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Abstract
The Generalised-LL (GLL) context-free parsing algorithm

was introduced at the 2009 LDTAworkshop, and since then a

series of variant algorithms and implementations have been

described. There is a wide variety of optimisations that may

be applied to GLL, some of which were already present in

the originally published form.

This paper presents a reference GLL implementation shorn

of all optimisations as a common baseline for the real-world

comparison of performance across GLL variants. This base-

line version has particular value for non-specialists, since

its simple form may be straightforwardly encoded in the

implementer’s preferred programming language.

We also describe our approach to low level memory man-

agement of GLL internal data structures. Our evaluation on

large inputs shows a factor 3–4 speedup over a naïve im-

plementation using the standard Java APIs and a factor 4–5

reduction in heap requirements. We conclude with notes

on some algorithm-level optimisations that may be applied

independently of the internal data representation.

CCSConcepts: • Software and its engineering→Parsers;
• Theory of computation → Grammars and context-
free languages.

Keywords: Programming language syntax specification, GLL

parsers, GLL implementation
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1 Introduction
GLL was introduced at the 2009 LDTA workshop [10] in the

form of a generator that produces generalisations of sim-

ple recursive descent recognisers; this is extended to a full

parser in [11]. A variety of extensions to the basic GLL al-

gorithm have been reported, including direct handling of

EBNF constructs [13] and multi-parsing with applications

to generalised lexing [14, 16]. The control flow within GLL

parsers naturally lends itself to combinator-style GLL im-

plementations which are particularly suited to functional

programming languages, and several combinator GLL im-

plementations have been reported [4, 17, 21]. The Rascal

meta-programming language [7] deploys GLL style parsers.

Performance optimisations of classical GLL include the

FGLL variant which improves performance on left-factored

grammars, and the RGLL variant which requires fewer in-

dependent processing threads [12]. Space and performance

optimisations arising from encoding derivation forests using

Binary Subtree Representation sets are explored in [15] lead-

ing to a discussion of clustering and the development of the

Clustered Nonterminal Processing (CNP) variant. Machine-

level approaches to optimising the data structures required

by the GLL algorithm are explored in [5].

This paper provides a new presentation of GLL as a fixed-

form ‘interpreted’ parser which is parametrised by an in-

memory representation of the grammar. We have two main

objectives (i) to provide an easily accessible ‘reference’ ver-

sion of GLL that we hope will facilitate adoption, and (ii) to

provide a baseline implementation that allows the through-

put and memory consumption of GLL variants to be com-

pared in a principled fashion.

The approach taken here is avowedly procedural in style.

The code is written in Java, but is trivially portable to ANSI-C.

We have done this so as to provide a reference implementa-

tion thatminimises dependencies on particular programming

styles such as object orientation or functional combinators.

At the datastructure level we provide two implementa-

tions: gllBL (baseline) and gllHP (hash pool). The first uses

the standard Java API methods to implement sets and lists;

this allows for a more readable presentation. The gllHP vari-

ant explains how we use low level memory management to

enhance performance in our production parsers. We have

previously compared and contrasted an idiomatically ‘pure’

object oriented implementation to an optimised procedural

implementation. In that study we found the OO variant to

impose a performance overhead [6]. However, there have

https://orcid.org/
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been significant advances in Java compiler and Java Virtual

Machine performance in the intervening years, and it would

be interesting to revisit that work.

By way of introduction, we review the way in which stan-

dard recursive descent parsers can be extended to a wider

class of grammars by incorporating backtracking. We call

our particular approach Ordered Singleton Backtracking Re-

cursive Descent (OSBRD), and note some of its failure modes.

We then show how GLL generalises recursive descent by di-

rectly handling the parse function call stacks in a combined

graph, and by recording parser configurations in process

descriptors, allowing all parsing choices to be explored in

worst case cubic time and space.

In the rest of this section we summarise the background

material needed to describe our implementation. In Section 2

we focus on control flow, moving from a compiled (non-

general) OSBRD parser to the state-based interpretive style

that we use for GLL. In Section 3 we give a detailed account

of gllBL, our baseline GLL algorithm. In Section 4 we present

an efficient data representation for the GLL data structures,

and in Section 5 we evaluate the performance of these GLL

variants on a small number of large and diverse examples.

Section 6 contains notes on opportunities to improve the

performance of our baseline algorithm, and we conclude in

Section 7 with an informal ‘practicality’ test.

Software artefacts corresponding to this presentation are

available in a public repository at

https://github.com/AJohnstone2007/referenceImplementation.
Grammar notation A Context Free Grammar (CFG) is a
4-tuple Γ = (𝑁,𝑇 , 𝑆, 𝑃) denoting respectively, a set of non-

terminals, a set of terminals, a start nonterminal and a set

of productions with 𝑁 ∩ 𝑇 = ∅, 𝑆 ∈ 𝑁, 𝑃 ∈ 𝑁 × (𝑁 ∪ 𝑇 )∗.
An Extended Context Free Grammar (ECFG) has productions
𝑃 ∈ 𝑁 × 𝜌 where 𝜌 is a regular expression over (𝑁 ∪𝑇 )∗.
For small examples, we use the following conventions:

𝜖 denotes the empty string; 𝑎, 𝑏, 𝑐, 𝑥,𝑦, 𝑧 are elements of 𝑇 ;

𝑋,𝑌, 𝑍 are elements of 𝑁 (along with 𝑆); 𝑢, 𝑣,𝑤 are elements

of 𝑇 ∗
; and 𝛼, 𝛽,𝛾 ∈ (𝑁 ∪𝑇 )∗.

We may specify a grammar simply by enumerating its set

of productions in the form 𝑋 → 𝛼 with the convention that

the left-hand side of the first production is the start symbol;

where we have multiple alternate productions with the same

left hand side 𝑋 → 𝛼 𝑋 → 𝛽 𝑋 → . . . we may use the

shorthand 𝑋 → 𝛼 | 𝛽 | . . .
The derivation step relation ⇒ captures the notion of lan-

guage generation from a grammar: if we have 𝛼𝑋𝛾 and

𝑋 → 𝛽 ∈ 𝑃 , then 𝛼𝑋𝛾 ⇒ 𝛼𝛽𝛾 . We write

∗
=⇒ to denote

the derives relation: for instance 𝑆
∗
=⇒𝛼 is the set of sentential

forms derivable from the start symbol, and 𝑆
∗
=⇒𝑢 is the set of

sentences derivable from the start symbol, that is 𝐿(Γ) the
language of Γ.

The special symbol $ (with $ ∉ 𝑇 ) denotes the end of input
stringmarker which is appended to putative sentences before

input to our parsing and recognition algorithms.

Grammar representation This paper is about implementa-

tion, so we must present concrete representations of gram-

mars. We use a set of trees, one for each nonterminal in

𝑁 . Grammar tree nodes are labelled with a unique integer

node index ni, a grammar element el and two child refer-

ences named alt and seq. An appropriate Java declaration is:

class GNode{int ni; GElement el; GNode alt, seq;}
Using instances of GNode, the grammar

Γ1 = {𝑆 → 𝑏 𝑆 → 𝑎𝑋𝑧 𝑋 → 𝑥𝑋 𝑋 → 𝑦𝑋 𝑋 → 𝜖}
is represented as

12 N
S 13 ALT

14 T
b

16 ALT

15 END 
(12,13)

17 T
a

18 N
X

19 T
z

20 END 
(12,16)

21 N
X 22 ALT

23 T
x

26 ALT

24 N
X

25 END 
(21,22)

27 T
y

30 ALT

28 N
X

29 END 
(21,26)

31 EPS

32 END 
(21,30)

In this visualisation, alt references are shown as horizontal

arrows, and seq references as vertical arrows. The instance
numbers for grammar nodes are allocated sequentially from

a base value which equates to |𝑇 | + |𝑁 | + 𝐸 (in this example

5 + 2 + 5 = 12) where 𝐸 is the number of element types in

the grammar—we shall enlarge on this in Section 4.

