmonary artery vasoreactivity and an improved prognosis in patients with
pulmonary arterial hypertension (reviewed in [5]). The mechanism by which HDL exerts
its protective effect in pulmonary circulation remains largely unknown. Recent evidence
indicates a role of HDL in Alzheimer disease. Apolipoprotein (apo) E is mainly bound to
HDL in the cerebrospinal fluid and current evidence highlights the importance of apoE
isoforms in modulating the pathogenesis of Alzheimer’s disease (reviewed in [6]), thereby
suggesting that novel apoE-based strategies could prevent or ameliorate Alzheimer’s
disease. Furthermore, the association between low HDL cholesterol and CVD can be
further confounded by chronic kidney disease (CKD). HDL properties are impaired in this
disease, resulting in increased CVD risk (reviewed in [7]).
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Beyond these review articles, several original articles of this special issue moved
towards the identification of specific HDL molecules that can alter HDL functions in pre-
clinical and translational studies and their therapeutic utility. Therefore, apoB-depleted
plasma was effective in suppressing Aβ accumulation in bioengineered vessels, preventing
Aβ fibrillization, and suppressing TNFα-induced vascular inflammation [8]. Further-
more, isolated HDL further suppressed Aβ-induced vascular inflammation, improved
Aβ vascular clearance and induced endothelial NO production [8] which is relevant to
Alzheimer’s disease progression. We also found that overexpression of human apoA-I in
severe obese leptin receptor-deficient mice enhanced the main HDL anti-atherogenic prop-
erties while exacerbating weight gain and fatty liver disease [9]. These adverse metabolic
side effects might raise concerns regarding the use of apoA-I-based therapies in obese
humans. Another report demonstrated significant risk associations for elevated urinary
albumin excretion and for multiple HDL-associated parameters, as well as significant
interactions of elevated urinary albumin excretion with apoA-I/HDL particles and with
concentration of medium size HDL particles [10], thereby indicating that HDL particles
share pathogenic pathways with elevated urinary albumin excretion in CVD risk. In this
context, HDL remodeling was also found to be highly affected in CKD patients in which
plasma levels of nascent preβ1-HDL were significantly elevated in non-dialyzed patients
with advanced stages of CKD [11]. Another report demonstrated that reconstituted HDL
with apoA-I Milano, an apoA-I mutant resulting from an arginine 173 to cysteine mutation
with antiatherogenic properties, reversed pathological remodeling and cardiac dysfunction
and normalized wet lung weight in a mouse model of diabetic cardiomyopathy induced
by a high-sugar/high-fat diet [12]. In contrast, the lipoprotein lipase inhibitor nordihy-
droguaiaretic acid increased small HDL particles and worsened obesity and metabolic
complications in leptin receptor-deficient mice fed a Western-type diet [13]. In this context,
patients with carotid plaques showed higher triglyceride-containing HDL, which was asso-
ciated with metabolic and arteriosclerotic vascular alterations [14], thereby indicating that
HDL-triglycerides should be considered a biomarker of metabolic and cardiovascular risk.

An interesting mechanistic work revealed that cholesterol acceptors from macrophage
lipids during the cholesterol efflux process, particularly apoA-I, were positive regulators of
various pro-atherogenic lipid species, such oxysterols, sphingomyelins and ceramides [15].
This latter work also indicates that apoA-I function is not only limited to the efflux of
cholesterol and phospholipids and it could be a major regulator of the foam cell lipidome,
playing a critical role in reducing lipid species involved in atherogenesis. Other findings of
this special issue demonstrated that bisphenol A promoted atherosclerosis in low-density
lipoprotein (LDL) receptor-deficient mice, at least in part, by activating NF-κB, which
downregulates apoA-I gene expression and leads to lower HDL levels [16]. In contrast,
pretreatment of apoE-deficient mice with HDL decreased serum amyloid A (SAA) pro-
inflammatory activity, inhibited SAA-mediated enhancement of aortic atherosclerosis and
renal function, and prevented changes to the glomerular Bowman’s space [17].

The importance of the HDL lipidome was recently revealed in a report that demon-
strated that patients with type 2 diabetes mellitus and normal serum lipid profiles, even
at diagnosis, showed significant alterations in lipid HDL composition which were qual-
itatively similar to those found in normolipidemic patients with established coronary
heart disease [18]. This study also reinforces the concept that nuclear magnetic resonance-
based lipidomics allow the gain of pathophysiological knowledge, evaluation and/or
discovery of novel disease biomarkers. The need for further research in this field was
also showed in a recent work in which endothelial lipase (EL) overexpression in mice
significantly decreased serum HDL-C levels but unexpectedly increased the content of its
main antioxidant enzyme, paraoxonase 1 (PON1), and its activity [19]. However, EL serum
levels were not significantly correlated with HDL levels in humans, whereas HDL PON1
content was positively associated with EL serum levels [19]. Furthermore, EL-induced al-
terations of the HDL lipidome were not related to HDL PON1 content. This point deserves
further investigation.
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Finally, we hope that these articles contributed by experts of this field will provide
valuable resources to researchers working on HDL functional alterations and the develop-
ment of HDL-based therapies to treat diseases related to HDL.
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