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A B S T R A C T   

Introduction: The costs of global warming are substantial. These include expenses from occupational illnesses and 
injuries (OIIs), which have been associated with increases during heatwaves. This study estimated retrospective 
and projected future heatwave-attributable OIIs and their costs in Australia. 
Materials and methods: Climate and workers’ compensation claims data were extracted from seven Australian 
capital cities representing OIIs from July 2005 to June 2018. Heatwaves were defined using the Excess Heat 
Factor. OIIs and associated costs were estimated separately per city and pooled to derive national estimates. 
Results were projected to 2030 (2016–2045) and 2050 (2036–2065). 
Results: The risk of OIIs and associated costs increased during heatwaves, with the risk increasing during severe 
and particularly extreme heatwaves. Of all OIIs, 0.13% (95% empirical confidence interval [eCI]: 0.11–0.16%) 
were heatwave-attributable, equivalent to 120 (95%eCI:70–181) OIIs annually. 0.25% of costs were heatwave- 
attributable (95%eCI: 0.18–0.34%), equal to $AU4.3 (95%eCI: 1.4–7.4) million annually. Estimates of heatwave- 
attributable OIIs by 2050, under Representative Concentration Pathway [RCP]4.5 and RCP8.5, were 0.17% (95% 
eCI: 0.10–0.27%) and 0.23% (95%eCI: 0.13–0.37%), respectively. National costs estimates for 2030 under 
RCP4.5 and RCP8.5 were 0.13% (95%eCI: 0.27-0.46%) and 0.04% (95%eCI: 0.66-0.60), respectively. These 
estimates for extreme heatwaves were 0.04% (95%eCI: 0.02–0.06%) and 0.04% (95%eCI: 0.01–0.07), respec
tively. Cost-AFs in 2050 were, under RCP4.5, 0.127% (95%eCI: 0.27-0.46) for all heatwaves and 0.04% (95%eCI: 
0.01-0.09%) for extreme heatwaves. Attributable fractions were approximately similar to baseline when 
assuming theoretical climate adaptation. 
Discussion: Heatwaves represent notable and preventable portions of preventable OIIs and economic burden. OIIs 
are likely to increase in the future, and costs during extreme heatwaves in 2030. Workplace and public health 
policies aimed at heat adaptation can reduce heat-attributable morbidity and costs.   

1. Introduction 

Future global warming will slow economic growth and pressure 

human socioeconomic systems (Carleton and Hsiang, 2016). Workers 
are particularly susceptible to increasing temperatures due to additional 
metabolic heat production from physical work, radiant workplace heat 
exposure, personal protective equipment, and potentially reduced 
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access to heat safety interventions such as air conditioning (Binazzi 
et al., 2019; Ebi et al., 2021; Varghese et al., 2018). Heatwaves, when 
high temperatures occur over consecutive days, have been associated 
with increased occupational illnesses and injuries (OIIs) globally, 
including heat-related illnesses and general injuries such as falls (Binazzi 
et al., 2019; Ebi et al., 2021; Varghese et al., 2018). With global 
warming, heatwaves are expected to increase in frequency, duration and 
intensity (Ebi et al., 2021). 

Heat-attributable illnesses and injuries induce considerable health
care financial burden (Adélaïde et al., 2021; Wondmagegn et al., 2019). 
However, the economic impact of heatwave-attributable OIIs is un
known. Two studies estimated increasing work-related injury costs with 
higher temperatures in Guangzhou, China (Ma et al., 2019; Su et al., 
2020) and one study in Spain (Martínez-Solanas et al., 2018). Decreased 
costs were observed following the introduction of workplace heat 
adaptation policies in Guangzhou (Su et al., 2020) and (for heat-related 
illnesses only) a heat stress awareness program in Texas (McCarthy 
et al., 2019). More studies have evaluated the economic impact of 
heat-induced labor productivity loss (Borg et al., 2021; Zhao et al., 
2021), including during heatwaves (García-León et al., 2021; Orlov 
et al., 2019). Incorporating costs from OIIs can result in more compre
hensive occupational economic burden estimates. 

To the authors’ knowledge, currently only two studies have esti
mated the projected impact of global warming on OIIs (Fatima et al., 
2022, 2023). Understanding this risk can aid the development of 
heat-adaptation measures to reduce morbidity, mortality and associated 
costs. In Australia, heatwaves are responsible for substantial morbidity 
(Adnan et al., 2022) and are the most common cause of climate-related 
mortality (Varghese et al., 2018). To address these concerns and 
knowledge gaps in the literature, this study created a national retro
spective and future cost profile of heatwave-attributable OIIs. This study 
also assessed the potential benefit of future heat adaptation. 

2. Materials and methods 

2.1. Data 

2.1.1. Workers’ compensation claims data 
Workers’ compensation claims data submitted from July 1, 2005 to 

June 30, 2019 representing seven Australian capital cities: Adelaide, 
Brisbane, Darwin, Hobart, Melbourne, Perth, and Sydney were collected 
from Safe Work Australia (SWA). SWA compiles national workers’ 
compensation data from workers’ compensation authorities in each 

Australian state and territory. Under Australian law, employers must 
have insurance to cover their workers if they become sick/injured 
because of work (Safe Work Australia, 2022a). Claims for OIIs are 
regularly submitted in the Australian financial year (July to June) 
following that of the OII, and payouts per claim can continue across 
multiple years. In this study, data were limited to OIIs occurring within a 
Greater Capital City Statistical Area (GCCSA) of the seven cities 
(Australian Bureau of Statistics, 2020a)) during the warm season 
(October to November) from July 1, 2005 to June 30, 2018 claims (not 
June 2019, because claims were regularly submitted one financial year 
after OII occurrence). We used on-duplicate OII claims pertaining to 
workers aged 15–75 years, and those submitted on the day or after the 
day of OII occurrence as in previous studies (Collie et al., 2016; Fatima 
et al., 2022; Gray and Collie, 2017; Newnam et al., 2019; Varghese et al., 
2019a). OIIs occurring from July 2005 to June 2006 in Hobart were 
excluded from analysis, because claims submitted in Tasmania prior to 
July 2007 had missing location status. OII counts in Hobart from July 
2006 to June 2007 were similar to those of other years and thus retained 
for analysis. Compensation policies and payout rates change over time 
and vary between cities but are generally similar. These differences are 
comprehensively described in online SWA annual publications (Safe 
Work Australia, 2019a). 

Injuries and illnesses (diseases and conditions) were defined by Type 
of Occurrence Classification System codes A-G and H–R, respectively 
(Australian Safety and Compensation Council, 2009), and assessed 
collectively. For the 0.02% of claims where there was an overall nega
tive claim cost (a financial gain, which can result from reimbursement of 
already-paid compensations) payments were adjusted to $0 so that they 
did not impact cost estimates. Payments were adjusted for inflation and 
standardized to the end of the 2018 financial year (April to June 2019) 
(Australian Bureau of Statistics, 2021). The consumer price index cate
gories for “compensation/administrative costs”, “health services”, and 
“other goods and services” were “insurance and financial services”, 
“health services” and “general”, respectively (Australian Bureau of 
Statistics, 2021). Payouts comprise compensation (paid to workers or 
their families), goods and services (mostly health services), and 
non-compensation (not paid to workers or their families) payments (Safe 
Work Australia, 2019b). Costs per OII (total costs divided by the number 
of OIIs) on days where at least one OII were reported were analyzed. To 
remove claims that may have had artificially decreased payouts due to 
occurring later in the study period, a supplementary analysis was per
formed only using claims submitted no later than June 2014 with pay
ments restricted to up to five financial years after the financial year of 
claim submission. Ethics approval to access and analyze SWA data were 
obtained from the University of Adelaide Human Research Ethics 
Committee (H-2019-141 and H-2016-085). 