Each rule’s right-hand side is represented by a sequence of

nodes linked by their seq reference, terminated with an END
node and headed by an ALT node; all ALT nodes for a given
nonterminal are linked via their alt references and headed

by an LHS node labelled with the left hand side nonterminal.

For END nodes, seq references the nearest ALT ancestor and

alt references the nearest ancestor ALT-header, which for

ordinary (non-extended) CFGs will be an LHS node. To avoid
cluttering the visualisation, END references are shown as an

ordered pair of reference numbers rather than arrows.

Grammar elements are tuples (ei, kind, str) where ei is a
unique element index, kind is one of EOS, T, EPS, N, ALT,

END (for end-of-string, terminal, empty string, nonterminal,

alternate and end of production) and str is a nonterminal or

a terminal appropriately. In Java these may be declared as:

class GElement {int ei; Kind kind; String str ;}
enum Kind {EOS, T, EPS, N, ALT, END}
Derivation trees and ambiguityAny productionwithmore

than one nonterminal on its right hand side gives rise to

multiple derivations in an uninterestingway. For instance the

grammar Γ3 = {𝑆 → 𝑋𝑌 𝑋 → 𝑥 𝑌 → 𝑦} can generate

𝑥𝑦 in two ways: 𝑆 ⇒ 𝑋𝑌 ⇒ 𝑥𝑌 → 𝑥𝑦 and 𝑆 ⇒ 𝑋𝑌 ⇒
𝑋𝑦 → 𝑥𝑦. A leftmost derivation contains only derivation

steps in which the first nonterminal in a rule is expanded,

and by convention we shall use only leftmost derivations.

A derivation tree is a useful graphical representation of a

class of derivations of some string. A derivation tree is an

https://github.com/AJohnstone2007/referenceImplementation
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ordered tree in which the root node is labelled with 𝑆 , each

interior node is labelled with an element of 𝑁 and each leaf

is labelled with some element of𝑇 or 𝜖 . If an interior node 𝑋

has children labelled 𝑥1, 𝑥2, . . . 𝑥𝑛 then𝑋 → 𝑥1, 𝑥2, . . . 𝑥𝑛 ∈ 𝑃 .

The leftmost derivation of 𝑢 ∈ 𝐿(Γ) corresponds to the pre-

order traversal of the derivation tree of 𝑢.

A CFG Γ is ambiguous if there is some 𝑢 ∈ 𝐿(Γ) which has

more than one leftmost derivation, and thus more than one

derivation tree. For instance the grammar

Γ4 = {𝑆 → 𝑋𝑌 𝑋 → 𝑎 | 𝑎𝑏 𝑌 → 𝑏𝑐 | 𝑐} generates the
string 𝑎𝑏𝑐 in two leftmost ways: 𝑆 ⇒ 𝑋𝑌 ⇒ 𝑎𝑌 ⇒ 𝑎𝑏𝑐 and

𝑆 ⇒ 𝑋𝑌 ⇒ 𝑎𝑏𝑌 ⇒ 𝑎𝑏𝑐 . The corresponding derivation trees

are:

S

X Y

a b c

S

X Y

a b c

The yield of a derivation tree node is the substring whose

terminal nodes are descendants of that node. In the example

above, we see that the terminal nodes and the root node have

the same yield in each derivation, but the nodes labelled X
and Y have different yields in the two derivations. In any

derivation tree, we can find the yield of a node by descending

to its leaves, but when dealing with ambiguities it is con-

venient to annotate each node with its yield. An annotated
derivation tree is a derivation tree whose node labels have

been extended by the left and right indices of the node’s

yield:

S 0,3

X 0,2 Y 2,3

a 0,1 b 1,2 c 2,3

S 0,3

X 0,1 Y 1,3

a 0,1 b 1,2 c 2,3

With these annotations we can directly see that the start and

terminal nodes of both derivations are ‘the same’ because

their yields are the same in each case, but that the 𝑋 and 𝑌

nodes are different because their corresponding derivation

steps generate different substrings of the input.

Recognisers, partial parsers and general parsers A recog-
niser for Γ tests a string 𝑢 for language containment, i.e.

whether𝑢 ∈ 𝐿(Γ). A partial parser tests a string for language
containment and returns at least one derivation for at least

one string in 𝐿(Γ) . A general parser returns all derivations.
Most current programming language processors employ par-

tial parsers which (i) admit only a subset of the context free

grammars and (ii) return at most one derivation. For many

parsing algorithms, (i) is well characterised, but the con-

straints imposed by (ii) are less well understood in practice

for non-trivial cases, which can lead to puzzling outcomes.

As programming languages become more complex, anec-

dotal evidence shows that implementers increasingly strug-

gle with classical near-deterministic parser generators and

resort to hand written front ends. There is a useful discussion

at [18] which notes that GCC abandoned Bison based parsers

nearly twenty years ago [2, 3]. We hope that the availabil-

ity of well engineered GLL parsers will allow a return to

principled engineering of compiler front ends.

Compiled vs. interpreted parsers We distinguish between

interpreted parsers which are fixed pieces of code that are

parameterised by a data structure encoding the grammar,

and compiled parsers where the parser code itself encodes the
grammar. Classical recursive descent parsers are compiled

parsers: they have a parse function for each nonterminal,

and the body of a parse function reflects the nonterminal’s

productions.

Traditionally, shift-reduce parsers are implemented as in-

terpreted parsers operating over a table that represents an

automaton derived from the grammar. However, Penello [9]

describes Recursive Ascent (a compiled LALR parser), and

Aho andUllman give a table-driven predictive LL(k) parser [1,

pp338–341].

Parser context Parsing is a search problem in which we

traverse both a grammar and an input string to locate deriva-

tions. The algorithms we shall examine in this paper all work

by processing a current parser context comprising an index i
into the input string, a current grammar node gn, a current
stack, whose top is stack node sn, and a current derivation

whose most recent step is derivation node dn.
In detail (i) compiled parsers do not have an explicit gn

since the grammar positions correspond to locations in the

code; (ii) recognisers do not generate derivations and so do

not require a dn and (iii) some parsers make use of the host

languages call stack, and thus do not need an explicit sn.
Lexicalisation Most programming language grammars are

defined over terminals which have internal structure rather

than simple characters, and the input character string is

usually lexicalised into a sequence of non-overlapping sub-

strings called lexemes each of which belongs to a lexical class

which is given a number called the token. There are several
advantages to this scheme: whitespace may elided from the

grammar rules; the alphabet of the grammar is the set of

lexeme classes not the set of characters and that improves

the resolution of lookahead tests; and for many languages

regular recognisers may be used for lexicalisation rather than

the full power of a context free parser, and that improves

performance. The parser itself then works with strings of

tokens, not strings of characters.