2.1.2. Meteorological data 
Retrospective hourly climate data were obtained from the Australian 

Bureau of Meteorology (BoM) Atmospheric high-resolution Regional 
Reanalysis (BARRA) to match the study period (Jakob et al., 2017). 
Results were projected to 2030 (2016–2045) and 2050 (2036–2065) 
using daily meteorological gridded data from Climate Change in 
Australia (Commonwealth Scientific and Industrial Research Organisa
tion, 2021a) under Representative Concentration Pathway [RCP]4.5 
and RCP8.5 using eight general circulation models (GCMs) described 
online (Commonwealth Scientific and Industrial Research Organisation, 
2021b). From the retrospective and projected datasets, 3*3 12 km and 
7*7 5 km grids, respectively, were extracted at grid centroids correlating 
to the center of the seven included cities’ for study central business 
districts. 

Heatwaves were defined using the BoM Excess Heat Factor (EHF). 
EHF defines Australian heatwaves nationally (Bettio et al., 2019; Borg 
et al., 2019) and can measure severity across different climate zones 
(Nairn et al., 2022, 2018; Nairn and Fawcett, 2014; Oliveira et al., 2022; 
Blesson M. Varghese et al., 2019). EHF is calculated using daily mean 
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temperature (DMT) averaged over the current and previous two days 
(DMT3days) to represent heat that has already occurred (Nairn et al., 
2009). DMT was calculated as the average of daily maximum and 
minimum temperatures within the same 9am-to-9am 24-h period. EHF 
is determined by two indices calculated separately for each city. The first 
index (EHIsig) is DMT3days subtract the 95th percentile for DMT (DMT95) 
across the entire time period covered by the BARRA (January 1990 to 
February 2019) and (Nairn et al., 2022). EHF assumes long-term adap
tation to this near-30 year period, and an approximate 30-year reference 
period is commonly selected for long-term climate change and climate 
variability assessments (World Meteorological Organization, 2018). The 
second index (EHIaccl) is DMT3days subtract the averaged DMT over the 
preceding 30 days. This represents recent climate acclimatization up to 
30 days (Nairn and Fawcett, 2014). EHIaccl values exceeding 1 ◦C 
represent non-acclimatized heat exposure within the last three days that 
correspond to increased heatwave severity perceived by people. EHF 
was calculated as the product of EHIsig and the maximum of 1 or EHIaccl 
follows: 

DMT3days =(DMTd +DMTd− 1 +DMTd− 2)
/

3 (
◦C)

EHIsig =DMT3days − DMT95 (
◦C)

EHIaccl =DMT3days − (DMTd− 3 + ...+DMTd− 32)
/

30 (
◦C)

EHF =EHIsig ∗ max(1,EHIaccl)
[
(
◦C)2]

Using the EHF definition, heatwave days occurred when DMT3days 
exceeded DMT95. At DMT95, EHF is equal to 0 K (◦C2), enabling only 
positive EHF values to represent heatwave days. Severe heatwaves 
occurred when EHF was at least equal to the 85th percentile of all 
positive EHF values. Extreme heatwaves were defined as at least twice 
this 85th percentile value (Blesson M. Varghese et al., 2019). Percentile 
based thresholds for heatwave conditions enable EHF to be specific for 
the given area’s climate whilst allowing for comparisons between areas 
accommodating for their different climates (Nairn and Fawcett, 2014). 

Sensitivity analyses were performed adding linear variables for 
relative and specific humidity, using a calculation of EHF using 
DMT3days representing the current and future two days, and EHF using 
the heat index (Rothfusz, L, 1990) instead of air temperature. Calcula
tions of humidity and heat index are detailed in Text A1: Humidity 
calculations. 

2.1.3. Workers’ population data 
Monthly population employed worker counts stratified by city 

(GCCSA) were derived from the Australian Bureau of Statistics (ABS) 
labor force detailed survey data (Australian Bureau of Statistics, 2022a). 
As data for Darwin were unavailable, estimates were obtained by 
multiplying counts for Northern Territory (NT) by the proportion of NT 
workers in Darwin obtained with 3-monthly data that were interpolated 
to monthly data using cubic splines (Australian Bureau of Statistics, 
2022a). Projected increases in future workforce sizes relative to 2017 
were calculated as the ratio between the projected city populations for 
2017–2044 to estimate 2030, and 2036–2065 to estimate 2050 
(Australian Bureau of Statistics, 2018a). Projections assumed a 
medium-population growth scenario based on ABS-projected fertility, 
migration and mortality rates. High, low and unchanged (from baseline) 
population scenarios were included as sensitivity analyses (Australian 
Bureau of Statistics, 2018a). 

2.2. Statistical analysis 

Daily OIIs and associated costs, on the date of OII occurrence, were 
modeled against EHF as a continuous metric (Royé et al., 2020; Wond
magegn et al., 2021) per city using time-series distributed lag non-linear 
models (DLNMs) with a ten-day lag period (Gasparrini, 2011; Gasparrini 

and Armstrong, 2011). OIIs and costs were fitted using generalized 
linear and additive models, respectively, with a quasipoisson and 
Tweedie distribution, respectively (Dunn and Smyth, 2018). The 
Tweedie distribution is a reparameterisation of a Poisson-Gamma model 
to fit within a single distributional framework (Kurz, 2017; Smyth and 
Jørgensen, 2002). This distribution was selected to fit the highly 
right-skewed data including days with zero costs (which invalidates 
many continuous distributions such as Gamma) whilst retaining relative 
simplicity compared to two-part models in terms of clinical interpreta
tion and the number of parameters (Kurz, 2017). Cost models converged 
using restricted maximum likelihood (Wood, 2011) and included the 
Tweedie index parameter with the largest likelihood value from 1.001 to 
1.999 selected by series expansion (Dunn and Smyth, 2005). 

The statistical model equation used was: 

log[E(Yt)]= cb(EHFt)+DOWt +PHt + SHt +D1t +Ft + Sat

: (PHt + SHt +D1t)+ Sun

: (PHt + SHt +D1t)+ ncs(t)+ offset(log(n)) + α 

E(Yt) is the expected number of OIIs or costs on day t. Cb(EHF) is the 
cross-basis natural cubic spline (ncs) function for EHF with one internal 
knot at the 50th percentile. Lag effects were modeled using a ncs over 
ten days with one knot at five days. DOW is the day of the week. PH is a 
binary variable indicating whether the day was a public holiday. SH 
designates each of the four school holidays periods, with no school 
holidays as the reference period (Borg, 2022a). The number of hours 
worked varies seasonally with school holidays (Australian Bureau of 
Statistics, 2020b). D1 is a binary variable indicating whether the day 
was the first of the month (excluding New Year’s Day), which was 
associated with more claims relative to other days, likely because OIIs 
with an unknown day of onset were reported as occurring on the first 
day. F is a factor variable designating the following days or periods that 
were highly influential on model fit: (1) 23rd-30th December, (2) New 
Year’s Eve, (3) New Year’s Day, (4) 2nd-4th January and (5) city-specific 
days for Adelaide (24th-30th June 2008, which had notably less OIIs 
than expected), Brisbane (the city-specific holidays of the Royal 
Queensland Show and 2014 G20 Leaders’ Summit), Melbourne (the day 
before Melbourne Cup) and Sydney (Australia Day, which includes a 
public celebration at the Sydney Opera House). Interaction terms (”:“) 
were included with Saturday/Sunday and PH, SH and D1. ncs(t) is a ncs 
with 4 degrees of freedom (df) per year across the 13-year study period 
(12-year for Hobart), representing long-term trend. This was penalized 
for generalized additive models. N is the monthly workforce size, and α 
is a modeled intercept. Every Sunday is a public holiday in Adelaide 
(Borg, 2022b). Thus for Adelaide, PH was always zero on a Sunday and 
Sun:PH was excluded. Modeling decisions regarding exposure-/lag-res
ponse relationships and long-term trends were determined using Akaike 
information criterion (AIC) considering both the OII and cost models. 