The algorithms presented here all assume that inputs

have been lexicalised into a string of tokens using longest

match.Token number zero is reserved for the end of string

symbol $.

Representing derivation forests A general parser must

return all derivations for any string in the language. Simply

returning individual derivation trees is impractical as the

number of derivations can grow very quickly: consider the

grammar Γ5 = {𝑍 → 𝑆 | 𝑆𝑍 𝑆 → 𝑋𝑌 𝑋 → 𝑎 | 𝑎𝑏 𝑌 →
𝑏𝑐 | 𝑐} which is Γ4 extended with a new start rule, allowing

one or more 𝑎𝑏𝑐 substrings to be generated. Each instance
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of 𝑆 will have two ways to generate its substring, hence the

total number of derivations will be 2
𝑘
where 𝑘 is the number

of substrings.

We noted above that some of the elements of the two

derivations in Γ4 are the same in that they have matching

labels, and thus generate the same substring of the element.

Tomita [20] observed that derivation trees may be combined

by sharing and packing into a directed acyclic graph called

a Shared Packed Parse Forest (SPPF). We say that an SPPF

embeds derivation steps and derivations. If𝑢 ∈ 𝐿(Γ) then the

SPPF for 𝑢 in Γ will contain a node labelled 𝑆, 0, 𝑛 where 𝑆 is

the start symbol and 𝑛 is the length of 𝑢, in other words a

node labelled with the start symbol whose yield is the entire

string.

In Tomita’s original formulation, SPPFs embed standard

derivation trees in which internal nodes are labelled with a

nonterminal and have out-degree 𝑘𝑝 where 𝑘𝑝 is the length

of some production 𝑝 . Whilst building derivations, we need

to know both the production we are working on and the

position within it. If we were to use this form of SPPF, then

in general the dn element of our parser context would need

to be a pair 𝑝, 𝑗 (0 < 𝑗 < 𝑘) where j specifies a position

within the production. Instead, we binarise our derivation

trees by adding additional intermediate nodes.

This binarisation of derivations allows us to encode a com-

plete grammar position into a single SPPF node, so that the

dn field in our parser context can comprise a single node. For

the grammar Γ6 = {𝑆 → 𝑎𝑏𝑐} the single derivation in ‘flat’

and binarised forms are:

S 0,3

X 0,2 Y 2,3

a 0,1 b 1,2 c 2,3

S 0,3

S ::= X . Y 0,2 Y 2,3

X 0,2

X ::= a . b 0,1 b 1,2

a 0,1

c 2,3

The binarised annotated derivation trees for Γ4 are

S 0,3

S ::= X . Y 0,2 Y 2,3

X 0,2

X ::= a . b 0,1 b 1,2

a 0,1

c 2,3

S 0,3

S ::= X . Y 0,1 Y 1,3

X 0,1

a 0,1

Y ::= b . c 1,2 c 2,3

b 1,2

The binarisation or ‘intermediate’ nodes are labelled with a

position within a production. We use Knuth’s ‘item’ notation

and mark the position with a dot. In visualisations, we shade

the binarisation nodes.

The corresponding SPPF constructed from the two anno-

tated derivation trees for Γ4 is

S 0,3

S ::= X Y . 1 S ::= X Y . 2

S ::= X . Y 0,1 Y 1,3

S ::= X . Y 0 Y ::= b c . 2

X 0,1

X ::= a . 0

a 0,1

Y ::= b . c 1,2 c 2,3

Y ::= b . c 1

b 1,2

S ::= X . Y 0,2 Y 2,3

S ::= X . Y 0 Y ::= c . 2

X 0,2

X ::= a b . 1

X ::= a . b 0,1

X ::= a . b 0

2 Backtracking Recursive Descent Parsers
To motivate the GLL approach, we begin by examining the

simplest useful CFG parser we know of: a compiled non-

general backtracking parser with only a single thread of

control. We then present the same algorithm implemented

in two interpreted styles: the first a ‘folding’ of the com-

piled parser and the second a state-machine implementation

closely related to the interpreted GLL parser to be discussed

in the next section.

Compiled style - osbrdG Here is one style of backtracking

parser for

Γ1 = {𝑆 → 𝑏 | 𝑎𝑋𝑧 𝑋 → 𝑥𝑋 | 𝑦𝑋 | 𝜖}
1 boolean p_S() { // Attempt to match nonterminal S
2 int eI = i; DNode eDN = dn; //store global variables at entry
3

4 if (input[i]==2/∗b∗/) {i++; du(13); return true;}
5

6 i = eI; dn = eDN; //recall global variables for next production
7 if (input[i]==1/∗a∗/) {i++; // bump input pointer on success
8 if (p_X()) { // call parse function for nonterminal Z
9 if (input[i]==5/∗z∗/) {i++; // bump input pointer on success
10 du(16); return true;}}} // end; update derivation
11 return false;
12 }
13

14 boolean p_X() { // Attenmpt to match nonterminal S
15 int eI = i; DNode eDN = dn; //store global variables at entry
16

17 if (input[i]==3/∗x∗/) {i++;
18 if (p_X()) { du(22); return true;}}
19

20 i = eI; dn = eDN; //recall global variables for next production
21 if (input[i]==4/∗y∗/) {i++;
22 if (p_X()) { du(26); return true;}}
23

24 i = eI; dn = eDN; //recall global variables for next production
25 /∗ epsilon ∗/ du(30); return true; // epsilon always matches
26 }

A parse begins by loading the input with the lexicalised

sequence of tokens, setting i to zero, dN to null and then

calling p_S(). The string is accepted if on return, input[i]
is the end of string symbol.
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We call this algorithm Ordered Singleton Backtrack Re-
cursive Descent (OSBRD) to emphasise that it (i) treats the

productions of a nonterminal in an ordered fashion (which

may cause some productions to be ignored) and (ii) returns

at most one derivation.

This particular implementation is called osbrdG because
the code has been generated from an input grammar. If we

change the grammar, then we must regenerate a new parser.

The generated code is effectively a bidirectional ‘pretty print’

of the grammar, in the sense that one may read the grammar

in a single pass and output the parser code, and one may

read the code in a single pass and output the grammar. Nigel

Horspool calls this the Recursively Decent property.
Each nonterminal 𝑍 has a corresponding boolean parse

function p_Z(). On entry, parse functions record the input

index at entry eI and the entry derivation node eDN. The
productions 𝑍 → 𝛼 are then examined in the order they

were written. The sequence of elements in 𝛼 is tested using a

nest of if statements: nonterminals are tested by calling the

corresponding parse function, and terminals by testing the

current input character against that terminal’s token num-

ber (with the current index being incremented on success).

If all of a production’s tests return true, then the deriva-

tion is extended by one step using function du(n) and the

parse function returns true, otherwise the current index and

derivation node are reset to their entry values and the next

production is tested. If no production matches, the parse

function returns false.

The leftmost derivation is encoded as a linked list of pro-

duction numbers: function du(int n) updates the current
derivation by head-inserting a node: in detail the production

number is the number of the corresponding ALT node in our

representation. A suitable Java declaration for derivation

nodes is class DNode {int altn; DNode next;}
There are three major deficiencies in the OSBRD algo-

rithm: (i) on some inputs it does not terminate; (ii) on some

inputs it will require exponential time to terminate; and

(iii) on some inputs it will terminate but incorrectly reject

strings that are in the language.Versions of this algorithm

have been reported many times. The most comprehensive

treatment is in Aho and Ullman’s 1972 monograph [1, pp.56–

469] where the technique is called TDPL: they note that It can
be quite difficult to determine what language is defined by a
TDPL programwhich should be read as a warning. We do not

recommend the approach for serious work; we use it here

merely as a stepping stone to understanding GLL parsing.

Interpreting via a function - osbrdF There is a closely

related interpreted implementation that ‘folds’ all of the

parse functions into a single function osbrdF which takes a

grammar node representing the nonterminal to be tested –

in our implementation, we use the corresponding LHS node

from our representation.

Instead of laying out the productions as nests of if state-

ments, we have an outer loop over the alt references and an

inner loop over the seq references enclosing a switch state-

ment which performs the appropriate action for each kind

of grammar node. Java (and many other languages) use the

dot operator to specify fields from composite data structures

hence, for instance, gn.s refers to the string field of the cur-

rent grammar node. We make use of Java’s named-continue

feature to allow a failed match to immediately proceed to the

next alt iteration. An implementation in C or C++ might

use a goto to achieve the same effect.

1 boolean osbrdF(GNode lhs) {
2 int ei = i; DNode edn = dn;
3 altLoop: for (GNode alt = lhs.alt; alt != null; alt = alt.alt) {
4 i = ei; dn = edn;
5 GNode gn = alt.seq;
6 while (true) {
7 switch (gn.el.kind) {
8 case T: if (mt(gn)) {i++; ; gn = gn.seq; break;}
9 else continue altLoop; // failure; next alternate
10 case N: if (osbrdF(lhs(gn))) {gn = gn.seq; break;}
11 else continue altLoop; // failure; next alternate
12 case EPS: gn = gn.seq; break; // epsilon always matches
13 case END: du(alt.ni); return true; // end; update derivation
14 }}}
15 return false;
16 }

Interpreting with explicit stack management - osbrdE
A general parser must handle non-determinism: during pro-

cessing of some parser context we may identify more than

one successor context that must be explored. OSBRD handles

some (but not all) nondeterminisms through limited back-

tracking. Both the osbrdG and osbrdF implementations rely

on the host language’s function call mechanism to implictly

manage a single stack of nonterminal instances. This is a

fundamental weakness, because the sequence of parser con-

texts that may be examined is limited to those that conform

to a last-in, first-out discipline. In a conventional procedural

language such as Java without continuations, there is no way

of loading the function call stack with a particular state.

A GLL parser works by saving parser contexts for later

processing in a way that allows any context to be processed

independently of the others, and not surprisingly it uses

an explicit stack data structure to allow switching between

contexts. Our next step (osbrdE) is to implement OSBRD

using explicit stack management in a style that matches our

GLL baseline implementation. At this stage we still only

have a single stack for all contexts: this is only an OSBRD

implementation.

As before, derivations are also developed within a linked

list of DNodes, with the most recent derivation step held in

variable dn.
Stack entries must contain all of the information in the

stack frame for function osbrdF(): that is a return position

in the grammar and the local variables eI and eDN. A suitable
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Java declaration is

class SNode {GNode rN; int eI; SNode next; DNode eDN;}
We model the stack with a linked list of SNodes and hold

the stack top in variable sn. A perhaps unexpected side-effect

of removing reliance on the runtime function call stack is

that we may no longer use the unwinding of recursive calls

to handle some aspects of backtracking. Instead, we explictly

traverse the grammar representation, executing stack pops

as we go, and this adds complexity to the match fail code at

lines 7–13 in osbrdE.
Termination of a parse is triggered by popping the root

element. If this occurs during back tracking (line 10) then

the parse has failed and osbrdE() returns false. If the root
element is popped whilst processing an END node (line 18)
then we have reached the end of a production in 𝑆 , and

osbrdE() returns true: the caller must then check to see

whether the entire string has been consumed.

1 boolean osbrdE() {
2 initialise();
3 while (true)
4 switch (gn.el.kind) {
5 case T:
6 if (mt(gn)) {i++; gn = gn.seq; break;}
7 else { while (true) { // On failure, backtrack
8 while (gn.el.kind != Kind.END) gn = gn.seq;
9 if (gn.alt.alt == null) { // No more productions; return
10 gn = ret();
11 if (sn == null) return false;} // No more stack frames; fail
12 else { // restore context
13 i = ((StackNode) sn).ei; dn =((StackNode) sn).edn;
14 gn = gn.alt.alt.seq; break;}}}
15 break;
16 case N: call(gn); break;
17 case EPS: gn = gn.seq; break;
18 case END:
19 du(gn.alt.ni); gn = ret(); if (sn == null) return true; break;
20 }}

3 A Baseline Interpreted GLL Parser - gllBL
The GLL algorithm takes the basic control flow patterns of

our recursive parse functions and recasts them as a collec-

tion of separate threads that may be independently executed.

The only data items required by a thread are the unchang-

ing input and the four context elements identified earlier: a

grammar node gn, an input index i, a top-of-stack node sn
and a most-recent derivation step node dn.

Each parse thread may thus be uniquely characterised by a

4-tuple descriptor, declared in the style we have been using as:
class Descriptor {GNode gn; int i; SNode sn; DNode dn;}A
descriptor captures the starting context for a thread which

is loaded into global variables gn, i, sn and dn. These values
then evolve during execution of the thread, and often poten-

tial new starting contexts are identified for later processing.

At the outermost level, GLL is a worklist algorithm that

selects descriptors from a collection of awaiting descrip-

tors. During execution of a thread, new descriptors may be

created: for instance when an instance of a nonterminal is

encountered, the algorithm will create descriptors for each

of that nonterminal’s productions.

A GLL parse begins with a single awaiting descriptor

(lhs(S), 0, gssRoot, null), that is the LHS grammar

node for the start nonterminal, input index zero, a reference

to the GSS base node and an empty derivation step. The

parse terminates when the descriptor collection is empty.

Good performance of the algorithm relies on efficient im-

plementation of the collection of descriptors, the collection

of stacks and the collection of derivations. We delay consid-

eration of those mechanisms until after we have examined

the control flow aspects of the algorithm.

1 void gllBL() {
2 initialise();
3 nextDescriptor: while (dequeueDesc())
4 while (true) {
5 switch (gn.el.kind) {
6 case T: if (input[i] == gn.el.ei)
7 {du(1); i++; gn = gn.seq; break;}
8 else // abort thread on mismatch
9 continue nextDescriptor;
10 case N: call(gn); continue nextDescriptor;
11 case EPS: du(0); gn = gn.seq; break;
12 case END: ret(); continue nextDescriptor;
13 }}}

This top level control flow is pleasingly simple. It has the

same structure as for osbrdE, but is relieved of the complex

backtracking code. This is because descriptors are created for

each production by the call() function. When a terminal

mismatch occurs, we can simply abandon the current thread

by executing continue nextDescriptor. We do not need to

backtrack to find the next viable alternate because it will

already either have been processed, or be in the queue for

processing. The call(), ret() and du() functions update
the SPPF and GSS: we describe them below.

Thread management In a context free parser, a context

once processed need never be processed again (although

see notes on contingent pops below). The key to achieving

a cubic upper bound on performance is to maintain a set of

previously encountered descriptors descS in addition to a

set of descriptors descQ awaiting processing. The call()
function (line 9 above with definition below) then uses func-

tion queueDesc() to only load a descriptor to descQ if it has
never been seen before. In this implementation we use the

Java double-ended queue Deque for descQ. Since additions
to descQ are guarded by checks on descS, descriptors can
never appear more than once within descQ.