Individual city exposure-response relationships were pooled using 
random-effects multivariate meta-analysis to evaluate national (the 
seven cities combined) relationships and derive best linear unbiased 
predictors (BLUPs) from each model (Sera et al., 2019). Residual het
erogeneity was assessed using the multivariate-extended Cochran Q test 
and I2 statistic (Higgins and Thompson, 2002; Sera et al., 2019). 

Attributable fractions (AF) and numbers (AN), as defined by Gas
parrini et al. (Gasparrini et al., 2015; Gasparrini and Leone, 2014), were 
estimated per BLUP for heatwave days including stratification into 
low-intensity, severe and extreme heatwaves. Empirical 95% confidence 
intervals (95%eCI) assuming a multivariate normal distribution were 
created using 5000 Monte Carlo simulations (Australian Bureau of Sta
tistics, 2018a). AFs and ANs were projected to 2030 and 2050 per RCP as 
GCM-ensemble averages by extrapolating exposure-response relation
ships using the projected climate dataset (Gasparrini et al., 2017; 
Vicedo-Cabrera et al., 2019). ANs were adjusted with the projected 
future workforce sizes per time period. Non-adaptation scenarios 
assumed an unchanged heatwave threshold (baseline DMT95). 
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Theoretical 100% long-term climate adaptation (henceforth adaptation) 
scenarios were created by recalculating EHF using the DMT95 in the 
projected 30-year period as the heatwave threshold. This uses a 
non-arbitrary statistic inherent to EHF calculation assuming that 
workers have adapted to the projected climate instead of an arbitrary set 
value of adaptation, for example 10% (Rai et al., 2022; Vicedo-Cabrera 
et al., 2019). 

Analyses for national, baseline AFs were conducted with data strat
ified by age, sex, indoor/outdoor status, occupation, and injuries and 
illnesses separately. Indoor/outdoor status was determined by two 
separate methods. The first method was based on workplace industry. 
Industries of agriculture, forestry and fishing”, “construction”, “elec
tricity, gas and water” and “mining” were denoted as outdoor industries; 
all other industries were indoors (Australian Bureau of Statistics, 2022b; 
Varghese et al., 2019a; Xiang et al., 2016). The second method involved 
matching workers’ occupations, as defined by the Australian and New 
Zealand Standard Classification of Occupations (ANZSCO) (Australian 
Bureau of Statistics, 2019), with their corresponding occupations from 
the Canadian National Occupational Classification (NOC) (Smith, 2013; 
Statistics Canada, 2019) as listed on figshare (Borg, 2022c). Both 
ANZSCO and NOC are derived from the International Standard Classi
fication of Occupations (International Labour Organization, 2010). NOC 
occupations classified with an “L3 location” (having main duties with 
outdoor work for at least part of the working day), including occupations 
with multiple locations, were classified as outdoor. Occupations without 
this classification were analyzed as indoor workers (no outdoor work). 
Cross-matching was done for 6-digit ANZSCO occupations (the lowest 
level classification) which were then aggregated to 4-digit unit groups to 
match the SWA data. ANZSCO occupations associated with both indoor 
and outdoor NOC occupations were classified based on the more com
mon classification, with indoors being selected in the event of a tie. The 
cross-matching of ANZSCO and NOC occupations used in this study was 
checked against two previous cross-matches used in previous Australian 
studies examining the relationship between temperature and OIIs 
(Fatima et al., 2022; McInnes et al., 2018, 2017; Varghese et al., 2019a, 
2019b) derived from older ANZSCO and NOC versions (Smith, 2013; 
Varghese et al., 2019a). One of these cross-matches, the original 
cross-match, was validated with a strong correlation between ANZSCO 
and NOC for outdoor work (Smith, 2013). Stratifying by occupations 
instead of industry is less likely to misclassify indoor/outdoor status but 
is less commonly used for assessing outcomes from occupational heat 
stress (Borg et al., 2021; Varghese et al., 2019a). 

All analyses were performed using R version 4.2.1 (Team, 2021). 
DLNMs, GAMs, Tweedie distributions, Tweedie index parameters, 
multivariate meta-regression models and attributable risk were modeled 
or calculated with the dlnm, mcgv, tweedie, statmod, mixmeta and Flu
MoDL packages, respectively (Dunn, 2017; Dunn and Smyth, 2005; 
Gasparrini, 2011; Lytras, 2019; Sera et al., 2019; Smyth, 2002; Wood 
et al., 2017). The code for analysis is available upon reasonable request. 
A reproducible example is available at the first author’s GitHub page (htt 
ps://github.com/mtthwborg/2023_Borg_HW/). Ethics approval to ac
cess and analyze SWA data were obtained from the University of 

Adelaide Human Research Ethics Committee (H-2019-141 and 
H-2016-085). 

3. Results 

3.1. Descriptive statistics 

The cities’ averaged DMT across the study period ranged from 14 to 
29 ◦C (Table 1). Darwin had the highest value and lowest variance, 
reflective of its tropical climate. Across cities, there was an approxi
mately similar spread of heatwave days, including severe and extreme 
heatwaves, across cities (Table A.1). Projected climate data generally 
had more heatwave days annually with lower 50th and 85th positive 
EHF values compared to baseline in non-adaptation scenarios, and 
similar or slightly less days in adaptation scenarios (Table A.2). Darwin 
was an exception, with higher positive EHF values and considerably 
more heatwave days. 

Overall 1,208,004 claims were included for analysis. Details on 
excluded claims are in Table A.3. Claim payouts totaled to AU$22 billion 
(Table A.4). Approximately 60%, 30% and 11% of financial payouts 
covered compensation payments, goods and services (predominantly 
health services), and non-compensation costs, respectively. Details on 
national demographics and claim statistics are included in Table A.5. 
The number of OIIs gradually decreased across successive financial 
years, whereas associated costs gradually increased up to the 2009 
financial year and then decreased. Most payouts occurred in the same or 
subsequent financial year as the date of claim submission. Injuries were 
3.3 times more common than illnesses, but illnesses had on average a 1.6 
higher cost per OII ratio. 

3.2. Overall cumulative relationships 

As EHF increased, OIIs gradually increased across all days with a 
similar pattern observed with associated costs during heatwaves (Fig. 1). 
Approximately identical relationships were observed with costs strati
fied into compensation and goods and services but with larger confi
dence intervals; a non-significant relationship was observed with non- 
compensation costs. City-level relationships were similar to the na
tional relationships for OIIs (Fig. 2), and also costs during heatwave but 
not non-heatwave days (Fig. 3). During heatwaves, the risk of OIIs 
during heatwaves was elevated throughout the ten-day lag period, 
although slightly higher in the first few days (Figure A1). For costs, a 
significant relationship was only observed five to ten days after exposure 
(Figure A2). 

Heterogeneity was not detected in the OII meta-analysis (Cochran Q- 
statistic = 12.06, df = 12, P-value = 0.44). Substantial heterogeneity 
was detected with the cost models (Cochran Q-statistic = 39.11, df = 12, 
P-value = 0.0001, I2 = 69.32%). Comparing city-level overall exposure- 
response relationships with and without BLUPs highlighted large sta
tistical shrinkage (estimates pulled towards the national exposure- 
response relationship) in Adelaide, Darwin, and Hobart (Figure A3). 