1 Set<Desc> descS; Deque<Desc> descQ;
2 GNode gn;
3 GSSN sn;
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4 SPPFN dn;
5

6 void queueDesc(GNode gn, int i, GSSN gssN, SPPFN sppfN) {
7 Desc tmp = new Desc(gn, i, gssN, sppfN);
8 if (descS.add(tmp)) descQ.addFirst(tmp);
9 }
10

11 boolean dequeueDesc() {
12 Desc tmp = descQ.poll();
13 if (tmp == null) return false;
14 gn = tmp.gn; i = tmp.i; sn = tmp.sn; dn = tmp.dn;
15 return true;
16 }

The dequeueDesc() function polls descQ to remove the

head element and unloads its fields into the global context

variables, or returns false if no descriptors are available.

Stack management In the parsers discussed here, the pur-

pose of the stack is to store a return point from the call to

a nonterminal. A general parser starts with a single stack

but new stacks may diverge from it. The shared bases of

these stacks naturally need only be represented once, but

Tomita [20] observed that when two stacks for a context

free parser show the same stack top, their future behaviour

will be indistinguishable. As a result, stacks may be merged
together when they have the same top state, and the whole

set of stacks may be represented by a directed acyclic graph

called a Graph Structured Stack (GSS). (As an aside, the struc-

ture is perhaps more reasonably called a stack structured

graph, but the term GSS is in common use.)

This visualisation shows the GSS that results from a GLL

parse of Γ5 and string 𝑎𝑏𝑐𝑎𝑏𝑐 . Each node has a grammar posi-

tion (shown as a production with a dot after the nonterminal

that was called) and a left index which is value of the input

index at the point of call. The GSS is initially loaded with a

stack root node labelled (EOS, 0) which ensures that all stacks

are tied to a common base node.

Z ::= S . Z
3

Z ::= S Z .
3

$EOS
0

Z ::= S . Z
6

Z ::= S Z .
6

S ::= X Y .
4

Z ::= S .
3

S ::= X Y .
5

Z ::= S . Z
0

Z ::= S .
6

Z ::= S .
0

S ::= X . Y
0

S ::= X Y .
2

S ::= X . Y
3

S ::= X Y .
1

S ::= X . Y
6

Paths between the top and bottom node represent the

result of successful matches to the whole string. The other

paths result from parses which ultimately failed to match

the entire string.

GSS nodes contain a grammar node which acts as the

return point; an input index i which will be the leftmost

index for the substring matched by this call; a set of out

edges which references the stacks converging on this node;

and a set of contingent pops which will be discussed below.

A suitable Java declaration is:

class GSSN {GNode gn; int i;
Set<GSSE> edges; Set<SPPFN> pops;}

In a parser GSS edges are also labelled with the derivation

node that was current at the time of their creation. A GSS

edge also requires a reference to the destination of the edge.

An appropriate Java declaration is:

class GSSE {GSSN dst; SPPFN sppfnode; }
The call() and ret() functions manage the evaluation

of threads involving nonterminal instances. The basic re-

quirement is to extend a stack on call, and to retrieve the

return point in the grammar on return. In addition, a call()
must queue descriptors for the start of each production in

the called nonterminal (lines 18 and 19 below), and a ret()
must check to see if we have reached the bottom of the stack,

in which case we check for acceptance (lines 23–25).

1 Map<GSSN, GSSN> gss;
2 GSSN gssRoot;
3

4 GSSN gssFind(GNode gn, int i) {
5 GSSN gssN = new GSSN(gn, i);
6 if (gss.get(gssN) == null) gss.put(gssN, gssN);
7 return gss.get(gssN);
8 }
9

10 void call(GNode gn) {
11 GSSN gssN = gssFind(gn.seq, i);
12 GSSE gssE = new GSSE(sn, dn);
13 if (!gssN.edges.contains(gssE)) {
14 gssN.edges.add(gssE);
15 for (SPPFN rc : gssN.pops)
16 queueDesc(gn.seq, rc.ri, sn, sppfUpdate(gn.seq, dn, rc));
17 }
18 for (GNode p = rules(gn).alt; p != null; p = p.alt)
19 queueDesc(p.seq, i, gssN, null);
20 }
21

22 void ret() {
23 if (sn.equals(gssRoot)) {
24 if (accepting(gn)) accepted |= (i == input.length − 1);
25 return;
26 }
27 sn.pops.add(dn);
28 for (GSSE e : sn.edges)
29 queueDesc(sn.gn, i, e.dst, sppfUpdate(sn.gn, e.sppfnode, dn));
30 }

Perhaps the most subtle part of the GLL algorithm is the

handling of contingent pops. When we perform a return at

a GSS node sn we want the parse to continue at all of the

return points encoded by the out-edges of sn. Edges can be

added to a GSS node after a pop has occurred, and in such a

case the earlier pop (or pops) must be applied to that new

edge. Thus each GSS node contains a pop set which records

pop actions (line 27) so that they may be applied to any new

edges that subsequently may be added (lines 15–16 above).
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Derivation updates Derivations, as discussed above, are

represented using binarised SPPFs.

class SPPFN {GNode gn; int li; int ri;
Set<SPPFPN> packNS;}

class SPPFPN {GNode gn; int pivot; SPPFN lC; SPPFN rC;}
A derivation update may be triggered in two ways: (i) the

main gllBL algorithm adds elements via function du() when
a terminal or an 𝜖-rule is matched, and (ii) the call() and
ret() functions add elements associated with nonterminals.

The SPPF is modelled as a set of SPPF nodes that carry a

set of pack node children which in general will be updated

during a parse. A Java quirk is that the standard Set API

does not easily support updates to set elements. Now, Java

sets are implemented as maps from elements to themselves,

and so without loss of performance we can explicitly use

such a map to allow retrieval of elements.

1 Map<SPPFN, SPPFN> sppf;
2

3 SPPFN sppfFind(GNode dn, int li, int ri) {
4 SPPFN tmp = new SPPFN(dn, li, ri);
5 if (!sppf.containsKey(tmp)) sppf.put(tmp, tmp);
6 return sppf.get(tmp);
7 }
8

9 SPPFN sppfUpdate(GNode gn, SPPFN ln, SPPFN rn) {
10 SPPFN ret = sppfFind(gn.el.kind == Kind.END ? gn.seq : gn,
11 ln == null ? rn.li : ln.li,
12 rn.ri);
13 ret.packNS.add(
14 new SPPFPN(gn, ln == null ? rn.li : ln.ri, ln, rn));
15 return ret;
16 }
17

18 void du(int width) {
19 dn = sppfUpdate(gn.seq, dn, sppfFind(gn, i, i + width));
20 }

Function sppfFind() returns an existing SPPF node, or

adds a new SPPF node with empty pack node set.

Function sppfUpdate() takes a grammar node and two

existing SPPF nodes and either identifies or creates the cor-

responding subtree.

Initialisation The core data structures are re-initialised for

each parse: lines 2-3 create new, empty, data structures, lines

4-5 creates the base node for the GSS, line 6 initialises the

global context variables and lines 7-8 load desriptors for each

production of the start symbol.