Table 1 
Descriptive meteorological factors per city.  

City Average DMT (SD) DMT95 EHF50p EHF85p 2*EHF85p Köppen climate 

Adelaide 19.67 (5.10) 26.51 12.29 34.31 68.62 Mediterranean hot summer 
Brisbane 24.05 (2.54) 27.28 1.93 7.23 14.45 Humid subtropical 
Darwin 29.08 (0.77) 30.02 0.20 0.54 1.08 Tropical savanna climate with dry-winter characteristics 
Hobart 14.07 (3.89) 18.79 6.30 17.35 34.70 Marine west coast 
Melbourne 19.24 (4.63) 25.23 6.86 25.97 51.93 Marine west coast 
Perth 22.08 (4.53) 27.97 5.02 20.72 41.44 Mediterranean hot summer 
Sydney 22.08 (3.46) 26.24 4.01 11.01 22.01 Humid subtropical 

Daily mean temperature (DMT), standard deviation (SD), 95th percentile of DMT (DMT95), 50th (EHF50p) and 85th percentiles (EHF85p) of all positive EHF values, 
twice the EHF85p value (2* EHF85p), and Köppen climate zones per city. DMT is expressed in ◦C, and EHF is expressed in ◦K (◦C2). DMT95 is the heatwave threshold (◦C), 
and EHF85p and 2*EHF85p are the severe and extreme heatwave thresholds (◦K), respectively. 
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Fig. 1. Overall cumulative exposure-response relationships. Overall cumulative exposure-response curves pooled nationally. The curves with 95% confidence 
intervals represent percentage change in the number of occupational injuries and illnesses (OIIs), total costs, costs per OII, compensation costs, goods and services 
costs, and non-compensation costs against excess heat factor. The dashed lines from left to right represent the thresholds for heatwaves, severe heatwaves and 
extreme heatwaves. 
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Fig. 2. Overall exposure-response relationships per city for the daily number of occupational injuries and illnesses. 
Overall cumulative exposure-response relationships for occupational injuries and illnesses in Adelaide, Brisbane, Darwin, Hobart, Melbourne, Perth and Sydney. The 
curves with 95% confidence intervals represent percentage change in the number of occupational injuries and illnesses against Excess Heat Factor. The dashed lines 
from left to right represent the thresholds for heatwaves, severe heatwaves and extreme heatwaves. 
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Fig. 3. Overall exposure-response relationships per city for daily occupational injury- and illness-associated costs. 
Overall cumulative exposure-response relationships for occupational injury- and illness-associated costs in Adelaide, Brisbane, Darwin, Hobart, Melbourne, Perth and 
Sydney. The curves with 95% confidence intervals represent percentage change in costs against Excess Heat Factor. The dashed lines from left to right represent the 
thresholds for heatwaves, severe heatwaves and extreme heatwaves. 
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3.3. Attributable risk 

About 0.129% (95% eCI: 0.106–0.164%) of all OIIs were heatwave- 
attributable (Fig. 4, estimates listed in Table A.6). Generally similar OII- 
AFs were observed across all cities although Perth and Darwin had 
relatively higher and lower AFs, respectively. 0.252% (95% eCI: 
0.184–0.342%) of costs were heatwave-attributable. Cost-AFs for heat
waves generally were significant in all cities except Adelaide and 
Hobart, although these cities had significant AFs for extreme heatwaves 
(and severe heatwaves in Hobart) (Fig. 4, estimates listed in Table A.7). 
Cost-AF estimates were lowest in Darwin. The other four cities had 
similar estimated cost-AFs. Most OIIs and costs were attributable to low- 
intensity heatwaves. Collectively, 1556 (95% eCI: 1286–1,984, Table 2) 
OIIs and AU$56 million (95% eCI: 41–76 million, Table 3) were 
observed, equal to 120 OIIs and AU$4.3 million annually. 

Without adaptation, OII-AFs nationally were projected to slightly 
increase relative to baseline to 0.137% (95% eCI: 0.084–0.195) and 
0.151% (95% eCI: 0.091–0.222) by 2030 under RCP4.5 and 8.5, 
respectively (Fig. 5), representing 162 and 179 additional OIIs annually, 
respectively. These increased further to 0.176% (95% eCI: 0.104–0.265) 
and 0.228% (95% eCI: 0.125–0.370) by 2050 under RCP4.5 and 8.5, 

respectively, representing 270 and 349 OIIs yearly, respectively. Most 
cities had similar increases in OII-AF, although Brisbane and Sydney had 
a slight decrease in 2030s under RCP4.5, and tropical city Darwin had 
projected increases in AF 17 times greater than baseline. 

National projected cost-AFs were 0.153% (95%eCI: (− 0.062 to 
0.345) and 0.150% (95%eCI: 0.118 to 0.392) by 2030 under RCP4.5 and 
8.5, respectively, and 0.127% (95%eCI: 0.270 to 0.461) and 0.044% 
(95%eCI: 0.662 to 0.598) in 2050 under RCP4.5 and RCP8.5, respec
tively. Significant AFs were projected for extreme heatwaves nationally 
in 2030 under both RCP4.5 (0.040%, 95%eCI: 0.015–0.057%) and 
RCP8.5 (0.038%, 95%eCI: 0.011–0.069) but not 2050 (RCP4.5: 0.040%, 
95%eCI: 0.012 to 0.087%, and RCP8.5: 0.038%, 95%eCI: 0.094 to 
0.143). These projected cost-AF estimates were approximately 66–80% 
the size those at baseline. In 2030, costs from extreme heatwaves 
represent AU$768 k and AU$830 k under RCP4.5 and RCP8.5, respec
tively. Cost-AFs were projected to increase in both 2030 and 2050 in 
Melbourne and Perth, with slight increases relative to baseline. 

With adaptation, both OII- and cost-AFs were similar across RCPs 
and time periods, and were slightly smaller than baseline in most cities, 
although they approximately doubled in Darwin (Fig. 6, estimates listed 
in Tables A.8 and A.9). Cost-AFs assuming adaptation for heatwaves 

Fig. 4. Heatwave-attributable fractions for occupational injuries/illnesses and associated costs. 
The proportion of the number of occupational injuries/illnesses (OIIs) and associated costs attributable to heatwaves, with 95% empirical confidence intervals. 
Results are included for all heatwaves as well as its constituents: low-intensity, severe and extreme heatwaves. 
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were generally non-significant in all cities except for Melbourne (similar 
to baseline) and Perth (slightly smaller than baseline). 

Sensitivity analysis showed different modeling choices regarding 
parameters and inclusion of humidity led to similar baseline, national 
AFs (Table A.10). Cost-AFs lowered when only assessing claims sub
mitted no later than June 2014 with payments restricted to up to five 
financial years post-claim submission but remained significant. ANs 
under high, low and unchanged population scenarios without adapta
tion are listed in Table A.11. 

3.4. Claim characteristics 

Baseline OII-AFs were similar across different sexes, age groups and 
industries (indoor vs outdoor) with a slightly higher AF in the 15–29 age 
group (Table 4). Across occupations, indoor occupations, “clerical and 
administrative workers,” “laborers” and “machinery operators and 
drivers” had higher OII-AFs, with heatwave-preventable fractions 
(negative AFs) observed in “professionals.” Illnesses had higher OII-AFs 
compared to injuries. 

Differences across demographic and OII characteristics were gener
ally more pronounced in cost-AFs than OII-AFs. Cost-AFs were highest 
with females, the 30–49 years age group, indoor workers, and illnesses. 
Apart from indoor/outdoor classification, there was insufficient power 
to compare cost-AFs across occupations. 