1 void initialise() {
2 descS = new HashSet<>(); descQ = new LinkedList<>();
3 sppf = new HashMap<>(); gss = new HashMap<>();
4 gssRoot = new GSSN(grammar.endOfStringNode, 0);
5 gss.put(gssRoot, gssRoot);
6 i = 0; sn = gssRoot; dn = null;
7 for (GNode p = grammar.startNode.alt; p != null; p = p.alt)
8 queueDesc(p.seq, i, sn, dn);
9 }

4 Data Structure Optimisation
In The Design and Evolution of C++ [19, p.211] Stroustroup

wrote:

Many programs create and delete a large number of small
objects of a few important classes . . . The allocation and deal-
location of such objects with a general-purpose allocator can
easily dominate the run time and sometimes the storage re-
quirements of the programs.

The GLL algorithm is a perfect exemplar of this situation

since it performs very little actual calculation: the algorithm

is dominated by the conditional creation of small elements

under control of tests based on simple integer comparisons.

When built with the native Java APIs in an object oriented

fashion as we have done in gllBL, runtime is dominated by

allocation of small objects.

Stroustroup advocated the use of custom heap manage-

ment for these kinds of programs, and claimed speedups of as

much as an order of magnitude for applications in which the

heap became heavily fragmented. GLL does not fragment the

heap in that our core data structures (the GSS, the SPPF and

the descriptor set) only ever grow: essentially the only deal-

locations that occur are the worklist elements that reference

descriptors (which themselves are not deallocated). As a re-

sult we might not expect Stroustroup’s fragmentation-driven

factor ten speedup, but as we shall show in section 5, the

scheme discussed in this section does yield speedup factors

of 3–4 over the matching Java API implementation, whilst

reducing memory demands by a factor of between 4 and 5.

The general approach is to (i) map all grammar objects

including grammar positions onto the integers in a single

sequence and (ii) to allocate elements sequentially from a

pool of memory blocks. Essentially we eschew the use of Java

objects, and make each grammar ‘object’ a small sequence

of integers with contiguous memory addresses.

Enumeration of grammar elements The primitive objects

manipulated by the GLL algorithm are: the end of string

symbol, the terminals, the epsilon symbol, the nonterminals

the elements not otherwise accounted for (such as ALT and
END) and finally the grammar nodes. We arrange all of these

in a sequence, and number them from zero. So, for Γ1 the
sequence is 0:EOS 1:a 2:b 3:x 4:y 5:z 6:EPS 7:S 8:X 9:ALT

10:END

The sequence then continues with the grammar nodes,

the first of which is always the node which labels the GSS

root (11 in this case), followed by the nodes representing the

grammar rules as shown on page 1. Hence the node numbers

there start at 12.

The purpose of this enumeration is to avoid the need to

carry type information around: we can tell, for instance, if

an element of the sequence is a terminal simply by checking

that it is greater than zero and less than the sequence value

for 𝜖 . Terminals appear first in the sequence because algo-

rithms employing lookahead test input tokens against sets
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of terminals, and a bit vector representation is more space

efficient if the elements in the set have small values.

Pool based memory management gllBL maintains six sets:

GSS nodes, GSS edges, pop elements, SPPF nodes, SPPF

packed nodes and descriptors. Our main goal is to reduce the

volume of calls to the system’s heap allocation routines for

these sets. We do this by explictly coding C-like structures

for each set element and allocating them sequentially into a

pool of memory blocks. The elements require 5, 5, 5, 7 and 6

integers each respectively, and our memory blocks are 2
26

integers long (that is 256MByte each for 32-bit integers), so

the number of calls to the system allocator is negligible.

Our memory references are 32-bit integers which canman-

age up to 4G integer locations, or 16Gbyte of memory. Since

our blocks sizes are always a power of 2, we can use shift

and mask operations to extract block number and address

within block:

1 int poolGet(int index) {
2 return
3 pool[index >> poolAddressOffset][index & poolAddressMask];
4 }
5

6 void poolSet(int index, int value) {
7 pool[index >> poolAddressOffset][index & poolAddressMask] =
8 value;
9 }

The sets themselves are implemented as hash tables using

separate chaining. The chain link is at offset zero in each

of the structure elements. As always with hash tables, the

effectiveness of the hash function and the table’s load factor

will dictate performance. We will illustrate the load factor

impact in Section 5.

The GLL Hash Pool implementation – gllHP Our final

implementation is gllBL modified to use this Hash Poolmem-

ory management scheme. The full code is available in the

repository. This is the top level control flow: it is essentially

identical to gllBL except that all context elements are inte-

gers which are used as references into the pool data; the

lookup table kindOf is used to encode the grammar ele-

ment’s type; and advancing gn to the next sequence element

simply requires gn to be incremented, since grammar nodes

are numbered sequentially.

1 void gllHP() {
2 initialise();
3 nextDescriptor: while (dequeueDescriptor())
4 while (true) {
5 switch (kindOf[gni]) {
6 case T: if (input[i] == elementOf[gni])
7 {d(1); i++; gni++; break;}
8 else continue nextDescriptor;
9 case N: call(gni); continue nextDescriptor;
10 case EPS: d(0); gni++; break;
11 case END: ret(); continue nextDescriptor;
12 }}}

5 Performance Evaluation
Our intention is that gllBL and gllHP will provide reference

performance data for future studies. To that end, the repos-

itory includes large corpora of Java 18 and Standard ML

code with associated grammars, and we expect to expand

those holdings in future. In this paper we restrict ourselves

to six grammars and only five strings, but these strings are

large— in the range 84–130 kBytes.We take this approach be-

cause we want to concisely present throughput and memory

consumption figures for large real-world examples.

Aswell as gllBL and gllHP, we present some data for gllOpt

which is an older implementation of GLL that is compiled,

uses lookahead on both descriptor creation and pops and

has the same hash pool data structure mechanisms as gllHP.

gllOpt is not as tightly engineered for performance: it has

support for trace messages and statistics gathering code, as

well as support for some of the other GLL variants mentioned

above. Results in all categories improve as we move from

gllBL to gllHP to gllOpt; we would expect to see further

improvements in gllOpt when a performance engineered

version is available.

We use a range of programming language grammars: the

ANSI-C grammar from the Kernighan and Ritchie textbook;

the ANSI C++ grammar from the 1997 Public Review Docu-

ment which underpinned C++98; the C# version 1.2 grammar

and the Java Language Specification version 1 and 2 gram-

mars. Larger studies using Java 18 and Standard ML may be

found in the repository. The JLS2 grammar uses extended

CFG constructs. We produced two variants by expanding

closure using left or right recursion: we would expect the

left recursive version to be more demanding of a GLL parser.

Test strings include the full source code for the parser

generators RDP (C), GTB (C) and ART (C++) along with a

Twitter client (C#) and multiple concatenations of an imple-

mentation of Conway’s Game of Life (Java).

Data structure cardinalitiesWe begin by looking at the

cardinalities of the various GLL data structures (Table 2).

Of course, gllBL and gllHP generate exactly the same car-

dinalities so we only compare gllBL to gllOpt which uses

lookahead. As expected, the lookahead significantly reduces

the number of descriptors and indeed the cardinalities of the

other sets too. It is clear from this table that the amount of

ambiguity encountered drives the size of these sets. That is

as we should expect: were the grammars LL(1) then there

would be no nondeterminism andwemight hope to approach

a linear cost. GLL performance is worse case cubic in the

length of the input, and as the level of nondeterminism goes

up we would expect to move towards that cubic bound. Thus

the rightmost column is important. We can see that ANSI

C++ is much more ambiguous than ANSI C when run on

gtbSrc and rdpSrc.