4. Discussion 

To the authors’ knowledge, this is the first study internationally to 
evaluate the impact of heatwaves on OIIs alongside associated economic 
costs and project their future impact from climate change. Increased OIIs 
and costs were observed during heatwaves at baseline, and projected 
future increases were predicted for OIIs, with some evidence for in
creases in costs at least during extreme heatwaves. The EHF inherently 
incorporates heatwave presence, heatwave severity, and climate accli
matization, and long-term adaptation was explored through updating 
the heatwave threshold. 

Workplace and broader public health heat adaptation measures can 
reduce morbidity from OIIs and associated costs to employees, em
ployers and governments. This impact is likely to increase with global 
warming, as evidenced by increased projected AFs for OIIs in 2030 and 
particularly 2050. Workplace interventions for heatwaves include easy 
access to hydration, shade, air conditioning and (if required) medical 
services, reduced or no work hours, and minimizing radiant workplace- 
generated heat (Borg et al., 2021; Jay et al., 2021). Public health mea
sures include guidelines and legislation to implementing workplace in
terventions and educational messages highlighting awareness and 
prevention of occupational heat stress. As AFs for OIIs were generally 
similar across different cities and worker characteristics, adaptation 
measures should be aimed at the national, general working population. 
Although relative risks for both OIIs and costs were higher during 
heatwave days with greater severity compared to days with lower 

Table 2 
Number of occupational injuries and illnesses attributable to heatwaves per year.  

Location Period RCP Heatwaves Low-intensity heatwaves Severe heatwaves Extreme heatwaves 

Total Baseline NA 119.90 (70.92–182.38) 60.16 (35.04–92.04) 37.97 (22.10–57.85) 21.76 (12.38–33.14) 
2030 4.5 162.10 (98.73–229.68) 84.56 (48.90–121.63) 51.88 (31.37–74.66) 25.66 (14.31–40.69)  

8.5 178.27 (107.33–261.97) 91.30 (52.72–134.99) 56.96 (34.05–84.22) 30.01 (16.30–49.16) 
2050 4.5 269.82 (159.33–406.02) 134.88 (73.56–205.77) 86.40 (51.72–127.66) 48.55 (27.22–84.40)  

8.5 349.40 (190.87–566.42) 167.55 (80.97–276.02) 108.92 (63.55–167.80) 72.93 (37.62–132.51) 
Adelaide Baseline NA 15.11 (9.64–22.22) 8.64 (4.98–13.29) 4.64 (3.16–6.70) 1.84 (1.19–2.64) 

2030 4.5 19.73 (10.85–28.93) 12.16 (5.70–18.54) 6.16 (3.71–8.78) 1.41 (0.68–3.25)  
8.5 20.66 (11.12–31.27) 12.44 (5.61–19.46) 6.52 (3.66–10.27) 1.69 (0.77–2.86) 

2050 4.5 25.54 (13.30–39.86) 15.18 (6.63–24.20) 8.42 (4.65–13.67) 1.95 (0.97–3.35)  
8.5 29.44 (14.25–47.37) 16.56 (6.36–27.49) 10.11 (5.27–16.97) 2.78 (1.52–4.50) 

Brisbane Baseline NA 20.34 (11.28–31.48) 10.31 (5.90–16.00) 5.70 (3.01–8.80) 4.33 (2.26–6.80) 
2030 4.5 25.56 (14.69–41.55) 10.84 (6.12–17.40) 7.94 (4.35–14.10) 6.78 (3.63–10.75)  

8.5 30.30 (17.61–45.74) 12.42 (7.02–19.09) 9.96 (5.56–15.26) 7.92 (4.22–12.28) 
2050 4.5 46.26 (27.04–74.22) 18.54 (9.72–30.39) 14.94 (8.74–22.57) 12.78 (7.10–22.62)  

8.5 66.39 (33.21–121.46) 26.46 (10.73–50.15) 19.13 (10.02–34.01) 20.80 (10.37–38.65) 
Darwin Baseline NA 0.45 (0.24–0.72) 0.25 (0.14–0.39) 0.08 (0.04–0.13) 0.11 (0.06–0.18) 

2030 4.5 9.84 (5.75–14.42) 1.05 (0.57–1.56) 2.59 (1.56–3.70) 6.20 (3.27–10.07)  
8.5 11.06 (6.50–17.21) 1.03 (0.53–1.53) 2.68 (1.58–3.85) 7.36 (3.98–12.59) 

2050 4.5 18.20 (10.56–27.62) 1.20 (0.47–1.92) 3.46 (1.68–5.17) 13.54 (7.61–21.84)  
8.5 22.68 (11.64–37.67) 0.94 (0.15–1.74) 3.24 (0.90–5.36) 18.50 (9.47–31.88) 

Hobart Baseline NA 2.83 (1.88–4.11) 1.39 (0.92–2.02) 0.80 (0.53–1.16) 0.64 (0.39–0.96) 
2030 4.5 3.43 (1.58–5.36) 1.54 (0.47–2.64) 1.14 (0.53–1.81) 0.76 (0.47–1.05)  

8.5 3.79 (1.69–6.39) 1.70 (0.49–3.12) 1.24 (0.56–2.14) 0.85 (0.50–1.29) 
2050 4.5 5.04 (2.00–9.84) 2.23 (0.51–4.79) 1.67 (0.71–2.93) 1.15 (0.61–2.26)  

8.5 5.65 (2.05–10.08) 2.50 (0.44–4.94) 1.83 (0.71–3.15) 1.32 (0.69–2.12) 
Melbourne Baseline NA 15.60 (8.36–24.82) 8.24 (3.44–14.16) 4.68 (2.64–7.34) 2.67 (1.80–3.80) 

2030 4.5 21.46 (10.41–34.09) 11.84 (4.59–19.44) 6.55 (3.19–12.41) 3.07 (1.81–4.67)  
8.5 22.99 (10.92–37.34) 12.32 (4.61–20.53) 7.37 (3.61–13.35) 3.30 (2.00–4.85) 

2050 4.5 35.11 (15.89–59.11) 18.77 (6.42–32.94) 11.34 (5.48–20.43) 5.00 (2.88–7.27)  
8.5 42.31 (17.36–72.83) 21.94 (6.49–38.37) 14.20 (6.28–26.14) 6.17 (3.49–10.70) 

Perth Baseline NA 22.71 (14.45–33.48) 10.54 (6.97–15.33) 5.30 (3.25–7.93) 6.86 (3.92–10.44) 
2030 4.5 32.41 (19.67–46.07) 15.49 (9.34–22.12) 12.14 (7.14–17.43) 4.79 (2.50–7.81)  

8.5 32.92 (18.65–49.14) 15.90 (9.21–24.19) 12.36 (6.54–18.26) 4.66 (2.33–7.68) 
2050 4.5 50.77 (29.26–72.65) 24.37 (13.82–36.00) 18.42 (10.10–26.19) 7.98 (4.10–12.02)  

8.5 58.94 (34.13–87.71) 27.78 (14.85–42.57) 20.53 (12.36–29.68) 10.63 (4.97–18.34) 
Sydney Baseline NA 42.86 (25.08–65.54) 20.78 (12.71–30.84) 16.77 (9.45–25.80) 5.31 (2.75–8.33) 

2030 4.5 47.08 (27.70–69.40) 30.08 (17.82–44.57) 14.50 (7.82–22.61) 2.50 (0.90–6.22)  
8.5 53.90 (31.80–82.45) 33.89 (20.61–50.81) 15.95 (8.61–25.61) 4.06 (1.01–10.03) 

2050 4.5 84.09 (48.81–129.27) 50.80 (29.87–76.30) 26.38 (14.92–39.28) 6.91 (2.22–19.87)  
8.5 118.78 (66.30–201.93) 67.28 (36.52–113.33) 37.71 (21.89–57.84) 13.80 (4.67–35.88) 

The number of annual occupational injuries and illnesses attributable to heatwaves across to 2016–45 and 2036–65 centered at 2030 and 2050 with 95% empirical 
confidence intervals. Projected results do not assume climate adaptation. NA: not applicable, RCP: Representative Concentration Pathway. 
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severity, severe and extreme heatwave days were associated with lower 
AFs. This was because there were fewer severe and extreme heatwave 
days compared to lower-intensity heatwave days. It is recommended 
that interventions be applied during all heatwave days in order to 
minimize the heatwave-attributable burden. 

Adaptation was estimated to result in relatively lower future OII- and 
cost-AFs in most cities that were relatively consistent across time periods 
and RCPs compared to non-adaptation scenarios. This study assumed a 
theoretical 100% adaptation rate irrespective of cause (e.g. workplace or 
lifestyle changes, physiological long-term adaptation). A partial adap
tation scenario in between that of the non-adaptation and adaptation 
scenarios is more likely to occur. Although most projected AFs assuming 
adaptation were lower than baseline, this likely represents the baseline 
EHF heatwave threshold which incorporates 15 years (1990–2005) of 
climate observations occurring before the study period (2005–2018). 
These AFs would likely be more similar if claims data during those 15 
years were available and assessed. Climate mitigation (RCP4.5 
compared to RCP8.5) was projected to reduce OII-AFs in no-adaptation 
scenarios. Given that 100% adaptation is an unlikely scenario, limiting 
greenhouse gas emissions would likely help prevent future OIIs. 

The groups with higher cost-AFs include females, middle-aged 
workers, and indoor employees. This may reflect increased risks of 
more severe heat-attributable OIIs. Females have been linked with lower 
sweat rates (Notley et al., 2017), reduced heat loss during exercise 
(Notley et al., 2019) and reduced water intake during work (to avoid 

using a toilet for hygienic reasons) (Venugopal et al., 2016). 
Middle-aged workers may have longer working hours, because younger 
workers are more likely to prioritize secondary or tertiary education 
over work, and older workers may reduce worktime as they approach 
retirement. Longer working hours require larger compensation pay
ments from worktime loss (Safe Work Australia, 2022b). Indoor workers 
are often overlooked as being at risk of heat-associated OII. Australian 
outdoor workers are more often targeted by heat-minimization strate
gies (Safe Work Australia, 2021.) that may reduce the incidence of se
vere heatwave-attributable OIIs associated with larger costs. 

Although there was substantial heterogeneity across the cost models, 
the BLUPs still reflect study-specific estimates improved by utilizing 
information from the other cities (Aert et al., 2021). The seven cities for 
analysis include 97% of the metropolitan workforce (Australian Bureau 
of Statistics, 2022a) and hence clinically represent the Australian na
tional metropolitan workforce. Due to the heterogeneity, results are 
more likely to differ when pooling results with different datasets (or 
without pooling) than those used in this study, particularly for Adelaide, 
Darwin and Hobart, the three smallest capital cities. 

Larger AF estimates were observed for Darwin, both with and 
(especially) without adaptation. Although EHF can accurately capture 
the climate in most Australian cities and partially incorporates humidity 
through minimum daily temperature (Nairn and Fawcett, 2014), it 
cannot fully capture Darwin’s high tropical humidity and very humid 
heatwaves (Nairn et al., 2022). This was evidenced at baseline by 

Table 3 
Heatwave-attributable costs secondary to occupational injuries and illness per year.  

Location Period RCP Heatwaves Low-intensity heatwaves Severe heatwaves Extreme heatwaves 

Total Baseline NA 4292.8 (1430.7–7434.5) 2107.1 (477.3–3932.1) 1336.4 (534.7–2224.0) 849.3 (342.6–1386.5) 
2030 4.5 3313.2 (− 1332.4–7445.1) 1312.4 (− 1937.4–4214.3) 1232.8 (50.3–2344.0) 768.0 (317.0–1239.9)  

8.5 3239.4 (− 2549.0–8463.4) 1178.5 (− 2687.3–4606.9) 1230.5 (− 291.9–2629.1) 830.4 (245.1–1485.4) 
2050 4.5 3552.5 (− 7583.5–12,922.5) 929.8 (− 6090.5–6849.4) 1509.2 (− 1385.8–3971.5) 1113.6 (− 347.9–2437.8)  

8.5 1226.6 (− 18559.7–16,771.6) − 870.2 (− 12381.0–8144.2) 1042.4 (− 3852.6–4964.6) 1054.4 (− 2650.0–4003.9) 
Adelaide Baseline NA 236.8 (− 139.5–621.2) 122.5 (− 146.1–398.0) 78.4 (− 12.8–171.0) 35.8 (15.5–59.0) 

2030 4.5 303.4 (− 319.8–879.4) 175.1 (− 319.5–626.8) 102.6 (− 33.6–226.5) 25.7 (8.2–61.7)  
8.5 315.0 (− 359.2–967.5) 177.1 (− 343.8–672.0) 107.0 (− 43.8–265.4) 30.9 (10.0–57.8) 

2050 4.5 386.4 (− 477.4–1217.1) 214.0 (− 452.0–839.0) 137.3 (− 62.4–348.1) 35.1 (12.4–66.0)  
8.5 436.0 (− 662.8–1478.6) 226.5 (− 579.0–974.0) 160.5 (− 118.3–451.5) 49.0 (17.1–89.6) 

Brisbane Baseline NA 983.0 (401.9–1631.4) 480.9 (217.4–802.0) 255.9 (104.2–427.3) 246.2 (96.0–401.4) 
2030 4.5 183.3 (− 837.5–972.6) − 116.2 (− 786.5–384.4) 61.1 (− 260.7–327.4) 238.3 (100.7–400.3)  

8.5 − 9.6 (− 1529.9–1070.7) − 248.9 (− 1187.5–438.3) 1.6 (− 498.5–353.7) 237.8 (77.1–379.9) 
2050 4.5 − 478.7 (− 3520.9–1584.4) − 614.8 (− 2357.4–665.9) − 147.9 (− 1107.3–515.8) 284.0 (− 109.5–518.1)  

8.5 − 1947.6 (− 8597.8–2284.1) − 1505.6 (− 5220.5–950.0) − 576.6 (− 2545.2–657.1) 134.7 (− 897.0–756.9) 
Darwin Baseline NA 20.4 (− 0.1–42.1) 12.2 (0.1–25.2) 2.7 (− 0.1–5.6) 5.5 (0.0–11.0) 

2030 4.5 219.6 (− 288.9–646.1) 10.3 (− 82.4–92.2) 41.3 (− 149.7–194.4) 168.0 (− 66.8–391.6)  
8.5 204.0 (− 550.1–831.8) 4.2 (− 107.0–104.5) 28.3 (− 221.7–233.4) 171.5 (− 231.8–525.2) 

2050 4.5 190.6 (− 1583.9–1604.5) − 11.1 (− 192.8–156.2) − 4.1 (− 457.9–377.9) 205.8 (− 971.8–1119.5)  
8.5 − 72.7 (− 3794.9–2681.3) − 25.9 (− 225.3–156.9) − 65.4 (− 729.8–478.6) 18.6 (− 2889.3–2096.9) 