Throughput Speed measurements in Table 3 were made

using a Dell XPS 15 9510 laptop with 16GByte of installed
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String Heap BL Heap HP Factor Pool

artSrc 3,165,999,856 545,260,192 5.81 562,135,472

gtbSrc 3,637,287,192 817,889,952 4.45 666,862,111

rdpSrc 2,814,125,624 545,260,192 5.16 506,684,413

Table 1. Heap utilisation for ANSI C++

memory and an Intel Core i7-11800H eight-core processor

running at 2.3GHz. The experiments were run from the com-

mand line under Microsoft Windows 10 Enterprise version

10.0.19042 using Oracle’s Java HotSpot(TM) 64-Bit Server

VM (build 14.0.2+12-46, mixed mode, sharing).

The nanosecond timing routines in the Java System API

do not accurately reflect computational load in multicore

systems and can even return negative values. As a result we

used the System.currentTimeMillis() to measure runtimes

even though its resolution is only around 0.03 seconds; for

each experiment we made 10 runs and report here the mean

run time in milliseconds.

We deliberately disabled the resizing of hash tables in

gllHP and gllOpt, and set the size of the tables to be twice that

required to handle the gtbSrc input when run with the ANSI-

C grammar (the highlighted first line). The throughput in

tokens per second ranges from 113,458 for JLS2 right down to

6,701 for gtbSrc and ANSI C++. Looking at the cardinailities

table, it is clear that much of this variation arises from the

hash table load factor.

Hash table load factor To further investigate this effect,

Table 4 shows partial histograms of bucket occupancy in

the hash tables. The ANSI C++ examples show significant

hash table congestion, with in one case more than 10% of

the bucket lists having four or more elements.

Heap utilisationWe wanted to get a measure of memory

consumption, comparing gllBL to gllHP. It is quite difficult to

measure heap utilisation in Java but we can approximate it

by asking for the free heap size before and after a run. Table 1

shows the results for the three pieces of C/C++ source code

runningwith the ANSI C++ grammar. As a consistency check

we have also included (in column Pool) the computed size

of all of the data structure elements which we can derive

from the known data structure cardinalities and the size

of their elements. These figures should clearly be treated

with great caution, but they do indicate that a factor four

reduction inmemory footprint is achievedwith theHashPool

implementation. This is unsurprising.

6 Potential Future Work on Optimisation
GLL was introduced at the 2009 LDTA workshop [10]. A

variety of improvements to the basic GLL algorithm have

been reported since then which we summarise here along

with some ideas that have not (as far as we know) appeared

yet in the literature. In future work, we shall present imple-

mentations of some of these ideas in the same style as our

baseline (gllBL) and hashpool (gllHP) implementations so

as to produce a consistent evaluation of their strengths and

weaknesses. In what follows, each paragraph is a separate

optimisation opportunity.

Threadmanagement gllBL and gllHP do not use lookahead.
Wherever there is a break in control flow, we can reduce the

number of descriptors being created by using lookahead to

suppress descriptors for threads that will immediately ter-

minate: the lookahead effectively allows us to pre-compute

whether the first match operation in a thread will fail. In fact

the effect can be quite large, since where we have rules of the

form 𝑋 → 𝛼𝑌𝛽 𝑌 → 𝑍𝛾 𝑍 → 𝛿 and gn corresponds to
𝑋 → 𝛼 ·𝑌𝛽 , a failing lookahead test will suppress descriptor
creation for both 𝑌 and 𝑍 . We can also use lookahead in

the ret() function to suppress descriptor creation when the

current input symbol is not in the follow set of the left

hand side of the current rule. We give some initial results

from lookahead implementations in the next section.

Scott McPeak reported on Elkhound [8] which is a table-

driven generalised LR parser which runs deterministically

on those parts of the table which are context free. In GLL,

descriptors also only need to be created when true nondeter-

minism is detected. The conditions under which descriptor

creation may be suppressed are yet to be fully studied, but we

note that a combination of lookahead and FIFO-style short

circuiting effectively ensure deterministic execution for calls

to rules which are LL(1), since the alternate rules will have

disjoint first sets so at most one new thread can exist.

The presentation here uses the language of threads to de-

scribe GLL control flow, and it is natural to wonder whether

a truly multi-threaded implementation running on a modern

multi-core processorwould demonstrate significant speedups.

Initial experiments using Java threads have not been encour-

aging, which is perhaps to be expected since as we have

already noted, GLL performs very little actual computation:

nearly all actions are conditional data structure updates, and

those data structures are global to all threads. Hence the ratio

of inter-thread communication to in-thread computation is

high. However, our experience with gllHP has shown that

the general purpose Java libraries cannot compete with a

tuned implementation, and so we might imagine that there

are highly tuned approaches to distributing the GLL algo-

rithm over multiple processors that might be worthwhile.

The current ubiquity of multi-core hardware makes this an

attractive goal for further research.

In principle, the number of contingent pop actions may

be reduced by choosing a suitable execution order for the

descriptors. In practice it is not clear whether there are signif-

icant gains to be had since the work associated with the pop

has to be performed under any ordering, and the overhead of

scanning the pop list for each GSS node is not great. There

may be cache effects that can be exploited if we achieve
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Grammar String Tokens Mode Descriptors GSS Node GSS Edge Pops Symbol Packed Ambig

ANSI C gtbSrc 36,828 Opt 4,178,345 564,437 2,042,843 559,859 297,677 261,401 515

gllBL 6,578,603 946,975 2,989,166 776,934 881,128 829,463 526

ANSI C rdpSrc 26,552 Opt 3,122,638 417,204 1,510,486 425,730 222,206 195,799 138

gllBL 4,803,532 699,089 2,219,720 567,128 637,043 602,230 139

ANSI C++ artSrc 36,445 Opt 9,493,519 1,036,075 4,755,333 874,868 473,257 475,542 27,362

gllBL 20,250,528 2,496,038 8,069,723 1,227,578 1,310,876 1,306,193 49,682

ANSI C++ gtbSrc 36,828 Opt 13,061,222 1,270,903 6,392,785 1,110,400 561,139 562,843 26,081

gllBL 24,091,341 2,647,731 9,650,268 1,430,990 1,531,742 1,513,670 50,039

ANSI C++ rdpSrc 26,552 Opt 9,687,071 942,742 4,709,390 841,963 425,385 426,291 18,925

gllBL 18,294,156 2,056,206 7,427,350 1,061,367 1,142,989 1,125,019 35,806

C# 1.2 twitter 33,841 Opt 2,024,014 443,304 1,056,916 390,990 255,343 225,052 2,670

gllBL 4,659,342 1,140,430 2,170,525 555,474 639,254 604,999 11,460

JLS1 life 36,976 Opt 2,302,532 505,179 1,249,154 402,501 260,377 223,401 0

gllBL 4,175,967 883,950 1,948,492 599,751 710,803 655,277 0

JLS2 left life 36,976 Opt 858,335 262,104 395,704 316,328 343,729 313,678 24,725

gllBL 3,475,876 699,565 1,022,346 462,108 745,514 620,736 30,650

JLS2 right life 36,976 Opt 783,455 266,303 375,252 296,777 336,505 305,478 23,500