Hobart Baseline NA 47.1 (− 11.9–109.7) 12.9 (− 38.2–61.5) 13.2 (0.6–26.5) 21.1 (7.2–34.7) 
2030 4.5 − 24.1 (− 289.0–199.9) − 25.9 (− 179.7–109.7) − 6.2 (− 93.7–64.0) 8.0 (− 16.9–27.7)  

8.5 − 30.0 (− 341.9–235.5) − 30.7 (− 212.0–129.5) − 7.5 (− 107.4–73.5) 8.2 (− 23.5–33.8) 
2050 4.5 − 55.5 (− 556.5–333.8) − 48.5 (− 335.1–182.1) − 15.0 (− 169.0–101.4) 7.9 (− 53.8–54.8)  

8.5 − 76.1 (− 654.9–381.2) − 61.1 (− 383.2–207.1) − 21.4 (− 203.9–115.3) 6.3 (− 69.0–61.1) 
Melbourne Baseline NA 997.2 (231.7–1830.7) 662.9 (80.0–1282.7) 176.7 (39.4–323.7) 157.6 (74.9–249.7) 

2030 4.5 1406.5 (295.5–2603.6) 917.0 (132.1–1705.0) 388.8 (93.5–862.5) 100.7 (45.9–176.6)  
8.5 1542.5 (317.1–2919.4) 981.9 (143.1–1850.1) 448.5 (108.2–946.0) 112.0 (52.0–195.0) 

2050 4.5 2447.1 (449.3–4821.6) 1548.7 (193.7–3067.5) 716.6 (156.7–1524.4) 181.9 (77.1–309.4)  
8.5 3106.2 (504.2–6136.1) 1906.8 (203.7–3671.7) 952.1 (184.7–2041.4) 247.3 (97.4–553.3) 

Perth Baseline NA 591.4 (241.0–975.5) 270.1 (107.7–461.6) 142.2 (50.5–243.8) 179.1 (39.4–326.1) 
2030 4.5 759.4 (174.6–1347.5) 338.6 (− 63.2–732.7) 291.3 (105.2–480.0) 129.5 (40.2–229.1)  

8.5 762.3 (153.1–1472.0) 342.1 (− 94.0–823.4) 294.6 (102.8–509.5) 125.7 (37.7–222.1) 
2050 4.5 1144.4 (37.3–2300.0) 504.3 (− 297.4–1318.0) 429.3 (114.0–754.2) 210.8 (73.0–347.7)  

8.5 1276.5 (− 260.4–2870.6) 543.3 (− 549.6–1632.7) 463.2 (43.5–891.0) 270.0 (93.0–499.6) 
Sydney Baseline NA 1416.9 (707.6–2223.7) 545.7 (256.4–901.0) 667.3 (352.8–1026.0) 203.9 (109.5–304.7) 

2030 4.5 470.8 (− 586.0–1336.8) 22.1 (− 871.8–703.6) 350.8 (77.8–643.7) 97.9 (41.2–210.3)  
8.5 463.2 (− 1284.3–1577.9) − 37.2 (− 1433.4–781.9) 356.1 (− 86.4–728.8) 144.3 (45.7–280.9) 

2050 4.5 − 8.4 (− 3563.5–1986.0) − 614.4 (− 3443.2–963.9) 397.1 (− 430.8–929.5) 208.9 (81.6–451.4)  
8.5 − 1423.2 (− 8076.1–1980.8) − 1887.3 (− 7031.2–819.7) 133.3 (− 1432.8–892.5) 330.9 (120.9–667.4) 

Annual costs secondary to occupational injuries and illnesses attributable to heatwaves across to 2016–45 and 2036–65 centered at 2030 and 2050 with 95% empirical 
confidence intervals. Costs are presented per AU$1000 dollars. Projected results do not assume climate adaptation. NA: not applicable, RCP: Representative Con
centration Pathway. 

M.A. Borg et al.                                                                                                                                                                                                                                 



Environmental Research 236 (2023) 116852

11

Darwin’s little air temperature variation, lower positive EHF values, and 
smaller AF estimates. Consequently, there was a large increase in the 
projected number of heatwave days due to global warming. Caution is 
therefore required when interpreting projected attributable risk in 
Darwin and other highly tropical areas; alternative heatwave metrics 
should be researched for more accurate evaluations in these areas. 

The primary study limitation is that the claims data only include 
reported OIIs. Mild OIIs are less likely to be reported (Australian Bureau 
of Statistics, 2018b); thus the true quantity of OIIs and associated costs is 
likely underrepresented. Data for workers not covered by state 
compensation schemes, in particular self-employed workers and those 

with separate private schemes that partially or completely cover pay
ments, are not collected (Safe Work Australia, 2022b). Compensation 
payments due beyond the study period would not be captured in 
collected data for said claims, particularly affecting claims submitted 
later in the study period. This was partially addressed with a supple
mentary analysis. However, most payments occurred in the same or 
subsequent financial year as claim lodgment. Because only claims for 
OIIs occurring within capital cities were included, these results are not 
representative of, and cannot be generalized to, rural and remote 
workers and workers from other metropolitan but non-capital cities such 
as the Gold Coast. As some claims were removed from the dataset due to 

Fig. 5. Projected attributable fractions for heatwave-attributable OIIs and associated costs without climate adaptation. 
The proportion of the number of occupational injuries and illnesses (OIIs) and associated costs attributable to heatwaves, with 95% empirical confidence intervals. 
Results are included for all heatwaves as well as its constituents: low-intensity, severe and extreme heatwaves. 
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missing data, selection bias may exist. Non-meteorological temperature 
variation including workplace-generated heat and air conditioning 
could not be analyzed due to data unavailability. However, the impact of 
air conditioning may have been partially and indirectly assessed 
(theoretically) through evaluating the impact of future climate adapta
tion. The projected climate dataset utilized Coupled Model Intercom
parison Project [CMIP]5 instead of the newer CMIP6 scenarios that 
include Shared Socioeconomic Pathways. To the authors’ knowledge, no 
CMIP6 datasets with sufficient resolution to accurately represent 
Australian cities currently exist. However, different socioeconomic 
projections were considered through different projected population 
growths (Australian Bureau of Statistics, 2018a). Furthermore, eight 
GCMs were used, which is relatively more than other studies projecting 
temperature-attributable outcomes. Finally, there is huge uncertainty in 
projections, attenuated further by real-life phenomena not captured in 
the projections such as the SARS-CoV-2 outbreak. As part of this un
certainty, the allocation of work duties and the costings of expenses 
associated with OIIs amongst workers may change in the future. This 
may change the predicted future risk of workers’ heatwave-attributable 
OIIs and costs. 

5. Conclusions 

Heatwaves are responsible for a considerable preventable portion of 
OIIs and associated economic burden. Heatwave-attributable OIIs are 
likely to increase in the future with some evidence for an increase in 
costs. Adaptation can potentially prevent these future increases. 

Workplace and public health action is imperative to reduce heatwave- 
attributable occupational morbidity and costs. 

Restrictions apply to the availability of the compensation claims data 
which were used under license for the current study. The data used can 
be requested from SWA at https://www.safeworkaustralia.gov.au/d 
ata-and-research/request-data and may be made available with the 
permission of SWA. SWA has made some of this data publicly available 
in the Australian workers’ compensation statistics report, which pro
vides detailed statistics about workers’ compensation claims lodged in 
Australia from July 2000 to June 2020. This report can be accessed at htt 
ps://www.safeworkaustralia.gov.au/doc/australian-workers-compen 
sation-statistics-2019-20. 

The retrospective climate data were sourced from the Australian 
Bureau of Meteorology Atmospheric high-resolution Regional Rean
alysis: http://www.bom.gov.au/research/projects/reanalysis/. The li
cense under which the data were used is available online: http://www. 
bom.gov.au/metadata/catalogue/view/ANZCW0503900566.shtml? 
template=full. 

The projected climate data have been deposited in figshare (http 
s://doi.org/10.25909/23709657). They are derived from Climate 
Change in Australia gridded datasets available online: https://data-cbr. 
csiro.au/thredds/catalog/catch_all/oa-aus5km/Climate_Change_in_ 
Australia_User_Data/Application_Ready_Data_Gridded_Daily/catalog.ht 
ml. The license under which the data were used is available online: htt 
ps://www.climatechangeinaustralia.gov.au/en/overview/about-site/l 
icences-and-acknowledgements/. 

The retrospective workers’ population data were derived from the 

Fig. 6. Projected attributable fractions for heatwave-attributable OIIs and associated costs with climate adaptation. 
The proportion of the number of occupational injuries and illnesses (OIIs) and associated costs attributable to heatwaves, with 95% empirical confidence intervals. 
Results are included for all heatwaves (green) as well as its constituents: low-intensity (orange), severe (red) and extreme heatwaves (dark red). 
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Australian Bureau of Statistics (ABS) Labour Force, Australia, Detailed 
dataset (LM1) and have been deposited in figshare (https://doi.org/10.2 
5909/63a2d38c1b295, which also contains the indoor/outdoor occu
pation classifications. The LM1 dataset (https://www.abs.gov.au/statist 
ics/labour/employment-and-unemployment/labour-force-australia- 
detailed/latest-release) and projected population dataset (https://www. 
abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/3222.02017%20(base)% 
20-%202,066?OpenDocumenthttps://www.abs.gov. 
au/AUSSTATS/abs@.nsf/DetailsPage/3222.02017%20(base)%20-% 
202,066?OpenDocument) are publicly available online. 

The public and school holidays data have been deposited in figshare 
(https://doi.org/10.25909/6311e7a0dcb3f and https://doi.org/10. 
25909/6311e7b3bc760, respectively). 
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Table 4 
Attributable fractions by worker and OII characteristics.  

Factor Category OIIs Costs 

Overall All workers 0.129 
(0.107–0.165) 

0.252 
(0.182–0.345) 

Sex Male 0.135 
(0.109–0.176) 

0.161 
(0.069–0.266)  

Female 0.122 
(0.053–0.202) 

0.323 
(0.172–0.486) 

Age (years) 15 to 29 0.165 
(0.124–0.222) 

0.013 (− 0.140 to 
0.150)  

30 to 49 0.120 
(0.075–0.177) 

0.295 
(0.180–0.430)  

50 to 75 0.113 
(0.071–0.166) 

0.145 
(0.048–0.251) 

Industries Indoor 0.126 
(0.102–0.165) 

0.275 
(0.201–0.371)  

Outdoor 0.144 
(0.079–0.220) 

0.130 (− 0.112 to 
0.345) 

Occupation Indoor occupations 0.150 
(0.127–0.191) 

0.231 
(0.146–0.338)  

Outdoor occupations 0.037 (− 0.037 to 
0.110) 

0.182 (− 0.229 to 
0.496)  

Clerical & administrative 
workers 

0.202 
(0.071–0.346) 

0.160 (− 0.415 to 
0.553)  

Community & personal 
service workers 

0.130 (− 0.020 to 
0.276) 

0.176 
(0.048–0.309)  

Laborers 0.194 
(0.120–0.283) 

0.107 (− 0.193 to 
0.365)  

Machinery operators & 
drivers 

0.195 
(0.120–0.286) 

0.148 (− 0.234 to 
0.453)  

Managers 0.069 (− 0.071 to 
0.200) 

0.006 (− 0.947 to 
0.515)  

Professionals − 0.144 (− 0.283 
to − 0.034) 

0.197 (− 0.053 to 
0.415)  

Sales workers 0.141 (− 0.080 to 
0.336) 

− 0.084 (− 0.709 
to 0.288)  

Technicians & trade 
workers 

0.106 
(0.054–0.168) 

0.090 (− 0.248 to 
0.350) 

Injuries All injuries 0.110 
(0.080–0.153) 

0.146 
(0.050–0.250)  

Fractures and traumatic 
joint, ligament, muscle & 
tendon injuries 

0.071 (− 0.026 to 
0.161) 

0.203 
(0.079–0.335)  

Wounds, lacerations, 
amputations & internal 
organ damage 

0.104 
(0.038–0.174) 

0.057 (− 0.233 to 
0.299)  

All other injuries 0.337 
(0.216–0.485) 

− 0.598 (− 1.917 
to 0.029) 

Illnesses Illnesses (diseases/ 
conditions) 

0.186 
(0.140–0.253) 

0.429 
(0.281–0.613) 

National heatwave-attributable fractions (%) for the number of occupational 
injuries and illnesses (OIIs) and associated costs stratified by demographic, 
occupational and OII characteristics with 95% empirical confidence intervals. 
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Tobias, A., Iñiguez, C., Forsberg, B., Åström, D.O., Ragettli, M.S., Guo, Y.L., Wu, C.- 
F., Zanobetti, A., Schwartz, J., Bell, M.L., Dang, T.N., Van, D.D., Heaviside, C., 
Vardoulakis, S., Hajat, S., Haines, A., Armstrong, B., 2017. Projections of 
temperature-related excess mortality under climate change scenarios. Lancet Planet. 
Health 1, e360–e367. https://doi.org/10.1016/s2542-5196(17)30156-0. 

Gasparrini, A., Leone, M., 2014. Attributable risk from distributed lag models. BMC Med. 
Res. Methodol. 14, 55. https://doi.org/10.1186/1471-2288-14-55. 

Gray, S.E., Collie, A., 2017. The nature and burden of occupational injury among first 
responder occupations: a retrospective cohort study in Australian workers. Injury 48, 
2470–2477. https://doi.org/10.1016/j.injury.2017.09.019. 

Higgins, J.P.T., Thompson, S.G., 2002. Quantifying heterogeneity in a meta-analysis. 
Stat. Med. 21, 1539–1558. https://doi.org/10.1002/sim.1186. 

International Labour Organization, 2010. Welcome to the ISCO Website. 
Jakob, D., Su, C.-H., Eizenberg, N., Kociuba, G., Steinle, P., Fox-Hughes, P., Bettio, L., 

2017. An atmospheric high-resolution regional reanalysis for Australia. The Bulletin 
of the Australian Meteorological and Oceanographic Society 30, 16–23. 

Jay, O., Capon, A., Berry, P., Broderick, C., De Dear, R., Havenith, G., Honda, Y., 
Kovats, R.S., Ma, W., Malik, A., Morris, N.B., Nybo, L., Seneviratne, S.I., Vanos, J., 
Ebi, K.L., 2021. Reducing the health effects of hot weather and heat extremes: from 
personal cooling strategies to green cities. Lancet 398, 709–724. https://doi.org/ 
10.1016/s0140-6736(21)01209-5. 

Kurz, C.F., 2017. Tweedie distributions for fitting semicontinuous health care utilization 
cost data. BMC Med. Res. Methodol. 17 https://doi.org/10.1186/s12874-017-0445- 
y. 

Lytras, T., 2019. FluMoDL: Influenza-Attributable Mortality with Distributed-Lag 
Models. 

Ma, R., Zhong, S., Morabito, M., Hajat, S., Xu, Z., He, Y., Bao, J., Sheng, R., Li, C., Fu, C., 
Huang, C., 2019. Estimation of work-related injury and economic burden 
attributable to heat stress in Guangzhou, China. Sci. Total Environ. 666, 147–154. 
https://doi.org/10.1016/j.scitotenv.2019.02.201. 
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