gllBL 3,196,289 642,062 822,362 413,005 719,486 582,283 30,650

Table 2. Effect of lookahead on data structure cardinalities

Grammar String Characters Tokens CPU seconds Speedup Throughput tokens s
−1

BL HP Opt HP Opt BL HP Opt

ANSI C gtbsrc 117,557 36,828 4.14 1.32 0.85 3.13 4.90 8,888 27,801 43,537

ANSI C rdpsrc 84,778 26,552 2.76 0.92 0.63 3.00 4.39 9,605 28,833 42,126

ANSI C++ artsrc 118,922 36,445 14.67 5.30 3.87 2.76 3.79 2,485 6,870 9,425

ANSI C++ gtbsrc 117,557 36,828 18.82 6.92 5.50 2.72 3.42 1,957 5,321 6,701

ANSI C++ rdpsrc 84,778 26,552 13.95 4.64 3.84 3.01 3.64 1,903 5,728 6,923

C# 1.2 twitter 131,323 33,841 3.38 0.84 0.67 4.02 5.06 9,998 40,239 50,554

JLS 1 life 125,594 36,976 2.67 0.81 0.62 3.31 4.30 13,871 45,899 59,639

JLS2 left life 125,594 36,976 1.89 0.56 0.35 3.40 5.46 19,543 66,539 106,651

JLS2 right life 125,594 36,976 1.75 0.49 0.33 3.58 5.36 21,182 75,802 113,458

Table 3. Throughput using hash table tuned for load factor 2 on ANSI C parsing gtbsrc

spatial locality of actions, and that suggests that processing

descriptors in a first-in, first-out manner might be advanta-

geous. In the gllBL implementation we have used a double

ended queue so as to explore such effects. gllHP uses a stack

to hold the descriptors, and thus is FIFO.

If we are using FIFO descriptor scheduling then we can

short circuit the enqueue/dequeue operations for the final

descriptor in a call action, since once loaded it will be im-

mediately unloaded, so we might as well directly load the

context variables.

Derivation representation The binarised SPPF as described

here has obvious redundancies. In the binarisation scheme

above, the last element of each production has an interme-

diate node parent with only one child, and this can be sup-

pressed with the element directly attached as the left child

of the preceding intermediate node, so in general we would

only need 𝑘 − 2 binarisation nodes for sequences of length

𝑘 (𝑘 > 2), and no binarisation node for a sequence of length

1 or 2.

Terminal nodes themselves can be omitted since the parent

pack node and its parent symbol node contain the indices

into the string for that terminal.

Pack nodes are only required where there is ambiguity,

and as we shall see in Table 2 below, for current programming

language grammars the proportion of symbol and interme-

diate nodes that are ambiguous is small, thus large potential

savings are possible.

If pack nodes are labelled with the left and right indices

from their parent symbol, then they contain all of the in-

formation required to encode the derivation forest and the
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Grammar String Mode Pool bytes Pool/tok 1 2 3 ≥ 4 % ≥ 4

ANSI C gtbSrc Opt 119,434,167 3,243 5,249,823 1,065,880 139,023 25,498 0.39

gllHP 191,663,728 5,204 7,937,594 1,960,621 320,110 44,516 0.43

ANSI C rdpSrc Opt 89,192,035 3,359 4,235,001 701,905 69,906 11,063 0.22

gllHP 140,115,278 5,277 6,652,636 1,193,682 143,439 14,323 0.18

ANSI C++ artSrc Opt 266,870,915 7,323 7,738,658 2,994,531 757,995 257,778 2.19

gllHP 560,677,098 15,384 8,812,860 5,823,056 2,723,507 1,381,572 7.37

ANSI C++ gtbSrc Opt 364,085,364 9,886 8,237,055 4,063,565 1,352,693 581,128 4.08

gllHP 665,091,529 18,059 8,216,549 6,298,134 3,450,289 2,182,890 10.83

ANSI C++ rdpSrc Opt 270,071,141 10,171 7,638,987 2,995,175 762,042 260,622 2.24

gllHP 505,374,437 19,033 9,034,932 5,393,298 2,293,843 1,019,367 5.75

C# twitter Opt 60,884,465 1,799 3,495,829 397,677 30,893 2,880 0.07

gllHP 138,587,616 4,095 6,672,188 1,269,676 163,048 17,001 0.21

JLS1 life Opt 68,910,630 1,864 3,820,275 485,504 43,484 5,234 0.12

gllHP 125,525,127 3,395 6,319,822 1,108,786 128,263 12,761 0.17

JLS2 left life Opt 29,385,111 795 2,204,270 132,437 6,585 242 0.01

gllHP 102,413,841 2,770 5,227,440 761,699 82,727 6,671 0.11

JLS2 right life Opt 27,315,451 739 2,102,990 121,011 5,915 251 0.01

gllHP 93,771,492 2,536 4,848,491 651,856 65,324 5,844 0.10

Table 4. Effect of suboptimal hash table load factor

parent symbol and intermediate nodes are redundant. This is

the basis if the Binary Subtree Representation (BSR) described
in [15]. As well as reducing memory requirements, this ap-

proach reduces derivation updates to set-addition of BSR

elements which simplifies and speeds up the operation.

The use of the Kleene and Positive closures can act as

hints to the parser to use iteration rather than recursion

which may yield performance improvements. Extended con-

text free grammars offer opportunities to both reduce stack

activity and compress derivations. Extending a GLL recog-
niser to handle extended CFG constructs is straightforward,

but correctly embedding all derivations in the SPPF for a

GLL parser requires care: a complete scheme is given in [13]

in which extended constructs are referred to as ‘bracketed’

constructs.

7 Concluding remarks
We have discussed two reference implementations of GLL:

gllBL which uses standard Java API objects to implement the

core data structures and gllHP which uses explicit memory

management.

The key question is whether GLL is a plausible engineer-

ing option compared to classical approaches. There is no

question that the approach is very expensive compared to

the near-deterministic techniques developed in the 1970s:

in some cases gllHP needs as much as 8kbytes of memory

per input character. However even for very long inputs of

over 100kByte characters parsed using the ANSI C++ gram-

mar with its many ambiguities, gllHP needs no more than

0.8Gbyte of memory which is only 5% of the memory on a

typical modern 16GByte laptop computer, thus these gargan-

tuan memory demands are not a practical problem.

Throughput is also much less than for a classical parser,

but similarly manageable on modern hardware. We propose

the informal metric Good Enough for Gnu (GEG) as a thresh-

old test for utility. We imagine that the current GNU C com-

piler is re-engineered with a GLL parser. Assuming that the

existing classical parser takes negligible resources, a parser

is GEG if it slows GNU C down by no more than 10%.

The underlying source code for the gtbSrc string comprises

996,776 characters which when compiled with GNU C++ in

its default mode requires 10.5s, and when compiled with

-Ofast, 18.8s. Hence we would like our general parsers to

process this string in at most 1–2 seconds.

gtbHP processes gtbSrc in 1.35s using theANSI C grammar,

and 7.02s for the much more challenging ANSI C++ grammar.

However gtbHP is a baseline implementation (albeit with

efficient memory management), is interpreted and is written

in Java. Informal experiments indicate that adding in looka-

head and using a compiled parser will improve throughput

by a factor of around two; that converting the code to ANSI

C will produce another factor two improvement; and that

setting the hash table load factors appropriately for ANSI

C++ (rather than ANSI-C as here) may give a further factor

1.5 improvement.
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